
Chapter 3 

Connectionist Model with Large Neighborhood  

for Line Linking  

 

3.1  Introduction 

The previous method considered only 1-neighborhood for a pixel. It can link the 

line when the distance of any two broken points is small. In the real seismogram, we 

can often find out that two points are in the same horizon but the distance of two 

points is too large. Finally, they can not link together.  

Therefore, we must take into account large neighborhood to get more 

information by the points in a larger neighborhood. If large neighborhood is used, it is 

difficult to determine which neighboring pixels should reinforce each other only 

depending on the template type. Hence, we consider using line direction and strength 

to determine which neighboring pixels can give reinforcement. Basak propose another 

connectionist model [4] with large neighborhood for edge linking. The model regards 

gradient of each pixel as inputs. The output of the interesting pixel is increased or 

decreased based on the gradient values input to the pixel in the neighborhood. The 

detail architecture we discussed in next section. Because the model proposed by 

Basak base on gray level images. In our approach, we modify the network 

architecture which proposed by Basak to solve the line linking problem. We give 

direction and strength to each pixel by its neighboring information and its gray value. 

Depending on the position relationship of interesting pixel and its neighboring pixels, 

we can decide how much strength the interesting pixel can get. The size of 

neighborhood of each pixel decreases with time. When radius of neighborhood radius 
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decreases to zero, we stop adjustment.  

After stopping adjustment, the output is the linking result. We observe that some 

linked lines become thick after linking. In order to solve this problem, we use thinning 

technique [6] to the final output image. After thinning process, we get a better linking 

result. The Figure 3.1 shows the diagram of line linking processing. 
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Figure 3.1.Diagram of line linking processing. 

 

3.2 Edge Linking 

In this section, we introduce the network architecture proposed by Basak [4]. In 

this network architecture, the model is considered to consist of  processing 

elements (PEs) if the image contains

nm×

nm× pixels. Every PE has an edge vector 

whose direction is the direction of the intensity change, and the magnitude is the 

absolute value of the first derivative. The direction is normal to the edge. The concept 

is that each edge vector induces edge points over a neighborhood. In this model, the 

neighborhood is selected as circular. Figure 3.2 illustrates the concept of edge 

induction.  

'φ  

X 

Y 

PE i

B 

A 

PE j

C 

D 

ev  

φ  

α

θ 
'ev  

  

'φ  

X 

Y 

PE i

B 

A 
PE j

C 

D 

ev
φ  

α

'ev  
θ

 
(a) (b) 

Figure 3.2. Edge induction on a circular neighborhood (Basak [4]). 
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 Consider processing element i (PE i) with edge vector ),( αee =v , where e is the 

magnitude and α is the direction of vector ev . The circle around PE i is the circular 

neighborhood of PE i. Edge points are expects appear along the line AB which is 

perpendicular to the edge vector. Hence, PE i should try to induce edge vectors at 

every point on AB and not affect any point on CD . PE j denote the neighboring 

point of PE i. The affect of PE i on the points on PEiPEj  increases as PE j close to 

AB and decreases as PE j close to CD .  

In a rectangular coordinate system, the edge vector can be written as , 

where  and  are the components along the x-axes and y-axes respectively. The 

affect of PE i on the PE j is 

),( yx ee

xe ye

)','(' φee =v , where  is the magnitude and 'e 'φ is the 

direction of the induced vector. The induced vector 'ev  can also be written as . 

From the Figure 3.2,  
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where φ  is the angle subtended by the line PEiPEj  with x-axes. The magnitude of 

induced vector can get by 

 '   where,cos' φαθθ −== ee  

The relationship of edge vector and induced vector on the components along 

x-axes and y-axes can be written as 
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Proof： 
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The model regards the normalized gradient component as the inputs and updates 

the network by the relationship of edge vector and induced vector. 

   

3.2.1 Network Architecture 

The network is composed of PEs arranged in a two dimensional lattice. Each PE 

connects with a large neighborhood and self-feedback. Figure 3.3 shows the 

interconnection between two processing elements i and j in the network.  

 31



2222
ijji ww =

jo

PE j

1jo 2jo

11
jjw 22

jjw(.)g (.)g

2
2

2
1 jj oo +

PE i

io  

1io  2io

11
iiw  22

iiw

2ju1ju1iu  2iu

2112
ijji ww =

1111
ijji ww =

1221
ijji ww =  

(.)g  (.)g

2
2

2
1 ii oo +  

 
Figure 3.3.Interconnections between two processing 

elements i and j in the network. (Basak [4]) 

 Initially, the Sobel operator are used to calculate edge response  and  at 

every pixel where  and  is the first partial derivative along the x-axes and 

y-axes respectively. The resultant response  and edge direction 

xe ye

xe ye

e α  are found by 
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The edge responses at all pixels are normalized to (0, 1) by maximum value of 

. The normalized edge vector of PE i are denoted by . Then, the components 

along the x and y directions of normalized edge vector,  and , are regarded as 

network inputs, i.e. 

e iu

1iu 2iu

)cos(1 αii uu = , )sin(2 αii uu = . Each PE has two intermediate 

outputs. The intermediate outputs  and  represent the edge responses along 

the x and y direction of PE i and can be written as  
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where  is a transfer function that defined as (.)g
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Figure 3.4.Transfer function. 

The output of any PE i is gives as  
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where  and  are intermediate outputs of the PE i. 1io 2io

 Basak propose the update formula by the relationship of edge vector and induced 

vector. The update formula can be written as  
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where the  is the connection weight from component r of PE j to component s of 

PE i. The connection weights are symmetric, i.e. 
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where  and  are constant and w sw ijφ  is the angle subtended with x-axes by the 

line PEiPEj . The  and  are the self-feedback of PE i. For all PEs the 11
iiw 22

iiw
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amount of self-feedback are the same and proportional to the radius of the 

neighborhood of activity. 

In this model, the size of neighborhood of each PE decreases with time. When 

radius of neighborhood radius decreases to zero, we stop adjustment. The radius 

decreases linearly at ratioγ . The formula can be written as  

tRtR  )0()1( γ−=+  

where is the initial radius at )0(R 0=t . 

 In the network, each PE has a circular neighborhood. In discrete domain, for any 

PE i, if PE j belongs to the neighbor of PE i, the distant between PE i and PE j have to 

satisfy the equation 

  5.0),( +≤ RjiD

where  denote the Euclidian distance between PE i and PE j and R is the 

radius of the circular neighborhood in analog domain. 

),( jiD

3.2.2 Experiments 

Experiment I: circle 

 The input of first experiment is shown in Figure 3.5 with size . The 

parameters of the , 

5050×

2)0( =R 100=w , 180=sw . The linking result shows in 

Figure3.6. 

  
Figure 3.5. Input image. Figure 3.6. Linking result. 

 

Experiment II: personal face 

 The input of first experiment is shown in Figure 3.7 with size . The 200182×
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parameters of the , 2)0( =R 100=w , 180=sw . The linking result shows in 

Figure3.8. 

  
Figure 3.7. Input image. Figure 3.8. Linking result. 

 

3.3  Line Linking 

In this section, we reference the architecture on previous section and modify the 

input information and update formula to solve the line linking problem. Here, the 

model is considered to consist of nm×  processing elements (PEs) if the image 

contains pixels. The concept diagram is shown in Figure 3.9. To consider a 

small area around a PE on a continuous line, we suppose there has a major line 

segment inside the small area. We try to find the major line for every PE in the image 

and use the neighboring points which close to the direction of major line to link 

broken line segments.  

nm×

θ

 
Figure 3.9. Concept diagram of line linking. 

3.3.1 Strength and Line Direction 

 There are many methods can detect line successfully such as Hough transform 
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[7], line mask that discussed in chapter 2 and so on. In our approach, it will take large 

cost if we use Hough transform and useless if we use line mask. Because the distance 

of any two points maybe over 1-neighborhood, we can’t detect a line only use a  

line mask. 

33×

Hence, we choose linear regression to detect line direction. Linear regression is a 

method that can get a line which let the sum of distance from points to the line 

minimize. The relationship of points and line is illustrated in the Figure 3.10. 
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Figure 3.10. Relationship of points and line. 

In our approach, for each PE, we set a window to them and the interesting PE is 

in the center of the window. Then, find a line in the window by linear regression. We 

regard the line slope as the direction of the interesting PE. Figure 3.11 illustrates the 

direction of a PEs. The rectangle represents the window, pixel in the center of the 

window represents the interesting PE, and the line is the result of linear regression, 

namely direction of interesting PE. The direction of each PE can express as an angle 

subtended with the line by the x-axis called theta (θ ), the range of theta is 

between 2/π− to 2/π . If there has less than one point in the defined window, we can 

not get a line in this window. In this condition, we set the angle equal to infinite for 

the interesting PE.   
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θθ

 
Figure 3.11.Linear regression for a PE. 

Direction 

Now, we introduce how to get the line’s parameters using linear regression and 

line direction thetaθ . 

Suppose the line equation of  is L baxy +=  and the coordinate of points are 

represented as .  niyx ii  , ,1  ),( L=
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S

a

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−−−=
∂
∂

=−−−=
∂
∂

∑

∑

=

=

n

i
ii

n

i
iii

baxy
b
S

baxyx
a
S

1

1

0)(2

0)(2
 

 

Solve these two equations, we get  and  as follow. a b
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The parameter  represents the line’s slope. We can get theta by a

)(tan 1 a−=θ   

Figure 3.12 shows two linear regression results with window size 55× .  

  

(a) circle(size ) 1010× (b) cross line(size ) 1515×
Figure 3.12. Linear regression results with window size . 55×

Strength 

    In our approach, we set the initial strength as the gray value of the pixel. If the 

gray value is 1 (black point), the initial strength set to 1, and if the gray value is 0 

(white point), initial strength set to 0.   
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3.3.2 Network Architecture  

In the implementation of the connectionist model for line linking, the model is 

considered to consist of nm×  processing elements (PEs) if the image 

contains pixels. Each PE connects with its neighboring PEs with a large 

neighborhood and a self-feedback. The neighborhood is selected as circular. Figure 

3.13 shows a PE i connects with its neighboring PEs with radius 

nm×

2R = . In discrete 

domain, for any PE i, if PE j belongs to the neighbor of PE i, the distant between PE i 

and PE j have to satisfy the equation 

  5.0R),( +≤jiD

where  denote the Euclidian distance between PE i and PE j and R is the 

radius of the circular neighborhood in analog domain. 

),( jiD

PE i

 
Figure 3.13. A connectionist model with radius 2R = . 

    In our approach, the state can be written as ),( iii uu θ=v , where  is the state 

strength, 

iu

iθ  is the state direction of processing element i. Initially, we calculate 

direction of each processing element by linear regression and set the strength with its 

gray value. The output of each processing element can be written as ),( iii oo θ=v  

where  is the output strength and io iθ  is the output direction. 

The state strength adjusted by update formula. The formula can be written as   

)()()cos()cos()()1(
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j
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The update formula will be discussed later. 
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The relationship of output strength and input strength can be written as  

)( ii ugo =  

where  is a transfer function shown in the Figure 3.14.  (.)g
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Figure 3.14. Transfer function. 

The processing elements connect with each other if they have neighboring 

relationship. The Figure 3.15(a) shows the initial state of the network. The 

interconnections between two processing elements i and j are shown in Figure 3.15(b). 

Each processing element feed back its output strength and output direction 

information to its neighboring processing elements. We regard the point which getting 

few support or without getting any support from neighboring PEs as noise. In order to 

reduce the effect of noise, each processing element has a negative self-feedback. 
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Figure 3.15. (a)Initial state, (b) Interconnections between two processing element  

and
i

j in the network.  

In our approach, we reinforce a processing element by its neighboring 

information. Initially, we set radius for the interesting processing element and 

reinforce it by processing elements inside the neighborhood.  

Figure 3.16 shows the diagram of reinforcement. The interesting processing 

element is processing element i (PE i) and the processing element j (PE j) represent 

the neighboring processing elements of PE i. The circle around the PE i is the range of 

neighborhood. Now, we consider how to use neighboring information to reinforce the 

PE i. The line direction of PE i can be represented as iθ , namely the direction of the 

line AB . The idea is that the PE i gets large reinforce from the PE j when PE j is close 

to the line AB  and gets small reinforce when PE j is close to the line CD . 

Furthermore, we consider the position relationship about PE i and PE j. The angle 

subtended with the x-axis by the line EF  can be represented as ijφ . If the PE j is 

close to the line AB , namely the difference of ijφ  and iθ , i.e.β , is small, then 

gives a large strength and small otherwise. Here, we suppose that the PE j has strength 

 on direction e ijφ  shown in Figure 3.16(a). We can get a projection on AB  from 

the PE j. The projection can be written as )cos(βe . 
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Next, how to get strength  on the direction e ijφ  will be discussed. In the 

Figure 3.16(b), the direction of PE j is jθ  and strength is , we can get a projection 

on 

jo

EF  from the PE j. The projection can express as )cos(αjoe = , the angleα  is the 

difference of ijφ  and jθ . Hence, the reinforcement from PE j to PE i can express 

as )cos()cos( βαjo . 

e
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(b) 

Figure 3.16. Diagram of reinforcement concept  
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    In order to make a better result of line linking, we must consider the angle size 

of α  and β . The angle α  and β  are expected to tend to zero, namely the PE j 

and PE i mostly on the same line. In this condition, the PE j gives the largest 

reinforcement to the PE i. If α  and β  tend to 2/π , that represent PE j and PE i 

on the different line, the PE j do not reinforce the PE i anymore. Hence, we set a 

tolerance limit of angle α  and β  to decrease range of reinforcement. The PE j can 

reinforce PE i if the angle α  and β  in the range of tolerance limit. Figure 3.17 

shows two order of )cos(ω  where πω 20 ≤≤ . Small order has larger tolerance than 

high order. 

  
(a) (b) 

Figure 3.17. (a) , (b) , )(cos2 ω )(cos30 ω πω 20 ≤≤  

Hence, the state of each processing element is update as  

∑
∈

+=+
)()(

)()cos()cos()()1(
iNj

j
pp

jiii
tR

towtutu βα   

where p is a positive integer, is the connection weight of the link from processing 

element j to processing element i. It is assumed that all interconnections in the 

network are symmetric, i.e. . 

jiw

ijji ww =

    The point which getting few support or without getting any support from 

neighboring PEs is regarded as noise. In order to reduce noise, a negative 

self-feedback is added into the update formula. The negative self-feedback helps in 

removing noise during the link linking process. However, the self-feedback must 

smaller than reinforcement or the line points will be deleted. The new update formula 
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can rewrite as      
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where  is the weight of the self-feedback and direct proportion to the size of 

neighborhood. So, the  can be written as  

iiw

iiw

)(tRww sii =  

where is a positive constant. sw

    In the implementation of our approach, we recalculate line direction of each 

processing element after one update. Because some processing elements have no 

direction in the initial state, they can not get any reinforcement in the beginning. 

These processing elements maybe get direction after recalculating direction.    

    The size of the neighborhood of each processing element decreases with time. 

When the radius of neighborhood reduces to zero, stop the process of update. Since 

the self-feedback is proportional to the radius of neighborhood, the self-feedback also 

reduces to zero when radius decreases to zero. We suppose the radius decreases 

linearly at ratioγ . The formula can be written as  

tRtR  )0()1( γ−=+  

Where is the initial radius at )0(R 0=t .  
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3.3.3 Programming Flowchart 

End 

1. Set window size for linear regression 
2. Set initial Radius )0(R  

3. Set weight ijw  and self-feedback weight sw  

4. Set tolerance limit p (positive integer) 
5. Set radius decreasing ratio γ   

1. Calculate initial direction iθ of every processing 
element by linear regression. 
If the points in the window less then one, set iθ  equal 
to infinite number. 

2. Set initial strength iu  

Adjust strength by 
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1. Calculate the middle output. If io greater then 0.5, set to 
1, otherwise set to 0. 

2. Recalculate direction iθ of every processing element by 
linear regression. If the points in the window less then 
one, set iθ  equal to infinite number. 

Start 

Yes 

No 

Output image 
If io greater then 0.5, set to 1, otherwise set to 0. 

Thinning processing 
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3.3.4 Experiments   
Experiment I: circle 

 The input of first experiment is shown in Figure 3.18 with size . The 

parameters of the window size of linear regression is set to , , 

connection weight

5050×

55× 2)0( =R

ji, )),0(/1(*5.0 ∀= Rw ji , self-feedback weight , tolerance 

limit , radius decreasing ratio 

1.0=sw

30=p 4.0=γ .  

 

Figure 3.18. Input data of experiment I. 

Figure 3.19 shows all the update process with time and result of thinning 

processing. The thinning result shows in Figure 3.19(e). Compare with original input 

and final result, the broken segment are linked well.  

  

(a) (b) 
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(c) (d) 

 

 

(e)  
Figure 3.19.Update process and result of thinning processing (a) , 

(b) , (c) , (d)
1=t

2=t 3=t 4=t , (e) thinning result of (d). 

 

Experiment II: personal face 

 The input of second experiment is shown in Figure 3.20 with size . 

The parameters of the window size of linear regression is set to , , 

connection weight

200182×

55× 2)0( =R

ji, )),0(/1(*5.0 ∀= Rw ji , self-feedback weight ,  

tolerance limit 

1.0=sw

30=p , radius decreasing ratio 4.0=γ .  
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Figure 3.20. Input data of experiment II. 

Figure 3.21 shows all the update process with time and result of thinning 

processing. The thinning result is shown in Figure 3.21(e). Compare with original 

input and final result, the broken segment are linked well. But the method has bad 

ability for noise elimination. That can remove one point noise only. 

 
(a) (b) 
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(c) (d) 
 

(e)  
Figure 3.21.Update process and result of thinning processing (a) , 

(b) , (c) , (d)
1=t

2=t 3=t 4=t , (e) thinning result of (d). 

 

Experiment III: English characters 

 In the experiment III, we use three English characters for experiments. The input 

size is all of . The parameters of these experiments are chosen the same. The 

window size of linear regression is set to 

7070×

99× , 2)0( =R , connection weight 

, self-feedback weight ji, )),0(/1(*5.0 ∀= Rw ji 1.0=sw ,  tolerance limit , 

radius decreasing ratio 

3=p

4.0=γ . Figure 3.22 shows three English characters as input 

data and Figure 3.23-25 shows the update process with time respectively. 

 

   
(a) (b) (c) 

Figure 3.22. Three input characters for experiment III (a) character A, (b) character e, 
(c) character X. 
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(a) (b) 

  
(c) (d) 

Figure 3.23.Update process of character A (a) 1=t , (b) 2=t , (c) , (d) . 3=t 4=t

 

  
(a) (b) 

  
(c) (d) 

Figure 3.24.Update process of character e (a) 1=t , (b) 2=t , (c) , (d) . 3=t 4=t
 

  

 50



(a) (b) 

  
(c) (d) 

Figure 3.25.Update process of character X (a) 1=t , (b) 2=t , (c) , (d) . 3=t 4=t
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