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Automaton Based String Matching Hardware with Root-Indexing
and Pre-Hashing Techniques: Design, Implementation and

Evaluation

Student: Chen-Chou Hung  Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

String matching plays a central role in content networking applications, such as
intrusion detection, anti-virus, anti-spam and Web filtering. As it is computation and
memory intensive, a software .implementation of string matching algorithms is
insufficient to meet the high-speed requirement of these applications. Thus, offloading
the packet content to dedicated hardware seems inevitable. This thesis focuses on the
memory efficient version of AC, namely bitmap AC, and employs two parallel
hardware acceleration techniques, root-indexing and pre-hashing, onto the
FPGA-based Xilinx ML310 platform. The root-indexing can match multiple bytes in
one single matching, and the pre-hashing can be used to avoid bitmap AC matching
which is a cycle-consuming operation. Furthermore, the proposed string matching
hardware approach is feasible for either internal or external memory architecture. The
internal memory architecture provides high performance, and the external memory
architecture provides high scalability of patterns. These two implementations both

have high throughput for matching.

Index Terms: string matching, bitmap AC, pre-hashing, root-indexing, memory-based
architecture, high scalability
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Chapter 1

Introduction

Because detecting malicious traffic on the Internet, such as viruses and intrusions,
relies on looking for signatures in the packet payload, traditional firewalls inspecting
only the packet header are insufficient for the detection. Thus, deeper packet-content
inspection is required to detect such application-level attacks, such as intrusion
detection, anti-virus, anti-spam and Web filtering which are available in the market.
The essential part of these solutions is string matching, and it has been shown to be a
time-consuming component that should be accelerated [1], [13].

For string matching, there' are several ~well-known algorithms such as
Aho-Corasick (AC) [2], Wu-Manber [3], Boyer-Moere [4] and Bloom filters [5]. A
software implementation of these algorithms-may not be able to afford escalating
traffic in the Internet, so several hardware architectures such as discrete comparators
[6]-[8], CAM-based architecture [9]-[11], and Bloom filters hardware [12]-[13], have
been proposed to dramatically improve the performance. The throughput of them can
mostly achieve up to 10 Gbps, but the common drawback of them is the poor
scalability. Their rules and pattern sets are hardwired into the FPGA, so the scalability
is limited by the number of logic cells and the size of embedded memory in the
FPGA.

In this thesis, we proposed a scalable memory-based hardware architecture
which is based on the AC algorithm. AC is a common algorithm with following the
key features. First, it has the linear time performance in worst case. Second, it is
robust for large and lengthy patterns. Third, it can perform multi-pattern match.

However, the most critical defect of AC algorithm is large memory usage. The other

1



AC-based algorithm, bitmap AC [14], improved the memory utilization by using a
256-bit bitmap to replace 256 word-size pointers of each state in AC. Therefore,
bitmap AC is the alternative which we adopted in this work. We also applied two
acceleration techniques to make our architecture sub-linear. The first technique is
Root-Indexing which comes from the observation of AC’s high frequency
root-visiting behavior. The second technique is Pre-Hashing which comes from the
observation of time-consuming operation in bitmap AC, which is also high cost on the
x86-platform. Thus, for reducing this kind of operation, Pre-Hashing can test quickly
to avoid the bitmap AC matching. For scalability, our architecture use either internal
or external memories to store the whole pattern database of SNORT [19] or even
ClamAV [20]. Furthermore, it can easily update pattern without interrupting operation
or even shutting the machine down:

In our evaluation, we implemented our-work en FPGA-based platform Xilinx
ML310, and used ISE and EDK as:our-design toals. Also, we provided the driver
interface for communication between. software and hardware component. In the
hardware design, we divided the whole architecture into five main modules, which
can be paralleled. The first module is the parallel finite state machine which controls
signals among the other modules. Next is the string matching controller module which
is in charge of data request and assignment. The last three modules are root-indexing,
pre-hashing, and the bitmap AC matching.

The rest of this paper is organized as follows. In Chapter 2, we first introduce the
related algorithms and issue. Then we introduce the existing hardware acceleration
architectures and list the comparison table. Our acceleration techniques are presented
and an example is given in Chapter 3. Chapter 4 describes the hardware architecture
design of our approach and software interface we provide. The performance

evaluation, analysis, and comparison with existing works are presented in Chapter 5.
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Finally we make conclusion and list the future work in Chapter 6.




Chapter 2
Background

2.1 AC related algorithms

For content filtering applications, there are a lot of string matching algorithms
such as AC, Boyer-Moore and Wu-Manber. Due to the AC-based algorithm is used in
our work, we only introduce AC-based algorithm, its key features, and its issues in

this chapter.

2.1.1 Aho-Corasick

One of the notable algorithms.in exact-pattern matching is Aho-Corasick, which is
able to match multiple strings:with the linear time is the worst case. AC works by
constructing a state machine from. the. patterns to be matched, and is composed of
three component functions. The first is ' Goto function which is used to traverse from
one node to the other node as shown in Figure 1 (a). The second is Output function
which output the match pattern for current state as shown in Figure 1 (b). The third is
Failure function which is traversed when there is no next state, shown in Figure 1 (c).

Constructing the state machine starts with an empty root node and adds states to the
state machine for each pattern. Failure pointers are further added from each node to
the longest prefix of that node which also leads to a valid node in the trie. After the
construction of machine, the state machine is then traversed from the current node to
the next node according to the input character. There are two alternatives to store the
next state links.

1. One is the construction of 2D-array table. Each state has 256 next state



pointers for all ASCII input case, as shown in Figure 1. (d). It is the most
popular implementation for fast matching, but it wastes the memory space
when the table is sparse.

2. The other data structure is using link list, and each state only has the link list
of exist next states. This kind of data structure has smaller space requirement

but is slow when there are many next states.

00,0200

i i output(i)
oo
5 {she, he}
" . 7 {his}
(@) (b)
Current State
i |1 23 456 7809 a/bly\,
fi)lo 0 0 1 2 07°3.0 3 Ned Site |
© (d)

Fig. 1. (a) Goto function. (b) Output function. (c) Failure function. (d) AC table
implementation.

2.1.2 Bitmap AC

A variation of AC, bitmap AC, is a compromise between table and link list
approaches [13]. It maintains a 256-bit bitmap for each state to indicate whether a
traverse with a given character is valid or invalid which requires traversing along the
failure pointer path. If the next state is valid, then the next state is obtained by
summing all the bits prior to that bit number and adding them to the base address of
next node pointer. Figure 2 shows the data structure of bitmap AC and how it locates

the next state.



Data structure for state i

State Info. Matched Pointer

Next State Base Address

Failure State | Next State Pointer
[ T T .. 256-bithitmap | |
Nex

t State Table of State i

\4}4\4 ...... Va

J
~ .
@ Bit Offset

»

Sum all valid 1s

Fig. 2. Data Structure of bitmap AC for state i and using bitmap to locate the next
state.

The critical defect of AC table implementation is the waste of memory which
using 256 next pointers for each state. Bitmap AC.solves this problem, and still keeps
the advantages of AC. However, in order to.docate the next state in bitmap AC, we
must to count all 1s before the-valid-bit-in-the 256-bit bitmap. This is known as a

time-consuming operation which is the-high.cest on x86 based systems.

2.2 Hardware-based string matching

The major string matching hardwares are listed in Table 1. The most common
matching hardware is the finite automaton approach which uses DFA/NFA to match
every input byte. Sidhu and Prassanna [13] introduced the hardwired
Nondeterministic Finite Automata (NFAs) for finding matches to a given
regular-expression pattern. They implemented on FPGA which matches one text byte
per clock cycle. However, this kind of works has lower clock rate and throughput.

Another approach is CAM-based architecture, which is able to match all contents

at once to achieve high throughput. Nowadays FPGA often has embedded block



RAMs for high performance design. Thus, CAM is easily constructed from block
RAMs. For the CAM-based hardware, Cho [7] proposed a CAM-based solution
which uses comparators to perform initial part of pattern matching and uses the
matched prefix as an address into a CAM to read the whole patterns. The other
CAM-based solution is pre-decoding CAM, which was proposed by Baker for
processing a large-rule set [9]. Some CAM-based implementations [10], [16] also
combine with hardware comparators for lower usage of circuit and high performance.
In the last two matching hardware, memory-based hardware was also presented
by Monther and Thomas [17]. They constructed an AC table which adds the extra
failure links of longest prefix, and stores them in external memory. However, the
memory requirement is too large in their design. Another different architecture is
Bloom filters hardware [12]-[13], which “uses multiple hash functions for
approximated matching. Once=-Bloom filter- reports a possible hit, the advanced
verification is needed for the exact imatching.-The main drawback of Bloom filters
hardware is that dedicated length processing unit 1s needed for every pattern length.
Most of these aforementioned works can achieve up to 10 Gbps by hardwiring
the rule sets into FPGA, which limits the scalability of rules and the size of patterns.
Even the data structure of memory-based design wastes too much memory space.
Therefore, the scalability of patterns and rules is our most concerned issue, and it is

our focus in this work.



Table 1

Comparison of existing string matching hardware

Matching Hardware

Advantage

Disadvantage

NFA / DFA Hardware

Easy to implement

Regular expression support

High area cost

Modest throughput

CAM-based Hardware

High throughput

High area cost

Bloom Filter Hardware

Low area cost

False positive issue

Fixed length

Memory-based Hardware

Reconfigurable

High capacity

Low throughput

Memory space wasting




Chapter 3
Fast Bitmap AC String Matching Hardware

3.1 Overview

This thesis is base on the Tseng’s string matching approach [18]. It can match
multiple characters at root state by root-indexing matching, and avoid some slow
bitmap AC matching operations by pre-hashing matching. Also these two acceleration
techniques can process in parallel. An example is illustrated from Fig. 3 to 5, which

shows the difference between bitmap AC and fast bitmap AC.

i | output(i)
4 {TEST}
6 {THE}
8 {HE}
(b)
Input text: TESTTHEUSHER
(@) (©

Fig. 3. An example for fast bitmap AC. (a) Goto Trie. (b) Output function. (c) Input
text.

_________

The Fig. 3 is an example of original AC that can be used for bitmap AC and fast
bitmap AC. The transition of AC or bitmap AC will both go to next state according to
the given byte. Their transition sequences according to the previous described AC and

bitmap AC algorithms are the same, as shown in Fig. 4.



0—»1-Esp-Sy3 Toy Tho Ty Hog Eyg Uyg Syo Hyy

—E>8—R>0

Fig. 4. State transition sequence of conventional AC.

Since our fast bitmap AC approach had implemented root-indexing and
pre-hashing techniques, our transition sequence, which is different from original AC

and bitmap AC, is shown as Fig. 5. The “RI”” symbol means root-indexing.

o%»ziﬂlwﬂ»s—'z»esﬁ»oﬁs—ﬁ

RI RI RI

0

Fig. 5. State transition sequence of fast bitmap AC.

Root-Indexing mechanism=can.process two or even more bytes at the same time,
and is applied to the root state 4n our-design.-Therefore, starting from the root state,
the next state is decided by root-indexing. Beyond the root state, pre-hashing is used
to quickly examine the existence of next state for every state transition. When the
pre-hashing unit reports no match for given two bytes, the next state is determined by
the root-indexing unit. Otherwise, the next state is decided by the bitmap AC unit. It is
worth noting that because of parallel processing, when given two characters “TH” at

state 4, the next state 5 will be directly obtained from the root-indexing unit.

3.2 Root-Indexing Matching

In AC trie, most of failure links point to the root state, that is, it will always go
back to the root state when there is no any next state for a given character. Thus, it is

efficient to apply the root-indexing in the root state. Root-indexing can match
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multiple characters simultaneously at the root state. In Fig. 6, root-indexing comprises
k index tables IDX[1..,qand a root next table NEXT, where k denotes the maximum
length of root-indexing matching in the same time. Each entry of IDX stores a partial
address for locating the next state in NEXT. The partial address is an unique
sequential integer to represent the order of appearing characters for the corresponding
substrings in the suffixes of root state. Note that, for advancing k characters in
matching iteration, the substring is started from current byte to k, which means the

latter IDX table is required to include the entries of the former IDX tables.

1z =
~ ——— ~ Next table
mputtext | T [ E | s | T |
T E E ]
v Vv v v 10_01_001_000 \\L\lext state
; . : T E S T
10_01_011_100 0]
00 |E| o1 |E|001|E|00% 1
H| o1 |H| 10 |H|o10|{H|010 : 5
IDX)| |IDX,| |IDX4| |IDX ]
0-255 ! 2 3 . 3
ﬁ
s|o11|s|ou1 4
TH E — 5
T| 20| 7| 12 | T|{1200]| T|100 10 10 _001_000| < | O |
T T — 16
10_11_000_000 7
\ A / v v ] 8
[ 10 [ o1 [ o1 [100|

Fig. 6. Root-indexing architecture and example for the input text “TEST” with the
patterns “TEST”, “THE” and “HE".

For example, if patterns are “TEST”, “THE” and “HE”, IDX; to IDX, will at
least contains the appearing characters in the corresponding position as {“H”,”T”} for
level one, {“E”,”H”} for level 2, {*E”,”S”} for level 3, {*T"} for level 4, respectively.
However, because the latter tables are required to contain the entries of former tables,

IDX]_ tO IDX4 Wl” aCtua”y Contaln {“H","T”}, {“E”,”H",”T”}, {llE’l,’!H”,’IS’I,I1T11}

11



and {“E”,”H”,”S”,”T"}, respectively.

For numbering the entries of IDX tables, the first IDX have 2 appearing
characters, thus “H” and “T” are numbered as “01” and “10” in binary format. The
second IDX table using “01”, “10” and “11” stands for {“E”,”H”,”T”}. The NEXT
table is used to store all the next states within length k, and it is indexed by a
concatenation address of lookup value from the all IDX tables. In the example of Fig.
6, 10_01_001_000, 10_01_011_100, 10_10_001_000 and 10_11_000_000 are
concatenation addresses to locate the next states for “TEE”, “TEST”, “THE” and

LLTTH )

3.3 Pre-Hashing Matching

The pre-hashing method can'quickly-examine the existence of next state to avoid
further slow AC matching. It uses'a single hashing function and builds the bit vector
for the substrings of each state. When _performing the pre-hashing, the next state will
be obtained from root-indexing unit instead of from bitmap AC unit if true negative is
indicated by the pre-hashing unit. True negative is the condition that the given
character is absent in the pre-hashing vector for the suffix of the current state.

Before the pre-hashing matching, it is necessary to build the pre-hashing bit
vector in the preprocessing phase. First, we input the AC trie which is built by the
conventional AC algorithm. For each state, we extract suffixes within the length 1
which is different from the Tseng’s original design. Recursive failure link of each state
except the link to root state is also included in these suffixes. This can avoid filling the
bit vector to almost all 1 when number of patterns is large that will lead to high hit
rate issue. When suffixes are obtained, the pre-hashing algorithm hashes suffixes into

bit vectors. This procedure of building the bit vectors for state 1 in Fig. 7(a) is

12



illustrated in Fig. 7(b). The mask of rightmost four bits of the characters and
transformation from binary to one-hot representation are used as the hash function in
our design. However, better mask position is adjustable for lower false positive

according to the characteristic of patterns.

E Eascn = 01000101 Hasci= 01001000
v v
decimal =5 decimal =8
H
0000000100]-100000
0

(a) (b)

Fig. 7. (a) AC trie of state 1 for building bit vector. (b) Example of building the bit
vector for state 1 in the preprocessing phase.

A pre-hashing matching example is shown in.Fig. 8. The pre-hashing unit reads a
byte substring and then hashes the substring-~G”. The hash result will be indicated by
the pre-hashing unit, when the pre-hashing unit indicates non-hit, the next state 5 for
substring “GDTH” will be obtained from the root-indexing unit. However, if the hit
condition is indicated by pre-hashing unit, the slow bitmap AC matching will be

performed.

Inputtext: |c|D|T|H

GASCII: 01000111

ojojofofofojof1jo|O|1]|OfO {0 (O (O
15 bit vector

Fig. 8. Example for hashing at state 1.
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Chapter 4

Implementation

4.1 Overview

To verify the correctness of fast bitmap AC, we write the C simulation model,
and also use it to generate the essential data structures from patterns. These data
structures will be loaded to initialize matching hardware. After initializing of our
system, the user applications call the string matching API offered by the driver to start
the matching operation. Once a text buffer is scanned, the interrupt signal will be
triggered by the matching engine. Afterward, the interrupt handler will be invoked to
check the matching results and also fill theinew:.text to the buffer if it exists.

For hardware design, it is partitioned into five main modules, and each one is in
charge of a specific function. The implementation environment is based on the Xilinx
ML310 FPGA platform, and Xilinx’s /ISE,, EDK and Synplicity’s SynpifyPro are
development tools for embedded software/hardware integration. The MontaVista
RTOS is chosen for our system, and ClamAV is the target application for our content

filtering system.

4.2 Pre-Processing and Simulation Software

The pre-processing procedure generates the essential data structures for the
proposed hardware, as shown in Fig. 9(a). The Make_Goto() and Make_Failure()
functions are the original functions defined by the AC algorithm, and our data
structures are further built according to the table constructed from these two basic

functions. For bitmap AC, the Make_Bitmap() function builds a 256-bit bitmap for

14



each state and sets 1 to the corresponding bit position for each existing next state. It
also builds the next state table for each state. The next function is Build_Index()
which builds the IDX:. ik tables and root next table NEXT for root-indexing
pre-processing. In the final stage, Build_BitVector() sets 1 to the bit vector by hashing
function according to all next states of both current state and recursive failure node for

pre-hashing preprocessing.

pattern
Input data
Make_Goto() @
Make_Failure() c_state=root ? © L’ c_state=root
l yes
yes ¢
pir=ptr+2
l yes
N c, state =
Build_Index() next_p + c_state=root?
Bitmap_offset()
l ptr=ptr#l yes
Build_BitVector()

(@ (b)
Fig. 9. (a) The pre-processing procedure. (b) The flow of C simulation model.

After the pre-processing procedure is finished, the simulation of proposed fast
bitmap AC algorithm can perform matching according to the flow in Fig. 9 (b). For
each matching iteration, it checks the current state at first. When the current state is in
the root state, the Root-Index() matching will be performed, otherwise Pre_Hash()
will be performed. If Pre_Hash() reports the non-hit situation, the current state will be
set to root state directly, and do the root-indexing matching. If the hit situation is
reported, Search_Bitmap() will check the existence of next state for a given byte. If
Search_Bitmap()=1, the next state will be obtained from the base address pointer of

the next state table plus the return value of Bitmap offset(). Note that if

15



Search_Bitmap() reports zero, the current state will be set to the failure state in the
while loop until the current state is root state. This C model can be the golden model
for the proposed hardware design, and it also can be used to gather statistics for

performance analysis.

4.3 Matching Hardware

This subsection introduces the proposed hardware architecture, block diagram

and FPGA platform individually.

4.3.1 Architecture

The proposed architecture is a highly parallel design that all modules are
working at the same time, and this architecture 1s‘also flexible for either internal or
external memory-based platform. The block diagram of our proposed architecture is

shown as Fig. 10.

state#

root_index_over

root_index_en

pre_hash_en

control

root_state -Indexi
- g RoatIndexing
Unit
FSM

. Index Table
interrupt —

data pre_hash_over

hit

SM data

no_hit
Controller

Bus

Pre-Hashing
Unit

text_buffer_1

text_buffer 2|

bitmap Bitmap AC

Unit

Fig. 10. The block diagram of proposed fast bitmap AC architecture.
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1) FSM module: The most important part in our architecture is FSM module to
control the working flow of whole hardware system. Once the SM controller is
enabled, FSM will control all other modules in parallel. The detailed state translations

are shown in Fig 11.

e
[N
IDLE
. I e
-~ ~—— -
no_ren: 1~ ) ]Wmmm ~_ no_text=1
(¢ ~
P - ~_ -
7 7 N FETCH T~ [‘1,
" no_text=0 & se_rmatch_over=1 . - no_text=0 & ’ )
SET_ROOT_Ipx—— & 1900.rdy=0 control=1 & sal_acmalch_ovar=1& | ~ SET_AC
B no_text=0 ted_rdy=0_—
— — o L _— g
. T ) a“— /,/'
~ MATCH N -~
e ‘/ T~ /./'/ ac_malch_over=1
rool_index_over= P T T e
— e \_/‘ prehash_over=1 & 7
+{ RooT_mate ) Toot_state=1 | &=t
7 - ! (prehash_over=1 & hit=0) AC_MATCH "“'\
/
N\ \/
fallure=1 & root_state=1 & root_index_over=1

Fig. 11. State‘transition diagram of:FSM module.

In this FSM diagram, the starting point is the IDLE state. When the control signal
is enabled, the FETCH state will fetch waiting-scan text if the text buffer is empty.
Otherwise, the MATCH state will enable the root-indexing, pre-hashing, and bitmap
AC matching units simultaneously. If the current state is at root or the result of
pre-hashing is non-hit, the control state of the FSM will translate to ROOT_MATCH
to keep the root-indexing module working. Once the root-indexing matching is done,
the current state will be assigned by root-indexing module at SET_ROOT _IDX state.
Afterward, FSM will return to MATCH state to match subsequent texts. When the hit
situation is reported, the bitmap AC matching and root-indexing matching will be
triggered in AC_MATCH state, and the next state will be assigned by root-indexing

module if current state of AC trie is required to set to root by failure link. Otherwise,
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the next state will be provided by bitmap AC matching module.

2) Root-Indexing module: This module is used for fast state indexing at the root
state. It contains internal RAMSs for index tables and root next table. For the practical
memory and throughput considerations, it only matches two characters at the same
time. For a large number of patterns, two characters can used to directly index the
next state from NEXT table when the next states of root is over 128. In this case, it
takes only one clock cycle. For a small number of patterns, the given two characters
will first index an encoded address from IDX table, and the obtained address can used
to index the next state from NEXT table. This can save large memory space, but it
takes two clock cycles to index a next state. After finishing the root-indexing
matching, this module will output the next state to SM controller.

3) Pre-Hashing module: The.pre-hashing medule will test the bit vector for two
input bytes by hashing function and send the hashing result to FSM. For external
memory architecture, the bit vector which-is-stored in internal memory can save large
time to fetch 256-bit bitmap when hash:result.is missing.

4) Bitmap AC matching module: When this module is enabled by FSM, it will
firstly check the corresponding bit for input byte. If the corresponding bit is 1, then it
will mask off the unnecessary bits and count all 1s for locating the next state.
Otherwise, it will issue the failure signal and notify the controller to set the failure
state as the current state.

5) SM controller module: This module plays an important role between system
bus and the whole string matching module. It provides the control registers including
length of text buffer and enable signal for software to program. Besides, it also
contains two text buffers and two matching-result buffers for content applications.
After a buffer is scanned, the SM controller will trigger the interrupt signal, and the

application will read out the matching result if it exists and fill the new text. For the
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whole string matching module, it provides the input bytes from text buffers and feeds

necessary data structure to each module.

4.3.2 FPGA Implementation
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Fig. 12. The architecture.of ML:310 platform.

We use the Xilinx ML310 FPGA: based platform as our development system, as
shown in Fig. 12. This platform has 2448 Kbits internal block RAM, 30816 LUTs and
also two hardwired IBM PPC405 processors in FPGA. For the peripheral, we use one
Ethernet port, one PCI slot for additional NIC extension, one 256 MB DDR RAM
module and one CF card to store the image of file system. The packets will be
inputted from on board Ethernet port, processed by the PPC 405 CPU. Also the packet
content is offloaded to string matching engine. Finally, the clean traffic will output
from the NIC of PCI extension.

The MontaVista Preview Kit is chosen as our RTOS. Xilinx EDK, ISE and
Synplicity’s SynplifyPro are the basic development tools. The EDK can generate BSP
and bit stream file for our system design. The BSP including mapping address define

files and drivers of all peripherals for building the complete RTOS image. As RTL
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code design for string matching hardware, ModelSim and Debussy are simulator and

debugger tools we used, respectively.

4.4 Driver Interface

We also provide the driver interface for communication between hardware and

software. The detailed driver functions are listed below.

Write_Buff(unsigned int *length, char *buff, void *base_addr);
This function writes the text to buffer for scanning, and also specifies the length

and address of target buffer.

Read_Match_Result(unsigned int *match_count, void:*base_addr);
It reads the matching results from the-result buffer and the application will

specify the matched virus name.

Intr_Handler(void * baseaddr_p);
When the interrupt signal is triggered, this function will be invoked to do the
matching result checking and text buffer writing. Therefore, Write_Buff() and

Read_Match_Result() will be called.

Start_Matching(char *buffer, unsigned int length);
This function is called by the ClamAV string matching function. It will write the
waiting-scanned text to the buffer, and setup the text ready register to enable the

matching operation.
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Stop_Matching(void * baseaddr_p);
This function will be called when the applications is closed. It clears the string

matching control register to stop the operation.

cli_ac_scanbuff(const char *buffer, unsigned int length, int *vir_id, struct ac_status
*status);

This is the APl of ClamAV to perform the string matching. It specifies the
address and length of text buffer which is located by the ClamAV, and returns
matched virus IDs and the matched status. It will divide the buffer pointed by *buffer
to several portions depending on the size of text buffer we used, and match them
sequentially. Thus, the Start_Matching() function:will be called in a for loop to scan

each text partition, and returns the matched results.
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Chapter 5

Evaluation

5.1 Simulation Analysis

This simulation analysis can determine the performance of our design by using
the software simulation flow described in Chapter 4. In our analysis, the test contents
are execution files in Linux, and Windows, and normal text files. The 32-bit bit vector
and 1000 virus patterns are used to evaluate the proportion of root-index matching
and bitmap AC matching, shown as Fig. 13 (a). The high proportion of fast root-index

matching can improve the performance.

20.06%
19.03%
O hit(false positive)
- O hit
re-nasning N
O non-hit
790016 76.00%

(@ (b)

Fig. 13. (a) The proportion of root-indexing and pre-hashing. (b) The proportion of hit,
non-hit and false positive.

The pre-hashing portion in Fig. 13(a) can be divided into three sub-portions as
shown in Fig. 13(b). The first and second are hit and false positive portions, which
have 24% and 12 % and must perform the slow bitmap AC matching operation. The
third is non-hit portion, which has 64% and performs the fast root-indexing matching.
Thus, as the proportion of non-hit increases, the performance upgrades.

There are two important factors which will affect the rate of the non-hit case. The

first factor is the number of patterns. As the increasing of number of patterns, the
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branches of a node increases. This means that the performance will be degraded by
raising the rate of the hit portion. The second factor is the size of bit vector for
pre-hashing matching. For the balance of performance and memory usage, the bit
vector size can be adjusted in the preprocessing. A reasonable size is 8 bits or 32 bits
for both practical considerations. The 8-bit bit vector is a choice for the development
environment when memory resource is limited, and the 32-bit bit vector has better
performance when memory resource is available. For analyzing these two key factors,
the non-hit rate for different sizes of bit vector and the number of patterns in three
different data types are shown in Fig. 14. As the increase of pattern set, 32-bit bit

vector has more apparent improvement than 16-bit bit vector.
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Fig. 14. The non-hit rate of 8-bit, 16-bit and 32-bit bit vectors for (a) text files, (b)
Windows execution files, (c) Linux execution files.

In addition to hit rate, the false positive rate of pre-hashing matching is also

affected by the size of bit vector, as shown in Fig. 15. The false positive will lead to a
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little penalty of clock cycles in the internal SRAM architecture, and great penalty of

bus contention for external DRAM architecture.
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Fig. 15. The false positive rate of 16-bit and-32-bit-bit vector for (a) text files, (b)
Windows execution, files; (€) Linux:execution files.

For the proposed architecture, the 256-bit bitmap, 32-bit bit vector, two 8-bit
width IDX table, one root next table, base address pointer of next state table and
failure state pointer are data structures we used. For each state, it takes 384 bits and
336 bits to store these data structures when the representation bit of state number is 32

and 16 bits, respectively.

5.2 Hardware Analysis

As mentioned before, our approach is flexible for both internal and external
memory architecture. The external memory architecture is suitable for large-pattern
applications with modest throughput, such as the anti-virus and anti-spam applications.

On the other hand, the internal memory architecture can be used for the high
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performance with fewer patterns, such as IDS and firewall applications.

In our design, the root-indexing can match four bytes at the same time with
address decoding technique which can minimize the memory usage and make it more
space efficiency. Furthermore, two string matching engines can be used to take
advantage of the hardware feature of dual-port SRAM.

The operating frequency of synthesis result for our internal SRAM architecture is
220 MHz which is reported by SynpilifyPro. The root-indexing module takes 2 clock
cycles to index a mapping state. The bitmap AC matching module takes 8 clock
cycles per operation. Thus, the throughput can be estimated by the probability,
frequency and processing bits per cycle. The best case throughput which means no
byte has been matched is

16bits x 220MHz + 2(clock) x 2(SMengine) = 3.52Ghps. (1)
The throughput in the average .case, depending -on the average proportion of
root-indexing matching and bitmaptAC-matching, as shown in Fig. 10(a), can be
estimated as

(79.94% x 32+ 2+ 20.06% x19.03% x 8 +- 8+ 20.06% x 76% x 32 + 2) x 220MHz x 2

~ 3367Mbps = 3.367Ghps. (2)
For worst case, all bytes are matched in the text buffer. The throughput is

(26.67%x16+ 2 + 73.33% x1+8) x 220MHzx 2 = 979.1155 Mbps ~ 0.98 Gbps.  (3)
It is obvious that the performance in the average case has very high performance
which is very close to that in the best case and also has moderate performance in the
worst case. This result demonstrates that our pre-hashing and root-indexing

techniques are useful for high-performance content filtering applications.
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5.3 Compared with Existing Works

Comparing with the pure bitmap AC in hardware design, 96% of bitmap AC
matching can be avoided by our proposed two techniques. This can be estimated by
the portion of root-indexing, false-positive and non-hit case in Fig. 13(a) and (b),
shown as below

79.94% + 20.06% x (4.97% + 76%) = 96.18 %. (4)

Furthermore, the throughput of pure bitmap AC hardware in the identical
hardware environment can be estimated as

8bits +8(clock) x 220MHz x 2(SMengine) = 440Mbps. 5)
Thus, our throughput described in section 5.2 is almost 7.65 times faster than the
original bitmap AC in the average case,

Because that our design is memorybased.architecture, it takes only 1688 LUTs
which is far less than other works. Comparing with' the memory-based architecture
work [17], 384 bits memory usage for each-state 1S much less than their 8192 bits
which use 256 32-bit pointers. Also; tthe operating frequency 220 MHz will not
decrease as the number and size of patterns grow. Although some existing works
claim that their throughput can achieve up to 10 Gbps, but their designs are not
feasible for real systems. Comparing with these works, we provide a flexible and

scalable architecture for real applications with acceptable throughput.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed an architecture which takes scalability, flexibility and
performance into consideration. Furthermore, root-indexing and pre-hashing are two
used acceleration techniques for dramatically improving the performance of our
design. Also our data structures are compressed and can be stored either in the internal
SRAM or external DRAM. The internal SRAM architecture provides average
3.367Gbps throughput with the size limitation of patterns. The external DRAM
architecture provides the high scalability for the integration of multiple applications
with acceptable throughput.

The proposed internal SRAM architecture is implemented on the Xilinx ML310
FPGA-based platform, and the driver interface AP}'is provided for software/hardware
integration. The string matching function of the target application ClamAV is also
modified to setup the string matching engine. We tuned the hardware design
according to the analysis results of our software simulation, and also built a complete
system solution for content filtering applications such as IDS, URL blocking and

ClamAV.

6.2 Future Work

Although the average throughput of our internal SRAM design can achieve 3.367
Gbps, our architecture is too complicated to design into a pipeline architecture which
can get the better throughput. Therefore, now we adopt the multi-cycle

implementation method which will degrade the throughput. For higher performance
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of the internal SRAM architecture, the pipeline is a necessary trick to be applied. Thus,
the proposed design should be refined to make it simple. Also, for the external
memory-based architecture, the most defeat is the bus bandwidth and contention issue.
It is the native limitation. Furthermore, the path compression of bitmap AC is not used
in our design. However, this technique can use the memory effectively, and also can
reduce the access frequency of memory in the external DRAM architecture. Thus, the

path compression technique is worth to take into consideration in the future.
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