AU g e i

RN

5 N - » OV LA 4 2h 31 e
FJ# XIPERZEAVRETEYL WA BB T

Color Image Inpainting using Texture Synthesis and
Morphological Operations

=
)
2
E
W
..p_
W
2
=

Color Image Inpainting using Texture Synthesis and
Morphological Operations

Moy o2l EEY Student : Ying-Shian Lu
hERE G EE Advisor : Yuang-Cheh Hsueh
B o= i x5
AR SCRER
oL o
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

PEARAL LT ES

£8 5 R GB R 2

,{ﬂ'

e

£

—4
)
P9

X

B >
g
Wy
Y

NN

=

JO

(ﬁé

Jur

”;-L‘:

NEN

NN

Qe

g

L

\x_ »

e

(w

it

Yy

54

RS
R
w8

da B HHE R R

Bz i~ F
FAC il S A A e

TR GS LR A EBRL G R B F

ETRS
NS
i

% AL i o Bt e 2R BREESA - M A Sean R B S G

- BERBAFTTAE o AhY BRER Y XL A2
e Firr A BT H0pening X HFA LA L We o H Y
- WA ERG L) PRE 0§ - WAR LRI R R PR o 4
R) DRSO FEERT Y AR EOTIOERF R o A R
FRERA DRE > NEFHP G SApTORERBH > B B* FFT %

Bt $2 3 e R WEHFOEFR c FRESEAPAR D E T TN ER

PABREAOBAHEE > P LFE PR EAp Y oo

Color Image Inpainting using Texture Synthesis and

Morphological Operations

student : Ying-Shian Lu Advisors : Dr.Yuang-Cheh Hsueh

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

ABSTRACT

Inpainting, techniques can repair damaged photographs and remove/replace selected
objects on the image. The goals and applications of inpainting are numerous. How to
effectively and correctly inpaint an unknown region has become an important research topic.
In this thesis, we propose a new inpainting method by using texture synthesis and
morphological operations. Based on mathematical morphology, we first use opening to split
damaged regions into two parts. One consists of small damaged regions and the other consists
of large damaged regions on the image. We inpaint the pixel in the small damaged regions by
computing the average of undamaged neighboring pixels surrounding it. For the large
damaged regions, we search the most similar texture to synthesize it. Simultaneously, we
apply the FFT block matching algorithm to speedup the time of searching similar textures.
The proposed method is computational efficient. Experimental results look “reasonable” to

the human eye.

il

=

A AR Al B BAE R B B R AT ik

FOREAFIER S FE F A R EAL L LT RG o AR
%

e

¥

BOSEIL S & SHMHI s - XA 4K

<4

. o

{ 423

E

ABERHELFTEL PR ASE LI AKYFLE B G 8

4

ik RV ek E AR T 2 EERE FRERS
HPARE ags &R EALRY S > T4R5E o 13 AR B RS Y
mELFE e

WP 3 2 PR A MG NFA B 4 A PRA 2 S G R A

TEM GO LS AR P AGR R P

EEE

At Wz Rl A FFAPE 2 AT

il

CONTENTS

ABSTRACT (CHINESE) ...ttt sttt ettt sttt st et st enne e i
ABSTRACT (ENGLISH). ... veeveeeeeeeeeeeeee e seseeeeeseeeesseess e eessesesseesessssesssesseseesesseseesseeessesessees ii
ACKNOWLEDGEMENTouiiitiititiieeieeee ettt sttt sttt s enae e il
CONTENTS ettt ettt e ettt e e e e bt e e e e baeeeeesstaeeeasnsseeeeassaeeeeassseeeeenssseaeenssseens v
LIST OF FIGURES ...ttt ettt sttt sttt ae e vii
LIST OF TABLESottt e e ettt e e e tae e e et e e e enbaaeeessssaeeeessaeaeennssaeens xi
(05 N Sl 1 2 S SRR 1
L1 MIOEIVALION .ttt ettt et sb e et e st e e saeeeaeees 1

1.2 Related WOTKS.cc.eieiiieiiee et ettt ettt ettt e eneeas 3

1.3 ThesiS OrganiZatiOnccueeeviiiiieeniienieesieesieeereeseeeseesseesseessseesseesssessseessseesseesssesnses 4
CHAPTER 2.l o E B NI WG o eieeccee e ceeeneeeeesaene e e 6
2.1 Review of Digital Image INpaintingcccoecvierieeieeniienieeiieeieeiee e eiee e eveeseve e 6
2.1.1 Image Inpainting Based on Partial Differential Equation (PDE) 6

2.1.1.1 How to calculate |:(i,j) ettt e e et e ettt e et e e ba e s e e enraennns 7

2.1.1.2 How to calculate 5]—_)n(i,) 2 e 8

2.1.1.3 How to calculate -E}(i’) e 9

2.1.1.4 How to calculate ‘V| "G, j)‘ ettt et b e et reenns 9
2.1.2 Fast Digital Image INpainting............ccceecveevvieriieriienieeiieeie e evee e v 10
2. 1.3 TeXtUIE SYNRESIS..c..eeutiriiiiiiiiiiieteeteett ettt sttt st 12
2.1.4 Priority TeXture SYNthESiS.......cccuveriieriierieeiieeieeieesee et 14

2.1.4.1 How to calculate P(P)? ...ccoueeriiiieeiieeeeeeee e 16

v

2.1.4.2 How to calculate 1 D s 17

2.1.4.3 How to calculate V | t ettt ettt ettt e s e r e renaenns 17

2.1.4.4 How to update confidence value ?.........cccoevieniieiinniiiiienieeieeeeen 18

2.2 BlOCK MAtCRINGveiiiiiiieciiecieece ettt ettt st essbeensaesaaeenseeens 19
2.2.1 SAD ANd SSD ...ttt aeeaeenaen 19
2.2.2 The FFT Block Matching Algorithmcccceevieriieniieniiciiecieeieeceeeee 20
2.2.2.1 Resize input image to include a zero pad.........ccoeeeeveiiiieniieiieeiee. 20

2.2.2.2 Windowed Sum Squared Table...........ccccccvveriiiiienieniieieeeeeeeeeeen 21

2.2.2.3 Per-Block Convolution Sum.........cccceevieiiienieniieienie e 22

2.4 Mathematical MOIPhOLOZYcccviiiiiiiieiieiieeieeeee ettt 24
2.4.1 Basic defiNItiONcc.eeiuiieiieiiieiiiieiiie ettt et 25
2.4.2 Morphological OPEIatioNS........cc.eerereriiriieeirieeiieeieeeieeieeeeeereesereeseeseeeesseenes 25
2.4.2.1 Dilation and EroSi0n.......ccceeeeieiieriienienieeieeeie e 25

2.4.2.2 Closing and OPENINGcccoveerurerreerieenreeneenieeseesreesseesseesseesssesnsens 26

2.4.3 Extension to Gray-Scale Imagesccceeveriiniiiiinieneiincneceeeeeee s 27
2.4.4 Morphological Gradientc..cccueevuieriiiiiiienieeiiesie ettt 29

(O] 5 1N o 1 2 G PR SR 31
3.1 Overview of Our Image Inpainting SYSteM..........ccceevvuieriierireiienieeieeeie e 31
3.2 Splitting the damaged regions into several small and large parts........c...ccccevueeuennne 34
3.3 Using “Fast Digital Image Inpainting” to inpaint these small damaged parts 36
3.4 Using “Priority Texture Synthesis” to inpaint these large damaged parts.................. 39
3.5 SUMMATION ...ttt ettt et e e et e bt et e eate bt e e e sete bt enseeneenaeenee 40
CHAPTER 4ottt ettt ettt et et e s e et eesaesseenseenaenseenseensenseenes 41
4.1 Experimental ENVITONMENT.........cccuieriiriiieiiieiieeiiecie e eeeereeseveeieeseeeveessneeseesaneens 41
4.2 Experimental RESUILS........cooouiiiiiiiiiii e 43

4.2.1 Comparison of inpainting reSults...........coceeverreriineeiienienineneeeeieseeee s 43

4.2.2 Comparison of PSNR ValUes.........ccccocvieiiiiiiiiiiiiecieceeie e 56

4.2.3 Comparison of RUNNing TIMeccceevueriiriiiiniiniiiiinecenecseceetese e 57
CHAPTER 5 ettt sttt sttt ettt e sttt s et et enteeaeenaeenee 59
5.1 CONCIUSIONS .ttt ettt ettt ettt et et e et esbteeabeesaeeesbeesseeenseesaeeenseeees 59

5.2 FULUIE WOTKS ...ttt sttt ettt st sae e 60
RETEIEIICES ...ttt et ettt ettt e et e e s bt e et essteenbeesaeeenbeesseeeaneas 61

vi

LIST OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

I-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

Restoration of photographs...........cceevieeeiiiiiieiiieiieeeee e 2
ReMOVAL OF tIEES ..ottt e 2
Removal 0f @ @Iloooviiiiiieiieieceee e 2
Removal of SUDTILIESooiuiiiiieiiieieeeee e 2
Applications of IMage COAING.......ccveeriieiiieriieiieiie ettt ens 3
Special effECtS......coouiiiiiiiii e 3
The figure describes what is Isophote Directionscceeeveeiievieniieenieennnnns 7
Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator.............. 9

(top) Pseudocode for the fast inpainting algorithm. (bottom) Two diffusion
kernels used with the algorithm............cooooiiiiiiiiii 11
Removal of SUDLILIESccoiiiiiiiiiiiiic e 11
Lena : (left) Picture with locally small damaged regions. (right) Restored
image obtained with fast inpainting algorithm.c..cccovviveiiiniieieeneen. 12
Lena : (left) Picture with large damaged regions. (right) Restored image
obtained with fast inpainting algorithm............cccceeviiriiieniiiniiieieceeeee e, 12
Texture Synthesis Procedurecoccooerieiiiiiniininiiiicenceceeecseee e 13

Lena : (left) Picture with large damaged regions. (right) Restored image

obtained with texture synthesis algorithm.ccccoooiiiiiniiiiiinie, 14
The pseudocode of the exemplar-based texture synthesis algorithm. 15
Structure propagation by exemplar-based texture synthesis.c.cccceecvenee 15
NOLAtION AIAZTAIMN. ..eevvvieiiieieieeiieiie et eete et eseeereesteeebeeeeesnaeeseessseeseessseenseenns 16
A bidimensional Gaussion Kernel filter...........ccocceviiiiiniiiiiiiiiee 17
Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator............ 18
FFT Block Matching algorithm.ccccooiiiiiiiiiiiiieeeeeee 20
A simple example for computing SAT........cceeviieiiiriiieiieeieeeee e 22

vii

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2-16

2-17

2-18

2-19

2-20

2-21

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

Examples of structuring elements.............cocoeveeniiiiiiniiienienieeeeee e 24
Examples of (a) Translation and (b) Reflectionccccooevieieienenenenee 25
(a). Set A. (b) Structuring element B. (c¢). The Dilation of A by B. (d). The

Erosion of A by B. (e). The Closing of A by B. (f). The Opening of A by B....27

(a) The original of Lena image (b) Dilation of Lena image (c) Erosion of Lena

(a) The original of Lena image (b) Morphological gradient of Lena image30

A lena image with several small and large damaged regions.............cccoceueeee. 32
Overview of Our Image Inpainting SyStem..........cccceeveireeienieniesienienenenene 33
(a) Set A (b) Structuring element B (c) The Opening of Aby B.........coceo..... 35

(a) A binary image : A (b) The Opening of A by 9*9 structuring element. 35
(a) A damaged elliptic image (b) Splits the damaged regions into two parts...36
(a) A damaged lena image (b) Splits the damaged regions into two parts........ 36
The pseudocode of the algorithmccocveviiiiiieiiiiiie e, 37
The step by step example shows how the algorithm inpaints these small
damMAGEd TEZIOMNS. ..evvierieieiieiieeie ettt ettt ettt e et e e e staeebeesaaeesbeessneensees 38
(a) A Splitted elliptic image (b) The small damaged parts “Green” has been
inpainted well by this algorithm.cccccoeviiiiiiiiini e, 39
(a) A Splitted lena image (b) The small damaged parts “Yellow” has been
inpainted well by this algorithm.cccccoeviiiiiiiniiiii e, 39
(a) An elliptic image followed by Fig. 3-9. b (b) The large damaged parts
“Blue” has been inpainted well by priority texture synthesis.............ccccuvnnee. 40
(a) A lena image followed by Fig. 3-10. b (b) The large damaged parts “Blue”
has been inpainted well by priority texture synthesis...........cccceeveveervenveeneenne. 40

viii

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4-2

4-3

4-4

4-5

4-7

4-8

4-9

4-10

There are some test images. Top images of every class are original images.
Bottom images of every class are damaged images.ccoeeveevveecieenieenenne. 43
(a) The result of Fast Digital Image Inpainting; (b) The intermediate inpainting
1<) 01U 45
(a) The result of Priority Texture Synthesis; (b) The intermediate inpainting

1<) 01U 46
(a) Splitting damaged regions into two parts by using “opening”; (b) The result
of the proposed method. (¢) The intermediate inpainting steps.c..ccceuuev. 48
(a) The result of Fast Digital Image Inpainting. (b) The intermediate inpainting
1<) 01T 49
(a) The result of Priority Texture Synthesis. (b) The intermediate inpainting
STEPS. cvveeeevrererrvrrenrereerreeod@PrreeeeessaBlelpcveeeerveeessesessesesssenssssesessaessssansessasssssans 50
(a) Splitting damaged regions into two parts by using “opening”; (b) The result
of the proposed method. (¢) The intermediate inpainting steps.ccceveee 51
(a) Original image (b) Damaged image (c) The inpainting result of Fast Digital
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e)
The inpainting result of the proposed method.cccccoeiiiiiiiiiiniiiiie. 52
(a) Original image (b) Damaged image (c) The inpainting result of Fast Digital
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e)
The inpainting result of the proposed method.cccoeevieviiiiiiniiciieiee, 53
(a) Original image (b) Damaged image (c) The inpainting result of Fast Digital
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e)
The inpainting result of the proposed method.cccccoeiiiiiiiiiiniiniie. 53
(a) Original image (b) Damaged image (c) The inpainting result of Fast Digital
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e)
The inpainting result of the proposed method..ccceeeieviieiiiniiieiieiee. 54

X

Fig. 4- 12

Fig. 4- 13

Fig. 4- 14

Fig. 4- 15

Removing large objects from images. (a) Original image (b) Mark large objects
which we want to remove (¢) The removal of trees.ccccoeeveevieeiienieenenne. 54
Removing large objects from images. (a) Original image (b) Mark large objects
which we want to remove (c) The removal of the lighthouse and fisherman. .55
Removing several objects from images.ccceevueerieeriieniiieiienie e 56

Special effects (my cousin and M)cceeecereriieriieiienie e 56

LIST OF TABLES

Table 4- 1

Table 4- 2

Comparison of PSNR Values..........ccccovviiiiiiniiiniieiecceeee e

Comparison of RUNning TIMeccceevueriiniiiiiniiiieienieeneeseeeeeeseee e

X1

CHAPTER 1

Introduction

1.1 Motivation

The modification of images in a way that is non-detectable for an observer who does not
know the original image is a practice as old as artistic creation itself. Medieval artwork started
to be restored as early as the Renaissance. This practice is called retouching or inpainting.
Traditionally, skilled artists have performed image inpainting manually. With the rapid
development of digital life, the automatic inpainting techniques are developed.

The applications of image inpainting include the restoration of photographs (Fig. 1-1),
films and paintings, the removal of objects (Fig. 1-2 to 1-3) and occlusions, such as text,
subtitles (Fig. 1-4), stamps and publicity from images, image coding [5] (The objective is to
retain only the information which cannot be correctly reconstructed “minute but important
details” and to remove as much as possible from the remainder of the image. After data has
been transmitted, using inpainting method to reconstruct the image. Fig. 1-5 shows an
example. It reduces about 25% data transmission). In addition, inpainting can also be used to
produce special effects (Fig. 1-6) and attack against visible watermarking [17].

Because the applications of image inpainting are living, how to effectively and correctly
inpaint an unknown region has become an important research issue. In other words, image
inpainting has become a paramount research topic in recent year. We are interested in
knowing the well-known inpainting methods. The basic idea is to use undamaged neighboring
information to inpaint damaged regions. In section 1.2, we will introduce several well-known
inpainting methods and then direct several defects of them. In section 1.3, we will propose a

new method that can improve these defects and get better performance.

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=defect
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=defect

Fig. 1- 4 Removal of subtitles

2

Fig. 1- 6 Special effects

1.2 Related Works

There are several researches of image inpainting. Bertalmio et al [1] have introduced a
technique for digital inpainting of still images that produces very impressive results. Based on
partial differential equations (PDEs), the algorithm fills in the damaged areas to be inpainted
by propagating information from the outside of the masked region along level lines
(Isophotes).

However, the algorithm usually requires several minutes on current personal computers
for the inpainting of relatively small areas. Such a time is unacceptable for interactive sessions
and motivated Manuel M. Oliveira, Brian Bowen, Richard McKenna and Yu-Sung Chang [2]

to design a simpler and faster algorithm capable of producing similar results in just a few

seconds. It uses a weighted average kernel that only considers contributions from the
neighboring pixels. Efficiency of the fast inpainting algorithm is two to three orders of
magnitude faster than those using partial differential equations. But it constraints the regions
to be inpainted must be locally small. If the damaged regions are not small enough, some
possibly important information might be discarded. Results might be blurred.

For inpainting large damaged regions well, Efros and Leung et al. [3] proposed a texture
synthesis algorithm to solve the problem. In their algorithm, the lost region is filled-in pixel
by pixel with the texture from its neighbors. This algorithm is considerably faster when using
the improvements in [10], [18], [19], [20].

Inspired by the work of Efros and Leung [3], Criminisi, Pérez and Toyama proposed an
exemplar-based texture synthesis algorithm [7] for removing/inpainting large objects from
digital images. Their approach employs an exemplar-based texture synthesis technique
modulated by a unified scheme for determining the fill order of the target region. Pixels
maintain a confidence value, which together with image isophotes, influence their fill priority.

Viewing from above inpainting techniques, “Fast Digital Image Inpainting” [2] can fast
inpaint small damaged regions, but it can’t work well for large damaged regions. “Region
Filling and Object Removal by Exemplar-Based Image Inpainting” is also called “Priority
Texture Synthesis” [7]. It can both inpaint small and large damaged regions well, but it spend
too much time. Therefore, how to correctly and quickly inpaint these images with several

small and large damaged regions becomes the goal of our paper.

1.3 Thesis Organization

In this thesis, we propose an image inpainting method that will combine “Fast Digital
Image Inpainting” and “Priority Texture Synthesis”. The remainder of this thesis is organized
as follows. In chapter 2, we will survey the research of image inpainting and discuss some
issues needed to concern. Then, we will describe how to evaluate the similarity value between

4

two textures. Finally, we will survey the concept of morphological operations. In chapter 3,
we will present our method which uses the morphological operator “opening” to split the
damaged regions of images into several small and large parts according to the structuring
element which users set up. After splitting, we modify the “Fast Digital Image Inpainting”
algorithm and apply it to inpaint small damaged parts. Then, we use “Priority Texture
Synthesis” to inpaint large damaged parts and add the FFT block matching algorithm to
speedup the time of searching similar textures. In chapter 4, we will experiment with different
kinds of damaged images. The proposed method can efficiently reduce the cost of
computation. Experimental results look “reasonable” to the human eye. Then, we will
compare the performance of our method with other methods. In chapter 5, the conclusion and

future work will be stated.

CHAPTER 2

Previous Research

In this chapter, we will describe several related researches about image inpainting in
section 2.1. In section 2.2, we will describe the block matching problem and introduce a faster
algorithm for solving it. In section 2.3, the concept of PSNR will be introduced. Basic

morphological operators will be described in section 2.4.

2.1 Review of Digital Image Inpainting

The image inpainting methods are widely used in various fields such as wireless
communication, reverting deterioration of photographs, image coding (e.g., recovering lost
blocks) and special effects (e.g., removal of objects), etc. The basic idea behind the methods
that have been proposed in the literature is to fill-in these regions with available information
from their surroundings. In this section, we will describe some existed image inpainting

algorithms.

2.1.1 Image Inpainting Based on Partial Differential Equation (PDE)

Bertalmio et al [1] pioneered a digital image-inpainting algorithm based on partial
differential equations (PDESs). For the damaged image, it fills in the areas to be inpainted by
propagating information from the outside of the masked region along level lines (Isophotes).
Isophote directions are obtained by computing at each pixel along the inpainting contour a
discretized gradient vector (it gives the direction of largest spatial change) and by rotating the
resulting vector by 90 degrees (Fig. 2-1 [1]). This intends to propagate information while
preserving edges. A 2-D Laplacian [21] is used to locally estimate the variation in color

smoothness and such variation is propagated along the isophote direction [1]. After every few

step of the inpainting process, the algorithm runs a few diffusion iterations to smooth the

inpainted region.

Isophotes

Fig. 2- 1 The figure describes what is Isophote Directions .
Propagation direction as the normal to the signed

distance to the boundary of the region to be inpainted.

The algorithm of that form can be written as :

1™ G =1"0D+At] G0, VG, i) e (2.1)

where the superindex n denotes the inpainting “time”, (i, J) are the pixel coordinates, At is

the rate of improvement and | tn(i, j) stands for the update of the image | "(i, j) . Note that

the evolution equation runs only inside €, the region to be inpainted.

With this equation, the image | ! (i, J) is an improved version of | "(i, j), with the
“improvement” given by | tn(i, J) - As n increases, we achieve a better image. In section

2.1.1.1, we will introduce how to design the update | :(i, j).

2.1.1.1 How to calculate | (i, j) ?

| :(i, J) stands for the update of the image | "(i, j) . We use partial differential

equations to compute it. It can be denoted as :

—_ =

I G D)= "D N"GD 2.2)

—>

where é]_n (i, j) is a measure of the change in the information |_n (i, j) . With this equation,

we estimate the information |_r1 (i, J) of our image and compute its change along the

—>

N direction. Note that at steady state, that is, when the equation (2.1) converges,

—>

(i,j)=1]"(,j) and from (2.1) and (2.2) we have that é]?n(i, DN Ni,jpH=o0,

I n+1

—>

meaning exactly that the information L has been propagated in the direction N - For more
details, we now rewrite the equation (2.2) as :

1260 =| gL N0 GGy @3)

‘W(i,j,n)

On the implementation, we can use discrete equation borrows from the numerical

analysis literature. See Section 2.1.1.2, Section 2.1.1.3 and Section 2.1.1.4.

—>

2.1.1.2 How to calculate é]_”(i, i ?
S D= (LG4 - L L D L iDL G-D) @)
LG =156 D+, D) (2.5)
As mentioned above, é]T N(i, j) is a measure of the change in the information
|_n (i,]). Let |_n (i, J) be an image smoothness estimator. For this purpose we may use a
simple discrete implementation of the Laplacian: |_n D=1 :X(i, D+ ;y(i, J). Other

smoothness estimators might be used, though satisfactory results were already obtained with

this very simple selection.

Nain
N G jn)

2.1.1.3 How to calculate

Naim Fran)

N {(136.D)+0156.9)

means the isophote direction. We can compute | Q(l, J) and | r)'/(l, j)

(2.6)

NG
NG i)

by using some gradient operators (Fig. 2-2)

-1 -1 -1 -1 0 1
0 0 0 -1 0 1
1 1 1 -1 0 1
Ix Iy
a
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
Ix IY
b

Fig. 2- 2 Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator.

2.1.1.4 How to calculate ‘V| n(i,j)‘ ?

n n n n n
\/ Xbm)z+(l XfM)Z+(I ybm)z"'(l ny)Z,Whenﬂ >0

‘VI (] . (2.7)
\/ |” be)Z+(| r)lle)er(I gfm)z,whenﬂ <0
B D)= 56 D) N G.im 23)
‘N @, j,n)

‘V| "G, j)‘ stands for the gradient of the image. ﬂ " is the projection of 5] onto the

— —

normalized vector N - that is, we compute the change of L along the direction of N

Finally, we multiply IB | by a slope-limited version of the norm of the gradient of the image.

A central differences realization would turn the scheme unstable, and that is the reason for
using slope-limiters. The subindexes b and f denote backward and forward differences
respectively, while the subindexes m and M denote the minimum or maximum. See [27] for

details.

2.1.2 Fast Digital Image Inpainting

A fast inpainting algorithm was proposed in [2], based on image diffusion kernels. Let Q
be a small area to be inpainted. The simplest version of the algorithm consists of initializing
by clearing its color information and repeatedly convolving the region to be inpainted with a
diffusion kernel. It uses a weighted average kernel that only considers contributions from the
neighboring pixels. Fig. 2-3 [2] shows the pseudocode of the algorithm and two diffusion

kernels.

10

Initialize Q ;
for (iter =0; iter < num_iteration; iter++)

convolve masked regions with kernel,;

alb|a clc|c
b|O0|Db c c
albl|a clc|ec

Fig. 2- 3 (top) Pseudocode for the fast inpainting algorithm. (bottom) Two

diffusion kernels used with the algorithm.

a=0.073235,b=0.176765, ¢ = 0.125.

Efficiency of the fast inpainting algorithm [2] is two to three orders of magnitude faster
than those using partial differential equations. But it constraints the regions to be inpainted
must be locally small. If the damaged regions are not small enough, some possibly important
information might be discarded. Results might be blurred.

We use the fast inpainting algorithm to inpaint the following pictures. Fig. 2-4 and 2-5
are the examples of inpainting locally small damaged regions. The results look good. Fig. 2-6

is the example of inpainting large damaged regions. The result is blurred.

Fig. 2- 4 Removal of subtitles

11

Fig. 2- 5 Lena : (left) Picture with locally small damaged regions. (right) Restored image

obtained with fast inpainting algorithm.

Fig. 2- 6 Lena : (left) Picture with large damaged regions. (right) Restored image obtained

with fast inpainting algorithm.

2.1.3 Texture Synthesis
For inpainting large damaged regions well, Efros and Leung et al. [3] proposed an
algorithm to solve the problem. In this algorithm, the lost region is filled-in pixel by pixel
with the texture from its neighbors. As illustrated in Fig. 2-7 [3], when filling the pixel
p(, j), the algorithm first defines a 3x3 template | t Nextto p(,), and looks fora |,

A

in the available neighboring blocks such that d (] o |) is minimized, where d(| o | t) 1S

12

defined as the normalized sum of squared differences (SSD) metric (More details can be
found in section 2.2). Once the nearest template is found, we copy the pixel (candidate) in the
correspondent position to our pixel (current pixel) to be filled-in. Fig. 2-8 shows the
algorithm’s results. This algorithm is considerably faster when using the improvements in

[10], [18], [19], [20].

Best match

N

Template .
Current pixel ~—

/ Candidate

Lost Block

8-neighborhood of lost block

Fig. 2- 7 Texture Synthesis Procedure

13

Fig. 2- 8 Lena : (left) Picture with large damaged regions. (right) Restored image obtained
with texture synthesis algorithm.

2.1.4 Priority Texture Synthesis

Inspired by the work of Efros and Leung, Criminisi, Pérez and Toyama proposed an
exemplar-based texture synthesis algorithm [7] for removing large objects from digital images.
Their approach employs an exemplar-based texture synthesis technique modulated by a
unified scheme for determining the fill order of the target region. Pixels maintain a confidence
value, which together with image isophotes, influence their fill priority. Figure 2-9 [6] shows

the pseudocode of the algorithm.

14

The algorithm
1. Manually select region Q for removal (Fig. 2-10 a)

2. Repeat until region Q is empty
1. Compute boundary dQ and priorities P(p)
2. Propagate texture and structure information
1. Find patch Wp on dQ with highest priority P(p) (Fig. 2-10 b)
2. Find patch Wq in ® which minimizes SSD(¥p, ¥q) (Fig. 2-10 ¢)
3. Copy ¥q to ¥p (Fig. 2-10 d)

3. Update confidence values (More details can be found in section 2.1.4.4)

Fig. 2- 9 The pseudocode of the exemplar-based texture synthesis algorithm.

(b ,Source region

Fig. 2- 10 Structure propagation by exemplar-based texture synthesis.

Fig. 2-10 [7] shows the procedure of structure propagation. (a) Original image, with the

15

target region Q) , its contour X2, and the source region @ clearly marked. (b) We want to

synthesize the area delimited by the patch Wp centered on the point p € X2. (¢) The most
likely candidate matches for Wp lie along the boundary between the two textures in the source

region, e.g., \Ilq, and \JP e (d) The best-matching patch in the candidates set has been

copied into the position occupied by ¥p, thus achieving partial filling of €. Notice that both
texture and structure (the separating line) have been propagated inside the target region. The

target region) has, now, shrunken and its front & has assumed a different shape.

2.1.4.1 How to calculate P(p)?

Fig. 2- 11 Notation diagram.

Fig. 2-11 shows the notation diagram [7]. Given a patch Wq centered at the point p for

some p e dQ, N, s the normal to the contour dQ of the target region Q and V |* is
p p g g b

the isophote (direction and intensity) at point p. The entire image is denoted with 1. We
define its priority P(p) as the product of two terms P(p) = C(p) D(p), We call C(p) the

confidence term and D(p) the data term, and they are defined as follows:

16

Z qe‘Ppm(I—Q)C (q)

C(p)= ETY (2.9)
V1.n,l
D(p)= I; n, (2.10)

where is |Pp | the area of ¥p, « 1is a normalization factor (e.g., o =255 for a typical

grey-level image), n p (More details can be found in section 2.1.4.2) is a unit vector

orthogonal to the front dQ in the point p, and 1 (More details can be found in section
2.1.4.3) denotes the orthogonal operator. The priority P(p) is computed for every border patch,

with distinct patches for each pixel on the boundary of the target region. During initialization,

the function C(p) is setto C(p) =0 VpeQ andC(p)=1 Vpel-Q.

2.1.4.2 How to calculate np ?

Given a point p € dQ, the normal direction n p 1s computed as follows : 1) the positions

of the “control” points of d(are filtered via a bidimensional Gaussian kernel (Fig. 2-12) and,

2) n p is estimated as the unit vector orthogonal to the line through the preceding and the

successive points in the list. Alternative implementation may make use of curve model fitting

[23].
0[-110 01010

01210 L1 [2]-1

OF1 (O 01010

GX Gy

Fig. 2- 12 A bidimensional Gaussion Kernel filter

2.1.4.3 How to calculate V | t ?

17

V] t denotes the orthogonal gradient vector. The gradient V |) is computed as the
maximum value of the image gradient in Wp N 1. Robust filtering techniques may also be

employed here, such as using some gradient operators (Fig. 2-13). After computing V | 0

(-Gy, Gx) is the orthogonal gradient vector V | t .

-1 -1 | -1 -1 0 1
0 0 0 -1 0 1
1 1 1 -1 0 1
Gx Gy
a
-1 2 | -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
Gx Gy
b

Fig. 2- 13 Some gradient operators. (a) is Prewitt operator. (b) is Sobel operator.

2.1.4.4 How to update confidence value ?

After the patch LPp has been filled with new pixel values, the confidence C(p) is

updated in the area delimited by LPp , as follows:
C(p)=C(p), Vpe‘{’;mQ (2.11)
This simple update rule allows us to measure the relative confidence of patches on the fill

18

front without image-specific parameters. As filling proceeds, confidence values decay,
indicating that we are less sure of the color values of pixels near the center of the target

region.

2.2 Block Matching

The block matching problem is one that occurs in various fields of applications, such as
the image processing, multimedia and vision fields. The basic idea for solving the block
matching problem is to minimize some measure of similarity between a template block of
pixels in the current image to all candidate blocks in the reference image within a given
search range. In this section, we will describe a new algorithm [10] for solving the block
matching problem which is independent of image content and is faster than other full-search

methods.

2.2.1 SAD and SSD

We first introduce two most popular similarity measures. They are defined as :

B-1 B-1

SAD.., =

fap-f G+rui+v) (2.12)

=0

RO) R P (RRVRT) ARCREY

=0
-1

@
vy}

SS D(u,v)

f=}
(=]

SAD means the sum of absolute difference and SSD means the sum of squared difference. B
is a block size and (u, v) is a displacement vector for a candidate block relative to the template
block. Lets compare the difference between SAD (2.12) and SSD (2.13). Because of its lack
of multiplications, the SAD metric is far more convenient for use in hardware designs, and is
therefore used almost exclusively. However, minimizing the SSD metric corresponds to
maximizing the PSNR (More details can be found in section 2.3). If a maximum PSNR is
desired, SSD should be the metric of choice. Therefore, we choose SSD metric to measure

similarity when texture synthesizing.

19

2.2.2 The FFT Block Matching Algorithm

Steven L. Kilthau, Mark S. Drew, and Torsten Moller et al. [10] proposed an FFT Block
matching algorithm. It is faster than other full-search methods. In order to maximize the
PSNR, the algorithm minimizes the SSD metric given in Eq.2.13. Following a trivial

expansion, the mathematical definition of the per-block computation is given by:

B-1 B-1

mina. S5 f (L)5+ F 0)21, D) G j+v)| @19

Since the term f t(l) J)2 appears across the entire minimum, it can be removed from the

sum without affecting the resulting solution. Removing this term and separating the sum

leaves us with the following equation:

B-1 B-1

MiN, 2. ft_l(i+u,j+V)2—2_ SEapf (rujry @15

- -1 B-1
Jj=0 i=0 j=0 i=0

Finally, we employ a novel data structure called the Windowed-Sum-Squared-Table and use
the fast Fourier transform (FFT) in its computation of the sum squared difference (SSD)
metric. Figure 2-14 shows the three basic steps of the FFT Block Matching algorithm.
The Algorithm
1. Resize input image to include a zero pad
(More details can be found in section 2.2.2.1)
2. Compute the windowed sum squared table
(More details can be found in section 2.2.2.2)
3. Compute a per-block convolution sum

(More details can be found in section 2.2.2.3)
Fig. 2- 14 FFT Block Matching algorithm.

2.2.2.1 Resize input image to include a zero pad

20

Given a search range of =P we apply a zero pad of P pixels around the entire image. This
simple preprocess eliminates the need for conditionals within the innermost loops of our
algorithm and greatly increases its speed. In other words, it is simply to allow convenient
calculation of the SSD metric without using conditionals for those search locations that lie

outside of the dimensions of the original image.

2.2.2.2 Windowed Sum Squared Table

We use a variant of the well known summed area table (SAT), introduced in [24]. Given

an input image f , a summed area table is a new image f SAT such that

foar (b)) =2k<iZi<j F (kD) (2.16)
Summed area tables can be very easily computed by applying the following recurrence, being

careful to set T (I, J) to zero when either of the indices is negative:

fsar @, j):[f (I, D+ Fgup (=L D+ F gpr (1 J-D—f o5 (11, j—l)] (2.17)

Fig. 2-15 is a simple example for computing SAT.

21

A C
(-1.))
(-1,)-1)
B D
(i.-1) (i.))

Fig. 2- 15 A simple example for computing SAT.
fonr (I,])=fG.))+(A+C)+(A+B)-A=D+A+B+C
The WSST differs from the SAT in that each pixel needs to represent a sum of squares,

where the sum extends only over the last B x B sub-image (window), with B the block size.
- - - = 2 - - - = - -
fosr (1, J):[f (L))" +F gor (1= D+ g (] -D—f o (11, J—l)] (2.18)

. j i
f L= % DR I CAY
wsst (1) 5= B+l t=i_B+l &0

[f SST (i’ J)]+[f SST(_l’ J)_ f SST(i_B’ J)]+[f SST (ia_l)_ f SST(i’ j_B)]"‘
[o7 (~L=D)+f o7 (i=-B, j—B)— f o (i-B,~ 1)~ f o; (-1, j—B)] (2.19)

2.2.2.3 Per-Block Convolution Sum

We show that computation of the second term in Eq.2.15 amounts to the evaluation of a

correlation sum for each template block, which we evaluate as a convolution sum.

B-1 B-1

> fanf +uj+v (2.20)

=0 =0

—

22

In order to efficiently compute the correlation, we will convert it to a convolution (Eq.2.20)
and then use the Fast Fourier transform. For each template block, we create two images of
size (2P+B)*(2P+B). The first image, template , corresponds to the template block and is
computed by simply multiplying the block by 2, reversing the pixels, and zero padding to the
correct size. The pixel reversal effectively changes the correlation sum into an equivalent
convolution sum. The second image, candidates , corresponds to the square containing all
pixels of all candidate blocks in the search range. This square can be copied directly from the
reference image. Given these two images, we can compute a new image, result , according to
the following formula:

B-1 B-1

> ft(i, i) fH(i +U, j +V) = result = FFT "' (FFT (template) FFT (candidates)) (2.21)

j=0 i=

2.3 PSNR

Signal-to-noise (SNR) measures are estimates of the quality of reconstructed images
compared with their original images. The basic idea is to compute a single number that
reflects the quality of a reconstructed image. Reconstructed images with higher metrics are
judged better. The actual metric we will compute is the peak-signal-to-reconstructed image
measure which is called PSNR. The higher measures might mean better quality. Assume we
are given a source image f(i,j) that contains N by N pixels and a reconstructed image F(i,j)
which is reconstructed by inpainting a damaged version of f(i,j). The pixel values {{(i,j) range
between black (0) and white (255). We compute the mean squared error (MSE) of the

reconstructed image as follows :

MSE= (2.22)

St i) -Fa
N2

The root mean squared error (RMSE) is the square root of MSE :

RMSEz\/Z[f(i’jI)\I: P i) =JMSE (2.23)

23

PSNR in decibels (dB) is computed as follows:

255°
MSE

PSNR =10 log() (2.24)

2.4 Mathematical Morphology

Mathematical morphology is a tool for extracting image components that are useful in
the representation and description of region shapes, such as boundaries, skeletons, and convex
hulls. Mathematical morphology is a set-theoretic method. Sets in mathematical morphology
represent the shapes of objects in an image. The operations of mathematical morphology were
originally defined as set operations and shown to be useful for image processing.

In general, morphological approach is based upon binary images. In binary images,
each pixel can be viewed as an element in Z*. Gray-scale digital images can be represented
as sets whose components are in Z>, two components are the coordinates of a pixel, and the
third corresponds to its discrete intensity value. The morphological operations input a source
image and a structuring element which is another image usually smaller than the source image.
The structuring element is a predetermined geometric shape, and there are some common

structuring elements as shown in Fig. 2-16.

Fig. 2- 16 Examples of structuring elements

Here, we will discuss morphological operators in binary images [25, 26]. Given a source

image A and a structuring element B in Z~.

24

2.4.1 Basic definition

The Translation of A by the point X in Z*, denoted A, , is defined by
A ={a+x|vVaeAl=A+x (2.25)

where the plus sign refers to vector addition.

And the Reflection of B, denoted B, is defined as
B={-bb<B) (2.26)

The examples of Translation and Reflection are shown in Fig. 2-17.
A A

v

A Q/} /]

N

(@) (b)

Fig. 2- 17 Examples of (a) Translation and (b) Reflection

2.4.2 Morphological operations
Here, we introduced two of the fundamental morphology operations : Dilation and
Erosion used in binary images, and introduced two operators : Closing and opening that

extended from Dilation and Erosion.

2.4.2.1 Dilation and Erosion

The Dilation of A by B, denoted Dy (A), is defined as

Dy (A)=A®B={x|B+XxnA=g) (2.27)

Where B is the structuring element.

And the Erosion of A by B, denoted E,(A), is defined as
E;(A)=A6B={x|B+xc A} (2.28)

25

The examples of Dilation and Erosion are shown in Fig. 2-18 (c) and (d). The dilation of A by

B is the set of all X displacements such that B and A overlap by at least one nonzero

element. The erosion of A by B is the set of all points X such that B translated by X is

contained in A.

2.4.2.2 Closing and Opening

The Closing of set A by structuring element B, denoted C, (A) , is defined as
Cy(A)=AeB=E,(D,(A))=(A®B)oB (2.29)
And the Opening of set A by structuring element B, denoted O, (A), is defined as
0y (A)=A-B=D,(E,(A))=(AcB)®B (2.30)
The examples of Closing and Opening are shown in Fig. 2-18 (e) and (f). The closing of A by

B is simply the dilation of A by B, followed by the erosion of the result by B . The opening of

A by B is simply the erosion of A by B, followed by the dilation of the result by B.

26

[
>

v

(a). Set A (b). Structuring element B

T ;
=

\| > >
(c). Dilation (d). Erosion
A A
Y
T u
I \ I
N /8 E "
(e). Closing (f). Opening
Fig. 2-18 (a). Set A. (b) Structuring element B.

(c). The Dilation of Aby B. (d). The Erosion of A by B.
(e). The Closing of Aby B. (f). The Opening of A by B.

2.4.3 Extension to Gray-Scale Images

In this section we extend to gray-level images the basic operations of dilation, and
erosion. Throughout the discussions that follow, we deal with digital image functions of the
forms f (x,y)andb(x,y), where f(X,y)is the gray-scale image andb(X,y)is a structuring
element.

Gray-Scale dilation of f by b, denoted by f @b, is define as :
(f ®@b)(s,t) =max{f(s=xt=y)+b(x. Y)[(s-X).(t~y) e Dyi(x.y)e D} (23D

Where D, and D, are the domain of f and b, respectively. As before, b is the structuring

27

element of the morphological process but note that b is now a function rather than a set.
Because dilation is based on choosing the maximum value of f + b in a neighborhood defined
by the shape of the structuring element, the general effect of performing dilation on a
gray-scale image is two-fold: (1) if all the values of the structuring element are positive, the
output image tends to be brighter than the input; and (2) dark details either are reduced or
eliminated, depending on how their values and shapes relate to the structuring element used
for dilation. As illustrated in Fig 2-19 (b).

Gray-scale erosion of f by b, denoted by fob, is define as :
(feb)(s,t)=min{f(s+x,t+y)-b(x,y)|(s+X).(t+y) e D;;(x,y)eD,} (2:32)
Where D, and D, are the domain of f andb. Because erosion is based on choosing the

minimum values of f —b in a neighborhood defined by the shape of the structuring element,
the general effect of performing erosion on a gray-scale image is two-fold: (1) if all the values
of the structuring element are positive, the output image tends to be darker than the input; and

(2) bright details are reduced or eliminated, depending on the used structuring element. As

illustrated in Fig 2-19 (c).

(b)

Fig. 2- 19 (a) The original of Lena image
(b) Dilation of Lena image

(c) Erosion of Lena image

28

The usage of closing and closing is to smooth contours of objects. In gray-level images,
closing is used for brighter objects with darker background, and opening is used for darker

object objects with brighter background. As illustrated in Fig 2-20 (b) and (c).

Fig. 2- 20 (a) The original of Lena image
(b) Closing of Lena image

(c) Opening of Lena image

2.4.4 Morphological Gradient

The Morphological Gradient of an image, denoted G:

G=D;(A)-E;(A)=(A®B)-(ASB) (2.33)
or

G=D,(A)-A=(A®B)-A (2.34)
or

G=A-E,(A)=A-(ASB) (2.35)

The morphological gradient highlights sharp gray-scale transitions in the source image. In
other words, morphological gradient can extract the boundary of an object. However, the
morphological gradient is sensitive to the shape of the chosen structuring element. Here are

examples of dilation, erosion, closing, opening, and morphological gradient of the gray-scale

29

image, Lena, with the 3x3 structuring element as shown in Fig 2-21.

(b)

Fig. 2- 21 (a) The original of Lena image
(b) Morphological gradient of Lena image

30

CHAPTER 3
The Proposed Method

In this chapter, we will introduce the architecture of the inpainting system based on the
proposed method. We focus on these images with several small and large damaged regions,
such as the image shown in Fig. 3-1. The goal of this paper is to effectively and correctly
inpaint these damaged images. It is known that “Fast Digital Image Inpainting” [2] can fast
inpaint small damaged regions, but it can’t work well for large damaged regions. “Priority
Texture Synthesis” [7] can both inpaint small and large damaged regions well, but it spend too
much time. Therefore, we propose a new inpainting method that will combine “Fast Digital
Image Inpainting” and “Priority Texture Synthesis”. In section 3.1, we will discuss the process
of our image inpainting. In section 3.2, we will utilize morphological operations to
automatically split the damaged regions into several small and large parts. In section 3.3, we
will modify the “Fast Digital Image Inpainting” algorithm and then apply it to inpaint these
small damaged parts. In section 3.4, we will apply the “Priority Texture Synthesis” algorithm
to inpaint these large damaged parts and add the FFT block matching algorithm to speedup
the time of searching similar textures. Finally, we will summarize the proposed method in

Section 3.5.

3.1 Overview of Our Image Inpainting System

We designed a simple drawing interface, which allows users to draw lines or surfaces.
Users need to input a damaged image at the start of the inpainting process. As illustrated in
Fig. 3-2, when users mark these damaged regions from the input image, the system will split
the damaged regions into several small and large parts according to the structuring element

which users set up. Then the system will show the splitting result. If we don’t satisfy the

31

splitting result, we can re-set up the structuring element to split the damaged regions.

After splitting these damaged regions, the system will automatically use “Fast Digital
Image Inpainting” to inpaint small damaged parts and use “Priority Texture Synthesis” to
inpaint large damaged parts. At last, the system will not only show the reconstructed result but

also show several intermediate steps of the reconstruction on the interface.

Fig. 3- 1 A lena image with several small and large damaged regions

32

Original Image

l

Mark Damaged Regions

l

Opening
Small Damaged Regions Large Damaged Regions
Fast Digital Image Inpainting Priority Texture Synthesis

N 7

Output Image

Fig. 3- 2 Overview of Our Image Inpainting System

33

3.2 Splitting the damaged regions into several small and large parts

Morphologigical operators are attractive because they involve simple logical operations
and can be easily implemented. A fundamental feature of mathematical morphology is the use
of a structuring element. This is essentially a smaller version of the input image, and contains
structure of the type that is to be analyzed in the image. The two basic morphological
operators are dilation and erosion. Dilation expands (for binary image) and brightens (for
gray-scale image) an image, while erosion shrinks and darkens. Dilation is performed by
sliding the structuring element over the image while adding the values of the structuring
element to the image, and then recording the maximum value reached at each point. Erosion is
similar, except that the structuring element values are subtracted from the image, and the
global minimum is taken.

The opening operation is created by first eroding and then dilating an image. Physically,
the binary opening operation extracts some shapes whose sizes are larger enough than the
structuring element. As illustrated in Fig. 3-3, there are some shapes numbered from 1 to 6.
After opening, we see that this operation extracts shape 5, 6 and discards shape 1, 2, 3, 4. Fig.
3-4 is an opening operation example for a binary image. It extracts the shapes whose sizes are
larger than 9*9 window size according to 9*9 structuring element.

Viewing from another angle, we can apply the opening operation to split the damaged
regions into several small and large parts according to the structure element for our test
images. There are two examples. Fig. 3-5 (b) splits the damaged regions into two parts by
using “opening” according to 3*3 structuring element. “Green” represents small damaged
parts and “Blue” represents large damaged parts. Similarly, Fig. 3-6 (b) splits the damaged
regions into two parts by using “opening” according to 3*3 structuring element. “Yellow”

represents small damaged parts and “Blue” represents large damaged parts.

34

v

(c)
Fig. 3- 3 (a) Set A (b) Structuring element B (c) The Opening of A by B.

(b)

-
'M“"-\..

L

(

Fig. 3- 4 (a) A binary image : A (b) The Opening of A by 9*9 structuring element.

35

A 1 2 A
N — H
4
5 6
> l_—l >
(a) T (b)

Fig. 3- 6 (a) A damaged lena image (b) Splits the damaged regions into two parts

3.3 Using “Fast Digital Image Inpainting” to inpaint these small damaged parts

The fast inpainting algorithm can faster inpaint the locally small damaged regions well
than other methods. Here, we modify the “Fast Digital Image Inpainting” algorithm and let it
be more performance. The new algorithm doesn’t setup iterative-times. We will apply it to
inpaint these small damaged parts after splitting. The modification of this algorithm is

described as below :

36

The new algorithm

1. After splitting, the algorithm automatically selects these small damaged regions Q.
2. Repeat until region Q is empty
2.1. Mark boundary dQ.
2.2. For each boundary pixel, compute the average of its undamaged
neighborhood pixels, and then copy it to the boundary pixel.

2.3. Update these small damaged regions Q

Fig. 3- 7 The pseudocode of the algorithm

D D M M
p/p|pb| b|lp|D M| M| M| M| M| M
p|p|Dbp|D| D p| |—> | M M| D|D| M M| |—
D|D|D| D M| D|D| M
D|D|D| D M| M| M| M
D M
(@ (b)
| | | |
Ll Ll
L1 | Dbl D]l | — Tl MM |
| | p| D] | L M| M| |
HEEEEN HEEEEN
| |
() (d)

37

(e)

Fig. 3- 8 The step by step example shows how the algorithm inpaints these small

damaged regions.

Let us see an example. As illustrated in Fig. 3-8, the algorithm first selects these small
damaged regions Q “Red D” (Fig. 3-8. a). Because Q is not empty, the algorithm marks
the boundary dQ) “Blue M” (Fig. 3-8. b). For each “Blue M”, compute the average of its
undamaged neighboring pixels, and then copy it to the boundary pixel. “Green I” represents
the region which has been inpainted (Fig. 3-8. ¢). The algorithm updates the damaged regions
Q), and then repeats previous steps untill € is empty (Fig. 3-8. d and 3-8. e). Our test

images are shown in Fig. 3-9 and 3-10.

(2) (b)

38

Fig. 3- 9 (a) A Splitted elliptic image (b) The small damaged parts “Green” has been
inpainted well by this algorithm.

(b)
Fig. 3- 10 (a) A Splitted lena image (b) The small damaged parts “Yellow” has been
inpainted well by this algorithm.

3.4 Using “Priority Texture Synthesis” to inpaint these large damaged parts

After inpainting these small damaged regions, there only remains the larged damaged
regions. The “priority texture synthesis” algorithm can efficiently and correctly inpaint the
large damaged regions. Therefore, we will apply it to inpaint these large damaged parts. At the
same time, we will also add the FFT block matching algorithm from section 2.2.2 to speedup

the time of searching similar textures. Our test images are shown in Fig. 3-11 and 3-12.

(a) (b)

39

Fig. 3- 11 (a) An elliptic image followed by Fig. 3-9. b (b) The large damaged parts

“Blue” has been inpainted well by priority texture synthesis.

(b)

Fig. 3- 12 (a) A lena image followed by Fig. 3-10. b (b) The large damaged parts “Blue”

has been inpainted well by priority texture synthesis.

3.5 Summation

The proposed method combines “Fast Digital Image Inpainting” and “Priority Texture
Synthesis” to inpaint the damaged images. The procedure first uses “opening” to split the
damaged regions into several small and large parts. After splitting, it will automatically use
“Fast Digital Image Inpainting” to inpaint small damaged parts and use “Priority Texture
Synthesis” to inpaint large damaged parts. Experimental results indicate that our method can
not only inpaint these damaged images well but also efficiently save computational time.

More experimental results and comparisons are shown in Chpater 4.

40

CHAPTER 4

Experimental Results

In this chapter, we will present more experimental results and comparisons obtained by
applying the proposed method described in chapter 3. In section 4.1, we will introduce our
experiment environment. Experimental results and comparisons are shown in section 4.2.

4.1 Experimental Environment

In this section, we will first use a simple drawing interface to draw lines or surfaces in
the images of every class. We damage edges as seriously as possible and then produce these
damaged images which are shown in Fig. 4-1. Based on these same damaged images from
classes a to f, we will compare the proposed method with pure fast digital image inpainting [2]
and pure priority texture synthesis [7]. Based on these images from classes g to i, we will use
the proposed method to remove some objects. The proposed method has been implemented on
PC with Pentium4 1.8G, RAM 1024 Megabytes. The operating system is Microsoft Windows
XP Server Chinese version Service Pack2. The program was developed in the C++ language

and compiled under Borland C++ Builder version 6.0.

41

Original image Original image

. i

Damaged image Damaged image Damaged image

Class a. Elliptic image Class b. “Lena” image Class c. “Baboon” image

A

Original image

Damaged image Damaged image Damaged image

Class d. “Pepper” image Class e. “F16” image Class f. Game image

42

Original image

Damaged image Damaged image Damaged image

Class g. Tree image Class h. Fishing Boat image Class i. Girl image

Fig. 4- 1 There are some test images. Top images of every class are original images.

Bottom images of every class are damaged images.

4.2 Experimental Results
4.2.1 Comparison of inpainting results

Here, we apply the proposed method to a variety of images. Where possible, we make
side-by-side comparisons to two other methods from Fig. 4-2 to 4-11.

Fig. 4-2 (a) is the result of Fast Digital Image Inpainting. It spends 0.032 seconds on
inpainting. The central damaged rectangle can’t be inpainted well. Elliptic Edges are blurred;
Fig. 4-2 (b) shows its intermediate inpainting steps. (Top-left represents 0% inpainting result.
It also means the original damaged image. Top-center and Top-right individually represent
20% and 40 % inpainting result. Bottom-left, Bottom-center and Bottom-right individually
represent 60%, 80% and 100 % inpainting result.). Fig. 4-3 (a) is the result of Priority Texture

Synthesis. It spends 10.172 seconds on inpainting. The central damaged rectangle can be

43

inpainted well. In order to preserve edge sharpness, this method gives the higher inpainting
priority to the edges of damaged parts and starts to inpaint according to their priorities. Fig.
4-4 (a) splits damaged regions into two parts by using “opening” (“Green” represents small
damaged parts and “Blue” represents large damaged parts); Fig. 4-4 (b) is the result of the
proposed method. It spends 7.454 seconds on inpainting. The central damaged rectangle can
be inpainted well. The proposed method inpaint these large damaged parts after inpainting
these small damaged parts.

Fig. 4-5 (a) is the result of Fast Digital Image Inpainting. It spends 0.062 seconds on
inpainting. The left pillars are blurred. Fig. 4-6 (a) is the result of Priority Texture Synthesis. It
spends 52.703 seconds on inpainting. This method preserves edge sharpness. Fig. 4-7 (a)
splits damaged regions into two parts by using “opening” (“Red” represents small damaged
regions and “Blue” represents large damaged regions); Fig. 4-7 (b) is the result of the
proposed method. It spends 20.453 seconds on inpainting. This method not only preserves
edge sharpness but also speedups the time. Fig. 4-8 to 4-11 are other examples of inpainting.

At last, we show the proposed method to remove large objects from images. The trees
have been completely removed and the occluded region reconstructed by the proposed
method in Fig. 4-12. The lighthouse and the fisherman have been completely removed and the
occluded region reconstructed by the proposed method in Fig. 4-13. Fig. 4-14 shows some
objects which are gradually removed by the proposed method. Finally, the girl on the horse is
also removed. Background texture and structure have seamlessly replaced the original
characters. Fig. 4-15 shows a personal example of removing an object that can represent me
on a highly textured background. (a) I lift up my cousin. (b) I have been removed and my
cousin floats in the air. Notice the area of my cousin’s left armpit, it’s expectable to inpaint

with flowers and plants because there is no air information.

44

o
NI

Select Inpaint Method

Fast Digital Image Inpainting j ‘ 0K | Show Intermediate Steps

Image 1 Image 2 (Inpainting)

o 0 i

W Stretch v Stretch

A=329 ¥=0

(a)

! Intermediate Steps

Image 1 (Inpaint 0%} Image 2 (Inpaint 20%] Image 3 (Inpaint 40%]

S o

Iv Shetch Iv Shetch Iv Shetch

Image 4 (Inpaint E0%) Image & (Inpaint 80%] Image B (Inpaint 1005 *teration 1% times**)

Iv Shetch [Stretch Iv Shetch

Close]

(b)
Fig. 4- 2 (a) The result of Fast Digital Image Inpainting; (b) The intermediate inpainting
steps.

45

o
NI

Select Inpaint Method

Fegiaon Filling and Object Remowval by Exemplar-Based Image Inpainting j ‘ 0K | Show Intermediate Steps

Image 1 Image 2 (Inpainting)

o 0 i

W Stretch v Stretch

A=329 ¥=0

(a)

! Intermediate Steps

Image 1 (Inpaint 0%} Image 2 (Inpaint 20%] Image 3 (Inpaint 40%]

+ co

v Sietck ¥ Stetch ¥ Stetch

Image 4 (Inpaint B0%) Image & (Inpaint 80%] Image E (Inpaint 100%]

Iv Shetch [Stretch Iv Shetch

Close

(b)
Fig. 4- 3 (a) The result of Priority Texture Synthesis; (b) The intermediate inpainting steps.

46

Ellipse_mask bmp
File Operstor About

ef el =]

Select Inpaint Method

Froposed Method j Show Intermediate Steps

Image 1 Image 2 (Dividing)

o 0 i

W Stretch v Stretch

A=385 |¥=0

(a)

e
M E Q E ﬂ Total time : 7.454 seconds

Select Inpaint Method

Proposed Method j ‘ 0K | Show Intermediate Steps

Image 1 Image 2 (Inpainting)

e Bt

¥ Stretch v Stretch

H=399 Y=133

(b)

47

"/ Intermediate Steps

Image 1 (Inpaint 0%] il Image Z (Inpaint 20%]) il Image 3 (Inpaint 40%])

+ co

¥ Stetch

— ——

¥ Stetch ¥ Stetch

Image 4 (Inpaint 60%)] Image 5 (Inpaint 80%)] Image & (Inpaint 100%)
¥ Stetch ¥ Stretch ¥ Stetch

(c)
Fig. 4- 4 (a) Splitting damaged regions into two parts by using “opening”; (b) The result of

the proposed method. (c) The intermediate inpainting steps.

M E Q E j‘ﬂj Total time : 0.062 seconds

Select Inpaint Method

Fast Digital Image Inpainting j ‘ 0K I Show Intermediate Steps

rImage 1 1 Image 2 (Inpainting)

v Stretch v Stretch

x5 [v=

(@)

48

i Intermediate Steps

Image 1 (Inpaint 0%) Image 2 (Inpaint 20%

Image 3 (Inpaint 40%

¥ Stetch ¥ Stetch ¥ Stetch

[Image 4 (Inpaint 60%

[Image 5 (Inpaint 80%

[Image & (Inpaint 100% “teration 12 times™}

¥ Stetch ¥ Stretch ¥ Stetch

(b)
Fig. 4-5 (a) The result of Fast Digital Image Inpainting. (b) The intermediate inpainting

steps.

- Lena_damage bmp
Fils fibout

~ =l el = m

Select Inpaint Method

Opersinr

Total time : 52.703 sconds

Region Filling and Object Rermowval by Exemplar-Based Image npainting L! ‘ 0K I Show Intermediate Steps

Image 1 Image 2 (Inpainting)

49

"/ Intermediate Steps

[Image 1 (Inpaint 0%) [Image 2 (Inpaint 20%

[Image 3 (Inpaint 40%

¥ Stetch ¥ Stetch

[Image 5 (Inpaint 80%

[Image & (Inpaint 100%)

¥ Stetch ¥ Stetch

Close

(b)
Fig. 4- 6 (a) The result of Priority Texture Synthesis. (b) The intermediate inpainting steps.

Lena_damage bmp

Fil: Operator About
Nm| of =| &

Select Inpaint Method

Proposed Method L! ‘ 0K E| Show Intermediate Steps

~Image 1 ~Image 2 (Dividing)

¥ Stretch ¥ Stretch

|
B s [[[|

(@)

50

e Operalor

El
N

\,/Lena_demage bmp

About

TR

~Image 1

Select Inpaint Method

Proposed Method

Total time : 20.453 sconds

Lo |

Show Intermediate Steps
~Image 2 (Inpai

ing)

Intermediate Steps

~Image 1 (Inpaint 0%}

v Bretcke

~Image 4 (Inpaint B0%)

~Image 2 (Inpaint 20%]

¥ Stetch

~Image 5 (Inpaint 80%)

~Image 3 (Inpaint 40%)

EEX

¥ Stetch

¥ Stetch

¥ Stretch

~Image & (Inpaint 100%)

¥ Stetch

(©

Close

Fig. 4- 7 (a) Splitting damaged regions into two parts by using “opening”; (b) The result of
the proposed method. (c) The intermediate inpainting steps.

51

Fig. 4- 8 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The
inpainting result of the proposed method. Notice the difference in the nose and face
of the baboon between (a), (¢), (d) and (e).

52

Fig. 4- 9 (a) Original image (b) Damaged image (c) The inpainting result of Fast Digital

Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The
inpainting result of the proposed method. Notice the difference in the edges of the
pepper between (a), (c), (d) and (e).

Fig. 4- 10(a) Original image (b) Damaged image (c) The inpainting result of Fast Digital

Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The
inpainting result of the proposed method. Notice the difference in the tail wing of
the F16 between (a), (¢), (d) and (e).

53

(c) (d) (e)

Fig. 4- 11(a) Original image (b) Damaged image (c) The inpainting result of Fast Digital
Image Inpainting; (d) The inpainting result of Priority Texture Synthesis; (e) The
inpainting result of the proposed method. Notice the difference in the stairway of
the game’s image between (a), (¢), (d) and (e).

(b)
Fig. 4- 12Removing large objects from images. (a) Original image (b) Mark large objects

which we want to remove (¢) The removal of trees.

54

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=stairway

Fig. 4- 13Removing large objects from images. (a) Original image (b) Mark large objects

which we want to remove (¢) The removal of the lighthouse and fisherman.

55

(2

Fig. 4- 14 Removing several objects from images.

£ brother hmp [WEET

Ege Operator Ahout
N E| ef =]

Select Inpaint Method

j OK Show Intermediate Steps

Image 1 Image 2

¥ Stretch ¥ Stretch

X397 -6l

Fig. 4- 15 Special effects (my cousin and me)

56

4.2.2 Comparison of PSNR Values

In a practical situation, it is impossible to compare a damaged picture with its original.
However, the strategy of our evaluation is based on the following assumption. Suppose that
there are two copies of the original picture. The second is damaged, and we will like to
recover the damage as much as possible such that the inpainted image will look almost the
same as the first original. Then, we can compute a PSNR value that reflects the quality of a
inpainted image. As seen in Table 4-1, The PSNR values of the proposed method and Pure
Priority Texture Synthesis are almost higher than Pure Fast Image Inpainting. It may indicate
that the proposed method and Pure Priority Texture Synthesis can inpaint the damaged images
better than Pure Fast Image Inpainting. Notice that the PSNR value isn't suited to compare

these images obtained from some large objects which users want to remove. (such as Fig.

4-12 to 4-15).
Methods Pure Fast Pure Priority Proposed Method

Test Images Image Inpainting Texture Synthesis
Elliptic Image 29.100 42.768 42.700
Lena 32.351 35.818 36.238
Baboon 30.178 31.603 32.716
Pepper 37.784 38.315 38.338
F16 36.089 38.950 40.344
Game’s image 38.178 38.225 40.644

Table 4-1 Comparison of PSNR Values

4.2.3 Comparison of Running Time

Table 4-2 shows the total inpainting time. Viewing from the analysis, Pure Fast Image
Inpainting is faster than two other methods, but it can’t inpaint well for large damaged regions.
The proposed method and Pure Priority Texture Synthesis can both inpaint well for large
damaged regions, and the proposed method is faster than Pure Priority Texture Synthesis in

57

the same situation (+FFT). If there are more small damaged regions in the images, the

proposed method is more faster than Pure Priority Texture Synthesis.

Methods Pure Fast Pure Priority Proposed Method
Test Images Image Inpainting | Texture Synthesis (+FFT)
(+FFT)
Elliptic Image 0.032 10.172 7.454
Size:164*126
Damaged regions: 13.318%
Lena 0.062 52.703 20.453
Size:256%256
Damaged regions: 7.53%
Baboon 0.063 64.891 19.812
Size:256*256
Damaged regions: 6.064%
Pepper 0.061 64.656 19.151
Size:256*256
Damaged regions: 6.433%
Fl6 0.046 22.672 8.532
Size:200*200
Damaged regions: 6.325%
Game’s image 0.059 62.016 9.719
Size:256%256
Damaged regions: 4.929%
Table 4-2 Comparison of Running Time

58

CHAPTER 5

Conclusions and Future Works

5.1 Conclusions
In this study, we propose an image inpainting method that will combine “Fast Digital

Image Inpainting” and “Priority Texture Synthesis”. First, we utilize the morphological

operator “opening” to split the damaged regions of images into several small and large parts

according to the structuring element which users set up. After splitting, we modify the “Fast

Digital Image Inpainting” algorithm and apply it to inpaint these small damaged parts. Then,

we use “Priority Texture Synthesis” to inpaint these large damaged parts and add the FFT

block matching algorithm to speedup the time of searching similar textures. At last, the
system will not only show the inpainted result but also show several intermediate steps of the
inpainting on the interface.

From the results shown in Chapter 4, we can conclude that the proposed method has
some advantages as described below :

1. Morphologigical operators involve simple logical operations and can be easily
implemented. The “opening” operation can efficiently split the damaged regions into
several small and large parts.

2. The modification of “Fast Digital Image Inpainting” algorithm can inpaint these locally
small damaged parts more efficiently.

3. The proposed method can inpaint large damaged regions well but “Fast Digital Image
Inpainting” can’t.

4. Although the proposed method and Pure Priority Texture Synthesis can both inpaint large
damaged regions well, the proposed method is faster than Pure Priority Texture Synthesis.

On average, for images with several small and large damaged regions (Image Size is

59

256*256 and Damaged Percentage is about 7%), only 18 seconds is needed to inpaint by
the proposed method. Pure Priority Texture Synthesis is needed 58 seconds to do the same
work in our implement process. If there are more small damaged regions, the proposed
method is more faster than Pure Priority Texture Synthesis. It verifies the speed of the

proposed method.

5.2 Future works

Future work can be directed to the following topics. First, we would like to put into
practice is to add “fuzzy mask” to re-inpaint the damaged image, i.e. a mask where each pixel
has a probability between 0.0 and 1.0 instead of a binary true/false. Such masks would be
useful to create smooth transitions between the content of the image that is kept and the
modified pixels. Second, it is desirable to remove defects or disturbing objects in a fully

automatic way.

60

References

[1] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, "Image Inpainting”", ACM
SIGGRAPH Conference on Computer Graphics, pp.417-424, 2000.

[2] Manuel M. Oliveira, Brian Bowen, Richard McKenna, Yu-Sung Chang, "Fast Digital
Image Inpainting", International Conference on Visualization, Imaging and Image
Processing (VIIP 2001), pp. 261-266, 2001.

[3] A. A. Efros and T. K. Leung, “Texture Synthesis by Nonparametric Sampling”, In IEEE
International Conf. on Computer Vision, volume 2, pp. 1033-1038, 1999.

[4] H. Yamauchi, J. Haber, H.-P. Seidel, “Image Restoration using Multiresolution Texture
Synthesis and Image inpainting”, Computer Graphics International, pp. 108-113, 2003

[5] S. D. Rane, G. Sapiro and M. Bertalmio, ”Structure and Texture Filling-In of Missing
Image Blocks in Wireless Transmission and Compression Applications”, |EEE
Transactions on Image Processing, vol. 12, no. 3, pp. 296-303, 2003.

[6] A. Criminisi, P. Pérez and K. Toyama, “Object Removal by Exemplar-Based Inpainting”,
in Proc. Conf. Computer Vision and Pattern Recognition, Madison, WI, 2003.

[71 A. Criminisi, P. Pérez and K. Toyama, “Region Filling and Object Removal by
Exemplar-Based Image Inpainting” (“Priority Texture Synthesis”), IEEE Transactions on
Image Processing, vol. 13, no. 9, pp. 1200-1212, 2004.

[8] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous Structure and Texture
Image Inpainting”, in Proc. Conf. Comp. Vision Pattern Rec.,Madison, WI, pp. 882-889,
2003.

[9] R. Bornard, E. Lecan, L. Laborelli and J.-H. Chenot, “Missing Data Correction in Still
Images and Image Sequences,” in ACM Multimedia, France, pp. 355-361, 2002.

[10] Steven L. Kilthau, Mark S. Drew, and Torsten Moller, “Full Search Content Independent

Block Matching Baded On The Fast Fourier Transform,” IEEE ICIP, pp. 669-672, 2002.

61

[11] Timothy K. Shih, Rong-Chi Chang and Liang-Chen Lu, “Adaptive Digital Image
Inpainting”, in proceedings of the 18th International Conference on Advanced
Information Networking and Applications (AINA 2004), Japan, March 29 - 31, 2004.

[12] J. S. D. Bonet, “Multiresolution Sampling Procedure for Analysis and Synthesis of
Texture Images”, In SIGGRAPH 97, pp. 361-368, 1997.

[13] T. F. Chan and J. Shen, “Non-Texture Inpainting by Curvature-Driven Diffusions (CDD)”,
J. Vis. Comm. Image Rep., vol. 4, no. 12, pp. 436449, 2001.

[14] C. Ballester, V. Caselles, J. Verdera, M. Bertalmio, and G. Sapiro, “A Variational Model
for Filling-in Gray Level and Color Images”, In Proc. ICCV, pp. I: 10-16, Vancouver,
Canada, 2001.

[15] M. Beltalmio, A. Bertozzi, G. Sapiro, “Navier-Stokes, Fluid-Dynamics and Image and
Video Inpainting”, in Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 1355-1362, 2001.

[16] D. Garber, “Computational Models for Texture Analysis and Texture Synthesis”, Ph.D.
dissertation, Univ. Southern California, Los Angeles, CA, 1981.

[17] C:H. Huang; J.-L. Wu, “Inpainting Attacks against Visible Watermarking Schemes”, in
Proceedings of Spie, the International Society for Optical Engineering, no. 4314, pp.
376-384, 2001.

[18] A. A. Efros and W. Freeman, “Image Quilting for Texture Synthesis and Transfer”,
presented at the Proc. SIGGRAPH, 2001.

[19] L.-W. Wey and M. Levoy, “Fast Texture Synthesis Using Tree-Structured Vector
Quantization,” in Proc. ACM Conf. Computer Graphics (SIGGRAPH), 2000.

[20] G. Gorla, V. Interrante, and G. Sapiro, “Growing Fitted Textures,” IEEE Trans. Visual.
Comput. Graphics, to be published.

[21] Gomes, J., Velho, L. Image processing for computer graphics (New York, NY,
Springer-Verlag, 1997)

62

[22] S. Osher and J. Sethian, “Fronts Propagating with Curvature Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations™. Journal of Computational Physics,
79, pp-12-49, 1988.

[23] Shuntaro YUI, Kenji HARA, Hongbin ZHA, adn Tsutomu HASEGAWA, “A Fast
Narrow Band Method and Its Application in Topology-Adaptive 3-D Modeling”, IEEE,
pp. 122-125, 2002.

[24] F. C. Crow, “Summed-Area Tables for Texture Mapping,” Computer Graphics (Proc. of
Siggraph), pp. 207-212, 1984.

[25] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Addision Wesley, Reading,
Massachusetts, 1992.

[26] C. R. Giardina and E. R. Dougherty, “Morphological Methods in Image and Signal
Processing,” Prentice Hall, New Jersey, 1988.

[27] A. C. Kokaram, R. D. Morris, W. J. Fitzgerald, and P. J. W. Rayner, “Detection of
Missing Data in Image Sequences.” IEEE Trans. Image Processing, vol. 4, no. 11, pp.

1496-1508, Nov. 1995.

63

