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摘 要 

數位影像在 WWW 的環境中可能會被攻擊者竄改資料，或者在傳輸之中發生傳

輸錯誤的情形。在本篇論文中，我們提出三種基於「資訊分享」技術的影像還原

方法。在第一個方法之中，我們對每個 8x8 影像區塊進行編碼；其後，只要未被

破壞的影像區塊數目大於ㄧ門檻值，我們就可以用它們來把其他已被破壞的影像

區塊給還原回來。由於第一種方法若整張影像都被拿掉，則無還原機會，所以我

們又提出第二種方法「多張影像交叉還原」技術。對於 n張編碼後的影像，只要

有 t 張影像是未被破壞的，我們就可以利用這 t張影像來還原其他(n-t)張已被

破壞的影像。第三種方法是第二種方法的變形；由於管理者可能希望影像具備自

我修復的能力，但又不希望降低影像品質，所以我們的第三種方法以增加儲存空

間的方式，對於每張輸入的影像會附加一塊類似雜訊的分存影像，而其功能亦可

達到和第二種方法相同的效果。 

除了上述三種方法外，我們也觀察到視覺密碼學(Visual Cryptography)和

利用多項式的影像分享(Image Sharing by Polynomials)各有其優劣點；所以本

論文最後提出一個結合此二者的新的分享機制；其分存影像可以依據環境狀況來

採用其中一種回復方法。  
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Abstract 
In WWW environment, digital images may be tampered by attackers, or get lost 

during transmitting. In this thesis, we propose three kinds of image recovery methods, 

based on sharing techniques. In the first method, the given image is partitioned into 

8-by-8 blocks, and we encode each 8-by-8 image block. Later, if the number of the 

non-attacked blocks is greater than a threshold value, then we can recover all the 

tampered blocks by using them. Because the first method cannot recover the image if 

it is deleted completely, we propose the second method which is the cross recovery of 

multiple images. For n encoded images, if t out of the n images are not-attacked, we 

can recover the other (n-t) images by the t non-attacked images. The second method is 

not error-free when each image is embedded with recovery information. The third 

method is a modification of the second method; and it is for the users who require the 

images to have cross recovery ability without degrading the images’ qualities. This 

method appends a noisy shadow image to each input image. 

Besides the three methods described above, it is also observed that Visual 

Cryptography and polynomial-style image sharing both have their own advantages 

and disadvantages. So, this thesis also proposes a novel sharing mechanism 

combining the two methods. The recovery can be according to the computer resources 

available at the scene. 
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Chapter 1 
Introduction 

 

1.1 Motivation 
Due to the popularity of Internet, people can exchange information conveniently. 

Many images are placed on Web pages, and authorized people can download them. 

Unfortunately, it’s hard to ensure that received data is identical to the original data; 

because Internet is an open environment, anyone can access the data, including 

attackers. Therefore, how to protect Internet data is a critical issue. 

In the thesis, we proposed some recovery methods to protect images. Those 

methods are based on the polynomial sharing technology. This technology contains 

two phases: the sharing phase and the revealing phase. In sharing phase, the given 

data are divided into n shadows; later, if anyone get any t of the n shadows (t is a 

given threshold value), then he can reconstruct the data; but if he gets t-1 or fewer 

shadows, he can’t get any information about the data. This is a very useful tool for 

image processing; in recent years, many literatures about this topic have been 

published [5-22]. 

With Fig. 1.1, we can realize the procedure of how to recover a tampered image. 

We roughly separate the process into three parts; the pre-processing step, the 

tampering step, and the recovery step. For these steps, the pre-processing step and the 

 1



recovery step are done by us. How  ever, the tampering is done by the attacker. Thus, 

how to design a good algorithm in the pre-processing step and the recovery step is our 

concern. 

In Chapter 2, we present a method that can recover a single embedded image 

based on sharing technology. Since the ability of single image recovery technology is 

very limited, we also present in Chapter 3 a novel image recovery method for multiple 

images, and this method can recover the tampered images, even some of the images 

are destroyed completely. 

 

 

Tampering 

Recovery

Pre- 
processing

Fig. 1.1. The course of pre-processing, tampering and recovering an image. 
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Visual Cryptography was introduced by Naor and Shamir. In (t, n) sharing, the 

secret data are dispersed into n transparencies, and we can’t get any message about the 

secret data from each transparency (except for the transparency size). If we stack any t 

out of n transparencies, then we can “see” the secret message; however, if we stack t-1 

or fewer transparencies, then we can’t get any message about the secret data. Some 

comparisons between polynomial-style secret sharing and Visual Cryptography are 

described in Chapter 4. Each of the two technologies has its own advantage, thus, we 

try to combine VC with polynomial-style secret sharing in Chapter 4. Certain 

transparencies are generated by our method there. If the transparencies can be 

transmitted via network, the revealing mechanism can get a high quality image (by 

polynomial-style sharing) with the aid of a computer. But if there is a no computer, 

then, we still can get “view” a rough look of the secret image by stacking the 

transparencies. 

 

1.2 Related Works 
In this section, some previous works about Secret Sharing and Image Hiding 

technology will be reviewed. In Section 1.2.1, Shamir’s secret sharing method [1], 

Thien and Lin’s image sharing algorithm [7] and Galois field will be described briefly. 

In Section 1.2.2, we will introduce a simple method to hide a base-k digit stream in a 
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host image.  

Because base transform is commonly used repeatedly in this thesis, it is also 

reviewed in Section 1.2.3. 

 

1.2.1 Review of Secret Sharing 

 Sharing technology is one of the commonly used methods to protect secret data. 

Shamir’s secret sharing [1] is a threshold method based on the polynomial 

interpolation. The (t, n)-threshold secret sharing scheme can disperse the secret data 

into n shadows, and each shadow has the properties below: 

1. Any t (or more) out of n shadows can be used to reconstruct the secret data. 

2. Any t-1 (or fewer) shadows cannot be get any information about the secret 

data. 

The secret data could be text files, images, multimedia data, or 

encryption/decryption keys. The polynomial used in Shamir’s method is described 

below: 

 

Shamir’s (t, n)-threshold secret sharing: 

For (t, n)-threshold sharing, let 

1
1

2
210 ...)( −

−++++= t
t xaxaxaaxQ  
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where  is the secret data,  are random numbers, and the n shadows 

are . Any t-1 or fewer shadows can’t get any useful 

information about the secret data. However, when people receive any t of those 

shadows, they can evaluate the secret data  by using Lagrange interpolation. 

0a 121 ,...,, −taaa

)}(,{)},...,2(,2{)},1(,1{ nQnQQ

0a

 

In order to save space, Thien and Lin [7] modify the above idea and apply it to 

the sharing of secret images. For (t, n)-threshold scheme of secret image sharing, an 

image f of size L is breaks into n shadows, and each shadow has following properties: 

1. Any t (or more) out of n shadows can be used to reconstruct the secret 

image. 

2. The size of each shadow is L/t. 

The algorithm is very similar to Shamir’s secret sharing scheme, and we 

introduce the method below. 

 

(t, n)-threshold Secret Image Sharing: 

Steps: 

1. For whole secret image, if a pixel value g is larger than 250, then change the 

value into 250, and creates one more pixel whose gray value is g-250. 

2. Encrypt the secret image by a encryption key. 
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3. Divide the secret image into several sections, each section has t pixels. 

4. For each section, we define the polynomial 

)251(mod...)( 1
1

2
210

−
−++++= t

t xaxaxaaxP  

where  are t pixels of the section. 110 ,...,, −taaa

5. Evaluate , )1(1 PShare = )2(2 PShare = , ..., )(nPSharen = . Each  

is assigned to each shadow image i. 

iShare

 When we receive any t of those shadow images, we can evaluate the secret pixels 

by using Lagrange interpolation. 

 

 If some pixel values of the secret image are larger than 250, the coding, decoding, 

and share size will all be influenced a little. A better method is that, we change the 

finite field of the sharing polynomial, as below: 

Let Galois field be a finite field, denoted by , where p is a prime 

number, and n is a positive integer. In this thesis, unless stated otherwise, the 

polynomial sharing technology works on , rather than GF(251). 

)( npGF

)256()2( 8 GFGF =

 

1.2.2 Review of Image Hiding 

Image hiding is a method to embed some secret data in a cover image. For the 

same hiding capacity, the goal is usually to reduce the difference between the cover 
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image and the stego image for human’s sense. The simplest hiding method is the least 

significant bit (LSB) method; the data are embedded in the least k bits of the pixels. In 

order to improve the image quality of the cover image, Thien and Lin present a 

method to embed the secret data by using modulo operation [28]. Thien and Lin’s 

algorithm is more complex than the LSB method; in this thesis, we use a simpler 

method [30] whose performance is identical to Thien & Lin’s, as below:  

 

Algorithm of module-based data hiding 

Let p be a pixel value, d∈{0,1,…,b-1} a secret digit to be hidden, and b the 

module-base. To embed d in p, we replace p by ]['
b

dproundingbdp −
×+= . If 0'<p , 

then . Similarly, if , then bpp +← '' 255'>p bpp −← '' . 

Here, the rounding operator means rounding to the “nearest” integer. Also, we 

assume the pixel value is at least 0 and at most 255. Later, if we want to extract the 

value d from p′, just use . )(mod' bpd ←

 

1.2.3 Base Transform 

In this thesis, changing the base of a digital stream is a tool used often. We 

propose a simple method to do this. An example of our method is shown in Fig. 1.2. 

In this example, we change the base of a digit stream from 5 to 7. The method can be 
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divided into two stages. In the first stage, we generate a look up table, as shown in Fig. 

1.2(a). This table can map each digit to a binary code. Thus, a binary stream could be 

yielded. In the second stage, we generate a 7-base look up table, as shown in Fig. 

1.2(b). By using the table, we can transform the binary stream into a base-7 digit 

stream. Later, if we want to convert the digital stream into the original stream, we 

only reverse this procedure. 

 

(a) 

Fig. 1.2. An example to change the base of a digital stream from 5 to 7. (a) base-5 
look up table. (b) base-7 look up table. 

111 4

110 3

10 2

01 1

00 0

6 111

5 110

4 101

3 100

2 011

1 010

0 00

4102.. 111010010. 611..

(b) 

No matter in stages 1 or 2, we need a look up table to map the base from 5(or 7) 

to 2.  

 

Algorithm of generating a base-k look up table 

Input: The base k. 

Output: A look up table. 
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Steps: 

1. Evaluate integers c and b so that ⎡ ⎤kc log2=  and . kb c −= 2

2. For each digit from 0 through b-1, the corresponding binary code is its 

(c-1)-bit binary expression 0(for example, , , 

, …). 

321
bitsc 1

00...000
−

→ 321
bitsc 1

01...001
−

→

321
bitsc 1

10...002
−

→

3. Let B denote the (c-1)-bit binary expression of b, then append a zero to the 

right of B, which is the corresponding binary code of b. 

4. Each digit from b+1 to k-1 is obtained by adding value to B accordingly. 

 

1.3 Overview of the Proposed Methods 
 In this section, we will describe the main methods that will be proposed in this 

thesis briefly. In this thesis, Single-Image Recovery is our first application of the 

polynomial sharing technology. In the embedding procedure, we use the polynomial 

sharing technology to share the compressed version (JPEG) of the host image, and 

then hide each shadow and embed the checksum (CRC64) in each block of the host 

image. If the image had been tampered, our verification procedure can detect which 

blocks are altered. Finally, our recover procedure can reconstruct the altered blocks by 

extracting the compressed version of the original image. 

 However, if the attackers destroy the image completely or replace it with other 
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image, the Single Image Recovery technology cannot handle this case. Hence, we 

propose a Multiple Images Recovery method to resolve the problem. If (n-t) or fewer 

images of the n images have been deleted, we still can reconstruct those deleted 

images by the remaining images. 

 Multiple Image Recovery method needs to alter the input images. However, if 

some people don’t want the images be changed; then they can use a different method 

of ours to achieve the requirement. The mechanism doesn’t alter any pixel value of 

the input image, but each image is appended with a shadow file, whose size depends 

on the threshold value and the size of the input images. 

 Visual Cryptography (VC) is also a secret sharing technology; the most special 

characteristic of VC is that its is the decoding phase doesn’t need any computer, all 

we have to do is just to stack those transparencies. Our two-layer Image Sharing 

method is a method which combines VC with polynomial sharing technology. At the 

revealing phase, if the decoding-computer is temporarily not available in the decoding 

sense, we can stack those transparencies to “see” the secret image of rough version. In 

the other case, when the computer is available, we can get a much finer gray-valued 

secret image using the information hidden earlier in the shadows by using polynomial 

sharing algorithm. 
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1.4 Thesis Organization 
 Fig. 1.3 illustrates the framework of this thesis. polynomial secret sharing is the 

main tool of our whole thesis. In Chapter 2, we will present the scheme of image 

recovery, which is based on the polynomial sharing approach. The method of cross 

recovery of multiple images is specified in Chapter 3. Chapter 4 proposes a novel 

secret sharing method, which can decode the secret image either by a computer or by 

stacking the transparencies. 

 

Secret Sharing Image Recovery 

Polynomial 
Secret Sharing 

Visual 
Cryptography 

Ch4: Two Layer 
Image Sharing 

Ch2: Image Tampered 
Detection and Recovery 

Ch3: Cross Recovery of 
Multiple Images. 

Fig. 1.3. The framework of this thesis. 
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Chapter 2 

Detection and Recovery of Tampered 
Images 

 

 This chapter presents an image recovery technology. We use polynomial sharing 

to share the critical information of the original image into many shadows, and the size 

of each shadow is very small. Then use data hiding technology to embed those 

shadows in each block of the original image. Finally, the checksum is also embedded 

in the block. If the image is tampered, the checksum of each block can determine 

whether the blocks are altered. If the block is integrity, then the embedded 

information can be extracted and be used to reconstruct the original image; otherwise, 

we mark the block as an error block and will be recover by the other integrity blocks. 

 

2.1 Introduction 
 With the popularity of Internet, we can get multimedia data conveniently. 

However, attackers can modify those multimedia data easily, via Internet. Therefore, 

how to protect the integrity of multimedia data is an important issue. Image recovery 

technology [23-27] is one of the methods to protect important web images. In this 

chapter, an image recovery method is proposed. 
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2.2 The Proposed Method 
  

2.2.1 The Main Algorithm 

In this section, the host image is a 512-by-512, gray-level image, the range of the 

gray value is 0~255. Fig. 2.1 shows the embedding procedure of our method. 

 

 

Replace block i with block i’ 

Get Share i 

(For each 8x8 block) 

Binary stream

 
Host 
image 

n shadows 

 

 (t, n) sharing 

Block i 

Share i 

Block i’ 

Embed

Embed checksum 

 

Fig. 2.1. The flow chart of the embedding procedure 

Compress 

  

The process of our embedding procedure consists of four stages. The first stage 

is called “image compression stage”; in this stage, we compress the host image by 
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using JPEG method (actually, we can use any image compression method). The 

output is a bit stream, and the resulting size is smaller than the original image file. The 

second stage is called the “sharing stage”. In this stage, we use polynomial sharing 

technology to share the binary stream, which was got from the first stage. The final 

stage is called the “embedding stage”. For each 8-by-8 block, we embed a share and 

the checksum in it. The details of our method is described in the following algorithm. 

 

Embedding Algorithm: 

Input: A grey-value host image S of size Width ×Height, a decimal value d, 0＜d＜1, 

which indicates the minimal percentage of the integrity blocks needed in order to 

recover the image if the stego image is tampered later. 

Output: a stego image. 

Steps: 

1. Produce a grey-value image J by compressing the host image S using JPEG 

compression technology. Hereinafter, the data file representing the 

compressed image J will be treated as a bit-stream data-file. 

2. Then, the bit stream of J is shared using an (t, n) sharing algorithm. Where 

n is equal to the number of 8-by-8 blocks in the host image; that is to say, 

n= Width/8 ×Height/8. The threshold value t means the percentage of 

integrity shares could be recovered, so t = d×n. Here the value of n may be 
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very large; for example, if the image size is 512-by-512, then 

n=(512/8)×(512/8)=4096, this is a large number. In order to get those 

shadows, the sharing algorithm must works on  or 

modulo 4099(this a minimal prime number which larger than 4096). 

)4096(GF)2(GF 12 =

3. Partition the host image S into non-overlapping 8-by-8 blocks, then set i=0 

initially. For each 8-by-8 block i, doing following steps. 

4. Embed the share i was produced at step 2 and a checksum in the block i. 

The embedding algorithm is described in Embedding-Sub Algorithm. Let 

the output is a block i’. 

5. Replace the block i by the block i’, then increment the value of i by 1. 

Finally, go to Step 4 unless all of the blocks are replaced. 

6. The image S is our desired output. 

 

Embedding-Sub Algorithm:  

Purpose: To embed a share data and checksum in an 8-by-8 block. 

Input: An 8-by-8 block B, and a share data D. 

Output: An 8-by-8 block B’. 

Steps:  

1. Discard all of the least significant bits in the block B. Let T the output block. 
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We use a pseudo-code to represent it,  

For all of pixels in T, 

T[x, y] ← B[x, y]/2; 

Where B[x, y] (resp. T[x, y]) denotes the pixel value at position (x, y) of the 

block B (resp. block T). 

2. Get the block T’ by using module-based data hiding method (see section 

1.2) to hide the share data D in block T. 

3. Get the checksum C by evaluating the CRC64 of the block T’ (each pixel of 

the block T’ is consist of 7 bits). 

4. Append the checksum C to the block T’. Our desired block B’ consists of 

block T’ and checksum C. We can use the following pseudo-code to get 

block B’. 

For all of pixels in B’, 

B’[x, y] ← T[x, y]+C[x×8+y]; 

Where C[X] denotes the X-th bit value of the checksum C (C contains 64 

bits). Fig. 2.2 shows the bit plane of the block B’. 
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 Bit 1 2 3 4 5 6 7 8 

Pixel 1 T[0, 0] C[0] 

2 T[0, 1] C[1] 

. 
: 

64 T[7, 7] C[63] 

Fig. 2.2. The bit plane of the block B’. 

 

2.2.2 The Verification and Recovery Algorithm 

 The verification method is based on CRC64. For each 8-by-8 block, we use 

CRC64 algorithm to check whether the block is integrity or not. If the block is 

integrity, then we color the corresponding location of the verified image V white; 

otherwise, color black. The details are described at below. 

 

Verification Algorithm: 

Input: A query image Q. 

Output: A verified image V. If a verified block is a black block, it means the block 

had been altered. The color is white, if the block is not altered. 

Steps: 
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1. Divide the query image Q into 8-by-8, non-overlapping blocks. 

2. For each block B in the image Q, extracting all of LSBs in the block B. 

Combine those bits, we can get a value called CRCChecksum. 

3. Evaluating CRC64 of the block B (eliminate all of LSBs in the block B). If 

the value is equal to CRCChecksum, than we can say this block B is an 

integral block. Otherwise, the block B is an altered block. 

4. If the block B is an altered block, we color the block of verified image V 

black at the corresponding location. Otherwise, color white. 

5. If there are some blocks un-processed, go to step 2.Otherwise, terminate this 

procedure, then output the verified image V. 

 

Fig.2.3 illustrates the verification algorithm. With this algorithm, we can know 

which blocks are tampered. With the verified image, we can even correct those blocks 

by using recovery algorithm. 
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No Yes 

Evaluate CRC64 

Get the first 7 bits 
for each pixel in 
block B 

Get all of LSBs in block B 

(For each 8x8 block) 

 
Query 
image 

B 

CRCChecksum

 

Fig. 2.3 The flow chart of the verification procedure 

A 

CRC64 Equal? 

Color the verified 
block black 

Color the verified 
block white. 

 

 

 After the image verification procedure, we know which blocks were tampered. In 

order to recover the tampered blocks, the JPEG version of the original image will be 

extracted to restore those tampered blocks. The Recovery Algorithm below describes 

the details of this method. 

 

Recovery Algorithm: 
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Input: A query image Q and the verified image V. 

 had been restored. 

Divide the image Q into 8-by-8, non-overlapping blocks. 

are data which be 

3. o get the secret data from those extracted share 

4. by-8 block of the verified image V, if the block color is black 

5. 

Fig.  I overy Algorithm. 

Output: a recovered image R, whose altered blocks

Steps: 

1. 

2. For each block B, if it is a integral block, extracting the sh

embedded in the block B. 

Use revealing algorithm t

files. (The secret data is a JPEG-format file of the original image). From the 

secret data, we can know a JPEG version of the original image, denote the 

image is J. 

For each 8-

(this means the block had been tampered), we use a corresponding block of 

the image J to replace the block of the image Q.  

The image Q is our desired output. 

2.4. llustrates the three passes of the Rec
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Image decoder 

Retrieve the secret data 

Extract 

Yes 

 
Query 
Image Q 

B 
 

 
Verified 
Image V  

Is it a correct 
block?

shadow 

Pass 1: 

Pass 2: 

Shadow set 

Compressed 
version of the 
original image 

Compressed data of the original image 

Do nothing 

No 
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Query 
Image Q  

Fig. 2.4. The flow chart of the recovery procedure. 

 
Verified 
Image V  

Pass 3: 

 
JPEG version of 
the original 
image 

 

White block      Black block 
2 x 1 MUX 

 
Recovered 
Image R  

 
2.3 Experimental Results 
 In order to evaluate the ability of our method, in this section, we design some 

experiments, and the results are show below.  
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Fig. 2.5. shows our first experiment; Lena is the host image, as shown in Fig. 

2.5(a). The decimal value d of embedding algorithm is set 0.5. Fig. 2.5(b) shows the 

embedded image, which the PSNR is 40.61 d.b.. Fig. 2.5(c) shows that some straight 

lines had been added on the embedded image. Fig. 2.5(d) and Fig. 2.5(e) show the 

verification result and the recovered result. The PSNR of Fig. 2.5(e) is 38.71 d.b. 

(This result is compared with the original image, the following two experiments are 

also the same). 

Fig. 2.6. shows our second experiment; Fruit is the host image, as shown in Fig. 

2.6(a). The decimal value d of embedding algorithm is 0.25. Fig. 2.6(b) shows the 

embedded image, which the PSNR is 37.14 d.b.. Fig. 2.6(c) shows some handwriting 

had been added on the embedded image.  Fig. 2.6(d) and Fig. 2.6(e) show the 

verification result and the recovered result. The PSNR of Fig. 2.6(e) is 34.72 d.b.. 

Fig. 2.7. shows our third experiment; Jet is the host image, as shown in Fig. 

2.7(a). The decimal value d of embedding algorithm is 0.25. Fig. 2.7(b) shows the 

embedded image, which the PSNR is 37.15 d.b.. Fig. 2.7(c) shows a picture “Car” had 

been added on the embedded image.  Fig. 2.7(d) and Fig. 2.7(e) show the 

verification result and the recovered result. The PSNR of Fig. 2.7(e) is 34.33 d.b.. 
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(a)          (b) 

    

(c)          (d) 

 

(e) 

Fig. 2.5. (a) the host image, (b) the stego image (PSNR=40.61 d.b.), (c) a tampered 
version, (d) the verification image, (e) the recovered image (PSNR=38.71 d.b.) 
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(a) (b) 

    

(c)          (d) 

 

(e) 

Fig. 2.6. (a) the host image, (b) the stego image (PSNR=37.14 d.b.), (c) a tampered 
version, (d) the verification image, (e) the recovered image (PSNR=34.72 d.b.). 
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(a)          (b) 

    

(c)          (d) 

 

(e) 

Fig. 2.7. (a) the host image, (b) the stego image (PSNR=37.15 d.b.), (c) a tampered 
version, (d) the verification image, (e) the recovered image (PSNR=34.33 d.b.). 
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2.4 Discussion 
  In this chapter, our recovery method is based on polynomial sharing technology. 

A secret worry is that, if any a mis-judgment occurs in the verification phase, some 

portions of the image will be lost. Because if any one of the shadows had been altered 

(or the shadow is a fake), then we cannot get any information at revealing phase! 

Therefore, the verification phase is very important, we cannot allow any one 

mis-judgment, and a strict verification algorithm is much needed. 

Review the verification algorithm of our method, the probability of the correct 

judgment for a block is . In our experiment, there are 4096 blocks in a 

512-by-512 image. So, the probability of the correct judgment upon all of those 

blocks is , this number is very close to 1, so, 

we can believe that, the case almost doesn’t happen. 

6421 −−

5264409664 21240961)21( −−− −=×−≈−

 Lin, Hsieh and Huang [23] present an image recovery method. They use a 

watermarking technology to embed some recover data in the host image. Table 2.1 

shows the relation between restoration performance and the number of un-tampered 

blocks. From this table, we can know the restoration performance very depend on the 

ratio of integral blocks to whole blocks. Compare with our method, if the correct 

blocks is only exceed the threshold, then we can reconstruct the image completely. 
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(a) 

 

(b) 

Table. 2.1. The performance of restoration ratio by Lin’s method. (a) The number of 
un-recovered blocks for single-tampered-chunk. (b) The number of un-recovered 
blocks for spread-tampered blocks. 
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2.5 Remark 
In our experiment, the number of blocks and the threshold is very large (Actually, 

in general case, the two numbers should very large). How to increase the speed of 

encoding/decoding time is a very important issue. Rabin [20] provides a method to 

design the sharing matrix. For (t, n)-threshold sharing, the time complexity of the 

revealing phase is , where L is the size of the sharing file. However, 

Rabin’s method requires designing a sharing matrix. This section we introduce a 

method to compute the inverse matrix, and the time complexity is equal to Rabin’s 

method. Our method is based on Lagrange’s interpolation. 

)( 2 tLt +θ

Firstly, the sharing/revealing algorithm will be introduced. We use matrix 

operator to represent the sharing algorithm. 

In (t, n) sharing, , where are the secret 

message, and are the n shadows. If we get any t of the n shadows, then we 

also get the secret message by evaluating the matrix operation below. 
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Let L be the size of the secret file, then the time complexity is , where the 

term  is the time complexity of computing the inverse matrix. If the threshold t is a 

large number (In section 2.3, the threshold is 1024 or 2048), the time cost is very 

much. In order to reduce the time complexity of the revealing algorithm, we proposed 

a  time complexity of evaluating the inverse matrix method. This method is 

based on Lagrange’s interpolation. 

)( 3 Ltt +θ

3t

)( 2tθ

Firstly, we rewrite the Lagrange’s interpolation below: 
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The secret message is the coefficient of the variable , so if we use a matrix 

operation to represent the secret message, then 

jx
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, this means  is the coefficient of the 

inverse matrix. Therefore, we can get the inverse matrix by evaluating the polynomial, 

and the method is described below. 

jib ,

 

Computing the inverse matrix method:

Input: t numbers, i.e.  { }tiki ≤≤1| .
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Output: a t-by-t matrix of . 
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 is the output. i.e.,  means the (i+1)th column and 

(j+1)th row of the output matrix. 
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1. Expand the polynomial . tt
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2. Let the initial value l be 0. 
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5. If value l is t-1, then the matrix B is our desired output; otherwise, go to step 

3. 

The time complexity of this method is . )())(( 22 ttttt θθ =++
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Chapter 3 
Cross Recovery of Multiple Images 

 

This chapter presents a novel cross recovery system of multiple images. We use 

polynomial-sharing and module-based data-hiding techniques to hide the recovery 

message. If any (n-t) of the n stego images are lost, then the system can recover these 

stego images by using other t stego images. 

 
3.1 Introduction 

In a (distributed) storage system of n images, if some images were lost, a trivial 

way to recover them is by the back-up copies (identical to the lost images but stored 

elsewhere). Recently, there are some non-trivial approaches [23-27] that recover a 

tampered image gorgeously. In this chapter, instead of dealing with a single image, we 

try to consider several images simultaneously (so that the recovery of any member 

images in this group can be done through the mutual support of the remaining 

member images). More specifically, we present a novel cross-recovery method that 

modify the n input images and obtain n stego images in which the cross-recovery 

information is hidden; later, up to (n-t) of the stego images are allowed to get lost, for 

we can still recover the lost stego images using t of the non-lost stego images. Here, 
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t≧n/2 is a threshold value pre-specified by the reader. 

 

3.2 The Proposed Method 
 Sec. 3.2.1 presents a novel polynomial sharing method. On basis of this sharing 

method, our main algorithm is described in Sec. 3.2.2. 

 

3.2.1 The Tool to Share n Pixels 

 The sharing phase and the revealing phase are described below. Fig. 3.1 shows 

the flowchart of the sharing/revealing phase. By using the sharing method, the first t 

shadows is equal to the input message. 

 

The sharing phase: 

Input: the t pixels  where { }tipi ≤≤1| 2550 ≤≤ ip . 

Output: n numbers { }][,],1[]};[,],2[],1[{ nhnhthhh KK + , where  for 

each i, and 

255][0 ≤≤ ih

tpthphph === ][,,]2[,]1[ 21 K . 

Steps: 

1. Use Lagrange’s interpolation (see Ref. [3], the finite Galois Field used here 

is GF(256)) to get an n-points interpolation polynomial satisfying 

f(1)= , f(2)= , …, f(t)= . 

)(xf

1p 2p tp
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2. Compute f(t+1), f(t+2), …, f(n) ; then the u numbers are { {h[1]=f(1)= , 

h[2]=f(2)= , …, h[t]=f(t)= };  h[t+1]=f(t+1),…, h[n]=f(n)}.  

1p

2p tp

 

The revealing phase:

Input: any t of the n shadow-numbers, i.e. { }tikh i ≤≤1|][  where or 

each . 

nki ≤≤1  f

ik

Output: the t pixels{ }  tipi ≤≤1| .

Steps: 

6. Use Lagrange’s interpolation to get the t-points interpolation polynomial 

 satisfying f( )=h[ ], f( )=h[ ], …, f( )=h[ ]. )(xf 1k 1k 2k 2k tk tk

7. The t pixels are{ =f(1), =f(2), …, =f(t) }.  1p 2 tp p

 

 
Fig. 3.1. The flowchart of the sharing/revealing phase. 

The revealing phase 

The sharing phase, 
(t,n) sharing 

),...,,( 21 tppp

11 −− = tt ph 11 ph = th nh00 ph = …… …… 

),...,,( 21 tppp
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3.2.2 The Main Algorithm 

The Main Algorithm: 

Input: n gray-level images{ }niMi ≤≤1|  (each is, say, 512-by-512); and a specified 

integer t≧n/2. 

Output: n stego images.  

Goal: Later, if any (n-t) of the n stego images are lost, we may recover the lost stego 

images by using other t stego images. 

Steps: 

1. Let the initial value of j be 1. 

2. Let  denote the  pixel value of the  image . Then use the 

sharing tool in Sec. 2.2 to share the n pixel values

][ jMi
thj thi iM

[ ]{ }jMpnip iii =≤≤ ;1|  

and thus generate tnu −= 2  shadow-numbers 

{ }]2[,],[,],2[],1[ tnhnhhh −KK .  

3. Among the 2n-t shadow numbers, the final (n-t) shadow-numbers {h[n+1], 

h[n+2], …, h[2n-k]} are the auxiliary data. In order to hide the auxiliary data 

in n images, we need to split the data into n units. Therefore, before hiding, 

treat these (n-t) numbers (each is in the range 0-255) as a value of (n-t) 

digits in the base-256 system; then, transform this value from base-256 to a 
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n-digits value  in the base-b system (where b= nddd K21

⎥
⎥

⎤
⎢
⎢

⎡ −
n

kn

256 =ceiling(256(n-t)/n) is the smallest integer not less than 256(n-t)/n). 

4. For i=1,2,..,n, respectively, hide in ]1[ +jMi  the  thi digit  of the 

base-b auxiliary data 

id

( )nddd K21 b

}

 by the module-based data-hiding 

algorithm mentioned in Section 1.2.2. 

5. Let . Then go to step 2 if j < 512×512=262144 (the image size). 1+← jj

6. The images { niMi ≤≤1|  are now the desired output. Also store in a safe 

place (or attach to each stego image) the n numbers { }niMi ≤≤1|]262144[  

where 262144=512×512 is the final pixel-position. Use these n numbers as 

a recovery seed later. 
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Get the thj  pixel 

 
M0 

Get the thj  pixel 

 

Module-based data hiding 
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No 
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Sharing

…
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Are the thj  
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Store 

Base transform 

…
…

 

n digits 

Fig. 3.2. The main algorithm. 
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The Recovery Algorithm: 

Input: t gray level stego images }1|{ tiM ki
≤≤ . 

Output: n recovered images. 

Goal: Recover the other (n-t) tampered images by using the input t images. 

Steps: 

1. Let the value j be S, where S is one of the size of the input images (each image 

size is the same value). 

2. Set the t shadow values are ]}[][],...,[]2[],[]1[{
21

jMthjMhjMh
tkkk === . Then 

set  be the store values generated at the main algorithm 

step 6 (must revealing the base). 

]}[],...,2[],1[{ nhthth ++

3. Recover the jth deleted pixels by revealing the n 

shadows described in Sec. 3.2.2. Then Decrease the value j by 

1. If remain any pixel not to recover (In other words, j>0), then go to step 4, else 

go to step 5. 

]}[],...,2[],1[{ nhhh

4. Set the t shadow values are ]}[][],...,[]2[],[]1[{
21

jMthjMhjMh
tkkk === . Then 

set  be the hiding values embedded in the ]}[],...,2[],1[{ nhthth ++

]}1[],...,1[],1[{
21

+++ jMjMjM kkk n
(must revealing the base). Finally, go to 

step 3. 

5. The images  are now the desired output. }1|{ niM i ≤≤

 38



Write the value into jth position 

Write the value into jth position 

Extracting the 
hiding data from 
(j-1)th pixels. 

Get the jth pixels 

Get the jth pixels 
Mk1 

…
…

 

Mkt 

…
…

 

…
…

 

…
…

 Base transform

Revealing 
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Fig. 3.3. The recovery algorithm.  
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3.3 Experimental Results 
Fig. 3.4 shows an experiment using (t, n)=(3, 4). If 4-3=1 of the four 512-by-512 

stego images in Fig. 3.4 is lost, we can still recover it by using the other three stego 

images. Without the loss of generality, assume that stego image 1M  is the one 

disappears. So, we only have , , , and the 4-numbers seed 2M 3M 4M

{ 41|]262144[ }≤≤ iMi  mentioned in Step 6.  We first use Sec 2.3 to extract the n=4 

hidden digits (d1d2
…d4)b from the seed, where b=ceiling(256(n-t)/n)=4, then covert 

(d1d2
…d4)b to a value h[5]. Together with h[2]=M2[262143], h[3]=M3[262143], 

h[4]=M4[262143], we have four h[ti], enough to do inverse sharing to recover the 

value M1[262143] (see Sec. 2.2). Then, in next iteration, extract analogously the next 

n=4 hidden digits (d1d2
…d4)b from {Mi [262143]｜1≦i 4}, and convert (≦ d1d2

…d4)b to 

a new value of h[5]. Together with h[2]=M2[262142], h[3]=M3[262142], 

h[4]=M4[262142], we can do inverse sharing to recover M1[262142]. The process 

repeats to find all values of M1. The recovered image is exactly the once-lost Fig. 

3.4(a). The embedding (to achieve cross-recovery goal) did not give the images big 

impact; for all four stego images shown in Fig. 3.4 have PSNR about 46.3 db.  

 Fig. 3.5 shows another experiment using (t, n) = (4, 6). If 6-4=2 of the six 

512-by-512 stego images in Fig. 3.5 is lost, we can still recover it by using the other 

four stego images. The six stego images have PSNR around 42 db. 
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(a)          (b) 

    
(c)          (d) 

Fig. 3.4. (3, 4) sharing scheme by our method. (a) PSNR = 46.34 db (b) PSNR=46.36 
db (c) PSNR=46.37 db (d) PSNR=46.37 db. 
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(a)          (b) 

    
(c)          (d) 

    
(e)          (f) 

Fig. 3.5. (4, 6) sharing scheme by our method. (a) PSNR = 42.03 db. (b) PSNR = 42.11 
db. (c) PSNR = 42.10 db. (d) PSNR = 42.10 db. (e) PSNR = 42.12 db. (f) PSNR = 
42.09 db.
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3.4 Discussion 

 In this chapter, we have presented a cross recovery system for multiple images. 

Since we required in the introduction that t≧n/2, i.e. at least one half of the images 

are not lost, the value of b=ceiling(256(n-t)/n) is at most 16. The p and p′ =d + 

b×rounding[(p-d) / b] in Sec. 2.2.2 has difference at most 16/2=8 (see Ref. [4]). So the 

PSNRs of the stego images are at least 10×log(255×255/(8×8))=30.07 db. (Indeed, 

our experimental values are about 34 db, when (t, n)=(2, 4) and the four original 

images utilized to produce Fig. 3.4 are used again as input. ) On the other hand, if 

t≧3n/4 (the case in Fig. 3.4), then b≧4 and the difference between the input pixel 

value p and stego pixel value p′ is at most 4/2=2. The PSNRs of the stego images are 

therefore at least 10×log(255×255/(4×4))=42.11 db (indeed, the experiment in Fig. 3.4 

has PSNRs around 46.3 db). 

 

3.5 Extra Topic - a Lossless Version 
 The yielded images by the method that be presented in this chapter are loss 

version images. In this section, we present a loss-less version of image recovery 

method. However, the dealer must consume extra memory space to store the shadows. 

Each shadows append to each image, the size of each shadow is depend the original 

images size and the threshold coefficient.  
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The Encoding Algorithm: 

Input: n gray-value images{ }niMi ≤≤1| , and those images are all the same size; and 

a specified integer t. 

Output: n shares, each share consists of a visible image (identical with the input 

image) and a shadow. 

Goal: Later, if any (n-t) of the n image are lost, we may recover the lost images by 

using other t images. 

Steps: 

1. Use the sharing tool in Sec. 3.2.1 to share the n gray-value images and thus 

generate  shadows, then combine those shadows as a large shadow 

H. 

tn −2

2. Use (t, n)-threshold sharing mechanism to share the shadow file H into n 

sub- shadows . },...,,{ 21 nhhh

3. For each input image , append a sub-shadow . Then output those 

images. 

iM ih
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shadow
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Mn 
…

…
 

sharing 

…
…

 

h1 

h2 

hn 

…
…

 

…
…

 

Share 1 

Share 2 

Share n 

Fig. 3.5. The encoding algorithm. 
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If we get any t of the shadow images (or there are (n-t) shadow images have been 

destroy), then we can recover the miss images by inverse the encoding algorithm. 

Step 1: Get the secret shadow image H by revealing the noise-like shadow 

images. 

Step 2: Recover the images by the revealing algorithm described in Sec. 3.2.1. 

Actually, because this sharing method can be applied on any binary file, we also 

can apply this method on any compressed image file (for example, JPEG, 

JPEG2000,…,etc). The critical advantage is to reduce the memory space of the 

appended shadow. 

 

Experimental Results 

Fig. 3.6 shows an experiment in (t, n)=(2, 4). Each input image appends a 

noise-like shadow image. If 4-2=2 of the four 512-by-512 appended images 

in Fig. 3.6 is lost, we can still recover it by using the other two appended 

images. The size of each shadow image is (n/t-1), therefore, if we want the 

shadow size smaller, the value t must close to n. 
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 (a) 

 (b) 

 (c) 

 (d) 

Fig. 3.6. (2, 4) sharing scheme by our method. 
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Chapter 4 

Two-Layer Image Sharing 
 

This chapter presents a novel method to combine two major branches of image 

sharing: Visual Cryptography and Polynomial-style Sharing. n transparencies are 

created for a given gray-valued secret image. If the decoding-computer is temporarily 

not available at (or, not connected to) the decoding scene, we can still physically stack 

any t received transparencies (t≦n is a threshold value) to get a vague 

black-and-white view of the secret image immediately. On the other hand, when the 

decoding-computer is finally available later, then we can get a much finer gray-valued 

view of the secret image using the information hidden in the transparencies. In 

summary, each transparency is a two-in-one carrier of the information, and the 

decoding has two options. The case of virtual-transparencies (electronic-files) is also 

discussed. 

 

4.1 Introduction 
Image sharing can be used in a team when no member alone should be trusted. 

Visual Cryptography (VC) [1-4] and Polynomial-Style Sharing (PSS) [5-19] are both 

well-known branches to share images. Both can be designed as (t, n) schemes. (In this 
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chapter, we say that a sharing technique is (t, n) if and only if it shares a secret image 

S among n shadows so that any t of the n shadows (n≧t) can unveil the secret image 

S (or a compressed version of S), whereas less than t shadows cannot.) Although both 

VC and PSS can share images, they are quite different in many manners. The table 

below compares VC and PSS. 

 

Table 4.1: A comparison between VC and PSS. 

 Visual Cryptography Polynomial-Style Sharing 

The Secret image S being shared Black-and-white Gray or color 

Decoding speed (and decoding method) 
Instant (by using eyes 

after stacking shadows) 
Slow (by computation) 

Is a computer needed in decoding? No Yes 

Recovered image’s perceptual quality vague fine 

Size of each shadow Larger than that of S Smaller than that of S 

 

 From Table 1, we can see that VC is simple and fast, while PSS gives good 

image quality. A question arises naturally: “Can VC be combined with PSS?” To 

certain extent, the answer is positive, as is shown here. In this chapter, we present a 

method to combine these two techniques and achieve a goal: if the decoding-computer 

is temporarily not available in (or, not connected to) the decoding scene, we can still 
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physically stack the t received shadows to get a vague black-and-white view of the 

secret image immediately; later, when the computer is finally available, we can get a 

much finer gray-valued view of the secret image using the information hidden earlier 

in the shadows by using PSS. (In this chapter, our generated “shadows” will be called 

as “transparencies” because, as mentioned above, one of the two decoding manners is 

that the shadows can be stacked physically for viewing, just like ordinary 

transparencies can be stacked and view.)  

Below in Sec. 4.2 we first review the basis matrices [B0] and [B1] used in VC, 

and then in Sec. 4.3 we introduce our method. The experimental results are in Sec. 4.4, 

and the conclusions are in Sec. 4.5. The case that the transparencies are virtual 

(electronic files) rather than physical is also discussed in Sec. 4.5. 

 

4.2 A Review of the Basis Matrices [B0] 
and [B1] 
 Below we review the two basis matrices [B0] and [B1] often mentioned in VC 

field (e.g. see Reference [2]). The matrix [B0] is called a “white matrix” because it is 

useful to produce blocks whose stacking result will represent white pixels of a 

black-and-white (e.g. halftone) image. Matrix [B1] is called a “black matrix” for 

analogous reason. Without the loss of generality, below we only show the case (t, 
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n)=(2,4), i.e. only 2 out of 4 shares are needed in recovering.  For a general pair of 

given values (t, n), the readers may either design their own [B0] and [B1], or use the 

appendix to create some pairs of [B0] and [B1] by setting parameters there (see Step 1 

of the appendix). In fact, even if the values of u and n are fixed, the choice of [B0] 

and [B1] is still not unique. To apply the proposed VCPSS two-in-one sharing method, 

people can use any pair of [B0] and [B1] satisfying the requirements (i)-(iii) stated in 

next paragraph (these three requirements also appear in the appendix). In summary, 

the pair [B0] and [B1] is not necessarily generated from the appendix; the appendix is 

just to let the readers know that there always exists at least one solution to find out 

[B0] and [B1]. 

 In the (t, n)=(2,4) case, one of the several possible choices for the white matrix 

[B0] and the black matrix [B1] is to use 

 

1100
1100
1100
1100

 ][B 0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= ; and .           (Equation 1) 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1001
0110
0011
1100

][B 1

Both matrix has n=4 rows. (In general, no matter how we assign the two matrices, 

each matrix must have n rows if n transparencies are to be created. This is the 

so-called requirement (i).) In both matrices, each 0 means that a white element is 

painted there, and each 1 means a black element is painted there. As we can see, both 

[B0] and [B1] have 2 black elements per row. (In general, the number of 1s appearing 
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in each row of [B0] must be identical to that of [B1]. This is the so-called requirement 

(ii).) It is also obvious that if we stack any two (=t) rows of our [B0], the stacking 

result has 2 black elements and 2 white elements. On the other hand, if we stack any 

two(=t) rows of our [B1], the stacking result has at least 3 black elements. (In general, 

no matter how we choose [B0] and [B1], the number of 1s contained in the result of 

stacking any t rows of [B1] must exceed that of stacking any t rows of [B0]. This is 

the so-called requirement (iii).) 

Now, assume that we want to create 4(=n) blocks, each is 2-by-2 in size, so that 

stacking any 2(=t) of them will yield a 2-by-2 so-called “white block” (defined here as 

a block in which only two of the four elements are 1s [i.e. only two black elements]). 

All we have to do is to permute the columns of [B0] randomly, and then distribute the 

4(=n) rows of the permuted [B0] to 4 customers. After that, each customer uses the 

first two elements as the first row of his block, and next two elements as the 2nd row 

of his block. As a result, each of the 4(=n) customers has his own 2-by-2 block, and 

any two of these four 2-by-2 blocks can be stacked to yield a 2-by-2 white block (only 

two of its 2x2=4 elements are 1s).  

 Similarly, if we want that any t(=2) of the n(=4) created blocks (each is still 

2-by-2 in size) can be stacked to yield a so-called “black block” (defined as a 2-by-2 

block in which at least three of the four elements are 1s [i.e. at least three black 
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elements] ), then we only have to replace the role of [B0] by [B1] in the above 

argument, and obtain four blocks corresponding to [B1]. Then distribute these four 

blocks arbitrarily to the four customers (one block per customer.) 

 In the above example, each block has w=2 white elements and b=2 black 

elements, (or equivalently, each row of [B0] or [B1] has 2 white elements and 2 black 

elements), and the permutation of the columns of [B0] or [B1] will not affect the 

stacking result’s brightness (i.e. number of black elements of the stacking result). 

Moreover, when we do column permutation of the matrix [B0] (or [B1]), if we look at 

(concentrate on) the first row, we can see that the first row can be either [0011], or 

[0101], or [1001], or [0110], or [1010], or [1100]. Therefore, all = 6 

types of row vectors can appear. The = 6 types of blocks represented 

by these = 6 types of row vectors will be called as fundamental blocks. 

(In general, if a VC system uses blocks of size L-by-L, and each block of each 

transparency has w white elements and b (b=L×L-w) black elements, then there 

types of fundamental blocks. For example, if 3-by-3 blocks are to be used, and 

if each block of each transparency has 5 white elements and 4=3x3-5 black elements, 

then there will have =126 types of fundamental blocks.) 

22
2
+C =4

2C

bw
bC + =4

2C

bw
bC + =4

2C

bw
bC +

45
5
+C

As a remark of this section and the appendix, note that the appendix is a 

self-explained appendix extracted from Ref. [2] which is a graceful paper proposed by 
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G. Ateniese et. al. In order to reduce current chapter length and concentrate on our 

topic, we did not intend to discuss in our appendix the many materials mentioned in 

Ref. [2]. Interested readers should refer to Ref. [2] for further details. As stated earlier, 

the appendix here is just to show the readers that they can always create two basis 

matrices [B0] and [B1] for any pair of given t and n (2≦t≦n). 

 

 

4.3 The Proposed Method 
The n expected transparencies can be created using the main algorithm given 

below in Section 4.3.1, which is supported by some other supportive algorithms 

described in Section 4.3.2. 

 

4.3.1 The Main Algorithm 

 

Main Algorithm (the main algorithm for (t, n) sharing scheme): 

Input: A grey-value secret image S of size Width ×Height, an integer threshold value t, 

and an integer n (n≧t) indicating the number of produced transparencies.  

Output: n transparencies  are produced. },...,,{ 110 −= nrrrR

Steps: 
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Step 1. Use the appendix to create two basic matrices [B0] and [B1] for the given 

t and n (see Sec. 4.2 to understand [B0] and [B1]; see appendix to know 

how to create [B0] and [B1].) Then, from the [B0] and [B1], the 

corresponding values of w and b can be found (each block in each 

transparency has w white elements and b black elements).  

Step 2. Since each block of each share is required to have w white elements and b 

black elements, there are  fundamental blocks. Label all 

fundamental blocks, i.e. create a mapping table L that maps each number in 

{0, 1, …, ( -1)} to its corresponding fundamental block.  

bw
bC +

bw
bC +

Step 3. Produce an image H (the halftone binary version of the image S). 

Step 4.Produce another grey-value image J=S* by compressing S using some 

image compression techniques (e.g. JPEG, GIF…); and the compression 

ratio C must be at least bw
bCu

n
+×

×
log
8  so that the space needed to store J is 

small enough. Hereinafter, the data file representing the compressed image 

J will be treated as a bit-stream data-file. 

Step 5. Due to security concern, we may encrypt J to get an encrypted bit stream 

J' . This can either be done by using a security key, or by using some very 

simple functions. (For example, to get J', we may just use XOR function in 

a bit-by-bit manner on the bit stream J and the bit stream of the image H 
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(re-read the image H several times if the size of J is larger than that of H).  

Step 6. Then, the bit stream of J' is shared using an (t, n) sharing method that 

share a sequence of numbers by polynomials (see Pages 766-767 of Ref. [7]. 

But we use mod-257 function here to replace the mod-251 function used in 

Ref. [7] ). Let  be the n created bit-string-shares. Notably, 

according to Ref. [7], each bit-string-share is t times smaller than J', so the 

n so-called bit-string-shares together have n[(Width ×Height × 8 / C)/t] bits. 

},...,,{ 110 −nsss

Step 7. For each in , transform the data in  from base 257 to 

base . This step is for the hiding purpose later in Step 8. (Because 

we only have types of fundamental blocks, we can only embed 

digits in the range {0, 1, …, ( -1)} according to Step 2. ) 

is },...,,{ 110 −nsss is

bw
bC +

bw
bC +

bw
bC +

Step 8. Use the TC Algorithm below to create n transparencies so 

that the n shares  are hidden in them, and any t of the n 

transparencies can be stacked to obtain an image looks like the halftone 

image H. 

},...,,{ 110 −nrrr

},...,,{ 110 −nsss

Remark: In Step 4 above, it was stated that the compression ratio (C) must be greater 

than bw
bCu

n
+×

×
log
8 . We explain why. Since J is the compressed version of S, which has 

Width × Height pixels, the number of bits contained in image J (or J') is Width × 

Height × 8 / C. Then, according to Ref. [TL02], each bit-string-share will have (Width 
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×Height × 8 / C)/t bits after (t, n) sharing of J' by using polynomial-style sharing. 

Therefore the n bit-string-shares together will have (Width × Height × 8 / C) x n/t bits. 

On the other hand, since we will use the indices of fundamental blocks to hide the 

bit-string of each bit-string-share of J' , and since there are kinds of 

fundamental blocks, each index of a block can represent a value in the range from 0 

through ( -1). As a result, each block can use its index (the block type) to 

recover a value in the range 0~ ( -1). In other words, if we grab the n so-called 

bit-string-shares, and divide their n[(Width × Height × 8 / C)/t] bits into many small 

segments (each segment has bits), then each segment can be hidden in (i.e. 

represented by the block type of) a suitably chosen block whose block index happens 

to be this value. In summary, the n so-called bit-string-shares can be represented by 

n[(Width ×Height × 8 / C) /t]/  blocks. Since S has Width × Height pixels, 

there are Width × Height binary pixels in H. Since each binary pixel is extended to a 

block when VC creates transparencies, there will exist Width × Height blocks in the 

enlarged recovered binary image of H after stacking. So we require n[(Width × Height 

× 8 / C) /t ] /  ≦ Width × Height .That is why we require C ≧ 

bw
bC +

bw
bC +

bw
bC +

bw
bC +log

bw
bC +log

bw
bC +log bw

bCu
n

+×
×

log
8 . 

 

4.3.2 Some Supportive Algorithms  

The main algorithm above requires the use of the following supportive 
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algorithms. The TC algorithm is to create n transparencies. The step 2a of this 

algorithm use a subroutine called TC-SUB. (Notably, TC-SUB is to create n blocks 

[each transparency will receive one block], and the first of these n blocks can be used 

to hide a value in the range {0 ,1,…, ( -1)}. ) 
bw

bC +

 

TC Algorithm (Transparencies-creating Algorithm):  

Purpose: to create n transparencies in which the n shares  are hidden. },...,,{ 110 −nsss

Input: the n shares , and the halftone image H. },...,,{ 110 −nsss

Output: n transparencies . },...,,{ 110 −nrrr

Steps: 

Step1: Divide the halftone image H into n parts of equal size. Then, for each i= 

0,1,…,n-1, the Step 2 below will be utilized to hide the encrypted share  

with the help of Part i of H. Therefore, set i=0 and j=0 initially, then go to 

Step 2.  

is

Step 2: (To hide the encrypted share ) is

(2a): Read the next not-yet-processed integer (the j-th integer ) from the share 

; also read the next not-yet-processed binary pixel (the j-th pixel) value of 

Part i of H; then use them to create n blocks  by the 

sub-algorithm TC-SUB below. Among , the generated block 

)( jsi

is

},...,,{ 110 −nbbb

},...,,{ 110 −nbbb
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0b  is particularly assigned to the transparency  at location j, and other 

n-1 blocks  are arbitrarily assigned to the n-1 remaining 

transparencies 

ir

},...,{ 11 −nbb

},10|{ ilnlrl ≠−≤≤  at location j . 

 (2b):  j j+1, and go to (2a) unless all integer values { ) } of  have been 

processed and embedded in Transparency  (in that case, go to Step 3 

instead).  

( jsi is

ir

Step 3: Let j=0 again. Increment the value of i by 1. Then go to Step 2 unless i =n. 

(When i=n, all n shares  have been hidden in the n 

transparencies .)                                   □     

},...,,{ 110 −nsss

},...,,{ 110 −nrrr

Notably, in the Step (2a) above,  is hidden in ; some readers might wonder: at 

the decoding phase, if  is missed, how can  be recovered? To answer this 

question, note that is an (t, n) sharing result (see Step 6 of the Main Algorithm), so 

any t of n encrypted shares  can recover the secret information (i.e. the 

encrypted bit-stream J' of the JPEG image J). 

is ir

ir is

is

},...,,{ 110 −nsss

 

Sub-algorithm TC-SUB  

Purpose: to hide an integer .  )( jsi

Input: an integer value  and a pixel q (either black or white) of the halftone 

image H. 

)( jsi
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Output: n blocks (one block per transparency). Notably, the secret 

value  is hidden in ; meanwhile, stacking together any t of these n 

blocks can reveal the pixel value (black vs. white) of q. 

},...,,{ 110 −nbbb

)( jsi 0b

Steps: 

Step 1: Use the mapping table L to map the value  to a fundamental block. 

Let  be that block. In other words, = L ( ). 

)( jsi

0b 0b )( jsi

Step 2: If q is a white pixel, set matrix [B] to the basic matrix [B0] produced in 

Step 1 of the Main Algorithm. If q is black, set matrix [B] to the basic matrix 

[B1] . 

Step 3: Permute each column of [B] so that the first row of [B] is the same as  

(treat the 2-by-2 matrix  as a row vector of 4 elements). Then, for each 

d= 1,2,…,n-1, transform Row d of [B] to a 2-by-2 block  (by 

sequentially assigning the elements of Row d to elements of block  ) . 

0b

0b

db

db

Step 4: }  is now the desired output.     □ ,...,,{ 110 −nbbb

 

Remark (about the TC-SUB algorithm): At the decoding phase, when we stack any t 

of the n generated blocks, then, due to Steps 2 and 3 of TC-SUB algorithm, the 

stacking result will be a black block if and only if the pixel q of the halftone image H 

is a black pixel.  
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4.4 Experimental Results 
In our first experiment, the secret image is the image 512-by-512 Lena shown in 

Fig. 4.1(a). Its JPEG-compressed version, the so-called image J in Step 4 of the main 

algorithm, is the 512-by-512 Lena* shown in Fig. 4.1(b); and the PSNR of Lena* is 

39.31 dB. The 512-by-512 halftone image H of Lena is shown in Fig. 4.2. Assuming 

(t, n)=(2,4). In other words, the target is that any two of the four generated 

transparencies can be used for image reconstruction. Then, using Fig. 4.1(b) and Fig. 

4.2, the n=4 transparencies are created, as shown in Fig. 4.3. Each transparency is 2×2 

times bigger than each image in Fig. 4.1 and .42, for each fundamental block used to 

expand a pixel (see Sec. 2) is 2-by-2 in this experiment. Now, if we stack any two of 

the four generated transparencies, as shown in Fig. 4.4, we get a 1024-by-1024 

black-and-white image which looks like a 2×2-times enlarged version of the halftone 

image H shown in Fig. 4.2. On the other hand, if we use the two transparencies to 

extract the information hidden in them, we can recover exactly the 512-by-512 

grey-value compressed image Lena* shown in Fig. 4.1(b), as is shown in Fig. 4.5. 

 In the second experiment, the secret image is the 512-by-512 image “Jet” shown 

in Fig. 4.6(a). Assuming (t, n)=(3, 4). In other words, the goal is that any three of the 

four generated transparencies can be used for image reconstruction. The 
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corresponding experimental results are shown in the remaining parts of Fig. 4.6. Note 

that 6(d) is 2-by-3 times larger than the halftone image H because we use 2-by-3 

blocks to expand pixels of the halftone image H there. Also note that any two 

transparencies together (2<3=t) cannot reveal the JPEG version (Jet*) or the halftone 

version H. (Stacking two transparencies together only gets an image with nothing but 

noise; no trace of the image H can be seen. As for the reason why the JPEG version 

Jet* cannot be revealed, it is due to the decoding of Jet* requires the use of the 

recovered H. [See Steps 1 and 2a of the TC algorithm.]) 

 

     

(a)           (b) 

Fig. 4.1. A secret image Lena (a), and its JPEG-compressed version Lena* whose 
PSNR is 39.31 dB (b). 
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Fig. 4.2: The halftone version (the binary image H) of Fig. 4.1(a). 

    

    

Fig. 4.3. The n=4 transparencies T0-T3 generated from the pair {Fig. 4.1(b), Fig. 4.2} 
in our (t=2, n=4) threshold scheme.  
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Fig. 4.4. Stacking “any” two transparencies (e.g. 1st and 3rd transparencies here) yield 
an enlarged binary image of Lena. 

 
Fig. 4.5. The gray-value image Lena* (identical to Fig. 4.1(b)) reconstructed using the 
information embedded in any two transparencies (the 1st and 3rd transparencies here). 

   

(a)                   (b)                   (c) 
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(d) 

 

(e) 

Fig. 4.6. The second experiment. ((t, n) = (3, 4), and this experiment uses 2-by-3 
blocks). (a): a secret image Jet. (b): the JPEG-compressed version Jet* whose PSNR 
is 47.6dB. (c): the halftone version H of Fig. 4.6(a). (d): stacking result using “any 
three” of the four generated transparencies (here, 1st, 2nd and 4th transparencies). (e): 
the Jet* (identical to Fig. 4.6(b)) reconstructed using the information embedded 
earlier in the three transparencies mentioned in Fig. 4.6(d). 
 

4.5 Concluding Discussions 
In this , we have proposed a new method which combines two major branches of 
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image sharing: visual cryptography (VC) and polynomial-style sharing (PSS). In the 

decoding issue, this new method is more flexible than applying VC or PSS 

independently, since our method provides a “two-options” decoding.  

In Fig. 4.1(b) and Fig. 4.5, the PSNR of Lena* is 39.31 dB. If the readers would 

like to have an image of better PSNR, then they should use larger blocks (say, 2-by-3 

or 3-by-3 blocks) to replace the 2-by-2 blocks here. Without the loss of generality, 

assume 3-by-3 blocks are to be used. Then, create the corresponding [B0] and [B1] 

matrices; each is n-by-9. Notably, using 3-by-3 blocks will make each transparency 

become 3-by-3 times larger than the input image Lena. However, according to Step 4 

of the Main Algorithm, we have the constraint that the compression rate C should be 

at least bw
bCu

n
+×

×
log
8 . With 6, =126 (assuming each 3-by-3 block of 

each transparency has 5 white elements and 4=3x3-5 black elements), 

and

=4
2C 45

5
+C

7.2
6log

126log
= , the compression rate to create Lena* from Lena can be 2.7 times 

less strict than the one used to generate Fig. 4.2(a).  Therefore, the quality of Lena* 

will be much better. Analogous analysis also holds if 2-by-3 blocks are used (see the 

example 1 of the appendix, and the remark after that example). 

 Below we discuss what happens if the transparencies are not created physically, 

i.e. if the transparencies are in fact electronic files. To “stack” these “virtual” 

transparencies, we use a computer to do a simple “OR” function on all t elements 
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having identical coordinate among all t received electronic files, i.e. evaluate  v 

 v  …  v , and use the rule  (  v  v  …  v  ) =1 if and only if at 

least one of the u elements being checked is 1. Of course, this reveals the 

size-enlarged version of the half tone image H very quickly. Then, the enlarged 

version can be transformed back to the original-size halftone image H by summing up 

the number of black elements (the number of 1s) appeared in each of the 

non-overlapping blocks (each block is 2-by-2 in Fig. 4.5 and 2-by-3 in Fig. 4.6.) 

Therefore, in the computer version, the halftone image H can be obtained quickly 

without any security obsession (except the threshold limitation: at least t of the n 

produced files must attend). As for the JPEG-compressed gray-value image J*, the 

decoding is as before, which requires the decoded halftone image H because of Steps 

1 and 2a of the TC algorithm (and the decoding of J* may also require the use of the 

encryption key mentioned in Step 5 of the Main Algorithm). Therefore, compared 

with the reconstruction of the gray-valued image Lena*, obtaining the halftone image 

H is much faster; no matter the transparencies are virtual transparencies (electronic 

files) or physical transparencies.  

1y

2y ty 1y 2y ty

 

4.6 An Application 
From the analysis given in the final paragraph of last section, our two-layer 
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decoding system can also be used in business in the following way that balances 

between convenience and security: 1) any t of the n lower-rank employees can gather 

together and use a computer to unveil a vague black-and-white version of the image; 

while 2) with the help of this decoded vague version in (1), the manager of these 

employees can unveil further a fine gray-valued version of the image using the key 

that only he knows. In the above, (1) is for the convenience of the daily meeting 

between the employees (the meeting does not need the attendance of the manager, 

although less than t employees cannot have a meeting); while (ii) is for the company 

owner to prevent a high-quality image from being sold in a black market (neither the t 

lower-rank employees nor the manager alone can obtain the JPEG version, unless the 

two sides cooperate).  
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Chapter 5 

Conclusions and Future Works 
 
5.1 Conclusions 
   In this thesis, we make use of the polynomial sharing technology on some topics. 

Single image recovery, multiple images cross recovery and Visual Cryptography. 

Polynomial sharing technology is a useful tool for preserve secrets, disperse 

information and fault tolerance, etc. With those advantages, in recent years, in image 

processing domain, many literatures about secret sharing had been published. Those 

literatures use secret sharing technology to improve the image security or to share the 

image files. But apply this technology to image processing issues is fewer. Chapter 1 

presents an application on image recovery, to improve the ability of the recover 

algorithm.  

How to protect a data? In generality, if we want the message more robust, then 

more bits/space to store it. But in image processing domain, we can tolerate some 

change of the pixels. Chapter 3 uses this property to propose a method of multiple 

images recovery. 

Visual Cryptography is also a secret sharing technology. In order to combine 

with VC and polynomial sharing, the critical idea is to hide the shadows in each 
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transparency. Image compression (JPEG) resolve us the hiding capacity problem. 

 

5.2 Future Works 
 There are some topics for extending and improving the proposed methods. We 

list them as follows: 

Chapter 2: Image Tampered detection and Recovery. 

 This method that we propose may add some conditions. For example, consider 

the image contains. ROI(region of interesting) is a more important region, so we may 

want to improve the recover ability of this region. 

Chapter 3: Cross Recovery of Multiple Images. 

 The method be proposed in section 3.2 isn’t a very good method. We list the 

weaknesses as follows: 

I. In inversing phase, if any an error occurs, the error can send to next 

decoding pixels. 

II. We don’t add any method to check which image had been destroy. This can 

add fragile watermarking or checksum on those stego images to check 

which images were destroyed. 

Chapter 4: Two Layer Image Sharing 

 By using stack or computing method, the decoding images are very similar. 

 70



Some information remainders at this point. A better method is change the hiding 

information to the remainder between the original secret image and the stacked 

version (this is the halftone version of the secret image). 
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Appendix 

A possible way to generate a pair of basis matrices [B0 ] and [B1] for 

an (u, n) threshold system. (This self-explained appendix is a re-written part 

extracted from Ref. [3-4]) 

 

Input: an integer threshold u, and an integer n indicating the number of produced 

transparencies. (u≤n.) 

Output: a pair of basis matrices [B0] and [B1] (both matrices are formed of 0s and 1s) 

satisfying the following requirements:  

i. Each matrix has n rows.  

ii. The number of 1s shown in any row of [B0] is identical to that of 

[B1]. 

iii. Stacking any u of the n rows of the matrix [B0] (or [B1], respectively) 

get a row vector called the White-Row-Vector (the Black-Row-Vector, 

respectively) corresponding to these u rows. Any Black-Row-Vector 

contains more 1s than any White-Row-Vector does. 

Steps: 
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Step 1: Arbitrarily choose (n-u) integers }10|{ −−≤≤ unjhj and an integer . 0>−unh

Step 2: Compute the integers }0|{ niai ≤≤  by the formula 

                                      (Equation A1) i
jj

uni

j

ji
i Cha ∑

−

=

+−=
},min{

0

)1(

Step 3: Create . Here, each  is a matrix having n rows and  

columns; no two columns of  are identical; and each of these columns 

is exactly one of the permutations of the n elements of the first column 

of . (The first column of  is formed of i consecutive 1s followed by (n-i) 

consecutive 0s.)  

},.....,{ 0 nGG iG n
iC

iG n
iC

n
iC

iG iG

Step 4: Initially, set both [B0] and [B1] to empty set; also set = . Then, ia 0a

  (4-i): If ( =0), then do nothing for this , just go to (4-iv). ia ia

  (4-ii): If ( >0), then repeatedly append  into [B0] (repeat |  times). ia iG | ia

  (4-iii): If ( <0), then repeatedly append  into [B1] (repeat  times). ia iG || ia

  (4-iv): If i=n, go to Step 5; else, increment i by 1 and go to (4-i).  

Step 5: [B0] and [B1] are now the desired output.  □ 

 

EXAMPLE 1. In the (u=2, n=4) case, if a reader uses as his 

arbitrary setting for the  in Step 1 above, then he will proceed as follows: 

}2,3,3{},,{ 210 =hhh

},,{ 210 hhh

Step 1: Let . }2,3,3{},,{ 210 =hhh

Step 2: By formula (A1), compute and obtain }3,0,1,0,3{},,,,{ 43210 −=aaaaa . 
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Step 3:  are, respectively, 40 ,...,GG

.

1
1
1
1

,

1110
1101
1011
0111

,

110100
101010
011001
000111

,

1000
0100
0010
0001

,

0
0
0
0

43210

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= GGGGG

Step4: Since {3, 0, =},,,,{ 43210 aaaaa -1, 0, 3}; from those positive , we get ia

 [B0] = ( repeats three times (for0G 30 =a ), followed by repeating  three 

times (for )), i.e.  

4G

3=a4

2 2

 [B0] ;  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

111000
111000
111000
111000

similarly, from those negative , we get  ia

[B1] = ( appears G 1|1||| =−=a  time), i.e. 

[B1] . 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

110100
101010
011001
000111

2G

Step 5: [B0] and [B1] are now the desired output.       □ 

 

Remark: In example 1 above, stacking any two rows of [B0] yields a row having three 

1s; while stacking any two rows of [B1] yields a row having five 1s (and hence, 

“darker” than stacking any two rows of [B0]). Also note that each row of each matrix 

has 6 elements; therefore, each block is 2-by-3 (or 3-by-2) rather than the 2-by-2 used 

in Section 2 and in the experiment for Lena (Fig. 4.1 through 4.5). Now, since 
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4
2

6
3 620 CCC wb

b =>==+ , the JPEG compression rate C mentioned in Step 4 of the 

main algorithm is thus smaller (less strict) now, and the quality of the JPEG image 

Lena* in Fig. 4.1(b) and Fig 4.5 will thus becomes better (has higher PSNR value). 

The price of getting this better-quality gray-value image Lena* is that the stacked 

black-and-white image in Fig. 4.4 will become larger in width (just like the Fig 4.6(d) 

does) because of the use of 2-by-3 blocks. □ 

 

EXAMPLE 2. For example, in (u=2, n=5) case, if a reader uses 

}1,1,1,1{},,,{ 3210 =hhhh as his arbitrary setting for the  in Step 1 

above, then he will proceed as follows: 

},,,{ 3210 hhhh

Step 1: Arbitrarily assign . For example, 

let . 

},,,{ 3210 hhhh

}1,1,1,1{},,,{ 3210 =hhhh

Step 2: By formula (A1), compute and obtain }4,1,0,0,0,1{},,,,,{ 543210 −=aaaaaa . 

Step 3:  are, respectively, 50 ,...,GG

,

0
0
0
0
0

0

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=G

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10000
01000
00100
00010
00001

1G , , 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
0
0
0

1010
0101
1100
0011
0000

01000
00100
10010
10001
01111

2G
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  , , . 

⎥
⎥
⎥
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=
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0
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Step4: Since =},,,,{ 43210 aaaaa {1, 0, 0, 0, -1, 4, }; from those positive , we get ia

 [B0] = (  appear once (for0G 10 =a ), followed by repeating  four times 

(for )), i.e.  

5G

45 =a

 [B0]= ;  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11110
11110
11110
11110
11110

similarly, from those negative , we get [B1] = ( appears  

time, followed by repeating  once (for

ia 3G 1|1||| 3 =−=a

4 4G 1=a )), i.e. 

 [B1] = . 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣
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Step 5: [B0] and [B1] are now the desired output. (Stacking any 2 rows of [B1] 

always gets more 1s than stacking any 2 rows of [B0] does. Moreover, the number of 

1s contained in each row of [B0] is identical to that contained in each row of [B1]. )  

□ 
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