

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉 由 分 享 而 得 的 影 像 還 原 技 術

Image Recovery by using Sharing

研 究 生：林憲正

指導教授：林志青 教授

中 華 民 國 九 十 五 年 六 月

藉由分享而得的影像還原技術

Image Recovery by using Sharing

研 究 生：林憲正 Student：Sen-Jen Lin

指導教授：林志青 Advisor：Ja-Chen Lin

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

藉由分享而得的影像還原技術

研究生： 林憲正 指導教授： 林志青 博士

國立交通大學資訊科學與工程研究所

摘 要

數位影像在 WWW 的環境中可能會被攻擊者竄改資料，或者在傳輸之中發生傳

輸錯誤的情形。在本篇論文中，我們提出三種基於「資訊分享」技術的影像還原

方法。在第一個方法之中，我們對每個 8x8 影像區塊進行編碼；其後，只要未被

破壞的影像區塊數目大於ㄧ門檻值，我們就可以用它們來把其他已被破壞的影像

區塊給還原回來。由於第一種方法若整張影像都被拿掉，則無還原機會，所以我

們又提出第二種方法「多張影像交叉還原」技術。對於 n張編碼後的影像，只要

有 t 張影像是未被破壞的，我們就可以利用這 t張影像來還原其他(n-t)張已被

破壞的影像。第三種方法是第二種方法的變形；由於管理者可能希望影像具備自

我修復的能力，但又不希望降低影像品質，所以我們的第三種方法以增加儲存空

間的方式，對於每張輸入的影像會附加一塊類似雜訊的分存影像，而其功能亦可

達到和第二種方法相同的效果。

除了上述三種方法外，我們也觀察到視覺密碼學(Visual Cryptography)和

利用多項式的影像分享(Image Sharing by Polynomials)各有其優劣點；所以本

論文最後提出一個結合此二者的新的分享機制；其分存影像可以依據環境狀況來

採用其中一種回復方法。

 I

Image Recovery by using Sharing

Student: Sen-Jen Lin Advisor: Dr. Ja-Chen Lin

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract
In WWW environment, digital images may be tampered by attackers, or get lost

during transmitting. In this thesis, we propose three kinds of image recovery methods,

based on sharing techniques. In the first method, the given image is partitioned into

8-by-8 blocks, and we encode each 8-by-8 image block. Later, if the number of the

non-attacked blocks is greater than a threshold value, then we can recover all the

tampered blocks by using them. Because the first method cannot recover the image if

it is deleted completely, we propose the second method which is the cross recovery of

multiple images. For n encoded images, if t out of the n images are not-attacked, we

can recover the other (n-t) images by the t non-attacked images. The second method is

not error-free when each image is embedded with recovery information. The third

method is a modification of the second method; and it is for the users who require the

images to have cross recovery ability without degrading the images’ qualities. This

method appends a noisy shadow image to each input image.

Besides the three methods described above, it is also observed that Visual

Cryptography and polynomial-style image sharing both have their own advantages

and disadvantages. So, this thesis also proposes a novel sharing mechanism

combining the two methods. The recovery can be according to the computer resources

available at the scene.

 II

ACKNOWLEDGEMENTS

 I would sincerely thank my advisor, Prof. Ja-Chen Lin of his teaching and
instruction. He guided me patiently and kindly during my study of the Master’s
degree. Without him, it is impossible for me to complete this thesis.
 Besides, the whole group of the Computer Vision Laboratory at National
Chiao-Tung University gave me much help and suggestion. Thanks are also given to
them.
 Finally, I cordially thank my parents for their wholehearted support to my study.
This thesis dedicated to them.

 III

TABLE OF CONTENTS

ABSTRACT IN CHINESE.. I

ABSTRACT IN ENGLISH ...II

ACKNOWLEDGEMENT .. III

TABLE OF CONTENTS... IV

LIST OF TABLES.. VI

LIST OF FIGURES ..VII

Chapter 1 Introduction ...1
1.1 Motivation..1

1.2 Related Works ..3

1.2.1 Literature Review of Secret Sharing..4

1.2.2 Literature Review of Image Hiding ...6

1.2.3 Base Transform ..7

1.3 Overview of the Proposed Methods...9

1.4 Thesis Organization ...11

Chapter 2 Detection and Recovery of Tampered

Images ...12
2.1 Introduction..12

2.2 The Proposed Method..13

2.2.1 The Main Algorithm ...13

2.2.2 The Verification and Recovery Algorithm..17

2.3 Experimental Results ...22

2.4 Discussion..27

2.5 Remark...29

 IV

Chapter 3 Cross Recovery of Multiple Images..............32
3.1 Introduction..32

3.2 The Proposed Method..33

3.2.1 The tool to share n pixels ..33

3.2.2 The Main Algorithm ...35

3.3 Experimental Results ...40

3.4 Discussion..43

3.5 Extra Topic- a lossless version...43

Chapter 4 Two-Layer Image Sharing....................................48

4.1 Introduction..48

4.2 A Review of the Basis Matrices [B0] and [B1]50

4.3 The Proposed Method..54

4.3.1 The main algorithm...54

4.3.2 Some supportive algorithms ...58

4.4 Experimental Results ...61

4.5 Concluding discussions..66

4.6 An application..68

Chapter 5 Conclusions and Future Works......................69

5.1 Conclusions...69

5.2 Future Works...70

References..72

Appendix...77

 V

LIST OF TABLES

Table. 2.1. The performance of restoration ratio by Lin’s method. (a) The number of

un-recovered blocks for single-tampered-chunk. (b) The number of

un-recovered blocks for spread-tampered blocks. ...28

Table 4.1: A comparison between VC and PSS. ..49

 VI

LIST OF FIGURES

Fig. 1.1. The course of pre-processing, tampering and recovering an image.2

Fig. 1.2. An example to change the base of a digital stream from 5 to 7. (a) base-5

look up table. (b) base-7 look up table. ..8

Fig. 1.3. The framework of this thesis. ..11

Fig. 2.1. The flow chart of the embedding procedure..13

Fig. 2.2. The bit plane of the block B’ ...17

Fig. 2.3. The flow chart of the verification procedure. ..19

Fig. 2.4. The flow chart of the recovery procedure..22

Fig. 2.5. (a) the host image, (b) the stego image (PSNR=40.61 d.b.), (c) a tampered

version, (d) the verification image, (e) the recovered image (PSNR=38.71 d.b.).

..24

Fig. 2.6. (a) the host image, (b) the stego image (PSNR=37.14 d.b.), (c) a tampered

version, (d) the verification image, (e) the recovered image (PSNR=34.72 d.b.).

..25

Fig. 2.7. (a) the host image, (b) the stego image (PSNR=37.15 d.b.), (c) a tampered

version, (d) the verification image, (e) the recovered image (PSNR=34.33 d.b.).

..26

Fig. 3.1. The flowchart of the sharing/revealing phase..34

Fig. 3.2. The main algorithm. ..37

Fig. 3.3. The recovery algorithm. ..39

Fig. 3.4. (3, 4) sharing scheme by our method. (a) PSNR = 46.34 db (b) PSNR=46.36

db (c) PSNR=46.37 db (d) PSNR=46.37 db. ...41

Fig. 3.5. (4, 6) sharing scheme by our method. (a) PSNR = 42.03 db. (b) PSNR =

42.11 db. (c) PSNR = 42.10 db. (d) PSNR = 42.10 db. (e) PSNR = 42.12 db. (f)

PSNR = 42.09 db. ..42

Fig. 3.5. The encoding algorithm...45

Fig. 3.6. (2, 4) sharing scheme by our method. ...47

Fig. 4.1. A secret image Lena (a), and its JPEG-compressed version Lena* whose

 VII

PSNR is 39.31 dB (b). ...62

Fig. 4.2. The halftone version (the binary image H) of Fig. 4.1(a)..............................63

Fig. 4.3. The n=4 transparencies T0-T3 generated from the pair {Fig. 4.1(b), Fig. 4.2}

in our (t=2, n=4) threshold scheme. ...63

Fig. 4.4. Stacking “any” two transparencies (e.g. 1st and 3rd transparencies here) yield

an enlarged binary image of Lena..64

Fig. 4.5. The gray-value image Lena* (identical to Fig. 4.1(b)) reconstructed using the

information embedded in any two transparencies (the 1st and 3rd transparencies

here). ..64

Fig. 4.6. The second experiment. ((t, n) = (3, 4), and this experiment uses 2-by-3

blocks). (a): a secret image Jet. (b): the JPEG-compressed version Jet* whose

PSNR is 47.6dB. (c): the halftone version H of Fig. 4.6(a). (d): stacking result

using “any three” of the four generated transparencies (here, 1st, 2nd and 4th

transparencies). (e): the Jet* (identical to Fig. 4.6(b)) reconstructed using the

information embedded earlier in the three transparencies mentioned in Fig.

4.6(d)..65

 VIII

Chapter 1
Introduction

1.1 Motivation
Due to the popularity of Internet, people can exchange information conveniently.

Many images are placed on Web pages, and authorized people can download them.

Unfortunately, it’s hard to ensure that received data is identical to the original data;

because Internet is an open environment, anyone can access the data, including

attackers. Therefore, how to protect Internet data is a critical issue.

In the thesis, we proposed some recovery methods to protect images. Those

methods are based on the polynomial sharing technology. This technology contains

two phases: the sharing phase and the revealing phase. In sharing phase, the given

data are divided into n shadows; later, if anyone get any t of the n shadows (t is a

given threshold value), then he can reconstruct the data; but if he gets t-1 or fewer

shadows, he can’t get any information about the data. This is a very useful tool for

image processing; in recent years, many literatures about this topic have been

published [5-22].

With Fig. 1.1, we can realize the procedure of how to recover a tampered image.

We roughly separate the process into three parts; the pre-processing step, the

tampering step, and the recovery step. For these steps, the pre-processing step and the

 1

recovery step are done by us. How ever, the tampering is done by the attacker. Thus,

how to design a good algorithm in the pre-processing step and the recovery step is our

concern.

In Chapter 2, we present a method that can recover a single embedded image

based on sharing technology. Since the ability of single image recovery technology is

very limited, we also present in Chapter 3 a novel image recovery method for multiple

images, and this method can recover the tampered images, even some of the images

are destroyed completely.

Tampering

Recovery

Pre-
processing

Fig. 1.1. The course of pre-processing, tampering and recovering an image.

 2

Visual Cryptography was introduced by Naor and Shamir. In (t, n) sharing, the

secret data are dispersed into n transparencies, and we can’t get any message about the

secret data from each transparency (except for the transparency size). If we stack any t

out of n transparencies, then we can “see” the secret message; however, if we stack t-1

or fewer transparencies, then we can’t get any message about the secret data. Some

comparisons between polynomial-style secret sharing and Visual Cryptography are

described in Chapter 4. Each of the two technologies has its own advantage, thus, we

try to combine VC with polynomial-style secret sharing in Chapter 4. Certain

transparencies are generated by our method there. If the transparencies can be

transmitted via network, the revealing mechanism can get a high quality image (by

polynomial-style sharing) with the aid of a computer. But if there is a no computer,

then, we still can get “view” a rough look of the secret image by stacking the

transparencies.

1.2 Related Works
In this section, some previous works about Secret Sharing and Image Hiding

technology will be reviewed. In Section 1.2.1, Shamir’s secret sharing method [1],

Thien and Lin’s image sharing algorithm [7] and Galois field will be described briefly.

In Section 1.2.2, we will introduce a simple method to hide a base-k digit stream in a

 3

host image.

Because base transform is commonly used repeatedly in this thesis, it is also

reviewed in Section 1.2.3.

1.2.1 Review of Secret Sharing

 Sharing technology is one of the commonly used methods to protect secret data.

Shamir’s secret sharing [1] is a threshold method based on the polynomial

interpolation. The (t, n)-threshold secret sharing scheme can disperse the secret data

into n shadows, and each shadow has the properties below:

1. Any t (or more) out of n shadows can be used to reconstruct the secret data.

2. Any t-1 (or fewer) shadows cannot be get any information about the secret

data.

The secret data could be text files, images, multimedia data, or

encryption/decryption keys. The polynomial used in Shamir’s method is described

below:

Shamir’s (t, n)-threshold secret sharing:

For (t, n)-threshold sharing, let

1
1

2
210 ...)(−

−++++= t
t xaxaxaaxQ

 4

where is the secret data, are random numbers, and the n shadows

are . Any t-1 or fewer shadows can’t get any useful

information about the secret data. However, when people receive any t of those

shadows, they can evaluate the secret data by using Lagrange interpolation.

0a 121 ,...,, −taaa

)}(,{)},...,2(,2{)},1(,1{ nQnQQ

0a

In order to save space, Thien and Lin [7] modify the above idea and apply it to

the sharing of secret images. For (t, n)-threshold scheme of secret image sharing, an

image f of size L is breaks into n shadows, and each shadow has following properties:

1. Any t (or more) out of n shadows can be used to reconstruct the secret

image.

2. The size of each shadow is L/t.

The algorithm is very similar to Shamir’s secret sharing scheme, and we

introduce the method below.

(t, n)-threshold Secret Image Sharing:

Steps:

1. For whole secret image, if a pixel value g is larger than 250, then change the

value into 250, and creates one more pixel whose gray value is g-250.

2. Encrypt the secret image by a encryption key.

 5

3. Divide the secret image into several sections, each section has t pixels.

4. For each section, we define the polynomial

)251(mod...)(1
1

2
210

−
−++++= t

t xaxaxaaxP

where are t pixels of the section. 110 ,...,, −taaa

5. Evaluate ,)1(1 PShare =)2(2 PShare = , ...,)(nPSharen = . Each

is assigned to each shadow image i.

iShare

 When we receive any t of those shadow images, we can evaluate the secret pixels

by using Lagrange interpolation.

 If some pixel values of the secret image are larger than 250, the coding, decoding,

and share size will all be influenced a little. A better method is that, we change the

finite field of the sharing polynomial, as below:

Let Galois field be a finite field, denoted by , where p is a prime

number, and n is a positive integer. In this thesis, unless stated otherwise, the

polynomial sharing technology works on , rather than GF(251).

)(npGF

)256()2(8 GFGF =

1.2.2 Review of Image Hiding

Image hiding is a method to embed some secret data in a cover image. For the

same hiding capacity, the goal is usually to reduce the difference between the cover

 6

image and the stego image for human’s sense. The simplest hiding method is the least

significant bit (LSB) method; the data are embedded in the least k bits of the pixels. In

order to improve the image quality of the cover image, Thien and Lin present a

method to embed the secret data by using modulo operation [28]. Thien and Lin’s

algorithm is more complex than the LSB method; in this thesis, we use a simpler

method [30] whose performance is identical to Thien & Lin’s, as below:

Algorithm of module-based data hiding

Let p be a pixel value, d∈{0,1,…,b-1} a secret digit to be hidden, and b the

module-base. To embed d in p, we replace p by]['
b

dproundingbdp −
×+= . If 0'<p ,

then . Similarly, if , then bpp +← '' 255'>p bpp −← '' .

Here, the rounding operator means rounding to the “nearest” integer. Also, we

assume the pixel value is at least 0 and at most 255. Later, if we want to extract the

value d from p′, just use .)(mod' bpd ←

1.2.3 Base Transform

In this thesis, changing the base of a digital stream is a tool used often. We

propose a simple method to do this. An example of our method is shown in Fig. 1.2.

In this example, we change the base of a digit stream from 5 to 7. The method can be

 7

divided into two stages. In the first stage, we generate a look up table, as shown in Fig.

1.2(a). This table can map each digit to a binary code. Thus, a binary stream could be

yielded. In the second stage, we generate a 7-base look up table, as shown in Fig.

1.2(b). By using the table, we can transform the binary stream into a base-7 digit

stream. Later, if we want to convert the digital stream into the original stream, we

only reverse this procedure.

(a)

Fig. 1.2. An example to change the base of a digital stream from 5 to 7. (a) base-5
look up table. (b) base-7 look up table.

111 4

110 3

10 2

01 1

00 0

6 111

5 110

4 101

3 100

2 011

1 010

0 00

4102.. 111010010. 611..

(b)

No matter in stages 1 or 2, we need a look up table to map the base from 5(or 7)

to 2.

Algorithm of generating a base-k look up table

Input: The base k.

Output: A look up table.

 8

Steps:

1. Evaluate integers c and b so that ⎡ ⎤kc log2= and . kb c −= 2

2. For each digit from 0 through b-1, the corresponding binary code is its

(c-1)-bit binary expression 0(for example, , ,

, …).

321
bitsc 1

00...000
−

→ 321
bitsc 1

01...001
−

→

321
bitsc 1

10...002
−

→

3. Let B denote the (c-1)-bit binary expression of b, then append a zero to the

right of B, which is the corresponding binary code of b.

4. Each digit from b+1 to k-1 is obtained by adding value to B accordingly.

1.3 Overview of the Proposed Methods
 In this section, we will describe the main methods that will be proposed in this

thesis briefly. In this thesis, Single-Image Recovery is our first application of the

polynomial sharing technology. In the embedding procedure, we use the polynomial

sharing technology to share the compressed version (JPEG) of the host image, and

then hide each shadow and embed the checksum (CRC64) in each block of the host

image. If the image had been tampered, our verification procedure can detect which

blocks are altered. Finally, our recover procedure can reconstruct the altered blocks by

extracting the compressed version of the original image.

 However, if the attackers destroy the image completely or replace it with other

 9

image, the Single Image Recovery technology cannot handle this case. Hence, we

propose a Multiple Images Recovery method to resolve the problem. If (n-t) or fewer

images of the n images have been deleted, we still can reconstruct those deleted

images by the remaining images.

 Multiple Image Recovery method needs to alter the input images. However, if

some people don’t want the images be changed; then they can use a different method

of ours to achieve the requirement. The mechanism doesn’t alter any pixel value of

the input image, but each image is appended with a shadow file, whose size depends

on the threshold value and the size of the input images.

 Visual Cryptography (VC) is also a secret sharing technology; the most special

characteristic of VC is that its is the decoding phase doesn’t need any computer, all

we have to do is just to stack those transparencies. Our two-layer Image Sharing

method is a method which combines VC with polynomial sharing technology. At the

revealing phase, if the decoding-computer is temporarily not available in the decoding

sense, we can stack those transparencies to “see” the secret image of rough version. In

the other case, when the computer is available, we can get a much finer gray-valued

secret image using the information hidden earlier in the shadows by using polynomial

sharing algorithm.

 10

1.4 Thesis Organization
 Fig. 1.3 illustrates the framework of this thesis. polynomial secret sharing is the

main tool of our whole thesis. In Chapter 2, we will present the scheme of image

recovery, which is based on the polynomial sharing approach. The method of cross

recovery of multiple images is specified in Chapter 3. Chapter 4 proposes a novel

secret sharing method, which can decode the secret image either by a computer or by

stacking the transparencies.

Secret Sharing Image Recovery

Polynomial
Secret Sharing

Visual
Cryptography

Ch4: Two Layer
Image Sharing

Ch2: Image Tampered
Detection and Recovery

Ch3: Cross Recovery of
Multiple Images.

Fig. 1.3. The framework of this thesis.

 11

Chapter 2

Detection and Recovery of Tampered
Images

 This chapter presents an image recovery technology. We use polynomial sharing

to share the critical information of the original image into many shadows, and the size

of each shadow is very small. Then use data hiding technology to embed those

shadows in each block of the original image. Finally, the checksum is also embedded

in the block. If the image is tampered, the checksum of each block can determine

whether the blocks are altered. If the block is integrity, then the embedded

information can be extracted and be used to reconstruct the original image; otherwise,

we mark the block as an error block and will be recover by the other integrity blocks.

2.1 Introduction
 With the popularity of Internet, we can get multimedia data conveniently.

However, attackers can modify those multimedia data easily, via Internet. Therefore,

how to protect the integrity of multimedia data is an important issue. Image recovery

technology [23-27] is one of the methods to protect important web images. In this

chapter, an image recovery method is proposed.

 12

2.2 The Proposed Method

2.2.1 The Main Algorithm

In this section, the host image is a 512-by-512, gray-level image, the range of the

gray value is 0~255. Fig. 2.1 shows the embedding procedure of our method.

Replace block i with block i’

Get Share i

(For each 8x8 block)

Binary stream

Host
image

n shadows

 (t, n) sharing

Block i

Share i

Block i’

Embed

Embed checksum

Fig. 2.1. The flow chart of the embedding procedure

Compress

The process of our embedding procedure consists of four stages. The first stage

is called “image compression stage”; in this stage, we compress the host image by

 13

using JPEG method (actually, we can use any image compression method). The

output is a bit stream, and the resulting size is smaller than the original image file. The

second stage is called the “sharing stage”. In this stage, we use polynomial sharing

technology to share the binary stream, which was got from the first stage. The final

stage is called the “embedding stage”. For each 8-by-8 block, we embed a share and

the checksum in it. The details of our method is described in the following algorithm.

Embedding Algorithm:

Input: A grey-value host image S of size Width ×Height, a decimal value d, 0＜d＜1,

which indicates the minimal percentage of the integrity blocks needed in order to

recover the image if the stego image is tampered later.

Output: a stego image.

Steps:

1. Produce a grey-value image J by compressing the host image S using JPEG

compression technology. Hereinafter, the data file representing the

compressed image J will be treated as a bit-stream data-file.

2. Then, the bit stream of J is shared using an (t, n) sharing algorithm. Where

n is equal to the number of 8-by-8 blocks in the host image; that is to say,

n= Width/8 ×Height/8. The threshold value t means the percentage of

integrity shares could be recovered, so t = d×n. Here the value of n may be

 14

very large; for example, if the image size is 512-by-512, then

n=(512/8)×(512/8)=4096, this is a large number. In order to get those

shadows, the sharing algorithm must works on or

modulo 4099(this a minimal prime number which larger than 4096).

)4096(GF)2(GF 12 =

3. Partition the host image S into non-overlapping 8-by-8 blocks, then set i=0

initially. For each 8-by-8 block i, doing following steps.

4. Embed the share i was produced at step 2 and a checksum in the block i.

The embedding algorithm is described in Embedding-Sub Algorithm. Let

the output is a block i’.

5. Replace the block i by the block i’, then increment the value of i by 1.

Finally, go to Step 4 unless all of the blocks are replaced.

6. The image S is our desired output.

Embedding-Sub Algorithm:

Purpose: To embed a share data and checksum in an 8-by-8 block.

Input: An 8-by-8 block B, and a share data D.

Output: An 8-by-8 block B’.

Steps:

1. Discard all of the least significant bits in the block B. Let T the output block.

 15

We use a pseudo-code to represent it,

For all of pixels in T,

T[x, y] ← B[x, y]/2;

Where B[x, y] (resp. T[x, y]) denotes the pixel value at position (x, y) of the

block B (resp. block T).

2. Get the block T’ by using module-based data hiding method (see section

1.2) to hide the share data D in block T.

3. Get the checksum C by evaluating the CRC64 of the block T’ (each pixel of

the block T’ is consist of 7 bits).

4. Append the checksum C to the block T’. Our desired block B’ consists of

block T’ and checksum C. We can use the following pseudo-code to get

block B’.

For all of pixels in B’,

B’[x, y] ← T[x, y]+C[x×8+y];

Where C[X] denotes the X-th bit value of the checksum C (C contains 64

bits). Fig. 2.2 shows the bit plane of the block B’.

 16

 Bit 1 2 3 4 5 6 7 8

Pixel 1 T[0, 0] C[0]

2 T[0, 1] C[1]

.
:

64 T[7, 7] C[63]

Fig. 2.2. The bit plane of the block B’.

2.2.2 The Verification and Recovery Algorithm

 The verification method is based on CRC64. For each 8-by-8 block, we use

CRC64 algorithm to check whether the block is integrity or not. If the block is

integrity, then we color the corresponding location of the verified image V white;

otherwise, color black. The details are described at below.

Verification Algorithm:

Input: A query image Q.

Output: A verified image V. If a verified block is a black block, it means the block

had been altered. The color is white, if the block is not altered.

Steps:

 17

1. Divide the query image Q into 8-by-8, non-overlapping blocks.

2. For each block B in the image Q, extracting all of LSBs in the block B.

Combine those bits, we can get a value called CRCChecksum.

3. Evaluating CRC64 of the block B (eliminate all of LSBs in the block B). If

the value is equal to CRCChecksum, than we can say this block B is an

integral block. Otherwise, the block B is an altered block.

4. If the block B is an altered block, we color the block of verified image V

black at the corresponding location. Otherwise, color white.

5. If there are some blocks un-processed, go to step 2.Otherwise, terminate this

procedure, then output the verified image V.

Fig.2.3 illustrates the verification algorithm. With this algorithm, we can know

which blocks are tampered. With the verified image, we can even correct those blocks

by using recovery algorithm.

 18

No Yes

Evaluate CRC64

Get the first 7 bits
for each pixel in
block B

Get all of LSBs in block B

(For each 8x8 block)

Query
image

B

CRCChecksum

Fig. 2.3 The flow chart of the verification procedure

A

CRC64 Equal?

Color the verified
block black

Color the verified
block white.

 After the image verification procedure, we know which blocks were tampered. In

order to recover the tampered blocks, the JPEG version of the original image will be

extracted to restore those tampered blocks. The Recovery Algorithm below describes

the details of this method.

Recovery Algorithm:

 19

Input: A query image Q and the verified image V.

 had been restored.

Divide the image Q into 8-by-8, non-overlapping blocks.

are data which be

3. o get the secret data from those extracted share

4. by-8 block of the verified image V, if the block color is black

5.

Fig. I overy Algorithm.

Output: a recovered image R, whose altered blocks

Steps:

1.

2. For each block B, if it is a integral block, extracting the sh

embedded in the block B.

Use revealing algorithm t

files. (The secret data is a JPEG-format file of the original image). From the

secret data, we can know a JPEG version of the original image, denote the

image is J.

For each 8-

(this means the block had been tampered), we use a corresponding block of

the image J to replace the block of the image Q.

The image Q is our desired output.

2.4. llustrates the three passes of the Rec

 20

Image decoder

Retrieve the secret data

Extract

Yes

Query
Image Q

B

Verified
Image V

Is it a correct
block?

shadow

Pass 1:

Pass 2:

Shadow set

Compressed
version of the
original image

Compressed data of the original image

Do nothing

No

 21

Query
Image Q

Fig. 2.4. The flow chart of the recovery procedure.

Verified
Image V

Pass 3:

JPEG version of
the original
image

White block Black block
2 x 1 MUX

Recovered
Image R

2.3 Experimental Results
 In order to evaluate the ability of our method, in this section, we design some

experiments, and the results are show below.

 22

Fig. 2.5. shows our first experiment; Lena is the host image, as shown in Fig.

2.5(a). The decimal value d of embedding algorithm is set 0.5. Fig. 2.5(b) shows the

embedded image, which the PSNR is 40.61 d.b.. Fig. 2.5(c) shows that some straight

lines had been added on the embedded image. Fig. 2.5(d) and Fig. 2.5(e) show the

verification result and the recovered result. The PSNR of Fig. 2.5(e) is 38.71 d.b.

(This result is compared with the original image, the following two experiments are

also the same).

Fig. 2.6. shows our second experiment; Fruit is the host image, as shown in Fig.

2.6(a). The decimal value d of embedding algorithm is 0.25. Fig. 2.6(b) shows the

embedded image, which the PSNR is 37.14 d.b.. Fig. 2.6(c) shows some handwriting

had been added on the embedded image. Fig. 2.6(d) and Fig. 2.6(e) show the

verification result and the recovered result. The PSNR of Fig. 2.6(e) is 34.72 d.b..

Fig. 2.7. shows our third experiment; Jet is the host image, as shown in Fig.

2.7(a). The decimal value d of embedding algorithm is 0.25. Fig. 2.7(b) shows the

embedded image, which the PSNR is 37.15 d.b.. Fig. 2.7(c) shows a picture “Car” had

been added on the embedded image. Fig. 2.7(d) and Fig. 2.7(e) show the

verification result and the recovered result. The PSNR of Fig. 2.7(e) is 34.33 d.b..

 23

(a) (b)

(c) (d)

(e)

Fig. 2.5. (a) the host image, (b) the stego image (PSNR=40.61 d.b.), (c) a tampered
version, (d) the verification image, (e) the recovered image (PSNR=38.71 d.b.)

 24

(a) (b)

(c) (d)

(e)

Fig. 2.6. (a) the host image, (b) the stego image (PSNR=37.14 d.b.), (c) a tampered
version, (d) the verification image, (e) the recovered image (PSNR=34.72 d.b.).

 25

(a) (b)

(c) (d)

(e)

Fig. 2.7. (a) the host image, (b) the stego image (PSNR=37.15 d.b.), (c) a tampered
version, (d) the verification image, (e) the recovered image (PSNR=34.33 d.b.).

 26

2.4 Discussion
 In this chapter, our recovery method is based on polynomial sharing technology.

A secret worry is that, if any a mis-judgment occurs in the verification phase, some

portions of the image will be lost. Because if any one of the shadows had been altered

(or the shadow is a fake), then we cannot get any information at revealing phase!

Therefore, the verification phase is very important, we cannot allow any one

mis-judgment, and a strict verification algorithm is much needed.

Review the verification algorithm of our method, the probability of the correct

judgment for a block is . In our experiment, there are 4096 blocks in a

512-by-512 image. So, the probability of the correct judgment upon all of those

blocks is , this number is very close to 1, so,

we can believe that, the case almost doesn’t happen.

6421 −−

5264409664 21240961)21(−−− −=×−≈−

 Lin, Hsieh and Huang [23] present an image recovery method. They use a

watermarking technology to embed some recover data in the host image. Table 2.1

shows the relation between restoration performance and the number of un-tampered

blocks. From this table, we can know the restoration performance very depend on the

ratio of integral blocks to whole blocks. Compare with our method, if the correct

blocks is only exceed the threshold, then we can reconstruct the image completely.

 27

(a)

(b)

Table. 2.1. The performance of restoration ratio by Lin’s method. (a) The number of
un-recovered blocks for single-tampered-chunk. (b) The number of un-recovered
blocks for spread-tampered blocks.

 28

2.5 Remark
In our experiment, the number of blocks and the threshold is very large (Actually,

in general case, the two numbers should very large). How to increase the speed of

encoding/decoding time is a very important issue. Rabin [20] provides a method to

design the sharing matrix. For (t, n)-threshold sharing, the time complexity of the

revealing phase is , where L is the size of the sharing file. However,

Rabin’s method requires designing a sharing matrix. This section we introduce a

method to compute the inverse matrix, and the time complexity is equal to Rabin’s

method. Our method is based on Lagrange’s interpolation.

)(2 tLt +θ

Firstly, the sharing/revealing algorithm will be introduced. We use matrix

operator to represent the sharing algorithm.

In (t, n) sharing, , where are the secret

message, and are the n shadows. If we get any t of the n shadows, then we

also get the secret message by evaluating the matrix operation below.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

t
t

t

t

n s

s
s

nnnh

h
h

M

L

MOMM

L

L

M
2

1

110

110

110

2

1

222
111

tsss ,...,, 21

nhhh ,...,, 21

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

−

−

tk

k

k

t
ttt

t

t

t h

h
h

kkk

kkk
kkk

s

s
s

M

L

MOMM

L

L

M
2

1

1

110

1
2

1
2

0
2

1
1

1
1

0
1

2

1

, where are the t received shadows.
tkkk hhh ,...,,

21

 29

Let L be the size of the secret file, then the time complexity is , where the

term is the time complexity of computing the inverse matrix. If the threshold t is a

large number (In section 2.3, the threshold is 1024 or 2048), the time cost is very

much. In order to reduce the time complexity of the revealing algorithm, we proposed

a time complexity of evaluating the inverse matrix method. This method is

based on Lagrange’s interpolation.

)(3 Ltt +θ

3t

)(2tθ

Firstly, we rewrite the Lagrange’s interpolation below:

∑ ∑∑∑∑∑

∑ ∑∑ ∏

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

≠
=

===

=
−

−
=

1

0

1

0
,

1

0

1

0
,

1

0

1

0
,

1

0

1

0
,

1

0

1

0

)(

t

j

t

i
jik

j
t

j

t

i

j
jik

t

i

t

j

j
jik

t

i

t

j

j
jik

t

i

t

ij
j ji

j
k

bhxxbhxbh

xbh
kk
kx

hxF

iii

ii

,

The secret message is the coefficient of the variable , so if we use a matrix

operation to represent the secret message, then

jx

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−

−

tk

k

k

tttt

t

t

t h

h
h

bbb

bbb
bbb

s

s
s

M

L

MOMM

L

L

M
2

1

1,11,11,0

1,11,11,0

0,10,10,0

2

1

, this means is the coefficient of the

inverse matrix. Therefore, we can get the inverse matrix by evaluating the polynomial,

and the method is described below.

jib ,

Computing the inverse matrix method:

Input: t numbers, i.e. { }tiki ≤≤1| .

 30

Output: a t-by-t matrix of .

1

110

1
2

1
2

0
2

1
1

1
1

0
1

−

−

−

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

t
ttt

t

t

kkk

kkk
kkk

L

MOMM

L

L

Notation:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−

−

−

1,11,11,0

1,11,11,0

0,10,10,0

tttt

t

t

bbb

bbb
bbb

B

L

MOMM

L

L

 is the output. i.e., means the (i+1)th column and

(j+1)th row of the output matrix.

jib ,

Steps:

1. Expand the polynomial . tt
t

t

i
i xxgxggkxxG ++++=−= −

−

−

=
∏ 1

110

1

0

...)(

2. Let the initial value l be 0.

3. Evaluate . ∏
−

≠
=

−=
1

0

t

lj
j

jl kkc

4. Expand the polynomial 1
110 ...

)(
)()(−

−+++=
−

= t
t

l

xdxdd
kxc

xGxD ,

then 11,11,00, ,...,, −− === ttlll dbdbdb .

5. If value l is t-1, then the matrix B is our desired output; otherwise, go to step

3.

The time complexity of this method is .)())((22 ttttt θθ =++

 31

Chapter 3
Cross Recovery of Multiple Images

This chapter presents a novel cross recovery system of multiple images. We use

polynomial-sharing and module-based data-hiding techniques to hide the recovery

message. If any (n-t) of the n stego images are lost, then the system can recover these

stego images by using other t stego images.

3.1 Introduction

In a (distributed) storage system of n images, if some images were lost, a trivial

way to recover them is by the back-up copies (identical to the lost images but stored

elsewhere). Recently, there are some non-trivial approaches [23-27] that recover a

tampered image gorgeously. In this chapter, instead of dealing with a single image, we

try to consider several images simultaneously (so that the recovery of any member

images in this group can be done through the mutual support of the remaining

member images). More specifically, we present a novel cross-recovery method that

modify the n input images and obtain n stego images in which the cross-recovery

information is hidden; later, up to (n-t) of the stego images are allowed to get lost, for

we can still recover the lost stego images using t of the non-lost stego images. Here,

 32

t≧n/2 is a threshold value pre-specified by the reader.

3.2 The Proposed Method
 Sec. 3.2.1 presents a novel polynomial sharing method. On basis of this sharing

method, our main algorithm is described in Sec. 3.2.2.

3.2.1 The Tool to Share n Pixels

 The sharing phase and the revealing phase are described below. Fig. 3.1 shows

the flowchart of the sharing/revealing phase. By using the sharing method, the first t

shadows is equal to the input message.

The sharing phase:

Input: the t pixels where { }tipi ≤≤1| 2550 ≤≤ ip .

Output: n numbers { }][,],1[]};[,],2[],1[{ nhnhthhh KK + , where for

each i, and

255][0 ≤≤ ih

tpthphph ===][,,]2[,]1[21 K .

Steps:

1. Use Lagrange’s interpolation (see Ref. [3], the finite Galois Field used here

is GF(256)) to get an n-points interpolation polynomial satisfying

f(1)= , f(2)= , …, f(t)= .

)(xf

1p 2p tp

 33

2. Compute f(t+1), f(t+2), …, f(n) ; then the u numbers are { {h[1]=f(1)= ,

h[2]=f(2)= , …, h[t]=f(t)= }; h[t+1]=f(t+1),…, h[n]=f(n)}.

1p

2p tp

The revealing phase:

Input: any t of the n shadow-numbers, i.e. { }tikh i ≤≤1|][where or

each .

nki ≤≤1 f

ik

Output: the t pixels{ } tipi ≤≤1| .

Steps:

6. Use Lagrange’s interpolation to get the t-points interpolation polynomial

 satisfying f()=h[], f()=h[], …, f()=h[].)(xf 1k 1k 2k 2k tk tk

7. The t pixels are{ =f(1), =f(2), …, =f(t) }. 1p 2 tp p

Fig. 3.1. The flowchart of the sharing/revealing phase.

The revealing phase

The sharing phase,
(t,n) sharing

),...,,(21 tppp

11 −− = tt ph 11 ph = th nh00 ph = …… ……

),...,,(21 tppp

 34

3.2.2 The Main Algorithm

The Main Algorithm:

Input: n gray-level images{ }niMi ≤≤1| (each is, say, 512-by-512); and a specified

integer t≧n/2.

Output: n stego images.

Goal: Later, if any (n-t) of the n stego images are lost, we may recover the lost stego

images by using other t stego images.

Steps:

1. Let the initial value of j be 1.

2. Let denote the pixel value of the image . Then use the

sharing tool in Sec. 2.2 to share the n pixel values

][jMi
thj thi iM

[]{ }jMpnip iii =≤≤ ;1|

and thus generate tnu −= 2 shadow-numbers

{ }]2[,],[,],2[],1[tnhnhhh −KK .

3. Among the 2n-t shadow numbers, the final (n-t) shadow-numbers {h[n+1],

h[n+2], …, h[2n-k]} are the auxiliary data. In order to hide the auxiliary data

in n images, we need to split the data into n units. Therefore, before hiding,

treat these (n-t) numbers (each is in the range 0-255) as a value of (n-t)

digits in the base-256 system; then, transform this value from base-256 to a

 35

n-digits value in the base-b system (where b= nddd K21

⎥
⎥

⎤
⎢
⎢

⎡ −
n

kn

256 =ceiling(256(n-t)/n) is the smallest integer not less than 256(n-t)/n).

4. For i=1,2,..,n, respectively, hide in]1[+jMi the thi digit of the

base-b auxiliary data

id

()nddd K21 b

}

 by the module-based data-hiding

algorithm mentioned in Section 1.2.2.

5. Let . Then go to step 2 if j < 512×512=262144 (the image size). 1+← jj

6. The images { niMi ≤≤1| are now the desired output. Also store in a safe

place (or attach to each stego image) the n numbers { }niMi ≤≤1|]262144[

where 262144=512×512 is the final pixel-position. Use these n numbers as

a recovery seed later.

 36

Get the thj pixel

M0

Get the thj pixel

Module-based data hiding

M1

No

Yes

Get the thj pixel

Mn-1

…
…

…
…

Sharing

…
…

(n-t) shadows
Are the thj
pixels the
final pixels?

Store

Base transform

…
…

n digits

Fig. 3.2. The main algorithm.

 37

The Recovery Algorithm:

Input: t gray level stego images }1|{ tiM ki
≤≤ .

Output: n recovered images.

Goal: Recover the other (n-t) tampered images by using the input t images.

Steps:

1. Let the value j be S, where S is one of the size of the input images (each image

size is the same value).

2. Set the t shadow values are]}[][],...,[]2[],[]1[{
21

jMthjMhjMh
tkkk === . Then

set be the store values generated at the main algorithm

step 6 (must revealing the base).

]}[],...,2[],1[{ nhthth ++

3. Recover the jth deleted pixels by revealing the n

shadows described in Sec. 3.2.2. Then Decrease the value j by

1. If remain any pixel not to recover (In other words, j>0), then go to step 4, else

go to step 5.

]}[],...,2[],1[{ nhhh

4. Set the t shadow values are]}[][],...,[]2[],[]1[{
21

jMthjMhjMh
tkkk === . Then

set be the hiding values embedded in the]}[],...,2[],1[{ nhthth ++

]}1[],...,1[],1[{
21

+++ jMjMjM kkk n
(must revealing the base). Finally, go to

step 3.

5. The images are now the desired output. }1|{ niM i ≤≤

 38

Write the value into jth position

Write the value into jth position

Extracting the
hiding data from
(j-1)th pixels.

Get the jth pixels

Get the jth pixels
Mk1

…
…

Mkt

…
…

…
…

…
…

 Base transform

Revealing
Extracting the
hiding data from
(j-1)th pixels.

Fig. 3.3. The recovery algorithm.
 39

3.3 Experimental Results
Fig. 3.4 shows an experiment using (t, n)=(3, 4). If 4-3=1 of the four 512-by-512

stego images in Fig. 3.4 is lost, we can still recover it by using the other three stego

images. Without the loss of generality, assume that stego image 1M is the one

disappears. So, we only have , , , and the 4-numbers seed 2M 3M 4M

{ 41|]262144[}≤≤ iMi mentioned in Step 6. We first use Sec 2.3 to extract the n=4

hidden digits (d1d2
…d4)b from the seed, where b=ceiling(256(n-t)/n)=4, then covert

(d1d2
…d4)b to a value h[5]. Together with h[2]=M2[262143], h[3]=M3[262143],

h[4]=M4[262143], we have four h[ti], enough to do inverse sharing to recover the

value M1[262143] (see Sec. 2.2). Then, in next iteration, extract analogously the next

n=4 hidden digits (d1d2
…d4)b from {Mi [262143]｜1≦i 4}, and convert (≦ d1d2

…d4)b to

a new value of h[5]. Together with h[2]=M2[262142], h[3]=M3[262142],

h[4]=M4[262142], we can do inverse sharing to recover M1[262142]. The process

repeats to find all values of M1. The recovered image is exactly the once-lost Fig.

3.4(a). The embedding (to achieve cross-recovery goal) did not give the images big

impact; for all four stego images shown in Fig. 3.4 have PSNR about 46.3 db.

 Fig. 3.5 shows another experiment using (t, n) = (4, 6). If 6-4=2 of the six

512-by-512 stego images in Fig. 3.5 is lost, we can still recover it by using the other

four stego images. The six stego images have PSNR around 42 db.

 40

(a) (b)

(c) (d)

Fig. 3.4. (3, 4) sharing scheme by our method. (a) PSNR = 46.34 db (b) PSNR=46.36
db (c) PSNR=46.37 db (d) PSNR=46.37 db.

 41

(a) (b)

(c) (d)

(e) (f)

Fig. 3.5. (4, 6) sharing scheme by our method. (a) PSNR = 42.03 db. (b) PSNR = 42.11
db. (c) PSNR = 42.10 db. (d) PSNR = 42.10 db. (e) PSNR = 42.12 db. (f) PSNR =
42.09 db.

 42

3.4 Discussion

 In this chapter, we have presented a cross recovery system for multiple images.

Since we required in the introduction that t≧n/2, i.e. at least one half of the images

are not lost, the value of b=ceiling(256(n-t)/n) is at most 16. The p and p′ =d +

b×rounding[(p-d) / b] in Sec. 2.2.2 has difference at most 16/2=8 (see Ref. [4]). So the

PSNRs of the stego images are at least 10×log(255×255/(8×8))=30.07 db. (Indeed,

our experimental values are about 34 db, when (t, n)=(2, 4) and the four original

images utilized to produce Fig. 3.4 are used again as input.) On the other hand, if

t≧3n/4 (the case in Fig. 3.4), then b≧4 and the difference between the input pixel

value p and stego pixel value p′ is at most 4/2=2. The PSNRs of the stego images are

therefore at least 10×log(255×255/(4×4))=42.11 db (indeed, the experiment in Fig. 3.4

has PSNRs around 46.3 db).

3.5 Extra Topic - a Lossless Version
 The yielded images by the method that be presented in this chapter are loss

version images. In this section, we present a loss-less version of image recovery

method. However, the dealer must consume extra memory space to store the shadows.

Each shadows append to each image, the size of each shadow is depend the original

images size and the threshold coefficient.

 43

The Encoding Algorithm:

Input: n gray-value images{ }niMi ≤≤1| , and those images are all the same size; and

a specified integer t.

Output: n shares, each share consists of a visible image (identical with the input

image) and a shadow.

Goal: Later, if any (n-t) of the n image are lost, we may recover the lost images by

using other t images.

Steps:

1. Use the sharing tool in Sec. 3.2.1 to share the n gray-value images and thus

generate shadows, then combine those shadows as a large shadow

H.

tn −2

2. Use (t, n)-threshold sharing mechanism to share the shadow file H into n

sub- shadows . },...,,{ 21 nhhh

3. For each input image , append a sub-shadow . Then output those

images.

iM ih

 44

(t, n)
sharing

(n-t)
shadow

M1

M2

Mn
…

…

sharing

…
…

h1

h2

hn

…
…

…
…

Share 1

Share 2

Share n

Fig. 3.5. The encoding algorithm.

 45

If we get any t of the shadow images (or there are (n-t) shadow images have been

destroy), then we can recover the miss images by inverse the encoding algorithm.

Step 1: Get the secret shadow image H by revealing the noise-like shadow

images.

Step 2: Recover the images by the revealing algorithm described in Sec. 3.2.1.

Actually, because this sharing method can be applied on any binary file, we also

can apply this method on any compressed image file (for example, JPEG,

JPEG2000,…,etc). The critical advantage is to reduce the memory space of the

appended shadow.

Experimental Results

Fig. 3.6 shows an experiment in (t, n)=(2, 4). Each input image appends a

noise-like shadow image. If 4-2=2 of the four 512-by-512 appended images

in Fig. 3.6 is lost, we can still recover it by using the other two appended

images. The size of each shadow image is (n/t-1), therefore, if we want the

shadow size smaller, the value t must close to n.

 46

 (a)

 (b)

 (c)

 (d)

Fig. 3.6. (2, 4) sharing scheme by our method.

 47

Chapter 4

Two-Layer Image Sharing

This chapter presents a novel method to combine two major branches of image

sharing: Visual Cryptography and Polynomial-style Sharing. n transparencies are

created for a given gray-valued secret image. If the decoding-computer is temporarily

not available at (or, not connected to) the decoding scene, we can still physically stack

any t received transparencies (t≦n is a threshold value) to get a vague

black-and-white view of the secret image immediately. On the other hand, when the

decoding-computer is finally available later, then we can get a much finer gray-valued

view of the secret image using the information hidden in the transparencies. In

summary, each transparency is a two-in-one carrier of the information, and the

decoding has two options. The case of virtual-transparencies (electronic-files) is also

discussed.

4.1 Introduction
Image sharing can be used in a team when no member alone should be trusted.

Visual Cryptography (VC) [1-4] and Polynomial-Style Sharing (PSS) [5-19] are both

well-known branches to share images. Both can be designed as (t, n) schemes. (In this

 48

chapter, we say that a sharing technique is (t, n) if and only if it shares a secret image

S among n shadows so that any t of the n shadows (n≧t) can unveil the secret image

S (or a compressed version of S), whereas less than t shadows cannot.) Although both

VC and PSS can share images, they are quite different in many manners. The table

below compares VC and PSS.

Table 4.1: A comparison between VC and PSS.

 Visual Cryptography Polynomial-Style Sharing

The Secret image S being shared Black-and-white Gray or color

Decoding speed (and decoding method)
Instant (by using eyes

after stacking shadows)
Slow (by computation)

Is a computer needed in decoding? No Yes

Recovered image’s perceptual quality vague fine

Size of each shadow Larger than that of S Smaller than that of S

 From Table 1, we can see that VC is simple and fast, while PSS gives good

image quality. A question arises naturally: “Can VC be combined with PSS?” To

certain extent, the answer is positive, as is shown here. In this chapter, we present a

method to combine these two techniques and achieve a goal: if the decoding-computer

is temporarily not available in (or, not connected to) the decoding scene, we can still

 49

physically stack the t received shadows to get a vague black-and-white view of the

secret image immediately; later, when the computer is finally available, we can get a

much finer gray-valued view of the secret image using the information hidden earlier

in the shadows by using PSS. (In this chapter, our generated “shadows” will be called

as “transparencies” because, as mentioned above, one of the two decoding manners is

that the shadows can be stacked physically for viewing, just like ordinary

transparencies can be stacked and view.)

Below in Sec. 4.2 we first review the basis matrices [B0] and [B1] used in VC,

and then in Sec. 4.3 we introduce our method. The experimental results are in Sec. 4.4,

and the conclusions are in Sec. 4.5. The case that the transparencies are virtual

(electronic files) rather than physical is also discussed in Sec. 4.5.

4.2 A Review of the Basis Matrices [B0]
and [B1]
 Below we review the two basis matrices [B0] and [B1] often mentioned in VC

field (e.g. see Reference [2]). The matrix [B0] is called a “white matrix” because it is

useful to produce blocks whose stacking result will represent white pixels of a

black-and-white (e.g. halftone) image. Matrix [B1] is called a “black matrix” for

analogous reason. Without the loss of generality, below we only show the case (t,

 50

n)=(2,4), i.e. only 2 out of 4 shares are needed in recovering. For a general pair of

given values (t, n), the readers may either design their own [B0] and [B1], or use the

appendix to create some pairs of [B0] and [B1] by setting parameters there (see Step 1

of the appendix). In fact, even if the values of u and n are fixed, the choice of [B0]

and [B1] is still not unique. To apply the proposed VCPSS two-in-one sharing method,

people can use any pair of [B0] and [B1] satisfying the requirements (i)-(iii) stated in

next paragraph (these three requirements also appear in the appendix). In summary,

the pair [B0] and [B1] is not necessarily generated from the appendix; the appendix is

just to let the readers know that there always exists at least one solution to find out

[B0] and [B1].

 In the (t, n)=(2,4) case, one of the several possible choices for the white matrix

[B0] and the black matrix [B1] is to use

1100
1100
1100
1100

][B 0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= ; and . (Equation 1)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1001
0110
0011
1100

][B 1

Both matrix has n=4 rows. (In general, no matter how we assign the two matrices,

each matrix must have n rows if n transparencies are to be created. This is the

so-called requirement (i).) In both matrices, each 0 means that a white element is

painted there, and each 1 means a black element is painted there. As we can see, both

[B0] and [B1] have 2 black elements per row. (In general, the number of 1s appearing

 51

in each row of [B0] must be identical to that of [B1]. This is the so-called requirement

(ii).) It is also obvious that if we stack any two (=t) rows of our [B0], the stacking

result has 2 black elements and 2 white elements. On the other hand, if we stack any

two(=t) rows of our [B1], the stacking result has at least 3 black elements. (In general,

no matter how we choose [B0] and [B1], the number of 1s contained in the result of

stacking any t rows of [B1] must exceed that of stacking any t rows of [B0]. This is

the so-called requirement (iii).)

Now, assume that we want to create 4(=n) blocks, each is 2-by-2 in size, so that

stacking any 2(=t) of them will yield a 2-by-2 so-called “white block” (defined here as

a block in which only two of the four elements are 1s [i.e. only two black elements]).

All we have to do is to permute the columns of [B0] randomly, and then distribute the

4(=n) rows of the permuted [B0] to 4 customers. After that, each customer uses the

first two elements as the first row of his block, and next two elements as the 2nd row

of his block. As a result, each of the 4(=n) customers has his own 2-by-2 block, and

any two of these four 2-by-2 blocks can be stacked to yield a 2-by-2 white block (only

two of its 2x2=4 elements are 1s).

 Similarly, if we want that any t(=2) of the n(=4) created blocks (each is still

2-by-2 in size) can be stacked to yield a so-called “black block” (defined as a 2-by-2

block in which at least three of the four elements are 1s [i.e. at least three black

 52

elements]), then we only have to replace the role of [B0] by [B1] in the above

argument, and obtain four blocks corresponding to [B1]. Then distribute these four

blocks arbitrarily to the four customers (one block per customer.)

 In the above example, each block has w=2 white elements and b=2 black

elements, (or equivalently, each row of [B0] or [B1] has 2 white elements and 2 black

elements), and the permutation of the columns of [B0] or [B1] will not affect the

stacking result’s brightness (i.e. number of black elements of the stacking result).

Moreover, when we do column permutation of the matrix [B0] (or [B1]), if we look at

(concentrate on) the first row, we can see that the first row can be either [0011], or

[0101], or [1001], or [0110], or [1010], or [1100]. Therefore, all = 6

types of row vectors can appear. The = 6 types of blocks represented

by these = 6 types of row vectors will be called as fundamental blocks.

(In general, if a VC system uses blocks of size L-by-L, and each block of each

transparency has w white elements and b (b=L×L-w) black elements, then there

types of fundamental blocks. For example, if 3-by-3 blocks are to be used, and

if each block of each transparency has 5 white elements and 4=3x3-5 black elements,

then there will have =126 types of fundamental blocks.)

22
2
+C =4

2C

bw
bC + =4

2C

bw
bC + =4

2C

bw
bC +

45
5
+C

As a remark of this section and the appendix, note that the appendix is a

self-explained appendix extracted from Ref. [2] which is a graceful paper proposed by

 53

G. Ateniese et. al. In order to reduce current chapter length and concentrate on our

topic, we did not intend to discuss in our appendix the many materials mentioned in

Ref. [2]. Interested readers should refer to Ref. [2] for further details. As stated earlier,

the appendix here is just to show the readers that they can always create two basis

matrices [B0] and [B1] for any pair of given t and n (2≦t≦n).

4.3 The Proposed Method
The n expected transparencies can be created using the main algorithm given

below in Section 4.3.1, which is supported by some other supportive algorithms

described in Section 4.3.2.

4.3.1 The Main Algorithm

Main Algorithm (the main algorithm for (t, n) sharing scheme):

Input: A grey-value secret image S of size Width ×Height, an integer threshold value t,

and an integer n (n≧t) indicating the number of produced transparencies.

Output: n transparencies are produced. },...,,{ 110 −= nrrrR

Steps:

 54

Step 1. Use the appendix to create two basic matrices [B0] and [B1] for the given

t and n (see Sec. 4.2 to understand [B0] and [B1]; see appendix to know

how to create [B0] and [B1].) Then, from the [B0] and [B1], the

corresponding values of w and b can be found (each block in each

transparency has w white elements and b black elements).

Step 2. Since each block of each share is required to have w white elements and b

black elements, there are fundamental blocks. Label all

fundamental blocks, i.e. create a mapping table L that maps each number in

{0, 1, …, (-1)} to its corresponding fundamental block.

bw
bC +

bw
bC +

Step 3. Produce an image H (the halftone binary version of the image S).

Step 4.Produce another grey-value image J=S* by compressing S using some

image compression techniques (e.g. JPEG, GIF…); and the compression

ratio C must be at least bw
bCu

n
+×

×
log
8 so that the space needed to store J is

small enough. Hereinafter, the data file representing the compressed image

J will be treated as a bit-stream data-file.

Step 5. Due to security concern, we may encrypt J to get an encrypted bit stream

J' . This can either be done by using a security key, or by using some very

simple functions. (For example, to get J', we may just use XOR function in

a bit-by-bit manner on the bit stream J and the bit stream of the image H

 55

(re-read the image H several times if the size of J is larger than that of H).

Step 6. Then, the bit stream of J' is shared using an (t, n) sharing method that

share a sequence of numbers by polynomials (see Pages 766-767 of Ref. [7].

But we use mod-257 function here to replace the mod-251 function used in

Ref. [7]). Let be the n created bit-string-shares. Notably,

according to Ref. [7], each bit-string-share is t times smaller than J', so the

n so-called bit-string-shares together have n[(Width ×Height × 8 / C)/t] bits.

},...,,{ 110 −nsss

Step 7. For each in , transform the data in from base 257 to

base . This step is for the hiding purpose later in Step 8. (Because

we only have types of fundamental blocks, we can only embed

digits in the range {0, 1, …, (-1)} according to Step 2.)

is },...,,{ 110 −nsss is

bw
bC +

bw
bC +

bw
bC +

Step 8. Use the TC Algorithm below to create n transparencies so

that the n shares are hidden in them, and any t of the n

transparencies can be stacked to obtain an image looks like the halftone

image H.

},...,,{ 110 −nrrr

},...,,{ 110 −nsss

Remark: In Step 4 above, it was stated that the compression ratio (C) must be greater

than bw
bCu

n
+×

×
log
8 . We explain why. Since J is the compressed version of S, which has

Width × Height pixels, the number of bits contained in image J (or J') is Width ×

Height × 8 / C. Then, according to Ref. [TL02], each bit-string-share will have (Width

 56

×Height × 8 / C)/t bits after (t, n) sharing of J' by using polynomial-style sharing.

Therefore the n bit-string-shares together will have (Width × Height × 8 / C) x n/t bits.

On the other hand, since we will use the indices of fundamental blocks to hide the

bit-string of each bit-string-share of J' , and since there are kinds of

fundamental blocks, each index of a block can represent a value in the range from 0

through (-1). As a result, each block can use its index (the block type) to

recover a value in the range 0~ (-1). In other words, if we grab the n so-called

bit-string-shares, and divide their n[(Width × Height × 8 / C)/t] bits into many small

segments (each segment has bits), then each segment can be hidden in (i.e.

represented by the block type of) a suitably chosen block whose block index happens

to be this value. In summary, the n so-called bit-string-shares can be represented by

n[(Width ×Height × 8 / C) /t]/ blocks. Since S has Width × Height pixels,

there are Width × Height binary pixels in H. Since each binary pixel is extended to a

block when VC creates transparencies, there will exist Width × Height blocks in the

enlarged recovered binary image of H after stacking. So we require n[(Width × Height

× 8 / C) /t] / ≦ Width × Height .That is why we require C ≧

bw
bC +

bw
bC +

bw
bC +

bw
bC +log

bw
bC +log

bw
bC +log bw

bCu
n

+×
×

log
8 .

4.3.2 Some Supportive Algorithms

The main algorithm above requires the use of the following supportive

 57

algorithms. The TC algorithm is to create n transparencies. The step 2a of this

algorithm use a subroutine called TC-SUB. (Notably, TC-SUB is to create n blocks

[each transparency will receive one block], and the first of these n blocks can be used

to hide a value in the range {0 ,1,…, (-1)}.)
bw

bC +

TC Algorithm (Transparencies-creating Algorithm):

Purpose: to create n transparencies in which the n shares are hidden. },...,,{ 110 −nsss

Input: the n shares , and the halftone image H. },...,,{ 110 −nsss

Output: n transparencies . },...,,{ 110 −nrrr

Steps:

Step1: Divide the halftone image H into n parts of equal size. Then, for each i=

0,1,…,n-1, the Step 2 below will be utilized to hide the encrypted share

with the help of Part i of H. Therefore, set i=0 and j=0 initially, then go to

Step 2.

is

Step 2: (To hide the encrypted share) is

(2a): Read the next not-yet-processed integer (the j-th integer) from the share

; also read the next not-yet-processed binary pixel (the j-th pixel) value of

Part i of H; then use them to create n blocks by the

sub-algorithm TC-SUB below. Among , the generated block

)(jsi

is

},...,,{ 110 −nbbb

},...,,{ 110 −nbbb

 58

0b is particularly assigned to the transparency at location j, and other

n-1 blocks are arbitrarily assigned to the n-1 remaining

transparencies

ir

},...,{ 11 −nbb

},10|{ ilnlrl ≠−≤≤ at location j .

 (2b): j j+1, and go to (2a) unless all integer values {) } of have been

processed and embedded in Transparency (in that case, go to Step 3

instead).

(jsi is

ir

Step 3: Let j=0 again. Increment the value of i by 1. Then go to Step 2 unless i =n.

(When i=n, all n shares have been hidden in the n

transparencies .) □

},...,,{ 110 −nsss

},...,,{ 110 −nrrr

Notably, in the Step (2a) above, is hidden in ; some readers might wonder: at

the decoding phase, if is missed, how can be recovered? To answer this

question, note that is an (t, n) sharing result (see Step 6 of the Main Algorithm), so

any t of n encrypted shares can recover the secret information (i.e. the

encrypted bit-stream J' of the JPEG image J).

is ir

ir is

is

},...,,{ 110 −nsss

Sub-algorithm TC-SUB

Purpose: to hide an integer .)(jsi

Input: an integer value and a pixel q (either black or white) of the halftone

image H.

)(jsi

 59

Output: n blocks (one block per transparency). Notably, the secret

value is hidden in ; meanwhile, stacking together any t of these n

blocks can reveal the pixel value (black vs. white) of q.

},...,,{ 110 −nbbb

)(jsi 0b

Steps:

Step 1: Use the mapping table L to map the value to a fundamental block.

Let be that block. In other words, = L ().

)(jsi

0b 0b)(jsi

Step 2: If q is a white pixel, set matrix [B] to the basic matrix [B0] produced in

Step 1 of the Main Algorithm. If q is black, set matrix [B] to the basic matrix

[B1] .

Step 3: Permute each column of [B] so that the first row of [B] is the same as

(treat the 2-by-2 matrix as a row vector of 4 elements). Then, for each

d= 1,2,…,n-1, transform Row d of [B] to a 2-by-2 block (by

sequentially assigning the elements of Row d to elements of block) .

0b

0b

db

db

Step 4: } is now the desired output. □ ,...,,{ 110 −nbbb

Remark (about the TC-SUB algorithm): At the decoding phase, when we stack any t

of the n generated blocks, then, due to Steps 2 and 3 of TC-SUB algorithm, the

stacking result will be a black block if and only if the pixel q of the halftone image H

is a black pixel.

 60

4.4 Experimental Results
In our first experiment, the secret image is the image 512-by-512 Lena shown in

Fig. 4.1(a). Its JPEG-compressed version, the so-called image J in Step 4 of the main

algorithm, is the 512-by-512 Lena* shown in Fig. 4.1(b); and the PSNR of Lena* is

39.31 dB. The 512-by-512 halftone image H of Lena is shown in Fig. 4.2. Assuming

(t, n)=(2,4). In other words, the target is that any two of the four generated

transparencies can be used for image reconstruction. Then, using Fig. 4.1(b) and Fig.

4.2, the n=4 transparencies are created, as shown in Fig. 4.3. Each transparency is 2×2

times bigger than each image in Fig. 4.1 and .42, for each fundamental block used to

expand a pixel (see Sec. 2) is 2-by-2 in this experiment. Now, if we stack any two of

the four generated transparencies, as shown in Fig. 4.4, we get a 1024-by-1024

black-and-white image which looks like a 2×2-times enlarged version of the halftone

image H shown in Fig. 4.2. On the other hand, if we use the two transparencies to

extract the information hidden in them, we can recover exactly the 512-by-512

grey-value compressed image Lena* shown in Fig. 4.1(b), as is shown in Fig. 4.5.

 In the second experiment, the secret image is the 512-by-512 image “Jet” shown

in Fig. 4.6(a). Assuming (t, n)=(3, 4). In other words, the goal is that any three of the

four generated transparencies can be used for image reconstruction. The

 61

corresponding experimental results are shown in the remaining parts of Fig. 4.6. Note

that 6(d) is 2-by-3 times larger than the halftone image H because we use 2-by-3

blocks to expand pixels of the halftone image H there. Also note that any two

transparencies together (2<3=t) cannot reveal the JPEG version (Jet*) or the halftone

version H. (Stacking two transparencies together only gets an image with nothing but

noise; no trace of the image H can be seen. As for the reason why the JPEG version

Jet* cannot be revealed, it is due to the decoding of Jet* requires the use of the

recovered H. [See Steps 1 and 2a of the TC algorithm.])

(a) (b)

Fig. 4.1. A secret image Lena (a), and its JPEG-compressed version Lena* whose
PSNR is 39.31 dB (b).

 62

Fig. 4.2: The halftone version (the binary image H) of Fig. 4.1(a).

Fig. 4.3. The n=4 transparencies T0-T3 generated from the pair {Fig. 4.1(b), Fig. 4.2}
in our (t=2, n=4) threshold scheme.

 63

Fig. 4.4. Stacking “any” two transparencies (e.g. 1st and 3rd transparencies here) yield
an enlarged binary image of Lena.

Fig. 4.5. The gray-value image Lena* (identical to Fig. 4.1(b)) reconstructed using the
information embedded in any two transparencies (the 1st and 3rd transparencies here).

(a) (b) (c)

 64

(d)

(e)

Fig. 4.6. The second experiment. ((t, n) = (3, 4), and this experiment uses 2-by-3
blocks). (a): a secret image Jet. (b): the JPEG-compressed version Jet* whose PSNR
is 47.6dB. (c): the halftone version H of Fig. 4.6(a). (d): stacking result using “any
three” of the four generated transparencies (here, 1st, 2nd and 4th transparencies). (e):
the Jet* (identical to Fig. 4.6(b)) reconstructed using the information embedded
earlier in the three transparencies mentioned in Fig. 4.6(d).

4.5 Concluding Discussions
In this , we have proposed a new method which combines two major branches of

 65

image sharing: visual cryptography (VC) and polynomial-style sharing (PSS). In the

decoding issue, this new method is more flexible than applying VC or PSS

independently, since our method provides a “two-options” decoding.

In Fig. 4.1(b) and Fig. 4.5, the PSNR of Lena* is 39.31 dB. If the readers would

like to have an image of better PSNR, then they should use larger blocks (say, 2-by-3

or 3-by-3 blocks) to replace the 2-by-2 blocks here. Without the loss of generality,

assume 3-by-3 blocks are to be used. Then, create the corresponding [B0] and [B1]

matrices; each is n-by-9. Notably, using 3-by-3 blocks will make each transparency

become 3-by-3 times larger than the input image Lena. However, according to Step 4

of the Main Algorithm, we have the constraint that the compression rate C should be

at least bw
bCu

n
+×

×
log
8 . With 6, =126 (assuming each 3-by-3 block of

each transparency has 5 white elements and 4=3x3-5 black elements),

and

=4
2C 45

5
+C

7.2
6log

126log
= , the compression rate to create Lena* from Lena can be 2.7 times

less strict than the one used to generate Fig. 4.2(a). Therefore, the quality of Lena*

will be much better. Analogous analysis also holds if 2-by-3 blocks are used (see the

example 1 of the appendix, and the remark after that example).

 Below we discuss what happens if the transparencies are not created physically,

i.e. if the transparencies are in fact electronic files. To “stack” these “virtual”

transparencies, we use a computer to do a simple “OR” function on all t elements

 66

having identical coordinate among all t received electronic files, i.e. evaluate v

 v … v , and use the rule (v v … v) =1 if and only if at

least one of the u elements being checked is 1. Of course, this reveals the

size-enlarged version of the half tone image H very quickly. Then, the enlarged

version can be transformed back to the original-size halftone image H by summing up

the number of black elements (the number of 1s) appeared in each of the

non-overlapping blocks (each block is 2-by-2 in Fig. 4.5 and 2-by-3 in Fig. 4.6.)

Therefore, in the computer version, the halftone image H can be obtained quickly

without any security obsession (except the threshold limitation: at least t of the n

produced files must attend). As for the JPEG-compressed gray-value image J*, the

decoding is as before, which requires the decoded halftone image H because of Steps

1 and 2a of the TC algorithm (and the decoding of J* may also require the use of the

encryption key mentioned in Step 5 of the Main Algorithm). Therefore, compared

with the reconstruction of the gray-valued image Lena*, obtaining the halftone image

H is much faster; no matter the transparencies are virtual transparencies (electronic

files) or physical transparencies.

1y

2y ty 1y 2y ty

4.6 An Application
From the analysis given in the final paragraph of last section, our two-layer

 67

decoding system can also be used in business in the following way that balances

between convenience and security: 1) any t of the n lower-rank employees can gather

together and use a computer to unveil a vague black-and-white version of the image;

while 2) with the help of this decoded vague version in (1), the manager of these

employees can unveil further a fine gray-valued version of the image using the key

that only he knows. In the above, (1) is for the convenience of the daily meeting

between the employees (the meeting does not need the attendance of the manager,

although less than t employees cannot have a meeting); while (ii) is for the company

owner to prevent a high-quality image from being sold in a black market (neither the t

lower-rank employees nor the manager alone can obtain the JPEG version, unless the

two sides cooperate).

 68

Chapter 5

Conclusions and Future Works

5.1 Conclusions
 In this thesis, we make use of the polynomial sharing technology on some topics.

Single image recovery, multiple images cross recovery and Visual Cryptography.

Polynomial sharing technology is a useful tool for preserve secrets, disperse

information and fault tolerance, etc. With those advantages, in recent years, in image

processing domain, many literatures about secret sharing had been published. Those

literatures use secret sharing technology to improve the image security or to share the

image files. But apply this technology to image processing issues is fewer. Chapter 1

presents an application on image recovery, to improve the ability of the recover

algorithm.

How to protect a data? In generality, if we want the message more robust, then

more bits/space to store it. But in image processing domain, we can tolerate some

change of the pixels. Chapter 3 uses this property to propose a method of multiple

images recovery.

Visual Cryptography is also a secret sharing technology. In order to combine

with VC and polynomial sharing, the critical idea is to hide the shadows in each

 69

transparency. Image compression (JPEG) resolve us the hiding capacity problem.

5.2 Future Works
 There are some topics for extending and improving the proposed methods. We

list them as follows:

Chapter 2: Image Tampered detection and Recovery.

 This method that we propose may add some conditions. For example, consider

the image contains. ROI(region of interesting) is a more important region, so we may

want to improve the recover ability of this region.

Chapter 3: Cross Recovery of Multiple Images.

 The method be proposed in section 3.2 isn’t a very good method. We list the

weaknesses as follows:

I. In inversing phase, if any an error occurs, the error can send to next

decoding pixels.

II. We don’t add any method to check which image had been destroy. This can

add fragile watermarking or checksum on those stego images to check

which images were destroyed.

Chapter 4: Two Layer Image Sharing

 By using stack or computing method, the decoding images are very similar.

 70

Some information remainders at this point. A better method is change the hiding

information to the remainder between the original secret image and the stacked

version (this is the halftone version of the secret image).

 71

REFERENCES

[1] G.R. Blakley, “Safeguarding cryptographic keys,” Proceedings AFIPS 1979

National Computer Conference, New York, USA., Vol. 48, pp. 313-317,1979.

[2] A. Shamir, “How to share a secret,” Communication of the ACM, Vol. 22, No. 11,

pp. 612-613, 1979.

[3] C. Blundo, P. D'Arco, A. De Santis, and D. R. Stinson, “Contrast Optimal

Threshold Visual Cryptography Schemes”, SIAM J. on Discrete Math. 16(2), pp.

224-261, 2003.

[4] T. Hofmeister, M. Krause, and HU Simmon, "Contrast-optimal k out n of secret

sharing schemes in visual cryptology," Theoretical Computer Science, vol.

240(2), pp.471–485, 2000.

[5] CH Ku and W. H. Tsai, “Secret image sharing with steganography and

authentication,” Journal of Systems & Software, 2004, Vol. 73(3), pp. 405-414.

[6] R.Z. Wang and C.H. Su, "Secret image sharing with smaller shadow images,"

Pattern Recognition Letters, 2006, Vol. 27(6), pp. 551-555.

[7] C.C. Thien, J.C. Lin, “Secret image sharing”, Computers and Graphics 26, 2002,

p.p. 765-770.

 72

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V15-4HDP6TT-3&_coverDate=04/15/2006&_alid=367835333&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5665&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=80e4a5e294d9bd375830dd6f9285d72c

[8] Y.S. Wu, C.C. Thien, J.C. Lin, “Sharing and hiding secret images with size

constraint”, Pattern Recognition, 2004, Vol. 37, pp.1377-1385.

[9] C.C. Chang and R.J. Hwang, “Sharing secret image using shadow codebooks,”

Information Sciences, Vol. 111, No. 1-4, pp. 335-345, 1998.

[10] W.H. He and T.S. Wu, “Comment on Lin-Wu (t, n)-threshold verifiable

multisecret sharing scheme,” IEE Proc. Comput. Digit. Tech., Vol. 148, No. 3

2001.

[11] C.C. Chang, C.S. Tsai, and T.S. Chen, “A new scheme for sharing secret color

images in computer network,” International Conference on Parallel and

Distributed Systems, pp. 21 –27, 2000.

[12] K.J. Tan and H.W. Zhu, “General secret sharing scheme,” Computer

Communications, Vol. 22, pp. 755–757 1999.

[13] A. Beimel and B. Chor, “Secret Sharing with Public Reconstruction,” IEEE

Transactions on Information Theory, Vol.44, No. 5, pp. 1887-1896, 1998.

[14] T.C. Wu and T.S. Wu, “Cheating Detection and Cheater Identification in Secret

Sharing Schemes,” IEE Proc. Comput. Digit. Tech., Vol.142, No. 5, 1995.

[15] C.C. Chang and C.W. Chan, “Detecting dealer cheating in secret sharing

systems,” Computer Software and Applications Conference, 2000. COMPSAC

2000. The 24th Annual International, pp.449 –453, 2000.

 73

[16] K. Okada and K. Kurosawa, “MDS Secret Sharing Scheme Secure Against

Cheaters,” IEEE Transactions on Information Theory, Vol. 46, No. 3, 2000.

[17] G. R. Blakley and G. A. Kabatianski, “Ideal perfect threshold schemes and MDS

codes,” IEEE Conf. Proc., Int. Symp. Information Theory, p. 488, 1995.

[18] W. Ogata and K. Kurosawa, “Optimum secret sharing schemes secure against

cheating,” in Advances in Cryptology, Proc. Eurocrypt’96 New York:

Springer-Verlag, 1996, Vol. 1070, pp. 200–211.

[19] J. B. Feng, H. C. Wu, C. S. Tsai and Y. P. Chu, “A new multi-secret images

sharing scheme using Largrange’s interpolation,” J. Systems & Software, 2005,

Vol. 76, (3), pp. 327-339.

[20] Michael O. Rabin, "Efficient Dispersal of Information for Security, Load

Balancing, and Fault Tolerance," Journal of the ACM, 1989, Vol. 36(2), pp.

335-348.

[21] F.P. Preparata, "Holographic Dispersal and Recovery of information", IEEE

Trans. on Information Theory, Vol. 35(5), 1989, pp. 1123-1124.

[22] Philippe Béguin and Antonella Cresti. “General information dispersal

algorithms.”, Theoretical Computer Science, Vol. 209, 1998, pp. 87-105.

 74

[23] P.L. Lin, C.K. Hsieh and P.W. Huang, “A hierarchical digital watermarking

method for image tamper detection and recovery”, Pattern Recognition, 2005,

Vol. 38, pp. 2519-2529.

[24] J. Wang and J. Liang, “A region and data hiding based error concealment scheme

for images”, IEEE Trans. Consumer Electronics., 2001, Vol.47, (2), pp. 257-262.

[25] H.C. Wu and C.C. Chang, “Detection and Restoration of Tampered JPEG

Compressed Images,” The Journal of System and Software, 2002, Vol. 64(2), pp.

151 –161.

[26] J. Fridrich and M. Goljan, “Images with Self-Correcting Capabilities,” ICIP’99,

Kobe, 1999, pp.25-28.

[27] P.L. Lin, C.K. Hseih, and P.W. Huang, “Hierarchical Watermarking Scheme for

Image Authentication and Recovery,” The IEEE 2004 International Conference

on Multimedia and Expo (ICME’2004).

[28] C.C. Thien and J.C. Lin, “A simple and high-hiding capacity method for hiding

digit-by-digit data in images based on modulus function”, Pattern Recognition,

2003, Vol. 36, pp. 2875-2881.

[29] CK Chan and LM Cheng, “Hiding data in images by simple LSB substitution”,

Pattern Recognition, 2004, Vol. 37, pp. 469-474.

 75

[30] Xinpeng Zhang, and Shuozhong Wang, “Steganography Using Multiple-Base

Notational System and Human Vision Sensitivity”, IEEE Signal Processing

Letters, 2005, Vol.12(1), pp. 67-70.

[31] D.C. Wu and W.H. Tsai, “Spatial-domain Image Hiding Using Image

Differencing,” IEE Proceedings on Vision, Image, and Signal Processing, Vol.

147, No. 1, pp. 29-37, 2000.

[32] R.Z. Wang, C.F. Lin, and J.C. Lin, “Hiding Data in Images by Optimal

Moderately-Significant-Bit Replacement,” Electronic Letters, Vol. 36, No. 25, pp.

2069-2070, 2000.

[33] M.D. Swanson, B. Zhu, and A.H. Tewfik, “Robust Data Hiding for Images,”

IEEE Digital Signal Processing Workshop Proceedings, pp. 37-40, 1996.

 76

Appendix

A possible way to generate a pair of basis matrices [B0] and [B1] for

an (u, n) threshold system. (This self-explained appendix is a re-written part

extracted from Ref. [3-4])

Input: an integer threshold u, and an integer n indicating the number of produced

transparencies. (u≤n.)

Output: a pair of basis matrices [B0] and [B1] (both matrices are formed of 0s and 1s)

satisfying the following requirements:

i. Each matrix has n rows.

ii. The number of 1s shown in any row of [B0] is identical to that of

[B1].

iii. Stacking any u of the n rows of the matrix [B0] (or [B1], respectively)

get a row vector called the White-Row-Vector (the Black-Row-Vector,

respectively) corresponding to these u rows. Any Black-Row-Vector

contains more 1s than any White-Row-Vector does.

Steps:

 77

Step 1: Arbitrarily choose (n-u) integers }10|{ −−≤≤ unjhj and an integer . 0>−unh

Step 2: Compute the integers }0|{ niai ≤≤ by the formula

 (Equation A1) i
jj

uni

j

ji
i Cha ∑

−

=

+−=
},min{

0

)1(

Step 3: Create . Here, each is a matrix having n rows and

columns; no two columns of are identical; and each of these columns

is exactly one of the permutations of the n elements of the first column

of . (The first column of is formed of i consecutive 1s followed by (n-i)

consecutive 0s.)

},.....,{ 0 nGG iG n
iC

iG n
iC

n
iC

iG iG

Step 4: Initially, set both [B0] and [B1] to empty set; also set = . Then, ia 0a

 (4-i): If (=0), then do nothing for this , just go to (4-iv). ia ia

 (4-ii): If (>0), then repeatedly append into [B0] (repeat | times). ia iG | ia

 (4-iii): If (<0), then repeatedly append into [B1] (repeat times). ia iG || ia

 (4-iv): If i=n, go to Step 5; else, increment i by 1 and go to (4-i).

Step 5: [B0] and [B1] are now the desired output. □

EXAMPLE 1. In the (u=2, n=4) case, if a reader uses as his

arbitrary setting for the in Step 1 above, then he will proceed as follows:

}2,3,3{},,{ 210 =hhh

},,{ 210 hhh

Step 1: Let . }2,3,3{},,{ 210 =hhh

Step 2: By formula (A1), compute and obtain }3,0,1,0,3{},,,,{ 43210 −=aaaaa .

 78

Step 3: are, respectively, 40 ,...,GG

.

1
1
1
1

,

1110
1101
1011
0111

,

110100
101010
011001
000111

,

1000
0100
0010
0001

,

0
0
0
0

43210

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= GGGGG

Step4: Since {3, 0, =},,,,{ 43210 aaaaa -1, 0, 3}; from those positive , we get ia

 [B0] = (repeats three times (for0G 30 =a), followed by repeating three

times (for)), i.e.

4G

3=a4

2 2

 [B0] ;

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

111000
111000
111000
111000

similarly, from those negative , we get ia

[B1] = (appears G 1|1||| =−=a time), i.e.

[B1] .

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

110100
101010
011001
000111

2G

Step 5: [B0] and [B1] are now the desired output. □

Remark: In example 1 above, stacking any two rows of [B0] yields a row having three

1s; while stacking any two rows of [B1] yields a row having five 1s (and hence,

“darker” than stacking any two rows of [B0]). Also note that each row of each matrix

has 6 elements; therefore, each block is 2-by-3 (or 3-by-2) rather than the 2-by-2 used

in Section 2 and in the experiment for Lena (Fig. 4.1 through 4.5). Now, since

 79

4
2

6
3 620 CCC wb

b =>==+ , the JPEG compression rate C mentioned in Step 4 of the

main algorithm is thus smaller (less strict) now, and the quality of the JPEG image

Lena* in Fig. 4.1(b) and Fig 4.5 will thus becomes better (has higher PSNR value).

The price of getting this better-quality gray-value image Lena* is that the stacked

black-and-white image in Fig. 4.4 will become larger in width (just like the Fig 4.6(d)

does) because of the use of 2-by-3 blocks. □

EXAMPLE 2. For example, in (u=2, n=5) case, if a reader uses

}1,1,1,1{},,,{ 3210 =hhhh as his arbitrary setting for the in Step 1

above, then he will proceed as follows:

},,,{ 3210 hhhh

Step 1: Arbitrarily assign . For example,

let .

},,,{ 3210 hhhh

}1,1,1,1{},,,{ 3210 =hhhh

Step 2: By formula (A1), compute and obtain }4,1,0,0,0,1{},,,,,{ 543210 −=aaaaaa .

Step 3: are, respectively, 50 ,...,GG

,

0
0
0
0
0

0

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=G

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000
01000
00100
00010
00001

1G , ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
0
0
0

1010
0101
1100
0011
0000

01000
00100
10010
10001
01111

2G

 80

 , , .

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
1
0
0

1101
1011
0110
1110
0001

10100
01010
11001
00111
11111

3G

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11110
11101
11011
10111
01111

4G

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
1
1
1

5G

Step4: Since =},,,,{ 43210 aaaaa {1, 0, 0, 0, -1, 4, }; from those positive , we get ia

 [B0] = (appear once (for0G 10 =a), followed by repeating four times

(for)), i.e.

5G

45 =a

 [B0]= ;

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11110
11110
11110
11110
11110

similarly, from those negative , we get [B1] = (appears

time, followed by repeating once (for

ia 3G 1|1||| 3 =−=a

4 4G 1=a)), i.e.

 [B1] = .

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11110
11101
11011
10111
01111

4G

Step 5: [B0] and [B1] are now the desired output. (Stacking any 2 rows of [B1]

always gets more 1s than stacking any 2 rows of [B0] does. Moreover, the number of

1s contained in each row of [B0] is identical to that contained in each row of [B1].)

□

 81

	論文封面.pdf
	論文內頁.pdf
	Abstract.pdf
	Abstract
	TABLE OF CONTENTS
	Chapter 1 Introduction 1
	Chapter 2 Detection and Recovery of Tampered Images 12
	Chapter 3 Cross Recovery of Multiple Images 32
	Chapter 4 Two-Layer Image Sharing 48
	Chapter 5 Conclusions and Future Works 69
	References 72
	Appendix 77

	Main.pdf
	Chapter 1
	Introduction
	Two-Layer Image Sharing
	Conclusions and Future Works
	5.2 Future Works

