
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 
 
 
 
 

利用紋理合成及形態學運算做彩色影像修補之研究 

 
Color Image Inpainting using Texture Synthesis and 

Morphological Operations 
 
 
 
 
 

研 究 生：呂盈賢 

指導教授：薛元澤  教授 

 

 
 
 
 

中 華 民 國  九 十 五  年 六 月 



 

利 用 紋 理 合 成 及 形 態 學 運 算 做 彩 色 影 像 修 補 之 研 究 
 

Color Image Inpainting using Texture Synthesis and 
Morphological Operations 

 
 
 
 
 

研 究 生：呂盈賢          Student：Ying-Shian Lu 

指導教授：薛元澤          Advisor：Yuang-Cheh Hsueh 

 
 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 
 
 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science 

 
June 2006 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十五年六月 



 

利用紋理合成及形態學運算做彩色影像修補之研究

學生：呂盈賢 指導教授：薛元澤 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

 

摘要 

 

為了修補影像中受損的區域，或是移除影像中的某個物件，常常必須

使用影像修補的技術。因此如何有效且正確的修補一塊未知的區域便成為

一個重要的研究領域。本論文嘗試使用紋理合成及形態學運算來做影像修

補。實作上先使用數學形態學的 Opening 將受損區域分為兩大部分，其中

一部分是影像中受損極小的區域，另一部分則是受損範圍較大的區域。針

對受損極小的區域，計算周圍可用灰階值的平均值進行修補。而針對受損

範圍較大的區域，則尋找影像中最相近的紋理來修補，同時，應用 FFT 區

塊比對法去加速搜尋的時間。實驗結果顯示我們所提出的方法不僅能獲得

令人滿意的修補品質，且在運算的時間上是相當有效率的。

 i



 

Color Image Inpainting using Texture Synthesis and 

Morphological Operations 

 
student：Ying-Shian Lu Advisors：Dr.Yuang-Cheh Hsueh

 

 

Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

 

ABSTRACT 

 Inpainting, techniques can repair damaged photographs and remove/replace selected 

objects on the image. The goals and applications of inpainting are numerous. How to 

effectively and correctly inpaint an unknown region has become an important research topic. 

In this thesis, we propose a new inpainting method by using texture synthesis and 

morphological operations. Based on mathematical morphology, we first use opening to split 

damaged regions into two parts. One consists of small damaged regions and the other consists 

of large damaged regions on the image. We inpaint the pixel in the small damaged regions by 

computing the average of undamaged neighboring pixels surrounding it. For the large 

damaged regions, we search the most similar texture to synthesize it. Simultaneously, we 

apply the FFT block matching algorithm to speedup the time of searching similar textures. 

The proposed method is computational efficient. Experimental results look “reasonable” to 

the human eye.

 ii



 

誌謝 

 我在這裡要感謝我的指導教授 薛元澤教授，兩年來對我孜孜不倦的教

誨，教導我研究學問的方法及待人處世道理，讓我畢生受益無窮，以及我

的口試委員 張隆紋教授 與 莊仁輝教授，二位老師不吝指教，讓這篇論文

更加完善。 

 我還要感謝莊逢軒學長、何昌憲學長，給予我論文研究及寫作方面等

的各種建議，感謝江仲庭同學、劉裕泉同學、王慧縈同學、顏佩君同學、

林明志同學在這兩年內與我共同努力，互相砥礪，陪我度過這段快樂的實

驗室生活。 

 僅將此論文獻給我親愛的家人與朋友，我的父母及弟弟，感謝他們在

這段期間給我的關心、支持與鼓勵，祝福他們永遠健康快樂。 

 

 

 

呂盈賢 

謹誌於 國立交通大學資訊科學與工程研究所 

中華民國九十五年六月 

 iii



 

CONTENTS 

ABSTRACT (CHINESE)............................................................................................................i 

ABSTRACT (ENGLISH)...........................................................................................................ii 

ACKNOWLEDGEMENT.........................................................................................................iii 

CONTENTS ..............................................................................................................................iv 

LIST OF FIGURES..................................................................................................................vii 

LIST OF TABLES.....................................................................................................................xi

 

CHAPTER 1 ..........................................................................................................................1 

1.1 Motivation ....................................................................................................................1 

1.2 Related Works...............................................................................................................3 

1.3 Thesis Organization ......................................................................................................4 

CHAPTER 2 ..........................................................................................................................6 

2.1 Review of Digital Image Inpainting .............................................................................6 

2.1.1 Image Inpainting Based on Partial Differential Equation (PDE) ......................6 

2.1.1.1 How to calculate ),( jiI n
t  ? ....................................................................7 

2.1.1.2 How to calculate ),( jinLδ
⎯→⎯

 ? ................................................................8 

2.1.1.3 How to calculate 
),,(

),,(

nji

nji

N
N
⎯→⎯

⎯→⎯

 ? .............................................................9 

2.1.1.4 How to calculate ),( jiI n∇  ? ...............................................................9 

2.1.2 Fast Digital Image Inpainting..........................................................................10 

2.1.3 Texture Synthesis.............................................................................................12 

2.1.4 Priority Texture Synthesis................................................................................14 

2.1.4.1 How to calculate P(p)? .........................................................................16 

 iv



 

2.1.4.2 How to calculate pn  ?.........................................................................17 

2.1.4.3 How to calculate I p
⊥∇  ? ......................................................................17 

2.1.4.4 How to update confidence value ?........................................................18 

2.2 Block Matching ..........................................................................................................19 

2.2.1 SAD and SSD ..................................................................................................19 

2.2.2 The FFT Block Matching Algorithm ..............................................................20 

2.2.2.1 Resize input image to include a zero pad .............................................20 

2.2.2.2 Windowed Sum Squared Table.............................................................21 

2.2.2.3 Per-Block Convolution Sum.................................................................22 

2.4 Mathematical Morphology .........................................................................................24 

2.4.1 Basic definition................................................................................................25 

2.4.2 Morphological operations................................................................................25 

2.4.2.1 Dilation and Erosion.............................................................................25 

2.4.2.2 Closing and Opening ............................................................................26 

2.4.3 Extension to Gray-Scale Images .....................................................................27 

2.4.4 Morphological Gradient ..................................................................................29 

CHAPTER 3 ........................................................................................................................31 

3.1 Overview of Our Image Inpainting System................................................................31 

3.2 Splitting the damaged regions into several small and large parts...............................34 

3.3 Using “Fast Digital Image Inpainting” to inpaint these small damaged parts ...........36 

3.4 Using “Priority Texture Synthesis” to inpaint these large damaged parts..................39 

3.5 Summation..................................................................................................................40 

CHAPTER 4 ........................................................................................................................41 

4.1 Experimental Environment.........................................................................................41 

4.2 Experimental Results..................................................................................................43 

 v



 

4.2.1 Comparison of inpainting results.....................................................................43 

4.2.2 Comparison of PSNR Values...........................................................................56 

4.2.3 Comparison of Running Time .........................................................................57 

CHAPTER 5 ........................................................................................................................59 

5.1 Conclusions ................................................................................................................59 

5.2 Future works...............................................................................................................60 

References ................................................................................................................................61 

 

 

 

 

 

 vi



 

LIST OF FIGURES 

Fig. 1- 1 Restoration of photographs.................................................................................2 

Fig. 1- 2 Removal of trees.................................................................................................2 

Fig. 1- 3 Removal of a girl ................................................................................................2 

Fig. 1- 4 Removal of subtitles ...........................................................................................2 

Fig. 1- 5 Applications of image coding.............................................................................3 

Fig. 1- 6 Special effects.....................................................................................................3 

Fig. 2- 1 The figure describes what is Isophote Directions ..............................................7 

Fig. 2- 2 Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator..............9 

Fig. 2- 3 (top) Pseudocode for the fast inpainting algorithm. (bottom) Two diffusion 

kernels used with the algorithm........................................................................ 11 

Fig. 2- 4  Removal of subtitles ......................................................................................... 11 

Fig. 2- 5 Lena : (left) Picture with locally small damaged regions. (right) Restored 

image obtained with fast inpainting algorithm. ................................................12 

Fig. 2- 6 Lena : (left) Picture with large damaged regions. (right) Restored image 

obtained with fast inpainting algorithm............................................................12 

Fig. 2- 7 Texture Synthesis Procedure ............................................................................13 

Fig. 2- 8 Lena : (left) Picture with large damaged regions. (right) Restored image 

obtained with texture synthesis algorithm. .......................................................14 

Fig. 2- 9  The pseudocode of the exemplar-based texture synthesis algorithm. ..............15 

Fig. 2- 10  Structure propagation by exemplar-based texture synthesis. ...........................15 

Fig. 2- 11  Notation diagram. .............................................................................................16 

Fig. 2- 12  A bidimensional Gaussion Kernel filter ...........................................................17 

Fig. 2- 13  Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator............18 

Fig. 2- 14  FFT Block Matching algorithm........................................................................20 

Fig. 2- 15 A simple example for computing SAT.............................................................22 

 vii



 

Fig. 2- 16 Examples of structuring elements.....................................................................24 

Fig. 2- 17  Examples of (a) Translation and (b) Reflection ...............................................25 

Fig. 2- 18 (a). Set A. (b) Structuring element B. (c). The Dilation of A by B. (d). The 

Erosion of A by B. (e). The Closing of A by B. (f). The Opening of A by B. ...27 

Fig. 2- 19 (a) The original of Lena image (b) Dilation of Lena image (c) Erosion of Lena 

image ................................................................................................................28 

Fig. 2- 20 (a) The original of Lena image (b) Closing of Lena image (c) Opening of Lena 

image ................................................................................................................29 

Fig. 2- 21 (a) The original of Lena image (b) Morphological gradient of Lena image ....30 

Fig. 3- 1  A lena image with several small and large damaged regions ...........................32 

Fig. 3- 2  Overview of Our Image Inpainting System......................................................33 

Fig. 3- 3  (a) Set A (b) Structuring element B (c) The Opening of A by B. ......................35 

Fig. 3- 4  (a) A binary image : A (b) The Opening of A by 9*9 structuring element. ......35 

Fig. 3- 5  (a) A damaged elliptic image (b) Splits the damaged regions into two parts ...36 

Fig. 3- 6  (a) A damaged lena image (b) Splits the damaged regions into two parts........36 

Fig. 3- 7  The pseudocode of the algorithm .....................................................................37 

Fig. 3- 8 The step by step example shows how the algorithm inpaints these small 

damaged regions. ..............................................................................................38 

Fig. 3- 9 (a) A Splitted elliptic image (b) The small damaged parts “Green” has been 

inpainted well by this algorithm. ......................................................................39 

Fig. 3- 10 (a) A Splitted lena image (b) The small damaged parts “Yellow” has been 

inpainted well by this algorithm. ......................................................................39 

Fig. 3- 11 (a) An elliptic image followed by Fig. 3-9. b (b) The large damaged parts     

“Blue” has been inpainted well by priority texture synthesis...........................40 

Fig. 3- 12  (a) A lena image followed by Fig. 3-10. b (b) The large damaged parts “Blue” 

has been inpainted well by priority texture synthesis.......................................40 

 viii



 

Fig. 4- 1  There are some test images. Top images of every class are original images.     

Bottom images of every class are damaged images. ........................................43 

Fig. 4- 2 (a) The result of Fast Digital Image Inpainting; (b) The intermediate inpainting 

steps. ................................................................................................................45 

Fig. 4- 3 (a) The result of Priority Texture Synthesis; (b) The intermediate inpainting 

steps. ................................................................................................................46 

Fig. 4- 4 (a) Splitting damaged regions into two parts by using “opening”; (b) The result 

of the proposed method. (c) The intermediate inpainting steps. ......................48 

Fig. 4- 5 (a) The result of Fast Digital Image Inpainting. (b) The intermediate inpainting 

steps. ................................................................................................................49 

Fig. 4- 6 (a) The result of Priority Texture Synthesis. (b) The intermediate inpainting 

steps. ................................................................................................................50 

Fig. 4- 7 (a) Splitting damaged regions into two parts by using “opening”; (b) The result 

of the proposed method. (c) The intermediate inpainting steps. ......................51 

Fig. 4- 8 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 

Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) 

The inpainting result of the proposed method. .................................................52 

Fig. 4- 9 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 

Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) 

The inpainting result of the proposed method. .................................................53 

Fig. 4- 10 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 

Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) 

The inpainting result of the proposed method. .................................................53 

Fig. 4- 11 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 

Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) 

The inpainting result of the proposed method.. ................................................54 

 ix



 

Fig. 4- 12 Removing large objects from images. (a) Original image (b) Mark large objects 

which we want to remove (c) The removal of trees. ........................................54 

Fig. 4- 13 Removing large objects from images. (a) Original image (b) Mark large objects 

which we want to remove (c) The removal of the lighthouse and fisherman. .55 

Fig. 4- 14  Removing several objects from images............................................................56 

Fig. 4- 15  Special effects (my cousin and me) ..................................................................56 

 

 x



 

LIST OF TABLES 

Table 4- 1 Comparison of PSNR Values............................................................................57 

Table 4- 2 Comparison of Running Time ..........................................................................58 

 

 xi



 

CHAPTER 1 

Introduction 
 

1.1 Motivation 

The modification of images in a way that is non-detectable for an observer who does not 

know the original image is a practice as old as artistic creation itself. Medieval artwork started 

to be restored as early as the Renaissance. This practice is called retouching or inpainting. 

Traditionally, skilled artists have performed image inpainting manually. With the rapid 

development of digital life, the automatic inpainting techniques are developed. 

The applications of image inpainting include the restoration of photographs (Fig. 1-1), 

films and paintings, the removal of objects (Fig. 1-2 to 1-3) and occlusions, such as text, 

subtitles (Fig. 1-4), stamps and publicity from images, image coding [5] (The objective is to 

retain only the information which cannot be correctly reconstructed “minute but important 

details” and to remove as much as possible from the remainder of the image. After data has 

been transmitted, using inpainting method to reconstruct the image. Fig. 1-5 shows an 

example. It reduces about 25% data transmission). In addition, inpainting can also be used to 

produce special effects (Fig. 1-6) and attack against visible watermarking [17]. 

Because the applications of image inpainting are living, how to effectively and correctly 

inpaint an unknown region has become an important research issue. In other words, image 

inpainting has become a paramount research topic in recent year. We are interested in 

knowing the well-known inpainting methods. The basic idea is to use undamaged neighboring 

information to inpaint damaged regions. In section 1.2, we will introduce several well-known 

inpainting methods and then direct several defects of them. In section 1.3, we will propose a 

new method that can improve these defects and get better performance. 

 1

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=defect
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=defect


 

 2

    

Fig. 1- 1 Restoration of photographs 
 

   
Fig. 1- 2 Removal of trees 

 

   
Fig. 1- 3 Removal of a girl 
 

    
Fig. 1- 4 Removal of subtitles 



 

 3

    

Fig. 1- 5 Applications of image coding 

    

Fig. 1- 6 Special effects 

1.2 Related Works 

There are several researches of image inpainting. Bertalmio et al [1] have introduced a 

technique for digital inpainting of still images that produces very impressive results. Based on 

partial differential equations (PDEs), the algorithm fills in the damaged areas to be inpainted 

by propagating information from the outside of the masked region along level lines 

(Isophotes).  

However, the algorithm usually requires several minutes on current personal computers 

for the inpainting of relatively small areas. Such a time is unacceptable for interactive sessions 

and motivated Manuel M. Oliveira, Brian Bowen, Richard McKenna and Yu-Sung Chang [2] 

to design a simpler and faster algorithm capable of producing similar results in just a few 



 

seconds. It uses a weighted average kernel that only considers contributions from the 

neighboring pixels. Efficiency of the fast inpainting algorithm is two to three orders of 

magnitude faster than those using partial differential equations. But it constraints the regions 

to be inpainted must be locally small. If the damaged regions are not small enough, some 

possibly important information might be discarded. Results might be blurred.  

For inpainting large damaged regions well, Efros and Leung et al. [3] proposed a texture 

synthesis algorithm to solve the problem. In their algorithm, the lost region is filled-in pixel 

by pixel with the texture from its neighbors. This algorithm is considerably faster when using 

the improvements in [10], [18], [19], [20].  

Inspired by the work of Efros and Leung [3], Criminisi, Pérez and Toyama proposed an 

exemplar-based texture synthesis algorithm [7] for removing/inpainting large objects from 

digital images. Their approach employs an exemplar-based texture synthesis technique 

modulated by a unified scheme for determining the fill order of the target region. Pixels 

maintain a confidence value, which together with image isophotes, influence their fill priority.  

Viewing from above inpainting techniques, “Fast Digital Image Inpainting” [2] can fast 

inpaint small damaged regions, but it can’t work well for large damaged regions. “Region 

Filling and Object Removal by Exemplar-Based Image Inpainting” is also called “Priority 

Texture Synthesis” [7]. It can both inpaint small and large damaged regions well, but it spend 

too much time. Therefore, how to correctly and quickly inpaint these images with several 

small and large damaged regions becomes the goal of our paper. 

 

1.3 Thesis Organization 

In this thesis, we propose an image inpainting method that will combine “Fast Digital 

Image Inpainting” and “Priority Texture Synthesis”. The remainder of this thesis is organized 

as follows. In chapter 2, we will survey the research of image inpainting and discuss some 

issues needed to concern. Then, we will describe how to evaluate the similarity value between 

 4



 

two textures. Finally, we will survey the concept of morphological operations. In chapter 3, 

we will present our method which uses the morphological operator “opening” to split the 

damaged regions of images into several small and large parts according to the structuring 

element which users set up. After splitting, we modify the “Fast Digital Image Inpainting” 

algorithm and apply it to inpaint small damaged parts. Then, we use “Priority Texture 

Synthesis” to inpaint large damaged parts and add the FFT block matching algorithm to 

speedup the time of searching similar textures. In chapter 4, we will experiment with different 

kinds of damaged images. The proposed method can efficiently reduce the cost of 

computation. Experimental results look “reasonable” to the human eye. Then, we will 

compare the performance of our method with other methods. In chapter 5, the conclusion and 

future work will be stated. 

 

 

 

 

 

 

 

 

 

 

 5



 

CHAPTER 2 

Previous Research 
 

In this chapter, we will describe several related researches about image inpainting in 

section 2.1. In section 2.2, we will describe the block matching problem and introduce a faster 

algorithm for solving it. In section 2.3, the concept of PSNR will be introduced. Basic 

morphological operators will be described in section 2.4.  

 

2.1 Review of Digital Image Inpainting 

The image inpainting methods are widely used in various fields such as wireless 

communication, reverting deterioration of photographs, image coding (e.g., recovering lost 

blocks) and special effects (e.g., removal of objects), etc. The basic idea behind the methods 

that have been proposed in the literature is to fill-in these regions with available information 

from their surroundings. In this section, we will describe some existed image inpainting 

algorithms. 

 

2.1.1 Image Inpainting Based on Partial Differential Equation (PDE) 

Bertalmio et al [1] pioneered a digital image-inpainting algorithm based on partial 

differential equations (PDEs). For the damaged image, it fills in the areas to be inpainted by 

propagating information from the outside of the masked region along level lines (Isophotes). 

Isophote directions are obtained by computing at each pixel along the inpainting contour a 

discretized gradient vector (it gives the direction of largest spatial change) and by rotating the 

resulting vector by 90 degrees (Fig. 2-1 [1]). This intends to propagate information while 

preserving edges. A 2-D Laplacian [21] is used to locally estimate the variation in color 

smoothness and such variation is propagated along the isophote direction [1]. After every few 

 6



 

 

=+ ,(),(1 iji II nn

step of the inpainting process, the algorithm runs a few diffusion iterations to smooth the 

inpainted region. 

I

Fig. 2- 1 The figure de
Propagation 
distance to th

 

The algorithm of that form can b

where the superindex n denotes the in

the rate of improvement and ),( jiI n
t

the evolution equation runs only insid

With this equation, the image I

“improvement” given by ),( jiI n
t . As

2.1.1.1, we will introduce how to desi

 

2.1.1.1 How to calculate ),( jiI n
t  ? 

),( jiI n
t  stands for the update of

equations to compute it. It can be den

),( jiI n
t =
7

Ω∈∀+∆ ),(),,() jijij tI n

t

sophotes

 

scribes what is Isophote Directions . 
direction as the normal to the signed 
e boundary of the region to be inpainted. 

e written as :  

   (2.1) 

painting “time”, (i, j) are the pixel coordinates, t∆  is 

 stands for the update of the image ),( jiI n . Note that 

e Ω, the region to be inpainted.  

),(1 jin+  is an improved version of ),( jiI n , with the 

 n increases, we achieve a better image. In section 

gn the update ),( jiI n
t . 

 the image ),( jiI n . We use partial differential 

oted as :  

),(),( jinjin NL
⎯→⎯⎯→⎯

⋅δ         (2.2) 



 

 8

where ),( jinLδ
⎯→⎯

 is a measure of the change in the information . With this equation, 

we estimate the information  of our image and compute its change along the 

),( jiLn

),( jiLn

N
⎯→⎯

direction. Note that at steady state, that is, when the equation (2.1) converges, 

),(),(1 jiji II nn =+  and from (2.1) and (2.2) we have that 0),(),( =⋅
⎯→⎯⎯→⎯

jinjin NLδ , 

meaning exactly that the information L has been propagated in the direction N
⎯→⎯

. For more 

details, we now rewrite the equation (2.2) as : 

),(
),,(

),,(
),(),( ji

nji

nji
jinji I

N
NLI nn

t ∇
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅=
⎯→⎯

⎯→⎯
⎯→⎯

δ   (2.3) 

On the implementation, we can use discrete equation borrows from the numerical 

analysis literature. See Section 2.1.1.2, Section 2.1.1.3 and Section 2.1.1.4. 

 

2.1.1.2 How to calculate ),( jinLδ
⎯→⎯

 ? 

( ))1,()1,(),,1(),1(:),( −−+−−+=
⎯→⎯

jijijijijin LLLLL
nnnn

δ      (2.4) 

),(),(),( jijiji IIL n
yy

n
xx

n +=    (2.5) 

As mentioned above, ),( jinLδ
⎯→⎯

 is a measure of the change in the information 

. Let  be an image smoothness estimator. For this purpose we may use a 

simple discrete implementation of the Laplacian: . Other 

smoothness estimators might be used, though satisfactory results were already obtained with 

this very simple selection. 

),( jiLn ),( jiLn

),(),(),( jijiji IIL n
yy

n
xx

n +=

 



 

 

2.1.1.3 How to calculate 
),,(

),,(

nji

nji

N
N
⎯→⎯

⎯→⎯

 ? 

( )
( ) ( )),(),(

22

),(),,(

),,(

),,(

jiIjiI

II

N
N

n
y

n
x

jiji

nji

nji
n
x

n
y

+

−
=

⎯→⎯

⎯→⎯

 (2.6) 

),,(

),,(

nji

nji

N
N
⎯→⎯

⎯→⎯

 means the isophote direction. We can compute  and  

by using some gradient operators (Fig. 2-2)  

),( jiI n
x ),( jiI n

y

 

 -1 

1 1 1 

0 0 0 

-1 -1 -1 

1 0 -1 

1 0 -1 

0 1 

 

 

I x       I y  

 

 

-1 

1 2 1 

0 0 0 

-2 -1  

 

 

I x     

 

 

Fig. 2- 2 Some gradient operators. (a) is
 

2.1.1.4 How to calculate ),( jiI n∇  ? 
a 

-1 

1 0 -1 

2 0 -2 

0 1 

  I y  
9

b 

 Prewitt operator. (b) is Sobel operator. 



 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
0,

0,
),(

2222

2222

⎪
⎪
⎩

⎪⎪
⎨

⎧

<+++

>+++
=∇

β

β
n

n

n

whenn
yfm

n
ybM

n
xfm

n
xbM

whenn
yfM

n
ybm

n
xfM

n
xbm

ji

IIII

IIII
I   (2.7) 

),,(

),,(
),(),(

nji

nji
jinji

N
NL

n

⎯→⎯

⎯→⎯
⎯→⎯

⋅=δβ         (2.8) 

),( jiI n∇  stands for the gradient of the image.  is the projection of β n

Lδ
⎯→⎯

 onto the 

normalized vector N
⎯→⎯

, that is, we compute the change of L along the direction of N
⎯→⎯

. 

Finally, we multiply  by a slope-limited version of the norm of the gradient of the image. 

A central differences realization would turn the scheme unstable, and that is the reason for 

using slope-limiters. The subindexes b and f denote backward and forward differences 

respectively, while the subindexes m and M denote the minimum or maximum. See [27] for 

details. 

β n

 

2.1.2 Fast Digital Image Inpainting 

A fast inpainting algorithm was proposed in [2], based on image diffusion kernels. Let Ω 

be a small area to be inpainted. The simplest version of the algorithm consists of initializing Ω 

by clearing its color information and repeatedly convolving the region to be inpainted with a 

diffusion kernel. It uses a weighted average kernel that only considers contributions from the 

neighboring pixels. Fig. 2-3 [2] shows the pseudocode of the algorithm and two diffusion 

kernels. 

 

 10



 

             

 

 

 

 

 

 

 InitializeΩ ; 
 for (iter =0; iter < num_iteration; iter++) 
  convolve masked regions with kernel; 

a b a
b 0 b
a b a

c c c
c 0 c
c c c

 

Fig. 2- 3 (top) Pseudocode for the fast inpainting algorithm. (bottom) Two 

diffusion kernels used with the algorithm. 

a= 0.073235, b = 0.176765, c = 0.125. 

 

Efficiency of the fast inpainting algorithm [2] is two to three orders of magnitude faster 

than those using partial differential equations. But it constraints the regions to be inpainted 

must be locally small. If the damaged regions are not small enough, some possibly important 

information might be discarded. Results might be blurred.  

We use the fast inpainting algorithm to inpaint the following pictures. Fig. 2-4 and 2-5 

are the examples of inpainting locally small damaged regions. The results look good. Fig. 2-6 

is the example of inpainting large damaged regions. The result is blurred. 

 

    
Fig. 2- 4 Removal of subtitles 

 

 11



 

 12

    
Fig. 2- 5 Lena : (left) Picture with locally small damaged regions. (right) Restored image 

obtained with fast inpainting algorithm.  

 

        
Fig. 2- 6 Lena : (left) Picture with large damaged regions. (right) Restored image obtained 

with fast inpainting algorithm. 
 

2.1.3 Texture Synthesis 

For inpainting large damaged regions well, Efros and Leung et al. [3] proposed an 

algorithm to solve the problem. In this algorithm, the lost region is filled-in pixel by pixel 

with the texture from its neighbors. As illustrated in Fig. 2-7 [3], when filling the pixel 

, the algorithm first defines a ),( jip 33×  template I t  next to , and looks for a ),( jip
^

I t  

in the available neighboring blocks such that ),(
^

II ttd  is minimized, where ),(
^

II ttd  is 



 

 13

defined as the normalized sum of squared differences (SSD) metric (More details can be 

found in section 2.2). Once the nearest template is found, we copy the pixel (candidate) in the 

correspondent position to our pixel (current pixel) to be filled-in. Fig. 2-8 shows the 

algorithm’s results. This algorithm is considerably faster when using the improvements in 

[10], [18], [19], [20].  

 

 
Best match

 

8-neighborhood of lost block 

Candidate 

Lost Block 

Template 
Current pixel

 

 

 

 

 

 

 

 

 

Fig. 2- 7 Texture Synthesis Procedure 
 



 

        
Fig. 2- 8 Lena : (left) Picture with large damaged regions. (right) Restored image obtained 

with texture synthesis algorithm. 

 

2.1.4 Priority Texture Synthesis 

Inspired by the work of Efros and Leung, Criminisi, Pérez and Toyama proposed an 

exemplar-based texture synthesis algorithm [7] for removing large objects from digital images. 

Their approach employs an exemplar-based texture synthesis technique modulated by a 

unified scheme for determining the fill order of the target region. Pixels maintain a confidence 

value, which together with image isophotes, influence their fill priority. Figure 2-9 [6] shows 

the pseudocode of the algorithm. 

 14



 

 15

 

 

 

 

 

The algorithm 
1. Manually select region Ω  for removal (Fig. 2-10 a) 

2. Repeat until region Ω  is empty 

1. Compute boundary Ωd  and priorities P(p) 

2. Propagate texture and structure information 

1. Find patch Ψp on Ωd  with highest priority P(p) (Fig. 2-10 b) 

2. Find patch Ψq in Φ which minimizes SSD(Ψp, Ψq) (Fig. 2-10 c) 

3. Copy Ψq to Ψp (Fig. 2-10 d) 

3. Update confidence values (More details can be found in section 2.1.4.4)

 
Fig. 2- 9 The pseudocode of the exemplar-based texture synthesis algorithm. 

 

 
Fig. 2- 10 Structure propagation by exemplar-based texture synthesis. 

 

Fig. 2-10 [7] shows the procedure of structure propagation. (a) Original image, with the 



 

 16

target region , its contour Ω Ωδ , and the source region Φ  clearly marked. (b) We want to 

synthesize the area delimited by the patch Ψp centered on the point Ω∈δp . (c) The most 

likely candidate matches for Ψp lie along the boundary between the two textures in the source 

region, e.g.,  and . (d) The best-matching patch in the candidates set has been 

copied into the position occupied by Ψp, thus achieving partial filling of . Notice that both 

texture and structure (the separating line) have been propagated inside the target region. The 

target region  has, now, shrunken and its front 

Ψ 'q Ψ ''q

Ω

Ω Ωδ  has assumed a different shape. 

 

2.1.4.1 How to calculate P(p)? 

 

Fig. 2- 11 Notation diagram. 

 

Fig. 2-11 shows the notation diagram [7]. Given a patch Ψq centered at the point p for 

some p∈dΩ,  is the normal to the contour pn Ωδ  of the target region  and  is 

the isophote (direction and intensity) at point p. The entire image is denoted with . We 

define its priority P(p) as the product of two terms P(p) = C(p) D(p), We call C(p) the 

confidence term and D(p) the data term, and they are defined as follows:  

Ω I p
⊥∇

Ι



 

||

)(
)( )(

p

qC
pC pq

Ψ
=
∑ Ω−Ι∩Ψ∈

          (2.9) 

α

||
)( nI pppD

⋅∇
=

⊥

       (2.10) 

where is |Ψp | the area of Ψp, α  is a normalization factor (e.g., α  = 255 for a typical 

grey-level image),  (More details can be found in section 2.1.4.2) is a unit vector 

orthogonal to the front dΩ in the point p, and 

pn

⊥  (More details can be found in section 

2.1.4.3) denotes the orthogonal operator. The priority P(p) is computed for every border patch, 

with distinct patches for each pixel on the boundary of the target region. During initialization, 

the function C(p) is set to C(p) = 0 Ω∈∀p  and C(p) = 1 Ω−Ι∈∀p .  

 

2.1.4.2 How to calculate  ? pn

Given a point p∈dΩ, the normal direction  is computed as follows : 1) the positions 

of the “control” points of dΩ are filtered via a bidimensional Gaussian kernel (Fig. 2-12) and, 

2)  is estimated as the unit vector orthogonal to the line through the preceding and the 

successive points in the list. Alternative implementation may make use of curve model fitting 

[23].  

pn

pn

 
0 

00 -1
00 2
0-1 0

0 0 0
-12-1

0 0 
 
 

Gy  Gx 
 

Fig. 2- 12 A bidimensional Gaussion Kernel filter 
 

2.1.4.3 How to calculate  ? I p
⊥∇

 17



 

 18

I p
⊥∇  denotes the orthogonal gradient vector. The gradient  is computed as the 

maximum value of the image gradient in 

I p∇

Ι∩Ψp . Robust filtering techniques may also be 

employed here, such as using some gradient operators (Fig. 2-13). After computing , 

(-Gy, Gx) is the orthogonal gradient vector  . 

I p∇

I p
⊥∇

 

 -1 

1 1 1 

0 0 0 

-1 -1 -1 

1 -1 0 

1 -1 0 

0 1 

 

 

Gx Gy  

a  

 

-1 

1 2 1 

0 0 0 

-2 -1 -1 

1 -1 0 

2 -2 0 

0 1  

 

 
Gx Gy 

 
b 

 

Fig. 2- 13 Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator. 

 

2.1.4.4 How to update confidence value ? 

After the patch  has been filled with new pixel values, the confidence C(p) is 

updated in the area delimited by 

Ψ ^
p

Ψ ^
p , as follows: 

Ω∩Ψ∈∀=
∧

^),()( pppCpC         (2.11) 

This simple update rule allows us to measure the relative confidence of patches on the fill 



 

 19

front without image-specific parameters. As filling proceeds, confidence values decay, 

indicating that we are less sure of the color values of pixels near the center of the target 

region. 

 

2.2 Block Matching 

The block matching problem is one that occurs in various fields of applications, such as 

the image processing, multimedia and vision fields. The basic idea for solving the block 

matching problem is to minimize some measure of similarity between a template block of 

pixels in the current image to all candidate blocks in the reference image within a given 

search range. In this section, we will describe a new algorithm [10] for solving the block 

matching problem which is independent of image content and is faster than other full-search 

methods. 

 

2.2.1 SAD and SSD 

We first introduce two most popular similarity measures. They are defined as : 

∑∑
−

=

−

=
−

++−=
1

0

1

0
1),(

),(),(
B

j

B

i
ttvu

vjuiji ffSAD          (2.12) 

( )∑∑ ++−
−

=

−

=
−=

1

0

1

0

2

),( ),(),( 1
B

j

B

i
vu vjuifjifSSD tt   (2.13) 

SAD means the sum of absolute difference and SSD means the sum of squared difference. B 

is a block size and (u, v) is a displacement vector for a candidate block relative to the template 

block. Lets compare the difference between SAD (2.12) and SSD (2.13). Because of its lack 

of multiplications, the SAD metric is far more convenient for use in hardware designs, and is 

therefore used almost exclusively. However, minimizing the SSD metric corresponds to 

maximizing the PSNR (More details can be found in section 2.3). If a maximum PSNR is 

desired, SSD should be the metric of choice. Therefore, we choose SSD metric to measure 

similarity when texture synthesizing. 



 

2.2.2 The FFT Block Matching Algorithm 

Steven L. Kilthau, Mark S. Drew, and Torsten Möller et al. [10] proposed an FFT Block 

matching algorithm. It is faster than other full-search methods. In order to maximize the 

PSNR, the algorithm minimizes the SSD metric given in Eq.2.13. Following a trivial 

expansion, the mathematical definition of the per-block computation is given by: 

[ ] )14.2(
11

221

0

1

0
, ),(),(2),(),(min ∑∑ ++−+++

−

=

−

=
∀ −−

B

j

B

i
vu vjuifjifvjuifjif tttt

 

Since the term  appears across the entire minimum, it can be removed from the 

sum without affecting the resulting solution. Removing this term and separating the sum 

leaves us with the following equation: 

2),( jif t

∑∑∑∑ ++
−

=

−

=
−

−

=

−

=
∀

++−−

1

0

1

0
1

1

0

1

0

2

, ),(),(21 ),(min
B

j

B

i
tt

B

j

B

i
vu vjuijit ffvjuif (2.15) 

Finally, we employ a novel data structure called the Windowed-Sum-Squared-Table and use 

the fast Fourier transform (FFT) in its computation of the sum squared difference (SSD) 

metric. Figure 2-14 shows the three basic steps of the FFT Block Matching algorithm. 

The Algorithm 

1. Resize input image to include a zero pad 

(More details can be found in section 2.2.2.1) 

2. Compute the windowed sum squared table 

(More details can be found in section 2.2.2.2) 

3. Compute a per-block convolution sum 

  (More details can be found in section 2.2.2.3) 

 

Fig. 2- 14 FFT Block Matching algorithm. 

 

2.2.2.1 Resize input image to include a zero pad 

 20



 

 21

∑ ≤ ∑ ≤= ik jlSAT lkfjif ),(),(

Given a search range of ±P we apply a zero pad of P pixels around the entire image. This 

simple preprocess eliminates the need for conditionals within the innermost loops of our 

algorithm and greatly increases its speed. In other words, it is simply to allow convenient 

calculation of the SSD metric without using conditionals for those search locations that lie 

outside of the dimensions of the original image. 

 

2.2.2.2 Windowed Sum Squared Table 

We use a variant of the well known summed area table (SAT), introduced in [24]. Given 

an input image f , a summed area table is a new image  such that f SAT

    (2.16) 

Summed area tables can be very easily computed by applying the following recurrence, being 

careful to set  to zero when either of the indices is negative: ),( jif

[ ])1,1()1,(),1(),(),( −−−−+−+= jifjifjifjifjif SATSATSATSAT
(2.17) 

 
Fig. 2-15 is a simple example for computing SAT.  



 

 

Fig. 2- 15  A simple example for computing SAT. 

CBADABACAjifSAT jif +++=−++++= )()(),(),(  

The WSST differs from the SAT in that each pixel needs to represent a sum of squares, 

where the sum extends only over the last B × B sub-image (window), with B the block size. 

[ ])1,1()1,(),1(),(),( 2 −−−−+−+= jifjifjifjifjif SSTSSTSSTSST
(2.18) 

[ ] [ ] [
[ ] )19.2(),1()1,(),()1,1(

),()1,(),(),1(),(

),(),( 2
11

BjfBifBjBiff

BjififjBifjfjif

tsfjif

SSTSSTSSTSST

SSTSSTSSTSSTSST

i

Bit

j

BjsWSST

−−−−−−−−+−−

+−−−+−−−+

== ∑
+−=

∑
+−=

]  

 

2.2.2.3 Per-Block Convolution Sum 

We show that computation of the second term in Eq.2.15 amounts to the evaluation of a 

correlation sum for each template block, which we evaluate as a convolution sum. 

∑∑
−

=

−

=
−

++
1

0

1

0
1

),(),(
B

j

B

i
tt

vjuiji ff           (2.20) 

A C
(i-1,j) 

(i-1,j-1) 

B D

(i,j) (i,j-1) 

 22



 

 23

( )∑∑
−

=

−

=

−

−
•==++

1

0

1

0

1

1
)()(),(),(

B

j

B

i
tt

candidatesFFTtemplateFFTFFTresultvjuiji ff

In order to efficiently compute the correlation, we will convert it to a convolution (Eq.2.20) 

and then use the Fast Fourier transform. For each template block, we create two images of 

size (2P+B)*(2P+B). The first image, template , corresponds to the template block and is 

computed by simply multiplying the block by 2, reversing the pixels, and zero padding to the 

correct size. The pixel reversal effectively changes the correlation sum into an equivalent 

convolution sum. The second image, candidates , corresponds to the square containing all 

pixels of all candidate blocks in the search range. This square can be copied directly from the 

reference image. Given these two images, we can compute a new image, result , according to 

the following formula: 

 (2.21) 

 

2.3 PSNR 

Signal-to-noise (SNR) measures are estimates of the quality of reconstructed images 

compared with their original images. The basic idea is to compute a single number that 

reflects the quality of a reconstructed image. Reconstructed images with higher metrics are 

judged better. The actual metric we will compute is the peak-signal-to-reconstructed image 

measure which is called PSNR. The higher measures might mean better quality. Assume we 

are given a source image f(i,j) that contains N by N pixels and a reconstructed image F(i,j) 

which is reconstructed by inpainting a damaged version of f(i,j). The pixel values f(i,j) range 

between black (0) and white (255). We compute the mean squared error (MSE) of the 

reconstructed image as follows : 

[ ]
2

2),(),(
N

jiFjif
MSE ∑ −

=                (2.22) 

The root mean squared error (RMSE) is the square root of MSE :  

[ ]
MSE

N
jiFjif

RMSE =
−

= ∑
2

2),(),(
         (2.23) 



 

PSNR in decibels (dB) is computed as follows: 

)255log(10
2

MSE
PSNR =     (2.24) 

 

2.4 Mathematical Morphology 

  Mathematical morphology is a tool for extracting image components that are useful in 

the representation and description of region shapes, such as boundaries, skeletons, and convex 

hulls. Mathematical morphology is a set-theoretic method. Sets in mathematical morphology 

represent the shapes of objects in an image. The operations of mathematical morphology were 

originally defined as set operations and shown to be useful for image processing.  

  In general, morphological approach is based upon binary images. In binary images, 

each pixel can be viewed as an element in 2Z . Gray-scale digital images can be represented 

as sets whose components are in 3Z , two components are the coordinates of a pixel, and the 

third corresponds to its discrete intensity value. The morphological operations input a source 

image and a structuring element which is another image usually smaller than the source image. 

The structuring element is a predetermined geometric shape, and there are some common 

structuring elements as shown in Fig. 2-16.  

111

111

111

1

111

1

11111

11111

11111

11111

11111

1

111

11111

111

1

 
Fig. 2- 16  Examples of structuring elements 

 

Here, we will discuss morphological operators in binary images [25, 26]. Given a source 

image A and a structuring element B in 2Z . 

 24



 

 25

2.4.1 Basic definition 

The Translation of A by the point x in 2Z , denoted , is defined by xAv

{ }|        xA a x a A A x= + ∀ ∈ = +v
v v v v          (2.25) 

where the plus sign refers to vector addition.  

And the Reflection of B, denoted B̂ , is defined as  

{ }|                B b b B= − ∈
v v                (2.26) 

The examples of Translation and Reflection are shown in Fig. 2-17.  

 

xv
A 

B xAv

(a) (b)
B̂

 
Fig. 2- 17 Examples of (a) Translation and (b) Reflection 

 

2.4.2 Morphological operations 

  Here, we introduced two of the fundamental morphology operations：Dilation and 

Erosion used in binary images, and introduced two operators：Closing and opening that 

extended from Dilation and Erosion.  

 

2.4.2.1 Dilation and Erosion 

The Dilation of A by B, denoted ( )ADB , is defined as 

( ) { }ˆ ˆ|           BD A A B x B x A φ= ⊕ = + ∩ ≠v v          (2.27) 

Where B is the structuring element. 

And the Erosion of A by B, denoted ( )AEB , is defined as  

( ) { }|                  BE A A B x B x A= = + ⊂v v
0          (2.28) 



 

The examples of Dilation and Erosion are shown in Fig. 2-18 (c) and (d). The dilation of A by 

B is the set of all xv  displacements such that B̂  and A overlap by at least one nonzero 

element. The erosion of A by B is the set of all points xv  such that B translated by xv  is 

contained in A.  

 

2.4.2.2 Closing and Opening 

The Closing of set A by structuring element B, denoted ( )ACB , is defined as 

( ) ( )( ) ( )ˆ
ˆ ˆ              B BB

C A A B E D A A B B= • = = ⊕ 0   (2.29) 

And the Opening of set A by structuring element B, denoted ( )AOB , is defined as 

( ) ( )( ) ( )ˆ           B BO A A B D E A A B B= = = ⊕o 0B
   (2.30) 

The examples of Closing and Opening are shown in Fig. 2-18 (e) and (f). The closing of A by 

B is simply the dilation of A by B, followed by the erosion of the result by B̂ . The opening of 

A by B is simply the erosion of A by B, followed by the dilation of the result by B̂ . 

 26



 

 27

 

(a). Set A (b). Structuring element B 

(c). Dilation (d). Erosion 

(e). Closing (f). Opening 
 

Fig. 2- 18 (a). Set A.    (b) Structuring element B.  
   (c). The Dilation of A by B.  (d). The Erosion of A by B.  
   (e). The Closing of A by B. (f). The Opening of A by B. 

 

2.4.3 Extension to Gray-Scale Images 

In this section we extend to gray-level images the basic operations of dilation, and 

erosion. Throughout the discussions that follow, we deal with digital image functions of the 

forms ( , )f x y and , where( , )b x y ( , )f x y is the gray-scale image and is a structuring 

element.   

( , )b x y

Gray-Scale dilation of f by , denoted by b f b⊕ , is define as：

( )( , ) max{ ( , ) ( , ) ( ), ( ) ; ( , ) }      (2.31) 
f bf b s t f s x t y b x y s x t y D x y D⊕ = − − + − − ∈ ∈

bDWhere  are the domain of  and fD and f b , respectively. As before, b is the structuring 



 

element of the morphological process but note that b is now a function rather than a set. 

Because dilation is based on choosing the maximum value of f + b in a neighborhood defined 

by the shape of the structuring element, the general effect of performing dilation on a 

gray-scale image is two-fold: (1) if all the values of the structuring element are positive, the 

output image tends to be brighter than the input; and (2) dark details either are reduced or 

eliminated, depending on how their values and shapes relate to the structuring element used 

for dilation. As illustrated in Fig 2-19 (b). 

Gray-scale erosion of f by , denoted by b f b0 , is define as： 

( )( , ) min{ ( , ) ( , ) ( ), ( ) ; ( , ) }   ff b s t f s x t y b x y s x t y D x y D= + + − + + ∈ ∈0 b

bD

  (2.32) 

Where  are the domain of  and fD and f b . Because erosion is based on choosing the 

minimum values of f b−  in a neighborhood defined by the shape of the structuring element, 

the general effect of performing erosion on a gray-scale image is two-fold: (1) if all the values 

of the structuring element are positive, the output image tends to be darker than the input; and 

(2) bright details are reduced or eliminated, depending on the used structuring element. As 

illustrated in Fig 2-19 (c). 

 

         

(a ) (b ) (c )  

 

Fig. 2- 19  (a) The original of Lena image       
    (b) Dilation of Lena image        
    (c) Erosion of Lena image 

 28



 

 29

The usage of closing and closing is to smooth contours of objects. In gray-level images, 

closing is used for brighter objects with darker background, and opening is used for darker 

object objects with brighter background. As illustrated in Fig 2-20 (b) and (c). 

 

       

(a )  (b ) (c )  

Fig. 2- 20  (a) The original of Lena image      
    (b) Closing of Lena image       
    (c) Opening of Lena image  

 

2.4.4 Morphological Gradient 

 The Morphological Gradient of an image, denoted G: 

( ) ( ) ( ) ( )           B BG D A E A A B A B= − = ⊕ − 0       (2.33) 

or  

( ) ( )                       (2.34) 
BG D A A A B A= − = ⊕ −

or 

( ) ( )                             (2.35) 
BG A E A A A B= − = − 0

The morphological gradient highlights sharp gray-scale transitions in the source image. In 

other words, morphological gradient can extract the boundary of an object. However, the 

morphological gradient is sensitive to the shape of the chosen structuring element. Here are 

examples of dilation, erosion, closing, opening, and morphological gradient of the gray-scale 



 

 30

image, Lena, with the 3×3 structuring element as shown in Fig 2-21. 

     

       
(a )  (b ) 

      
Fig. 2- 21  (a) The original of Lena image      

    (b) Morphological gradient of Lena image 



 

CHAPTER 3 

The Proposed Method 
 

   In this chapter, we will introduce the architecture of the inpainting system based on the 

proposed method. We focus on these images with several small and large damaged regions, 

such as the image shown in Fig. 3-1. The goal of this paper is to effectively and correctly 

inpaint these damaged images. It is known that “Fast Digital Image Inpainting” [2] can fast 

inpaint small damaged regions, but it can’t work well for large damaged regions. “Priority 

Texture Synthesis” [7] can both inpaint small and large damaged regions well, but it spend too 

much time. Therefore, we propose a new inpainting method that will combine “Fast Digital 

Image Inpainting” and “Priority Texture Synthesis”. In section 3.1, we will discuss the process 

of our image inpainting. In section 3.2, we will utilize morphological operations to 

automatically split the damaged regions into several small and large parts. In section 3.3, we 

will modify the “Fast Digital Image Inpainting” algorithm and then apply it to inpaint these 

small damaged parts. In section 3.4, we will apply the “Priority Texture Synthesis” algorithm 

to inpaint these large damaged parts and add the FFT block matching algorithm to speedup 

the time of searching similar textures. Finally, we will summarize the proposed method in 

Section 3.5. 

 

3.1 Overview of Our Image Inpainting System 

We designed a simple drawing interface, which allows users to draw lines or surfaces. 

Users need to input a damaged image at the start of the inpainting process. As illustrated in 

Fig. 3-2, when users mark these damaged regions from the input image, the system will split 

the damaged regions into several small and large parts according to the structuring element 

which users set up. Then the system will show the splitting result. If we don’t satisfy the 

 31



 

 32

splitting result, we can re-set up the structuring element to split the damaged regions. 

After splitting these damaged regions, the system will automatically use “Fast Digital 

Image Inpainting” to inpaint small damaged parts and use “Priority Texture Synthesis” to 

inpaint large damaged parts. At last, the system will not only show the reconstructed result but 

also show several intermediate steps of the reconstruction on the interface. 

 

 

 
Fig. 3- 1 A lena image with several small and large damaged regions 



 

 33

 

 

 

 

Opening

Mark Damaged Regions 

Small Damaged Regions Large Damaged Regions 

Priority Texture Synthesis Fast Digital Image Inpainting 

Original Image  

 

 

 

 

 

 

 

 

 

 

 

Output Image 

 

 

 

Fig. 3- 2 Overview of Our Image Inpainting System 

 

 

 

 

 

 



 

3.2 Splitting the damaged regions into several small and large parts 

Morphologigical operators are attractive because they involve simple logical operations 

and can be easily implemented. A fundamental feature of mathematical morphology is the use 

of a structuring element. This is essentially a smaller version of the input image, and contains 

structure of the type that is to be analyzed in the image. The two basic morphological 

operators are dilation and erosion. Dilation expands (for binary image) and brightens (for 

gray-scale image) an image, while erosion shrinks and darkens. Dilation is performed by 

sliding the structuring element over the image while adding the values of the structuring 

element to the image, and then recording the maximum value reached at each point. Erosion is 

similar, except that the structuring element values are subtracted from the image, and the 

global minimum is taken. 

The opening operation is created by first eroding and then dilating an image. Physically, 

the binary opening operation extracts some shapes whose sizes are larger enough than the 

structuring element. As illustrated in Fig. 3-3, there are some shapes numbered from 1 to 6. 

After opening, we see that this operation extracts shape 5, 6 and discards shape 1, 2, 3, 4. Fig. 

3-4 is an opening operation example for a binary image. It extracts the shapes whose sizes are 

larger than 9*9 window size according to 9*9 structuring element. 

Viewing from another angle, we can apply the opening operation to split the damaged 

regions into several small and large parts according to the structure element for our test 

images. There are two examples. Fig. 3-5 (b) splits the damaged regions into two parts by 

using “opening” according to 3*3 structuring element. “Green” represents small damaged 

parts and “Blue” represents large damaged parts. Similarly, Fig. 3-6 (b) splits the damaged 

regions into two parts by using “opening” according to 3*3 structuring element. “Yellow” 

represents small damaged parts and “Blue” represents large damaged parts. 

 

 34



 

 3

 

 

 

 

Fig. 3- 3 (a) Set A (b) Structuring 

 

  

 

Fig. 3- 4 (a) A binary image : A (b) The
 

5 

2 

3 

1 

4 

6 

(a) (b) 

(

(a) 
element B (c) The Opening of A by B. 

  

c) 
5

 Opening of A by 9*9 

(

structuring element. 

b) 



 

 

    
( 

Fig. 3- 5 (a) A dam

 

( 

Fig. 3- 6 (a) A dam

 

3.3 Using “Fast Digital

The fast inpainting 

than other methods. Her

be more performance. T

inpaint these small dama

described as below： 

 

36

a) (

aged elliptic image (b) Splits the damaged re

   
a) (

aged lena image (b) Splits the damaged regio

 Image Inpainting” to inpaint these small 

algorithm can faster inpaint the locally smal

e, we modify the “Fast Digital Image Inpain

he new algorithm doesn’t setup iterative-tim

ged parts after splitting. The modification of
b) 

gions into two parts 

 

b) 

ns into two parts 

damaged parts 

l damaged regions well 

ting” algorithm and let it 

es. We will apply it to 

 this algorithm is 



 

 37

 

 

 

 

 

The new algorithm 
1. After splitting, the algorithm automatically selects these small damaged regions Ω .

2. Repeat until region Ω  is empty 

2.1. Mark boundary Ωd . 

2.2. For each boundary pixel, compute the average of its undamaged  

neighborhood pixels, and then copy it to the boundary pixel. 

2.3. Update these small damaged regions Ω  
 

Fig. 3- 7 The pseudocode of the algorithm 

 

M
M MM M 

D D
D

M 
D

M 
M 

M 

M
M M

M M

M

M 
M 

M 

M 

 

 

 

 

 

 
D 

D DD D 
D D
D 

D 
D

D 
D 

D 

D 
D D 

D D 

D

D
D

D

D 

(a)
 
 
 
 
 
 
 
 
 
 

I 
I I I I 

D D
D 

I 
D

I 
I 

I 

I 
I I 

I I 

I 

I 
I 

I 

I 

I 
I I 

M
MI 

I I 

I I 

 
 
 
 
 
 
 

(b)
I I 
M

I 
M

I 
I 

I 

I 

I 
I 

I 

I 
(c)
 (d)



 

I 
I I I I 

I I 
I 

I 
I 

I 
I 

I 

I 
I I 

I I 

I 

I 
I 

I 

I 

 
 
 
 
 
 
 
 
 

(e) 
Fig. 3- 8 The step by step example shows how the algorithm inpaints these small 

damaged regions. 

 

Let us see an example. As illustrated in Fig. 3-8, the algorithm first selects these small 

damaged regions  “Red D” (Fig. 3-8. a). Because Ω Ω  is not empty, the algorithm marks 

the boundary  “Blue M” (Fig. 3-8. b). For each “Blue M”, compute the average of its 

undamaged neighboring pixels, and then copy it to the boundary pixel. “Green I” represents 

the region which has been inpainted (Fig. 3-8. c). The algorithm updates the damaged regions 

, and then repeats previous steps untill 

Ωd

Ω Ω  is empty (Fig. 3-8. d and 3-8. e). Our test 

images are shown in Fig. 3-9 and 3-10. 

 

    
( 

 

a) (b) 

38



 

Fig. 3- 9 (a) A Splitted elliptic image (b) The small damaged parts “Green” has been 
inpainted well by this algorithm. 

 

     
(a) (b)  

Fig. 3- 10 (a) A Splitted lena image (b) The small damaged parts “Yellow” has been 
inpainted well by this algorithm. 

 

3.4 Using “Priority Texture Synthesis” to inpaint these large damaged parts 

After inpainting these small damaged regions, there only remains the larged damaged 

regions. The “priority texture synthesis” algorithm can efficiently and correctly inpaint the 

large damaged regions. Therefore, we will apply it to inpaint these large damaged parts. At the 

same time, we will also add the FFT block matching algorithm from section 2.2.2 to speedup 

the time of searching similar textures. Our test images are shown in Fig. 3-11 and 3-12. 

    
(a) (b)  

 

 39



 

Fig. 3- 11 (a) An elliptic image followed by Fig. 3-9. b (b) The large damaged parts  
   “Blue” has been inpainted well by priority texture synthesis. 

 

    
(a) (b)  

Fig. 3- 12  (a) A lena image followed by Fig. 3-10. b (b) The large damaged parts “Blue” 
has been inpainted well by priority texture synthesis. 

 

3.5 Summation 

The proposed method combines “Fast Digital Image Inpainting” and “Priority Texture 

Synthesis” to inpaint the damaged images. The procedure first uses “opening” to split the 

damaged regions into several small and large parts. After splitting, it will automatically use 

“Fast Digital Image Inpainting” to inpaint small damaged parts and use “Priority Texture 

Synthesis” to inpaint large damaged parts. Experimental results indicate that our method can 

not only inpaint these damaged images well but also efficiently save computational time. 

More experimental results and comparisons are shown in Chpater 4. 

 40



 

CHAPTER 4 

Experimental Results 
 

In this chapter, we will present more experimental results and comparisons obtained by 

applying the proposed method described in chapter 3. In section 4.1, we will introduce our 

experiment environment. Experimental results and comparisons are shown in section 4.2. 

4.1 Experimental Environment 

In this section, we will first use a simple drawing interface to draw lines or surfaces in 

the images of every class. We damage edges as seriously as possible and then produce these 

damaged images which are shown in Fig. 4-1. Based on these same damaged images from 

classes a to f, we will compare the proposed method with pure fast digital image inpainting [2] 

and pure priority texture synthesis [7]. Based on these images from classes g to i, we will use 

the proposed method to remove some objects. The proposed method has been implemented on 

PC with Pentium4 1.8G, RAM 1024 Megabytes. The operating system is Microsoft Windows 

XP Server Chinese version Service Pack2. The program was developed in the C++ language 

and compiled under Borland C++ Builder version 6.0. 

 

 

 

 

 

 

 41



 

     
Original image Original image Original image  

 

     
 Damaged image 

Class a. Elliptic image 

Damaged image

Class b. “Lena” image 

Damaged image 

Class c. “Baboon” image 
 
 

     
Original image Original image Original image  

     
Damaged image 

Class d. “Pepper” image 

Damaged image

Class e. “F16” image 

Damaged image 

Class f. Game image 

 

 

 42



 

     
Original image Original image Original image  

     

 Damaged image 

Class g. Tree image 

Damaged image

Class h. Fishing Boat image 

Damaged image 

Class i. Girl image  
Fig. 4- 1  There are some test images. Top images of every class are original images.  

   Bottom images of every class are damaged images. 

 

4.2 Experimental Results 

4.2.1 Comparison of inpainting results 

Here, we apply the proposed method to a variety of images. Where possible, we make 

side-by-side comparisons to two other methods from Fig. 4-2 to 4-11. 

Fig. 4-2 (a) is the result of Fast Digital Image Inpainting. It spends 0.032 seconds on 

inpainting. The central damaged rectangle can’t be inpainted well. Elliptic Edges are blurred; 

Fig. 4-2 (b) shows its intermediate inpainting steps. (Top-left represents 0% inpainting result. 

It also means the original damaged image. Top-center and Top-right individually represent 

20% and 40 % inpainting result. Bottom-left, Bottom-center and Bottom-right individually 

represent 60%, 80% and 100 % inpainting result.). Fig. 4-3 (a) is the result of Priority Texture 

Synthesis. It spends 10.172 seconds on inpainting. The central damaged rectangle can be 

 43



 

inpainted well. In order to preserve edge sharpness, this method gives the higher inpainting 

priority to the edges of damaged parts and starts to inpaint according to their priorities. Fig. 

4-4 (a) splits damaged regions into two parts by using “opening” (“Green” represents small 

damaged parts and “Blue” represents large damaged parts); Fig. 4-4 (b) is the result of the 

proposed method. It spends 7.454 seconds on inpainting. The central damaged rectangle can 

be inpainted well. The proposed method inpaint these large damaged parts after inpainting 

these small damaged parts. 

Fig. 4-5 (a) is the result of Fast Digital Image Inpainting. It spends 0.062 seconds on 

inpainting. The left pillars are blurred. Fig. 4-6 (a) is the result of Priority Texture Synthesis. It 

spends 52.703 seconds on inpainting. This method preserves edge sharpness. Fig. 4-7 (a) 

splits damaged regions into two parts by using “opening” (“Red” represents small damaged 

regions and “Blue” represents large damaged regions); Fig. 4-7 (b) is the result of the 

proposed method. It spends 20.453 seconds on inpainting. This method not only preserves 

edge sharpness but also speedups the time. Fig. 4-8 to 4-11 are other examples of inpainting. 

At last, we show the proposed method to remove large objects from images. The trees 

have been completely removed and the occluded region reconstructed by the proposed 

method in Fig. 4-12. The lighthouse and the fisherman have been completely removed and the 

occluded region reconstructed by the proposed method in Fig. 4-13. Fig. 4-14 shows some 

objects which are gradually removed by the proposed method. Finally, the girl on the horse is 

also removed. Background texture and structure have seamlessly replaced the original 

characters. Fig. 4-15 shows a personal example of removing an object that can represent me 

on a highly textured background. (a) I lift up my cousin. (b) I have been removed and my 

cousin floats in the air. Notice the area of my cousin’s left armpit, it’s expectable to inpaint 

with flowers and plants because there is no air information. 

 44



 

 45

 
(a) 

 

 
(b) 

Fig. 4- 2 (a) The result of Fast Digital Image Inpainting; (b) The intermediate inpainting 
steps. 

 



 

 46

 
(a) 

 

 
(b) 

Fig. 4- 3 (a) The result of Priority Texture Synthesis; (b) The intermediate inpainting steps. 

 



 

 47

 
(a) 

 

 
(b) 

 



 

 48

 
(c) 

Fig. 4- 4 (a) Splitting damaged regions into two parts by using “opening”; (b) The result of 
the proposed method. (c) The intermediate inpainting steps.  

 

 
(a) 

 



 

 49

 
(b) 

Fig. 4- 5 (a) The result of Fast Digital Image Inpainting. (b) The intermediate inpainting 
steps. 

 

 
(a) 

 



 

 50

 
(b) 

Fig. 4- 6 (a) The result of Priority Texture Synthesis. (b) The intermediate inpainting steps. 

 

 
(a) 

 



 

 51

 
(b) 

 

 
(c) 

Fig. 4- 7 (a) Splitting damaged regions into two parts by using “opening”; (b) The result of 
the proposed method. (c) The intermediate inpainting steps. 

 



 

 52

    
(a)        (b) 

     
(c)       (d)         (e) 

Fig. 4- 8 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The 
inpainting result of the proposed method. Notice the difference in the nose and face 
of the baboon between (a), (c), (d) and (e). 

 

    
(a)        (b) 



 

 53

     
(c)       (d)         (e) 

Fig. 4- 9 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The 
inpainting result of the proposed method. Notice the difference in the edges of the 
pepper between (a), (c), (d) and (e). 

 

    
(a)        (b) 

     
(c)       (d)         (e) 

Fig. 4- 10 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The 
inpainting result of the proposed method. Notice the difference in the tail wing of 
the F16 between (a), (c), (d) and (e). 

 



 

 54

    
(a)        (b) 

     
(c)       (d)         (e) 

Fig. 4- 11 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital 
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The 
inpainting result of the proposed method. Notice the difference in the stairway of 
the game’s image between (a), (c), (d) and (e). 

 

     
(a)        (b)        (c) 

Fig. 4- 12 Removing large objects from images. (a) Original image (b) Mark large objects 
which we want to remove (c) The removal of trees. 

 

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=stairway


 

 55

     
(a)        (b)        (c) 

Fig. 4- 13 Removing large objects from images. (a) Original image (b) Mark large objects 
which we want to remove (c) The removal of the lighthouse and fisherman. 

 

       
(a)              (b) 

          

(c)              (d) 



 

 56

          

(e)              (f) 

 

(g) 
Fig. 4- 14 Removing several objects from images. 

 

Fig. 4- 15 Special effects (my cousin and me) 



 

4.2.2 Comparison of PSNR Values 

In a practical situation, it is impossible to compare a damaged picture with its original. 

However, the strategy of our evaluation is based on the following assumption. Suppose that 

there are two copies of the original picture. The second is damaged, and we will like to 

recover the damage as much as possible such that the inpainted image will look almost the 

same as the first original. Then, we can compute a PSNR value that reflects the quality of a 

inpainted image. As seen in Table 4-1, The PSNR values of the proposed method and Pure 

Priority Texture Synthesis are almost higher than Pure Fast Image Inpainting. It may indicate 

that the proposed method and Pure Priority Texture Synthesis can inpaint the damaged images 

better than Pure Fast Image Inpainting. Notice that the PSNR value isn't suited to compare 

these images obtained from some large objects which users want to remove. (such as Fig. 

4-12 to 4-15). 

 

      Methods 
Test Images 

Pure Fast  
Image Inpainting 

Pure Priority 
Texture Synthesis 

Proposed Method 

Elliptic Image 29.100 42.768 42.700 

Lena 32.351 35.818 36.238 

Baboon 30.178 31.603 32.716 

Pepper 37.784 38.315 38.338 

F16 36.089 38.950 40.344 

Game’s image 38.178 38.225 40.644 

Table 4- 1  Comparison of PSNR Values 

 

4.2.3 Comparison of Running Time 

Table 4-2 shows the total inpainting time. Viewing from the analysis, Pure Fast Image 

Inpainting is faster than two other methods, but it can’t inpaint well for large damaged regions. 

The proposed method and Pure Priority Texture Synthesis can both inpaint well for large 

damaged regions, and the proposed method is faster than Pure Priority Texture Synthesis in 

 57



 

the same situation (+FFT). If there are more small damaged regions in the images, the 

proposed method is more faster than Pure Priority Texture Synthesis. 

 

 

 

      Methods 
Test Images 

Pure Fast  
Image Inpainting

Pure Priority 
Texture Synthesis 

(+FFT) 

Proposed Method 
(+FFT) 

Elliptic Image 
Size:164*126 

Damaged regions: 13.318% 

0.032 10.172 7.454 

Lena 
Size:256*256 

Damaged regions: 7.53% 

0.062 52.703 20.453 

Baboon 
Size:256*256 

Damaged regions: 6.064% 

0.063 64.891 19.812 

Pepper 
Size:256*256 

Damaged regions: 6.433% 

0.061 64.656 19.151 

F16 
Size:200*200 

Damaged regions: 6.325% 

0.046 22.672 8.532 

Game’s image 
Size:256*256 

Damaged regions: 4.929% 

0.059 62.016 9.719 

Table 4- 2 Comparison of Running Time 

 

 58



 

CHAPTER 5 

Conclusions and Future Works 
 

5.1 Conclusions 

In this study, we propose an image inpainting method that will combine “Fast Digital 

Image Inpainting” and “Priority Texture Synthesis”. First, we utilize the morphological 

operator “opening” to split the damaged regions of images into several small and large parts 

according to the structuring element which users set up. After splitting, we modify the “Fast 

Digital Image Inpainting” algorithm and apply it to inpaint these small damaged parts. Then, 

we use “Priority Texture Synthesis” to inpaint these large damaged parts and add the FFT 

block matching algorithm to speedup the time of searching similar textures. At last, the 

system will not only show the inpainted result but also show several intermediate steps of the 

inpainting on the interface. 

From the results shown in Chapter 4, we can conclude that the proposed method has 

some advantages as described below : 

1. Morphologigical operators involve simple logical operations and can be easily 

implemented. The “opening” operation can efficiently split the damaged regions into 

several small and large parts. 

2. The modification of “Fast Digital Image Inpainting” algorithm can inpaint these locally 

small damaged parts more efficiently. 

3. The proposed method can inpaint large damaged regions well but “Fast Digital Image 

Inpainting” can’t. 

4. Although the proposed method and Pure Priority Texture Synthesis can both inpaint large 

damaged regions well, the proposed method is faster than Pure Priority Texture Synthesis. 

On average, for images with several small and large damaged regions (Image Size is 

 59



 

256*256 and Damaged Percentage is about 7%), only 18 seconds is needed to inpaint by 

the proposed method. Pure Priority Texture Synthesis is needed 58 seconds to do the same 

work in our implement process. If there are more small damaged regions, the proposed 

method is more faster than Pure Priority Texture Synthesis. It verifies the speed of the 

proposed method. 

 

5.2 Future works 

     Future work can be directed to the following topics. First, we would like to put into 

practice is to add “fuzzy mask” to re-inpaint the damaged image, i.e. a mask where each pixel 

has a probability between 0.0 and 1.0 instead of a binary true/false. Such masks would be 

useful to create smooth transitions between the content of the image that is kept and the 

modified pixels. Second, it is desirable to remove defects or disturbing objects in a fully 

automatic way. 

 60



 

References 
[1] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, "Image Inpainting", ACM 

SIGGRAPH Conference on Computer Graphics, pp.417-424, 2000. 

[2] Manuel M. Oliveira, Brian Bowen, Richard McKenna, Yu-Sung Chang, "Fast Digital 

Image Inpainting", International Conference on Visualization, Imaging and Image 

Processing (VIIP 2001), pp. 261-266, 2001. 

[3] A. A. Efros and T. K. Leung, “Texture Synthesis by Nonparametric Sampling”, In IEEE 

International Conf. on Computer Vision, volume 2, pp. 1033–1038, 1999. 

[4] H. Yamauchi, J. Haber, H.-P. Seidel, “Image Restoration using Multiresolution Texture 

Synthesis and Image inpainting”, Computer Graphics International, pp. 108-113, 2003 

[5] S. D. Rane, G. Sapiro and M. Bertalmio, ”Structure and Texture Filling-In of Missing 

Image Blocks in Wireless Transmission and Compression Applications”, IEEE 

Transactions on Image Processing, vol. 12, no. 3, pp. 296-303, 2003. 

[6] A. Criminisi, P. Pérez and K. Toyama, “Object Removal by Exemplar-Based Inpainting”, 

in Proc. Conf. Computer Vision and Pattern Recognition, Madison, WI, 2003. 

[7] A. Criminisi, P. Pérez and K. Toyama, “Region Filling and Object Removal by 

Exemplar-Based Image Inpainting” (“Priority Texture Synthesis”), IEEE Transactions on 

Image Processing, vol. 13, no. 9, pp. 1200-1212, 2004. 

[8] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous Structure and Texture 

Image Inpainting”, in Proc. Conf. Comp. Vision Pattern Rec.,Madison, WI, pp. 882-889, 

2003. 

[9] R. Bornard, E. Lecan, L. Laborelli and J.-H. Chenot, “Missing Data Correction in Still 

Images and Image Sequences,” in ACM Multimedia, France, pp. 355-361, 2002. 

[10] Steven L. Kilthau, Mark S. Drew, and Torsten Möller, “Full Search Content Independent 

Block Matching Baded On The Fast Fourier Transform,” IEEE ICIP, pp. 669-672, 2002. 

 61



 

[11] Timothy K. Shih, Rong-Chi Chang and Liang-Chen Lu, “Adaptive Digital Image 

Inpainting”, in proceedings of the 18th International Conference on Advanced 

Information Networking and Applications (AINA 2004), Japan, March 29 - 31, 2004. 

[12] J. S. D. Bonet, “Multiresolution Sampling Procedure for Analysis and Synthesis of 

Texture Images”, In SIGGRAPH ’97, pp. 361–368, 1997. 

[13] T. F. Chan and J. Shen, “Non-Texture Inpainting by Curvature-Driven Diffusions (CDD)”,  

J. Vis. Comm. Image Rep., vol. 4, no. 12, pp. 436–449, 2001. 

[14] C. Ballester, V. Caselles, J. Verdera, M. Bertalmio, and G. Sapiro, “A Variational Model 

for Filling-in Gray Level and Color Images”, In Proc. ICCV, pp. I: 10–16, Vancouver, 

Canada, 2001. 

[15] M. Beltalmio, A. Bertozzi, G. Sapiro, “Navier-Stokes, Fluid-Dynamics and Image and 

Video Inpainting”, in Proceedings of the 2001 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, pp. 1355-1362, 2001. 

[16] D. Garber, “Computational Models for Texture Analysis and Texture Synthesis”, Ph.D.  

dissertation, Univ. Southern California, Los Angeles, CA, 1981. 

[17] C:H. Huang; J.-L. Wu, “Inpainting Attacks against Visible Watermarking Schemes”, in 

Proceedings of Spie, the International Society for Optical Engineering, no. 4314, pp. 

376-384, 2001. 

[18] A. A. Efros and W. Freeman, “Image Quilting for Texture Synthesis and Transfer”, 

presented at the Proc. SIGGRAPH, 2001. 

[19] L.-W. Wey and M. Levoy, “Fast Texture Synthesis Using Tree-Structured Vector 

Quantization,” in Proc. ACM Conf. Computer Graphics (SIGGRAPH), 2000. 

[20] G. Gorla, V. Interrante, and G. Sapiro, “Growing Fitted Textures,” IEEE Trans. Visual. 

Comput. Graphics, to be published. 

[21] Gomes, J., Velho, L. Image processing for computer graphics (New York, NY, 

Springer-Verlag, 1997) 

 62



 

[22] S. Osher and J. Sethian, “Fronts Propagating with Curvature Dependent Speed: 

Algorithms Based on Hamilton-Jacobi Formulations”. Journal of Computational Physics, 

79, pp.12-49, 1988. 

[23] Shuntaro YUI, Kenji HARA, Hongbin ZHA, adn Tsutomu HASEGAWA, “A Fast 

Narrow Band Method and Its Application in Topology-Adaptive 3-D Modeling”, IEEE, 

pp. 122-125, 2002. 

[24] F. C. Crow, “Summed-Area Tables for Texture Mapping,” Computer Graphics (Proc. of 

Siggraph), pp. 207-212, 1984. 

[25] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Addision Wesley, Reading, 

Massachusetts, 1992. 

[26] C. R. Giardina and E. R. Dougherty, “Morphological Methods in Image and Signal 

Processing,” Prentice Hall, New Jersey, 1988. 

[27] A. C. Kokaram, R. D. Morris, W. J. Fitzgerald, and P. J. W. Rayner, “Detection of 

Missing Data in Image Sequences.” IEEE Trans. Image Processing, vol. 4, no. 11, pp. 

1496–1508, Nov. 1995. 

 63


