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Abstract. This paper analyzes several systematic errors
affecting sea surface gradients derived from Seasat,
Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and
TOPEX/POSEIDON altimetry. Considering the data
noises, the conclusion is: (1) only Seasat needs to correct
for the non-geocentricity induced error, (2) only Seasat
and Geosat/GM need to correct for the one cycle per
revolution error, (3) only Seasat, ERS-1/GM and
Geosat/GM need to correct for the tide model error;
over shallow waters it is suggested to use a local tide
model not solely from altimetry. The effects of the sea
surface topography on gravity and geoid computations
from altimetry are significant over areas with major
oceanographic phenomena. In conclusion, sea surface
gradient is a better data type than sea surface height. Sea
surface gradients from altimetry, land gravity anoma-
lies, ship gravity anomalies and elevation data were then
used to calculate the geoid over Taiwan by least-squares
collocation. The inclusion of sea surface gradients
improves the geoid prediction by 27% when comparing
the GPS-derived and the predicted geoidal heights, and
by 30% when comparing the observed and the geoid-
derived deflections of the vertical. The predicted geoid
along coastal areas is accurate to 2 cm and can help GPS
to do the third-order leveling.

Introduction

Altimetry has made an important contribution to
marine geophysics as the increasingly dense altimeter
data are being used to derive the marine gravity and the
marine geoid with unprecedented resolutions and
accuracies. With altimeter data from the newly com-
pleted ERS-1/GM and the newly released global
Geosat/ GM (Carlowicz 1995) more discoveries are
foreseen. In these derivations the used altimeter data
type is either sea surface height (SSH) or sea surface
gradient (SSG). Both SSH and SSG are subject to

errors. While the errors in SSH and the methods for
reducing or modeling such errors have been extensively
discussed, e.g., Tapley et al. (1982), Knudsen (1991) and
Shum et al. (1995), the errors in SSG receive only little
attention, e.g., Sandwell and Zhang (1989). One usually
asserts that the use of SSG will mitigate many problems
in the altimeter data, especially the orbit error, thus SSG
is considered a better data type than SSH, see, e.g.,
Haxby et al. (1982), Sandwell (1992), McAdoo and
Marks (1992), Hwang and Parsons (1995, 1996), and
Hwang (1996). Although there is no direct proof of this
assertion, the comparison made by Olgiati et al. (1995)
indeed shows that the predicted gravity anomalies from
using SSG yields a better agreement with ship gravity
than from using SSH. Here a SSG, e, is defined as the
gradient of along-track SSH, /

e =" 1)

S

where s is the along-track distance and « is the azimuth
of the gradient. In the first part of this paper we will
discuss several errors affecting SSG and the conse-
quences. Due to the presence of the sea surface
topography (SST), in fact the sea surface does not
coincide with the marine geoid and we will also discuss
the effect of neglecting the SST in using SSG to derive
the functionals of the earth’s disturbing potential. To do
this we obtained existing Seasat, Geosat, ERS-1 and
TOPEX/POSEIDON (T/P) altimeter data from some
major institutions. Table 1 shows the informations of
interest. The noise of SSH in Table 1 is obtained by
dividing the instrument noise (Shum et al. 1995) by the
square root of the number of cycles for averaging. This
estimate is only approximate because we have neglected
data gaps at repeat cycles. In order to compare the
magnitudes of the various errors affecting SSG, as well
as the magnitude of SST gradient, the estimated noises
of SSG are also included in Table 1. The noise of a SSG
is derived from the simple formula v/2¢/d, where ¢ is the
noise of SSH and d is the average data spacing between
two successive points of 1 per second altimeter data
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Table 1. Satellite altimeter data used for error analysis and geoid determination

Satellite Data sources Ave. cycles Instrument noise Estimated noise ~Semimajor  Reference

mission and period of SSH* (cm) of SSG (urad) axis (m)

Seasat osu® - 5.0 10.5 6378137 Rapp (1982)

Geosat/ERM® osu® 22,1 yr 1.1 2.2 6378136.3 Wang and Rapp (1992)
Geosat/GM*? NOAA - 5.0 10.5 6378137 Cheney et al. (1991)
ERS-1/35d° CERSAT 18, 1.5 yr 0.7 1.5 6378137 Dumont and Stum (1994)
ERS-1/GM* NOAA - 3.0 6.3 6378137 Cheney and Lillibridge (1992)
T/P AVISO 36, lyr 0.3 0.7 6378136.3 AVISO (1992)

# Sampling rate is 1 HZ

® The Ohio State University

¢ Geosat with 17-day repeat period
4 Geodetic mission

¢ ERS-1 with 35-day repeat period

(Hwang and Parsons 1995). Furthermore, the flattening
of the reference ellipsoid is 1/298.257 for the SSH from
all satellite missions.

Another objective of this study is to determine the
geoid over Taiwan using altimeter-derived SSG and
gravity data. Taiwan is an island with a dimension of 2°
west-east and 5° north-south. The role of altimeter data
in geoid determination over an island is to fill the data
gap at sea, thus altimeter data contribute important
information to the coastal geoid. In fact the direct or the
indirect approach can be used when incorporating
altimeter data into geoid computations. In the direct
approach altimeter-derived SSH or SSG and gravity
anomalies are used simultaneously to determine the
geoid, while in the indirect approach SSH or SSG are
first converted to gravity anomalies which are then
merged with measured gravity anomalies to determine
the geoid. For the direct approach, since the data used
are heterogeneous the only technique for this purpose is
least-squares collocation (LSC) (Moritz 1980). For the
indirect approach, LSC can still be used but since the
data are homogeneous a FFT method is preferred if one
wishes to reduce the computational time. Furthermore,
the indirect approach will introduce additional errors
from data type conversion and, if a FFT method is used,
from data gridding. In this paper LSC together with the
RTM method (Forsberg 1984) will be adopted for the
geoid determination over Taiwan. The computed geoid
will be compared with GPS-derived geoidal heights and
its gradient will be compared with astrogeodetic deflec-
tions of the vertical.

Systematic errors affecting altimeter-derived
sea-surface gradients

Non-geocentricity induced error

The accuracy of a satellite’s ellipsoidal height, and
consequently the accuracy of SSH, depends in part on
the terrestrial reference frame in which the orbits are
determined (Shum et al. 1995; Hwang 1995). If the
satellite’s terrestrial reference frame is not geocentric, an
altimeter-derived SSH, ¢, will deviate from the SSH

referring to the geocentric frame, {;,, in the form (Rapp
1989):

{ = {y+cos¢cosidx 4+ cos ¢psin Ady+sin ¢pAz

—WAa+aS<14ijS>sin2q’>Af, @

where ¢ and /. are geodetic latitude and longitude,
respectively, ag and fs are the semi-major axis and the
flattening of the reference ellipsoid for the satellite’s
geodetic system, Ax, 4, and Az are three translation
parameters, W =/1-esin’¢ with e =2f5 — f2, and
Aa=a;—as, Af = f; — fs with q; and f; being the
semi-major axis and the flattening of some “best”
ellipsoid. Considering the “best” ellipsoid is that used
in the T/P reference frame, we have ¢;=6378136.3 m,
and f;=1/298.257. Table 1 also lists the semi-major axes
of the ellipsoids for the altimeter data used in this paper.
Since the reference ellipsoids are known, the effect due to
Aa and A f may be removed before comparing SSH in
two satellite frames. Within the same satellite frame, the
three translations are unobservable in crossover differ-
ences of SSH and hence cannot be removed by crossover
adjustments of SSH. The SSH error due to 4z is also
aliased with the one cycle per revolution orbit error
(Hwang 19995). It is also clear that the effect of non-
geocentricity cannot be removed by averaging data from
repeat cycles.

After removing the effects due to 4a and Af, the
errors in the north and the east components of SSG due
to the non-geocentricity of the reference frame can be
calculated by

(¢ — &)

_o-&) _ _ Ax
Aegy, = gy~ Rop z Sin ¢cos A A

Ay . ., 4
—Tysm ¢ sin A+§Zcos ¢,

and
0 —-&)  O0L—-&)  Ax. Ay
Ae, = o Rcos pOL 7 Sin }v—&—Rcos A,
(4)

where x, y are the local horizontal coordinates and R is
the earth’s mean radius (~ 6371 km). To get the error in




an along-track SSG with azimuth o, one can use the
formula

A gy = Aegcos a+ Aeysin o . (5)

To see the maximum effects, we may set to zeroes the
partial derivatives of Ae, and Ae, with respect to ¢ and A
separately, leading to:

R

. —Ax
,whentan A = ——

Maximum 4e, = 7
y

(6)

and

VA2 + Ay? + A2
R )
Ax
hen tan 1 = —
when tan 1y (7)

—\/Ax2 + 4)?

Az

Assuming that the T/P reference frame is geocentric, it is
possible to find the three translations for each of the
satellite frames using the crossover differences ({ — ;)
between the T/P SSH and the SSH from a satellite
mission. To reduce the computational time while having
globally distributed data, for each participating satelli-
te we selected about 254 passes to form crossovers with
the 254 passes of T/P over —66°<latitude<66°. The
Geosat/GM data available to the author covers only the
area south of 30°S so the corresponding translations
cannot be determined due to the poor geometry for
parameter estimation. Figure 1 shows the crossover
differences between T/P and other satellite missions
(excluding Geosat/GM). It was found that T/P-T/P rms
crossover difference is 0.08 m and is consistent with the
4-cm orbit accuracy (Tapley et al. 1994) if other errors
are counted. Note that the number 0.08 cm is based on
all T/P-T/P crossovers, while some authors, e.g. Tai and
Kuhn (1994), used T/P-T/P crossovers only over waters
with depth greater than 1000 m. Large T/P-Seasat
crossover differences exist over most of the Indian
Ocean, the Central-South Pacific and most of the South
Atlantic. The T/P-Geosat/ERM crossover differences
over the Western Pacific and the Northern Indian Ocean
are also quite large. The T/P-ERS-1/35d and T/P-ERS-
1/GM crossover differences are quite uniform globally,
but clearly some ERS-1/35d and ERS-1/GM passes
contain bad data.

For each crossover difference we can write the
observation equation as

Maximum 4e, =

andtan ¢ =

(¢ —¢y) +v=cos ¢cosidx+cos¢ sin Ady

+sin ¢4, , ®
where the residual v in fact contains both random noises
and systematic errors such as orbit errors (if any) from
T/P and the participating satellite. The translations
Ax, Ay and Az were then solved by the least-squares
method which minimizes the sum of the squared
residuals. Table 2 shows the results. Note that in Table 2
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we used only those crossover differences passing the
simple 3¢ outlier rejection criterion because the anom-
alously large crossover differences (for ERS-1/GM some
as large as 32 m) will bias the solutions. Geosat/GM’s
reference frame is WGS84 (Cheney et al. 1991, p.27) so
there will be no translations for Geosat/GM if one
assumes that the WGS84 system is geocentric. It is clear
from Table 2 that the maximum effects of the translations
on SSG derived from Geosat/ERM, ERS-1/35d and
ERS-1/GM are rather small compared to their instru-
ment noises listed in Table 1. The maximum effect on
Seasat’s SSG has a notable 0.129 prad, but is still
considered small compared to its 10.5 prad instrument
noise. According to (4) and (5) a Seasat-derived along-
track SSG should be corrected by —0.129cos¢ sina.
Furthermore, the root-mean-squared (rms) crossover
differences after applying the translations decrease only
marginally and this implies that other errors exist in the
altimeter SSH.

One cycle per revolution error

In the previous section we have obtained the rms a
posteriori crossover differences after eliminating the
translations, which are useful for estimating the orbit
errors. The within-satellite rms crossover differences for
Seasat, Geosat/ERM, ERS-1/35d, ERS-1/GM are 0.22
m, 0.19 m, 0.16 m, and 0.25 m, respectively, which are
smaller than the a posteriori cross-satellite rms cross-
over differences listed in Table 2. Assuming that T/P is
free from geographically correlated orbit error and
neglecting other errors such as ocean tides, the
inconsistency between the within-satellite and the
cross-satellite rms crossover differences indicates that
geographically correlated orbit errors exist in the
satellite data other than T/P (note that, when forming
the within-satellite crossover differences such orbit
errors are canceled). In fact, if T/P is orbit error-free,
then Figure 1 shows the full spectra of orbit errors of
other satellites. Furthermore, it is known that in most
cases the largest component of the orbit errors is the one
with the frequency of one cycle per revolution (cpr)
(Engelis 1987). The one cpr orbit error may be expressed
as

Ar =acos (ot +0p) , 9)

Table 2. Results of solving three translations from a satellite’s
reference frame to T/P’s reference frame and the maximum errors
in sea surface gradient due to translations

Satellite Rms Rms Ax Ay Az Max Max
mission before after Ag, Ag,

m m (m) (m) (m) (urad) (urad)

Seasat 081 075 0.02 0.02 -0.82 0.004 0.129
Geosat/ 038 035 -0.10 0.10 -0.31  0.022 0.053
ERM

ERS-1/35d 0.24 023 0.07 0.06 0.11 0.014 0.023
ERS-1/GM0.47 044 0.07 0.04 031 0.013 0.050
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where o is the orbital frequency associated with one cpr,
a is the amplitude, and 0y is the initial phase. The error
of along-track SSG due to one cpr error is then
_04r  04r 0t —aw
"= 9s  oros
= a.sin (ot + 0p) ,

sin(wt + o) (10)

where v is the satellite’s ground speed, which may be
calculated by the approximate formula (Hwang and
Parsons 1995)

v=y/Vi+ Ve
:R\/(z) sin f — w/, cos W) + (iicos f)*

where & and o/, are the velocities of the argument of
latitude and the earth’s rotation relative to the satellite’s
orbital plane, respectively, and  is the geocentric
latitude. Note that practically # = w. The method for
computing # and !, due to the linear perturbation
arising from the earth’s flattening can be found in Kaula
(1966), and Hwang and Parsons (1995). Using the
relationship cos i = sin f§ cosy, where i is the inclina-
tion angle of the satellite’s orbital plane, one gets

(11)

v =Ry\/u? — 2w/, cosi+ w}? cos’ Y . (12)

Thus we have the maximum ground speed

Vnax = Ry i — 2o, cosi+ w2, if Y =0, (13)
and the minimum ground speed
Vmin = R(it — @) cosi), if y =iorm—i. (14)

Table 3 lists the estimated amplitudes of one cpr orbit
error for all satellite missions, which are based on the
assumption that crossover differences with T/P are
completely due to the one cpr orbit error (Shum et al.
1990) and T/P orbit errors are negligible. This assump-
tion may not be realistic in the presence of large
resonance orbit error. The NSWC orbit of Geosat/GM
has a precision of 0.6 m (Cheney et al. 1991). According
to Table 3, the ground speed varies very little from its
minimum to its maximum, so the amplitudes of along-

Table 3. The amplitudes of errors in sea surface height and along-
track sea surface gradient induced by one cpr orbit error

Satellite mission a Vmax Vimin |ae|

(m) (km s7") km s~ (urad)
Seasat 0.75 6.788 6.773 0.115
Geosat/ERM 0.35 6.788 6.773 0.054
Geosat/GM?* 0.60 6.788 6.773 0.092
ERS-1/35d 0.23 6.697 6.681 0.036
ERS-1/GM 0.44 6.697 6.681 0.068
T/P 0.04 5.760 5.744 0.006
¢ Estimate
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track SSG error due to one cpr orbit error are practi-
cally constant. Except for Seasat and Geosat/GM, the
errors in along-track SSG induced by the one cpr orbit
error are negligible compared to the instrument noises.
Furthermore, the one cpr error is mostly caused by the
errors in the gravity field and the initial state vectors for
the orbit integration (Engelis 1987), thus its amplitude
and the initial phase vary from one satellite revolution
to another. Nevertheless, by using the model of (9) for
orbit error in the global crossover adjustment of SSH
(Rummel 1993), in theory the amplitudes and the initial
phases can be estimated. A local adjustment of SSH
using a bias-only model will not produce any difference
for along-track SSG since the bias in a satellite arc is
automatically removed upon differentiation of SSH.
Also, if the one cpr error is indeed the dominant orbit
error, then the effect of other orbit error components on
SSG may be neglected because the effect of one cpr error
is already small.

Ocean tide model induced error

Another error effecting SSH and in turn SSG is the error
in the ocean tide model used for correcting the
instantaneous SSH. Recent global ocean tide models,
largely based on satellite altimetry, are able to achieve
very high accuracy. For example, the comparison made
by Andersen et al. (1995) shows that the tides
M,, S5, K;, and O; derived from two years of T/P
data have rms discrepancies of less than 2 cm with the
measurements at selected tide gauge stations, which are
mostly located in the open oceans. However, if such a
comparison is restricted to shallow waters or area with
large bathymetric features where the spatial variation of
ocean tides are much larger than those in the open
oceans (Cartwright 1993), the discrepancies increase
substantially. The reason for the difference in rms
discrepancy is partly numerical: smooth functions such
as ocean tides in the open oceans are easier to model
than "rough" functions such as ocean tides over shallow
waters or area with large bathymetric features. This
numerical difference also implies that SSH in the open
oceans are less contaminated by ocean tide model error
than over shallow waters. Furthermore, if the tide model
error consists largely of long wavelength components
(see Ma et al. 1994) as does the one cpr orbit error, it will
have a much smaller effect on SSG than on SSH.
Table 4 shows a comparison for the Mstide over
1993-1994 between the tide gauge measurements and
the CSR3.0 tide model, which was developed at the
Center for Space Research, University of Texas at
Austin, based on two years of T/P data. The geogra-
phical locations of the used tide gauge stations, which
are not included in the "standard" tide gauge set used by
Andersen et al. (1995), is shown in Figure 2. In general,
the rms discrepancies at all stations are much larger than
2 cm. Along coastal areas, the rms discrepancies
fluctuate rapidly. The 5.6 cm discrepancy at Yap,
located at the deep ocean, is still considered large. The
rms discrepancies over the Ryukyu islands, which are



118

Table 4. Root-mean-squared discrepancy in M, tide between tide
gauge measurements and the tide values computed from CSR3.0
ocean tide model over 1993-1994

1D* Station name Rms discrepancy
(cm)
1 Keelung 21.1
2 Anping 7.9
3 Sukangzu 10.1
4 Fukang 4.3
5 Penghu 13.1
6 Yap 5.6
7 Malakal 14.9
8 Quarry Bay 18.4
9 Aburatsu 5.1
10 Kota Kinabalu 7.1
11 Xiamen 28.8
12 Kushimoto 10.0
13 Maisaka 12.2
14 Mera 2.27
15 Naha 13.6
16 Naze 11.5

# See Figure 2
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surrounded by complex bottom topography, are also
large. If the CSR3.0 tide model is to be used in future’s
generations of altimeter data, then users from China,
Japan, Taiwan, and other countries in the South East
Asia should be aware of the size of tide model error in
the altimeter data.

If repeat measurements of SSH are available at the
same location, the tide model induced error will be
reduced in the averaged SSH according to a theory
below. Neglecting the orbit error and the astronomical
argument, an altimeter measured SSH at epoch #
corrected with the ith tidal component of tide model
may be expressed as

SSHy. = ho + Ui(¢, A) cos (wity) + Vi(¢p, A) sin (w;ty) ,
(15)

where hg is the true SSH, U; and ¥} are the quantities
that can be sued to calculate the errors of tide in
amplitude and phase, and w; is the tidal frequency.
Assuming that we have M consecutive measurements,
the average is

4

130°

Fig. 2. Distribution of tide gauge stations where the CSR3.0 tide model is compared. Inserted map shows the stations over Taiwan



SSH =— ZSSHk—ho+ Ui(¢, A Zcos wity)
—0
M-1
+—Vi(¢, 1) sin (w;ty) = hy + AU; + AV; .
k=0

(16)
What will be the number M to make U; and ¥; vanish
from (16)? To answer this, we let
ty=T+kAt, k=0,1,2,...M -1, (17)
where T is the initial epoch and At is the satellite’s repeat

period. substituting (17) into (16) and evaluating the
trigonometric series for U; and V;, we get

1 M—1
AU; = —U;cos |w; (T + At)
M (18)
sin M(,OiAICSC CO,'AI
2 2
and
1 . M—1 . MwiAt  w;At
AV; :MV,«sm [a)i(TJr 5 At)} sin > csc 7
(19)
Thus
__ 1 M—1
SSH = ho+ 4 U? + V72 cos [w(T + Ar) — 7).
SinMUJ,‘AtCSC (Ul'At
2 2
(20)

where ¥ = tan~!(¥;/U;) is the phase of the tide model
error. Assuming that we have the worst case where

Y = [T + (M — 1)4¢/2], then

—_— 1 . M(I)l'At (l)iAt
SSH = ho + - U? + V*sin 5 e (21)
To make the tide model error vanish, we should have
. Mw;At
sin 222 , (22)
2
which  will  require  Mw;4t = 2=, 4n,..., or

M =2n/(w;4t), 4n/(w;4t),... . For example, we have
the repeat period A¢ = 9.9156 solar days for T/P and
®;=1.40519 x10~*s~! for M, tide, thus M=0.052192944k
where k is an integer. Therefore there is no such k value
that will make M an exact integer, namely, we cannot
make the tide model error exactly zero by averaging.
However, we can always find an integer M such that the
tide model error is minimum under some condition (for
example, M must be such that the time for averaging the
SSH does not exceed 3 years). Note that the tide model
error is averaged SSH is governed by the periodic term
sin Mw;At/2 and the damping factor 1/M. Assuming
that the error of M, in amplitude (\/U? + V%) is 10 cm
we list in Table 5 the errors in averaged SSH due to M,
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Table 5. Errors (in cm) in averaged sea surface heights due to 10
cm error in M, tide for various averaging periods

Averaging Geosat/ERM ERS-1/35d T/P
period

3 months 3.02 1.24 2.26
6 months 1.73 1.17 0.12
1 year 0.55 0.87 0.41
2 year 0.50 0.52 0.25
3 year 0.28 0.35 0.18

error over various averaging periods. A special note will
be given to the S, error in ERS-1/35d. With Az = 35
solar days for ERS-1/35d and ; = 1.45444 x 10~*s~!
for S, the value w;4¢/2, after subtracting the integral
multiple of 27, is very close to zero, so the product 1/M
sin(Mw;At/2)csc(w;At/2) is nearly 1 for any M, and the
magnitude of S, error remains unchanged after
averaging. In other words, for the sun-synchronous
ERS-1/35d mission averaging SSH cannot reduce the S;
error.

This analysis has neglected the fact that one cannot
always get consecutive SSH values from repeat cycles
that are needed to evaluate the trigonometric series in
(16). Also, altimeter observations do not repeat the
exact location. The second problem is less critical
because within a short distance (~ 1 km) the ocean tide
is not expected to vary substantially. The first problem is
critical near shallow waters, because data there are often
edited out due to criteria such as significant wave height
(SWH) and ocean tide. In conclusion, theoretically an
almost ocean tide-error free sea surface may be formed
by averaging a sufficiently long record of SSH if we do
not have the unfortunate match of a tidal frequency and
the repeat period as in the case of ERS-1/35d. Thus the
tide model induced error in along-track SSG derived
from averaged SSH is automatically reduced. However,
for Seasat, Geosat/GM and ERS-1/GM missions which
do not have repeat measurements, the short wavelength
tide model error will have a significant impact on along-
track SSG. This can only be resolved by an accurate
ocean tide model, or, less promisingly by modeling the
covariance function of the tide error as below.

The effect of sea surface topography

The sea surface topography (SST) may be decomposed
into the quasi-stationary component and the time-
varying component, the former being nearly stationary
in position and magnitude over a long period of time
(e.g., years), the latter evolving rapidly. If one assumes
that SSG is identical to geoid gradient, an error will be
introduced by the SST and now we wish to see the
magnitude of the error. Along the path of an energetic
current such as the Kuroshio Current and the Gulf
Stream, the SST will create a large slope perpendicular
to the path. For example, Hwang (1996) found that the
yearly mean slope due to the Kuroshio Current east of
Taiwan is 63cm/120km (5.25 prad); south of Japan the
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Fig. 3. Quasi-stationary sea surface topography compiled by Levitus, contour interval is 10 cm and areas without data are masked with light gray

largest yearly mean slope due to the Kuroshio Current is
113cm/132km (8.56 prad). Since the mean percentage
variability of the Kuroshio Current is 25% (Hwang
1996), the error can not be removed by averaging as in
the case of ocean tide model error. Figure 3 shows the
70-year averaged SST compiled by Levitus (1982).
Unfortunately, the SST values are not available near
shallow seas, e.g., the East China Sea, the continental
shelf of Europe, the east coast of USA, and the coastal
area of Australia, thus the Levitus SST is not useful for
removing the SST effect there. Also, the Levitus SST
contains only signal components with wavelengths
longer than 800 km due to data smoothing, so steep
slopes such as those crossing the fronts of the Kuroshio
and the Gulf Stream can not be derived from the data.
Similar problems exist in altimeter-derived low-degree
SST models. Nevertheless, the Levitus SST is useful in
reducing the SST effect in the open oceans. As an
example, Figure 4 shows the absolute gradients of the
Levitus SST. The assumption of 2000-db level of no
motion in the Levitus SST will not affect the gradients
because the DC bias will be eliminated upon differentia-
tion. Using the rule of thumb that 1-prad error in geoid
gradient will translate into 1-mgal error in gravity
anomaly one can easily estimate the error due to
neglecting the quasi-stationary SST. Indeed, at the areas
of major currents, the effects of the quasi-stationary SST
are too large to neglect. Also, Table 6, based on
Stewart’s estimate (Stewart 1985), shows the typical
magnitudes of sea surface slopes relative to the geoid
created by some ocean phenomena that cause the
deviation of the sea surface from the marine geoid. Of

these ocean phenomena, the Equatorial Currents can be
safely neglected due to the relatively small slopes and the
100% variability when considering the current altimeter
data accuracies; The Eastern Boundary Currents,
mesoscale eddies and rings have 100% variabilities and
hence their effects may be reduced by averaging, but will
introduce significant effects for data from the non-repeat
Seasat/Geosat/GM and ERS-1/GM. For example, it is
well-known that over the Gulf Stream area and the
Kuroshio Extension, cold and warm rings exist due to
the meandering of these powerful currents. The time-
varying SST may be removed if a forecasting model is
available e.g., the model of Glenn et al. (1987) provides
weekly predictions of the Gulf Stream and ring
positions.

Summary and recommendations

¢ Non-geocentricity induced error: only Seasat needs
this correction and the correction is -0.129cos ¢ sin a.

e One cpr error: only Seasat and Geosat/GM need this
correction; Do not attempt a bias-only crossover
adjustment of SSH because it does not make any
difference for SSG.

e Tide model induced error: For averaged Geosat/
ERM, ERS-1/35 and T/P this correction is not
necessary if there are no data gaps in averaging.
For Seasat, ERS-1/GM and Geosat/GM this correc-
tion may not be necessary in the open oceans; over
shallow water (less than 100 m in depth) replace the
global tide model used in the altimeter data by a local
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Fig. 4. The absolute slope of the Levitus sea surface topography relative to the geoid

tide model constructed using local tide gauge
measurements.

e SST effect: to make the assumption SSG = geoid
gradient valid try to remove the quasi-stationary SST
from all data and, in addition, try to remove the time-
varying SST using a forecasting model for Seasat,
ERS-1/GM and Geosat/GM data.

Seasat and Geosat/ERM now have new orbits based on
the most up-to-dated tracking networks and force
models, see Haines et al. (1994) for Seasat, and
Williamson and Nerem (1994) for Geosat/ERM. With
the new orbits the errors due to non-geocentricity and

one cpr orbit error in SSG for Seasat and Geosat/ERM
are almost negligible. One can predict that a global
ocean tide model solely based on altimeter data will
probably never satisfy the required accuracy over
shallow waters (see Table 4 as an example) unless tide
gauge measurements are used for modeling. In addition
to the three errors discussed above, errors arising from
ionospheric corrections, wet/dry tropospheric correc-
tions, time tag correction, significant wave height,
clouds/rain, earth tide, instruments bias, etc., will also
affect SSH and in turn SSG. Some of these errors are
functions of both space and time and are difficult to
characterize. Any error that contains mostly long

Table 6. Typical sea surface topography and slope based on Stewart’s estimate

Phenomennon Typical slope relative Percentage Period of variability
to geoid variability in position
(urad) (Vo)
Western Boundary Currents 13.00 (130cm/100km) 25 days to years
Large gyre 0.17 (50cm/3000km) 25 one to many years
Eastern Boundary Currents 3.00 (30cm/100km) 100 days to years
Mesoscale eddies 2.50 (25cm/100km) 100 100 days
Rings 10.00 (100cm/100km) 100 weeks to years
Equatorial Currents 0.06 (30cm/5000km) 100 months to years
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wavelength components will introduce less trouble for
SSG than for SSH.

If LSC is used as the prediction technique, we can
account for these errors in SSG by including the
covariance functions pertaining to individual errors, in
analogy to the method used by Knudsen (1991). To do
this we can model the covariance function of an error
affecting SSH between points P and Q as

> 0 Bl) (23)
n=0

Where “x” stands for the error to be modeled, o, is the
degree variance of the error, and P,(¢) is the Legendre
polynomial of degree n. The variable ¢ is a function of
both space and time in that

t=cos(Y + k't — 1)), (24)

where  is the spherical distance between P and Q, 7;
and 7; are the epochs when the observations are made at
P and Q, respectively, and £* is a conversion factor
from time to spherical distance. Suggested models of o
and £* may be found in Knudsen (1991). Then, using the
law of covariance propagation (Moritz 1980), we can get
the covariance function between an error gradient at P
with azimuth ¢p and an error gradient at Q with azimuth
op by (Hwang 1996)

Cy(t,ap,0p) =Cy,(t) cos (op — otpp) cOs (0 — atpp)
+ Coum(0) sin(ap — app) sin(ag — apg)
(25)
where apg is the azimuth from P to Q, and Cj; and C,,
are the covariance functions of the longitudinal and
transverse components of the gradient of the error
which are isotropic and are dependent on ¢ only. See
also Hwang (1996) for the method of computing Cj; and
G, given o

Geoid determination over Taiwan using gravity
anomalies and altimeter-derived sea surface gradients

The gravity data and corrections for systematic errors

The gravity data to be used are the land gravity
anomalies collected by Yen et al. (1990) over Taiwan
and the ship gravity anomalies from the National
Geophysical Data Center. The land gravity anomalies
are based on the GRS67 system and the rigorous free-air
reduction formula. The long-track sampling rates of the
reduction formula. The along-track sampling rates of
the ship data vary from one cruise to another. To make
the density of the ship gravity compatible with the
density of the land gravity, and to reduce the
computational time, for each 3'x3’ bin with a least
one data point we select the ship gravity anomaly which
has the median value. Also, the ship gravity anomalies
were adjusted to remove biases and trends using a
satellite-only gravity anomaly field (Hwang and Par-
sons, 1995). The distribution of the land data and the

selected ship data is shown in Figure 5. To be consistent
with the 5 pgal instrument accuracy, we apply the
following corrections to the land gravity anomalies,
according to the analysis by Heck (1990):

¢ Correction to GRS80 system (Torge, 1989)
Agy = —0.90 — 0.0045 sin® ¢ (mgal) (26)
¢ Atmoshpheric correction

Agr = 0.87 mgal

¢ Correction for vertical datum inconsistency (Heck,
1990, Table 1)

Ags = —0.09 mgal
¢ Correction for horizontal datum inconsistency

Ags = 0.0251 sin 2¢po¢p (mgal) , (27)
where 0¢ is measured in arc-second and can be

calculated by

2
o =— %sin 2¢ om — (sin Aoy — cos Aay)

. T, . . T, T,
— sin ¢cos 1= — sin ¢ sin A~ + cos ¢ — (28)
a a a
2

5
+%Sin2¢—a+sin2¢5f ,
a
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Fig. 5. Distribution of land gravity anomalies over Taiwan (triangle)
and ship gravity anomalies (circle) used for the geoid determination



where the needed 7 transformation parameters from
Taiwan’s geodetic system to the WGS84 system, which
is assumed to be geocentric, are obtained from Chen et
al. (1993):

Scaling factor dm = 23.142 x 1079;

Translations 7, = —751.637 m, T, = —358.568 m,
T.=—179.421 m;

Rotations o, = —0.373", o, = 0.686", 2, = 0.291".
The change in ellipsoidal parameters is:

Sa = 6378137 — 6378160 = —23 m;
Sf=0.

The values 4g4 range from —0.115 to —0.126 mgal.
These corrections are to be added to the gravity
anomalies provided by Yen et al. (1990). The magnitude
of the total correction is about —0.240 mgal islandwide.
Furthermore, to be consistent with the coordinate
systems of the altimeter data and the ship data, the
geodetic coordinates of the gravity data points based on
Taiwan’s geodetic datum are converted to the coordi-
nates in the WGS84 system using the 7 transformation
parameters listed above. For this conversion the change
in latitude can be calculated by (28) and the change in
longitude by (Rapp 1989)

0L =oxtan¢cos A+ o tan ¢ sind — o,

L (29)
———(Tysind — T, cos d) .
acos ¢ ’
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Fig. 6. Gravity anomalies over Taiwan (see Figure 5 for data
distribution), contour interval is 20 mgals. The solid contours indicate
positive values, while the dashed contours indicate negative values
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The changes due to the datum conversion range from
—6.60" to —6.21" in latitude, and from 28.92" to 29.70”
in longitude. The contour map of the corrected land
gravity anomalies and the selected ship gravity anoma-
lies is shown in Figure 6. The maximum and minimum
values are 327.515 (on land) and -238.418 (at sea) mgals,
respectively, and the standard deviations on land and at
sea are 93.155 and 62.304 mgals, respectively. The
gravity map features highs along the Central Range of
Taiwan and lows offshore east coast of Taiwan where a
deep trench exists. Over the west coast of Taiwan the
gravity anomalies are negative due to sediments.

The altimeter data

Because only few ship cruises are available, the ship data
are rather sparse and are not sufficient to fill the data gap
offshore Taiwan. Thus using the gravity data alone the
coastal geoid may be poorly determined. Altimeter data
just add to the ship data at sea. Based on the analysis
above, along-track SSG contains less systematic errors
than SSH, especially when the systematic errors in the
original SSH contain largely long wavelength compo-
nents. Thus SSG will be the data type to be used. Since
SSG are only available at sea, they are located at the
“remote” zone when determining the land geoid. Again,
to reduce the computational time for a 3’ x 3’ non-empty
bin we select only the along-track SSG with the smallest
error. Figure 7 shows the distribution of the “binned”
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25° 00' 25° 00'
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Fig. 7. Distribution of the binned 3'x3' sea surface gradients derived
from Seasat, Geosat/ERM, ERS-1/35d, ERS-1/GM and TOPEX/
POSEIDON altimeter data
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SSG around Taiwan. The Geosat/GM data were not
available at the time of writing this paper. The densest
data come from ERS-1/GM, while T/P contributes the
least. Of the phenomena listed in Table 6, only the
Kuroshio Current is known to exist within 50 km to the
shore of east Taiwan and its effect will be modeled in LSC
(see below). According to Table 4, possible tide model
errors exist in all altimeter data due to the complete
bathymetry and shallow waters, especially for the non
repeat Seasat and ERS-1/GM. However, it is beyond the
scope of this study to model the ocean tide error and
other errors. By evaluating the quality of the predicted
geoid we will see whether the errors have seriously
affected the altimeter data.

The elevation data and residual terrain model
for a mixed land-sea area

It is estimated that the averaged data spacing of the land
gravity anomalies over Taiwan is 2’ to 3. To obtain a
local geoid with resolution higher than that of gravity
data we have to rely on elevation data (Forsberg 1984).
In this study, the digital terrain model (DTM) on Taiwan
is provided by Shih (1995). Shih’s DTM is based on the
Digital Chart of the World published by the Defense
Mapping Agency of USA and is on a 30" x 30"
grid.Because RTM reductions are also needed at sea
for the ship and altimeter data, we also used the
bathymetry data from ETOPOS. To avoid discontinuity
along coastal areas, the 30” x 30" DTM grid and the
5" x 5" ETOPOS5 grid were first transformed to point data
with positive elevations from DTM only and depths from
ETOPOS only. Then, a new 30” x 30" grid was created
from the point data by a minimum curvature interpola-
tion scheme. Comparisons show that on land the new
30” x 30” grid is almost identical to the old one with
differences on the order of few meters, and at sea the new
grid and the ETOPOS grid agree well but a the trench the
differences can be up to 50 m. Figure 8 shows the
combined DTM-ETOPOS5 model, which has a standard
deviation of 1825 m. The mean and the standard
deviation of the DTM are 783 m, and 827 m, respectively,
with a peak of 4000-m high at the center. At the
populated east coastal area, mountains of 2000-m high
are only about 10 km away from the sea shores. Then,
less than 50 km offshore the northeast coast of Taiwan
where the Philippine Sea plate meets the Eurasian plate,
the subducting Philippine Sea plate creates a 5000-m
deep trench. Over the west coast the change of terrain is
relatively smooth, but in the northern part of the island
the change is equally large as the east coast.

The elevation data can be used to compute the effects
on the functionals of the earth’s gravity field due to the
mass layer between the actual topography and a
reference topography, the so-called RTM effects. In this
study the required RTM effects are for gravity
anomalies, geoid gradients and geoid undulations. The
RTM effects are removed from the raw data to produce
the relatively smooth residual data, which are then used
for geoid the computation. The complete list of the

formulae for RTM computations using FFT can be
found in Schwarz et al. (1990). RTM effects are either
evaluated solely on land, e.g., Forsberg (1984), or solely
at sea e.g., Basic and Rapp (1992). For the computations
over a mixed land-sea domain the formulae suitable for
the FFT technique must be modified. The modification
is associated with the use of densities of the sources that
generate the RTM effects over land and ocean. Assum-
ing that on land the rock density, p,, is uniformly 2.67
g/cm?, and at sea the density difference between rock
and sea water, p,, is also uniformly 1.64 g/cm?, the linear
terms of RTM effects can be computed as follows.
eRTM effect on geoid

Considering the density is a function of position, the
effect is:

N (Xp, yp) y / \/

Er-a - Cofan-1]
(30)

»)(h(x, y) he(x, )
(v =)

dxdy

X—Xp

where ”*” is the convolution operator, E is the domain

of integration in the X-Y plane, y is the normal gravity,

r = +/x2+ y2, h and h, are the actual elevation and the
reference elevation, respectively, and

——. [ (hh), if land

Uy ) = {pz/pl(h,hr), if ocean S

which are the scaled elevations (note: at sea the elevation
is negative). By Fourier transforming (30), the spectrum
of Nrrm is the product of the spectrum of the scaled
elevations and the spectrum of 1/r (subject to a constant
factor). This then enables a fast computation of Nrry.
Likewise we may get the following RTM effects.
*RTM effect on gravity

AQRTM(xpa yp) =2nGp, (Z - Er) - C(xpv J’p> ) (32)
where c is calculated as
1 1 | R

c(Xp, yp) = 2Gp1[h *__2/1 (h*r—3)+h2pF] . (33)
where

S (h,hp), if land

(hhp) = { \/pa/pi(h k), if ocean (34)

= /ldxd (35)

On land the term in (33) is called terrain correction,
whereas over ocean it is simply a correction to the effect
of Bouguer plate enclosed by the actual depth and the
reference depth.

¢ RTM effect on deflection of the vertical

(5)=- A= (iffjﬂ , (36)
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comparison

where Cg, C, are the north and east components of
deflections of the vertical, respectively. Note that geoid
gradient and deflection of the vertical bear opposite sign.
Also, equations (30), (33) and (36) represent only the
first order approximations of the RTM effects. The
actual computations were carried out using program
“tcfour” developed by Forsberg (1984) with modifica-
tions for the mixed land-sea domain. The reference
elevations were generated from the new 30”7 x 30”
elevation grid using a median filter with a filter length
of 50 km. The spectra of the kernel functions 1/r,
1/r3, x/r, y/r* are computed discretely by FFT. Table 7

shows the statistics of the RTM effects over the area
121°.5 < longitude < 122°.5,21°.5 < latitude < 25°.5.

Geoid determination by least-squares collocation

Since SSG is heterogeneous to gravity anomaly, we have
to use least-squares collocation (LSC) for the geoid
determination when using both SSG and gravity
anomalies simultaneously. With a remove/restore pro-
cedure, the residual geoid undulation is computed as
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Table 7. RTM effects over 121°<longitude<122°.5, 21°.5 <lati-
tude<25°.5 using a combined DTM-ETOPOS model and a 30" x
30" reference elevation model

Gravity Geoidal Deflection  Deflection

anomaly height north east

(mgal) (m) (arc-sec) (arc-sec)
Maximum 163.8 1.53 20.28 21.19
Minimum  -176.4 -0.72 -21.31 -22.16
Mean -0.1 0.15 0.01 0.01
Std. dev. 21.7 0.34 2.73 3.29

-1
Cug +Dyy Cige

Nyes = (CNAgCNe) . (37)
CeAg Ce + De

Agr@S

eres
where
Agres = Ag - Agoxu‘)la - AgRTM ’ (38)
and

Cres = € — &osu91a — ERTM = 0 + & — Eousu9la — ERTM 3 (39)

are the residual gravity anomaly and the residual SSG,
respectively, with the contributions from OSU91A
(Rapp et al. 1991) to degree 360 and the RTM effects
removed. The SSG e is the sum of geoid gradient ¢ and
SST gradient 6. The full geoidal undulation is obtained
by adding back the contributions from OSU91A and the
RTM geoid effect:

N = Ny¢s + Noguo1a + Nrryr - (40)

In (37) Cyuag, Cne, Cag, Cage;, and C, are covariance
matrices for geoid-gravity anomaly, geoid-SSG, gravity
anomaly-gravity anomaly, gravity anomaly-SSG, and
SSG-SSG, respectively (note: all referring to the residual
quantities). Matrices D44, and D, are diagonal and
contain the variances of random noises of the used
gravity anomalies and geoid gradients, respectively. In
this study, the random noise is 1 mgal for all the land
gravity anomalies, considering the uncertainties in the
vertical datum and the gravity datum of Taiwan. The

noise of the ship data is uniformly 4.21 mgal, based on
the estimate by Hwang and Parsons (1995). The noises
of SSG vary from one mission to another and they are
calculated while averaging repeat cycles, or in the case of
non-repeat data we used the noise of SSH to estimate
the noise of SSG (see Table 1 and its related
information). Assuming that SST gradient is uncorre-
lated with the earth’s gravity field, we have Cy. = Cys,
Cage = Cige, Coe = Cyz + Cop. In this study, the global
covariance functions for N — Ag,N — ¢, Ag —¢and ¢ — ¢
were computed using series expansions in Legendre
polynomials with the coefficients of the error part (from
degree 2 to 360) based on the error degree variances of
the OSU91A gravity model, and the coefficients of the
signal part (from degree 361 on) based on Model 4 of
Tscherning/Rapp anomaly degree variance (Tscherning
and Rapp 1974), see also Hwang (1989), Hwang and
Parsons (1995) and Hwang (1996). The global covar-
iance function for 6—0 was computed again in Legendre
series with the coefficients based on the spherical
harmonic expansion of the Levitus SST to degree 50
(Hwang 1996). A LSC computation is made at one
single grid point with data selected within a spherical
cap centered at the point. Two scaling factors were
applied to the global covariance functions to obtain the
actual covariance functions for use in (37). One scaling
factor is for Cw g, Cne; Cags, Csz, Cag, the other is for Cog,
see also Hwang (1996, Appendix B). Tests have been
made to see the effect of using different cap sizes.
Comparing the GPS-derived and the predicted geoidal
heights (see below), the best agreement is obtained with
0.5° cap size. In fact, using LSC the prediction is only
accurate when data distances are well within the
correlation lengths of the covariance functions (Moritz
1980). Thus, with a large cap size some data distances
will be larger than the correlation lengths. Table 8 shows
the correlation lengths of the covariance functions used
in this study. C, and C;,, are the covariance functions
for the longitudinal and transverse components of geoid
gradient, while CY, and C, are the covariance functions
for the longitudinal and transverse components of SST
gradient and these four functions are necessary for
computing the covariance function of SSG in (39). The
correlation lengths for Cj4, (longitudinal component of
geoid gradient-gravity anomaly) and Cj, (longitudinal
component of geoid gradient-geoid) are undefined
because Ci44(0) = Civ(0) = 0. Except for CY and CY ,
the correlation lengths are below or equal to 0.5°.

Table 8. Variances and correlation lengths of the covariance functions based on OSU91A error
degree variance model to degree 360 and Tscherning/Rapp anomaly degree variance model with

A=425.28 mgal®, B=24

CAg CNAg CF‘ll CSmm C:(.7mm
Variance 831.75 11.25 18.52 18.52 0.01 0.01

(mgal®) (m mgal) (arc-sec?) (arc-sec?) (arc-sec?) (arc-sec?)
Correlation 0.10 0.23 0.07 0.15 2.27 4.33

length(®)




Table 9. Four solutions for Taiwan’s geoid

Solution  Data RTM
Land gravity Ship gravity Altimeter
anomaly anomaly SSG
A on on on on
B on on off on
C on on on off
D on on off off

The result of geoid determination

Four solutions for Taiwan’s geoid have been made using
various combinations of options, as summarized in
Table 9. The computations were carried out on a
CONVEX (3840 supercomputer. The grid size used is
30” x 30” (same as that of DTM) for Solution A and B,
and is 2’ x 2’ (the limit of the gravity data resolution) for
Solutions C and D. Solutions C and D are designed to
see whether the RTM reductions are necessary. Also, in
Solutions C and D the terrain corrections from the
30” x 30" DTM (see (33), but setting zero for elevations
at sea) were applied to the land gravity anomalies and
the computed co-geoid was corrected by the indirect
effect —nGph®/y (Wang and Rapp 1990) with / being
elevation. To evaluate the four solutions, we first
compare the predicted and the GPS-derived geodial
heights along a profile of 26 first-order benchmarks
located at the coastal area of the west Taiwan (see
Figure 8). In the GPS measuring campaign, six dual-
frequency Trimble 4000 SST receivers were used
simultaneously, and each benchmark occupied by 2
sessions in one day (Tsuei et al. 1933). Also, the
precision ephemeris of GPS was used in the coordinates
computation. The standard deviation of the 26 GPS-
derived geoidal heights is 0.546 m and the range is 1.918
m. The result of the comparison is shown in table 10.
The mean differences between the GPS-derived geoid
and the four predicted geoids are about 4.6 m, indicating
that the GPS-implied datum and the datums associated
with the predicted geoids are different. Therefore, only
the geodial height differences should be compared and
the standard deviation of the differences is the descriptor
of the geoid quality. It is clear from Table 10 that
Solution A yields the best geoid. Without altimeter data
the accuracy of the predicted geoid is degraded by

Table 10. Difference (in meter) between the GPS-derived and the
predicted geoidal heights

Model Maximum Minimum  Mean Std.
dev.
A 4.757 4.607 4.673 0.040
B 4.835 4.652 4.725 0.055
C 4.536 4.300 4.456 0.067
D 4.580 4.261 4.404 0.081
OSU91A to 360 3.929 3.232 3.575 0.184
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27%(A vs. B). Comparing the results from Solutions A
and C, it is concluded that for the rugged terrain over
Taiwan the RTM procedure is better than the procedure
with terrain correction. Figure 9 shows the geoid from
Solution A. Note that the 4-cm standard deviation from
Solution A is to be compared with the 7-cm standard
deviation achieved by Tsuei et al (1994).

Another comparison, which is indirect, was made
using the deflections of the vertical at 8 astrogeodetic
stations selected from Taiwan’s first-order control net-
work (see Figure 8). Station HZ is the origin of Taiwan’s
geodetic datum. Similar to (3) and (4), the nor and east
components of a deflection can be calculated from the
predicted geoid N as

ON ON
é__@’n__RCOS(j)@/I ' (41)

The differentiations also remove the constant bias (if
any) in the predicted geoid. In practice (41) was done
with a numerical method in which the gridded geoidal
heights were first approximated by quadratic polyno-
mials in a local horizontal coordinate system. With the
coefficients found, the derivatives of the approximating
polynomials were then evaluated to get the deflections.
A recommended program for this purpose is IMSL’s
QD2DR. To compare the predicted deflections and the
observed deflections, the geoid-implied geodetic datum
is converted to Taiwan’s datum using a three-parameter
transformation model (Heiskanen and Moritz 1985,
eq.(5-72):

&' =¢E4apsin ¢pcos A+ arsingsini +azcos ¢ ,
o =n+asinl—aycos i,
(42)

where &', i’ are the deflections in Taiwan’s datum, and &,
are the deflections in the geoid-implied datum. Table 11
shows the result of the comparison, which, in terms of the
agreements between the measured and the predicted, is
the same as the case of comparing geoidal heights. In
particular, the improvement due to the altimeter data is
30% (A vs. B). Special attention is given to Station ML,
where the geoid experiences a steep west-east slope due
to the high mountains on the left and the deep trench on
the right and the east component of the deflection is a
relatively large 70.94". At this station the east compo-
nents from Solution A and from the observation match
to 0.68", while Solution B yields a 6.16" discrepancy.
The above two comparisons show that, although the
altimeter-derived SSG around Taiwan are located at
shallow waters and may contain errors, they may not be
so seriously contaminated by errors and they indeed
help to improve the geoid prediction over Taiwan.

In the engineering application of the geoid, an
orthometric height difference can be obtained by

AH = Ah — AN | (43)
where the ellipsoidal height difference A% can be obtained

from GPS and the geoidal difference AN from a geoid
model. This is the so-called GPS leveling, which may
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Fig. 9. The predicted geoid over Taiwan from Solution A, contour interval is 0.5 m

replace the conventional leveling. Figure 10 shows the
relative accuracies of the orthometric height differences
using the geoid model from Solution A along the test
profile, as well as the accuracies required in the first

second and third-order leveling (Kahmen and Faig 1988
p-385). A relative accuracy between two benchmarks is
calculated by (4H; — AH,,)/distance, where AH, is the
difference of the two orthometric heights from leveling

Table 11. Comparison of the observed and geoid-derived deflections of the vertical (in arc-second)

Station  Obs. Obs. —A Obs. -B Obs. —-C Obs. -D Obs. —OSU
name

¢ n ¢ n ¢ n ¢ n ¢ n ¢ n
DP -3.23 20.67 -1.84 0.08 -2.51 0.45 291 2.14 -1.18 3.69 2.58 -5.99
KS 3.19 13.62 3.68 2.23 3.34 -0.48 2.01 -0.19 3.34 4.48 0.78 5.37
ML -14.19 70.94 -1.60 -0.68 -0.72 6.16 -4.75 3.37 -3.25 7.00 -7.66 11.02
CC -6.07 19.30 1.33 1.67 -1.14 0.29 0.11 2.79 0.50 -1.57 -1.82 3.56
MS -20.16 31.16 0.06 2.97 -4.17 0.81 -1.38 -1.23 =2.77 -1.85 1.37 -0.44
FS -5.99 17.93 0.21 -1.87 2.83 -2.16 3.15 0.45 4.03 -1.27 8.84 3.27
DM -14.83 15.68 -0.53 -1.53 342 -2.65 1.29 -1.93 2.83 -2.49 -5.74 -6.97
HZ 0.37 -2.07 -1.32 -2.90 -1.08 -2.45 -3.35 -5.42 -3.54 -8.04 1.65 -9.87
Rms 10.73 30.76 1.71 1.98 2.68 2.66 2.73 2.70 291 4.48 4.81 6.67
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Fig. 10. Relative accuracies of the orthometric height differences
derived from GPS ellipsoidal heights and Solution A geoid along the
test leveling profile

and 4H,, is the modeled difference from GPS+geoid.
Using the geoid from Solution A the averaged relative
accuracy achieved is 0.81 part per million (ppm). In fact,
in such a comparison two factors will affect the result.
First, the ellipsoidal heights from GPS are not error-free:
using the type of Trimble receiver mentioned above, the
expected accuracy in ellipsoidal height difference is
10mm+Ippn (see a Trimble user’s manual). With 2
sessions of observations and an averaged distance of 85
km, the averaged accuracy for the 25 ellipsoidal height
differences is 67 mm. Second, 4H, is also subject to a
maximum error of 2¢/K mm, where k is the distance in
km between two neighboring benchmarks. Using K = 85
km the averaged accuracy for 4H, is 18 mm. If the error
in the ellipsoidal height differences and the error in AH,;
are only halves of the averaged values, then according to
error propagation the projected noise of the geoid from
Solution A is 2 cm. Assuming that the error of ellipsoidal
height difference from GPS is Smm+0.5ppm, then a geoid
with 2-cm accuracy can help GPS to do the third-order
leveling, which demands an error bound of 5v/K mm.

Discussion and conclusions

In this paper we analyzed the errors of altimeter-derived
SSG due to non-geocentricity of satellite reference
frame, tide model error and one cpr orbit error. It is
found that, in general for the averaged Geosat/ERM,
ERS-1/35d and T/P data sets listed in Table 1 these
errors are negligible, but for the non-repeat Seasat,
Geosat/GM and ERS-1/GM these errors are significant
and need to be corrected. If the errors consist mostly of
long wavelength components, they will introduce less
trouble to SSG than to SSH. If SSH are affected by a
constant error, using SSG is equivalent to using
crossover adjusted SSH with a bias-only error model,
but requires less computational effort than the latter.
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Based on these considerations it is concluded that SSG
is a better data type than SSH. We must point out that
all the altimeter data can be updated, and the errors in
the new data could be much less severe than the errors
contained in the altimeter data sets listed in Table 1. In
addition to the previously mentioned works that yielded
the new orbits of Seasat and Geosat/ERM, we cite the
application of altimetry by Smit and Sandwell (1995)
who have replaced the NSWC orbits in Geosat/GM by
the T/P compatible JGM-3 orbits, and the Schwiderski
tide model by the CSR3.0 tide model. Perhaps the
biggest and the most complicated error in satellite
altimetry is the ocean tide model error. To support this
statement we replaced the Cartwright and Ray tide
model in the T/P GDR’s by CSR3.0 and found that with
CSR3.0 the rms crossover differences over
100° < longitude < 140°,0° < latitude < 40° for cycles
2 to 36 are reduced by only 1-2 cm and some crossover
differences are still as large as 40 cm.

The altimeter-derived SSG have been successfully
incorporated into the geoid prediction over Taiwan.
With RTM reductions the inclusion of SSG improve the
prediction by 27% when comparing the GPS-derived
and the predicted geoidal heights, and by 30% when
comparing the observed and the predicted deflections of
the vertical. Altimeter data are particularly useful in
predicting a precision coastal geoid if there are no
marine gravity data at the immediate vicinity of the
coastal area. For countries which have dense popula-
tions along coastal areas and require a high precision
coastal geoid for engineering applications, altimeter
data are indispensable.
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