_:J
SIS TIZMPT

PRER Y R ATk
T/

=

=
s
-3;\.%
b

=
%

Resource-Oriented Computing: Towards a Universal
Virtual Workspace

; - P g Rb
oy o2 L EAE

fd R T R

FERB L+AEA FNAA

TRERIEZ BRI FRE ORISR T
Resource-Oriented Computing: Towards a Universal Virtual Workspace

BFopod LR Student : Chiou -Rung Hung
TR kg Advisor : Jing-Ying Chen
B2 vl « F
N - - B N A L
AL o
A Thesis

Submitted to Institute of.Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
June 2006

Hsinchu, Taiwan, Republic of China

63}%@]{41_’&/\9

%EVMAﬁiﬂfiﬁw%P@*ﬁéﬁﬁifi%¥$%$@ﬁ%@%
Frpw- BAANETRRLEF LB EFRREFY - R¥ g7 0 d2d 5
FRBFTAREY U FTREPL DL IRT A PR Ko F T FT b

B b gl v 2 A% SR T R R e OB AR feendc Rl & 2 pE o
PR 5 - B (e RAERE iR X P R i 4o
Ao RA o R REHR DRI TRE > FETE G 2R AR R ES
WA GE 2 el PRS- R T URL AR
BRI A PRI - BUFRE Ee OB KR HTEPR ATRER

7

o PR L PRT L AR A A4 T %cu?ﬂ? o F] L s AR e
TR A HAF LR DB IR S T G EE R T R TR
fo it RS o AT G e R AR R 2 S T R RS 2
SRS AIT S 2 > k2@ H bR RR LT A2 o AP -¢ B
 e-Science 1 v 5 > ke @ ¥ AP A F§e v (R
R SFER BT R

MAEF . PR RRIRGY, PRAE N, RArEE, it A2, Web 2.0

Resource-Oriented Computing: Toward a Universal Virtual Workspace

Student : Chiou-Rung Hung Advisors : Dr. Jing-Ying Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

The popularity of many emerging user-centric Web applications such as blogs
and Wikipedia indicates the trend that the Internet is transforming into a global
collaborative environment where most'peoplé can participate and contribute in ways
not perceived before. It is foreseeable,that when on-line resources created by and
shared among people are not-just simple -Web' contents but also more complex
software artifacts, a more accommodating, untversal; and virtual workspace may be
formed that support people with much more diverse background and needs. To realize
such goal, however, it requires not only comprehensive infrastructure support for the
development, deployment, and assembly of diverse resources but also effective
strategies and mechanisms that can handle the implied complexity. We propose a
metaphoric, service-oriented architecture in which arbitrary resources are associated
with syntactical descriptors, called metaphors, based on which run-time services can
be instantiated and managed. Characterized as a universal development environment,
our architecture permits static and dynamic service composition through syntactic
metaphor composition. By defining metaphors for specific problem domains and by
implementing suitable interpreters, either at a global scale or on a community basis,
our architecture is intended to serve as the infrastructure holding multiple applications
with substantial reuse. We demonstrate our idea by building a Web-based e-Science
workbench, which allows user to utilize distributed computing and storage resources

in a flexible manner.

Keywords: Web Services, SOA, Service Composition, Component, Web 2.0

o
P8 e RS

“ 2
22

r:‘j_&‘j\g’—‘/}iﬁ ’ ‘Wﬂ,\mfj':_.
Z

P
ﬁ 4 "?Y\m" /z{’ff’ﬁéfi Foow i3 5\'§§_w_ R
}/' :.

o JF R AR ety R
o

L e R
,ﬂ:};,%’i":};]%l;h_rmpi
ERUE TRl SR I S

2 Z
2

l}L‘f’l‘ ’

T - A2 B R
%/}ﬁpg I,_%?-v\' ’ Il;’ %
S E SR 0 KR AR A

(L

PRt al g e 2 B iR R R

PFF R R REBTOPF L R
R

PE~EZ

s g~

/,37[1&]‘#’; riﬁ*ﬁ{\

IFE) Ei‘]_ﬁ"—\ a\(Fﬁ’ 2‘@ ‘, = VF\,_I:Z‘?}\)
44

BB EAE umgﬂ} SEEATE =

~ /\
FE R i

f
Bots o d Bl RAHA cnh s d e et o R BE G

}.%}Ek o m‘i/\ o

B 22 2006 & 8 ¢
S

LG

-~

FHak &Y 5%

e

Table of Contents

B e [
ADSTFACT ... e nre e nree e I
FE . USRS i
Table of CONTENTS ..o WY
LIS OF FIQUIES ..ot sneas vi
Chapter 1. Introduction - Motivation............ccceeveiienie e 1
Chapter 2. Universal VirtualFWorksSpace...........c.cccooevviienienie s, 4
Chapter 3. An Abstract.Service-Oriented Architecture...........cccccevevvviinennn. 6
Chapter 4. Metaphors for-Resource Description and Composition 8
4.1 Metaphor FOIMAL..........cooviiieiic e 8
4.2 A Component Model for Resource Compositionccceevvveeveenieenen. 10
Chapter 5. Case Study: An e-Science Workbenchc.cccooiiiiinnn, 14
5.1 The Workbench ArchiteCtureccoooveieiiiiiece e 14
5.2 Console User INterfaceoovviiieiin e 17
5.3 The Portal INterfaceccoovviiiiiiieie e 21

Chapter 6. Discussions and Related Work
Chapter 7. Conclusion............cccccceevveiinenen,

REfEIENCES ..o et e e e

List of Figures

Figure 1. A resource-oriented arChiteCtUIeccoouiiieiieie i 6
Figure 2. An abstract COMpPONENt MOUELcciiiiiiiiieieee e 11
Figure 3. A file Drowser eXample... ..o 13
Figure 4. An e-Science WOrKDENC OVEIVIEWccviiiiieiiciecc e 14
Figure 5. Tasks and task tYPEScoeiiiiiiieiee e 17
Figure 6. A simple console-based CHENt ... 18
Figure 7. A Deployment of our framework in a distributed environment............c.c.ccccvennne. 18
Figure 8. An ERP data analysis TIOW s e it coveenieieieienie e 21
Figure 9. Enterprise Portal Architecture USINg WSRP.............cccooviiiiiiiiieieie e, 22
Figure 10. A typical usage scenario OF WSRP....iii i 23
Figure 11. The whole portal page aggregated by the Jetspeed2 portal server..........c..cc.c....... 23
Figure 12. Adding a menu item in the project CONtaiNerccevvevveiie i i 24
Figure 13. EEGLAB POITIEL......cooiiiiiieiee et 24
Figure 14. Use project manager portlet to control a Workflow.............cccooveviiiiiiiiiiien, 25
Figure 15. Monitoring a workflow in action (debug mode)cccevvvveviveienic i 25
Figure 16. Monitoring a Workflow in action............ccccceieiiiiiiccicc e 27

Vi

Chapter 1. Introduction

The Internet has become indispensable nowadays as people rely on various kinds of
Internet applications for their daily activities. In addition to performing personal tasks such as
Web surfing or e-commerce activities, people also use the Internet to connect and collaborate
with each other. Early Internet applications such as E-mail and FTP already provide basic
information exchange mechanisms for people to collaborate. The Web also supports
collaboration through information sharing, i.e. publishing personal Web pages and accessing

others” Web pages.

Recently, the trend in user-centric collaborative computing has gained further momentum.
Consider the widespread use of Web applications such as blogs and Wikipedia [1]. These
applications provide easy-to-use interfaces that allow people to create contents such as
opinions and photos for others to see. Equally importantly, they provide storage and content
management facilities behind the scene to host:these user-provided contents. Although the
user interfaces are often limited (to increase.ease of-use), these applications already provide
sufficient functionality people want. For example, blogs are often confined to certain Web
page layouts prescribed by the designer;-and-people.can only submit comments in terms of
HTML documents. However, this Simple design already provides sufficient functionality for
most people wishing to share their thoughts. As a result, the simplicity helps these
applications gain huge user base in a short period of time, which is commonly attributes by
Web 2.0 [2] promoters as the network effect. Accordingly, it can be expected that further
innovations along this trend will emerge in near future, due to their tremendous commercial

potentials.

If the trend continues, one can envision many scenarios in which people create and share
arbitrary resources — not just simple Web contents but also more complex software artifacts —
on the Internet and make them accessible to others, making the Internet as an
all-encompassing, universal, and virtual workspace (VW). In such a workspace, people can

combine on-line resources flexibly in novel ways to form new applications for their own use.

Seemingly plausible, it remains questionable whether the virtual workspace vision will
materialize and reach the mass audience. After all, the implied “programming” complexity is

arguably best handled by highly skilled software engineers, who can hand craft complex

programming logics using powerful languages and tools. In fact, most users favor simplicity
over flexibility, and they find novel uses of “primitive” tools that are simple in concept and

easy to use, as long as they can achieve their goal.

Despite the feasibility concern, however, the Internet is in fact moving towards a
universal virtual workspace gradually if we do not limit the audience to average users but also
professionals. In the scientific community, for example, many e-Science portals (e.g. [3])
have been operational for a long time to help researchers perform scientific experiments and
data analysis tasks on line. Frequently, when the scientists need to exercise new ways of data
analysis and visualization schemes, they may write scripts using simpler languages without
going further into the implementation details. However, when the available resources become
insufficient or new tools and algorithms need to be developed, skilled programmers should

still be handy.

From this perspective, it is more suitable to view the future VW as a complex ecosystem,
where information and software artifactsiare . created and consumed among people with
diverse background, skills, and needs. Ifsthesdemands become substantial for tools that can
help end users compose novel applications, developers with necessary background and skills
may be motivated more. Similarly; new groups of people can emerge to help less skilled users
create custom applications using tesources available in the same VW. In other words, the
ecosystem should promote both specialization and reuse, resulting in more efficient resource
utilization when compared to custom application development practice that is more typical

today.

In this thesis, we are concerned with requirements and challenges towards the VW goal,
which requires not only robust infrastructure support for the development, deployment, and
assembly of diverse software artifacts, but also effective strategies and mechanisms that can
handle the implied complexity. Although many technologies exist today can relax some of the
challenges, many issues remain to be tackled. For example, the Web Services [4, 5, 6]
movement is pursuing a universal interoperability platform on top of which heterogeneous
software systems can exchange information in terms of standard XML messages. However,
the movement is developer-centric and standardizes only the minimal communication
protocols among software systems. Aspects regarding service composition and hosting are

either left for higher-level standards or to be supported by vendor-dependent mechanisms.

Instead of relying on existing distributed computing platforms, we believe it is beneficial
to redesign a platform with the VW requirements in mind since the beginning, even if it is just
for the sake of gaining better insights about what are essential and currently missing. One
reason is that the WWW architecture, although powerful and indeed successful, are designed
for information exchange rather than for VW. On the other hand, it is the simplicity that made
WWW successful simply because it incurs much less efforts for companies and people to
enter the WWW when compared to other mature or emerging, but less open and often

heavy-weighted computing platforms.

We propose an abstract, protocol-based service-oriented architecture to overcome some
of the obstacles mentioned thus far. Specifically, to handle the diversity in terms of problem
domains and existing hardware/software resources, in our architecture, resources to be
published over the Internet are associated with syntactical descriptors, called metaphors,
based on which run-time services can be instantiated and managed. Because metaphors can be
created and manipulated, and static and dynamic service composition can be achieved through
syntactical metaphor composition,+the resulting-framework can be conceptualized as a
universal development environmeént. By defining metaphors for specific problem domains and
by implementing suitable interpreters-on a:community basis, the architecture is designed to

serve as a common infrastructurehosting multiple P2P applications with substantial reuse.

To demonstrate our approach and to ‘address many issues raised when tackling the VW
challenge, we have also been developing an e-Science portal which allows user to utilize
distributed computing and storage resources via familiar WIMP-style user interfaces. The rest
of the thesis is organized below. In chapter 2 we clarify the concept of VW and reason about
the infrastructure requirements. In chapter 3 we describe a resource-oriented architecture that
is designed with the requirements described in chapter 2. In chapter 4 we describe the generic
resource description language used to denote and/or annotate diverse resources. In chapter 5
we describe case studies employing the architecture. In chapter 6 we discuss additional
characteristics and issues related to UVM in general, and also related work in this section.

Finally, in chapter 7 we conclude the thesis.

Chapter 2. Universal virtual workspace

The vision of a universal, virtual workspace is inspired by the concept of “intercreativity”
envisioned by Tim B. Lee [7] when architecting the WWW architecture, upon which people
collaborate by creating and posting Web contents for others to see. This together with the
emerging service-oriented computing trend have led us to the conclusion that Internet is
transforming into a common medium for people to participate in, rather than just a
consumer-producer platform where most people are restricted to access information and

services provided by software developers.

The term workspace reflects the functional requirements for the user-centric VW. First of
all, end users should be equipped with some kinds of virtual workbenches for personal use,
just like using Web browsers to surf the Web. These workbenches should provide users with
common facilities so that they can browse and assess available resources across the Internet.
To support arbitrary problem domains that may:require highly interactive user interfaces or
larger network bandwidth, which®are essential for scientific data analysis and visualization,
both the types of resources and the communication: channels among them should not be
limited (e.g. to HTTP). Furthermore, it Sheuld-be possible for users to access resources using

interfaces with different capabilities-under different circumstances.

In addition to accessing information and service in familiar, client-server ways, end users
should also be able to combine resources into useful tools to help solving their own problems.
Mechanisms for resource composition can vary dramatically requiring different degrees of
programming skills; the resources to be assembled may be scattered across the Internet and
can only be accessed through some kinds of communication channels. Certain virtual
workbenches may also enable users to play the provider role such that the resources they
create can become accessible to others. In short, virtual workbenches present end users the
illusion of a software development and assembly environment, yet they are interchangeable in
the sense that the resources being created or assembled remain independent even when the

workbench changes.

The VW should also be a universal resource deployment platform. While some resources
may only be accessed remotely, others may be downloaded into user’s machine and executed

there locally. This capability is essential to permit sharing and reuse of highly interactive

GUIs without relying on proprietary deployment technologies, such as those supported by

modern Web browsers.

When collaboration among people is concerned, VW should also support different
collaboration schemes without “unnatural” workarounds. Possible collaboration schemes may
range from real-time instant messaging or video conferencing, to event-driven workflows that

schedule tasks to be performed among members in a team (e.g. for a development project).

Apart from the functional requirements outlined above, which already impose many
design constraints when engineering a desirable architecture for VW, the “non-functional”
requirements hinted by the adjectives “universal” and “virtual” stress that some form of
virtualization over heterogeneous, dynamic, and distributed resources should be present, and
be achieved through simple and universally accessible communication protocols. This
essentially follows the hour-glass model that contributes to the success of the Internet and the
Web.

Furthermore, to be scalable, and to promote:community forming and resource sharing,
the architecture should also adopt P2P concept and unite diverse resources in a decentralized
manner. However, the architecture“should permit multiple P2P applications running on the
same set of peers. In other words, each peerrmay. be overloaded with facilities supporting

multiple P2P applications, ideally with'substantial degree of reuse.

Chapter 3. An abstract service-oriented architecture

We propose a service-oriented architecture aiming at fulfilling the VW requirements
described in the previous chapter. As shown in Figure 1, the architecture rests on a resource
space in which resources are arbitrary artifacts identified with globally unique URISs.
Different types of resources may contain information in binary or text forms. Because some
resources such as Web pages may embed references to other resources, the resource space
hence forms a global, interconnected resource network, much like the hyperlinked WWW.
For the purpose of this thesis, it is sufficient to regard each resource as a file hosted inside a

network addressable machine.

CO,

v o s N

0

USE%':

senﬂFe ‘J<:g2_€?—; _@2, __gg_’]

resource-

Figure 1. “A.service-oriented architecture

On top of the “persistent” resource space is the dynamic service space comprise of
mutually interacting run-time objects, called services, which perform tasks upon requests.
More importantly, each service is associated with exactly one resource, although the reverse
is not necessarily true. Resources are partitioned into disjoint sets with respect to the authority
component of their URIs, and a partition may be associated with a manager service, called
container, which governs the definition, instantiation, customization, composition, and other
lifecycle activities for the services within the partition. Note that although a container itself is
also a service and hence is associated with a resource, how the container is instantiated is

considered system-dependent.

Within the service space, it is possible that a service can access another service directly if
both are in the same memory space; otherwise some kinds of communication channels should
be established between them. In either case, the container is responsible of establishing

suitable links among the services in question, rather than allowing the managed services to

establish links on their own.

Containers can be implemented differently, and they join and leave the service space
continuously. Containers can be long running at server side accepting requests, or transient at
client side interacting with users. A container may offer different levels of management
capabilities to different classes of users — although there are basic operations all containers

need to support.

To complete the architecture, we refer to clients that serve as intermediaries between end
users and the services as agents, which are not managed by containers. Note that some agents

and services may be equipped with GUIs interacting with users directly.

Chapter 4. Metaphors for resource modeling and composition

4.1. Metaphor Format

In the service-oriented architecture outlined previously, it is required that services are
instantiated based on the resource contents. Containers are responsible of interpreting the
resource contents and determining what services to create and how they are customized.
When references to other resources are embedded inside a resource, the container may
establish required connections among the respective services, according to the implied

semantics implied by the resources (see below)..

Although resource interpretation and composition are container-specific or even
proprietary, to increase the overall reusability and interoperability and to minimize
unnecessary fragmentation, it is required that there exists a canonical resource description
format to define new resources or annotate existing ones. These resource descriptors, called
metaphors, are syntactical objects with structures derived from the contents of the resources
they describe, respectively. Ac further requirement is that it should be possible to
“syntactically” check a particular resource.compeosition in a semantics-neutral manner, before

actual run-time composition takes place.

Naturally, we choose a subset of well-formed XML documents as the canonical metaphor
representation . In general, a metaphor can contain arbitrary structure without restrictions.
However, we allocate a special namespace with some reserved elements and attributes. These
meta-level constructs can be embedded inside metaphors and are used to constrain their
structures without semantic implications. For simplicity, in what follows the prefix “m” is
assumed to be bound to the meta constructs namespace. The reserved keywords are

summarized below:

m:uri is an attribute whose value is a relative or absolute URI. When the root element of
a metaphor has such an attribute, the value reflects the (intended) identity of the metaphor.
When such an attribute is absent in the root element, the identity of the metaphor should be
inferred from the context. More importantly, in case the attribute occurs elsewhere, it always

serves as a reference to another existing resource.

m:is is an element that occur only at the top level, and its “m:uri” attribute should link to

another metaphor - which we refer to as the type of the metaphor - that may contain additional
contents and further constraints. When a metaphor includes a type this way, it not only
inherits all contents from the type, but also should conform to the constraints imposed by the
type. When the type contains other types, the contents and constraints are collected
recursively. In addition, when a metaphor contains multiple types, it should conform to all the
constraints implied. As constraints may conflict with each other, we only consider valid types
such that their inferred constraints do not conflict. In addition, metaphors trying to conform to

conflicting types are considered invalid.

m:rel is also an element that occur only at the top level and is used to constrain the
allowed links among metaphors. Syntactically, it states that the enclosing metaphor can have
a certain number of child elements of a particular tag in its top level. The tag name and the
multiplicity are prescribed by the “tag” and “card” attributes, respectively. Furthermore, the

“m:uri” attribute also constrains the type of the metaphor can be linked to.

The m:elem element constrains the;contents of metaphors. It states that a conforming
metaphor can have child elements with_element name specified by the “tag” attribute and
their number of occurrences specified by the~‘card” attribute. The m:attr child elements, if
any, also indicate the allowed attributes“and their value types. In addition, m:elem can be

declared recursively.

In other words, metaphors together form an ontology, or more precisely, multiple but
possibly overlapping ontologies within the VW. Depending on the situations, precise
semantics for a given ontology can also be defined in a foreign way. Metaphors can be
created to annotate other actual resources, or they can be the resources themselves. In fact, is
common to create metaphors to capture high-level concepts without explicitly describing their
semantics, and use them immediately to annotate other existing resources. Unlike schema
languages such as DTD and XML Schemas, metaphors mix meta-descriptors, links, and data
contents together. Our goal is to confine ourselves to a subset of well-formed XML elements
that are simple, sufficiently expressive, extensible, yet easy to check for consistency and

validity. Therefore, we do not follow existing ontology languages such as RDF and OWL.

To illustrate the use of metaphors and schemas, consider a CASE environment we
developed based on Eclipse. One of the core functionalities of the CASE environment is to

support flexible design annotation: developers can create metaphors to annotate other

resources. Consider a scenario in which a developer wishes to document the design patterns
used in his/her design, which may be embedded implicitly in the implementation source code.
Suitable schemas can be created for various design patterns, respectively. The example below

shows a possible schema definition that characterizes the Abstract Factory pattern [8].

<AbstractFactory m:uri="/pattern/AF">
<m:rel tag="factory" type='/java/AbstractClass"/>
<m:rel tag="product" card="1..*" type="/java/lnterface'/>
<m:rel tag="concreteFactory" type="/java/AbstractClass"
<m:rel tag="concreteProduct" card="*" type="/java/Class'/>
</AbstractFactory>

The example below shows an application of the Abstract Factory pattern that conforms to

the schema defined previously:

<myGUI>
<m:is m:uri="/pattern/AF"/>
<factory m:uri="/proj/src/gui/Factory.java"/>
<product m:uri="/proj/src/gui/Widget.java"/>
<product m:uri="/proj/src/gui/ScrollBar.java'/>
<product m:uri="/proj/src/gui/Button.java'/>
<concreteProduct m:uri="/proj/src/gui/ms/ScrollBar._java"/>
<concreteProduct m:uri="/proj/src/gui/ms/Button.java"/>
</myGUI>

The example above is simple-minded. because inconsistency can occur. However, for
documentation purpose it suffices and the user is responsible of ensuring the consistency. On
the other hand, more sophisticated schemas! can.be-designed to fix potential conflicts, by
introducing additional schemas. /Also, mare sophisticated GUIs to help developers create and

maintain schemas and annotations can-be supported.

As mentioned previously, there are Some common protocols containers need to support.
Here, specifically, all containers need to reply the metaphors of the resources they manage.
Accordingly, it is straightforward for people to publish their own ontologies for the problem
domains that concern them. On the other hand, public ontologies can also be created and
maintained on a community basis so that containers or service developers joining the same

community can interoperate and communicate.

4.2. A Component Model for Resource Composition

Because service composition is done through metaphor composition, our architecture
serves not only as a distributed computing platform but also as a global software development
environment. Because metaphor syntax and semantics are domain- and container-specific,
there is no restriction about how services should be instantiated, assembled, or managed,
except that the containers perform these tasks based on the semantics intended by the

metaphor designers. This feature is essential to fulfill the requirement that the platform can

10

support users of varying degree of skills. However, reusability and interoperability can be
compromised when, for example, multiple, overlapping but incompatible languages are

created.

What we want is a virtual component assembly platform that promotes component reuse.
We adopt a component model that “encourages” manager-worker separation by ensuring that
components are workers who concentrate only on the work they are designed for without
worrying about how their supporting “colleagues” are created and accessed — all these tasks
are the responsibility of the manager, thus making components more focused and reusable. As
shown in Figure 2, a component is encapsulated inside its interface through which clients can
interact with. The interface can further be divided, at least conceptually, into primary and
customization interfaces. The former represents primary function the component provides,
while the while the latter is used for configuration purpose before or when the component

becomes functioning.

Note that the notion of component.israbstract and is applicable not only to individual
services, but also to groups of services. Ascomposite component can be modeled as a set of
collaborating services. Accordingly; the internal of a component is also divided into two
parts — the subcomponents being-used, and‘the connecting substance among these components.
Naturally, we refer workers to the former while‘managers to the latter. Workers are well

encapsulated and unaware of the actual functionality of the containing component.

Mmanaae

Interface

workers

Figure 2. An abstract component model

To illustrate service composition and templates, consider a simplified file browser that

11

consists of basic components FileSystem, FileTreeView, and FileView. Related templates are

given below:

<FileSystem.tmpl m:uri="/fs/FileSystem.tmpl”>
<m:is m:uri="/fs/FileSystem'"/>
<m:is m:uri="/java/JavaObject'/>
<class name="fs_FileSystem'/>
<m:rel tag="root" m:uri="/java/File"/>
</FileSystem._tmpl>
<FileTree.tmpl m:uri="/fs/FileTree.tmpl”>
<m:is m:uri="/fs/FileTree'/>
<m:is m:uri="/gui/GuUl"/>
<m:is m:uri="/java/JavaObject"/>
<class name="fs.FileTree'/>
<m:rel tag="filesys" m:uri="/fs/FileSystem"/>
</FileTree.tmpl>
<FileView.tmpl m:uri="/fs/FileView.tmpl”>
<m:is m:uri="/fs/FileView'/>
<m:is m:uri="/gui/GUl"/>
<m:is m:uri="/java/JavaObject'/>
<class name="fs_FileView"/>
<m:rel tag="fileSys" m:uri="/fs/FileSystem"/>
</FileView.tmpl>
<Layout.tmpl m:uri="/gui/Layout.tmpl”>
<m:is m:uri="/gui/GUl"/>
<m:is m:uri="/java/JavaObject'/>
<class name="'gui.LayoutService"/>
<m:elem tag="layout'>
<m:attr name='style" type='String'/>
</m:elem>
</Layout.tmpl>

Templates can be defined by-«developers or experienced users, even during run time.
Once accepted by the container; Instances of templates can be created. To compose a file
browser at run time, for example; the following metaphors need to be created in proper places

and conform to the templates stated aboye:

<fileBrowser m:uri="/user/fileBrowser’’>
<m:is m:uri="/gui/Layout.tmpl'/>
<layout style=""hsplit'>
<left m:uri="_./fileTree'"/>
<right mzuri="_/fileView"/>
</layout>
</fileBrowser>
<fileTree m:uri="/user/fileTree”>
<m:is m:uri="/fs/FileTree.tmpl"/>
<filesys m:uri="_/fileSystem"/>
</fileTree>
<fileView m:uri="/user/fileView’>
<m:is m:uri="/fs/FileView.tmpl"/>
<filesys m:uri="_/fileSystem"/>
</fileView>
<fileSystem m:uri="/user/fileSystem”>
<m:is m:uri="/fs/FileSystem._tmpl'/>
<root m:uri="./root"/>
</fileSystem>

The composition example above only instantiates components and arrange the layout of
the GUI ones. There is no connection among components. In this example, what is needed is
that selection of a tree node in the FileTreeView component should cause the included
FileView component to read data from FileSystem and display it. To achieve the goal, some
rule-based composition logics can be supplied. For example, the instantiation of FileTree

above is augmented with such rules, which essentially say that whenever FileTree responds to

12

change of selection from the user, it will issue a metaphor event (of some type published
elsewhere), and the rule-based composition simply pattern matches the event and issue

commands to other components.

<fileTree>
<m:is m:uri="/fs/FileTree.tmpl"/>
<filesys m:uri="_./fileSystem"/>
<env name="fview" m:uri="_./fileView'/>
<events>
<rule>
<if>
<valueChanged>
<file path="@path" folder="true"/>
</valueChanged>
<rw:call name=""fview'>
<setText>This is a folder</setText>
</rw:call>
</if>
<ok/>
</rule>
<rule>
<if>
<valueChanged>
<file path="@path"/>
</valueChanged>
<rw:ctx name="fview'>
<viewFile path="@path"/>
</rw:ctx>
</if>
<ok/>
</rule>
</events>
</fileTree>

Without going further into r-‘_"- te ot the syntax and semantics of the composition

format, which is application- lon a ‘ Figure 3 shows the result of such

[E](=1]e3]

LayoutService

[test2.bd

This is text 2.

Figure 3. A file browser example

13

Chapter 5. Case Study: An e-Science Workbench

We have been developing an e-Science workbench as a proof of concept for the VW goal.
The system is part of our efforts to develop a service-oriented infrastructure uniting
heterogeneous, disparate computing resources across the Internet. The initial goal of the
e-Science workbench is to develop a service-oriented version of an existing Matlab-based
data analysis toolkit used by the Brain Research Center of NCTU. In the beginning, a
single-machine version is developed. The required computing resources include Matlab [9]
for its basic computational support as well as the toolbox EEGLAB [10] developed by UCSD.
To wrap the Matlab computing power, as our implementation is Java-based, we use the

open-source library, JMatLink [11], to work between the container and the Matlab engine.

5.1. The Workbench Architecture

The architecture of the e-Science!workbeneh is depicted in Figure 4. As shown in the
figure, one important objective of:the system is to support multiple types of user interfaces for
users to access the same set of-resources and to perform flexible, dynamic service access,

customization and composition.

VOS Core

Figure 4. An e-Science workbench overview
Behind the user interfaces are a set of collaborating containers hosting various types of

computational and storage resources. Although the containers form a P2P network, each

14

container may provide different set of resources. That is, each container may allow its user to
define and create new resources in a way depending on the available administration interfaces

provided by the container.

More complex analysis flow can be grouped into workflows in the e-Science workbench,
and the processing logic can be performed by some workflow engine services. Workflows are
in fact an important form of composition (i.e. process-oriented composition), especially in

business context.

A workflow consists of multiple tasks that are interrelated with each other via control
flow and data flow, in a form similar to common programming languages. In our case,
workflows are expressed as XML documents with corresponding run-time workflow services.
The enactment of a workflow is encapsulated in a process that contains the workflow instance
and a scheduler, in which the process is responsible of maintaining the progress of the
workflow while the scheduler decides which task processor a task is assigned to whenever the
task is ready for processing. All theseselements, that is, workflows, workflow instances,
processes, schedulers and task processorssaresresources with corresponding metaphors in our

system. A simple echo process is-illustrated as-follows:

<echo.proc>
<m:is m:uri="//meta/java/JavaObject'/>
<m:is m:uri="//meta/service/Process"/>
<class name="cclab.grid.core.GridProcess'/>
<flowlnst m:uri="./echo"/>
<scheduler
m:uri="/bci/test.ps/go/grid/scheduler/simple.scheduler'/>
<m:child name="echo">
<echo.fi>
<m:is m:uri="/task/Flowlnstance"/>
<flow m:uri="/bci/test.ps/go/taskflow/test/echo.flow"/>
<var name="x" type="int" value='"1000"/>
<var name="z" type="int" value='"3000"/>
</echo.fi>
</m:child>
</echo.proc>

Note that what the metaphor states is that when the container interprets the resource and
recognizes that it is a type identified with URI *//meta/java/JavaObject”, it can instantiate a
Java object — the service associated with the resource — using the class named
“cclab.grid.core.GridProcess” obtained from the metaphor content. The metaphor identified

by “//meta/java/JavaObject” is also shown below:

<JavaObject>
<m:elem tag=''class'>
<m:attr name="hame" type="'String'/>
</m:elem>

</JavaObject>

15

When the service associated with the echo process resource is created, it needs two
component services; namely, the flow instance and the scheduler, which are indicated below.
The flow instance in turn requires a workflow. All the references are represented as related

URIs.

<simple.scheduler>
<m:is m:uri="//meta/service/Scheduler"/>
<m:is m:uri="//meta/javas/JavaObject'/>
<class name="cclab.grid.scheduler._SimpleScheduler'/>
<grid m:uri="._/test.grid"/>
</simple.scheduler>

<echo.fi>
<m:is m:uri='"/task/Flowlnstance"/>
<flow m:uri="/bci/test._ps/go/taskflow/test/echo.flow"/>
<var name="x" type="int" value='"1000"/>
<var name="y" type="int" value='"2000"/>
<var name="z" type="int" value='3000"/>
</echo.fi>

<echo.flow>
<m:is m:uri='"/task/Flow"/>
<fFlow>

<task type=""/task/type/EchoTask'>
<processor m:uri="bci/test.ps/go/grid/processor/a'/>
<bind name="in" var="x"/>
<bind name="out" var="y"'/>

</task>

<task type="/task/type/EchoTask'>
<bind name="in" var="y"/>
<bind name="out" var="z"/>

</task>

</flow>
</echo.flow>

As also being indicated above, a workflow may contain several tasks that are mutually
related. Each task in the echo workflow above is associated with a task type that contains a set
of parameters bound to the workflow’s variable, and each of these parameters can be an input
parameter, output parameter, or in-out parameter. You can assign a task processor for each
task in the workflow, or a scheduler will assign one automatically according to its internal

scheduling policies and algorithms.

Figure 5 shows the class diagram describing our implementation of the task type. In short,
new task types can be created as Java classes that implement the ITaskType interface.
Metaphors denoting these task types can be created afterwards and referenced in flows.
Whenever a task is ready to proceed, the task type (service) will take all the input (XML)
parameters passed from the process, process the inputs, and return (XML) outputs back to the
process. The bindings of flow variables with the input/output parameters are indicated in the

flow and handled by the process.

16

ITaskType IParam

*
. name: St_ring
type: String
I Task mode: in, out, inout

Figure 5. Tasks and task types.

5.2. Console User Interface

The text-based console interface is in fact the required interface because it permits many
advanced and privileged management tasks, such as the creation of metaphors. To illustrate
the use of the console, we consider an experiment that uses single-trial event-related potential
(ERP) to recognize different brain potentials with five degrees of drowsiness. We will show
how to design a resource relative to_a.function in the experiment with metaphor and its

interpreter and then use workflow to compesite.the resource to perform the entire experiment.

With the support of JMatLink-we can already perform the function of the experiment
mentioned above, if we know the exactly-correct command format for the function. But this
will not be an acceptable and user-friendly user interface. With the workbench, we need to
design metaphors for this basic function to increase reusability and user friendliness. Consider
a basic function, called “loadset”, that is provided by EGLAB. Through JMatLink, the

function can be invoked in Java as shown below:

JMatLink engine = new JMatLink();
engine.engOpen();
engine.engEvalString(“EEG = loadset(...);");

To incorporate EEGLAB’s “loadset” function into our system, for example, we would
like to have a service that handles requests in terms of XML (i.e. using XML as the standard
message format) and translates them in the form recognized by JMatLink. A simple metaphor

can be defined for the purpose:

<Loadset>
<m:is m:uri="//meta/javas/JavaObject'/>
<class name="eeglab.Loadset”/>
</Loadset>

Whereas the Loadset class implementation is given below:

public class Loadset implements IMetaphorService

public IMetaphor process(IMetaphor m) {
it (Im.isTag(“loadset”)) return null;

17

JMatLink engine = ...; // get engine service elsewhere
String cmd = convertCommand(m);
engine.engEvalString(cmd);

return Metaphor.OK;

In this case, the Loadset service can interpret input messages and dispatch them to the
Matlab engine. Note that we also use metaphors to represent XML messages in our

implementation, and services that process metaphors are modeled as IMetaphorService.

The metaphor and service above represent one of the resources managed by the container.
How to access these resources depends on the available clients, which themselves can also be
services managed by the container. For example, below is a “command-line” control service

that serves as a client to invoke other resources.

<loadset>
<m:is m:uri="/bci/core/EEGLabControl"/>
<command tag="'loadset"/>

<m:is m:uri="//meta/javas/JavaObject"/>
<class name="cclab.matlab.eeglab.ctrl.LoadsetControl"/>

<commandTemplate command=""loadset"'>
<loadset path="Path_Arg'/>
<Path_Arg>
<prompt label="Please inputsdata set;file path: "/>
<default type="String"/>
</Path_Arg>
</commandTemplate>
</loadset>

The control is among the other similar objects-managed by yet another console-based
command dispatcher. Specifically, the-dispatcher recognizes metaphors that have the type
"/bci/core/EEGLabControl” and includes the associated control object (here a
“LoadsetControl” object) into its own control pool. The dispatcher receives user’s requests as
plain texts (in console mode), translates them into metaphors, and dispatches them to proper
controls according to the filter information provided in the control metaphor. In the example
above, the “loadset” control will accept metaphors with tag <loadset> and interacts with the
user using a sequence of questions, as illustrated in Figure 6 below. It help user to complete
the required parameters for the loadset function.

o | WA IREFI - bash

~/proj/vos.cclab [503] amb
loadset

Please input cnt file path:

Figure 6. A simple console-based client

18

Similarly, we can design other resources/metaphors for the other functions needed in the
EEGLAB analysis process, and put these resources in a container named Matlab container.

Besides these, we need some other services for user to manage their resources.

To conduct an EEG signal data analysis, we first record the raw data from the instrument
first, and then send the data to a computer with higher computational power for processing.
Accordingly, we deploy our e-Science workbench in a distributed system that contains these
two kinds of containers: project containers that maintain raw and analysis data, and Matlab
container containing Matlab computing resources. As shown in Figure 7, all these containers
have a common core called VOS that serves as the coordination engines, and through the
console we can remotely control this container to perform actions. Interestingly, the VOS core
IS a resource tree that contains common definitions (metaphors) that are kept identical for

each container in our implementation.

Project containerl

Project container2 Matlab container

VOS core

/’i |
@\\ /
Figure 7. Deployment of our framework in a distributed environment

Through the console, we can manipulate the experiment process step by step manually.
Using the services supported by the project container, we can send data to and obtain data

from the Matlab container; using the services supported by the Matlab container we can

19

perform the analysis we need. In case the communication can be done through metaphor
exchange, as in our implementation, standard channels among these services can be
established. In case higher performance data transmission is required, special channels such

as FTP combined with data compression techniques can be used.

Besides running manually the complete entire experiment step by step, we can also group
required activities in a workflow and run it automatically. We break the analysis experiment
into separate tasks such that each task takes an input, processes the input, and produces the
output for the next task. As mentioned before, each task type can be defined and denoted as a
metaphor to be used inside workflows. For example, below shows a task type declaration for
the same “loadset” function described previously. Instead of being a function to be invoked
by other clients directly, here it becomes “asynchronous” in the sense that the workflow
engine should interpret such a task and invoke the “loadset” function at a proper time with

required input/output data.

<LoadsetTask>
<m:is m:uri="//meta/service/TaskType'/>
<m:is m:uri="//meta/java/JavaObject"/>
<class name="eeglab.LoadsetTasklype"/>
</LoadsetTask>

For illustration purpose, below we show-a simple workflow that includes the Loadset

task.

<loadset.flow>
<m:is m:uri=""/task/Flow"/>
<flow>
<var name="'loadset" type="String" default="."/>
<var name="'use_engine" type="String"/>
<task type="'_./LoadsetTask'>
<bind name="path' var="loadset'/>
<bind name="engine" var="use_engine"/>\
</task>
</flow>
</loadset.flow>

In this example, the overall flow requires two input variables that should be filled before
it is activated, and the information will be passed to the Loadset task accordingly. The
Loadset task will perform a call to the Loadset service described previously. The duty of
LoadsetTask is to collect the needed parameters for the relative function in EEGLAB and

send these information as metaphors to Loadset service for further process.

Figure 8 sketches a complete workflow that performs an ERP experiment for the study of

drowsiness.

20

Drowsiness ERP Flow

Load .set file

A 4

single trial

Extract drowsiness ||

A

<drowsnessERP. flow>
<m:is m:uri=""//vos.task/task/Flow"/>

A 4

Append datasets

A 4

<flow>
<var name = '‘path* type= "String“ />
<var name = “engine‘ type= "'String*“ />
<task

ERSP analysis

Run ICA type="vos://ip:port/./LoadsetTask">
x <bind name="path" var="path'/>
o . <bind name="‘engine' var="‘engine'/>
Divide into 5 </task>
different
v)
</flow>

</drowsnessERP. flow>

Figure 8. A'lERPrdata analysis flow

5.3. The Portal Interface

The operations described previously can all be performed through consoles, locally or
remotely, because what is needed is to interact with containers with proper metaphors. On the
other hand, another major goal of our system is to provide similar functionality through more
user-friendly, Web-based interfaces. For this purpose, we implement a portal interface using
Java technologies, i.e. JSR 168 [12] and WSRP [13] (Figure 9).

site that acts as a point of entry or a gate to a large system.

21

In general, a portal is a web

_ E) _
-
o Local
alg _|| Portlets
Clients-*E = =
§ Portal o
||| Server ||E
=
= £ Generic
— Portlet |[Internet/ WSRP
o Proxies [Intranet Services
Other e«
Portals| ‘é‘ | |

| Publish/Find Web Services (SOAP)
UDDI Registry

Figure 9. Enterprise Portal Architecture Using WSRP

As shown in Figure 9, a portlet is a Java-based web component that processes requests
from clients and generates dynamic markup fragments. The portal server here manages the
life cycle of portlets and aggregates markup fragment generated by portlets into complete
portal pages. Also, portlets are not directly bound to a URL. Instead, a client interacts with
portlets through a portal server. The markup fragments generated by portlets are not restricted
to HTML, but depend on what kind-of markup language supported by the browser used by the
client. For example, WAP phones 'typically. use WML while the well-known PC web
browsers use HTML. Java Specification-Request (JSR) 168 enables interoperability among
portlet and portal server. More and more portal vendor claim that their product is completed

compliant with JSR 168. As a result, more and more portlets can be reused again.

The WSRP specification is a product of the OASIS, and it enables interactive,
presentation-oriented Web services [4] to be easily plugged into standards-compliant portals.
The WSRP service in Figure 9 must implement the required interface defined in WSRP
standard, and generate markup fragment packaged in SOAP [5] message. A WSRP
standards-compliant portal can send clients’ request to WSRP services and aggregate markup
fragments from WSRP services through the common interface defined in WSRP. A typical
usage scenario is shown in Figure 10. In the figure, a WSRP producer contains WSRP portlets
in it, and performs the role WSRP services in Figure 9, and WSRP consumer is always a

portal server.

22

i
Registry

Discovery

-

WSRP consumer

Proxy portlet

Proxy portlet

Get markup

Publish

\

A\ 4

Markup fragment

A

WSRP producer

WSRP portlet

WSRP portlet

Figure 10. A typical usage scenario of WSRP

We choose Jetspeed2 from the Apache project (www.apache.org) as our portal server,

Root Falder *> Matlab

CCLab-ProjectManager

| _ccLab-imageviewer

image viewer portlet, the task flow viewer, the Matlab console, and the VOS console.

and we have already designed a set of portlets that provide a Web-based user interface for the
e-Science workbench. The whole portal page aggregated by the portal server is shown in

Figure 11. There are five portlets in this portal page, including the project manager portlet, the

(=16

=2a

i e eeglan

~» dERP.proc
echot.proc
proc-1172899188.proc
| proc-ep.proc

| procp.proc

processor

scheduler
taskflow
test
¥ menu

CCLab-TaskFlowViewer

P erp.jpg

‘Compsren 2 over ara Iner-na

Breve coremence (E53 Dam egocre)

ERSP @)

Submit Time
2006/08/28 23:55:50

2006/08/28 23:56:35

Proc Name
'_’.-; dERP proc

Diagram
show

(%) proc-epproc show

CCLab-VosConsola

Status
in progress |Cancel run »>

action

L L
sm 1m 15 am 2m
™ g

delete

Clear ImageViewer Panel

in progress |Cancel [run == €CLab-Matab console

[

Output
welcome to vos
> 1ls

proc

processor
scheduler

Cormmand :

Cutput
o] welcome to matlab

> a=[2,3,4;2,3,5]

a =
2 3 4
2 3 5

Command :

Disconnect

Figure 11. The portal page aggregated by the Jetspeed2 portal server

As shown in Figure 12, a user can modify the resource for the project container to add

23

some frequently used services as a menu item in project manager portlet. The image viewer
portlet gives an easy way for user to view the graphical results online. The task flow viewer
portlet shows a list of submitted jobs. The Matlab console portlet lets user access Matlab like
using Matlab in its console mode. Finally, the VOS console portlet lets us manipulate VOS

like what we did in previous section.

CCLab-ProjectManager E||
SR go =l
=M menn o .

& save matlab fig as image Load existing dataset

\ New Project Please input dataset file path:

Datasets

Bl File <test.ps>

5"'[“,T_Load exisi <m:is m:uri="/bci/core/ProjectStore"/>

E| Plot <m:is m:uri="//meta/java/JavaObject"/>

“g Component i <menu m:uri="/bci/core/tool/eeglab"/>

= Tools <menu m:uri="/bci/core/tool/newProject.ctrl"/>
[“ Extract epochl </test.ps>
g Run ICA

Figure 12. Adding:a menu.itemin the project container

In Figure 12, we add some frequently used function as a menu item for later use, which
also separates the function from the actual service. Take the EEGLAB function in Figure 13
as an example, you do not need to know where the service is, and you can simulate the

manipulation in EEGLAB environment in the portlet.

CCLab-EEGLab Window E|EI|
Tenu Status
=42 File fileMame basic.set

!u Load existing dataset Channel per frame |32
i Frame per epoch |30504

|I'I'I
=

di
E h 1
Tools poc -
Sampling rate{Hz) |128
Plot

Epoch start(ser) 0
Epoch end{sec) 238.3047

Figure 13. EEGLAB portlet

In a nutshell, we implement a resource manage system with WIMP (Window, Icon, Menu,
Pointer) style Web interface. That is, the interface provides a workspace that looks like
multiple directories of resources. These resources include data files, computing resources, and
other resources — some of which are in metaphor forms. Different resources may be

represented with different icons and associated with basic operations such as content viewing,

24

editing, or execution. More interestingly, menus can also be represented as metaphors and

interpreted by the container (and related portlets) to emulate the menu interfaces.

The portlet we access in portal server is only a user interface for transferring user’s
requests into metaphors that are acceptable by the back-end services, although the user
interface may provide additional help for user to construct such requests. The interface itself
does not record any user-specific information. However, each user is in fact associated with a

particular resource such that the user can get his own objects based on his/her identity.

When workflows are concerned, creating workflows and executing them are
straightforward. As described previously, one simply creates workflows as metaphors with
syntax prescribed by the container, and invoke them using the Web-based interface. The
workflow managing portlet will show a form for user to input all the needed arguments for the
workflow. We can see that some fields of the arguments have default values, which are
defined in the flow metaphor. The process with scheduler will be created afterwards, and will

be added into the task flow viewer portlet:for monitoring (Figure 14).

LCLab-ProjectManager [E|

TP g

New process and input the

required argument

MNew process of drowsnessERP-3store. flow
Scheduler Jbriftest. ps/go/grid/schedular/simple.sch

Proc Name proc-1888211775. proc
multiple-ste |/7v0s beiz/oci/task/type/CopyTask

drows source file path

lepoch.fl
loadset.f

destination file path
owerwrite file if exist no

/fvas.bei3/bciftask/type/CopyTask
Imergese |source file path

hunica.fl |destination file path

lselectcn-'l owerwrite file if exist ho
lt:imcfﬂo vos://vos. boisbeiftask/type/LoadsetTask

Ll Please input dataset path /bciftest.ps/go/test/fica.set
repoch. ’
IEQOE T use_engine Jbci/myEngine

vos: /fvos. boisboiftask/type/ExtractEpo ask
Time-lacking event tvpels?,
CCLab-TaskFlow Viewer

—
Proc Mame Diagram Submit Time Status action
(5] dERP.proc show 2006/08/20 01:34:38 | in progress |Cancel |run =

Figure 14. Use project manager portlet to control a workflow
The items in the task flow viewer means that the related process has been submitted, and

25

can be started anytime. We can obtain more information about the task flow by clicking the
process name in task flow viewer portlet. In this view of detail information (Figure 15), you
can run the task flow step by step and check if each task brings you a correct result. When
you run the entire task automatically, you still can check detailed information such as the
current status of the task flow. If the entire task flow needs more time to complete, you can

close the connection between you (the browser) and the portal without worrying about losing

your jobs.
back run transition == run task == refresh Cancel this flow
1 |begin Yar name alue
2 |String srcl = "/hei/erp.ps/drowsness/dataset; loadsetl Jbciftest.ps/go/l.set
2 |String desl = "//vos.bcifboiftest.ps/ogo/l.se; componentMumber |8
4 |String overwritel = "no": optionalArgument 'winsize',256,'padratio',2,'alpha’,0.01,'baseboot’, 1, 'erspmax', 6, 'itcmax', 0.2
5 |String srcz = "/boi/erp.ps/drowsness/dataset; preservelCaWweights/ino
6 |String des2z = "//vos.boifbei/test.ps/go/2.se; newhNamel 1226.5et
7 |String overwriteZ = "no'"; src2 /bciferp. ps/drowsness/dataset/s5_051214.set
5 |String loadsetl = "/bei/test.ps/go/l.sec”: timeRange2 -500 0
9 |String evencTypel = "251"; savel none
10|String epochLimitsl = "[-0.5 3.5]": overwritel no
11|String newlawel = "1226.set"; rejctionLimits2 none
12|String rejctionlimitsl = "none"; algorithm runica
13|String setNemel = "1226.3et"; nevwNamez 1214.set
14{Scring savel = "none": overwirtad no
15/String overwirtel = "yes"; setMame4 levell
16/String timeRangel = "-500 0"; eventTypel 251
17|3tring loadsetZ = "/bei/test.ps/go/2.set”: epochLimits1 [-0.5 3.5]
18/String eventType2 = "251"; linerCoher off
19/String epochLimitsz = "[-0.5 3.5]"; cmdOptions none
20/String newlNameZ = "1214.set"; saved none
21|String rejctionLimits2 = "none"; mergesets 1:2
22|String setNameZ = "1Z14.set"; bootstrapsL none
23|String saveZ = "none": srocl /bciferp. ps/drowsness/dataset/s5_051226.set
24/3tring overwirtez = "yes"; overwrite? no
2E|String timeRange2 = "-500 0" setName2 1214.set
26/String mergesets = "1:2'"; saved none
27|3tring preserveICilleights = "no™: epochLimits2 [-0.5 3.5]
o8|String serNamed = "merge.ser”; overwirtel yes
29|5tring save3 = "none"; sethamel 1226 st
30/String overwirted = "no': overwirte2 yes
z1/String algorithm = "runica": desl //vos.boifbeiftest.ps/go/l.set
3F2|Ftring cwdOptions = "none"; waveletCycles 3 0.5

Figure 15. Monitoring a workflow in action (debug mode)

We check the workflow status in Figure 15, but it’s not easy for users who are not
familiar with the program-like format. Actually the purpose of this view is to help a workflow
designer to debug step by step, who needs to monitor the statement in progress and check for

details immediately.

For ordinary people, they can check the workflow status in a diagram format as shown in
Figure 16. In the left we show the workflow structure as a tree for user to navigate easily. The
workflow diagram is shown in the middle and shows both variable block and tasks differently.
Finally, at the right-hand side are details of the flow variables which are bind to task for input

or output purpose.

26

CCLab-TaskFlowViewer

&

back

=% drowsnessERP.flow
w7 vars
H) par

=% CopyTask
bind :srel — from

bind :overwritel — overwrite
¢ [# bind :desl — to
=% CopyTask
[bind :src2 — from
% bind :overwrite2 — overwrite
bind :des2 — to
28 par
. 5§ LoadsetTask
[bind :loadset] — path
bind :use_engine — engine
| 2(% LoadsetTask
~[® Dbind :loadset2 — path
; [bind :use_engine — engine
& par
% ExtractEpochTask
% ExtractEpochTask
[AppendDatasetsTask
% RunlCATask
[© bind :cmdOptions — options
bind :algorithm — algo
bind -use_engine — engine
% SelectEventsTask
5 bind :setNamed — name

[& bind Jatency — latency

bind

@ hind -ovveranrted — averunite

4 — saveName

run transition s

run task ==

Cancel this flow

H

var :srcl

var :des1
var :overwrite1

var :src2

ask :CopyTask|
ask :CopyTask|

par

ask :LoadsetTask|
ask :LoadsetTask|

par

ask :ExtractEpochTask
ask ‘ExtractEpochTask

27

“ar name

Yalue

componentiumber

3

averwrite

yes

preservelCAWeights

no

optionalargument

‘winsize', 256, 'padratio’,2,'alpha',0.01,
'baseboot!,1,'erspmax’,6, ' itcmas', 0.2

timeRange2

-500 0

savel none
overwritel no

algorithm runica
newhlamez? 1226-st
averwirte3 no

setNamed levell
eventTypel 251
epochLimitsl [-0.5 3.5]
save3 none
save_path /bciftest.ps/go/test/erp.jpg
linerCoher off
hootstrapSL none

saved none
overwirtel yes
setNamel 1214-st

des1 wos://140.113.88.36:2011/boi/ 1214, set
waveletCycles 3 0.5
timeRange -500 3496
plotERSP on
eventTypez 251

save_dpi 60

latency 0<=763
plotITC on

loadsetz /bcif1226.set

use_engine

vos: //140,113.88.36: 2011/bci/myEngine

auerwirted no

des vos://140,113.88.36: 2011/boi/test.ps/go/
Erp.Jpg

loadsetl /bcif1214,set

save_precise 80

newhamel 1214-st

s wns: AA140. 11 3ARLAAR: 19N9/hniftrst.ns/nn s

flow in action

Chapter 6. Discussions and Related Work

Many concepts and technologies for VW as outlined previously are not new. Our goal is
to reconcile these different, sometimes mutually competing concepts and technologies into a
compact yet comprehensive computing model that satisfies the emerging collaborative
computing requirements. Without going into specific research work, in this section we touch
on some of the most relevant research areas and discuss their differences from ours at the
architecture level. Note that some of the points raised below are part of the future plan for our

system and are not realized yet in our system.

Virtualization has been one of the fundamental principles underpinning computer science
and information technology. The virtual machine concept has been formulated since the
invention of assembly and high-level languages. The Java technology, including the language
and the virtual machine standards, also attempts to lay down a uniform programming and
execution platform. The operating systems research is also another discipline that emphasizes
virtualization by establishing a: higher-level layer. of abstractions over the underlying
hardware resources. Modern researches on distributed: operating systems [14, 15, 16] further

attempt to virtualize heterogeneous hardware/software resources across the network.

Virtualization of distributed, heterogeneous resources is recently signified by the grid
computing [16-19] research and closely related peer-to-peer computing [20-25]. The goal is to
utilize otherwise idle computing resources by joining them into workhorses that approximate
super computers. Furthermore, the concept of virtual organization also stresses that the
primary emphasis is on effective utilization of distributed resources across organizational
boundaries while respecting the authority and policies of individual organizations. This is
what differentiates grid computing from distributed operating systems research. From a
slightly different angle, many P2P applications have been developed to connect multiple
machines for community sharing. P2P has two aspects, for heterogeneous resource sharing in
decentralized manner, and to provide resource sharing among end users through some form of

social network.

In contrast to these approaches most of which achieve virtualization by adopting a
bottom-up, layered architecture, i.e. by successively basing higher-level abstractions on the

layer below, our approach to virtualization is to standardize resource denotation scheme via

28

metaphors and the protocol for exchanging them. With the persistent, passive resources as the
basis, we attempt to build a syntactic infrastructure with some (limited) forms of syntax
checking at the global level, but leave actual interpretation of metaphors and the instantiation
of services open, and hope that the resulting infrastructure can hold a self-evolving

ecosystem.

One aspect that relates grid computing to our approach is the emphasis on the ubiquitous
Internet as the common backbone. The hour-glass model as campaigned by I. Foster that

underpins the Internet and the Web makes it possible that with simple and robust “waist”,

be it TCP/IP or HTTP/HTML, diverse applications from above or heterogeneous
hardware/software resources from below can converge and reused in a multiplying manner.
Take the Web for example, it is relatively cheap to establish a simple Web server, at least in
the first few years, and to make oneself visible in the Web. The relatively low entry cost has
helped propel the Web to what it is today. Our architecture is a straightforward extension
from the Web architecture, but with the explicit VW objective in mind. In some sense, the
simplicity principle is also behind the REST style‘Web services when compared to the more
“heavy-weight” Web Service standards stack, except that they are concerned with turning the

Web into an interoperability platform for software systems, not a VW.

Web Services is another movement that attempts to take advantage of the WWW by
basing XML-based message exchanges ‘on top of the ubiquitous HTTP protocol, so as to
enable technology-neutral interoperability among software systems. It is arguable that Web
Services concept is a combination of protocol-centric WWW architecture and earlier

distributed computing platforms such as CORBA.

However, Web Services is not another distributed computing platform. Similar to the grid
computing versus distributed operating system, the business world concerns, pragmatically,
that there are open standards that enable software systems in one company to communicate
with software systems in other companies without concerning which languages, technologies,
operating systems, and so on are internally used. Furthermore, business entities want to
automate cross-organization business processes as much as possible. From this perspective,
service composition plays the central role in the service oriented architecture, because the
traditional client-server model is no longer the main computing model for SOA, but instead

peer-to-peer collaboration among services.

29

One of the service composition approaches that receive most attentions today are
business process oriented standards such as BPEL [26] and CDL [27]. In this model, the
composition is usually described in a way similar to control flows in common programming
languages, and participating Web services are often modeled as servers that receive requests

and reply accordingly.

In contrast, our composition model via metaphor composition resembles hyperlinks in the
WWW architecture, and there is no standard composition language syntax or semantics
except some basic syntactic checks. Furthermore, existing composition standards often leave
service creation and management unspecified and to be filled by service providers. Although
the WSRF [28] family of specifications touch on some of the fundamental issues, in short,
these approaches are still technology-centric without considering the enablement of generic

virtual workbenches that help users create and maintain resources in a uniform manner.

Our approach to describing and interpreting resources via metaphors also provides a
composition framework that promotes,language-based, ontology-driven component reuse, in
the sense that new types of resources are conceived with corresponding languages defined and
interpreters developed. Specifically;-at the resource level, new resources can be created for a
given domain (generic or domain specific); in this case, custom, resource (type) specific
language syntax can be defined for the customization of individual resource (type). At the
container level, new communities or domainscan be created by equipping containers with
differentiating interpreters. The access interface to the container, the composition mechanisms,

and the corresponding assembly languages are all extensible.

Another issue that is closely related to service instantiation and management is
resource/service deployment. To enable sharing of services that are best executed in the user’s
local machine environment, some forms of binary deployment are needed. Deployment
mechanisms are also an active area that receives many research and development efforts.
Popular Web browsers, for example, often provide some plug-in mechanisms that download
executable resources such as Java Applets or Flesh applications and manage them behind the
scene. Other deployment mechanisms outside Web browsers are also common, such as the
plug-in management in the popular Eclipse IDE, or Java-based standard OSGi, or the Maven
project that streamlines software building process by acquiring required libraries across

network.

30

However, these deployment mechanisms focus on managing downloaded modules which
often depend on each other in a static way, and they are not designed for users to assemble
novel applications. In other words, deployment mechanisms are separated from component or

service composition frameworks, not to mention the VW requirements.

The recent Web 2.0 initiative as proposed by Tim O’Rielly in late 2005 has also
confirmed our VW vision. One aspect regarding these Internet applications are the relatively
limited roles their users can play. Whether the applications are based on n-tier or P2P
technologies, end users use services via interfaces prescribed by the application developer. To
put in another words, what will be available for end users to use depend indirectly through the
market mechanism, driven by multiple factors such as users’ or community need, research or
business innovations, or other strategic agenda behind companies and organizations. The
difference between blogs and personal web pages is the fact that the former provide hosting

capability, while the latter leave the aspect open.

Specifically, Web 2.0 is a term roughly:distinguishes the kinds of Web applications that
place end users - and the collaboration ameng. them - at the center. As mentioned before,
many Web 2.0 applications provide facilities for users:to contribute contents collectively, on a
community basis, in a way simiar to open-source projects where software artifacts receive

continuous inspection and modificationby the global community.

Nevertheless, there are still some significant differences between VW and Web 2.0
initiative. First, most Web 2.0 applications are still client-server architecture and focus on
Web-based interfaces, which is evidenced by the closely related AJAX technology that
concerns more fine-grained interaction between browser (web pages) and remote servers. In
our resource-oriented architecture, we abstract the acceptable protocols away without limiting
ourselves to Web-based interfaces. However, to encourage reuse and reduce fragmentation,
we also provide a canonical inter-container protocol that serves as the middle ground for end

users, service designers, and service “composers” in between.

Secondly, the Web 2.0 is essentially a set of guidelines about applications. The actual
forms can vary a lot, ranging from traditional Web-based applications to P2P ones, although
the underlying the infrastructure is still the Internet. Without a commonly acceptable but
higher-level infrastructure among them, the development cost remains high. Furthermore,

Web 2.0 does not consider too much about the assembly of third-party modules and argues

31

the irrelevancy of software deployment and evolution issues. However, whenever reusable
modules emerge and become commodities that people can use to assemble their own
applications, these unavoidable, transitional software engineering issues recur immediately.
Although many issues remain to be exploited, our resource-oriented architecture already
models the development, deployment, and assembly aspects in terms of resources, metaphors,

containers, and a canonical communication protocols among containers.

Research in coordination models and languages [29-31] distinguish between computation
and coordination, and propose languages with different coordination models. For example,
Linda provides a shared tuple space where computational processes can insert and retrieve
data using simple pattern matching rules. Compared to coordination languages, our approach
intends to complement existing application programming languages, and pays attention on
fundamental reusability issue as well as the flexibility and usability of customization interface.
VW can also be regarded as a kind of coordination model. In Linda, it is still the (distributed)
computational processes who determine the overall system behavior. In VW, in contrast,
computational processes are identified with hiérarchical URLs and concentrate on their

dedicated jobs and the overall system functionality may be reshaped by the coordinator.

32

Chapter 7. Conclusion

We have stated the VW vision towards a global collaboration environment with desirable
properties and requirements. The idea is essentially to extend the information sharing Web to
include software sharing, in a way even average people can contribute to the global village.
With so many valuable open source projects contributed by numerous developers and made
freely available to the public, it would save a lot of efforts if there are ways, even for
non-technical persons, to utilize these software resources by mixing and matching rather than
continuously re-inventing the wheel. Of course, there are far more obstacles than what we
have discussed in this thesis. Some of the major shortcomings discussed in this thesis include
the lack of standardized notion of resource and service instantiation and hosting — which is
partially due to the implied technical and security complexity. Another important issue is the
research and development of “bullet-proof” software engineering environment that even
non-technical persons can become productive, We have introduced the notion of virtual
workbenches but without further discussing.what it implies. Apparently, substantial efforts
are needed in order to make the workbench sufficiently intelligent, robust, self-diagnosing,
and self-healing. These kind of-developing environments are indeed being approached and
reflected in modern IDEs, but more work is needed when considering not just software
engineers but the rest. To think about it; there is essentially no difference between developers
creating software artifacts and Web 2.0 users creating simple diaries. The differences are the
skilled needed and tools involved, and together all participating persons and resources form
an ecosystem with collaboration, competition, coalition, and so on occurring in different part
of the VW.

We have proposed the metaphoric service-oriented architecture and establish necessary
foundation that may enable a universal development, deployment, and assembly platform
across distributed, heterogeneous resources. Specifically, we make explicit the description
format of resources and role of containers that are responsible of managing corresponding

run-time services associated with the resources.

We showed that dynamic service composition can be achieved though metaphor
composition, and demonstrated the validity of our approach using a functioning e-Science
portal that provides users with conventional desktop interface for resource management —

using the Internet as the computer.

33

Nevertheless, the step we take towards VW is just a beginning. As a universal IDE,
further research to ensure the robustness, consistency, and continuous evolution of the IDE as
a whole is necessary. A comparable IDE monitoring and ensuring development progress and
error handlings, 7/24, is not available yet. The framework we implemented so far requires the
developers to perform syntax checking from time to time. A sound foundation, for example,
rooted from configuration management technologies, but extended to the global level, is

needed.

Finally, we purposely leave the security issue unattended. Certainly, may be the most
important requirements for any distributed computing platforms are the support for security
and privacy. For example, the security issue is placed among the highest priority requirements
in the grid computing community. In this thesis, however, we focus more on the functional
aspects of VW and the corresponding infrastructure support for flexible composition of
distributed, heterogeneous resources. Security issues related to VW are considered future

work.

34

References

[1] Wikipedia - The Free Encyclopedia. http://www.wikipedia.org

[2] Tim O'Reilly, "What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software". http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/

what-is-web-20.html

[3] The myGrid Consortium, "myGrid: Middleware for in silico experiments in biology".

http://www.mygrid.org.uk/
[4] W3C, "Web Services Architecture”. http://www.w3.0rg/TR/ws-arch/
[5] W3C, "Simple Object Access Protocol (SOAP) ". http:// www.w3.0org/TR/soap/.
[6] W3C, "Web Services Description Language (WSDL) ". http://www.w3.org/TR/wsdl

[7] T. Berners-Lee, "Realising the Full Potential-of the Web", W3C notes. http://www.w3.org/
1998/02/Potential.html

[8] E. Gamma, R. Helm, R. Johnson, and J.-\Vissides,-Design Patterns: Elements of Reusable
Object-Oriented Software, Addison=Westey;1995.

[9] Matlab, http://www.mathworks.com/
[10] EEGLAB, http://www.sccn.ucsd.edu/eeglab/
[11] JMatLink, http://www.held-mueller.de/JMatLink/
[12] JSR 168, http://www.jcp.org/en/jsr/detail?id=168
[13] Web Service for Remote Portlet (WSRP), http://www.oasis-open.org/committees/wsrp/

[14] A.S. Tanenbaum and R. van Renesse, "Distributed Operating Systems"”, Computing
Surveys, Vol. 17, No. 4, December 1985, pp. 419-470

[15] S. J. Vaughan-Nichols, "Developing the Distributed-Computing OS", IEEE Computer,
Vol. 35, No. 9, September 2002, pp. 19-21

[16] J. Kubiatowicz and D. P. Anderson, "The Worldwide Computer: An operating system
spanning the Internet would bring the power of millions of the world's Internet-connected

PCs to everyone's fingertips"”, Scientific American, March 2002, pp. 40-47

35

[17] L. Smarr and C.E. Smarr, "Metacomputing”, Communications of the ACM, 35(6), (1992),
pp. 74-84.

[18] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual

Organizations”, International J. Supercomputer Applications, 15(3), 2001.

[19] lan Foster, "Service-Oriented Science", Science 6 May 2005, vol. 308, no. 5723, pp. 814 -
817.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A Scalable

Peer-to-Peer Lookup Protocol for Internet Applications”, IEEE/ACM Transaction on

Networking, vol. 11, no. 1, 2003, pp. 17-32.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A Scalable Content
Addressable Network™, Proc. ACM SIGCOMM, 2001, pp. 161-72.

[22] A. Rowstron and P. Druschel, "Pastry: Scalable, Distributed Object Location and Routing

for Large-scale Peer-to-peer Systems™, Proc. Middleware, 2001.

[23] Xiaohui Gu, Klara Nahrstedt, and Bin_Yu, “SpiderNet: An integrated peer to peer service
composition framework”, 13th _IEEE International Symposium on High-Performance
Distributed Computing (HPDC-13), 2004.

[24] Pitoura, E., S. Abiteboul, D." Pfoser, G. Samaras and M. Vazirgiannis, "DBGlobe: a
Service-oriented P2P System for Global"Computing”, SIGMOD Record 32, 2003.

[25] P Maheshwari, S Kanhere, N Parameswaran, "Service-oriented middleware for
peer-to-peer computing”, Proceedings of the 2005 3rd international conference on
industrial informatics IEEE, Piscataway, NJ, 2005, pp. 98 — 103.

[26] R. Khalaf, N. Mukhi, S. Weerawarana, "Service-Oriented Composition in BPEL4WS",
World Wide Web Conference, 2003. http://www2003.0rg/.

[27] W3C, Web Services Choreography Working Group. http://www.w3.0rg/2002/ws/chor/
[28] WSRF, OASIS Web Services Resource Framework TC, http://www.oasis-open.org/

[29] P. Ciancarini, "Coordination models and languages as software integrators”, ACM
Computing Surveys, 28(2), June 1996, pp. 300-302.

[30] D. Gelernter, "Generative communication in Linda", ACM Transactions on Programming
Languages and Systems, 7(1), Jan. 1985, pp. 80-112.

36

[31] D. Gelernter and N. Carriero, "Coordination languages and their significance",
Communications of the ACM, 35(2), Feb. 1992, pp. 97-107

37

	摘要
	ABSTRACT
	誌謝
	Table of Contents
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Universal virtual workspace
	Chapter 3. An abstract service-oriented architecture
	Chapter 4. Metaphors for resource modeling and composition
	4.1. Metaphor Format
	4.2. A Component Model for Resource Composition

	Chapter 5. Case Study: An e-Science Workbench
	5.1. The Workbench Architecture
	5.2. Console User Interface
	5.3. The Portal Interface

	Chapter 6. Discussions and Related Work
	Chapter 7. Conclusion
	 References
	Figure 1. A service-oriented architecture
	Figure 2. An abstract component model
	Figure 3. A file browser example
	Figure 4. An e-Science workbench overview
	Figure 5. Tasks and task types.
	Figure 6. A simple console-based client
	Figure 7. Deployment of our framework in a distributed environment
	Figure 8. A ERP data analysis flow
	Figure 9. Enterprise Portal Architecture Using WSRP
	Figure 10. A typical usage scenario of WSRP
	Figure 11. The portal page aggregated by the Jetspeed2 portal server
	Figure 12. Adding a menu item in the project container
	Figure 13. EEGLAB portlet
	Figure 14. Use project manager portlet to control a workflow
	Figure 15. Monitoring a workflow in action (debug mode)
	Figure 16. Monitoring a workflow in action

