-~

YRR S A

i

- <

L
—
2

AL P R BT s L2 BlAe
FV ek [B] 4 ﬁrfgu/}%\‘ #ﬁl\ B A R A

-.!T' :.
L2

Power Reduction in Instffxcfioﬁ F étch Using Forward-Branch
and Subroutine Bufferable Innermost Loop Buffer with

Assistance of BTB

B oA PG BT Fs L R B4R dhie Bl HFE R

by & R R4

Power Reduction in Instruction Fetch Using Forward-Branch and
Subroutine Bufferable Innermost Loop Buffer with Assistance of BTB

Boyo4 e g E Student : Bin-Hua Tein
hERR IR Advisor : Chung-Ping Chung

ER =9

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
July 2006

Hsinchu, Taiwan, Republic of China

PR R4 LT A

B 153 3 EURT BRIV 5 i 3 W R
SEESRR R | DA 4 VRS

B FREIFHE SR S

B SR

k!

VDB SRR AR VR ST 5 @@“ﬁfﬁ@ﬁéé@o&%“#%
R A REVASEVRE (R EREASYRAR B 5T« ST
L@.%W SRRV TR BV SR - R ORI A

P A O S (PR OB 5 P ORI R S e
o T I | P % WL@?@%%?@%% %p’dﬁﬁwﬁy
AR *%ﬂwiﬂmﬁﬁPﬁﬁi@Pmmqn¢%|bﬂfﬁ
BB LT B ﬁépé”?;ijf¢ﬁ[.bﬁﬁakﬁ&angaL
i (0 SRR & A 534 IS ppspi ot 7 b
SURTRAGESRE T o 2 PR WS R AR U
73 R PR AR R ¢ NEDSY S FIORER TSR o R
FI G T+ OIS~ R 5 53 RS P A
T g RS B W53 L A~ EHR AR AR - R
A FI > s Rt B [ST I3 R sl - Sl
R IO e S SRR T B PR e PR -)
MiBench P06 H 2] - ﬂﬁw?ﬁﬂPﬂﬂK#wWﬁ 153 W RPHA
PEFREER RV D 13.66%[1945 4 R V- TR

Power Reduction in Instruction Fetch Using
Forward-Branch and Subroutine Bufferable

Innermost Loop Buffer with Assistance of BTB

Student : Bin-Hua Tein Adpvisor : Chung-Ping Chung
Dept. of Computer Science

National Chiao Tung University

ABSTRACT

Reducing power of embedded processors is becoming increasingly important
for mobile applications. Much of the dynamic power of a typical embedded
processor is consumed by instruction fetching. Recently, addition one tiny memory
between CPU core and instruction cache had been proposed. Using the temporal
locality of instructions, most of 1nstruct10ﬁ',s can be fetched from this tiny memory to

replace from instruction cache. Loops have temporal locality, so that many of loop

buffer design had been proposed. Nevertheless on design complexity dictates most
loop buffer designs to store only iNneHmost loops without forward branch or
instructions within innermost loops before a forward branch. While program
modeling shows that typical programs can best be represented with a simple loop
model, many of them contain forward branches and subroutines in their innermost
loops. Hence, existing designs lead to limitation in reduction of instruction fetch
power. We propose a simple and effective way to cope with this complexity: since
using BTB is a norm in most designs, if we add an extra bit in BTB, indicating if the
loop buffer stores the fall-through or target trace after a within-the-innermost-loop
forward branch, then much of the complexity can be avoided. The subroutine
including no loop is also handled by using similar way. Results with MiBench
indicate that up to 18% of further reduction in instruction fetch power compared

with the design without forward branch and subroutine handling.

il

b

F[j @%ﬁ&ﬂ J?FHE;L:EZ T _—J-'jfﬂ:&f’ﬁ ’ lj]yjﬂ JEQIEEIJY} E{'anF[’E;LEH%}J)F’fI

o RIS R o IR RGBTSR PO - FRT=5 ~
TR O PSMRVER » fiDHAgRR = RO -

BRI 2 AR A5 LR RS jojo MR - A
GNP S SRR SR ~ ORI 17 SRS B
PSR~ Fy v~ L EREVELD - A y L% %Lﬁ'bﬁl]ﬁﬁ o

BRI A AT IR 2 2 T RS
ﬂﬂ?’]l?}ﬁﬂ o TS ,ilﬁj_?ap nE R AR VEF] =55 @‘}éﬁijxg e TAUZEIAEL

g

g %Jﬁﬂﬁ%}{%ﬁ%ﬁp BTG - B

e £ %ﬁ’gﬁﬂﬁfjgﬂ

[,Fﬁ ° ,,__‘I b N ,.r" __, .___.- !""
=2 x_lf?f—k .-'_,;;
k- W |
g’h’.‘l\j‘] A,;Q’
M

FIE#E 2006.8

iii

Contents

ABSTRACT ...ttt ettt st ettt e e e ne e st e s e esee st enaeeneenseenne e il
B ettt b et b st te s nseseerenee il
L0031 115 111 SO OP PSP v
LSt O FIGUIES ..evieeeiieceeeeee et ettt e et e et e e eraeeensaeesssaeesnseeenns vi
LSt OF TADIE ... viil
Chapter 1 INtrodUCHIONceeviiiiiiieciieccee et tee e e e seaeeeeaeeeneeas 1
1.1 Instruction Fetch Power Reduction Techniques...........cccccveeeiiieniieenieecieens 1
1.2 The Problems of Loop Buffer to Store Branch(es)cccceevevieeriieeniieenieens 4
1.3 Motivations and ODJECHIVESccccueieriieeiiieeiiee et eeeeeeieeeereeesaee e e eeaeeenes 5
1.4 Organization Of This TReSIScccvuiieiiieeiiie et 7
Chapter 2 Background and Related Work..........c.ccooouiieiiiiiiiiiciieeee e 8
2.1 Categorization of Execution Time of Programccccoeevveeviieeniieeeiieenn. 8
2.2 Related Research and Technologyccocvveeiiieiiiieiiieecee e 9
2.2.1 Dynamic Loop Cacheccccuvieiiiiiiiiiieeiieeiee et 9
2.2.2 Hardware-Based Two—Way Loop Buffer .. 11
2.2.3 Pre-load Loop Cache......i'.ﬂ.) 2
2.2.4 Cluster Loop Cache.."..._.i._. ' -
Chapter 3 Design of the Forward- Bram:h and Sybroutlne Bufferable Innermost
Loop Buffer.......ccoooveeeieiiiieiieceet BE112 « 1 13RO 14
3.1 Features of Our APProach..........ccceiieiiieiiiieciie et 14
3.2 Architecture and Design Issues of Our Approach.........ccccceeevvveevieeenieeennnn. 15
3.2.1 Innermost Loop Detectioncccccveeeciiieniieeiiieeciie e 16
3.2.2 Filling or Refilling an Innermost Loop Into Loop Buffer................... 17
3.2.3 Determining that CPU Core Should Fetch Intrusions From Loop
BUffer o1 TLT ..o e 19
3.2.4 Handling Incorrect Instruction Filling and Fetching due to Branch
IMISPTEAICTION ...veeeiieeiie ettt ettt e et e et eesaae e e saeeeereeennseeenaeeenns 20
3.2.5 No-loop-inside Subroutine Handling.............ccccceeeveiiieniiieniieeeee, 21
R I @075 ¢ 15) o USSR 22
Chapter 4 Simulation and Evaluationccccceveeiiieiiieeiiieceecee e 27
4.1 POWET MOMEL ... e 27
4.2 Simulation EnvIronmentcoceeiiiiiiiniiiiieieeeeee e 28
4.2.1 SIMUIALOT ...ttt 28
4.2.2 Benchmark Programs..........ccccuveeviieeiiieeiieeeiiee s eeveeesvee e 29
4.3. Simulation Results of Loop Buffer Policiesccccoevvievciiieiciieeiieeeeee, 32

v

4.3.1 Loop Buffer Policies in Each loop Buffer state...........cccccceevvveennnnn. 32

4.3.2 Simulation Results of Loop Buffer Policiesccccceevviiiiiiieninnns 35
4.3.2.1 Simulation Results of the Loop Buffer Policies in IDLE State35
4.3.2.2 Simulation Results of the Loop Buffer Policies in FILL State 38
4.3.2.3 Simulation Results of the Loop Buffer Policies in ACTIVE

STALE....e ettt e 42
4.3.2.4 Simulation Results of the Best Loop Buffer Policies 45
4.4 The Penalty of Miss-prediction in Loop Buffer Policies.........c..cccvveenneennen. 49
4.5 The Reasons of Affecting the Loop Buffer Efficiencyccccccvvevvveennennnen. 51
4.5.1 The Nature of Benchmark.............cccoiiiiiiiiiiicee 51
4.5.1.1 The Benchmark Has Less Execution Time in Innermost Loops52
4.5.1.2 The Execution Paths are changed frequently.............ccccc...... 54
4.5.1.3 The Benchmark Has a Few of Loop Iteration......................... 56
4.5.1.4 The Size of Innermost Loops is too large or too small than
LOOP BUTTCT ..o 58
4.5.2 The Architecture of ProCessor.cocveviiiiiiiiiiiiieiieeiesieeee e 63
4.5.3 The Optimal of Compiler..........ccccuereiiiieiiiieiieeie e 64
4.6. Simulation Results and Evaluatlon .ﬂq ... 65
4.6.1 Strategies of Loop Bﬁffer El{lanﬁagement as Comparisoncc..c..... 65
4.6.2 Simulation Results of leferent Loop buffer Designsccccccevueeneen. 66
Chapter 5 Conclusions and Future. Work :;;-i" ... 73
Reference .. 75
YN 0] 157 116 1 USRS PSR PSSR 78
A-1 Profiling of Innermost LOOPeeeeviieiiiieiieeeeceeee e 78

List of Figures

Figure 1.1: (a) Organization of CPU core, IL1, and filter cache;(b) Organization of

CPU core, IL1, and 100p bUffer........cocoeiiiiiiiiiiieeeeee e 4
Figure 1.2: A code segment without branch..............cccceeevieiiiiiiiniiiiiieeee, 4
Figure 1.3: A code segment with a branch.............ccooceiiiiiiiniiiiiiie, 5
Figure 2.1: Profile the execution time of MiBenchccccoocvieiiiiiiiiiiiiicie, 9
Figure 2.2: the management of Dynamic Loop Cachecccccoeeiiiiiniiiinninenne. 10
Figure 2.3: the management of Hardware-Based Two-Way Loop Buffer................ 12
Figure 2.4: the management of Pre-load Loop Cachecccooeviiniiniininninnnnne. 13
Figure 3.1: Architecture of our approachccccueevieriieiieeiieiieee e 15
Figure 3.2: An innermost loop consists of SUDTOUtINEccccueevieriieiieniieiienie, 22
Figure 3.3: Memory accessing in dlfferent states P 23
A=
Figure 3.4: State diagram of loop buffer controller B et 26

Figure 4.1: Access ratio of IL1 of dlfferent loop buffer policies sets (IDLE state).. 36

Figure 4.2: Access ratio of loop buffer of dlfferent loop buffer policies sets (IDLE

Figure 4.3: Reduction in instruction fetch power of different loop buffer policies sets
(IDLE STALE) .eeuvveeeieieeiiieeeiieeeiiee et e ettt e e e et e et e e sateeeebaeesseeennseesnnaeeensneesnsaeennseeas 38
Figure 4.4: Access ratio of IL1 of different loop buffer policies sets (FILL state)... 40

Figure 4.5: Access ratio of loop buffer of different loop buffer policies sets (FILL

Figure 4.6: Reduction in instruction fetch power of different loop buffer policies sets

(FILL STAE) veeeevieeirieeeiiie ettt e ettt e et e et e e et e e st e e e aaaeessaaeeeaseeesseeensseesnsseesnsseeensaeennseeas 41

Figure 4.7: Access ratio of IL1 of different loop buffer policies sets (ACTIVE state)

vi

Figure 4.8: Access ratio of loop buffer of different loop buffer policies sets
(ACTIVE StALE) ...eeeueieiiieiieeiie ettt ettt ettt e ettt et e sbe e et e e teeeabeebeesnseeneeas 44

Figure 4.9: Reduction in instruction fetch power of different loop buffer policies sets

(ACTIVE StALE) ...eeeueieiiieiieeiie ettt ettt ettt e ettt et e sbe e et e e teeeabeebeesnseeneeas 45
Figure 4.10: Access ratio of IL1 of different loop buffer policies sets...................... 47
Figure 4.11: Access ratio of loop buffer of different loop buffer policies sets 48

Figure 4.12: Reduction in instruction fetch power of different loop buffer policies

Figure 4.13: The penalty of miss-prediction of innermost loop detection................ 51
Figure 4.14: The ratio of different sizes (instructions) of innermost loop— tiff2bw 59

Figure 4.15: The ratio of different sizes (instructions) of innermost loop—susan-c 60

Figure 4.16: Access ratio of IL1 in difﬁgge’tit'-benghmarks .. 61
Figure 4.17: Access ratio of loop bﬁf_fer ii&'.?a:i:i_féfe:ﬁﬁlbenchmarks 61
Figure 4.18: Reduction in instructié—a_..i;_l fe:tc’hp@werm different benchmarks 62

Figure 4.19: The percentage of innermost 1(;6pé- with different sizes of innermost

L0 DS ettt et ettt e bt e et eteeenbe e bt e enbeenteas 63
Figure 4.20: Access ratio of IL1 of different designsccccvevieviiienienciienieenns 67
Figure 4.21: Access ratio of loop buffer of different designsccoeeeeviiiienncns 68
Figure 4.22: Loop buffer ACTIVE 1atio.......cccoieiiieiiiiiieiieeieereeeee e 70
Figure 4.23: Reduction in instruction fetch power of different designs 72

vii

List of Table

Table 4.1: RO OF PLB.....oocoo 28
Table 4.2: Parameters setting in SimpleScalar/ARM............coceviiiiniiininiiniencnnne 29
Table 4.3: MiBench workloadsc.ccoeviiiriiiiiiiiiinececcceeee 30
Table 4.4: Policies of loop buffer in each state of loop buffer.............cccoccenieinn 34
Table 4.6: Ratio of P of different loop buffer policy sets (IDLE state)................. 35

Table 4.6: Power of loop buffer controller of different loop buffer policy sets (IDLE

] 11 OSSPSR 37
Table 4.7: Loop buffer policies sets (FILL State)........ccccveevueerieriiienienieenieeieeieee 38
Table 4.8: Ratio of P of different loop buffer policy sets (FILL state).................. 41
Table 4.9: loop buffer policies sets (ACTIVE state)........ccecevveverienieneeiicneeniennene 42
Table 4.10: Ratio of Py of different l{")'E')'[..).b.!u&é:'r"pc_)licy sets (ACTIVE state) 44
& EHALTO\ &
Table 4.11: Loop buffer policies se:'ié Ilf .. 48
Table 4.12: Ratio of P¢y of differer.l-ﬂ‘i-f.lp-g:')_j;bﬁ:f-‘%é‘r_Ist-;licy SELS et 48
Table 4.13: Loop buffer policies sets...... .. 50
Table 4.14: The relation between innermost loop ratio to ACTIVE ratio................. 53
Table 4.15: The relation between execution path ratio to the increase ratio............. 54
Table 4.16: the relation between execution path ratio to the increase ratio.............. 57
Table 4.17: The best policies set Of FSLBc.cccooiiiiiiiiiiiniiiiccceceeee 66
Table 4.18: Ratio 0f PLp and Petrl ... 70

viii

Chapter 1
Introduction

Power consumption has become an increasingly greater concern in digital
system designs, especially for battery powered devices. Much of the dynamic power
of a typical embedded processor is consumed by instruction fetching, for example,
30-50%. Since instruction fetching happens on almost every cycle, involves
switching of large number of high capacitance wires, and may involve access to a
power hungry set-associative cache.

Loop buffering is an effective technique to reduce energy consumption in the
instruction memory hierarchy. In any typical embedded application, significant
amount of execution time is spent i_.l_’].,:_-S'I'l’lall program segments. Hence, by storing

them in a small loop buffer or an L0 blrllff'e,r inéi:@ad of the big instruction cache,

energy can be reduced.
In this thesis, we propose a xl.é.bp Bufféring mechanism which can store
innermost loop with forward branch(es) or subroutine call(s) inside this innermost
loop in loop buffer, so that the instruction fetch power can be reduced.
In this chapter, we will first instruction fetch power reduction techniques in
section 1.1. In section 1.2, we describe the problems of loop buffer to store forward
branch(es) and subroutine(s). The motivations and objectives are proposed in section

1.3. The organization of this thesis is described in section 1.4.

1.1 Instruction Fetch Power Reduction Techniques

Current embedded systems for multimedia applications like mobile and

hand-held devices are typically battery operated. Therefore, low energy is one of the

key design goals of such systems. Power analysis of such processors indicate that a
significant amount of power is consumed in the instruction caches during instruction
fetch [1], [2] . For example in the TMS320C6000, a VLIW processor from Texas
Instruments, up to 30% of the total processor energy is consumed in the instruction
caches alone [1]. Since instruction fetching happens on almost every cycle, involves
switching of large number of high capacitance wires, and may involve access to a
power hungry set-associative cache.

Thus, several approaches have been proposed to reduce instruction fetch power.
Some have focused on encoding the address and data bus signals to reduce bus
switching [3-5]. Others have focused on compressing [6-7] or buffering instructions
[8], also to reduce bus switching. Some researches have looked at reducing the
power of the cache itself by deactiya_ting'. several ways of a set-associative cache
when deactivation does not heavil'}:__f'impie.lrc.!i_ti'_lljérf(:)f{nance [9-10], or accessing items
using multiple phases [11], thus tréti_@qgié%fb?ffoy_ﬁiance for reduced power.

Another class of approaches adaé.'dn dmiéﬁally small instruction cache called
instruction level zero cache as the first level of memory (level 0) in the instruction
memory hierarchy, perhaps 16 to 128 word (typically 64 to 512 byte), between CPU
core and instruction level one cache. The extremely low power per access for an
instruction level zero cache is achieved because of very short wires inside the cache.
Another reason for very low power per access to an instruction level zero cache
comes from the fact that an instruction level zero cache can be integrated very close
to or even inside a microprocessor, resulting in shorter and hence lower power bus
lines. Two approaches of instruction level zero cache in recent years, one is called
filter cache which is a cache-like architecture; the other is called loop buffer which
1s a simple instructions buffer without tag.

[12] proposes an instruction level zero cache design called a filter cache. A

2

filter cache is a tiny direct-mapped cache introduced as the first level of memory
(Ievel 0) in the instruction memory hierarchy as shown in figure 1.1 (a).

[12] shows that a 256 byte filter cache has a hit rate between 60-85% on
MediaBench benchmarks. Using a 32 KB direct-mapped cache for the L1 cache, the
filter cache could reduce instruction access power by over 50%, but at the expense
of about 20% performance overhead. The energy*delay product related to memory
accesses was reduced by about 50%. To reduce the performance overhead, [13]
proposed using a profile-aware compiler to map frequent loops to a special address
region recognized by the processor as loadable into the filter cache, resulting in less
performance overhead along with improved energy savings.

In many researches [14-17], loop buffer has been proposed to reduce
instruction fetch power. A loop buffer isa memory located between CPU core and
L1 instruction cache, called IL1 h;ereafter as shown in figure 1.1 (b). CPU core
fetches instructions from either ILl 01‘ lpo_ﬁlffer Due to its limited, a loop buffer
can provide instructions to CPU core at a Very low power level. And the best pieces
of code to be placed in a loop buffer will be innermost loops, since their executions
tend to repeat many times. As an evidence, MiBench spends 71.22% of execution

time on innermost loops.

IL1 IL1

- 3

Filter Loop
cache buffer
—
h 4 b 4
CPU core CPU core
(a) filter cache (b) loop buffer

Figure 1.1: (a) Organization of CPU core, IL1, and filter cache;

(b) Organization of CPU core, IL1, and loop buffer

1.2 The Problems of Loop'Btiffer to Store Branch(es)
¥ EHTN
The loop buffer is a simple ins_trlt_léfion buffer without tag, so that the

management of loop buffer is dlfferentfromcache In general, loop buffer need an
address generator to determinate whetl;er tll-l.e fetched instruction is in loop buffer
and calculate where the fetched instruction address is in loop buffer.

Since the instructions fetch are usual in sequent order, we can place these
sequent instructions into loop buffer in the same order, so that address generator of
loop buffer can be implement by a counter to avoid area and delay overhead. An
example for a sequent fetch code segment (i.e. a code segment without branch) is in
figure 1.2.

On the other hand, the addresses of instruction fetch are not sequent between a
branch and the next instruction after this branch, so that the address generator of
loop buffer using a counter can not determinate whether this instruction after a

branch has been stored in loop buffer at run time. An example for a code segment

with a branch is in figure 1.3.

Since the address generator of loop buffer can not handle the code segment

with a branch, the utilization of loop buffer is limited.

Instruction Address of next instructions | Address in loop buffer
Non-branch PC+4 next (+1)
Non-branch PC+4 next (+1)
Non-branch PC+4 next (+1)
Non-branch PC+4 next (+1)

Figure 1.2: A code segment without branch

Instruction Address of next instructions | Address in loop buffer

Non-branch P(JJ—JIr4f next (+1)
Branch IPé$ next (+1)
Unknown PC+-4./ tall-l."get Unknown

Unknown Unknown Unknown

Figure 1.3: A code segment with a branch

1.3 Motivations and Objectives

To maximize the power advantage, a loop buffer should store innermost loops

with forward branch(es) and subroutine(s). For example, MiBench spends 38.32%

of execution time on innermost loops with forward branch(es) and subroutine(s)

without backward branch. It is over half of total execution time on innermost loop.

However, to avoid design complexity, most loop buffer designs are capable of

storing only innermost loops without forward branch [14, 15] or instructions within

innermost loops before a forward branch [15]. Since many applications consist of
forward branch(es) in their innermost loops, utilization of loop buffer and reduction
in instruction fetch power in [14, 15] is limited.

To increase utilization of loop buffer, [16, 17] propose a loop buffer consisting
of an additional address generator to store any kinds of code segment. Before
fetching instruction from loop buffer, address generator must generate an address
and use this address to determine whether this instruction has been stored in loop
buffer and if it is, where it is located.

Consequently, this address generator leads to a significant increase in power
and fetch latency. In addition, most designs [14, 16, and 17] require compiler help to
insert special instruction(s) in program to start filling instructions into loop buffer
[14, 17] or to determine which code_._sggr'n'ents- should be stored in loop buffer [16].
Recompilation and code compatibil:_ify 1ssﬁ'es hence arise.

To increase utilization of loopbulffe'r_wﬁhout introducing much overhead, we
use BTB to assist loop buffer in ‘s;;c.br'ing" the innermost loops with following
characteristics:

(1) they can contain forward branch(es) and

(2) they can call any number of subroutines as long as these subroutines have
no loop inside.

In our design, an extra bit is added in branch target buffer (BTB) to record
forward branch outcome. This bit indicates whether the loop buffer stores the
fall-through or target trace after a forward branch. The subroutine including no loop
is also handled by using similar way. Notice also that different form previous
designs [14, 16, and 17], our approach does not need special branch instruction or
compiler to assist loop buffer controller in innermost loop detection.

Results with MiBench indicate that our design can further reduce 18.00% and

6

14.61% instruction fetch power compared with only capable of innermost loop

without forward branch and [15], respectively.

1.4 Organization of This Thesis

The remaining parts of this thesis are organized as follows. In Chapter 2, we
examine some related the previous work. In Chapter 3, we present our proposed
loop buffer design. In Chapter 4, we show the simulation results and discussion.

Finally, in Chapter 5, we give the conclusions of this work.

Chapter 2
Background and Related Work

In Section 2.1 we divide the execution time of program into four categories that
have different nature of execution flows. In Section 2.2, we survey the related

researched in improving the loop buffer.

2.1 Categorization of Execution Time of Program

We divide the execution time of program into five categories which have
different nature of execution flow:
Type A is innermost loop without forward branch and without subroutine. The

addresses of instruction in Type A4 arfe'seq']dien’g':_f_rc;m the first instruction of innermost
= i i "]

7)

loop to the last instruction of inné_rmqst_-.rlé'(.)_p-ar.ld;‘ihe execution flow in this type is

exclusive.

Type B is innermost loop with forward branch(es) but without subroutine. The
addresses of instruction in 7ype B may not be sequent because of forward branch
taken so that the execution flow in this type could not be exclusive, and the
addresses of instruction in execution flow are within from the first instruction of
innermost loop to the last instruction of innermost loop.

Type C is innermost loop with subroutine(s) consisting of no loop and it may
contain forward branch(es) or not. If we inline the subroutine(s) in Type C, Tipe C
will convert to 7ype A or Type B. Since an innermost loop with subroutine(s)
consisting of loop(s) can not be called an innermost loop, we classify it into Type D.
others. Unlike 7ype B, the addresses of instruction in subroutine(s) will beyond from

the first instruction of innermost loop to the last instruction of innermost loop.

Type D is the outer loop of a nested loop.

Type E is others witch we consider that the execution flow is not in any loop.

As an evidence, MiBench spends 71% of execution time on innermost loops
which include Type A, Type B and Type C, and 79.85% of execution time on loops.
MiBench is a benchmark suite for embedded processor. The profiling results of each
category are shown in brackets at the right of figure 2.1. More detail profiling results

of each benchmark are shown in Appendix A-1.

w/o forward branch |—-| w/o fb | (32.90%)

(71.22%) w/o subroutine
Innermost w/ forward branch I—-l w/ fb |(26.56%)

loop

w/ subroutine ‘I w/ sr |(11.76%)
— | o | ®s6%)
Ed= 50\
. 1 'i N |(20_15%)
G L -'-'-./ i

(79.85%)

others

others

Figure 2.1: Profile the execution time of MiBench

2.2 Related Research and Technology

In this section, we study the research and technology related to our thesis
including dynamic loop cache, hardware-based two-way loop buffer, pre-load loop

cache, and cluster loop cache.

2.2.1 Dynamic Loop Cache
[14] is capable of storing only innermost loops without forward branch. To

indicate where a backward branch exists, [14] uses a special branch instruction

“sbb”. If a “sbb” is detected and taken, loop buffer controller starts to fill
instructions into loop buffer. Only if a “sbb” is detected and taken twice successively,
CPU core starts to fetch instructions from loop buffer until this “sbb” is detected but
not taken, meaning the loop is being exited. To reduce design complexity, [14] uses
a counter to generate loop buffer addresses, called loop buffer program counter

(LPC). The management of Dynamic Loop Cache is shown in figure 2.2.

LPC: +1

Loop buffer

sbb Loop =HIAI\\ %

Figure 2.2: the management of Dynamic Loop Cache

If the entire loop does not fit in the loop cache, then the cache will be filled
completely with the first part of the loop, so that CPU core fetch instructions will
switch between loop buffer and IL1. [14] also explored a “warm-fill” version of the
dynamic loop buffer that continually filled the loop buffer on every instruction fetch
so that at any given time, the last N instructions were available in the loop buffer,
where N is the loop buffer size. However, [14] showed that this design yielded little
benefit—the power savings of being able to switch to loop buffer fetching
immediately after detecting a “sbb” do not outweigh the power overhead for keeping

the loop buftfer filled.

10

Because filling of [14] is nonintrusive (i.e., no microprocessor stall occurs), a
control of flow change (cof) which will cause the next instruction address is not the
current address plus one, but the loop buffer may not get filled with the entire loop.
Thus, in [14], a cof (other than the triggering sbb) encountered within a small loop
would immediately terminate the loop cache filling or fetching. In other words, only
loops without any cof were supported so that utilization of loop buffer and the

reduction in instruction power are limited.

2.2.2 Hardware-Based Two-Way Loop Buffer

Instead of using a special branch instruction “sbb” in [14], [15] deploys a
special register to record the address of backward branch. Once a backward branch
is detected and taken twice successrvely, Jloop buffer controller starts to fill
instructions into loop buffer. After successh.zely ﬁlhng, CPU core begins to fetch
instructions from loop buffer. We also use ﬂﬁ?method to detect an innermost loop in
this paper. Unlike [14], [15] can also.store' 1ns-truct10ns within an innermost loop
from first instruction of loop until a forward branch or a subroutine call. This is
because instruction addresses from first instruction of loop until a forward branch or
subroutine call are sequentially (i.e., there is no cof from first instruction of loop
until a forward branch or subroutine call). To reduce design complexity, [15] also
uses a counter to generate LPC so that [15] encounters the same limitation with [14].

The management of Hardware-Based Two-Way Loop Buffer is shown in figure 2.3.

11

LPC: +1

Loop buffer

T

bne Loop

Figure 2.3: the management of Hardware-Based Two-Way Loop Buffer

2.2.3 Pre-load Loop Cache
[16] is capable of storing many kinds of code segment in which instruction
addresses must be sequential. In [_16]";'. Wthh ¢ode segment can be stored in loop

AR Y
buffer are analyzed statically. After th_e_C_PU boeting, several code segments and

their start address (start_addr) and endaddress (_éﬁd_addr) are filled into loop buffer
and special registers, called loop addre-ss reéisters (LARs), respectively. CPU core
then continuously compares each instruction address with LARs to determine
whether start and terminate to fetch instructions from loop buffer. This leads to
inflexible usage of loop buffer. Since code segments stored in loop buffer may
consist of forward branch, [16] uses an address generator to cope with
non-sequential instruction fetch. Before fetching one instruction from loop buffer,
loop buffer controller must wait for LPC calculated by address generator and use
LPC to determine whether this instruction has been stored in loop buffer and where
this instruction is. Consequently, this address generator leads to a great increase on
instruction fetch latency and hardware cost. The management of Pre-load Loop

Cache is shown in figure 2.4.

12

Address start_addr pc=start_addr &&

generator pc=end_addr

Loop cache array

start_addr —

P

h Read_enable

pc -
end_addr bne /

Figure 2.4: the management of Pre-load Loop Cache

2.2.4 Cluster Loop Cache

& e,
1' T

A

To dynamically fill code segmentSI mtd loop buffer, [17] uses a special
instruction “lbon n”, where n is Humber_f_fnstructlon should be filled into loop
buffer, to indicate where start to fill 1nstruct10né into loop buffer. [17] also uses the
same method to calculate LPC so that [17] encounters the same difficulties with [16].
The management of Cluster Loop Cache is similar to Pre-load Loop Cache which is
already shown in figure 2.4.

Except for [15], all designs [14, 16, and 17] use compiler to assist in loop
detection. This causes that program(s) must be recompiled in order to execute on a

CPU containing one of these designs.

13

Chapter 3
Design of the Forward-Branch and

Subroutine Bufferable Innermost Loop
Buffer

In this chapter, we present the approach of our buffering mechanism which can
store innermost loop with forward branch(es) and subroutine(s). In Section 3.1, we
describe the features of our approach. In Section 3.2, we present the architecture and
design issues of our approach in detail. In Section 3.3, we propose a possible design

for our approach.

3.1 Features of Our Approarlch

In order to avoid the increase-ﬂi'h‘t-ﬁé hardware design complexity, and can store
innermost loop with forward branch an(-l no—l-l.oop—inside subroutine, we add an extra
bit in BTB to indicates whether the loop buffer stores the fall-through or target trace
after a forward branch. No-loop-inside subroutine is also handled by the similar way.
Here, we list several features of our approach as follows:

1. Loop buffer is a tagless memory unit.

2. Only one innermost storable.

3. Each entry in loop buffer only stores one instruction.

4. Instruction sequence in loop buffer is same with instruction trace, i.e. loop

buffer only stores one execution path of innermost loop. This is because
we does not employ extra address generator in our design, instructions

must be fetched from loop buffer in sequence order.

14

5. Dynamically filling and refilling instructions according to runtime branch

behaviors.

3.2 Architecture and Design Issues of Our Approach

In our approach, only one innermost loop can be stored in loop buffer. Since we
does not employ extra address generator in our design, instructions must be fetched
from loop buffer in sequence order such that only one execution path in innermost
loop can be stored. To achieve these objects, we propose a design approach of loop

buffer, as illustrated in figure 3.1. The main components consist of loop buffer, loop

buffer controller and FD-bit (filled direction bit) in BTB.

CPU Core

Instructiop

Hae, 3
address;

BTB «—»

Lodf) Buffer
Controller

Control signal Loop buffer index

enable enable
Loop
4’
IL1 Buffer
\
e Instruction LInstructionﬂ
Mux
Instruction

Figure 3.1: Architecture of our approach

15

Instruction

Loop buffer controller is responsible for:

(1) innermost loop detection;

(2) filling or refilling an innermost loop into loop buffer;

(3) determining that CPU core should fetch intrusions from loop buffer or IL1;

(4) handling incorrect instruction filling and fetching due to branch
miss-prediction; and

(5) subroutine handling.

These five design issues will be introduced in detail later. FD-bit records the
branch perdition result during filling or refilling instructions into loop buffer. It
assist loop buffer controller in determining whether the loop buffer stores the

fall-through or target trace after a forward branch.

3.2.1 Innermost Loop DetéCtidF_li_ :':'-_.:

The objectives of innermost loop dlcfe?ﬁ(Tn e}l_'g as follow:

(1) Detecting an innermost 1001;).. .2'1s,' eei'r'lyy -as possible to increase loop buffer
utilization; and

(2) Reducing the miss-detection rate such that energy overhead caused by
miss-detection is low.
However, both objectives conflict each other. We therefore propose two innermost
loop detection policies which are aimed at different objectives in this thesis. First,
called FILL-1, if a backward branch is taken once, we identify that an innermost
loop is detected. Second, called FILL-2, an innermost loop is detected only if a same
backward branch is taken twice successively.

Since FILL-1 is more aggressive than FILL-2, it can increase loop buffer
utilization. But FILL-1 has higher miss-detection rate such that it may cause higher

power consumption. The power simulation of both policies will be shown in later

16

chapter.

We also can use a special instruction as “sbb” proposed in [1] to indicate that
the execution flow is in an innermost loop at run time, but it need compiler to
support.

During detecting an innermost loop, loop buffer controller also determines
whether this innermost loop exists in loop buffer or not. If yes, the following
instruction sequence has been stored in loop buffer, CPU core can immediately fetch
instruction from loop buffer. If no, the current detected innermost loop is not same
with one in loop buffer, and the following instruction sequence should be filled into
loop buffer right now.

To determine whether this innermost loop exists in loop buffer or not, we add
an extra register, called L addr, to r_gc__o‘r'd. the, start or end address of an innermost
loop been stored in loop buffer. lf thé'.!i_i_)fp}g.r'grzﬁ-_.lcounter value is the same with
L addr, it indicates that the fOllOV\:}'i-i_’_lg. '.iixfé:f-l.':u_effor_i_sf:sequence has been stored in loop
buffer. Otherwise, loop buffer contréi.l'ef sfi'oiﬂd start to fill following instruction
sequence into loop buffer.

Advantage of using start address is detecting existed innermost loop in one loop
iteration in advance. Using end address has the advantage of fetching instructions
from first one in innermost loop. However, using start address would cause that CPU
core must start to fetch instructions from second one due to the delay of comparing

L _addr with start address of an innermost loop. An innermost loop is detected until

CPU core fetches the last instruction of one, if using end address.

3.2.2 Filling or Refilling an Innermost Loop Into Loop Buffer
Since only one execution path can be stored into loop buffer in our approach,

we must determine which execution path should be stored into loop buffer.

17

Intuitively, the most frequently executed path should be stored. However, detecting
the most frequently executed path would take a period of time such that loop buffer
utilization is reduced. Therefore, the objective of filling or refilling an innermost
loop into loop buffer has two:

(1) filling or refilling instructions as early as possible; and

(2) trying to fill or refill the most frequently executed path.

These are very similar with innermost loop detection.

To meet different objectives, we propose several filling or refilling policies.
Loop buffer controller starts to fill instructions if first, partial or all forward
branch(es) in innermost loop are predicted as strongly or weakly taken(non-taken),
after detecting a innermost loop.

Refilling is executed when the exe'c'uti'(m-path in innermost loop had changed.
Similar to filling strategy, reﬁllmg 18 s{arted only if first, partial or all forward
branch(es) in innermost loop change ltS o_fh_elr predlctlon result from strongly or
weakly taken/non-taken to non-taken/taken. ol

During filling or refilling, the branch prediction result of each forward branch
stored in loop buffer and the start or end address of innermost loop are recorded into
FD-bit and L _addr respectively. After filling or refilling, loop buffer controller must
count how many instructions are stored in loop buffer and record this result in an
extra register, called L_leng.

During fetching instructions from loop buffer, loop buffer controller uses a
counter to count how many instructions have been fetched. Once the counter counts
down to zero, CPU core will fetch instructions from IL1 instead of loop buffer and
loop buffer controller must start to detect innermost loop again.

In this paper, we employ the most aggressive policy for both filling and

refilling, i.e. loop buffer controller starts to fill or refill instructions without

18

considering each forward branch’s state (strongly or weakly taken/non-taken). In
other word, loop buffer controller only follows instruction fetching sequence to fill
or refill instructions. This is because that only 0.67% of branch prediction results in
an innermost loop changes from weakly taken/non-taken to weakly non-taken/taken,
i.e. the execution path in an innermost loop changes infrequently. Using the most
aggressive policy can lead to higher loop buffer utilization such that more

instruction fetch power is reduced.

3.2.3 Determining that CPU Core Should Fetch Intrusions
From Loop Buffer or IL1

There are four situations that CPU core should fetch instructions from IL1 as

follows:

1. No innermost loop is deté:__c'ted.i'.!?.i. /

2. Loop buffer controller hasdetlcc'mn i_}r_iﬁermost loop, but not successfully
fills or refills instructions in‘té). lbop'bﬁ.éfer.

3. Loop buffer is full due to a BIG loop which its size is larger than loop
buffer’s capacity.

4. The execution path has changed, but instructions located on new execution
path do not be stored in loop buffer. We call this situation as loop buffer
miss.

First and second situation can be determined according to the current status of loop
buffer controller. The current status means current action of loop buffer controller,
such as innermost loop detection, filling or refilling instructions ... etc. Comparing
L leng with the size of loop buffer, third situation can be solved. Fourth situation
can be determined according to the comparing result of FD-bit with branch

prediction result. This is because FD-bit can indicate that the loop buffer stores the

19

fall-through or target trace after a forward branch.

3.2.4 Handling Incorrect Instruction Filling and Fetching due
to Branch Misprediction

The reason why we need to handle branch misprediction during fetching or
filling instructions is that branch misprediction means the execution path has
changed and instructions followed a mispredicted branch do not exist in loop buffer.

The simplest method which copes with forward branch misprediction during
filling instructions into loop buffer is flushing all instructions which have been filled
into loop buffer. However, since instruction sequence before a mispredicted forward
branch is same, this method is an inadvisable one. We therefore propose second
method that loop buffer controller Just coutits,back M entries from current position
and then refills instructions located:_:ét. an(')_‘ﬂ'he;rcontrol path. M is number of pipeline
stages between instruction fetch (IF) anld'emnon stage (EXE). Since an innermost
loop has been successfully filled intcy i'obp 'blit:fer before a mispredicted backward
branch, loop buffer controller just lets CPU core fetch instructions from IL1 without
flushing instructions in loop buffer.

In another situation, i.e. during fetching instructions from loop buffer, a
forward or backward branch misprediction indicates that the execution path has
changed. Loop buffer controller therefore should let CPU core fetch instructions
from IL1.

An exception happened when a new BTB entry created caused by
misprediction and replaced the prediction result and FD-bit of branch in BTB entry
during Loop detecting, which this branch is stored in loop buffer. Loss of the FD-bit
record will make the loop buffer controller fail to determine CPU core should fetch

instruction from loop buffer or IL1. If this situation occurred, we should flush loop

20

buffer.

Recognizing the FD-bit of branch which is stored in loop buffer at present of
innermost loop or in the pass of innermost loop can not implement straightforward,
because the FD-bit of branch which is stored in loop buffer in the pass of innermost
loop would not be clean. To avoid the design complexity of detecting and handling
this exception, we propose a simple approach. When a new BTB entry created
caused by misprediction during loop detecting, L addr will be clean so that loop
buffer controller can not detect this innermost loop which already filled in loop
buffer. Our simulation of MiBench is shown that this approach has decreased the
utilization of loop buffer only 0.03% compared by the case of exception has never

happened.

3.2.5 No-loop-inside Subﬁbutiﬁréi'_ll-;iéh:t:gling

Subroutine call and subroutin:"e..:_lzrgtﬁ_fﬁ.-;:mTﬂbg _z{iltomatically handled by BTB and
return stack, respectively. To store noliSdp-iﬁsic.l-e subroutine in loop buffer, we only
need to handle two situations:

(1) CPU core has no return stack; and

(2) return stack is full.

In fact, case 1 and 2 is same due to a full return stack means CPU core can not store
any return address into return stack, i.e. return stack is useless at this moment.
Therefore, we only need to handle one of situations.

The basic idea of handling subroutine return is to fill but disregard these invalid
instructions followed with subroutine return. Since a subroutine return is an
always-taken branch, CPU core without return stack always fetches G invalid
instructions. According to when the subroutine return is detected by CPU core, G

has two different values:

21

(1) G is number of pipeline stages between IF and EXE; and

(2) G is number of pipeline stages between IF and instruction decoder (ID).
However, these invalid instructions would be automatically flushed by CPU core
and do not affect the correctness of program. If we store G invalid instructions into
loop buffer, the instruction fetch sequence is held.

We use the figure 3.2 to explain this idea. Here, a five pipeline stages CPU core
without return stack is assumed in this example. When Sub_A returns to Loop A,
the instruction fetch sequence is o (subroutine return), p, q, r, and s in which p and q
are invalid instructions. If we also follow the same instruction fetch sequence, i.e. o,

p, g, r and s, to fill instructions into loop buffer, the fetch sequence is held.

Loop_A: RIS
- _ A Sub_A:
Callsub A ~ ot -

re - «—F 1 0: return

Litl p: -
beq Loop_A Q-

Figure 3.2: An innermost loop consists of subroutine

3.3 Operation

In this section, we propose a possible design for our approach and describe it as
follows. The operation status of our design which is similar with [1] consists of three
states: IDLE, FILL and ACTIVE. In the figure 3.3, the gray rectangle and the solid

black line are currently accessing block and bus respectively during different states.

22

IL1 IL1 L1

buffer buffer buffer

h 4 h 4

CPU core CPU core CPU core

Figure 3.3: Memory accessing in different states

The state diagram of the loop buffer controller’s finite state machine (FSM) is
shown in the figure 3.4. When CPU core initializes or resets, loop buffer controller
enters IDLE state first. During IDLE state, loop buffer controller continuously

detects an innermost loop, as action " A_etixo'g'l:_-_Cq'i-s taken if and only if an innermost
= | i "]

7)

loop has been detected and this 1nnem1(M00p has been stored in loop buffer.
Otherwise, loop buffer controller vs.l-;dlll-.l';i.ent_e_r: Fi-LL state, as action B. When BTB
entry created caused by misprediction, L._addr will be clean.

There are two possible policies for detecting the innermost loop by a backward
branch taken once or twice, respectively, denoted “FILL-1" and “FILL-2”; and two
possible policies for detecting the innermost loop which has been stored in loop
buffer are recording the start or end address of this innermost loop, denoted
“START” and “END”. The policies “FILL-1" and “START” are more aggressive
than “FILL-2” and “END”, respectively. The best choice of those policies in our
simulation is “FILL-1” and “END”. We will show the simulation result at next
chapter.

During FILL state, instructions are sequentially filled into loop buffer from first

entry, as action D. In the meanwhile, the branch predicted result of each forward

23

branch stored in loop buffer and the start or end address of innermost loop are also
recorded into FD-bit and L addr respectively. After successfully filling all
instructions, loop buffer controller counts how many instructions are stored in loop
buffer and record this result in L leng and enters ACTIVE state, as action E. Loop
buffer is full caused by a BIG loop would let loop buffer controller return to IDLE
state, as action F. Action G would gives up this fill iteration and returns IDLE state
when a forward branch miss-prediction occurs.

There two possible policies for handling miss-prediction of a forward branch.
First policy is giving up this fill iteration and returns IDLE state, denoted “GOTO
IDLE”. Second policy is counting back M entries of loop buffer and continuing
filled instructions, denoted “CONT FILL”. “CONT FILL” is more aggressive than
“GOTO FILL”. The best choice of tl}__Q__Sf:‘ policies is “GOTO IDLE” (i.e. Action G).
We will show the simulation result_'%ﬁ nextr'chapter

During ACTIVE state, CPU Gorelfﬂfm inusa'uctions from loop buffer instead
of IL1, as action H. When loop buffe£ ..r.fli'ss,"Cl‘).ﬁ core fetches instructions from IL1
and return to FILL state as action I. When CPU core has already fetched last
instruction of loop buffer (action K) or loop buffer controller encounters a branch
miss-prediction (action J), loop buffer controller would enter IDLE state. First
situation occurs when loop buffer encounters a BIG loop. Since loop buffer dose not
store a whole BIG loop, loop buffer controller must enter IDLE state to let CPU core
fetch other instructions of BIG loop from IL1 after the last instruction in loop bufter
has fetched. The second situation, a branch miss-prediction occurs, indicates that the
execution path has changed and loop buffer does not store instructions on this
execution path. Hence, loop buffer controller must also enter IDLE state.

There are two possible policies for handling loop buffer miss. First policy is

entering FILL state to store another execution path immediately, denoted “aFILL”.

24

Second policy is entering FILL state when the branch prediction result is in strong
state (i.e. strong taken or strong not taken), denoted “pFILL”. “pFILL” can avoid the
invalid loop buffer writing caused by prediction result changing frequently. “aFILL”
is more aggressive than “pFILL”. The best choice for handling loop buffer miss is
“aFILL” (i.e. Action I).

There are three possible policies for handling miss-prediction of a forward
branch. First policy is giving up this fill iteration and returns IDLE state, denoted
“alDLE”. Second policy is counting back M entries of loop buffer and continuing
filled instructions, denoted “aFILL”. “aFILL” may cause more loop buffer miss,
because not all miss-prediction will cause the branch prediction result changed
prediction direction. Third policy is counting back M entries of loop buffer and
continuing filled instructions when thQ-bI"'a'Ii'Ch prediction result is in weak state (i.e.
weak taken or weak not taken),rdenoged h“pFILL” “pFILL” can improve the
disadvantage of “aFILL”, because the bra_h‘ predlctlon result changed prediction
direction when the branch predlctlon resul’t is in weak state and miss-prediction

happened. The best choice of those policies is “pFILL” (i.e. Action J). We will show

the simulation result at next chapter.

25

A. Detecting loop

C. Existing loop is detected

F. Loop buffer full
G. Miss-prediction

J. Miss-prediction/
K. Break by BIG loop

I. Loop buffer refill
(Loop buffer miss)

ACTIVE

26

B. New loop is detected

D. Loop buffer fill/

Chapter 4
Simulation and Evaluation

In Chapter 3, we proposed the mechanism and architecture of our buffering
mechanism which can store innermost loop with forward branch(es) and
subroutine(s). In this chapter, we present the simulation result and evaluation of our
design. In Section 4.1, we present the power model of instruction fetch power. In
Section 4.2, we describe the simulation environment and the benchmark programs
that we used in the simulation. In section 4.3, we present the simulation results for
finding the best choice of loop buffer policies in each state of loop buffer. In section
4.4, we present the penalty caused by miss-prediction of loop buffer policies. In
section 4.5, we analyses the reasons ofaffectmg the loop buffer efficiency. In section

HAL%S
=0

4.6, we present the simulation result for q-ofﬁpariﬂg other loop buffer managements

a3
b oy

and our analyses on them. s >

4.1. Power Model

The instruction fetch power (Pyr) per fetch dissipated by the loop buffer and
lower level instruction memories can be expressed by equation (1):

Pir=Pic * Ric+ PL * Rip+ Pey (1)
where Pic and Prp are fetch power of lower level instruction memories and loop
buffer respectively, Rjc and Ry are access ratio of lower level instruction memory
and loop buffer, respectively. In this paper, Ric (Rip) is defined as the ratio of
number of instruction fetch from of lower level instruction memory (loop buffer) to

total number of instruction fetch, as expressed by equation (2):

Ric(Rip) = number of instruciton fetch from lower level memory (loop buffer) 100% (2)

total number of instruction fetch

27

Since Pjc is not affected by operation strategy and size of loop buffer, we assume Pc
as a constant in this paper. Comparatively, Prp, Ric and Ryp highly depend on the
size of loop buffer. Py is the power consumed by loop buffer controller. Since loop
buffer controller is always active, we assume that each instruction fetch would

consume P

The loop buffer controller of each design is synthesized using Synopsys design
tools in 0.18 pm TSMC CMOS technology. The power consumptions of loop buffer
and IL1 are calculated by Wattch power modeling tool. The ratios of Py and P are
shown in table 4.1. The power consumption of FD-bit is 0.13% of power

consumption of Pic

&, 3

Size of loop buffer 64B 128B | 256B | 512B 1KB 2KB

(PLp/ Pic) * 100% 8.26% | 8.92% |10.35% | 13.56% | 21.40% | 38.34%

4.2 Simulation Environment

In Section 4.2.1, we describe the simulation tools that we used. In Section 4.2.2,

we describe the benchmark programs that we used in the simulation.

4.2.1 Simulator

We use SimpleScalar/ARM simulator [18] to evaluate each design.
SimpleScalar is an execution-driven simulator and used to simulate modern
processor architectures.

The power evaluation of loop buffer, BTB and IL1 is based mainly on the

28

Wattch [20] power modeling tool. The loop buffer controller of each method is
synthesized using Synopsys design tools.

In this thesis, we experimented with the different sizes of loop buffer, included
64, 128, 256, 512, 1024 and 2048 bytes (B). Other parameters used in SimpleScalar

are shown in the table 4.2.

Table 4.2: Parameters setting in SimpleScalar/ARM

Parameter Value
Loop buffer 64B, 128B, 256B, 512B, 1KB and 2KB
IL1 8KB, direct-mapped, 32B line
Branch predictor Bimodal
BTB 512-set, 4-way iy,
¥ EEAQ ¥
Return stack No return stagks _" 7o &

4.2.2 Benchmark Programs’:‘""'*"'

The benchmark programs that we use are from MiBench suite [19]. These
benchmarks are divided into six suites with each suite targeting a specific area of the
embedded market. The six categories are Automotive and Industrial Control,
Consumer Devices, Office Automation, Networking, Security, and
Telecommunications. All the programs are available as standard C source code so
that it focuses on portable applications written in high-level languages as processor
architecture and software developers are moving in this direction. Where appropriate,
there provide a small and large data set. The small date set represents a light-weight,
useful embedded application of benchmark, while the large data set provides a more
stressful, real-world application. We use the large data set in this thesis. All the

programs of Mibench are publicly available and widely used on general purpose

29

processors. Table 4.3 gives the description of the benchmark programs that we used.

Table 4.3: MiBench workloads

Benchmark name

Description

Automotive and Industrial Control

bitcount

Testing the bit manipulation abilities of a processor by

counting the number of bits in an array of integers.

qsort

Sorting a large array of strings into ascending order using the

well known quick sort algorithm.

susan (edges)

susan (corners)

susan (smoothing)

Susan is an image recognition package. It was developed for
recognizing corners and edges in Magnetic Resonance
Images of th_e'-;b'r'ai-n" 4nd it can smooth an image and has

adjustments for threshold, brightness, and spatial control.

Consumer Devices

jpeg encode

JPEG is a standa-rd, 1(-).ssy compression image format and it is

jpeg decode commonly used to view images embedded in documents.
Tiff2bw converts a color TIFF image to black and white
tiff2bw
image.
Tiff2rgba converts a color image in the TIFF format into a
tiff2rgba
RGB color formatted TIFF image.
Tiffdither dithers a black and white TIFF bitmap to reduces
tiffdither
the resolution and size of the image at the expense of clarity.
Tiffmedian converts an image to a reduced color palette by
tiffmedia
taking several medians of the current color palette.
lame A GPL’ed MP3 encoder that supports constant, average and

30

variable bit-rate encoding.

mad A high-quality MPEG audio decoder.
Typeset is a general typesetting tool, that has a front-end
typeset
processor for HTML.
Office Automation
Ghostscript is a postscript language interpreter without its
ghostscript
graphical interface.
This benchmark searches for given words in phrases using a
stringsearch
case insensitive comparison algorithm.
Ispell is a fast spelling checker that is similar to the Unix
ispell
spell, but faster.
Rsynth is a text "t'o"s'}')"e"'ec_h synthesis program that integrates
rsynth BT o\
several piecesiof plib-lic domain code into a single program.
Networking
Calculating the shortest path between every pair of nodes
dijkstra
using repeated applications of Dijkstra’s algorithm.
Patricia tries are used to represent routing tables in network
patricia
applications.
Security
blowfish encrypt
A symmetric block cipher with a variable length key.
blowfish decrypt
SHA is the secure hash algorithm that produces a 160-bit
message digest for a given input. It is often used in the
sha

secure exchange of cryptographic keys and for generating

digital signatures.

31

rijndael encrypt

Rijndael was selected as the National Institute of Standards
and Technologies Advanced Encryption Standard (AES). It

is a block cipher with the option of 128-, 192-, and 256-bit

rijndael decrypt
keys and blocks.
Telecommunications
FFT A Fast Fourier Transform and its inverse transform on an
IFFT array of data.
The Global Standard for Mobile (GSM) communications is
GSM encode
the standard for voice encoding/decoding in Europe and
GSM decode many countries.
ADPCM encode The encoder and decoder of Adaptive Differential Pulse
ADPCM decode | Code Modulagign™4
CRC32

P H-l3
A 32-bit Cyelie Re%iundanc’-y Check (CRC) on a file

4.3. Simulation Results of Loop Buffer Policies

In the following sections, we will show our simulations and the analysis for

finding the best choice of the loop buffer policies in each state. In section 4.3.1, we

describe loop buffer policies in each state briefly. In section 4.3.2, we present the

access ratio of loop buffer and lower level memory and instruction fetch power

reduction for these loop buffer policies.

4.3.1 Loop Buffer Policies in Each loop Buffer state

There are three states of loop buffer, IDLE state, FILL state, ACTIVE state.

In IDLE state, we handle the loop buffer detection. To detect the innermost

loop, we propose two policies “FILL-1" and “FILL-2”. “FILL-1" and “FILL-2" are

32

detecting innermost loop when a backward branch taken once or twice successive,
respectively. “FILL-1" is more aggressive than “FILL-2”. The hardware cost of
“FILL-1" is less than “FILL-2”, because “FILL-2” needs more one register to record
the backward branch then “FILL-1".

To detect the innermost loop which has been stored in loop buffer, we propose
two policies “START” and “END”. “START” and “END” are detecting the
innermost loop which has been stored in loop buffer by recording the start or end
address of this innermost loop, respectively. “START” is more aggressive than
“END”. The hardware cost of “END” is less then “START”, because “END” can use
BTB to assist record the end address of this innermost loop.

In FILL state, we handle the execution path changed caused by branch
miss-prediction. To handle miss—pred_.i_gti'on, Wwe propose two policies “GOTO IDLE”
and “CONT FILL”. “GOTO IDLE" andr‘{CC)NTFILL are entering IDLE state or
filling the changed execution pathlntollbmuffer, respectively. “CONT FILL” is
more aggressive than “GOTO IDLE’;... The h'afc.l-ware cost of “GOTO IDLE” is less
than “CONT FILL” because “CONT FILL” needs extra logic (for example, another
counter) to count back the index in loop buffer to the next entry of this
miss-prediction branch.

In ACTIVE state, we handle the execution path changed caused by loop buffer
miss (i.e. branch prediction direction is not equal to FD-bit) or branch
miss-prediction. To handle loop buffer miss, we propose two policies “aFILL” and
“pFILL”. “aFILL” and “pFILL” are filling the changed execution path immediately
or when the branch prediction result is in strong state, respectively. “aFILL” is more
aggressive than “pFILL”. The hardware cost of “aFILL” is less then “pFILL”,
because “pFILL” needs extra logic to determinate whether the prediction result is in

strong state or not.

33

To handle the branch miss-prediction, we propose three policies “alDLE”,
“aFILL”, “pFILL”. “aIDLE” is entering IDLE state without any changing. “aFILL”
and “pFILL” are filling the changed execution path immediately or when the branch
prediction result is in weak state, respectively. “aFILL” is more aggressive than
“pFILL” and “alDLE”, but “aFILL” may cause more loop buffer miss because not
all branch miss-prediction would cause prediction direction changed. The hardware
cost of “alDLE” is less than “aFILL” and “pFLLL”, because “aFILL” or “pFILL”
needs extra logic (for example, another counter) to count back the location in loop
buffer to the next entry of this miss-prediction branch.

We summarize the policies of loop buffer in each state of loop buffer to table

4.4. There are 48 cases of loop buffer policies set totally.

o

Table 4.4: Policies dﬁloopghffef“lneach state of loop buffer

State of Loop buffer Handling event Policy
FILL-1
Detecting the innermost loop
FILL-2
IDLE state
Detection the innermost loop stored in START
loop buffer END
GOTO IDLE
FILL state Branch miss-prediction
CONT FILL
aFILL
Loop buffer miss
pFILL
ACTIVE state alDLE
Branch miss-prediction aFILL
pFILL

34

4.3.2 Simulation Results of Loop Buffer Policies

To find the best choice of loop buffer policies set, we divide the simulation into
two parts. First, we simulate each loop buffer policies in the same state of loop
buffer and analysis them to find the local optimal. Second, we simulate loop buffer

policies set to find the best choice of loop buffer policies set.

4.3.2.1 Simulation Results of the Loop Buffer Policies in IDLE State

In IDLE state, we compare four loop buffer policies set list in table 4.5.

Table 4.5: Loop buffer policies sets (IDLE state)

IDLE state FILL state ACTIVE state
Detection the
Detecting the | innermost loop Branch Loop buffer Branch
innermost loop | stored in loop | miss-prediction miss miss-prediction
buffer
END
FILL-1
START
GOTO IDLE aFILL alDLE
END
FILL-2
START

Figure 4.1 shown Ry for different loop buffer policy sets in different loop
buffer size. We examined the size of loop buffer from 64 to 2048 bytes, i.e. 16 to
512 instructions. Simulation results show that “FILL-1” and “SATRT” averagely

further decrease Rjc by 2.20% and 0.41%, respective (“FILL-2” and “END”).

35

Ideally, the Rjc of (“FILL-17, “START”) will decrease 8.33% than (“FILL-2”,
“END”), because that average number of innermost loop iterations are 12.41. The
effects of the aggressive policies (i.e. “FILL-1" or “START”) are limited, because of
the nature of MiBench. If one benchmark has much execution time on innermost
loop, these innermost loops also have a lot of loop iterations; on the other hand, if
one benchmark has less execution time on innermost loop, these innermost loops
have few loop iterations.

Figure 4.2 shown Ry for different loop buffer policies sets in different loop
buffer size. Simulation results show that “FILL-1" and “SATRT” averagely further
increase Rip by 10.32% and 0.39%, respective (“FILL-2” and “END”). Rip of
“FILL-1" is more than “FILL-2” because of the invalid loop buffer filled caused of
miss-detection of innermost loop.

F = ESpY
. 5 =
~ A iy]

——FILL-1,END —=—FILL-1, START ——FILL-2 END FILL-2 , START

80%
70%

60% I ~
50% - \\

40% I -
30% I
20%
10%

0%

Access ratio

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.1: Access ratio of IL1 of different loop buffer policies sets (IDLE

state)

36

——FILL-1,END —=—FILL-1, START ——FILL-2 END FILL-2 , START

80%
70%
60%
50%
40%
30% -
20%
10%

0%

Access ratio

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.2: Access ratio of loop buffer of different loop buffer policies sets

(IDLBstate)

Table 4.6 is the power consu}vgz}ptiéii:of-.:Ebop_;.i)uffer controller of different loop

buffer policy sets.

Table 4.6: Ratio of P of different loop buffer policy sets (IDLE state)

64B 128B 256B 512B 1KB 2KB

FILL1,end | 1.91% 1.95% 2.00% | 2.08% 2.25% 2.34%
FILLI, start | 2.75% 2.83% 2.90% | 2.97% 3.14% 3.23%
FILL2 ,end | 2.57% 2.62% 2.65% | 2.74% 2.90% 2.98%
FILL2 , start | 3.41% 3.49% 3.55% 3.63% 3.79% 3.87%

The reduction in instruction fetch power of different loop buffer policy sets is
shown in the figure 4.3. For each loop buffer policies sets, 256B or 512B has the
maximum power reduction. According to figure 4.1 and 4.2, increasing loop buffer

size can improve Rjc and Ry p but also increases Py g. Hence, larger loop buffer may

37

be not beneficial for Pir. The best loop buffer policies set of these four set is (FILL-1,

END) because of the minimum power consumption of loop buffer controller.

‘l FILL-1, END ®mFILL-1, START BFILL-2 .[END BFILL-2, START

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Power reduction

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.3: Reduction in 1nstmct1011;§°e' R (different loop buffer policies sets

?ﬁiﬁ%‘[e)

4.3.2.2 Simulation Results of the Loop Buffer Policies in FILL State

In FILL state, we compare two loop buffer policies set list in table 4.7.

Table 4.7: Loop buffer policies sets (FILL state)

IDLE state FILL state ACTIVE state
Detection the
Detecting the Branch Loop buffer Branch
innermost loop
innermost loop miss-prediction miss miss-prediction
stored in loop

38

bufter

GOTO IDLE
FILL-2 END aFILL alDLE
CONT FILL

Figure 4.4 shown Rjc for different loop buffer policy sets in different loop
buffer size. Simulation results show that “CONT FILL” averagely further decrease
Ric by 0.05% (“GOTO IDLE”).

The effect of the aggressive policy—“CONT FILL” are limited, because of the
execution time in FILL state is limited, just about 4.37% averagely, and the
execution path changed ratio in FILL state which has been defined as expressed by
equation (3) is 18.79%.

the number of loop iteration“which has execution path changed

execution path ratio = £100% (3)

tQ‘tEﬂ number of loop iteration
= : |] ""-'\.
I'

Figure 4.5 shown Ryp for deferent loop buffer policies sets in different loop

buffer size. Simulation results show that “CONT FILL” averagely further increase

Ry by 1.66% (“GOTO IDLE”).

39

Access ratio

—— GOTO IDLE —=— CONT FILL

80%
70% -
60% r
50% r
40%
30%
20% -
10% -

0%

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.4: Access ratio of IL1 of different loop buffer policies sets (FILL state)

o s

Access ratio

\ —+—GOTO IDLE —=— CONTFILL \

70%
60% |- /QA
50%

40% -

30% r

20%

10% r

0%
64 128 256 512 1024 2048
Size of loop buffer

Figure 4.5: Access ratio of loop buffer of different loop buffer policies sets

(FILL state)

Table 4.8 is the power consumption of loop buffer controller of different loop

40

buffer policy sets. To implement “CONT FILL”, we need add one counter to
indicate the index of the next entry of the miss-prediction branch in loop buffer, and

this counter will increase about 60% of power consumption of loop buffer controller.

Table 4.8: Ratio of P of different loop buffer policy sets (FILL state)

64B 128B 256B 512B IKB 2KB
GOTO IDLE 2.57%| 2.62% 2.65%| 2.74%| 2.90%| 2.98%
CONT FILL 3.76% 3.92%| 4.10%| 4.28%| 4.40%| 4.56%

The reduction in instruction fetch power of different loop buffer policy sets is
shown in the figure 4.6. The best loop buffer policies set of these two set is “GOTO
IDLE”, because that in “CONT FILL”, the fetch power reduction of IL1 is less than

the increasing of power consumptlon @fiéop B@ﬁfer controller.

‘ B GOTO IDLE mCONTFILL

1

512 1024 2048
Size of loop buffer

45% r
40% r

35% I

25%
20%
15%
10%
5%
0%

Power reduction

30%
Figure 4.6: Reduction in instruction fetch power of different loop buffer policies sets

(FILL state)

41

4.3.2.3 Simulation Results of the Loop Buffer Policies in ACTIVE State

In ACTIVE state, we compare six loop buffer policies set list in table 4.9.

Table 4.9: loop buffer policies sets (ACTIVE state)

IDLE state FILL state ACTIVE state
Detection the

Detecting the | innermost loop Branch Loop buffer Branch

innermost loop | stored in loop | miss-prediction miss miss-prediction
buffer

alDLE

aFILL aFILL

3 > 4 pFILL

FILL-2 END =GOTOIDLE /4

k. , 1896 F o aIDLE

pFILL aFILL

pFILL

Figure 4.7 shown Ry for different loop buffer policy sets in different loop
buffer size. Simulation results show that the loop buffer miss handling
policy—“aFILL” averagely further decrease Ric by 0.12% (“pFILL”), and the
branch miss-prediction handling policy—"“pFILL” averagely further decrease Rjc by
0.13% / 0.45% (“alDLE” / “aFILL”).

The effects of the aggressive policies are limited; because of the execution path
changed ratio in ACTIVE state is 1.90%. And it implies that the execution path

changed seldom in ACTIVE state.

42

Figure 4.8 shown Ry for different loop buffer policies sets in different loop
buffer size. Simulation results show that the loop buffer miss handling
policy—"“aFILL” averagely further increase Rig by 0.04% (“pFILL”), and the
branch miss-prediction handling policy—“alDLE” averagely further decrease Ric by
0.79% / 0.14% (“aFILL” / “pFILL”).

The results of Ryc and Ryp in branch miss-prediction handling policies show
that “aFILL” will cause more invalid loop buffer filled but not decrease R;c, and the
best policy is “pFILL” which has least Ric and limited increases Ry g.

The best policy of loop buffer miss handling is “aFILL” shown in the results,

too.
—e—aFILL, aIDLE —s—aFILL, aFILL ——aFILL, pFILL
—m—pFILL, aIDLE pFILL, aFILL —e—pFILL , pFILL
80%
70% =
60% - o
2 50% - T~
g e
2 40% r
3
o 30%
<
20%
10% +
0%
64 128 256 512 1024 2048
Size of loop buffer

Figure 4.7: Access ratio of IL1 of different loop buffer policies sets (ACTIVE

state)

43

——aFILL, aDLE —s—aFILL, aFILL ——aFILL, pFILL
—m—pFILL, alDLE pFILL, aFILL —e—pFILL , pFILL
70%
K g— 8
60 /o l/i/’.
(o) L
° 50% ./
S 40% - /‘
(7))
Q 30% L
O (0]
<
20%
10% r
0%
64 128 256 512 1024 2048
Size of loop buffer

Figure 4.8: Access ratio of loop buffer of different loop buffer policies sets

(ACTIVEstate)

Table 4.10 is the power consﬂé&pﬁt@i’ﬁi'O.T-n-I'b()_ﬁ.i:buffer controller of different loop
buffer policy sets. Like the policy—“éON-T FILL” in FILL state, we need add one
counter to indicate the index of the next entry of the miss-prediction branch in loop

buffer.

Table 4.10: Ratio of P,y of different loop buffer policy sets (ACTIVE state)

64B 128B 256B 512B 1KB 2KB
aFILL, aIDLE 2.57% 2.62% 2.65% 2.74% 2.90% 2.98%
aFILL, aFILL 3.71% 3.87% 4.05% 4.23% 4.35% 4.51%
aFILL, pFILL 3.78% 3.94% 4.12% 4.30% 4.42% 4.58%
pFILL, aIDLE 2.67% 2.72% 2.75% 2.84% 3.00% 3.08%
pFILL, aFILL 3.81% 3.97% 4.15% 4.33% 4.45% 4.61%
pFILL , pFILL 3.88% 4.04% 4.22% 4.40% 4.52% 4.68%

The reduction in instruction fetch power of different loop buffer policy sets is

44

shown in the figure 4.9. The best loop buffer policies set of these two sets is (aFILL,
alDLE), because that in the branch miss-prediction handling policy—*“aFILL” and
“pFILL”, the fetch power reduction of IL1 is less than the increasing of power

consumption of loop buffer controller, like the policy—“CONT FILL” in FILL state.

W aFILL, alDLE maFILL, aFILL BaFILL, pFILL ®pFILL, aDLE
EpFILL, aFILL ® pFILL , pFILL

450/0
40%
350/0
30%
250/0
20%
15%
10%

50/0

O(yo

Power reduction

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.9: Reduction in instruction fetch power of different loop buffer policies sets

(ACTIVE state)

4.3.2.4 Simulation Results of the Best Loop Buffer Policies

Now we have the best policy in each state of loop buffer. In IDLE state, the
best policy is “(FILL-1, END)”; in FILL state, the best policy is “GOTO IDLE”; in
ACTIVE state, the best policy is “(aFILL, aIDLE)”. The results show that the best
policy in each state of loop buffer is the policy which has least power consumption
of loop buffer controller, because that the power reduction of IL1 is less then the

increase of power consumption of loop buffer controller in an aggressive policy like

45

“CONT FILL” in each state of loop buffer.

Since the power consumption of loop buffer controller is the most affecting of

instruction fetch power reduction using loop buffer, we find that the hardware of

branch miss-prediction handling in FILL state and ACTIVE state is the same, and it

can be reused. So we propose another more aggressive loop buffer policy sets which

handles branch miss-prediction in FILL state and ACTIVE state using “CONT

FILL” and “pFILL”, respectively. The loop buffer policies sets have listed in table

4.11.
Table 4.11: Loop buffer policies sets
IDLE state FILL state ACTIVE state
Detection the
Detecting the | innermost loop Branch Loop buffer Branch
innermost loop | stored in loop | miss-prediction miss miss-prediction
buffer
END
FILL-1
START
GOTO IDLE alDLE
END
FILL-2
START
aFILL
END
FILL-1
START
CONT FILL pFILL
END
FILL-2
START

Figure 4.10 shown Rjc for different loop buffer policy sets in different loop

46

buffer size. Simulation results show that the aggressive policy averagely further
decrease Rjc by 0.04%, 0.06%, 0.09%, 0.14% (“(FILL-1, END)”, “(FILL-1,
START)”, “(FILL-2, END)”, “(FILL-2, START)”), total averagely further decrease
Ric by 0.08%. The effects of the aggressive policies are also limited, two.

Figure 4.11 shown Ry for different loop buffer policies sets in different loop
buffer size. Simulation results show that the aggressive policy averagely further
increase Rig by 4.82%, 4.83%, 1.71%, 1.70% (“(FILL-1, END)”, “(FILL-I,
START)”, “(FILL-2, END)”, “(FILL-2, START)”), total averagely further decrease

RIC by 3.27%.

—— (FILL-1, END), (GOTO IDLE), (aFILL, alDLE) =~ —=— (FILL-1, START), (GOTO IDLE), (aFILL, alDLE)
(FILL-2, END), (GOTO IDLE), (aFILL, alDLE) ~ —— (FILL 2, START), (GOTO IDLE), (aFILL, alDLE)
—%— (FILL-1, END), (CONT FILL), (aFILL, pFILL) ~ —e— (FILL-1, START), (CONT FILL), (aFILL, pFILL)
—+— (FILL-2, END), (CONT FILL), (aFILL, pFILL) ~ —=— (FILL-2, START), (CONT FILL), (aFILL, pFILL)
80%
70%
60% |
]
< 50%
@ 40%
& 2o
8 30% r
<
20%
10% r
0%
64 128 256 512 1024 2048
Size of loop buffer

Figure 4.10: Access ratio of IL1 of different loop buffer policies sets

47

—e— (FILL-1, END), (GOTO IDLE), (aFILL, alDLE) ~ —m— (FILL-1, START), (GOTO IDLE), (aFILL, alDLE)

(FILL-2, END), (GOTO IDLE), (aFILL, alDLE) ~ —¢— (FILL 2, START), (GOTO IDLE), (aFILL, alDLE)
—%— (FILL-1, END), (CONT FILL), (aFILL, pFILL) ~ —e— (FILL-1, START), (CONT FILL), (aFILL, pFILL)
—+— (FILL-2, END), (CONT FILL), (aFILL, pFILL) ~ —=— (FILL-2, START), (CONT FILL), (aFILL, pFILL)

),
),

90%
80% r
70% -
60% -
50% -
40% -
30% -
20%
10%

0%

Access ratio

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.11: Access ratio of loop buffer of different loop buffer policies sets

o

The hardware of branch mlss-predwt%ﬁhéindhng in FILL state can be reused in

ACTIVE state, so that can saving the ﬁil)ﬁsferfcéns_iﬂlnption of loop buffer controller.

Table 4.12: Ratio of Py of different loop buffer policy sets

64 128 256 512 1024 2048

(FILL-1, END), (GOTO IDLE), (aFILL, IDLE) 1.91%] 1.95%| 2.00%| 2.08%| 2.25%| 2.34%

(FILL-1, START), (GOTO IDLE), @FILL, IDLE) | 2 75%]| 2.83%]| 2.90%| 2.97%| 3.14%| 3.23%
(FILL-2, END), (GOTO IDLE), (aFILL, IDLE) 2.57%| 2.62%| 2.65%| 2.74%| 2.90%| 2.98%
(FILL-2, START), (GOTO IDLE), FILL, IDLE) | 3. 41%/| 3.49%]| 3.55%| 3.63%| 3.79%| 3.87%

(FILL-1, END), (CONT FILL), (aFILL, pFILL) 3.05%| 3.20%| 3.40%| 3.58%| 3.70%| 3.87%

(FILL-1, START), (CONT FILL), (aFILL, pFILL) | 3 .89%| 4.07%| 4.30%| 4.47%| 4.59%| 4.76%

(FILL-2, END), (CONT FILL), (aFILL, pFILL) 3.71%| 3.87%| 4.05%| 4.23%| 4.35%| 4.51%

(FILL-2, START), (CONTFILL), GFILL.pFILL) | 4.55%| 4.74%| 4.95%| 5.12%| 5.24%| 5.41%

The reduction in instruction fetch power of different loop buffer policy sets is

shown in the figure 4.12. The best loop buffer policies set of these eight sets is

48

“(FILL-1, END), (CONT FILL), (aFILL, alDLE)”, and the power consumption of
loop buffer controller of this best policies set is the smallest in all loop buffer

policies sets.

FILL-1, END
FILL-2, END
FILL-1, END
FILL-2, END

GOTO IDLE), (aFILL, alDLE)
GOTO IDLE), (aFILL, alDLE)
CONT FILL), (aFILL, pFILL)
CONT FILL), (aFILL, pFILL)

FILL-1, START), (GOTO IDLE), (aFILL, alDLE)
FILL 2, START), (GOTO IDLE), (aFILL, alDLE)
FILL-1, START), (CONT FILL), (aFILL, pFILL)

@ (
o
| (
| (FILL-2, START), (CONT FILL), (aFILL, pFILL)

e

| ((
o (
o ((
o (

).
)
).
)

),
),

50% r
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Power reduction

64 128 256 512 1024 2048
Size of loop buffer

— -
;. 3
.)
& =

Figure 4.12: Reduction in instruction f'etalpower of different loop buffer policies

sets

4.4 The Penalty of Miss-prediction in Loop Buffer

Policies

In this section, we discuss the penalty of miss-prediction of loop buffer policies.
To detect the innermost loop is the only one guesstimate policy in IDLE state. Two
possible miss-detection situations are that, we guess it is an innermost loop but it is
not, or we miss the innermost loop.

Innermost loop detection policy—“FILL-2" can detect innermost loop correctly,

expect the innermost loop only has one iteration; but the other Innermost loop

49

detection policy—“FILL-1" guesses innermost loop when meets a backward branch
once. The penalty of miss-prediction of a innermost loop using “FILL-1" is
increasing the invalid loop buffer filled. We can subtract “FILL-2" from “FILL-1" at
the execution time in FILL state to get the penalty of miss-prediction of a innermost
loop.

The loop buffer policies sets of “FILL-1" and “FILL-2” have listed in table

4.13.
Table 4.13: Loop buffer policies sets
IDLE state FILL state ACTIVE state
Detection the
Detecting the | innermost loop Branch Loop buffer Branch
innermost loop | stored in loop | miss-prediction miss miss-prediction
buffer
FILL-1
END GOTO IDLE aFILL alDLE
FILL-2

Figure 4.13 shown that penalty of miss-prediction of innermost loop detection
averagely is 8.13%. It means that “FILL-1" averagely further increase loop buffer

filled ratio by 8.13%. The hit-prediction rate of innermost loop detection is 50.08%.

50

— cost of miss detection —e— FILL-1 —=—FILL-2

18%
16%
14% -
12% -
10% -
8% I
6% .

FILL ratio

4% — —
2% —
0%

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.13: The penalty of miss-prediction of innermost loop detection

Hgthe Loop Buffer

4.5 The Reasons of Affecti
Efficiency

In this section, we analysis the reasons of affecting instruction fetch power
reduction using innermost loop buffer. We can divide these reasons into three parts:
the nature of benchmark, the architecture of processor, and the optimal of compiler.

The nature of benchmark is the most affecting part amount these three parts. We will

describe these parts detail.

4.5.1 The Nature of Benchmark

Four characteristics of the nature of benchmark will cause the decrease of the
instruction fetch power reduction using innermost loop buffer:
(1) The benchmark has less execution time in innermost loop.

(2) The execution paths are changed frequently in this benchmark.

51

(3) The benchmark has a few of loop iteration.
(4) The size of the innermost loop in benchmark is too large or too small than
loop buffer.

We will describe four characteristics detail.

4.5.1.1 The Benchmark Has Less Execution Time in Innermost Loops

We define that the innermost loop ratio as expressed by equation (4):

execution time in innermost loop 100% (€))
0o

innermost loop ratio = - -
total execution time

And a high innermost loop ratio is if one benchmark has more than 90% of

innermost loop ratio, a low innermost loop ratio is if one benchmark has less than

60% of innermost loop ratio. - ﬁ';' &

= E[SpnY

Then we define ACTIVE rat:i::(; as _ez;j;_fé%sédl by equation (5), and it is equal to

.

(1R

time of loop buffer controller in ACTIVE state
total execution time

ACTIVE ratio = *100% 5)

Higher ACTIVE ratio has less Ric and more instruction fetch power reduction. We
use ACTIVE ratio to measure the instruction fetch power reduction.

Table 4.14 is the relation between innermost loop ratio to ACTIVE ratio, the
loop buffer policies set is “(FILL-1, END), (GOTO IDLE), (aFILL, aIDLE)”, size of
loop buffer is 256 byte.

The benchmark which has higher innermost loop ratio has higher ACTIVE
ratio, in general. On the other hand, the benchmark which has lower innermost loop
ratio has lower ACTIVE ratio. Usually, the benchmark which has lower innermost
loop ratio has lower BTB hit rate less than average (94.37%), except rsynth,

rijndael-enc and rijndael-asc, these three benchmarks spend a lot of execution time

52

in the outer loop of a nest loop.

Table 4.14: The relation between innermost loop ratio to ACTIVE ratio

innermost loop ratio > 90%

benchmark innermost loop ratio | ACTIVE ratio hit rate of BTB
bitcount 94.59% 74.16% 95.80%
susan-e 99.95% 96.61% 99.91%
susan-c 99.96% 57.37% 99.96%
djpeg 94.47% 79.22% 96.35%
cjpeg 90.01% 75.17% 94.13%
tiff2bw 98.67% 98.23% 99.64%
tiff2rgba 98.31% 97.53% 99.33%
tiffmedian 99.19% 97.81% 98.02%
dijkstra 90.11% 86.67% 99.10%
blowfish-e 94.21% 68.81% 99.03%
blowfish-d 94.23% 68182 % 99.03%
sha 95.76% 3 ilH8695% 95.75%
pem 99.89% 2 S 8967% 99.93%
adpem 99.89% 9,557/, 99.93%
CRC32 100.00% 99.91% 100.00%
gsm-untoast 96.40% 76.94% 98.71%
innermost loop ratio < 60%

benchmark innermost loop ratio | ACTIVE ratio hit rate of BTB
gsort 56.56% 36.14% 91.89%
typeset 37.94% 15.95% 90.71%
patricia 34.86% 14.95% 89.17%
ghostscript 26.93% 5.59% 90.04%
ispell 52.06% 33.23% 90.95%
rsynth 34.24% 19.81% 96.07%
stringsearch 52.55% 44.18% 92.87%
rijndael-enc 11.96% 10.09% 94.67%
rijndael-asc 11.02% 9.70% 97.50%
FFT 44.14% 18.27% 90.00%
FFT-i 44.21% 18.37% 90.02%
gsm-toast 41.21% 33.33% 83.61%

53

4.5.1.2 The Execution Paths are changed frequently

The more aggressive policies of execution path changed handling, like loop
buffer miss handling in ACTIVE state and branch miss-prediction handling in FILL
state and ACTIVE state, will be more effective in the benchmark which has frequent
execution paths changed, ideally.

The execution path changed ratio had been defined in previous section 4.3.2.2
as expressed by equation (3).

Then, we define the aggressive loop buffer policies set is “(FILL-1, END),
(CONT FILL), (aFILL, pFILL)” and the conservative loop buffer policies set is
“(FILL-1, END), (GOTO IDLE), (aFILL, alDLE)”, size of loop buffer in both of
two loop bufter policies set is 256 byte AALEE

And an increase ratio is the ACTIVE_rat,Io n aggresswe loop buffer policies set
subtracting the ACTIVE ratio in c@nservéf_ loop buffer policies set dividing the

ACTIVE ratio in conservative loop buffer p011c1es set, as expressed by equation (6):

ACTIVE ratio(aggressive) - ACTIVE ratio(cons ervative) 100% (6)
(1]
ACTIVE ratio(cons ervative)

increase ratio =

We use the increase ratio to measure the efficiency of the aggressive loop buffer
policies set.

Table 4.15 is the relation between execution path changed ratio to the increase
ratio. The increase ratio is limited because the execution path changed ratio is too

small to affecting the ACTIVE ratio.

Table 4.15: The relation between execution path ratio to the increase ratio

the execution path in innermost loop changed frequently

(execution path change rate > 1.90%)

benchmark execution path | ACTIVE ratio | ACTIVE ratio | increase ratio

54

changed ratio -aggressive -conservative
cjpeg 3.66% 75.17% 75.70% 0.71%
lame 2.84% 52.12% 51.99% -0.25%
tiffdither 3.04% 66.44% 66.69% 0.38%
typeset 3.69% 15.95% 16.97% 6.39%
patricia 5.11% 14.95% 14.85% -0.67%
ghostscript 3.09% 5.59% 5.32% -4.83%
ispell 3.64% 33.23% 33.17% -0.18%
blowfish-e 3.58% 68.81% 68.86% 0.07%
blowfish-d 3.58% 68.82% 68.87% 0.07%
FFT 6.02% 18.27% 18.27% 0.00%
FFT-i 5.97% 18.37% 18.37% 0.00%
gsm-untoast | 8.43% 76.94% 76.97% 0.04%
the execution path in innermost loop changed seldom
(execution path change rate = 1.90%)
benchmark execution path ACTIVE ratio | ACTIVE ratio | increase ratio

changed ratio -aggressive -conservative
bitcount 0.00% W1 6%ma @ | 74.16% 0.00%
gsort 1.74% B6.14% 2+ & | 36.34% 0.55%
susan-s 0.09% 2028% — | 20.46% 0.89%
susan-e 0.01% 96:61% - | 96.62% 0.01%
susan-c 0.03% 57.37% 57.40% 0.05%
djpeg 1.22% 79.22% 79.50% 0.35%
mad 1.59% 39.50% 39.74% 0.61%
tiff2bw 0.00% 98.23% 98.25% 0.02%
tiff2rgba 0.00% 97.53% 97.54% 0.01%
tiffmedian 1.17% 97.81% 98.01% 0.20%
dijkstra 0.34% 86.67% 86.69% 0.02%
rsynth 0.76% 19.81% 19.84% 0.15%
stringsearch | 0.08% 44.18% 43.37% -1.83%
rijndael-enc 0.00% 10.09% 9.70% -3.87%
rijndael-asc 0.00% 9.70% 9.77% 0.72%
sha 0.00% 86.96% 87.20% 0.28%
adpcm-pcm 0.04% 99.67% 99.68% 0.01%
adpcm-adpem | 0.04% 99.67% 99.67% 0.00%
CRC32 0.01% 99.91% 99.96% 0.05%
gsm-toast 0.89% 33.33% 36.31% 8.94%

55

4.5.1.3 The Benchmark Has a Few of Loop Iteration

The more aggressive policy of innermost loop detection will be more effective
in a benchmark which has a few of loop iteration than a benchmark which has a lot
of loop iteration; but a benchmark which has a few of loop iteration has a few
ACTIVE ratio, so that the increase of ACTIVE ratio using a aggressive policy might
be limited.

Average of loop iteration in MiBench is 12.41, so the aggressive policy will
increase the ACTIVE ratio by 8.33%, maximally.

We define the aggressive loop buffer policies set is “(FILL-1, START), (GOTO
FILL), (aFILL, aIDLE)” and the cor_}sgrvativg- loop buffer policies set is “(FILL-2,

END), (GOTO IDLE), (aFILL, aIﬁLE);fi_ é_iié'-o'f-_.lloop buffer in both of two loop

buffer policies set is 256 byte.

And an increase ratio has been c{e..ﬁﬁed "i'nxl.)-revious section 4.5.1.2 as expressed
by equation (6), and we use the increase ratio to measure the efficiency of the
aggressive loop buffer policies set.

Table 4.16 is the relation between execution path changed ratio to the increase
ratio. The results show that a benchmark which has a lot of loop iteration has few of
increase ratio and a benchmark which has a few of loop iteration has obvious
increase ratio usually. It indicates that an aggressive loop detection policy has more
effective (i.e. increase ratio) in a benchmark which has a few of loop iteration.

Beside, comparing table 4.14 with table 4.16, we can find that a benchmark
which has a lot of loop iteration usually has higher innermost loop ratio, on the other
hand, a benchmark which has a few of loop iteration usually has lower innermost

loop ratio. It causes that, although an aggressive loop detection policy has more

56

increase ratio, the ACTIVE ratio of the aggressive loop detection policy is increase

limited.

Table 4.16: the relation between execution path ratio to the increase ratio

the number of loop iteration = 20

benchmark the number of | ACTIVE ratio | ACTIVE ratio | increase ratio
loop iteration -aggressive -conservative
bitcount 7.054678 74.16% 74.16% 0.00%
gsort 4.795691 28.00% 36.63% 30.82%
susan-s 2.536506 11.28% 20.58% 82.45%
lame 5.912732 48.76% 52.15% 6.95%
mad 4.408253 34.85% 39.89% 14.46%
typeset 4.737559 14.03% 18.00% 28.30%
patricia 4.50309 12.04% 15.63% 29.82%
ghostscript 2.759617 3.12% 5.80% 85.90%
ispell 5363204 2639%, %, | 33.94% 28.61%
rsynth 3.82898 19.68% - % 1 19.81% 0.66%
stringsearch | 15.40423 A% 44.45% 6.52%
rijndacl-enc | 15.08819 937%] 10.15% 8.32%
rijndacl-asc | 15.0882 9.02% 9.77% 8.31%
FFT 3.156288 13.53% 18.72% 38.36%
FFT-i 3.166977 13.64% 18.82% 37.98%
gsm-toast 11.13197 30.38% 33.52% 10.34%
gsm-untoast 9.642393 76.39% 76.94% 0.72%
the number of loop iteration > 20
benchmark the number of | ACTIVE ratio | ACTIVE ratio | increase ratio
loop iteration -aggressive -conservative
susan-e 365.208 96.59% 96.61% 0.02%
susan-c 353.5814 57.37% 57.37% 0.00%
tiff2bw 457.1911 98.02% 98.25% 0.23%
tiff2rgba 291.391 97.23% 97.54% 0.32%
tiffdither 104.3369 66.40% 66.44% 0.06%
tiffmedian 218.4292 97.72% 97.83% 0.11%
dijkstra 30.4933 85.98% 86.69% 0.83%
blowfish-e 39.10312 67.01% 68.84% 2.73%

57

blowfish-d 39.10303 67.02% 68.85% 2.73%
sha 24.59139 83.27% 87.21% 4.73%
pcm 743.1287 99.67% 99.68% 0.01%
adpcm 716.0261 99.67% 99.67% 0.00%
CRC32 1977128 99.91% 99.91% 0.00%

4.5.1.4 The Size of Innermost Loops is too large or too small than Loop

Buffer

When the size of innermost loops is larger than the size of loop buffer,
instructions in the innermost loops can not be fetched from loop buffer completely,
so that the instruction fetch power reduction is limited. On the other hand, the size of

innermost loops is smaller than the"'éiie-rof 106p. buffer; the access power of loop
gl Bl e
: E[SprN 3

buffer is increasing, so that the instf__uctip_q.féfch po_.‘,:vver reduction is limited, too.

Therefore, the choice of loopﬁ.:tm:‘ffe.:_r- 51ze n’lust be large enough to store most
part of innermost loops to reduce Rjc. At last, the size of loop buffer trades off
between power reduction by reducing Rjc with the access power of loop buffer
increasing and the access power of loop buffer controller increasing.

The average size of innermost loops is 33.3 instructions, and about 71.82% of
innermost loop’s size is smaller or equal than average size of innermost loops.

We take two benchmarks for example —susan-c (average size of innermost
loop is 220.715 instructions), tiff2bw (average size of innermost loop is 12.961
instructions), which has the biggest and the smallest size of innermost loops in the
set of benchmarks which have higher innermost loop ratio. And the loop buffer
policies set is “(FILL 1,end), (go to IDLE), (aFILL, IDLE)”, the size of loop buffer

1s 64, 128, 256, 512, 1024, 2048 bytes.

58

Figure 4.14 is the ratio of different size of innermost loops in tiff2bw, 87.11%
of innermost loop’s size is 12 instructions, 12.26% of innermost loops’ size is 20

instructions.

tiff2bw

others, 0.62%
20,12.26%

O12
m20
W others

12,87.11%

Figure 4.14: The ratio of different sizes (instructions) of innermost loop—

tiff2bw
Figure 4.15 is the ratio of different size of innermost loops in susan-c, 46.57%

of innermost loop’s size is 14 instructions, 6.20% of innermost loop’s size is 16

instructions, 46.57% of innermost loops’ size is 456 instructions.

59

susan-c

others, 0.64%

o14
14,46.57% m16

I 456
W others

456, 46.57%

16,6.20%

Figure 4.15: The ratio of different sizes (instructions) of innermost

logps2&s

Figure 4.16 and figure 4.17 sh ark—tiff2bw can store all the

innermost loops which the size of loop is 16 instructions and part of innermost loops
which the size of loop is 20 instructions in the loop buffer which the size of loop
bufter is 64 bytes (equal to 16 instructions). In the loop buffer which the size of loop
buffer is 128 bytes (equal to 32 instructions), it can store all innermost loops, so that
Ric of the loop buffer which the size of loop buffer is 128 bytes is less than the loop
buffer which the size of loop buffer is 64 bytes, and Rjc will not decrease if the size
of loop buffer is larger than 128 bytes.

Benchmark—susan-c can store all the innermost loops which the size of loop is
14 and 16 instructions and small part of innermost loops which the size of loop is
456 instructions in the loop buffer which the size of loop buffer is 64 bytes (equal to

16 instructions). As the increasing of size of loop bufter, the ratio of innermost loops

with 456 instructions can be accessed from loop buffer is increasing. In the loop

60

buffer which the size of loop buffer is 2K bytes (equal to 512 instructions), it can

store all innermost loops, so that the Ryc in this case is minimum.

—e—susan-c —s— tiff2bw
100%
90% e
80% r
70% r
o
5 60%
2 50% \
®
S 40%
< 30%
20% -
10%
0% .\\I : = : = : = : \‘
64 128 256 512 1024 2048
Size of loop buffer
Figure 4.16: Acceé_é:- ré.tlii')io-f- S| ln different benchmarks
‘—o—susan-c —=— tiff2bw
100% — = = = /‘
90%
80% r
70% r
o
5 60%
2 50% | /
®
S 40%
< 30% -
20% r~
10% —*
0% :
64 128 256 512 1024 2048
Size of loop buffer

Figure 4.17: Access ratio of loop buffer in different benchmarks

61

The reduction in instruction fetch power of different loop buffer policy sets is
shown in the figure 4.18. In tiff2bw, there is maximum instruction fetch power
reduction when the size of loop buffer is 128 bytes; as the increase of size of loop
buffer, the instruction fetch power reduction is decreasing because of the increasing
of the access power of loop buffer. In susan-c, there is maximum instruction fetch
power reduction when the size of loop buffer is 2K bytes; as the increasing of size of
loop buffer, the instruction fetch power reduction is increasing because of the

increasing of Ryc.

W susan-c W tiff2bw

128 256 512

1024 2048

100%
90% -
80%
70% -
60% -
50%
40%
30% -
20%
10% +

0%

Power reduction

64
Size of loop buffer

Figure 4.18: Reduction in instruction fetch power in different benchmarks

Figure 4.19 is the percentage of innermost loops with different size of
innermost loops, and we can find the trend in this figure is likely to the trend of

(1-Ric)

62

—e—average

100% |
90% /ﬁ/
80%

70% -
60% -
50%
40%
30% -
20%
10% +

0%

Percentage of loop

64 128 256 512 1024 2048
Size of loop (bytes)

Figure 4.19: The percentage of innermost loops with different sizes of
inncmﬁo'st"lgqps
=A%

7)

4.5.2 The Architecture of Proc’emr

In the architecture of processor,‘l;r'ahc}i' 'p‘r.e;diction unit is only one component
to affect the performance (i.e. instruction fetch power reduction) of our loop buffer.

Our policies of loop buffer are based on the branch predi ctor using saturating
counter (for example, two-but predictor). Other kinds of predictor like one-bit
predictor or correlating predictor may decrease the instruction fetch power
reduction.

In the case of using one-bit predictor, the miss rate has increased, so that the
ACTIVE ratio decreases. Because there is no strong or weak state, the branch
miss-prediction handling only has “alDLE” or “aFILL” and loop buffer miss
handling only has “aFILL”.

In the case of using correlating predictor, the accuracy of branch prediction is

higher than using two-bit predictor, but it may cause more loop buffer miss. We

63

propose a possible method to solve the situation by adding a one-bit saturating
counter in each BTB entry to count the frequent of loop buffer miss. This one-bit
saturating counter will increase by one if loop buffer miss happened; otherwise this
one-bit saturating counter will decrease by one; and this one-bit saturating counter
will clean to zero when FD-bit changed. Hence, loop buffer stores new execution
path only when loop buffer miss happed twice continued; otherwise, loop buffer will
not store new execution path and just go to IDLE state from ACTIVE state.
However, in MiBench, the execution path changed is seldom. As the affecting
of execution path changed handling policies is limited, the affecting of branch

prediction policy is limited to be obvious.

4.5.3 The Optimal of Compileriiy,

There are some optimal policiéé of Ec'Z)i_I_i__11i>'i.1'<:1‘.tpight affect the efficiency of loop

buffer, for example:

(1) Loop fusion. It is to fuse sorhé'édjei’c’eht loops into one loop to reduce loop
overhead and improve run-time performance.

(2) Loop fission. It splits a big loop into some small loops, as a reverse action
of loop fusion.

(3) Loop unrolling. It restructures loop constructs to expose possibilities for
parallelism.

(4) Loop peeling. It is a form of loop unrolling where the first iterations from a
loop are unrolled. It removes 1 iterations from the beginning of a loop and
adds i copies of the loop body directly before the start of the loop.

(5) Loop interchange. It changes an outer loop for an inner loop

(6) Subroutine (in loop body) inlining. The subroutine call in loop body will be

replaced by this subroutine itself.

64

In (1), (3), these optimal policies might increase the size of loop body, we need
to use a bigger loop buffer, and decreasing the efficiency of loop buffer (the
instruction fetch power reduction). In (2), (4), it might decrease the size of loop body,
so we can use a smaller loop buffer; the efficiency of loop buffer might increase. In
(5), it might increase or decrease the efficiency of loop buffer. In (6), although it
might increase code size of loop body, subroutine inlining can slightly decrease the
size of loop buffer for storing this innermost loop with subroutine call, because
subroutine inline will remove the subroutine call and subroutine return from loop

body.

4.6. Simulation Results and Evaluation

In the following sections, we will’show ofit.simulations with other strategies of
- HALLS &
ElS

loop buffer management which had prppqséa.ih.r:‘{lelated works and the analysis. In

Section 4.3.1, we describe four str-ﬂéi'tqg:'_i"\e.s- of .'lo_dp-. buffer as comparison. In Section
4.3.2, we present the access ratio of loop buffer and lower level memory and the

instruction fetch power reduction for these strategies of loop buffer management.

4.6.1 Strategies of Loop Buffer management as Comparison

Four loop buffer designs, are only capable of innermost loop without forward
branch, [15], [17], and our approach with the best policies set, are evaluated.

DLC, 2-way DLC and cluster LC is loop buffer design only capable of
innermost loop without forward branch, [15] and [17], respectively.

Except for innermost loop without forward branch, 2-way DLC is also capable
of storing instructions within innermost loops from first instruction of the innermost

loop until a forward branch or a subroutine call. In both DLC and 2-way DLC, loop

65

buffer controller only starts to fill instruction after a same backward branch is taken
twice successively.

Cluster LC can store a sequence of instructions which can be any kind of loop,
included outer loop of a nested loop, and the loop detection is using a special
instruction “lbon n” to indicate. Cluster loop cache can not store the loop and the
subroutine called by the stored loop body at the same time, because that the
addresses of the stored loop body and the subroutine call are usually discontinued. A
possible disadvantage is that the delay overhead of the controller of cluster loop
cache may be too large to fit the cycle time, so that it may increase the number of
instruction fetch cycle and reduce the performance of processor.

FSLB (forward and subroutine loop buffer) is our best proposed design which
has the maximum instruction fetch power reductlon in our proposed design

discussed in previous section 4.3. 3 4 We fllst the pehcles set of FSLB in table 4.17.

Table 4.17: The best poliéiés set of FSLB

IDLE state FILL state ACTIVE state
Detection the
Detecting the | innermost loop | Branch Loop buffer Branch
innermost loop | stored in loop | miss-prediction | miss miss-prediction
buffer
FILL-1 END GOTO IDLE aFILL alDLE

4.6.2 Simulation Results of Different Loop buffer Designs
Figure 4.20 and 4.21 shows Rjc and Ry for the different loop buffer designs in
different size. We examined the size of loop buffer from 64 to 2048 bytes, i.e. 16 to
512 instructions. Simulation results show that FSLB averagely further decrease Ric
by 26.43% / 16.72%, respectively (DLC / 2-way DLC). We only compare FSLB

with DLC and 2-way DLC, because that loop buffer in these designs can only store

66

innermost loop. Note that since both loop buffer and IL1 are accessed during filling
instructions into loop buffer, the sum of Rrg and Ryic would exceed over 100% in
each designs.

To reduce instruction fetch power, we hope that most instructions can be
fetched from loop buffer, i.e. reduce Rjc and increase Ryp. In figure 4.20 and 4.21,
our approach has significant improvement in Rjc and Ryg. Since larger loop buffer
has higher opportunity to store more instructions, Rjc and Ry g would decrease and
increase with the size of loop buffer. However, larger loop buffer may cause higher

power consumption in Py .

‘—O—DLC —s—2wayDLC ——clusterLC —=—FSLB

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Access ratio

64 128 256 512 1024 2048
Szie of loop buffer

Figure 4.20: Access ratio of IL1 of different designs

67

——DLC —=—2wayDLC ——clusterLC —I—FSLB‘

90%
80% - /‘/‘/,,.
70%

60% -

50% -
40% — .

30% - ./'/

20% —

Access ratio

*
*

10%
0%

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.21: Access ratio of loop buffer of different designs

o -

iz | 5
-l b T
= EISh %

- | AT

Figure 4.22 shows ACTIVE;-;_'.I'.al.t]f:(D_ gnddferent designs, respectively, and had

been defined in previous section 4.5;.:'I’~..-1'ias._e_zgpfé§-sed by equation (5).

Profiling results in MiBench show that 32.9%, 26.56% and 11.76% of
execution time spends on innermost loop without forward branch, with forward
branch(s), and with subroutine(s) including no loop, respectively. Using profiling
result and ACTIVE ratio, we can easily explain the several interesting points in Ryc.

First, the optimal ACTIVE ratio of DLC, 2-way DLC, FSLB should be 32.9%,
58.46% and 71.22%, respectively. If we use compiler to assist in innermost loop
detection, the optimal ACTIVE ratio could be achieved.

Second, the maximal ACTIVE ratio of FSLB is 57.70%, respectively. This
result is not very close to optimal solution (71.22%), the reasons had been discussed

in previous section 4.5.1. The main reasons are some benchmarks have less

execution time in innermost loops and have few loop iterations. Since loop buffer

68

controller hardly catches their innermost loop in several benchmarks, average
ACTIVE ratio is not very close to optimal one.

Third, 2-way DLC maximally has 10.48% improvement than DLC in ACTIVE
ratio. Since innermost loop with forward branch(es) or subroutine call(s) averagely
consist of 2.5 forward branches or subroutine call, each innermost with forward
branch(es) or subroutine call(s) can be divided into 3.5 segments. 38.32% (sum of
innermost loop with forward branch(s) and no-loop-inside subroutine(s)) divided by
3.5 equals to 10.95%. This value is very close to the improvement ratio using 2-way
DLC.

Fourth, cluster LC has two advantages better than FSLB for increasing
ACTIVE ratio; first, cluster LC can read loop buffer from the first loop iteration
using a special instruction “lbon n” itoltindicate the start and end address of
instructions sequence which stored:._ih.locij.f).i_ @&ff&;'_\l@econd, the instructions sequence
which stored in cluster LC can beanylklﬁ_d_ofloop, included outer loop of a nested
loop. But cluster LC also has one x(ii.éédvéh:cz.l.;ge worse than FSLB for reducing
ACTIVE ratio. Cluster loop cache can not store the loop and the subroutine called
by the stored loop body at the same time, because that the addresses of the stored
loop body and the subroutine call are usually discontinued. When the size of loop
buffer is less or equal than 128 bytes, the loops stored in cluster LC are all innermost
loop, so that the ACTIVE ratio of cluster LC is just a little larger than FSLB. As the
size of loop buffer increasing, more outer loop of a nested loop can be stored in

cluster LC, so that the ACTIVE ratio of cluster LC is much larger than FSLB.

69

——DLC =—2wayDLC ——clusterLC —m—FSLB

80%

70% 4
£ 60% -
O
2 50% -
o
S 40% -
Je) —= -
T 30% _/-//'/t
g * & & —
5 20% -
<

10%

0%

64 128 256 512 1024 2048
Size of loop buffer

Figure 4.22: Loop buffer ACTIVE ratio

o -

=i o N
:..'.-I.. b .'\.

The loop buffer controller of each de’ _gn_ls synthesmed using Synopsys design
tools in 0.18 pm TSMC CMOS techrrolg)gy The power consumptions of loop buffer
and IL1 are calculated by Wattch power modeling tool.

The ratios of Py g and Pic, Pewi and Pic are shown in table 4.18. FD-bit is a 1-bit
field which is attached to each entry of BTB, and the power consumption of FD-bit
is 0.13% of power consumption of L1 instruction cache (Pepwpi/ Pic). Power
consumption of cluster LC controller is much larger than others, because that cluster
LC controller includes two 32-bit subtractions and at least extra two 32-bit registers,
but we do not include the power consumption of pipeline stall when cluster LC is in

FILL state and the power consumption due to cycle penalty of cluster LC fetch.

Table 4.18: Ratio of Prg and Py

Size of loop buffer 64B 128B | 256B | 512B IKB 2KB

70

(PLs/ Pic) * 100% 8.26% | 8.92% |10.35% | 13.56% | 21.40% | 38.34%

(Pei-pre wio v/ Pic) * 100% | 0.39% | 0.43% | 0.49% | 0.51% | 0.53% | 0.54%

(Pctri-2 way pLc/ Pic) * 100% | 4.82% | 4.91% | 4.98% | 5.05% | 5.23% | 5.31%

(Petri-ctuster L/ Prc) * 100% | 10.74% | 10.88% | 11.07% | 11.20% | 11.32% | 11.48%

(Pewi-rBLB/ Pic) * 100% 1.91% | 1.95% | 2.00% | 2.08% | 2.25% | 2.34%

The reduction in instruction fetch power of different designs is shown in the
figure 4.23. For each design, 256B or 512B has the maximum power reduction.
According to figure 4.1 and 4.2, increasing loop buffer size can improve Rjc and Ry g
but also increases Prg. Hence, larger loop buffer may be not beneficial for Ppg.
Compared to capable of innermost loop without forward branch and [15], FSLB has
significantly improvement in instry_g_t-'iblr_:l" ":f'éﬁtp_l_qu power. And cluster LC has the

& EHETW\ e . .
maximum instruction fetch power_’reducﬂ__(_;)'n:-_when the size of loop buffer is 512

B
.

bytes. kil , /__:;'_:'-:’

If we insert a special instructi()..rlr.i.rl'- I(I.:.o;npiler phase, to indicate the stored
instructions sequence like “lIbon n” in cluster LC proposed in [17], we can also store
outer loop, too; so that the ACTIVE ratio of FSLB can be increased and increasing

the instruction fetch power reduction large than cluster LC, very possibility. We

leave the issue to future work.

71

Power reduction

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

mDLC m2wayDLC mcluster LC mFSLB

64

128

256 512 1024 2048
Size of loop buffer

Figure 4.23: Reduction in instruction fetch power of different designs

]

72

Chapter 5
Conclusions and Future Work

Adding our design to the instruction memory hierarchy can significantly reduce
instruction fetch power. Previous designs, although simple, fail to capture a large
percentage of innermost loops, make power saving results unsatisfactory. We
propose to correct this shortcoming by using BTB to assist loop buffer in storing
innermost loops. The benefits of our design are:

(1) significant increase in loop buffer utilization sand hence instruction fetch
power saving;

(2) almost negligible hardware overhead; and

(3) no need for extra branche'-iﬁstrl}'ctiﬁri'-,_or compiler to assist loop buffer

- HALLS &
.- | el I.I - R -
controller in innermost loop detection. -

.

Experiment results show thatourdemgn can further reduce up to 13.66% of
instruction fetch power, and only introdlice ll-..8% of hardware overhead in BTB.

We can improvement the instruction fetch power reduction by inserting a
special instruction like “Ibon n” in cluster LC proposed in [17] to store a sequence of
instructions which can be any kind of loop, include outer loop. And it is possible to
reduce instruction fetch power more than cluster LC.

Increasing utilization of loop buffer has another significance: it provides better
changes for the lower level instruction memories to conserve static power leakage.
With the advances in deep-sub-micro semiconductor processing, static power
consumption is becoming dominant. Several researches show that the static power
currently accounts for about 15%-20% of the total power consumption in the 130

nano process, and will exceed 50% in the 65 nano process. Although we only

73

address reduction in instruction fetch power, i.e. dynamic power, in this work, it will
be an interesting if we study the static power effect of our design. We are already

working on this topic.

74

Reference

[1] Texas Instruments Inc., TMS320C6000 Power Consumption Summary,
http://www.ti.com, Nov. 1999.

[2] L. Benini, D. Bruni, M. Chinosi, C. Silvano, and V. Zaccaria, “A Power
Modeling and Estimation Framework for VLIW-Based Embedded System,” ST J.
System Research, vol. 3, pp. 110-118, Apr. 2002.

[3] Aghaghiri, Y., Fallah, F., and Pedram,M. 2001. Irredundant address bus encoding
for low power. International Symposium on Low Power Electronics and Design,
82-87.

[4] Benini, L., Demicheli, G., Macii, E., Sciuto, D., and Silvano, C. 1998. Address
bus encoding techniques for system—l_gy_-e‘l‘ power optimization. In Design Automation
and Test in Europe. | rl /

[5] Stan, M. R. and Burleson, WPi99b_Bus—1nvert coding for low-power 1/O.
IEEE Transactions on Very Large Sca‘l.é. Yhtegfc;igon Systems 3, 1, 49-58.

[6] Govindarajan, S. C.,Ramaswamy,G., Andmehendale,M. 2001. Area and power
reduction of embedded DSP systems using instruction compression and
re-configurable encoding. In International Conference on Computer Aided Design.
[7] Ishihara, Y. and Yasuura, H. 2000. A power reduction technique with object code
merging for application specific embedded processors. In Design Automation and
Test in Europe.

[8] Bajwa, R. S., Hiraki, M., Kojima, H., Gorney, D., Nitta, K., Shridhar, A., Seki,
K., and Sasaki, K. 1997. Instruction buffering to reduce power in processors for
signal processing. IEEE Transactions on VLSI Systems, 417—424.

[9] Albonesi, D. H. 2000. Selective cache ways: On-demand cache resource

allocation. Journal ofInstruction Level Parallelism.

75

[10] Malik, A., Moyer, B., and Cermak, D. 2000. A low power unified cache
architecture providing power and performance flexibility. In International
Symposium on Low Power Electronics and Design.

[11] Hasegawa, A., Kawasaki, 1., Yamda, K., Yoshioka, S., Kawasaki, S., and Biswas,
P. 1995. SH3 high codes density, low power. I[EEE Micro.

[12] Kin, J., Gupta, M., and Mangione-Smith, W. 1997. The filter cache: An energy
efficient memory structure. In International Symposium on Microarchitecture,
184-193.

[13] Bellas, N., Hajj, I., Polychronopoulos, C., and Stamoulis, G. 1999. Energy and
performance improvements in microprocessor design using a loop cache. In
International Conference on Computer Design, 378-383.

[14] L. Lee, B. Moyer and J. Arends “Low Cost Embedded Program Loop
Caching — Revisited,” Unlver51ty of Mlchlgaﬁ Technlcal Report CSE-TR-411-99,

1999. —
[15] T. Anderson and S. Agarwala, "‘Eifé.c':ii{iev.I;ardware-based two-way loop cache
for high performance low power processors,” International Conference on
Computer Design, 2000.

[16] A. Gordon-Ross, S. Cotterell and F. Vahid, “Tiny Instruction Caches For Low
Power Embedded Systems,” ACM Transactions on Embedded Computing Systems,
2003.

[17] M. Jayapala, F. Barat, T. V. Aa, F. Catthoor, H. Corporaal and G. Deconinck,
“Clustered Loop Buffer Organization for Low Energy VLIW Embedded
Processors,” IEEE Transactions on Computers, 2005.

[18] T. Austin, E. Larson and D. Ernst, “SimpleScalar: an Infrastructure for

Computer System Modeling,” IEEE Computer, 2002.

[19] D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,“MiBench: A free,

76

commercially representative embedded benchmark suite,” [EEE 4th Annual
Workshop on Workload Characterization, 2001.
[20] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations,” ISCA.

77

Appendix

A-1 Profiling of Innermost Loop

Type A. w/o FB: innermost loop without forward branch and without subroutine
Type B. w FB: innermost loop with forward branch(es) but without subroutine
Type C. w FN: innermost loop with subroutine(s) consisting of no loop

Type D. NL: not in an innermost loop

(w FB & FN): (Type B) and (Type C)

Loop: (Type A) and (Type B) and (Type C)

Loop size: average size of innermost loop

Hit rate: hit rate of 512-set, 4-way BTB

A.w/o FB B.wFB C.w F_l-\.I:';I.I o r ifluoop (wFB & FN)| Loop size Hit_rate
bitcount 74.30% 4.09% 16.20% |4 L, % __.-_9}1'.59% 20.29% 12.58 95.80%
gsort 43.88% 11.24% 1.44% -,._;-;1§.44% A s6.56% 12.68% 12.20 91.89%
susan-s 64.17% 0.01% 0.52% 35.30% 64.70% 0.53% 12.63 77.96%
susan-e 37.19% 62.42% 0.35% 0.05% 99.95% 62.76% 89.42 99.91%
susan-c 0.47% 99.14% 0.35% 0.04% 99.96% 99.49% 220.72 99.96%
djpeg 53.31% 41.00% 0.16% 5.53% 94.47% 41.16% 29.71 96.35%
cjpeg 52.78% 33.18% 4.05% 9.99% 90.01% 37.23% 19.96 94.13%
lame 58.51% 19.09% 1.66% 20.74% 79.26% 20.75% 60.92 90.92%
mad 44.23% 11.05% 12.99% 31.73% 68.27% 24.04% 29.19 83.38%
tiff2bw 98.65% 0.01% 0.01% 1.33% 98.67% 0.02% 12.96 99.64%
tiff2rgba 98.14% 0.02% 0.15% 1.69% 98.31% 0.17% 29.19 99.33%
tiffdither 7.93% 62.50% 3.00% 26.58% 73.42% 65.50% 29.25 94.61%
tiffmedian 96.16% 3.04% 0.00% 0.81% 99.19% 3.04% 23.31 98.02%
typeset 7.55% 12.46% 17.93% 62.06% 37.94% 30.39% 11.98 90.71%
dijkstra 14.83% 75.26% 0.02% 9.89% 90.11% 75.28% 14.30 99.10%
patricia 20.92% 11.16% 2.78% 65.14% 34.86% 13.94% 11.95 89.17%
ghostscript 8.62% 17.61% 0.70% 73.07% 26.93% 18.31% 17.23 90.04%
ispell 29.67% 15.96% 6.43% 47.94% 52.06% 22.38% 8.00 90.95%

78

rsynth 4.11% 27.13% 3.00% 65.76% 34.24% 30.13% 28.93 96.07%
stringsearch| 47.35% 5.16% 0.04% 47.45% 52.55% 5.20% 4.60 92.87%
blowfish-e 0.00% 8.13% 86.09% 5.79% 94.21% 94.21% 55.18 99.03%
blowfish-d 0.00% 8.13% 86.10% 5.77% 94.23% 94.23% 55.31 99.03%
rijndael-enc 11.50% 0.31% 0.15% 88.04% 11.96% 0.46% 5.56 94.67%
rijndael-asc 11.02% 0.00% 0.00% 88.98% 11.02% 0.00% 5.50 97.50%
sha 95.76% 0.00% 0.00% 4.24% 95.76% 0.00% 15.03 95.75%
pcm 8.34% 91.56% 0.00% 0.11% 99.89% 91.56% 55.00 99.93%
apcm 8.34% 91.55% 0.00% 0.11% 99.89% 91.55% 44.00 99.93%
CRC32 0.00% 0.00% 100.00% 0.00% 100.00% 100.00% 48.04 100.00%
FFT 21.52% 13.65% 8.98% 55.86% 44.14% 22.62% 14.00 90.00%
FFT-i 21.49% 13.76% 8.96% 55.79% 44.21% 22.72% 14.00 90.02%
gsm-toast 12.09% 22.63% 6.49% 58.79% 41.21% 29.12% 8.64 83.61%
gsm-untoast| 0.00% 88.68% 7.71% 3.60% 96.40% 96.40% 67.65 98.71%
average 32.90% 26.56% 11.76% 28.78% 71.22% 38.32% 33.34 94.34%

ri

AR by

79

