
Chapter 3

Connectionist Model with Large Neighborhood

for Line Linking

3.1 Introduction

The previous method considered only 1-neighborhood for a pixel. It can link the

line when the distance of any two broken points is small. In the real seismogram, we

can often find out that two points are in the same horizon but the distance of two

points is too large. Finally, they can not link together.

Therefore, we must take into account large neighborhood to get more

information by the points in a larger neighborhood. If large neighborhood is used, it is

difficult to determine which neighboring pixels should reinforce each other only

depending on the template type. Hence, we consider using line direction and strength

to determine which neighboring pixels can give reinforcement. Basak propose another

connectionist model [4] with large neighborhood for edge linking. The model regards

gradient of each pixel as inputs. The output of the interesting pixel is increased or

decreased based on the gradient values input to the pixel in the neighborhood. The

detail architecture we discussed in next section. Because the model proposed by

Basak base on gray level images. In our approach, we modify the network

architecture which proposed by Basak to solve the line linking problem. We give

direction and strength to each pixel by its neighboring information and its gray value.

Depending on the position relationship of interesting pixel and its neighboring pixels,

we can decide how much strength the interesting pixel can get. The size of

neighborhood of each pixel decreases with time. When radius of neighborhood radius

 28

decreases to zero, we stop adjustment.

After stopping adjustment, the output is the linking result. We observe that some

linked lines become thick after linking. In order to solve this problem, we use thinning

technique [6] to the final output image. After thinning process, we get a better linking

result. The Figure 3.1 shows the diagram of line linking processing.

Input
image

Line linking Thinning
processing

output
image

Figure 3.1.Diagram of line linking processing.

3.2 Edge Linking

In this section, we introduce the network architecture proposed by Basak [4]. In

this network architecture, the model is considered to consist of processing

elements (PEs) if the image contains

nm×

nm× pixels. Every PE has an edge vector

whose direction is the direction of the intensity change, and the magnitude is the

absolute value of the first derivative. The direction is normal to the edge. The concept

is that each edge vector induces edge points over a neighborhood. In this model, the

neighborhood is selected as circular. Figure 3.2 illustrates the concept of edge

induction.

'φ

X

Y

PE i

B

A

PE j

C

D

ev

φ

α

θ
'ev

'φ

X

Y

PE i

B

A
PE j

C

D

ev
φ

α

'ev
θ

(a) (b)

Figure 3.2. Edge induction on a circular neighborhood (Basak [4]).

 29

 Consider processing element i (PE i) with edge vector),(αee =v , where e is the

magnitude and α is the direction of vector ev . The circle around PE i is the circular

neighborhood of PE i. Edge points are expects appear along the line AB which is

perpendicular to the edge vector. Hence, PE i should try to induce edge vectors at

every point on AB and not affect any point on CD . PE j denote the neighboring

point of PE i. The affect of PE i on the points on PEiPEj increases as PE j close to

AB and decreases as PE j close to CD .

In a rectangular coordinate system, the edge vector can be written as ,

where and are the components along the x-axes and y-axes respectively. The

affect of PE i on the PE j is

),(yx ee

xe ye

)','(' φee =v , where is the magnitude and 'e 'φ is the

direction of the induced vector. The induced vector 'ev can also be written as .

From the Figure 3.2,

)','(yx ee

⎩
⎨
⎧

−
>+

=
otherwise 2/

 if 2/
'

πφ
φαφπ

φ

where φ is the angle subtended by the line PEiPEj with x-axes. The magnitude of

induced vector can get by

 ' where,cos' φαθθ −== ee

The relationship of edge vector and induced vector on the components along

x-axes and y-axes can be written as

φφφ

φφφ

cossincos'

cossinsin'
2

2

xyy

yxx

eee

eee

−=

−=

 30

Proof：

Case1: φα >

φφφ

φαφαφ
φαφ

φπαφπ
φαφ

φθ
φ

sincossin
sin)sincoscossin(

sin)sin(

)
2

cos()
2

cos(

'cos)'cos(
'coscos

'cos' ')1(

2
yx

x

ee
ee

e

e

e
e
ee

−=

−=
−=

+−+=

−=
=
=

φφφ

φαφαφ
φαφ

φπαφπ
φαφ

φθ

φ

sincoscos
cos)sincoscossin(-

cos)sin(-

)
2

sin()
2

cos(

'sin)'cos(
'sincos

'sin' ')2(

2
xy

y

ee
ee

e

e

e
e

ee

−=

−=
−=

+−+=

−=
=

=

Case2: φα ≤

φφφ

φφαφα
φφα

φπφα

πφπφα

φφα
φθ

φ

sincossin
sin)sincoscossin(-

sin)sin(-

)
2

3cos()sin(-

)
2

cos()
2

cos(

'cos)'cos(
'coscos

'cos' ')1(

2
yx

x

ee
ee

e

e

e

e
e
ee

−=

−=
−=

+−=

−+−=

−=
=
=

φφφ

φφαφα
φφα

φπφα

πφπφα

φφα
φθ

φ

sincoscos
cos)sincoscossin(

cos)sin(

)
2

sin()sin(

)
2

sin()
2

cos(

'sin)'cos(
'sincos

'sin' ')2(

2
xy

y

ee
ee

e

e

e

e
e

ee

−=

−=
−=

−−=

−+−=

−=
=

=

The model regards the normalized gradient component as the inputs and updates

the network by the relationship of edge vector and induced vector.

3.2.1 Network Architecture

The network is composed of PEs arranged in a two dimensional lattice. Each PE

connects with a large neighborhood and self-feedback. Figure 3.3 shows the

interconnection between two processing elements i and j in the network.

 31

2222
ijji ww =

jo

PE j

1jo 2jo

11
jjw 22

jjw(.)g (.)g

2
2

2
1 jj oo +

PE i

io

1io 2io

11
iiw 22

iiw

2ju1ju1iu 2iu

2112
ijji ww =

1111
ijji ww =

1221
ijji ww =

(.)g (.)g

2
2

2
1 ii oo +

Figure 3.3.Interconnections between two processing

elements i and j in the network. (Basak [4])

 Initially, the Sobel operator are used to calculate edge response and at

every pixel where and is the first partial derivative along the x-axes and

y-axes respectively. The resultant response and edge direction

xe ye

xe ye

e α are found by

 22
yx eee +=

and

)/(tan 1
xy ee−=α

The edge responses at all pixels are normalized to (0, 1) by maximum value of

. The normalized edge vector of PE i are denoted by . Then, the components

along the x and y directions of normalized edge vector, and , are regarded as

network inputs, i.e.

e iu

1iu 2iu

)cos(1 αii uu = ,)sin(2 αii uu = . Each PE has two intermediate

outputs. The intermediate outputs and represent the edge responses along

the x and y direction of PE i and can be written as

1io 2io

)(
)(

22

11

ii

ii

ugo
ugo

=
=

where is a transfer function that defined as (.)g

 32

⎪
⎩

⎪
⎨

⎧
<≤−

−<
=

otherwise 1
11 if

1 if 0
)(xx

x
xg

Figure 3.4 shows the transfer function . (.)g

-1
x

g(x)

1

1

-1

Figure 3.4.Transfer function.

The output of any PE i is gives as

 2
2

2
1 iii ooo +=

where and are intermediate outputs of the PE i. 1io 2io

 Basak propose the update formula by the relationship of edge vector and induced

vector. The update formula can be written as

∑∑

∑∑

∈∈

∈∈

++=+

++=+

)(
2

22
2

22

)(
1

21
2

)(
1

11
2

12

)(
1

11
1

)()(

)()(

)()()()1(

)()()()1(

iNj
iiijji

iNj
jjii

iNj
iiijji

iNj
jjii

tRtR

tRtR

towtowtowtu

towtowtowtu

where the is the connection weight from component r of PE j to component s of

PE i. The connection weights are symmetric, i.e.

rs
jiw

ijji ww = , and be defined as

)(

cossin

cos

sin

2211

2112

22222

21111

tRwww

www

www

www

siiii

ijijijji

ijijji

ijijji

−==

−==

==

==

φφ

φ

φ

where and are constant and w sw ijφ is the angle subtended with x-axes by the

line PEiPEj . The and are the self-feedback of PE i. For all PEs the 11
iiw 22

iiw

 33

amount of self-feedback are the same and proportional to the radius of the

neighborhood of activity.

In this model, the size of neighborhood of each PE decreases with time. When

radius of neighborhood radius decreases to zero, we stop adjustment. The radius

decreases linearly at ratioγ . The formula can be written as

tRtR)0()1(γ−=+

where is the initial radius at)0(R 0=t .

 In the network, each PE has a circular neighborhood. In discrete domain, for any

PE i, if PE j belongs to the neighbor of PE i, the distant between PE i and PE j have to

satisfy the equation

 5.0),(+≤ RjiD

where denote the Euclidian distance between PE i and PE j and R is the

radius of the circular neighborhood in analog domain.

),(jiD

3.2.2 Experiments

Experiment I: circle

 The input of first experiment is shown in Figure 3.5 with size . The

parameters of the ,

5050×

2)0(=R 100=w , 180=sw . The linking result shows in

Figure3.6.

Figure 3.5. Input image. Figure 3.6. Linking result.

Experiment II: personal face

 The input of first experiment is shown in Figure 3.7 with size . The 200182×

 34

parameters of the , 2)0(=R 100=w , 180=sw . The linking result shows in

Figure3.8.

Figure 3.7. Input image. Figure 3.8. Linking result.

3.3 Line Linking

In this section, we reference the architecture on previous section and modify the

input information and update formula to solve the line linking problem. Here, the

model is considered to consist of nm× processing elements (PEs) if the image

contains pixels. The concept diagram is shown in Figure 3.9. To consider a

small area around a PE on a continuous line, we suppose there has a major line

segment inside the small area. We try to find the major line for every PE in the image

and use the neighboring points which close to the direction of major line to link

broken line segments.

nm×

θ

Figure 3.9. Concept diagram of line linking.

3.3.1 Strength and Line Direction

 There are many methods can detect line successfully such as Hough transform

 35

[7], line mask that discussed in chapter 2 and so on. In our approach, it will take large

cost if we use Hough transform and useless if we use line mask. Because the distance

of any two points maybe over 1-neighborhood, we can’t detect a line only use a

line mask.

33×

Hence, we choose linear regression to detect line direction. Linear regression is a

method that can get a line which let the sum of distance from points to the line

minimize. The relationship of points and line is illustrated in the Figure 3.10.

x

y

L

Figure 3.10. Relationship of points and line.

In our approach, for each PE, we set a window to them and the interesting PE is

in the center of the window. Then, find a line in the window by linear regression. We

regard the line slope as the direction of the interesting PE. Figure 3.11 illustrates the

direction of a PEs. The rectangle represents the window, pixel in the center of the

window represents the interesting PE, and the line is the result of linear regression,

namely direction of interesting PE. The direction of each PE can express as an angle

subtended with the line by the x-axis called theta (θ), the range of theta is

between 2/π− to 2/π . If there has less than one point in the defined window, we can

not get a line in this window. In this condition, we set the angle equal to infinite for

the interesting PE.

 36

θθ

Figure 3.11.Linear regression for a PE.

Direction

Now, we introduce how to get the line’s parameters using linear regression and

line direction thetaθ .

Suppose the line equation of is L baxy += and the coordinate of points are

represented as . niyx ii , ,1),(L=

The sum of distance can be written as

∑
=

−=
n

i
i yyS

1

2)(

And we know , baxy +=

 ∑
=

+−=
n

i
ii baxyS

1

2))((

Because we want to be minimized, we can get two equations by partial derivative

with respect to and b respectively.

S

a

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−−−=
∂
∂

=−−−=
∂
∂

∑

∑

=

=

n

i
ii

n

i
iii

baxy
b
S

baxyx
a
S

1

1

0)(2

0)(2

Solve these two equations, we get and as follow. a b

 37

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−

−
=

−

−
=

∑∑

∑∑∑∑

∑∑

∑∑∑

==

====

==

===

2

11

2

111

2

1

2

11

2

111

)()(

))(())((

)()(

))(()(

n

i
i

n

i
i

n

i
ii

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

xxn

yxxxy
b

xxn

yxyxn
a

The parameter represents the line’s slope. We can get theta by a

)(tan 1 a−=θ

Figure 3.12 shows two linear regression results with window size 55× .

(a) circle(size) 1010× (b) cross line(size) 1515×
Figure 3.12. Linear regression results with window size . 55×

Strength

 In our approach, we set the initial strength as the gray value of the pixel. If the

gray value is 1 (black point), the initial strength set to 1, and if the gray value is 0

(white point), initial strength set to 0.

 38

3.3.2 Network Architecture

In the implementation of the connectionist model for line linking, the model is

considered to consist of nm× processing elements (PEs) if the image

contains pixels. Each PE connects with its neighboring PEs with a large

neighborhood and a self-feedback. The neighborhood is selected as circular. Figure

3.13 shows a PE i connects with its neighboring PEs with radius

nm×

2R = . In discrete

domain, for any PE i, if PE j belongs to the neighbor of PE i, the distant between PE i

and PE j have to satisfy the equation

 5.0R),(+≤jiD

where denote the Euclidian distance between PE i and PE j and R is the

radius of the circular neighborhood in analog domain.

),(jiD

PE i

Figure 3.13. A connectionist model with radius 2R = .

 In our approach, the state can be written as),(iii uu θ=v , where is the state

strength,

iu

iθ is the state direction of processing element i. Initially, we calculate

direction of each processing element by linear regression and set the strength with its

gray value. The output of each processing element can be written as),(iii oo θ=v

where is the output strength and io iθ is the output direction.

The state strength adjusted by update formula. The formula can be written as

)()()cos()cos()()1(
)()(

towtowtutu iii
iNj

j
pp

jiii
tR

−+=+ ∑
∈

βα

The update formula will be discussed later.

 39

The relationship of output strength and input strength can be written as

)(ii ugo =

where is a transfer function shown in the Figure 3.14. (.)g

⎪
⎩

⎪
⎨

⎧
<<

≥
=

otherwise
xifx

xif
xg

 0
10

1 1
)(

x

)(xg

1

1

Figure 3.14. Transfer function.

The processing elements connect with each other if they have neighboring

relationship. The Figure 3.15(a) shows the initial state of the network. The

interconnections between two processing elements i and j are shown in Figure 3.15(b).

Each processing element feed back its output strength and output direction

information to its neighboring processing elements. We regard the point which getting

few support or without getting any support from neighboring PEs as noise. In order to

reduce the effect of noise, each processing element has a negative self-feedback.

(u i , θi)

u i θi

(.)g

(o i , θi)

(uj , θj)

θj

(.)g

(oj , θj)

uj

PE i PE j

(a)

 40

ijw
jjw jiw

(.)g

(o i , θi) (oj , θj)

PE i

Update state of processing element by

)()()cos()cos()()1(
)()(

towtowtutu iii
iNj

j
pp

ijii
tR

−+=+ ∑
∈

βα
Update

direction

(.)g

PE j

Update state of processing element Update
direction

iiw

(b)
Figure 3.15. (a)Initial state, (b) Interconnections between two processing element

and
i

j in the network.

In our approach, we reinforce a processing element by its neighboring

information. Initially, we set radius for the interesting processing element and

reinforce it by processing elements inside the neighborhood.

Figure 3.16 shows the diagram of reinforcement. The interesting processing

element is processing element i (PE i) and the processing element j (PE j) represent

the neighboring processing elements of PE i. The circle around the PE i is the range of

neighborhood. Now, we consider how to use neighboring information to reinforce the

PE i. The line direction of PE i can be represented as iθ , namely the direction of the

line AB . The idea is that the PE i gets large reinforce from the PE j when PE j is close

to the line AB and gets small reinforce when PE j is close to the line CD .

Furthermore, we consider the position relationship about PE i and PE j. The angle

subtended with the x-axis by the line EF can be represented as ijφ . If the PE j is

close to the line AB , namely the difference of ijφ and iθ , i.e.β , is small, then

gives a large strength and small otherwise. Here, we suppose that the PE j has strength

 on direction e ijφ shown in Figure 3.16(a). We can get a projection on AB from

the PE j. The projection can be written as)cos(βe .

 41

Next, how to get strength on the direction e ijφ will be discussed. In the

Figure 3.16(b), the direction of PE j is jθ and strength is , we can get a projection

on

jo

EF from the PE j. The projection can express as)cos(αjoe = , the angleα is the

difference of ijφ and jθ . Hence, the reinforcement from PE j to PE i can express

as)cos()cos(βαjo .

e

ijφ
iθ

β

)cos(βe

A

B

C

D

Y

X

E

F
(a)

jθ ijφ

αjo)cos(αjo

E

 X

F

 Y

(b)

Figure 3.16. Diagram of reinforcement concept

 42

 In order to make a better result of line linking, we must consider the angle size

of α and β . The angle α and β are expected to tend to zero, namely the PE j

and PE i mostly on the same line. In this condition, the PE j gives the largest

reinforcement to the PE i. If α and β tend to 2/π , that represent PE j and PE i

on the different line, the PE j do not reinforce the PE i anymore. Hence, we set a

tolerance limit of angle α and β to decrease range of reinforcement. The PE j can

reinforce PE i if the angle α and β in the range of tolerance limit. Figure 3.17

shows two order of)cos(ω where πω 20 ≤≤ . Small order has larger tolerance than

high order.

(a) (b)

Figure 3.17. (a) , (b) ,)(cos2 ω)(cos30 ω πω 20 ≤≤

Hence, the state of each processing element is update as

∑
∈

+=+
)()(

)()cos()cos()()1(
iNj

j
pp

jiii
tR

towtutu βα

where p is a positive integer, is the connection weight of the link from processing

element j to processing element i. It is assumed that all interconnections in the

network are symmetric, i.e. .

jiw

ijji ww =

 The point which getting few support or without getting any support from

neighboring PEs is regarded as noise. In order to reduce noise, a negative

self-feedback is added into the update formula. The negative self-feedback helps in

removing noise during the link linking process. However, the self-feedback must

smaller than reinforcement or the line points will be deleted. The new update formula

 43

can rewrite as

)()()cos()cos()()1(
)()(

towtowtutu iii
iNj

j
pp

jiii
tR

−+=+ ∑
∈

βα

where is the weight of the self-feedback and direct proportion to the size of

neighborhood. So, the can be written as

iiw

iiw

)(tRww sii =

where is a positive constant. sw

 In the implementation of our approach, we recalculate line direction of each

processing element after one update. Because some processing elements have no

direction in the initial state, they can not get any reinforcement in the beginning.

These processing elements maybe get direction after recalculating direction.

 The size of the neighborhood of each processing element decreases with time.

When the radius of neighborhood reduces to zero, stop the process of update. Since

the self-feedback is proportional to the radius of neighborhood, the self-feedback also

reduces to zero when radius decreases to zero. We suppose the radius decreases

linearly at ratioγ . The formula can be written as

tRtR)0()1(γ−=+

Where is the initial radius at)0(R 0=t .

 44

3.3.3 Programming Flowchart

End

1. Set window size for linear regression
2. Set initial Radius)0(R

3. Set weight ijw and self-feedback weight sw

4. Set tolerance limit p (positive integer)
5. Set radius decreasing ratio γ

1. Calculate initial direction iθ of every processing
element by linear regression.
If the points in the window less then one, set iθ equal
to infinite number.

2. Set initial strength iu

Adjust strength by

)()()cos()cos()()1(
)()(

towtowtutu iii
iNj

j
pp

jiii
tR

−+=+ ∑
∈

βα

Where)(tRww sii =

)(ii ugo =

⎪
⎩

⎪
⎨

⎧
<<

≥
=

otherwise
xifx

xif
xg

 0
10

1 1
)(

Decreasing radius by
tRtR)0()1(γ−=+

0)1(≤+tR

1. Calculate the middle output. If io greater then 0.5, set to
1, otherwise set to 0.

2. Recalculate direction iθ of every processing element by
linear regression. If the points in the window less then
one, set iθ equal to infinite number.

Start

Yes

No

Output image
If io greater then 0.5, set to 1, otherwise set to 0.

Thinning processing

 45

3.3.4 Experiments
Experiment I: circle

 The input of first experiment is shown in Figure 3.18 with size . The

parameters of the window size of linear regression is set to , ,

connection weight

5050×

55× 2)0(=R

ji,)),0(/1(*5.0 ∀= Rw ji , self-feedback weight , tolerance

limit , radius decreasing ratio

1.0=sw

30=p 4.0=γ .

Figure 3.18. Input data of experiment I.

Figure 3.19 shows all the update process with time and result of thinning

processing. The thinning result shows in Figure 3.19(e). Compare with original input

and final result, the broken segment are linked well.

(a) (b)

 46

(c) (d)

(e)
Figure 3.19.Update process and result of thinning processing (a) ,

(b) , (c) , (d)
1=t

2=t 3=t 4=t , (e) thinning result of (d).

Experiment II: personal face

 The input of second experiment is shown in Figure 3.20 with size .

The parameters of the window size of linear regression is set to , ,

connection weight

200182×

55× 2)0(=R

ji,)),0(/1(*5.0 ∀= Rw ji , self-feedback weight ,

tolerance limit

1.0=sw

30=p , radius decreasing ratio 4.0=γ .

 47

Figure 3.20. Input data of experiment II.

Figure 3.21 shows all the update process with time and result of thinning

processing. The thinning result is shown in Figure 3.21(e). Compare with original

input and final result, the broken segment are linked well. But the method has bad

ability for noise elimination. That can remove one point noise only.

(a) (b)

 48

(c) (d)

(e)
Figure 3.21.Update process and result of thinning processing (a) ,

(b) , (c) , (d)
1=t

2=t 3=t 4=t , (e) thinning result of (d).

Experiment III: English characters

 In the experiment III, we use three English characters for experiments. The input

size is all of . The parameters of these experiments are chosen the same. The

window size of linear regression is set to

7070×

99× , 2)0(=R , connection weight

, self-feedback weight ji,)),0(/1(*5.0 ∀= Rw ji 1.0=sw , tolerance limit ,

radius decreasing ratio

3=p

4.0=γ . Figure 3.22 shows three English characters as input

data and Figure 3.23-25 shows the update process with time respectively.

(a) (b) (c)

Figure 3.22. Three input characters for experiment III (a) character A, (b) character e,
(c) character X.

 49

(a) (b)

(c) (d)

Figure 3.23.Update process of character A (a) 1=t , (b) 2=t , (c) , (d) . 3=t 4=t

(a) (b)

(c) (d)

Figure 3.24.Update process of character e (a) 1=t , (b) 2=t , (c) , (d) . 3=t 4=t

 50

(a) (b)

(c) (d)

Figure 3.25.Update process of character X (a) 1=t , (b) 2=t , (c) , (d) . 3=t 4=t

 51

