

 i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

大型多人線上遊戲中介軟體之容錯及負載分享

Fault Tolerance and Load Sharing Mechanism for MMOG

Middleware

研 究 生：范志歆

指導教授：袁賢銘 教授

中 華 民 國 九 十 五 年 六 月

 ii

大型多人線上遊戲中介軟體之容錯及負載分享

Fault Tolerance and Load Sharing Mechanism for MMOG Middleware

研 究 生：范志歆 Student：Chih-Shin Fan

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 iii

大型多人線上遊戲中介軟體之容錯及負載分享

學生：范志歆 指導教授：袁賢銘

國立交通大學資訊科學系

摘要

 多人大型線上遊戲的市場在近年來不斷成長，關於如何設計一個好的多人大型線上

遊戲中介軟體的議題也廣泛的在許多研究中被討論。在本篇論文中，我們主要關注在線

上遊戲的可取得度上。

 HAMS 是我們在本篇論文中開發的一個完全分散式的系統，他是一個用於大型線上

多人遊戲中介軟體的高可取得度服務，並且提供了開發錯誤回復及負載全域分享的中介

軟體之環境；此外，HAMS 也被有彈性的設計並適用於大部份的大型多人線上遊戲開發

中介軟體中。另外在本篇文章中，我們也測量了 HAMS 的效率並且針對其結果做討論。

 iv

Fault Tolerance and Load Sharing Mechanism for MMOG Middleware

Student: Chih-Shin Fan Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

 The market of MMOG (Massively Multiplayer Online Game) grows up greatly recent

years. The design issues of a good MMOG middleware are widely discussed in many

researches. In this paper, we mainly concern about the availability of online games.

 HAMS is a fully distributed system that we design in this paper. It is a high availability

service for MMOG middleware and provides development environment which is failure

recoverable and can share server load globally. Also, HAMS is flexibly designed to be used in

most of the MMOG middleware architectures. Additionally in this article, we evaluate the

performance of HAMS and provide some discussions of the result.

 v

Acknowledgement

 vi

Table of Contents

Acknowledgement ... v

Table of Contents.. vi

List of Figures ... ix

List of Tables ... xi

Chapter 1 Introduction ... 1

1.1. Preface ..1

1.2. Design Issues of MMOG Middleware..1

1.3. Motivation and Objectives ...2

1.4. Summary...4

Chapter 2 Background.. 5

2.1. Common Network Architectures of MMOG middleware......................................5

2.1.1. Client – Server ..5

2.1.2. Client – Gateway – Server..6

2.2. Important Game Data of MMOG Middleware...7

2.3. DOIT...8

2.4. AIS (Application Interface Specification)..9

2.5. Discussion... 11

Chapter 3 Related work.. 13

3.1. Load Distributing Technology..13

3.2. Peer To Peer MMOG..14

3.3. Mirror Game Server ...15

3.4. DOIT Coordinator ..16

3.5. Summary...16

 vii

Chapter 4 System Architecture .. 17

4.1. System Overview..17

4.2. HAMS Executive Part ..19

4.2.1. Data Information ..20

4.2.2. Membership Service ...21

4.2.3. Game Data Service ...21

4.2.4. Load Monitor Service...22

4.3. HAMS Library Part ..22

4.4. Summary...24

Chapter 5 Design Detail and Issues ... 25

5.1. Chapter Overview...25

5.2. Game Data in HAMS ...26

5.2.1. Game Data Information Management ..26

5.2.2. Game Data Protection...27

5.2.3. Game Data Migration ...28

5.3. Load Object in HAMS..29

5.3.1. Load Object Design..29

5.3.2. Load Object Information Management ..30

5.3.3. Load Object Monitor ..30

5.4. HAMS Membership Control ..30

5.4.1. TOTEM Membership Protocol...31

5.4.2. HAMS Membership Protocol...32

5.5. Recovery Protocol ..35

5.6. Load Sharing Protocol ..38

5.7. Summary...38

Chapter 6 Experiment and Discussion.. 40

 viii

6.1. Hardware Environment ..40

6.2. Game Data Store Throughput...40

6.2.1. Game Data Size vs. Store Throughput ...40

6.2.2. Node Numbers vs. Store Throughput ...43

6.2.3. Store Rate vs. Store Throughput...44

6.3. Game Data Read Throughput ...46

6.4. Failure Detection Time ...48

6.5. Summary...50

Chapter 7 Conclusion and Future Work... 51

7.1. Conclusion..51

7.2. Future Work ..52

Bibliography .. 53

 ix

List of Figures

Figure 2-1 client-server network architecture ..6

Figure 2-2 client-gateway-server network architecture..7

Figure 2-3 Game world partition..7

Figure 2-4 DOIT architecture ...9

Figure 3-1 Global Load Sharing Algorithm in [7]..14

Figure 3-2 Mirror Game Server Architecture ...15

Figure 4-1 HAMS...17

Figure 4-2 High Availability MMOG middleware concept......................................19

Figure 4-3 HAMS executive part ...20

Figure 4-4 HAMS library part ..22

Figure 5-1 HAMS Game Data and OPENAIS Checkpoint......................................27

Figure 5-2 Game Data Migration ...28

Figure 5-3 Token passing on the Totem network ...31

Figure 5-4 State diagram in TOTEM membership protocol.....................................32

Figure 5-5 HAMS membership ..33

Figure 5-6 HAMS server unique id ..33

Figure 5-7 HAMS initialization sequence diagram..34

Figure 5-8 A scenario of Recovery Protocol ..37

Figure 6-1 Game Data Size vs. Store Throughput Software Configuration.............41

Figure 6-2 Game Data Size vs. Store Throughput Result ..42

Figure 6-3 Node Numbers vs. Store Throughput ...43

Figure 6-4 Store Rate vs. Store Throughput Software Configuration45

Figure 6-5 Store Rate vs. Store Throughput ...46

 x

Figure 6-6 Game Data Size vs. Read Throughput..48

 xi

 List of Tables

Table 6-1 Game Data Size vs. Store Throughput Result ..42

Table 6-2 Store Rate vs. Store Throughput (KB / sec) ...45

Table 6-3 Game Data Size vs. Read Throughput ...47

Table 6-4 Failure Detection Time vs. Token Lost Timeout49

 1

Chapter 1 Introduction

1.1. Preface

 A Massively Multiplayer Online Game (MMOG) can be defined as a computer

game able to support a multitude of players which interact with each other within the

same virtual world, across the Internet, and regardless of their geographical locations.

However it is much harder than we can image to develop a stable, scalable and high

performance MMOG. According to the report [1], online game market will reach to

$30 billion by 2009. Recently many research focus on the MMOG middleware which

provide the toolkits for MMOG developers and short the time to market for game

companies. The competition of this industry makes the demand of MMOG

middleware raises every year and improves the research of MMOG development

platform.

1.2. Design Issues of MMOG Middleware

 There are many issues when we design a MMOG middleware.

Scalability

 It can be simply defined as how many avatars or game logics could this MMOG

supports. As a popular MMOG, there are usually thousands of avatars joining this

game concurrently and might be hundreds of game regions and logics operated at the

same time.

Availability

 Distributed technologies are usually adopted by modern MMOG middleware. In

order to handle plenty of avatars and game content simultaneously, MMOG is always

 2

hosted on lots of different hardware such as servers, gateways and network devices.

However these sophisticated devices are not as reliable as we suppose. Each crash

will cause serious damages to avatars’ benefit and moneyed lost to MMOG

companies.

 Another point of availability is load distributing. Because of the unpredictable

movements of avatars in the virtual world, the load varies with time between different

game servers. While the server is overloaded, it will decrease the performance of the

system (e.g. network latency, CPU throughput) and even cause game server crash.

Interactivity

 Avatars update it own status by sending events or messages to game server. The

results will be calculated by server and reply to game players. The interactivity of

MMOG middleware defines the response time of these messages exchange. Different

kinds of MMOG have their own interactivity constraints.

Consistency

 Consistency is a traditional problem of distributed technologies. In MMOG, this

usually means the “view” synchronization of avatars. Consistency is easy to maintain

in single server, but complicate in server cluster.

1.3. Motivation and Objectives

 As we mentioned in the previous section, the availability of a MMOG takes an

important role when we develop a MMOG middleware. However, even the most

popular MMOGs today do not confront this problem. The most popular solution is

duplicating the game world, and managing them separately in different servers.

Players create their characters in different servers can not interact each other. In this

way, each server can balance the load naturally and will not affect the other servers

while one of them crashes. Obviously this is not a mature solution, because it still

 3

suffers hardware failure and overload. Also, separating the avatars affects the game

fun.

 In this paper, we design a high availability service named HAMS (High

Availability MMOG Service) that is fault resistant and is able to share load

dynamically in MMOG middleware. Also, we hope this service could be applied to

most of the MMOG middleware.

 In order to reach our goal, there are many features we should provide.

Distributed technology

 Because a fault resistant system must overcome the single point of failure, a

distributed control mechanism is necessary for HAMS. There must be no central

controller in the MMOG middleware because it is not reliable. Since the controller

maybe fail, it will suffer the single point of failure. Also the data should be duplicated

to guarantee the availability. After one replication of data being destroyed because of

hardware crash, there should be always a backup.

High performance

 The performance of fail-recovery mechanism indicates that the repairing time

while hardware failure. We can take the mechanism into two phases. First, when

failure occurs, it takes time to detect which node is down. The faster we find the fail

node the earlier we can start to recover data. Second, after detecting which node failed,

it still needs time to recover the game data belongs to the failure node. The objective

is to shorten the time of these two phases. The best result we want is that players can

hardly feel anything different between the fail-recovery, at least a tolerable affection

(Eg: a short time rollback).

 The performance of load distributing mechanism indicates the time we cost from

the moment we find overload problem to the time the load be shared.

Flexibility

 4

 Different kinds of MMOG middleware should be able to implement their own

recovery police or load distribution mechanism.

 Load distributing and recovery policy should be adjustable because different

game design may have different consideration. For example, sometimes we would

like to share our clients to server which is responsible for the clients “near” us in order

to reduce the server communications since avatars may interact to avatars belong to

other servers. But sometimes we hope to the clients to a “far away” server just

because the remote server’s CPU utilization is much more less than the neighbor

server and the communication between local server and neighbor is not frequent.

1.4. Summary

 Because the MMOG industry is getting hotter, a good development environment

of MMOG becomes necessary. A MMOG middleware is used to help the developer to

design their MMOG products short the time to market.

 There are many design issues in MMOG middleware. In this paper, we focus on

the availability of MMOG middleware. We hope to provide a general solution for

most MMOG middleware which want to have a high availability environment.

 The availability issue can be separated into two major problems, fail-recovery

and load sharing. In order to provide a good solution, our system should be designed

with distributed architecture and must be flexible and high performance.

 5

Chapter 2 Background

 In this chapter, we are going to introduce some background knowledge you need.

It will help you to understand our system design clearly. Section2.1 is an introduction

of some distributed architectures we are using in MMOG middleware today. Also it

will give you a basic concept of what mechanism might be needed for fail-over and

load distributing. In Section2.2, we introduce some important game data that appears

commonly in MMOG middleware. The next section we are going to talk about a

MMOG middleware named DOIT [2] which was developed by Distributed System

Lab. of National Chiao Tung University. DOIT is a flexible, scalable, easy-to-use

MMOG middleware. Section2.4 includes a standard specification about availability

which is adopted by HAMS. Finally, we will give a discussion.

2.1. Common Network Architectures of MMOG middleware

 There are many kinds of network architecture of MMOG middleware [3].

Following are some commonly network topologies in MMOG. Through this overview

you will see the most common MMOG middleware architectures. One of the design

goals of HASM is able to be applied in all these architectures.

2.1.1. Client – Server

 This is the most popular network topology adopted by MMOG middleware today.

Clients connect to the game server and start to play. The number of game servers

depends on the scalability of the MMOG. Each game server is responsible for

different game logics, and usually the servers are separated by the geographic of the

game world. Avatars move to different part of game world also migrate their

connections to another server at the same time. Client-server architecture is used in

 6

many games (Quake, EverQuest) because it is cheating avoidance and easy to

maintain. However it may have the single point of failure and server overloaded if

there is no other mechanism with it.

Figure 2-1 client-server network architecture

2.1.2. Client – Gateway – Server

 Client-gateway-server architecture is actually an improvement of client-server. in

client-server, players connect to the game server directly, because each server’s I/O

connections is limited, there can not be too many avatars play in the same area of

game world at the same time even though the server still underload. It is not a

reasonable constraint because avatars people are gregariousness. In

client-gateway-server architecture, clients connect to gateway instead of connecting to

game server directly. It breaks the I/O connection limitation of each game server and

improves the scalability of client-server architecture. However, introducing gateways

does not solve single point of failure neither overloaded problem.

 7

Figure 2-2 client-gateway-server network architecture

2.2. Important Game Data of MMOG Middleware

 In section2.1, we know that modern MMOG are always hosted in a server cluster.

There are some important data includes in a game server. When we talk about

availability, the most important part is game data protecting. The following will help

you to understand the various game data types in MMOG.

 The words region, cell or unit and are addressed in many papers related to

MMOG or DVE (Distribute Virtual World). All of them represent pieces of game

world. There are many approaches to divide the world such as in quadrangle or

polygon. Even, there are many researches proposed dynamic partition algorithm in

order to reach the most load balancing system.

Figure 2-3 Game world partition

 Game logic is the largest part in a game. It indicates what will happen after each

 8

action is created by an avatar. For example, an avatar may lose its health after he/she

is hit by a NPC (non-player character) or learned new skill after the avatar use a skill

book. These complicated game logics are maintained by many game servers and

might be distributed into different servers just like game regions.

 Avatars’ status information is very important data in the game servers. It

represents the current state of an avatar such as healthy, skill, level and etc. Avatar’s

status is updated after the result is calculated by server according to the game logic

and avatar’s behavior.

2.3. DOIT

 DOIT is a flexible, scalable, easy-to-use MMOG middleware which was

developed by Distributed System Lab. of National Chiao Tung University. DOIT is

based on client-gateway-server architecture and it divides the game world into

“Regions”. The architecture overview of DOIT is in Figure 2-4. The architecture and

the design issues of DOIT did a great inspiration of this paper.

Region

 In DOIT, the game world is divides into many regions. The Avatar connects to

one gateway and be dispatched to the server which handles the region that this avatar

logged out last time. As the avatar move to region that does not belongs to current

server, it will be migrated to another game server and gateway will start to dispatch

avatar’s message to new server.

Coordinator

 Coordinator in DOIT is a command line interface that provides game maintainers

some utilities such as region migration. Through coordinator, we can move regions

form one server to another.

 9

 Figure 2-4 DOIT architecture

2.4. AIS (Application Interface Specification)

 The Application Interface Specification (AIS) [4][5] is a standard for high

availability middleware which is developed be Service Availability Forum (SA

Forum). It provides many high availability standard APIs which will be widely used

in our system.

 This is originally defined for carrier-grade applications which are developed by

vendors themselves, and not portable across different vendors’ implementations. The

term high availability (HA) represents the services availability should up to a range

near 99.999%, or simply imply the application down time should not large than 6

minutes in one year. There are some other requirements for carrier-grade applications

in [6].

 10

 There are six services defined in AIS: Availability Management Framework

, Cluster Membership Service, Checkpoint Service, Event Service, Message Service

and Lock Service. We introduce three kinds of services that are useful in our solution.

Cluster Membership Service

 The Cluster Membership Service provides membership information about the

nodes in a cluster to the applications. A cluster is simply a set of nodes with unique

identifier that are connected together by network. As nodes join and leave the cluster,

cluster membership changes.

 The Cluster Membership Service provides functions that allow applications to

retrieve the membership information and monitor the changes in membership.

Checkpoint Service

 The Checkpoint Service provides a facility for an application to preserve its state

across hardware and software faults. If a node fails or restart, it can recover it’s state

quickly by retrieving the checkpoint data.

 Checkpoints are cluster-wide entities that are designated by unique names. A

copy of the data stored in a checkpoint is called a checkpoint replica, which is

typically stored in main memory rather than on disk for performance reasons. A given

checkpoint may have several checkpoint replicas stored on different nodes in the

cluster to protect it against node faults.

Event Service

 The Event Service is a publish/subscribe multipoint-to-multipoint

communication mechanism that is based on the concept of event channels, where a

publisher communicates asynchronously with one or more subscribers over an event

channel.

 Multiple publishers and multiple subscribers can communicate over the same

event channel, and publishers can also be subscribers on the same event channel.

 11

Individual publishers and individual subscribers can communicate over multiple event

channels.

 The OPENAIS is an open source project to implement Application Interface

Specification. OPENAIS began development by MontaVista Software in January

2002. It covers all services defined in AIS and another extends services named Evs.

 OPENAIS uses TOTEM multicast network [7] for its communication protocol.

TOTEM first been proposed in [8] and be improved in many researches [9][10]. Also

Efstration Thomopoulos measured the message latency of TOTEM in [11]. The

recovery performance has been proven in our previous work [12], and the message

latency is short even in large scale. TOTEM provides total ordering and reliable

multicast and membership protocol which maintain all cluster nodes’ join and leave.

2.5. Discussion

 In this chapter, we describe the most common architectures of MMOG today and

the basic concept of what a MMOG looks like. We know that the MMOG middleware

are usually operated in many game servers which are responsible for pieces of the

game world. Avatars (clients) connect to the servers directly or through gateways and

start to interact with other characters in the game world. There are many important

data in the game server such as game regions, game logics and avatars’ status.

Protecting these game data helps us to relieve the damage from server failure. Game

data migration could decrease the load in servers.

 The Application Interface Specification defines many useful services to manage

the application data and hardware resources. Its high efficient membership service and

checkpoint service is useful in distributed system architecture. The open source

implementation OPENAIS is a high performance and fully distributed middleware.

The membership service in OPENAIS has been proofed by our previous work. Many

 12

developers are now trying to deploy their application on OPENAIS, so the OPENAIS

develop group still keep working on this open source. The latest distribution 0.74 has

become very stable and we think it should be useful in HAMS.

 13

Chapter 3 Related work

 There are many researches and articles related to the issues of availability of

MMOG. In this chapter, we are going to introduce you some representative

approaches. These approaches can briefly be divided into two kinds. Section3.1 is

some algorithm base solutions of availability. They proposed algorithms to solve the

load distributing problem. The other kind of approach is architecture based. We

introduce you three kinds of architectures which have the ability to solve failure or

overloaded problems. They mainly get these advantages from the architecture they

design but will not propose any algorithm in the availability issues.

3.1. Load Distributing Technology

 In [13], they proposed a global load sharing algorithm called DLS which have

the capability to distribute the load to all servers through recursively dispatching their

load to neighbor server. These solutions may invoke many of network transfer in one

time and might cause network burst. There is another similar algorithm proposed by

Kyngmin Lee and Dongman Lee in [14].

 Figure 3-1 is an example of the algorithm. While a server S00 found that it is

overloaded, it first sent to its neighbor server S10, S11, S12 and S13. Each neighbor

will recursively execute the sharing algorithm until the S00 is underload or there is no

other server to share. This time complexity of this algorithm depends on how many

servers are there in the cluster.

 Another kind of load distributing strategy is local load distributing. In [15],

Dugki Min provided a local load sharing algorithm which just distributes the load to

neighbor server. It reduces the network traffic through the execution but can not

distribute the load to all servers once.

 14

Figure 3-1 Global Load Sharing Algorithm in [13]

3.2. Peer To Peer MMOG

 Peer-to-peer is a newly technology comparing with client-server architecture.

The main idea of P2P is let the clients maintain their own game logic calculation and

state copy. Often, P2P games are based on fully connected overlay network which has

no central server and. Generally, in P2P, the players’ status change should be sent to

other peers so they can update there “scene” synchronously. The most well known

advantage of P2P architecture is robustness. There is no single point of failure and

overloaded in P2P games because clients are responsible for their own calculation and

even one of them crashes, it does not affect others. Moreover, we can easily recover

the failed data from other peers when the failed client reboots again. However, since

interactions and accounting information are not verified by any server, cheating is

possible. And also, each client’s status change should be sent to all other clients, it

cause heavy network overhead and complicated consistency issue in P2P. There are

 15

few P2P MMOG game, the representative of them is MiMaze [16] [17]. Also, some

researches about p2p game cheating problem [18].

3.3. Mirror Game Server

 In [19] is architecture of MMOG middleware called Mirror Game Server. Mirror

Game Server is actually an improvement of client-server architecture. In client-server

architecture, each game server is responsible for one part of game world. But in

mirror game server, there is a group of game servers that serve clients connected to

the same part of game world. Duplicating each server to a group has some advantages,

such as load balancing and fault resisting. However, since clients distributed in the

server group are related to the same game world, each status update should be sent to

all servers in the group. This cause complicated consistency issue between the servers

([20], [21]) and also increase the network traffic load. Moreover, because the

availability relies on the number of the “mirrors” (game servers in the same group),

we may add too many servers to one group that is not necessary and waste the

hardware resource.

Figure 3-2 Mirror Game Server Architecture

 16

 Figure 3-2 shows the architecture of mirror game server. The servers belong to

the same mirror ({A,B,C} {D,E}) are replications of each other. Clients connected the

nearest game server and begin to play the MMOG. The game data information is

totally synchronized in each server belongs in the same group. While server A crashed,

both server B and C can take over the clients which were connecting with A.

3.4. DOIT Coordinator

 Another approach to solve the overloaded problem was proposed in [2] DOIT by

adding a central controller named Coordinator as Figure 2-4. Because coordinator is a

central control technology, while the coordinator fails, there is no way to balance to

load. Moreover, it only provides region migrate, game developers can not move other

game object by coordinator.

3.5. Summary

 Above are some researches in availability issues of MMOG middleware. All of

them had big contributions. Unfortunately, many of them have their weakness. Our

solution takes their good concept and fixes the drawback.

 In HAMS, we hope that there is no central controller so we can overcome the

single point of failure. Second, HAMS is aimed to the widely used server architecture

of MMOG middleware which means it must be easily to management and difficult to

cheat. Under this consideration, the p2p and mirror server architecture are both not

proper for HAMS. Eventually, HAMS hopes to provide more efficient solution in

both fail-recovery and load sharing and also a flexible interface for MMOG

middleware developers.

 17

Chapter 4 System Architecture

 HAMS is the abbreviation of High Availability MMOG Service. It provides

developers many services to design their own high available MMOG middleware. In

this chapter, you will see the system architecture of HAMS. And we will depict the

components in HAMS step by step in the following sections.

4.1. System Overview

 HAMS is a high availability service for MMOG middleware. In Chapter 2, we

talked about the most common architecture of modern MMOG. We hope that HAMS

can solve the availability problem in all these architecture.

Figure 4-1 HAMS

 There are two important parts in HAMS, Library Part and Executive Part, see

Figure 4-1. The HAMS Library Part is linked with the MMOG middleware and

 18

provides API for users. HAMS Executive Part starts as a demand in each node and

process the request from HAMS Library Parts.

 In HAMS, each node will be only one Executive Part, but we allow multiple

Library Parts connect to each Executive. Executive Part binds with OPENAIS and

uses its services to provide high availability to MMOG middleware. The MMOG

middleware links with Library Part and can be thought as a “Server” in HAMS system.

The HAMS servers can obtain the information such as node failure, node overloaded

and etc from Executive Part. The middleware also use the Library to monitor their

load and store game data that must be protected. The details of functions in HAMS

will be introduced later. The lowest layer of HAMS is OPENAIS. HAMS Executive

Part uses OPENAIS as its base network. We use many services provides by

OPENAIS to design our own high availability functions in HAMS.

 The main advantage of splitting HAMS into two parts is flexibility. MMOG

middleware are sometimes written in different languages. To link with these varies

systems; we only need to rewrite the Library Part but not whole HAMS. Below this

consideration, we think that keep the HAMS Executive independent from any

language will be a better idea than write whole HAMS together. Additionally, we

allow many Library Parts to connect to one Executive Part to increase the usage

flexibility. Through this functionality, HAMS can support multiple MMOG

middleware servers in a single node. This concept was proposed by SUN named

utility model which can increase the hardware utilization and improve the

management. However, the server membership control will be more complex. We will

introduce you how HAMS maintain the membership information of servers in

Chapter 5.

 19

Figure 4-2 High Availability MMOG middleware concept

 Figure 4-2 shows you the concept of high availability MMOG middleware with

HAMS. It depicts the relationship between traditional MMOG architecture and

HAMS. Whenever a component of MMOG (server, gateway …etc) hopes to use the

high availability service of HAMS, it links with HAMS and join the HAMS

membership. Usually each component represents a MMOG middleware. As long as

servers link HAMS Library Part, it can use the APIs defined in HAMS and develop

their own high availability MMOG. HAMS is tightly bound with OPENAIS. Each

HAMS Executive Part can be known by other and communicate with each other

through OPENAIS services. OPENAIS makes HAMS to manage the cluster easily

and provide HAMS an efficient communication network between all nodes.

 All control mechanisms were designed in distributed way. There is no central

controller in HAMS. Each HAMS plays the same role in the system, so there will be

no single point of failure. Whichever node fails, the other node will be notified by

HAMS and able to recover the game data through HAMS APIs. The similar scenario

occurs while a node overloads.

4.2. HAMS Executive Part

 The Executive Part is the kernel of HAMS. There are many components in

 20

Executive Part. It receives the request from local servers and dispatches them to the

correct handlers and response the request with necessary information. There is a lot of

data information should be maintained in Executive Part such as membership, game

data and load. The Executive Part must keep modifying the information frequently.

The Executive Part is a bridge of MMOG middleware and OPENAIS. HAMS use

OPENAIS for its base network and the other services in OPENAIS to achieve high

availability. The components in Executive Part are in Figure 4-3.

Figure 4-3 HAMS executive part

4.2.1. Data Information

 The data information actually is a set of share data that we must keep in the

executive kernel. It includes membership information, game data information and

load information. Local servers can request the data information through the three

services and help users to control the system.

 Data information will be updated by Executive Part. For example, when there is

a new server connected to HAMS Executive Part, the server information (name, id…)

will be saved in all Executive Part. So, whenever a node failed, its information will

 21

not lose and can be recovered by other servers.

4.2.2. Membership Service

 To achieve a high availability MMOG, we must overcome the server crash.

Hence, we need a mechanism to help us to manage the servers and tell us while there

is any server failed. Also, each server needs to retrieve the information of other

servers.

 Membership service connects local servers in HAMS libraries to the whole

membership. It allows local servers to register themselves through membership

manager. It also stores servers’ information in other node while they register.

Membership service monitors the changes in the system, for example server join and

leave, and send the notification to HAMS Library. Besides, membership services

provides interface for local servers to retrieve the membership information such as

server numbers, server names and etc.

4.2.3. Game Data Service

 Except the membership, we also need to protect the important game data in

HAMS. While there is a server failed, we need a mechanism to recover its regions,

game logics, and avatars information. Also, if there is a server overload, we would

like to move some of its game data to other servers and decrease its load.

 Game data service provides interface for local server to register there data and

store them. It also allows local server to retrieve the game data information in other

servers. Game data service also maintains the game data information, while the game

data is moved from one server to another, the game data service must aware this

change and modify the game data information in Executive Part on each node.

 22

4.2.4. Load Monitor Service

 Load sharing is also important for availability. To solve the server overloading

issue, we have to dynamically monitor the loading in each server and provide the

interface for users to retrieve the load information.

 Load monitor service is simpler than the other two services. In HAMS, the types

of load can be defined by users and the threshold can also be set by developers

according their demand. The major work of load monitor service is updating the local

server load and than sending to other servers. While it receives the load updating

message from other servers, it modifies the load information in the HAMS Executive

Part. It also provides interface for local servers to know what the current load in each

server and also the load types.

4.3. HAMS Library Part

Figure 4-4 HAMS library part

 In this section we are going to introduce the components of HAMS library which

is used with the MMOG middleware. Because the HAMS library usually link with

MMOG middleware server, we can see the library part as a logical server called Local

 23

Server. The detail of HAMS library is in Figure 4-4. All components in Library Part

are corresponding to one service in Executive Part. It allows the developers use

HAMS easily and hiding some detail implementations in Executive Part. Basically,

the Library Part only stores the local information such as server name, id, and the

game data it registered. If the server wants to retrieve the information of other servers,

it uses the APIs in Library Part and obtains it from Executive Part.

 Local Server is the basic object of HAMS Library. Each local server includes

three important components, load monitor, membership manager and game data

manager. The middleware start using HAMS by initialize local server and its

components. Local server will connected to Executive Part by communicator and

register itself to join the membership.

 Membership manager provides simple APIs for servers to retrieve information of

all nodes such as name, descriptions and etc. Developers can implement their own

fail-over mechanism through membership manager. While there is a server failed, the

Executive Part will notify the membership manager and let developers to run the

recovery algorithm they want. Also, it defines some useful structure for users to

processing the membership information such as HAServerInfo.

 Servers can register there game data in game data manager. Game data manager

protect these important data by storing them to HAMS Executive Part periodically

and allow users to retrieve the game data information in other nodes. Another

important job of game data manager is game data migration. Each Library Part has the

capability of migrating game data from one server to another by providing some

simple APIs. Also it has to notify the users while the local game data have been

migrate to the other nodes. HAGameData is a structure which is defined in game data

manager and useful for game data processing.

 Load monitor provides a flexible way for users to define their load information.

 24

Users can register their own load object and retrieve other servers’ load information

through the APIs defined in load monitor. It allows developers to define their own

sharing algorithm. When the load is over the threshold, users will be notified and may

start their load sharing mechanism.

4.4. Summary

 In this chapter, we describe the HAMS system and how it connects with

traditional MMOG middleware. In order to provide the fail-recovery and dynamic

load sharing, we need a membership control component and load monitor mechanism

in HAMS. Also, the important game data also need to be protected through game data

service in Executive Part. All of these controls are done by a totally distributed

technology without central controller which may have the risk of single point of

failure.

 HAMS Library Part provides developers an easy-to-use approach to link their

middleware with HAMS. It lets the users to achieve their availability demand in a

flexible way.

 25

Chapter 5 Design Detail and Issues

5.1. Chapter Overview

 In this chapter, we are going to discus the implementation detail and the design

issue of HAMS. In section5.2 and 5.3, we will talk about two basic data structures in

HAMS, game data and load object which are widely used in HAMS. We will show

you how we maintain load and game data information between servers and also the

design consideration of them for flexibility issue. For game data, there must be a

protecting approach which is necessary when we need to recover the failed server.

Additionally, we will introduce the data migration mechanism which is very important

in both recovery and load sharing protocol. In section5.4 you will see the more detail

of membership control in HAMS. In Order to manage all servers and detect the server

failure, an efficient membership control system is necessary. First, we will explain

how OPENAIS provides the membership service by TOTEM, and then show the

HAMS membership implementation detail which is based on OPENAIS. After the

data structure and basic management system, we are going to show the most

important protocol in this paper, recovery and load sharing. The recovery protocol in

section5.5 is actually the composition of the management system we mentioned in

previous sections. However, there are some design issues in the user interface which

improves the flexibility of HAMS. In order to make it clear, we use a simple case to

explain the recovery protocol. Like recovery protocol, the load sharing protocol also

invokes all data structures and the control system in HAMS. The load sharing solution

we proposed demand less network transmission than we talked about in related work.

Also, the game data migration may be faster because we always keep the data

replication in all nodes. The last part is a summary to organize this chapter.

 26

5.2. Game Data in HAMS

 The first data structure you will see is game data. In HAMS, the game data can

be anything that developers want through implementing the HAGameData object.

This section also includes how we protect the game data information and game data

migration protocol in HAMS. All of these will be widely used in recovery and load

sharing protocols.

5.2.1. Game Data Information Management

 Each HAMS server can register game data which are important and must be

protected. Game data could be a region, a cell, a set of avatars or any kind of

information. For efficient issue, we always keep track all data information on every

node, because it helps us to reduce the network burst when server failed or server

overloaded and users need to retrieve all information from each server. That means,

whenever a game data has been registered or removed, all of the servers should be

notified. There are some basic changes of HAGameData and the corresponding

actions we should do in HAMS.

Game Data Register / Deregister

 Users register game data and give it a name for other server to identify what does

the data includes. While game data is registered, HAMS notifies all other servers by

sending a register_gamedata message. Likewise, when a server deregisters the game

data, HAMS sends unregister_gamedata message.

Game Data Migrate In / Out

 The detail of game data migration will be talked about later. Whenever the game

data is moved to local, the game data service should register this game data to local,

opposite when game data is moved out.

 27

5.2.2. Game Data Protection

 The game data information that maintained by game data service does not

include the data itself. The actual data is usually much larger than game information

and stored by OPENAIS checkpoint service in HAMS. In checkpoint service, it

divides each checkpoint into several sections. The read/write method actually happens

on the sections. In HAMS, every server opens a single checkpoint and the game data

will be corresponding to one section. Figure 5-1 shows the relationship of HAMS

game data and OPENAIS checkpoint.

Figure 5-1 HAMS Game Data and OPENAIS Checkpoint

 Each server can set its store rate to store their game data. The store rate is a

trade-off on the availability degree which is demanded by MMOG middleware

developers and the overhead of storing data. While the server stores data into

checkpoint, it simply overwrites the corresponding section in the checkpoint. The

checkpoint service provides All-or-None transaction which guarantees the store

operation will not partial overwrite the section, so the game data correctness can be

 28

promised.

5.2.3. Game Data Migration

Figure 5-2 Game Data Migration

 29

 Game data migration happened in both fail recovery and load sharing. We move

avatars from server to server to share their load, or send the important game data from

a failed server to an active server for recovering. Basically, game data migration

invokes three roles init, destination and source. We can use a interact diagram in

Figure 5-2 to explain the details.

 The server who wants to start a migration should send a migrate_init message to

HAMS executive part. HAMS uses OPENAIS Evs. to multicast the message to other

servers. If the server finds that it is the destination of this migration, it must read the

game data from OPENAIS checkpoint service. The HAMS Executive Part will

automatically multicast a game_data_remove message after the read operation has

been done. The source server then delete the game data and user will be notified that

the game data has migrated out.

5.3. Load Object in HAMS

 In order to share load while the server is overloaded, we need an approach to

monitor the system load in MMOG middleware. Load object helps HAMS to monitor

the server load. There are some design issues in flexibility. Also, the management

mechanism will be introduced in this section.

5.3.1. Load Object Design

 In HAMS, we provide a flexible way for users to define their load object. In

traditional distributed system, a load monitor may allow users to monitor their CPU

utilizations, network utilization, etc. But in the MMOG middleware, the load monitor

should not only control the hardware information but also other game specific info.

Sometimes, we would like to monitor the “avatar response time in region 1”, or

“avatars migration frequency between regions”. This is impossible to predefine all

 30

load types for every MMOG middleware. To realize a flexibility load monitor, HAMS

define an abstract object called HALoadObject. Users create their own load object by

extending HALoadObject.

5.3.2. Load Object Information Management

 The management of load object is very similar to game data. We also keep the

load information in all nodes. While a server create a new load object, it use

register_load message to tell all other servers. Also, the current load will be sent to all

servers by save_load messages. Although, the load saving messages will occupy some

network bandwidth, it can improve the performance of load sharing and fail-recovery

algorithm since we will not have to request the information from remote server again.

Of course, we can use unregister_load message to destroy this load object and stop

monitoring it.

5.3.3. Load Object Monitor

 HAMS allows users to monitor load object they defined by implementing a

method named calcLoad() in HALoadObject. Developer can set the monitor rate and

the threshold of HALoadObject. The calculation method updates the load value

according the monitor rate and check if it exceeds the threshold. If it is overloaded,

monitor will notify the users. The load sharing protocol will be introduced in

section5.6.

5.4. HAMS Membership Control

 In Chapter 1, we mentioned the design objective of distributed technology.

Because we want to overcome the single point of failure, there must be distributed

membership management without any central controller. The HAMS membership

 31

service connects all HAMS together and maintains the servers’ information in every

node. Before dive into HAMS membership service, we will introduce you how

TOTEM control the membership of physical nodes first. This helps HAMS to be

aware of the underlying membership changes such as physical node join and leave.

However, the OPENAIS membership is not enough for HAMS because there may be

more than one server connect to each node. So we extend the OPENAIS membership

to HAMS membership shown in Figure 5-5.

5.4.1. TOTEM Membership Protocol

 HAMS uses OPENAIS for its base network, because it provides a high reliable

membership control protocol depends on TOTEM. The TOTEM multicast was first

proposed in 1995 and has been improved several years. It is widely accepted as an

effective approach to realize reliable group multicast. The membership protocol of

TOTEM helps it to overcome the unstable network configuration. In TOTEM network,

all processors form a logical ring as Figure 5-3. Whenever a processor fails or

network separate, the old ring breaks and the remaining processors will form a new

ring through membership protocol. There are four states in TOTEM membership

shown in Figure 5-4. The more detail you should see the reference [7].

Figure 5-3 Token passing on the Totem network

 32

Figure 5-4 State diagram in TOTEM membership protocol

5.4.2. HAMS Membership Protocol

 We have briefly introduced the TOTEM multicast network and its membership

protocol which is used in OPENAIS membership service. Although we can easily

manage all hardware nodes by OPENAIS, but this is not enough for HAMS

membership. Because HAMS allows multiple local servers operate in one single node.

We need an extend membership control system in HAMS executive part shown in

Figure 5-5.

ID of Server

 There are many servers connect to one HAMS Executive as Figure 5-5. The most

important information of the HAMS servers is server identification. The identification

of a server must be global unique. Although the OPENAIS membership service

provides a unique identification for each physical node, we can not simply use this

node id, because there may be several servers running concurrently on a node within

HAMS. The unique identification generated by HAMS is shown in Figure 5-6. The

server register time is the system timestamp that the MMOG server which was linked

 33

with HAMS library connects to HAMS executive part. Because the IP address is a

unique identification of all nodes and the server register time was unique within one

node, the global unique can be guaranteed.

Figure 5-5 HAMS membership

Figure 5-6 HAMS server unique id

Membership Information Management

 At the time a node boot-up and HAMS executive part is started, HAMS joins the

OPENAIS membership immediately. At this time, HAMS does not know any server at

 34

all. It starts initialization protocol as in Figure 5-7. First, HAMS sends an init request

message to OPENAIS multicast service. Second, the OPENAIS will deliver the

message to all others. While HAMS receives an init messages in (3), it simply sends

register_server messages with its local servers’ information. Finally, the original

initializer builds whole membership according the register_server messages.

Figure 5-7 HAMS initialization sequence diagram

 When there is a server hope to join the HAMS membership. It uses

register_server message just like what we did in Figure 5-7 (3) to (4). Likewise, when

the server is going to leave the HAMS membership, it sends the message

unregister_server, and the other HAMS executive parts will delete the server data in

local.

 The most important part of membership protocol is failure handle. HAMS

receives the node failure notification deliver by OPENAIS membership service and

then invoke the failure handler method. The recovery protocol is implemented by user

through HAMS library. The detail is in section 5.5.

 35

5.5. Recovery Protocol

 We have seen the detail implementation of HAMS membership protocol and the

control system of game data and load object. In this section, we will introduce you

how HAMS recover the server when it failed. We divide this protocol into detection

phase and recovery phase.

Detection Phase

 HAMS rely on the membership control in section5.4 to detect the server failure.

The detection time is really short. In [12] we do much effort on measuring the

OPENAIS membership failover time. In the worst case, the new TOTEM ring can be

reformed in one second, and best could be 50~60 millisecond. The result is HAMS

can detect the hardware node failure very fast. The membership control invoke the

failure handler in HAMS after it discover there are some servers failed. The main job

of failure handler is to choose a representative server and deliver the fail message to

its HAMS library. The representative was chosen by the unique identification which is

the smallest. Because the id is global unique, there will be only one representative

which will execute the recovery algorithm.

Recovery Phase

 HAMS actually just provides the tools for user to recover the failure servers in

recovery phase. We leave the algorithm (how to recover) to users by implementing the

HAMemberShipFailListener themselves. While there is a server failed, membership

protocol will deliver the fail_msg to HAMemberShipFailListener and start running the

recovery algorithm. The reason why we allow the users to implement recovery

algorithm is that it helps to design MMOG middleware more flexible. Developers can

use Game Data Manager and Load Monitor to retrieve the game data information and

load information in all servers. Then the developers can choose their own policy to

 36

decide which data of the fail server would be migrated to whom. Following are some

examples that you can do through HAMS while a server failed.

 You can always choose the servers named “repairing server” to take over the

failed server’s data.

 You can choose the servers which have game data named “region x”, because it

is closed to the failed region.

 You can choose the servers which have a load object named “CPU utilization”

and the value is lower then 50%.

 These are very common decisions that a MMOG develop may think. Because

there are so many you can do in the recovery algorithm, we must leave the algorithm

for users. In HAMS, we can do all these easily.

Simple Scenario

 Figure 5-8 is a simple scenario which can help you to understand the recovery

protocol more clearly. In (a.), there is a node crash, and two servers operated on it will

also be failed. Then, OPENAIS membership service finds the configuration changes

and notifies the HAMS (b.). At the same time, HAMS choose a representative to

handle this failure and deliver the fail_msg to representative. In (c.), the representative

runs the recovery algorithm which was implemented by developer, and decides how

to recover the game data in the failed servers by sending migrate_init messages. After

the game data migrated, the failed server will be deleted and their game data (in this

case are two regions) will be took over by other servers (d.).

 In Figure 5-8, you should understand that the failed servers’ information actually

has been stored in other nodes by HAMS membership manager. So after the node

crashes, the servers will be marked as “Failed” in all HAMS Executive Parts. The

reason why we do this is to confirm the failure will surely be handled. If the

representative fails during the recovery algorithm, the server will still be marked as

 37

“Failed” in each node and we may choose another representative after a while.

Figure 5-8 A scenario of Recovery Protocol

Efficiency

 The HAMS recovery protocol is very efficient. First, the node failure detection

time is short because there is a good membership service in OPENAIS and HAMS

only needs search which server belongs to the failed node and choose the smallest

unique id for representative. Developers decide how to migrate the game data by

retrieving information HAMS provides from local node. All game data migration

action can be sent by one migrate_init through multicast. The destination servers can

recovery the game data parallelly. Moreover, in HAMS we let the checkpoint

replication of OPENAIS be distributed in all physical nodes, so destination servers

 38

actually read the game data from local and this makes a big improvement in recovery

speed.

5.6. Load Sharing Protocol

 We have seen how HAMS management the load objects in section5.3. In this

section, we will explain the detail of how HAMS sharing the servers’ load.

 The concept of load sharing mechanism in HAMS is similar than recovery

HAMS also leaves the load sharing algorithm for user to implement. Users can

implement the HALmOverLoadListener which will be notified by HAMS load

monitor while local serve is overloaded. Likewise, users can retrieve the information

of game data and load in all servers and make their decisions about how to share the

load. Because the information are retrieved in local and migration_init message use

multicast, the global sharing algorithm will be faster then recursively sharing from

neighbor nodes to remote. Because load sharing also use game data migration to

distribute to load, it is as efficient as we talked in recovery protocol.

5.7. Summary

Main Contributions

 In this chapter, we explain what we did in HAMS and how it accomplished the

research objectives. For distributed technology, the membership protocol of HAMS

give you a no central control mechanism to management the game server cluster, and

duplicate the game data into several replicas for protecting issue. We make many

design consideration to improve the performance in recovery protocol and load

sharing protocol. The multicast technology helps us to implement an efficient

communication mechanism between servers. Finally, we did much effort to provide

developers a flexibility interface in HAMS. Users can design their own game server

 39

management mechanism through implementing the algorithms of recovery and load

sharing, storing game data they hope to protect and monitoring load objects which are

important for their middleware.

Extra advantages

 Except the main objectives, HAMS also brings another advantages for

developers. Because users can register there own game object and load in each server

and retrieve these data in any other servers. HAMS can also be used as a middleware

monitoring system which allows users to watch current system status such as resource

utilization, avatars distribution, load distribution and etc.

 40

Chapter 6 Experiment and Discussion

 We are going to evaluate HAMS in this chapter. First we will measure the game

data store throughput. The store throughput affects the avatars status rollback in

recovery protocol. While a server failed, we need to recover its game data from other

game data replication stored in different node. The faster we can store the game data,

the shorter rollback avatars will be, because the replication will contain the “latest”

status of avatars. Second, we will evaluate the game data read throughput. The read

throughput affects the efficiency of recovery and load sharing protocol in HAMS.

Finally, we will give some testing of failure detection time in HAMS. It also plays an

important role when we are going to recover the servers after they fail.

6.1. Hardware Environment

 There are most five computers in our test environment. Each computer uses 3.4G

CPU and supports hyper-threaded. The memory is 512MB and use 1000M network

interface. All of these computers connected with a GIGABIT switch (SMC tiger) in a

private LAN.

6.2. Game Data Store Throughput

 First we want to know the game data store throughput in different environments.

This Section, we divide our testing into three rounds. Each round, we evaluate a

single factor affects the store throughput and discuss the result.

6.2.1. Game Data Size vs. Store Throughput

Software Configuration

 41

 There will be five HAMS Executive Parts; each of them is deployed in one

computer. One single server connects to the HAMS Executive and start to store the

game data with different game data size. The game data will be distributed to the all

five nodes.

Figure 6-1 Game Data Size vs. Store Throughput Software Configuration

Result and Discussion

Game Data Size (Bytes) Throughput (KB / second)

20000 10854.77

40000 15799.39

60000 17407.35

80000 19916.07

100000 20661.39

120000 20806.72

140000 20848.32

 42

160000 21718.44

180000 21928.11

200000 22305.24

220000 23294.43

Table 6-1 Game Data Size vs. Store Throughput Result

0

5000

10000

15000

20000

25000

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

22
00

00

Game Data Size (Bytes)

T
hr

ou
gh

pu
t (

K
B

 /
se

c)

Figure 6-2 Game Data Size vs. Store Throughput Result

 Initially, the game data size was 20000 bytes and the average store throughput is

about 10MB per seconds. When the game data size grows to 200000 bytes, the store

throughput becomes 20MB per second. This is because while the total store size is the

same, small game data segment will invoke more requests in HAMS and OPENAIS

kernel. Fewer requests will be more efficient. We did not try larger size than 200000

bytes, because there is a message constraint in OPENAIS. In this evaluation, we can

see the maximum store throughput when there is only one single server is about

 43

20MB per second.

6.2.2. Node Numbers vs. Store Throughput

 Generally, there may be many computers that handle one MMOG middleware

together. Obviously, we hope the game data storing should not lose its efficiency

when the node numbers grows up.

Software Configuration

 Like Figure 6-1, there is one server storing game data periodically. But the

HAMS Executive will be added into the cluster one by one. The Game data size is set

to 200000 Bytes which is evaluated to be the best performance in 6.2.1.

Result and Discussion

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5

Node Numbers

T
h
ro

u
gh

p
u
t (

K
B

 /
se

c)

Figure 6-3 Node Numbers vs. Store Throughput

 First, we can see that game data store throughput decrease from 40MB/sec to

25MB/sec when the node numbers grows from one to two. It is because while there is

 44

only one HAMS Executive Part, the game data only store into local and require no

network bandwidth. The result shows, when we add more nodes, the store throughput

remained in 20MB per second. The reason is because we use multicast technology in

OPENAIS to store our game data, add nodes will not increase the network bandwidth

overhead in HAMS.

6.2.3. Store Rate vs. Store Throughput

 The game data store rate is defined by developers. It indicates the frequency of

game data store in each server. When there is only one server, the store rate will not

affect the throughput. However, while there are several servers, the longer store rate

can lower the simultaneous game data storing. Hence, if the game data doesn’t change

frequently, you should set its store rate longer so that the other can use the network

bandwidth.

 The other point is fairness. If there are many servers store their game data

currently and share the network bandwidth, we hope that each node can get equal

chance to store their data.

Software Configuration

 There will be five servers in five different nodes. All of them store there game

data simultaneously. We set different store rate each time and measure the throughput

in every server. In each store round, we send 10MB data to checkpoint and distributed

to other servers. See Figure 6-4.

 45

Figure 6-4 Store Rate vs. Store Throughput Software Configuration

Result and Discussion

Store Rate

(ms)

Server1

throughput

Server2

throughput

Server3

throughput

Server4

throughput

Server5

throughput

500 7722.52 7718.88 7709.54 7709.45 7705.72

1000 7700.43 7717.93 7726.46 7683.91 7684.42

1500 12991.73 16423.70 13422.08 14636.68 15059.39

2000 13449.91 17954.36 18011.32 13289.34 13135.01

2500 16796.68 22565.44 20174.74 16194.18 22626.47

3000 17514.06 22691.99 22642.37 22322.41 17498.43

3500 22465.64 22783.72 22008.20 21767.43 22681.87

4000 22367.85 20284.12 20354.02 22372.28 22518.08

Table 6-2 Store Rate vs. Store Throughput (KB / sec)

 46

0

20000

40000

60000

80000

100000

120000

500 1000 1500 2000 2500 3000 3500 4000

Store Rate (ms)

T
hr

o
ug

h
pu

t
(K

B
 /
 s

ec
)

Server1

Server2

Server3

Server4

Server5

Total

Figure 6-5 Store Rate vs. Store Throughput

 First of all, we can see when the store rate was smaller than 1000 milliseconds;

the total throughput is almost the same. The network is always busy and the full

throughput is about 35MB per second. The result is different from which we

measured in 6.2.1 because single server can not fully utilize the network bandwidth.

 While the store rate becomes larger, the throughput of each server increases as

well. This is because some servers store all data before the next store rate expired.

When they are waiting for next store round, the network resource can be used in other

servers. Hence, the store throughput arises. When the store rate is larger than 3

seconds, each server’s reaches the highest throughput of 20MB in single server.

 Finally, the result shows whatever the store rate is, the game store throughput in

each server are close. So the store chance is almost the same.

6.3. Game Data Read Throughput

 When we request game data migration in recovery protocol or load sharing

 47

protocol, the destination server has to read the game data. The performance of read

operation will affect the time of these protocols.

Software Configuration

 There are five nodes, and two servers. One server store its game data into HAMS

and the other read the game data. We adjust the game data size and measure the read

throughput.

Result and Discussion

Game Data Size (Bytes) Throughput (KB / second)

20000 13396.94

40000 24119.08

60000 31094.84

80000 37140.59

100000 43841.81

120000 47270.53

140000 44945.32

160000 53482.22

180000 56565.76

200000 58135.56

220000 54208.68

Table 6-3 Game Data Size vs. Read Throughput

 48

0

10000

20000

30000

40000

50000

60000

70000

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

22
00

00

Game Data Size (Bytes)

R
ea

d
 T

h
ro

ug
h
pu

t
(K

B
 /

se
c)

Figure 6-6 Game Data Size vs. Read Throughput

 In HAMS, we replicate the game data in all other nodes for availability issue.

When a server read the game data from other server (either live or failed), it actually

read from local space. So it is much faster than store game data. However, when the

game data size is too small, the throughput is still lower than the larger game data size.

The maximum read throughput is about 50MB per second.

6.4. Failure Detection Time

 We start to evaluate the failure detection time in HAMS. Our purpose is to

measure the time from one node failed to the representative start running recovery

algorithm. The failure detection time includes two parts. First, the OPENAIS

membership finds there is a node failed. Second, the HAMS membership finds all

failed servers and delivers the fail_msg to the representative.

 49

 In section5.4.1, we showed how OPENAIS detects the node failure by token

rotation. We adjust the token_lost_timeout in OPENAIS and see the different

performance of failure detection. Remember, different token_lost_timeout actually

affects the membership of OPENAIS, but not the HAMS membership.

Software Configuration

 Five computers run HAMS. Each of them hosts one server. We let one of the

computer leave the membership and log the time. And then, we log the time after the

representative is been notified.

Result and Discussion

Token Lost Timeout (ms) Failure Detection Time (ms)

250 536.8032

500 780.9614

750 1031.193

1000 1151.134

Table 6-4 Failure Detection Time vs. Token Lost Timeout

 As the result in Table 6-4Table 6-4 Failure Detection Time vs. Token Lost

Timeout, when we set the timeout longer, it makes HAMS take more time to find out

which servers were failed. This is reasonable because the token lost may caused by

network latency or noise, so sometimes we elongate the timeout to avoid the mistrial.

However, in network with low packet lost rate, we can choose shorter timeout about

250ms and the HAMS failure detection can be done in 500ms (0.5 second). It means

each hardware failure in MMOG middleware can be aware by HAMS in a very short

time.

 50

6.5. Summary

 We have given you some HAMS performance testing result above. We will try to

map the real MMOG game content to our services.

 First, we hope to know how many avatars status can we store in HAMS per

second. An avatars’ status includes the positions, equipments, life and etc. The size

may vary between MMOG designs. However, some experience shows, the basic

information of one avatar occupy 10K to 20K memory size. According to our

evaluation, HAMS store throughput is about 38MB per second when there are

multiple nodes storing game data concurrently and with proper data size.

1900
20
102438

≅
× .

It means HAMS can store 1900 to 3800 avatars every second. If there is a MMOG

which support 10 thousands of avatars, the average timestamp in the game data

replication is 5.2
1900
10000

2
1

≅× seconds before the current game data. The result shows

if there is a game server failed, the average avatars status rollback should be 2.5

seconds.

 More over, when the failure occurs, according to the result in section6.4, it takes

HAMS 0.5 second to identify which server has been failed. Future more, the average

read throughput is about 40MB per second. Assuming the recovery algorithm is

simple and can be finished in 1 second. If there are five thousand of avatars

(100000500020 =× KB) in the failed server, the whole fail-over time is

4
102440

10000015.0 ≅
×

++ seconds.

 51

Chapter 7 Conclusion and Future Work

7.1. Conclusion

 Because the MMOG market is growing quickly recent years, the demand of

MMOG middleware also becomes stronger. A good MMOG middleware must be

stable and available and have to be flexible for most of the developers.

 The availability issues can be defined in to two phase, fail-recovery and load

sharing. Because the hardware is undependable, we must have an approach to recover

the game data while there is a server failed. Central controller may cause single point

of failure and repairing time would damage the players benefit. Because the

unpredictable movement of avatars, the server will be overloaded sometime. We have

to share the load between servers dynamically and efficiently.

 HAMS (High Availability MMOG Service) provides a high availability

environment for MMOG middleware to use and can be customized to most of the

common architectures of MMOG middleware. It is fully distributed which have no

any central controller. Developers can use HAMS to monitor the servers load and the

membership of all game servers. When there is a server overloaded or failed, HAMS

helps you to share the load to any other servers or recovery the fail game data. Even

more, HAMS if very flexible for users, which means you can monitor your own load

object and define your own algorithm to migrate game data you need.

 We have also given you some experiments of the performance testing in HAMS.

It shows HAMS have the ability to share load efficiently as well as recover failed

servers regardless how many nodes are there in the cluster.

 Even more, using HAMS in you MMOG middleware will make you utilize your

 52

hardware resource more. Also, you can use HAMS to develop a system monitor to

watching the game run time situation. We have described these in section5.7.

7.2. Future Work

 There still many functions can be improvement in HAMS.

Software failure detection

 Now, HAMS can only overcome the damage cause by hardware failure.

However, the MMOG middleware is so complicate and many components may fail in

the run time. In the future, we hope to provide an approach to monitor the software

components in HAMS and be a more available service.

Transparency design

 HAMS now open the algorithms and load object type design to developers. For

users that do not familiar with software engineering, they may have trouble to do use

HAMS easily. We would like to design some common load objects (CPU utilization,

network latency) for users or provide an easy-to-use interface for users to configure

the behavior of recovery protocol and load sharing protocol.

Testing in real MMOG middleware

 We hope HAMS can be tested in a real MMOG middleware. Because the actual

MMOG can be vary and the demand is different. Testing HAMS in a real middleware

can help us find more issues that we have not seen before.

 53

Bibliography

[1] David kkushner heavy light data centers. EVERQUEST. IEEE Spectrum July

 2005

[2] Chen-en Lu, Tsun-Yu Hsiao, Shyan-Ming Yuan. Design issues of a Flexible,

 Scalable, and Easy-to-use MMOG Middleware. Proceeding of Symposium on

 Digital Life and Internet Technologies 2004

[3] Daniel Bauer, Sean Rooney, Paolo Scotton. Network Infrastructure for Massively

 Distributed Games. Proceedings of Workshop on Network and System Support

 for Games (NETGAMES), Braunschweig, Germany, April 2002.

[4] Timo Jokiaho, Fred Herrmann, Dave Penkler, Manfred Reitenspiess, Louise

 Moser, Service Availability Forum. The Service Availability™ Forum

 Specification for High Availability Middleware. The RTC Magazine, June 2003.

[5] Manfred Reitenspiess, Louise Moser. Application interface specification by the

 Service Availability Forum. September 2004.

[6] Josh Adelso, Steven A. Roldan, Paul Kingsepp, Lazar Rozenblat, Ken Grob,

 Anthony W. Vilgiate, Carrier-Grade Requirements. Focus on Telecom 2001.

[7] Y. AMIR, L.E. MOSER, P. M. MELLIAR-SMITH, D. A. AGARWAL, P.

 CIARFELLA. The Totem Single-Ring Ordering and Membership Protocol.

 ACM Transactions on Computer Systems 13, 4 November 1995.

[8] Deborah A. Agarwal. TOTEM: A Reliable Ordered Delivery Protocol for

 Interconnected Local-Area Network. Dissertation Submitted in Partial

 Satisfication of University of California Santa Barbara.

[9] L.E. MOSER, P. M. MELLIAR-SMITH, Deborah A. Agarwal, TOTEM: A

 Fault-Tolerant Multicast Group Communication System. Communications of the

 54

 ACM April 1996

[10] D. A. AGARWAL, L. E. MOSER, P. M. MELLIAR-SMITH, and R. K.

 BUDHIA The Totem Multiple-Ring Ordering and Topology Maintenance

 Protocol. ACM Transactions on Computer Systems. May 1998.

[11] Efstratios Thomopoulos, Louise E. Moser, Peter M. Melliar-Smith. Latency

 Analysis of the Totem Single-Ring Protocol. IEEE/ACM TRANSACTIONS ON

 NETWORKING 2001.

[12] Mu-Chi Sung, Ming-Chun Cheng, Zhi Xin Fan, Ping-Jer Yeh, Shyan-Ming

 Yuan, et al. An Experimental Study toward Failure Impact on OpenAIS. To

 appear in WSEAS Transactions on Computers 2006.

[13] Ta Nguyen Binh Duong, Suiping Zhou. A dynamic load sharing algorithm for

 massively multiplayer online games. Networks 2003, The 11th IEEE International

 Conference on 28 Sept.-1 Oct. 2003.

[14] Kyungmin Lee, Dongman Lee. A scalable dynamic load distribution scheme

 for multi-server distributed virtual environment systems. Proceedings of the

 ACM symposium on Virtual reality software and technology 160 – 168, 2003.

[15] Dugki Min, Eunmi Choi, Donghoon Lee, Byungseok Park. A load balancing

 algorithm for a distributed multimedia game server architecture. Multimedia

 Computing and Systems, 1999. IEEE International Conference on, July 1999.

[16] Laurent Gautier, Christophe Diot, Jim Kurose. End-to-end transmission control

 mechanisms for multiparty interactive applications on the Internet. INFOCOM

 '99. Eighteenth Annual Joint Conference of the IEEE Computer and

 Communications Societies. Proceedings. IEEE, March 1999.

[17] Christophe Diot, Laurent Gautier. A Distributed Architecture for Multiplayer

 Interactive Applications on the Internet. Network, IEEE, Jul/Aug 1999.

[18] F＇abio Reis Cecin, Rodrigo Real, Rafael de Oliveira Jannone, Cl＇audio

 55

 Fernando Resin Geyer. FreeMMG: A Scalable and Cheat-Resistant Distribution

 Model for Internet Games. Proceedings of the Eighth IEEE International

 Symposium on Distributed Simulation and Real-Time Applications, 2004.

[19] Eric Cronin Burton Filstrup Anthony Kurc. A Distributed Multiplayer Game

 Server System. UM EECS589 Course Project Report, 2001.

[20] Stefano Ferretti. Interactivity Maintenance for Event Synchronization in

 Massive Multiplayer Online Games. Technical Report BLCS-2005-05 March

 2005.

[21] Stefano Ferretti, Claudio E. Palazzi, Marco Roccetti, Giovanni Pau, Mario Gerla.

 FILA, a Holistic Approach to Massive Online Gaming, Algorithm Comparison

 and Performance Analysis. ACM Journal of Computer in Entertainment, ACM

 Press, to appear, selected as Best Paper Award at the ACM GDTW'05

 Conference, November 2005.

[22] Lun-Wu Yeh, Shyan-Ming Yuan. A Research of Persistence Component on

 MMOG Middleware.

[23] BigWorld Technology. http://www.bigworldtech.com/index/index_en.php

[24] Application Interface Specification, SAI-AIS-B.01.01, November 2004. Service

 Availability Forum http://www.saforum.org.

[25] OPENAIS Standard-Based Cluster Framework.

 http://developer.osdl.org/dev/openais/

[26] JAVA Technology. http://java.sun.com/

