
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以根索引及預先雜湊加速自動機式字串比對硬體： 設計，

實作，與評估

Automaton Based String Matching Hardware with

Root-Indexing and Pre-Hashing Techniques: Design,

Implementation and Evaluation

研 究 生：洪振洲

指導教授：林盈達 教授

中 華 民 國 九 十 五 年 六 月

以根索引及預先雜湊加速自動機式字串比對硬體：設計，實作，與評

估

Automaton Based String Matching Hardware with Root-Indexing and
Pre-Hashing Techniques: Design, Implementation and Evaluation

研 究 生：洪振洲 Student: Chen-Chou Hung

指導教授：林盈達 Advisor: Dr. Ying-Dar Lin

國立交通大學

資訊科學與工程研究所

碩士論文

A Thesis

Submitted to Institutes of Computer Science and Engineering
College of Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

In

Computer Science and Engineering

June 2006

HsinChu, Taiwan, Republic of China

中華民國九十五年六月

 ii

以根索引及預先雜湊加速自動機式字串比對硬體 : 設計，實作， 與

評估

學生: 洪振洲 指導教授: 林盈達

國立交通大學資訊科學與工程研究所

摘要

字串比對在內容過濾應用程式中扮演相當重要的角色，例如入侵偵測、防

毒、擋廣告信和網站過濾，這不僅相當耗時並且佔用大量記憶體，純軟體演算法

的實作效能亦無法滿足這類應用程式的高速需求，因此將封包內容交給字串比對

硬體去處理是個必然的趨勢。這篇論文主要著重於一個節省記憶體的 AC 變形演

算法，即 位圖 AC（bitmap AC），並且使用了兩個平行硬體加速的技巧，一個是

跟索引，另一個是預先雜湊，進一步實作在 Xilinx ML310 FPGA 平台上。根索

引能夠一次比對多個字元，而預先雜湊能夠避免耗時的位圖 AC 計算。此外，這

篇論文所提的方法對於內部記憶體或是外部記憶體的架構都是相當適合的，採用

內部記憶體的架構可以提供高效能，而外部記憶體的架構則提供更高的應用範

疇，這兩種實作方式都具有優越的處理能力。

關鍵字: 字串比對, 位圖 AC, 預先雜湊, 跟索引, 基於記憶體架構, 高範疇

 iii

Automaton Based String Matching Hardware with Root-Indexing

and Pre-Hashing Techniques: Design, Implementation and

Evaluation

Student: Chen-Chou Hung Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

String matching plays a central role in content networking applications, such as

intrusion detection, anti-virus, anti-spam and Web filtering. As it is computation and

memory intensive, a software implementation of string matching algorithms is

insufficient to meet the high-speed requirement of these applications. Thus, offloading

the packet content to dedicated hardware seems inevitable. This thesis focuses on the

memory efficient version of AC, namely bitmap AC, and employs two parallel

hardware acceleration techniques, root-indexing and pre-hashing, onto the

FPGA-based Xilinx ML310 platform. The root-indexing can match multiple bytes in

one single matching, and the pre-hashing can be used to avoid bitmap AC matching

which is a cycle-consuming operation. Furthermore, the proposed string matching

hardware approach is feasible for either internal or external memory architecture. The

internal memory architecture provides high performance, and the external memory

architecture provides high scalability of patterns. These two implementations both

have high throughput for matching.

Index Terms: string matching, bitmap AC, pre-hashing, root-indexing, memory-based
architecture, high scalability

 iv

Contents
1. INTRODUCTION…………………………………………...………………….1
2. BACKGROUND………………………………………………………...………4

2.1 AC RELATED ALGORITHMS………………..……………….……………...…4
2.1.1 AHO-CORASICK……………………...…………………………..……4
2.1.2 BITMAP AC...…………………………..……………………………...5

2.2 HARDWARE-BASED STRING MATCHING………………..…………………….6
3. FAST BITMAP AC STRING MATCHING HARDWARE………………..…9

3.1 OVERVIEW…………………………………………………………………..9
3.2 ROOT-INDEXING MATCHING…………………………………………..…...10
3.3 PRE-HASHING MATCHING………………………………………………….12

4. IMPLEMENTATION………………………………………………………....14
4.1 OVERVIEW………………………………………………………………….14
4.2 PRE-PROCESSING AND SIMULATION SOFTWARE……..…………………...…14
4.3 MATCHING HARDWARE……………………………………………….…….16

4.3.1 ARCHITECTURE……..…………………………...……………..…..16
4.3.2 FPGA IMPLEMENTATION………………………………………...…19

4.4 DRIVER INTERFACE……………………………………………...…………20
5. EVALUATION…………………………………………………………………22

5.1 SIMULATION ANALYSIS…………………………….……………………….22
5.2 HARDWARE ANALYSIS………………………………….……………...…...24
5.3 COMPARED WITH EXISTING WORKS………………………….……………...26

6. CONCLUTION AND FUTURE WORK…………………………………….27
6.1 CONCLUSION……………………………………………………………….27
6.2 FUTURE WORK……………………………………………………………...27

REFERENCES……………………………………………………………………...29

 v

List of Figures
Figure 1. (A) GOTO FUNCTION. (B) OUTPUT FUNCTION. (C) FAILURE FUNCTION.

(D) AC TABLE IMPLEMENTATION. ………………….……...……...…5
Figure 2. DATA STRUCTURE OF BITMAP AC FOR STATE I AND USING BITMAP TO

LOCATE THE NEXT STATE. ………………..6
Figure 3. AN EXAMPLE FOR FAST BITMAP AC. (A) GOTO TRIE. (B) OUTPUT

FUNCTION. (C) INPUT TEXT.………………...…………...…...………9
Figure 4. STATE TRANSITION SEQUENCE OF CONVENTIONAL AC. ……………10
Figure 5. STATE TRANSITION SEQUENCE OF FAST BITMAP AC. …….………....10
Figure 6. ROOT-INDEXING ARCHITECTURE AND EXAMPLE FOR THE INPUT TEXT

“TEST” WITH THE PATTERNS “TEST”, “THE” AND “HE”. .………..11
Figure 7. (A) AC TRIE OF STATE 1 FOR BUILDING BIT VECTOR. (B) EXAMPLE OF

BUILDING THE BIT VECTOR FOR STATE 1 IN THE PREPROCESSING

PHASE.…………………………………………………..………….13
Figure 8. EXAMPLE FOR HASHING AT STATE 1. ……………………..………...13
Figure 9. (A) THE PRE-PROCESSING PROCEDURE. (B) THE FLOW OF C

SIMULATION MODEL. ……………………………………..………..15
Figure 10. THE BLOCK DIAGRAM OF PROPOSED FAST BITMAP AC

ARCHITECTURE. ………………………………………….………...16
Figure 11. STATE TRANSITION DIAGRAM OF FSM MODULE. ...………………...17
Figure 12. THE ARCHITECTURE OF ML310 PLATFORM. ..………………..…….19
Figure 13. (A) THE PROPORTION OF ROOT-INDEXING AND PRE-HASHING. (B) THE

PROPORTION OF HIT, NON-HIT AND FALSE POSITIVE. ..……………....22
Figure 14. THE NON-HIT RATE OF 8-BIT, 16-BIT AND 32-BIT BIT VECTORS FOR (A)

TEXT FILES, (B) WINDOWS EXECUTION FILES, (C) LINUX EXECUTION

FILES. ……………………………………………………………...23
Figure 15. THE FALSE POSITIVE RATE OF 8-BIT, 16-BIT AND 32-BIT BIT VECTOR

FOR (A) TEXT FILES, (B) WINDOWS EXECUTION FILES, (C) LINUX

EXECUTION

FILES. ..…………………………………………………………….24

 vi

List of Tables
Table 1. COMPARISON OF EXISTING STRING MATCHING HARDWARE. ……..…..8

 vii

Chapter 1

Introduction

 Because detecting malicious traffic on the Internet, such as viruses and intrusions,

relies on looking for signatures in the packet payload, traditional firewalls inspecting

only the packet header are insufficient for the detection. Thus, deeper packet-content

inspection is required to detect such application-level attacks, such as intrusion

detection, anti-virus, anti-spam and Web filtering which are available in the market.

The essential part of these solutions is string matching, and it has been shown to be a

time-consuming component that should be accelerated [1], [13].

For string matching, there are several well-known algorithms such as

Aho-Corasick (AC) [2], Wu-Manber [3], Boyer-Moore [4] and Bloom filters [5]. A

software implementation of these algorithms may not be able to afford escalating

traffic in the Internet, so several hardware architectures such as discrete comparators

[6]-[8], CAM-based architecture [9]-[11], and Bloom filters hardware [12]-[13], have

been proposed to dramatically improve the performance. The throughput of them can

mostly achieve up to 10 Gbps, but the common drawback of them is the poor

scalability. Their rules and pattern sets are hardwired into the FPGA, so the scalability

is limited by the number of logic cells and the size of embedded memory in the

FPGA.

 In this thesis, we proposed a scalable memory-based hardware architecture

which is based on the AC algorithm. AC is a common algorithm with following the

key features. First, it has the linear time performance in worst case. Second, it is

robust for large and lengthy patterns. Third, it can perform multi-pattern match.

However, the most critical defect of AC algorithm is large memory usage. The other

 1

AC-based algorithm, bitmap AC [14], improved the memory utilization by using a

256-bit bitmap to replace 256 word-size pointers of each state in AC. Therefore,

bitmap AC is the alternative which we adopted in this work. We also applied two

acceleration techniques to make our architecture sub-linear. The first technique is

Root-Indexing which comes from the observation of AC’s high frequency

root-visiting behavior. The second technique is Pre-Hashing which comes from the

observation of time-consuming operation in bitmap AC, which is also high cost on the

x86-platform. Thus, for reducing this kind of operation, Pre-Hashing can test quickly

to avoid the bitmap AC matching. For scalability, our architecture use either internal

or external memories to store the whole pattern database of SNORT [19] or even

ClamAV [20]. Furthermore, it can easily update pattern without interrupting operation

or even shutting the machine down.

 In our evaluation, we implemented our work on FPGA-based platform Xilinx

ML310, and used ISE and EDK as our design tools. Also, we provided the driver

interface for communication between software and hardware component. In the

hardware design, we divided the whole architecture into five main modules, which

can be paralleled. The first module is the parallel finite state machine which controls

signals among the other modules. Next is the string matching controller module which

is in charge of data request and assignment. The last three modules are root-indexing,

pre-hashing, and the bitmap AC matching.

The rest of this paper is organized as follows. In Chapter 2, we first introduce the

related algorithms and issue. Then we introduce the existing hardware acceleration

architectures and list the comparison table. Our acceleration techniques are presented

and an example is given in Chapter 3. Chapter 4 describes the hardware architecture

design of our approach and software interface we provide. The performance

evaluation, analysis, and comparison with existing works are presented in Chapter 5.

 2

Finally we make conclusion and list the future work in Chapter 6.

 3

Chapter 2

Background

2.1 AC related algorithms

For content filtering applications, there are a lot of string matching algorithms

such as AC, Boyer-Moore and Wu-Manber. Due to the AC-based algorithm is used in

our work, we only introduce AC-based algorithm, its key features, and its issues in

this chapter.

2.1.1 Aho-Corasick

One of the notable algorithms in exact pattern matching is Aho-Corasick, which is

able to match multiple strings with the linear time is the worst case. AC works by

constructing a state machine from the patterns to be matched, and is composed of

three component functions. The first is Goto function which is used to traverse from

one node to the other node as shown in Figure 1 (a). The second is Output function

which output the match pattern for current state as shown in Figure 1 (b). The third is

Failure function which is traversed when there is no next state, shown in Figure 1 (c).

Constructing the state machine starts with an empty root node and adds states to the

state machine for each pattern. Failure pointers are further added from each node to

the longest prefix of that node which also leads to a valid node in the trie. After the

construction of machine, the state machine is then traversed from the current node to

the next node according to the input character. There are two alternatives to store the

next state links.

1. One is the construction of 2D-array table. Each state has 256 next state

 4

pointers for all ASCII input case, as shown in Figure 1. (d). It is the most

popular implementation for fast matching, but it wastes the memory space

when the table is sparse.

2. The other data structure is using link list, and each state only has the link list

of exist next states. This kind of data structure has smaller space requirement

but is slow when there are many next states.

 Current State

Next State

. . . ya b z

. . . Next State

 i 1 2 3 4 5 6 7 8 9
f(i) 0 0 0 1 2 0 3 0 3

0 1 2 8 9

6 7

3 4 5

h e r s

i
s

s

h e

 i output(i)
2 {he}
5 {she, he}
7 {his}
9 {hers}

Fig. 1. (a) Goto function. (b) Output function. (c) Failure function. (d) AC table
implementation.

2.1.2 Bitmap AC

A variation of AC, bitmap AC, is a compromise between table and link list

approaches [13]. It maintains a 256-bit bitmap for each state to indicate whether a

traverse with a given character is valid or invalid which requires traversing along the

failure pointer path. If the next state is valid, then the next state is obtained by

summing all the bits prior to that bit number and adding them to the base address of

next node pointer. Figure 2 shows the data structure of bitmap AC and how it locates

the next state.

 5

Fig. 2. Data Structure of bitmap AC for state i and using bitmap to locate the next

state.

 table implementation is the waste of memory which

using 256 n

2.2 Hardware-based string matching

The major string matching hardwares are listed in Table 1. The most common

matching hardware is the finite autom

at once to achieve high throughput. No

The critical defect of AC

ext pointers for each state. Bitmap AC solves this problem, and still keeps

the advantages of AC. However, in order to locate the next state in bitmap AC, we

must to count all 1s before the valid bit in the 256-bit bitmap. This is known as a

time-consuming operation which is the high cost on x86 based systems.

aton approach which uses DFA/NFA to match

every input byte. Sidhu and Prassanna [13] introduced the hardwired

Nondeterministic Finite Automata (NFAs) for finding matches to a given

regular-expression pattern. They implemented on FPGA which matches one text byte

per clock cycle. However, this kind of works has lower clock rate and throughput.

Another approach is CAM-based architecture, which is able to match all contents

wadays FPGA often has embedded block

… 256-bit bitmap

Data structure for state i

Matched Pointer State Info.

Failure State Next State Pointer

......

Sum all valid 1s

Bit Offset

Next State Table of State i

Next State Base Address

 6

RAMs for high performance design. Thus, CAM is easily constructed from block

RAMs. For the CAM-based hardware, Cho [7] proposed a CAM-based solution

which uses comparators to perform initial part of pattern matching and uses the

matched prefix as an address into a CAM to read the whole patterns. The other

CAM-based solution is pre-decoding CAM, which was proposed by Baker for

processing a large-rule set [9]. Some CAM-based implementations [10], [16] also

combine with hardware comparators for lower usage of circuit and high performance.

In the last two matching hardware, memory-based hardware was also presented

by M

g

the r

onther and Thomas [17]. They constructed an AC table which adds the extra

failure links of longest prefix, and stores them in external memory. However, the

memory requirement is too large in their design. Another different architecture is

Bloom filters hardware [12]-[13], which uses multiple hash functions for

approximated matching. Once Bloom filter reports a possible hit, the advanced

verification is needed for the exact matching. The main drawback of Bloom filters

hardware is that dedicated length processing unit is needed for every pattern length.

Most of these aforementioned works can achieve up to 10 Gbps by hardwirin

ule sets into FPGA, which limits the scalability of rules and the size of patterns.

Even the data structure of memory-based design wastes too much memory space.

Therefore, the scalability of patterns and rules is our most concerned issue, and it is

our focus in this work.

 7

Table 1
Comparison of existi atching hardware

Matching Hardw

ng string m
are Advantage Disadvantage

NFA / DFA Hardware ement

ort put

Easy to impl

Regular expression supp

High area cost

Modest through

CAM-based Hardware High throughput High area cost

Bloom Filter Hardware Low area cost False positive issue

Fixed length

Memory-based Hardware Reconfigurable ut

sting High capacity

Low throughp

Memory space wa

 8

Chapter 3

p AC String Matching Hardware

.1 Overview

base on the Tseng’s string matching approach [18]. It can match

mult

Fast Bitma

3

This thesis is

iple characters at root state by root-indexing matching, and avoid some slow

bitmap AC matching operations by pre-hashing matching. Also these two acceleration

techniques can process in parallel. An example is illustrated from Fig. 3 to 5, which

shows the difference between bitmap AC and fast bitmap AC.

0
T

1 2 3 4
E S T

5 6
E

H

7 8
E

H

 Input text: TESTTHEUSHER

 i output(i)
4 {TEST}
6 {THE}
8 {HE}

Fig. 3. An example for fast bitmap AC. (a) Goto Trie. (b) Output function. (c) Input

The Fig. 3 is an example of original AC that can be used for bitmap AC and fast

bitm

text.

ap AC. The transition of AC or bitmap AC will both go to next state according to

the given byte. Their transition sequences according to the previous described AC and

bitmap AC algorithms are the same, as shown in Fig. 4.

 9

Fig. 4. State transition sequence of conventional AC.

 Since our fast bitmap AC approach had implemented root-indexing and

re-h

Root-Indexing mechanism can process two or even more bytes at the same time,

and is applied to the root state in our desi

3.2 Root-Indexing Matching

In AC trie, most of failure links point to the root state, that is, it will always go

back to the root state wh

0

p ashing techniques, our transition sequence, which is different from original AC

and bitmap AC, is shown as Fig. 5. The “RI” symbol means root-indexing.

Fig. 5. State transition sequence of fast bitmap AC.

gn. Therefore, starting from the root state,

the next state is decided by root-indexing. Beyond the root state, pre-hashing is used

to quickly examine the existence of next state for every state transition. When the

pre-hashing unit reports no match for given two bytes, the next state is determined by

the root-indexing unit. Otherwise, the next state is decided by the bitmap AC unit. It is

worth noting that because of parallel processing, when given two characters “TH” at

state 4, the next state 5 will be directly obtained from the root-indexing unit.

en there is no any next state for a given character. Thus, it is

efficient to apply the root-indexing in the root state. Root-indexing can match

1 2T E 3S 4 0 TT T 1 5 6H E 0 0 7U S H

8 0

0

E R

2 3 4 5 6 0 8 0
TE
RI

S T TH
RI

E US
RI

HE
RI

E

 10

multiple characters simultaneously at the root state. In Fig. 6, root-indexing comprises

k index tables IDX[1…k] and a root next table NEXT, where k denotes the maximum

length of root-indexing matching in the same time. Each entry of IDX stores a partial

address for locating the next state in NEXT. The partial address is an unique

sequential integer to represent the order of appearing characters for the corresponding

substrings in the suffixes of root state. Note that, for advancing k characters in

matching iteration, the substring is started from current byte to k, which means the

latter IDX table is required to include the entries of the former IDX tables.

Input text

0-255
…

.
…

.

00

01

IDX1

10

 01

010

11

H

T

E

T 10_10_001_000

…
.

…

Next table

 0
1
2
3

5
4

6
7
8

= k root

T H E

Next state

T E S T

10 01 011 100

…
.

…
.

H

T

10

001

100

…
.

…
.

011

E

S

010 H

T

 E

S

H
001

011
100 …

.

10_01_011_100

10_11_000_000
T T

10_01_001_000
T E E

T E S T

IDX2 IDX3 IDX4

z

Fig. 6. Root-indexing architecture and example for the input text “TEST” with the

patterns “TEST”, “THE” and “HE”.

For example, if patterns are “TEST”, “THE” and “HE”, IDX1 to IDX4 will at

least contains the appearing characters in the corresponding position as {“H”,”T”} for

level one, {“E”,”H”} for level 2, {“E”,”S”} for level 3, {“T”} for level 4, respectively.

However, because the latter tables are required to contain the entries of former tables,

IDX1 to IDX4 will actually contain {“H”,”T”}, {“E”,”H”,”T”}, {“E”,”H”,”S”,”T”}

 11

and {“E”,”H”,”S”,”T”}, respectively.

For numbering the entries of IDX tables, the first IDX have 2 appearing

characters, thus “H” and “T” are numbered as “01” and “10” in binary format. The

second IDX table using “01”, “10” and “11” stands for {“E”,”H”,”T”}. The NEXT

table is used to store all the next states within length k, and it is indexed by a

concatenation address of lookup value from the all IDX tables. In the example of Fig.

6, 10_01_001_000, 10_01_011_100, 10_10_001_000 and 10_11_000_000 are

concatenation addresses to locate the next states for “TEE”, “TEST”, “THE” and

“TT”.

3.3 Pre-Hashing Matching

The pre-hashing method can quickly examine the existence of next state to avoid

further slow AC matching. It uses a single hashing function and builds the bit vector

for the substrings of each state. When performing the pre-hashing, the next state will

be obtained from root-indexing unit instead of from bitmap AC unit if true negative is

indicated by the pre-hashing unit. True negative is the condition that the given

character is absent in the pre-hashing vector for the suffix of the current state.

Before the pre-hashing matching, it is necessary to build the pre-hashing bit

vector in the preprocessing phase. First, we input the AC trie which is built by the

conventional AC algorithm. For each state, we extract suffixes within the length 1

which is different from the Tseng’s original design. Recursive failure link of each state

except the link to root state is also included in these suffixes. This can avoid filling the

bit vector to almost all 1 when number of patterns is large that will lead to high hit

rate issue. When suffixes are obtained, the pre-hashing algorithm hashes suffixes into

bit vectors. This procedure of building the bit vectors for state 1 in Fig. 7(a) is

 12

illustrated in Fig. 7(b). The mask of rightmost four bits of the characters and

transformation from binary to one-hot representation are used as the hash function in

our design. However, better mask position is adjustable for lower false positive

according to the characteristic of patterns.

1 2

5

E

H

 EASCII = 01000101 HASCII= 01001000

 decimal = 5 decimal = 8

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
15 0

Fig. 7. (a) AC trie of state 1 for building bit vector. (b) Example of building the bit

vector for state 1 in the preprocessing phase.

A pre-hashing matching example is shown in Fig. 8. The pre-hashing unit reads a

byte substring and then hashes the substring “G”. The hash result will be indicated by

the pre-hashing unit, when the pre-hashing unit indicates non-hit, the next state 5 for

substring “GDTH” will be obtained from the root-indexing unit. However, if the hit

condition is indicated by pre-hashing unit, the slow bitmap AC matching will be

performed.

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
15 0 bit vector

GASCII= 01000111

Input text: G D T H

Fig. 8. Example for hashing at state 1.

 13

Chapter 4

Implementation

4.1 Overview

To verify the correctness of fast bitmap AC, we write the C simulation model,

and also use it to generate the essential data structures from patterns. These data

structures will be loaded to initialize matching hardware. After initializing of our

system, the user applications call the string matching API offered by the driver to start

the matching operation. Once a text buffer is scanned, the interrupt signal will be

triggered by the matching engine. Afterward, the interrupt handler will be invoked to

check the matching results and also fill the new text to the buffer if it exists.

For hardware design, it is partitioned into five main modules, and each one is in

charge of a specific function. The implementation environment is based on the Xilinx

ML310 FPGA platform, and Xilinx’s ISE, EDK and Synplicity’s SynpifyPro are

development tools for embedded software/hardware integration. The MontaVista

RTOS is chosen for our system, and ClamAV is the target application for our content

filtering system.

4.2 Pre-Processing and Simulation Software

The pre-processing procedure generates the essential data structures for the

proposed hardware, as shown in Fig. 9(a). The Make_Goto() and Make_Failure()

functions are the original functions defined by the AC algorithm, and our data

structures are further built according to the table constructed from these two basic

functions. For bitmap AC, the Make_Bitmap() function builds a 256-bit bitmap for

 14

each state and sets 1 to the corresponding bit position for each existing next state. It

also builds the next state table for each state. The next function is Build_Index()

which builds the IDX[1…k] tables and root next table NEXT for root-indexing

pre-processing. In the final stage, Build_BitVector() sets 1 to the bit vector by hashing

function according to all next states of both current state and recursive failure node for

pre-hashing preprocessing.

c_state=rootc_state=root ?

Root_Index()

yes

no
Pre_Hash ()=1?

c_state =
next_p +

Bitmap_offset()

yes

no

Input data

ptr=ptr+1

ptr=ptr+2
Search_Bitmap()=1?

yes

c_state= failureno

c_state=root?
no

yes

Make_Goto()

pattern

Make_Failure()

Make_Bitmap()

Build_Index()

Build_BitVector()

Fig. 9. (a) The pre-processing procedure. (b) The flow of C simulation model.

After the pre-processing procedure is finished, the simulation of proposed fast

bitmap AC algorithm can perform matching according to the flow in Fig. 9 (b). For

each matching iteration, it checks the current state at first. When the current state is in

the root state, the Root-Index() matching will be performed, otherwise Pre_Hash()

will be performed. If Pre_Hash() reports the non-hit situation, the current state will be

set to root state directly, and do the root-indexing matching. If the hit situation is

reported, Search_Bitmap() will check the existence of next state for a given byte. If

Search_Bitmap()=1, the next state will be obtained from the base address pointer of

the next state table plus the return value of Bitmap_offset(). Note that if

 15

Search_Bitmap() reports zero, the current state will be set to the failure state in the

while loop until the current state is root state. This C model can be the golden model

for the proposed hardware design, and it also can be used to gather statistics for

performance analysis.

4.3 Matching Hardware

This subsection introduces the proposed hardware architecture, block diagram

and FPGA platform individually.

4.3.1 Architecture

The proposed architecture is a highly parallel design that all modules are

working at the same time, and this architecture is also flexible for either internal or

external memory-based platform. The block diagram of our proposed architecture is

shown as Fig. 10.

B
us

Fig. 10. The block diagram of proposed fast bitmap AC architecture.

 16

1) FSM module: The most important part in our architecture is FSM module to

control the working flow of whole hardware system. Once the SM controller is

enabled, FSM will control all other modules in parallel. The detailed state translations

are shown in Fig 11.

Fig. 11. State transition diagram of FSM module.

In this FSM diagram, the starting point is the IDLE state. When the control signal

is enabled, the FETCH state will fetch waiting-scan text if the text buffer is empty.

Otherwise, the MATCH state will enable the root-indexing, pre-hashing, and bitmap

AC matching units simultaneously. If the current state is at root or the result of

pre-hashing is non-hit, the control state of the FSM will translate to ROOT_MATCH

to keep the root-indexing module working. Once the root-indexing matching is done,

the current state will be assigned by root-indexing module at SET_ROOT_IDX state.

Afterward, FSM will return to MATCH state to match subsequent texts. When the hit

situation is reported, the bitmap AC matching and root-indexing matching will be

triggered in AC_MATCH state, and the next state will be assigned by root-indexing

module if current state of AC trie is required to set to root by failure link. Otherwise,

 17

the next state will be provided by bitmap AC matching module.

2) Root-Indexing module: This module is used for fast state indexing at the root

state. It contains internal RAMs for index tables and root next table. For the practical

memory and throughput considerations, it only matches two characters at the same

time. For a large number of patterns, two characters can used to directly index the

next state from NEXT table when the next states of root is over 128. In this case, it

takes only one clock cycle. For a small number of patterns, the given two characters

will first index an encoded address from IDX table, and the obtained address can used

to index the next state from NEXT table. This can save large memory space, but it

takes two clock cycles to index a next state. After finishing the root-indexing

matching, this module will output the next state to SM controller.

3) Pre-Hashing module: The pre-hashing module will test the bit vector for two

input bytes by hashing function and send the hashing result to FSM. For external

memory architecture, the bit vector which is stored in internal memory can save large

time to fetch 256-bit bitmap when hash result is missing.

4) Bitmap AC matching module: When this module is enabled by FSM, it will

firstly check the corresponding bit for input byte. If the corresponding bit is 1, then it

will mask off the unnecessary bits and count all 1s for locating the next state.

Otherwise, it will issue the failure signal and notify the controller to set the failure

state as the current state.

5) SM controller module: This module plays an important role between system

bus and the whole string matching module. It provides the control registers including

length of text buffer and enable signal for software to program. Besides, it also

contains two text buffers and two matching-result buffers for content applications.

After a buffer is scanned, the SM controller will trigger the interrupt signal, and the

application will read out the matching result if it exists and fill the new text. For the

 18

whole string matching module, it provides the input bytes from text buffers and feeds

necessary data structure to each module.

4.3.2 FPGA Implementation

Fig. 12. The architecture of ML310 platform.

We use the Xilinx ML310 FPGA based platform as our development system, as

shown in Fig. 12. This platform has 2448 Kbits internal block RAM, 30816 LUTs and

also two hardwired IBM PPC405 processors in FPGA. For the peripheral, we use one

Ethernet port, one PCI slot for additional NIC extension, one 256 MB DDR RAM

module and one CF card to store the image of file system. The packets will be

inputted from on board Ethernet port, processed by the PPC 405 CPU. Also the packet

content is offloaded to string matching engine. Finally, the clean traffic will output

from the NIC of PCI extension.

The MontaVista Preview Kit is chosen as our RTOS. Xilinx EDK, ISE and

Synplicity’s SynplifyPro are the basic development tools. The EDK can generate BSP

and bit stream file for our system design. The BSP including mapping address define

files and drivers of all peripherals for building the complete RTOS image. As RTL

 19

code design for string matching hardware, ModelSim and Debussy are simulator and

debugger tools we used, respectively.

4.4 Driver Interface

We also provide the driver interface for communication between hardware and

software. The detailed driver functions are listed below.

Write_Buff(unsigned int *length, char *buff, void *base_addr);

This function writes the text to buffer for scanning, and also specifies the length

and address of target buffer.

Read_Match_Result(unsigned int *match_count, void *base_addr);

It reads the matching results from the result buffer and the application will

specify the matched virus name.

Intr_Handler(void * baseaddr_p);

When the interrupt signal is triggered, this function will be invoked to do the

matching result checking and text buffer writing. Therefore, Write_Buff() and

Read_Match_Result() will be called.

Start_Matching(char *buffer, unsigned int length);

This function is called by the ClamAV string matching function. It will write the

waiting-scanned text to the buffer, and setup the text ready register to enable the

matching operation.

 20

Stop_Matching(void * baseaddr_p);

This function will be called when the applications is closed. It clears the string

matching control register to stop the operation.

cli_ac_scanbuff(const char *buffer, unsigned int length, int *vir_id, struct ac_status

*status);

This is the API of ClamAV to perform the string matching. It specifies the

address and length of text buffer which is located by the ClamAV, and returns

matched virus IDs and the matched status. It will divide the buffer pointed by *buffer

to several portions depending on the size of text buffer we used, and match them

sequentially. Thus, the Start_Matching() function will be called in a for loop to scan

each text partition, and returns the matched results.

 21

Chapter 5

Evaluation

5.1 Simulation Analysis

This simulation analysis can determine the performance of our design by using

the software simulation flow described in Chapter 4. In our analysis, the test contents

are execution files in Linux, and Windows, and normal text files. The 32-bit bit vector

and 1000 virus patterns are used to evaluate the proportion of root-index matching

and bitmap AC matching, shown as Fig. 13 (a). The high proportion of fast root-index

matching can improve the performance.

79.94%

20.06%

Root-Indexing

Pre-Hashing

4.97%

19.03%

76.00%

hit(false positive)

hit

non-hit

Fig. 13. (a) The proportion of root-indexing and pre-hashing. (b) The proportion of hit,
non-hit and false positive.

The pre-hashing portion in Fig. 13(a) can be divided into three sub-portions as

shown in Fig. 13(b). The first and second are hit and false positive portions, which

have 24% and 12 % and must perform the slow bitmap AC matching operation. The

third is non-hit portion, which has 64% and performs the fast root-indexing matching.

Thus, as the proportion of non-hit increases, the performance upgrades.

There are two important factors which will affect the rate of the non-hit case. The

first factor is the number of patterns. As the increasing of number of patterns, the

 22

branches of a node increases. This means that the performance will be degraded by

raising the rate of the hit portion. The second factor is the size of bit vector for

pre-hashing matching. For the balance of performance and memory usage, the bit

vector size can be adjusted in the preprocessing. A reasonable size is 8 bits or 32 bits

for both practical considerations. The 8-bit bit vector is a choice for the development

environment when memory resource is limited, and the 32-bit bit vector has better

performance when memory resource is available. For analyzing these two key factors,

the non-hit rate for different sizes of bit vector and the number of patterns in three

different data types are shown in Fig. 14. As the increase of pattern set, 32-bit bit

vector has more apparent improvement than 16-bit bit vector.

Text file

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

250 500 750 1000

number of patterns

no
n-

hi
t

ra
te 8 bits

16 bits

32 bits

Win.exe

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

250 500 750 1000

number of patterns

no
n-

hi
t

ra
te 8 bits

16 bits

32 bits

Linux.exe

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

250 500 750 1000

number of patterns

no
n-

hi
t

ra
te 8 bits

16 bits

32 bits

Fig. 14. The non-hit rate of 8-bit, 16-bit and 32-bit bit vectors for (a) text files, (b)
Windows execution files, (c) Linux execution files.

In addition to hit rate, the false positive rate of pre-hashing matching is also

affected by the size of bit vector, as shown in Fig. 15. The false positive will lead to a

 23

little penalty of clock cycles in the internal SRAM architecture, and great penalty of

bus contention for external DRAM architecture.

Text file

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

250 500 750 1000

number of patterns

fl
as

e
po

si
ti

ve

8 bits

16 bits

32 bits

(a)

Win.exe

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

250 500 750 1000

number of patterns

fl
as

e
po

si
ti

ve

8 bits

16 bits

32 bits

(b)

Linux.exe

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

250 500 750 1000

number of patterns

fa
ls

e
po

si
ti

ve

8 bits

16 bits

32 bits

(c)
Fig. 15. The false positive rate of 16-bit and 32-bit bit vector for (a) text files, (b)

or the proposed architecture, the 256-bit bitmap, 32-bit bit vector, two 8-bit

widt

5.2 Hardware Analysis

 approach is flexible for both internal and external

mem

Windows execution files, (c) Linux execution files.

F

h IDX table, one root next table, base address pointer of next state table and

failure state pointer are data structures we used. For each state, it takes 384 bits and

336 bits to store these data structures when the representation bit of state number is 32

and 16 bits, respectively.

As mentioned before, our

ory architecture. The external memory architecture is suitable for large-pattern

applications with modest throughput, such as the anti-virus and anti-spam applications.

On the other hand, the internal memory architecture can be used for the high

 24

performance with fewer patterns, such as IDS and firewall applications.

In our design, the root-indexing can match four bytes at the same time with

addr

nternal SRAM architecture is

220

ck SMen

ess decoding technique which can minimize the memory usage and make it more

space efficiency. Furthermore, two string matching engines can be used to take

advantage of the hardware feature of dual-port SRAM.

The operating frequency of synthesis result for our i

MHz which is reported by SynpilifyPro. The root-indexing module takes 2 clock

cycles to index a mapping state. The bitmap AC matching module takes 8 clock

cycles per operation. Thus, the throughput can be estimated by the probability,

frequency and processing bits per cycle. The best case throughput which means no

byte has been matched is

16 220 2(bits MHz clo) 2() 3.52 .gine Gbps× = (1)

The throughput in the average case, depending on the average proportion of

× ÷

root-indexing matching and bitmap AC matching, as shown in Fig. 10(a), can be

estimated as

(79.94% 32 2 20.06% 19.03% 8 8 20.06% 76% 32 2) 220 2MHz× ÷ + × × ÷ + × × ÷ × ×

3367 3.367 .Mbps Gbps≈ = (2)

For worst case, all bytes are m

 (3)

It is obvious that the performance in the average case has very high perform

atched in the text buffer. The throughput is

(26.67% 16 2 + 73.33% 1 8) 220MHz 2 = 979.1155 Mbps 0.98× ÷ × ÷ × × ≈ Gbps.

ance

which is very close to that in the best case and also has moderate performance in the

worst case. This result demonstrates that our pre-hashing and root-indexing

techniques are useful for high-performance content filtering applications.

 25

5.3 Compared with Existing Works

Comparing with the pure bitmap AC in hardware design, 96% of bitmap AC

matching can be avoided by our proposed two techniques. This can be estimated by

the portion of root-indexing, false-positive and non-hit case in Fig. 13(a) and (b),

shown as below

79.94% + 20.06% (4.97% + 76%) = 96.18 %.× (4)

Furthermore, the throughput of pure bitmap AC hardware in the identical

hardware environment can be estimated as

8 8() 220 2() 440 .bits clock MHz SMengine Mbps÷ × × = (5)

Thus, our throughput described in section 5.2 is almost 7.65 times faster than the

original bitmap AC in the average case.

Because that our design is memory based architecture, it takes only 1688 LUTs

which is far less than other works. Comparing with the memory-based architecture

work [17], 384 bits memory usage for each state is much less than their 8192 bits

which use 256 32-bit pointers. Also, the operating frequency 220 MHz will not

decrease as the number and size of patterns grow. Although some existing works

claim that their throughput can achieve up to 10 Gbps, but their designs are not

feasible for real systems. Comparing with these works, we provide a flexible and

scalable architecture for real applications with acceptable throughput.

 26

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed an architecture which takes scalability, flexibility and

performance into consideration. Furthermore, root-indexing and pre-hashing are two

used acceleration techniques for dramatically improving the performance of our

design. Also our data structures are compressed and can be stored either in the internal

SRAM or external DRAM. The internal SRAM architecture provides average

3.367Gbps throughput with the size limitation of patterns. The external DRAM

architecture provides the high scalability for the integration of multiple applications

with acceptable throughput.

The proposed internal SRAM architecture is implemented on the Xilinx ML310

FPGA-based platform, and the driver interface API is provided for software/hardware

integration. The string matching function of the target application ClamAV is also

modified to setup the string matching engine. We tuned the hardware design

according to the analysis results of our software simulation, and also built a complete

system solution for content filtering applications such as IDS, URL blocking and

ClamAV.

6.2 Future Work

Although the average throughput of our internal SRAM design can achieve 3.367

Gbps, our architecture is too complicated to design into a pipeline architecture which

can get the better throughput. Therefore, now we adopt the multi-cycle

implementation method which will degrade the throughput. For higher performance

 27

of the internal SRAM architecture, the pipeline is a necessary trick to be applied. Thus,

the proposed design should be refined to make it simple. Also, for the external

memory-based architecture, the most defeat is the bus bandwidth and contention issue.

It is the native limitation. Furthermore, the path compression of bitmap AC is not used

in our design. However, this technique can use the memory effectively, and also can

reduce the access frequency of memory in the external DRAM architecture. Thus, the

path compression technique is worth to take into consideration in the future.

 28

References
[1] S. Antonatos, K. Anagnostakis, and E. Markatos. Generating realistic workloads

for network intrusion detection systems. In ACM Workshop on Software and
Performance, Redwood Shores, CA, Jan. 2004.

[2] Aho and M. Corasick. Fast pattern matching: an aid to bibliographic search. In
Commun. ACM, volume 18(6), pages 333-340, June 1975.

[3] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical
Report TR-94-17, Department of Computer Science, University of Arizona,
1994.

[4] R. Boyer and J. Moore. A fast string searching algorithm. Communications of
the ACM, vol.20, no10, pp762-772, October 1977.

[5] Broder and M. Mitzenmacher. Network applications of Bloom Filters: A survey.
In Proc. Of Allerton Conference, 2002.

[6] Young H. Cho, Shiva Navab, and William Mangione-Smith. Specialized
hardware for deep network packet filtering. In Proceedings of 12th International
Conference on Field Programmable Logic and Applications, France, 2002.

[7] Young H. Cho and William H. Mangione-Smith. Deep packet filter with
dedicated logic and read only memories. In IEEE Symposium on
Filed-Programmable Custom Computing Machines, Napa, CA, USA, April
2004.

[8] Z. K. Baker and V. K. Prasanna. Time and area efficient reconfigurable pattern
matching on FPGAs. In Proceedings of FPGA ’04, 2004.

[9] Z. K. Baker and V. K. Prasanna. A methodology for synthesis of efficient
intrusion detection systems on FPGAs. In IEEE Symposium on
Field-Programmable Custom Computation Machines, Napa, CA, USA, April
2004.

[10] I. Sourdis and D. Pnevmatikatos. Fast, large-scale string match for a 10Gbps
FPGA-based network intrusion detection system. In Proceedings of 13th
International Conference on Filed Programmable Logic and Applications,
Lisbon, Portugal, September 2003.

[11] I. Sourdis and D.Pnevmatikatos. Pre-decoded CAMs for efficient and
high-speed nids pattern matching. In IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa, CA, USA, April 2004.

[12] Sarang Dharmapurikar, Praven Krishnamurthy, Todd Spoull, and John
Lockwood. Deep packet inspection using bloom filters. In Hot Interconnects,
Stanford, CA, August 2003.

[13] S. Dharmapurikar, M. Attig and J. Lockwood. Design and Implementation of a

 29

String Matching System for Network Intrusion Detection using FPGA-based
Bloom filters. In the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM ’04), April 2004.

[14] N. Tuck, T. Sherwood, B. Calder and G. Varghese. Deterministic
Memory-Efficient String Matching Algorithms for Intrusion Detection. In
Proceedings of the IEEE Infocom Conference, Hong Kong, China, 2004.

[15] R. Sidhu and V. K. Prasanna. Fast regular expression matching using FPGAs. In
IEEE Symposium on Field-Programmable Custom Computing Machines,
Rohnert Park, CA, USA, April 2001.

[16] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett.
Granidt: Towards gigabit rate network intrusion detection technology. In
Proceedings of the 12th International Conference on Field-Programmable Logic
and Applications, Sept. 2002.

[17] M. Aldwairi, T. Conte, P. Franzon. Configurable string matching hardware for
speeding up Intrusion Detection. In ACM Sigarch Computer Architecture News.
Vol. 33, No. 1, March 2005.

[18] Kuo-Kun Tseng, Ying-Dar Lin, Tsern-Huei Lee, Yuan-Cheng Lai, A Parallel
Automaton String Matching with Pre-Hashing and Root-Indexing Techniques
for Content Filtering Coprocessor, 16th IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, Samos, Greece,
July 2005.

[19] SNORT official web site. http://www.snort.org
[20] ClamAV official web site. http://www.clamav.net

 30

http://www.snort.org/
http://www.clamav.net/

