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摘要 
 

平行式干擾消除法乃是針對直接序列碼分多重擷取系統一簡單而有效之多用戶

偵測器。然而其效能表現可能因前幾階不可靠之干擾消除而降低，因此就有部分

平行式干擾消除法的發展，此法乃利用部分消除因子來控制欲消除之干擾量，而

提高系統效能。雖然部分消除因子佔有關鍵地位，然其完整的最佳解尚未有深入

探討。本論文重點即在於針對不同形式之部分平行式干擾消除法，求得其最佳消

除因子值，並進行效能分析。在論文的第一部份，吾人考慮一個二階式軟決策部

分平行式干擾消除接收機，利用最低位元錯誤率的條件，吾人導證出完整的部分

消除因子解，其中包括了週期碼、非週期碼系統，並適用於白高斯通道，與多重

路徑通道。實驗結果顯示，經由理論求得之最佳部分消除因子值與實際值相當接

近。此利用最佳部分消除因子值之二階式部分平行式干擾消除法不僅優於二階全

平行式干擾消除法，亦優於三階全平行式干擾消除法。在論文的第二部分，吾人
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分析二階適應性盲蔽型硬決策部分平行式干擾消除法。在此架構中，經調適過而

被用作最佳消除因子之權重值，乃是由最小均方理論訓練而得。吾人推導出最佳

權重值、權重值之平均誤差、及其均方差值。根據這些理論結果，吾人得到每個

使用者之輸出信號均方差及位元錯誤率。步階值在最小均方理論的收斂行為中，

扮演著關鍵角色，對部分平行式干擾消除法的系統效能也影響甚鉅。藉著所推導

之輸出信號均方差，吾人可以求得最佳步階值。在論文的最後一部份，吾人針對

適應性盲蔽型硬決策部分平行式干擾消除法，提出一改善方法，其主要概念在於

減低最小均方理論中所訓練之權重值的數目，並且進行權重值之後續濾波處理，

使得最終多餘的均方差能因此減低。吾人也推導改良理論之輸出均方差與位元錯

誤率。實驗結果證實所提出之改良理論表現優於傳統部分平行式干擾消除法，而

理論分析結果也相當準確。 
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Abstract

Parallel interference cancellation (PIC) is considered a simple yet effective multiuser detector

for direct-sequence code-division multiple-access (DS-CDMA) systems. However, its perfor-

mance may deteriorate due to unreliable interference cancellation in the early stages. Thus, a

partial PIC detector in which partial cancellation factors (PCFs) are introduced to control the

interference cancellation level has been developed as a remedy. Although PCFs are crucial,

complete solutions for their optimal values are not available. In this dissertation we focus on

the determination of optimal PCFs and performance analysis for various partial PICs. In the

first part of the work, we consider a two-stage soft-decision partial PIC receiver. Using the

minimum bit error rate (BER) criterion, we derive a complete set of optimal PCFs in the sec-

ond stage. This includes optimal PCFs for periodic and aperiodic spreading codes in additive

white Gaussian channels and multipath channels. Simulation results show that our theoretical
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optimal PCFs agree closely with empirical ones. Our two-stage partial PIC using derived opti-

mal PCFs outperforms not only a two-stage, but also a three-stage full PIC. In the second part

of the work, we analyze the performance of a two-stage adaptive blind hard-decision partial

PIC. In this scheme, the adapted weights serving as optimal PCFs are trained using the least

mean square (LMS) algorithm. We derive the analytical results for optimal weights, weight

error means, and weight error variances. Based on these results, we also derive the output mean

square error (MSE) and BER for each user. The step size known to be a critical parameter in

the LMS algorithm controls the LMS convergence behavior and partial PIC performance. Us-

ing the output MSE criterion, we can then optimize the step size. Simulation results indicates

that our analytical results can well match with empirical ones. In the final part of the work,

we propose an improved adaptive blind hard-decision partial PIC and analyze its performance.

The main idea is to reduce the number of active weights in the LMS algorithm and to perform

weight post filtering such that the resultant excess MSE can be reduced. We also derive the

output MSE and BER for the proposed algorithm. Simulation results verify that the proposed

algorithm outperforms the conventional partial PIC approach and analytical results are accurate.
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Chapter 1

Introduction

§ 1.1 Background

Since G. Marconi first used radio for wireless communication in 1897, many new methods

have been developed. In the 1960s and 1970s, Bell Laboratories developed the cellular concept

in wireless communication systems. At the same time, the semiconductor industry has also

experienced enormous progress such that design and manufacture of low-cost radio frequency

devices appeared feasible. These result in the today’s exponential growth in cellular radio and

personal communication systems throughout the world. As known, the most critical resource

in wireless communication is the spectrum. In order to support as many users as possible on

a limited spectrum, multiple access techniques have been developed. The progressive multiple

access schemes also witness the development of the advanced techniques, which raises to deal

with the increasing demands for both voice and data service, accompanied by the performance

guarantee under diverse environments and stringent device specification.

The first-generation (1G) mobile cellular system was developed in early 1980’s and de-

ployed in mid 1980’s. The 1G system used the frequency division multiple access (FDMA) as

the multiple access scheme. The well known standards include the advanced mobile phones

system (AMPS) in the United States, the total access communications system (TACS) in Eu-
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rope, and the NTT system in Japan. Due to the use of the cell structure, frequencies can then be

reused and handover among cells is required between cells. In the 1G era, the service content

consists the voice data only. The rapidly increasing demand for higher system capacity has

soon pushed the development of an improved system, the second generation (2G) system. The

2G system claimed to support at least three-folded capacity than the 1G system. Most of 2G

systems adopted time division multiple access (TDMA) as the multiple access scheme. The

scheme uses non-overlapping time-slots to transmit data of different users. Since more users

can use the same frequency band, its efficiency is higher than the pure FDMA systems. Since

then the cellular system becomes digital, and the advanced signal processing techniques, such

as the voice compression, error control coding, and encryption, were incorporated. The repre-

sentative standards are the IS-136 in the United States and the GSM in Europe. Specifically, the

GSM system enjoys a great success. At the end of 2003, the GSM system has a total subscribers

over one billion in more than 170 networks over the world. In additional to the aforementioned

capacity advantage, the 2G communication system also provides low-rate data services. It uses

voice activity detectors and insert data in the unused slots. This enables the packet-based data

services, such as e-mail and internet browsing. Typical standards include generation packet

radio service (GPRS) and enhanced data rate for GSM evolution (EDGE). Yet, there is another

2G system that uses a totally different multiple access scheme, the code division multiple ac-

cess (CDMA) [1]. In conventional multiple access methods, the transmission is partitioned into

dedicated channels in frequency and/or time domain such that the interference among users can

be avoided. In the CDMA system, however, orthogonal codes are used as the user signatures.

These codes, when transmitted, occupy the same frequency band and same time period. The

CDMA belongs to the spread spectrum communication technique and its required bandwidth

is wider than the TDMA system. Conventional CDMA systems were used in military applica-

tion since it has the advantages of high tolerance for jamming or unintentional interference, as

well as low detectability [2]. The major advantage of commercial CDMA is to provide higher

capacity (than TDMA and FDMA). The first commercial CDMA system was developed by

2



Qualcomm and referred to as the IS-95 in United States.

Although the 2G system can support data service, its data-rate is low. As a result, the

third-generation (3G) standard, which is supposed to supply a transmission rate of 2M bits per

second, were developed. It turns out that most standard bodies chose CDMA as the multiple

access scheme. This includes cdma2000, WCDMA, and TD-SCDMA [3]. As mentioned, in

CDMA all users share the same frequency bands and time slots, and thus the main factor lim-

iting the system capacity is the interference from other users. Hence suppression of cochannel

interference becomes a major challenge for CDMA systems. The major distinction between

CDMA and other multiple access schemes is the virtual code space in which users can be iden-

tified when sharing the same time slots and frequency bands. There are two major classes of

spreading codes utilized in the CDMA system based on the correlation property between codes.

The first class is the orthogonal codes, which are Walsh codes in general. The other class be-

longs to the pseudonoise(PN) code. When Walsh codes are used, there will be no interference

between users. However, there are several reasons for which the PN codes are preferred in

real-world applications. Firstly, the number of Walsh codes is limited (the number of active

users is limited). Secondly, the orthogonal property only holds in synchronous transmission

and additive white Gaussian noise (AWGN) channel. In the uplink transmission or multipath

environments, code orthogonality can not be hold. The PN sequence has the property that the

normalized auto-correlations equal ���� for all time lags, where � is the processing gain.

This makes the receiver more robust to the coherent interference in multipath environments.

Although the CDMA receiver inherently has the interference suppression property, however, as

the user number increases, interference (due to non-orthogonal codes) becomes stronger and

stronger. The performance is then degraded accordingly. The interference from other users is

generally referred to as multiple access interference (MAI). In order to combat the MAI, some

signal processing techniques have been proposed and these include

� Source and channel coding / interleaving

� Spatial-temporal signal processing
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� Multiuser detection

This dissertation focus on the third one, the multiuser detection (MUD) algorithms.

§ 1.2 Multiuser Detection

The significant progress of the MUD development was due to the work of S. Verdu. He pro-

posed a multiuser receiver utilizing the maximum-likelihood criterion [4] and showed a great

performance enhancement. However, He also showed that the computational complexity grows

exponentially with the user number. The high computational complexity adversely affects its

real-world applications. Thus, a variety of low-complexity suboptimum receivers were then

proposed [5]-[7],[8].

The first category of suboptimal receivers is the linear receiver. It performs MUD through a

linear transformation of the matched filter outputs. The rationale behind this approach is simi-

lar to that of equalization in TDMA systems [9]. The decorrelating detector (or decorrelator),

being a linear receiver, uses the correlation matrix inverse as the transformation matrix [10].

It can completely eliminate the MAI and achieve the near-far resistance close to the optimal

receiver. Another feature of the decorrelator is that the algorithm does not require the receive

signal powers (for each user) nor the noise variance. However, it may enhance noise and thus

the performance is degraded when signal to noise ratio (SNR) is low . The linear minimum

mean square error (LMMSE) detector, an improvement to the decorrelator, gives a compro-

mise between interference suppression and noise enhancement [11],[12]. Leveraging the linear

property, the linear receivers lends the performance analysis feasible [10],[13], [14]. Although

the linear approaches are much more simpler than the optimal one, they may require matrix

inversion operations. The computational complexity is on the order of 
�� � where � is the

user number. In [15] and [16], iterative algorithms, which do not require matrix inversion, were

proposed to obtain the decorrelator and linear MMSE receivers. These iterative methods were

shown to have a close relationship with the soft-decision interference cancellation methods that
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will be described later. The other strategy reducing the complexity of these detectors is the use

of adaptive algorithms, which includes the least mean square (LMS) algorithm [17],[18], [19]

[20], the recursive least square (RLS) algorithm [21], and the Kalman filtering algorithm [22].

In addition to the aforementioned linear detectors, another category of interest is the subtrac-

tive type multistage interference cancellation method. Cancellation of this type involves only

vector operations making it a good candidate for real-world implementation. For a particular

desired user, the subtractive-type canceller estimates interference from other users, regenerates

it, and cancels it from the received signal. This canceller is usually implemented with a mul-

tistage structure. The temporary data decision for a stage is obtained from its previous stage.

The successive interference cancellation (SIC) cancels interference from other users one by

one [23],[24],[25], while the parallel interference cancellation (PIC) cancels it all at one time

[26], [27], [28]. A hybrid of PIC and SIC is also possible [29]. To have best performance,

signal power ranking is necessary in SIC. The strongest user usually has lowest probability of

decision errors and cancellation of its interference gives the most significant result. For these

reasons, SIC works well where users have unbalanced powers. However, SIC requires addi-

tional complexity for power ranking and the longer processing delay. By contrast, PIC cancels

the interference disregard to the interference power distribution and is more suitable for power-

balanced systems.

As mentioned, the subtractive-type of MUD estimates the interference from other users and

then subtract it from the received signal. Each interference estimate involves bit estimation and

spread signal regeneration. According to how the transmit bits are estimated, an interference

cancellation algorithm can be classified as linear or nonlinear [30], [31], [32], [33]. For each

stage, the simplest bit estimate is the soft-decision operated on the previous stage output (for

each user) [34], [30], [35]. This bit estimate gives a linear receiver. It has been shown that

the soft-decision PIC (SPIC) can converge to the decorrelator when the number of stage is

infinite [32]. In practice, a two-stage SPIC may approximate the decorrelator well [37]. Due

to the linear property, we can use the Gaussian approximation [38] or an improved Gaussian
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approximation [34] to carry out SPIC performance analysis. The analysis was extended to

include the scenario when the timing and phase errors were present [39]. Although simple,

some undesirable properties were reported that the SPIC may perform worse than the matched

filter when the correlation between user signals exceeds a certain threshold [40]. The analysis

for SIC can also be found in [25].

The other commonly used bit estimate is the hard-decision. In this approach, channel infor-

mation is generally required. The hard-decision PIC (HPIC) was investigated in [26], [41], [42]

while the hard-decision SIC was investigated in [64]. The HPIC operated in a multipath fading

channel was considered in [43],[44]. Theoretical analysis for this type of interference cancel-

lation appears more complicated due to the non-linear decision operation. A two-stage HPIC

was analyzed in [45]. Other performance criteria such as the signal-to-interference-noise-ratio

(SINR) or the capacity were discussed in [46]. The decision function is not limited to be soft or

hard. In [47], the hyperbolic tangent function was used as the decision function. This function

can reflect the reliability of interference estimate more faithfully. Note that the hard-decision

and soft-decision functions are special cases of the hyperbolic tangent function. The null-zone

decision function was also studied for PIC [48], [49] and SIC [50]. Other decision functions

can be found in [31], [51].

One problem in the PIC approach is that the interference estimates may not be reliable in

early stages. In other words, interference cancellation does not necessarily reduce interference.

To alleviate this problem, partial PIC was then developed. Partial cancellation factors (PCFs)

ranging from 0 to 1, were introduced to control the signal cancellation level. The partial HPIC

approach was first proposed in [30]. Since the interference estimate reliability is different, the

PCF is usually different for each stage. It has been shown that the performance of the linear

MMSE receiver can be achieved using partial SPIC through proper choice of PCFs [52],[53].

The PCF optimization for multistage SPIC has also been considered in [54]. It was shown that

partial SPIC can converge to the decorrelator with very few stages. It was also shown that the

partial SPIC can be seen as a realization of the steepest descent MMSE optimization method
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where the PCF acts as the step size in each stage. The bias reduction in the partial SPIC was

further analyzed in [55] and [56].

Let the number of user be �. Thus, a specific user has � � � interfering users. To have

best cancellation result, we then require � � � PCFs. However, we have total � users to

consider. Thus, a general partial PIC require����� PCFs. As we can see, the computational

complexity of the general partial PIC is high. In order to reduce the computational complexity,

two simplified structures were developed; we refer to them as the coupled and the decoupled

structure. In these two structures, only � PCFs are involved. The difference of these two

structures lies in the position where the PCF is inserted. In the coupled structure, PCFs are

inserted (multiplied) after each regenerated user signal. For a specific user, the interference

estimate is just the summation of��� weighted regenerated signal. Thus, the estimate involve

� � � PCFs. For the decoupled structure, the � � � regenerated signals are first summed

and then a PCF is inserted (multiplied). Thus, for a specific user, the interference estimate

only involve one PCF. In partial HPIC, the coupled structure is usually employed and only the

approximated optimal PCFs are available for a two-stage processing [57]. The derived PCFs

is obtained by minimizing the MSE between signal outputs and desired data. The approximate

optimal PCFs for partial HPIC with timing error can be found in [58] while the optimal PCFs

supports the multicode transmission was reported in [59]. The PCFs for coded systems with

HPIC were investigated in [60]. The coupled partial SPIC has been considered in [61] and the

closed-form results applied to a power balanced control scenario were derived. Besides the

theoretical solutions, the LMS adaptive algorithm was also used to search optimal PCFs for

partial HPIC [62],[63]. Due to its special architecture, this approach does not need training

sequence. We call it a adaptive blind partial HPIC algorithm. It was found that this partial

HPIC outperforms non-adaptive ones. The LMS algorithm was also utilized to track the channel

information in hard-decision SIC [64].

The MUD algorithms are by no means limited to those described above. However, other

algorithms either require higher computational complexity, or consider special operation condi-
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tions (no user information for example). The objective of this work is to study low-complexity

MUD algorithms that are suitable for real-world implementation. As mentioned, the interfer-

ence cancellation method only involves vector operations making its computational complexity

lower than others’. We will then focus on this type of MUD. For other MUD related works,

please see [65].

§ 1.3 Objective and Overview

As mentioned, the PIC performance may deteriorate due to unreliable interference cancellation

in the early stages. Thus, the partial PIC detector in which partial cancellation factors (PCFs)

are introduced to control the interference cancellation level has been developed as a remedy. It

is apparent that these PCFs are crucial. However, complete solutions for their optimal values

are not available. Also, performance analysis is only available for limited scenarios. In this

dissertation we focus on the determination of optimal weights and performance analysis for

various partial PICs. There are three main parts in this work. In the first part of the work,

we consider a two-stage decoupled soft-decision partial PIC receiver. The reason to consider

this architecture has manifold. Firstly, it is known that the value of PCFs will approach to

one when the number of stage is greater than two [55]. Thus, there is no need to consider

a higher stage structure. Secondly, theoretical analysis is much more simpler for a two-stage

structure. The analysis is also simpler for the decoupled SPIC. The performance of the partial

SPIC is similar to that of other structures (for example, the coupled partial HPIC). Using the

minimum bit error rate (BER) criterion, we derive a complete set of optimal PCFs for the second

stage. This includes optimal PCFs for periodic and aperiodic spreading codes in additive white

Gaussian channels and multipath channels. Simulation results show that our theoretical optimal

PCFs agree closely with empirical ones. Our two-stage partial PIC using derived optimal PCFs

outperforms not only a two-stage, but also a three-stage full PIC.

In the second part of the work, we analyze the performance of a two-stage adaptive blind
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partial HPIC receiver. This is known to be a difficult problem and the corresponding result is not

reported in literature. In this scheme, the adapted weights serving as optimal PCFs are trained

using the least mean square (LMS) algorithm. The analysis difficulty arises from the nonlinear

operation involved in the decision process and its interaction with the LMS algorithm. Although

there exist many theoretical results for the LMS algorithm, most of them consider the steady-

state performance and are valid only for the small step size scenario. This cannot be applied in

the problem considered here. This is because the sample size available is small and a large step

size must be used. Also the weights will not converge at the end of each bit interval and the

LMS algorithm is still in its transient-state. Note that the input to the LMS algorithm depends on

the decision in the previous stage and this complicates the problem furthermore. We derive the

analytical results for optimal weights, weight error means, and weight error variances. Based

on these results, we also derive the output mean square error (MSE) and BER for each user. The

step size known to be a critical parameter in the LMS algorithm controls the LMS convergence

behavior and partial PIC performance. Using the output MSE criterion, we are able to obtain

an optimal step size. Simulation results indicates that our analytical results can well match with

empirical ones.

In the final part of the work, we propose an improved adaptive blind multistage hard-

decision partial PIC and analyze its performance. It is well known that the LMS is a stochastic

gradient descent algorithm and its excess MSE is proportional to the number of filter taps and

the step size value. The main idea here is to reduce the number of active weights in the LMS

algorithm and reduce the adapted weight variance such that the resultant excess MSE can be

reduced. To implement this idea, we include a decision making mechanism before adaptation

and a weight post filtering function after adaptation. We also derive the output MSE and BER

for the proposed algorithm. Simulation results verify that the proposed algorithm outperforms

the conventional partial PIC approach and analytical results are accurate.
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§ 1.4 Organization of the Dissertation

The organization of this dissertation is described as follows. In Chapter 2 we survey significant

contributions in multiuser detection. The optimal and several suboptimal multiuser receivers

are described.

Chapter 3 presents a two-stage partial SPIC multiuser receiver with a decoupled structure.

We derive the optimal partial cancellation factors (PCFs) based on the minimum BER criterion.

We consider periodic and periodic code scenarios, the AWGN as well as multipath channels.

Chapter 4 focuses on the analysis of a two-stage adaptive partial HPIC receivers. In this

regard, the LMS algorithm is used to obtain optimal PCFs. We derive the optimal weights and

analyze the weight error mean and weight error variance for one and two-user cases. We then

extend the results to the general �-user case. Due to the difficulty of the problem, we are only

able to obtain approximate results. However, simulations show that our results are accurate. We

also use our theoretical results to optimize the step size used in the LMS algorithm.

In Chapter 5, we propose an improved adaptive blind multistage HPIC receiver. We show

that the convergence rate of the LMS algorithm can be accelerated and the performance can be

enhanced. Based on the convergence analysis given in Chapter 4, we also analyze its perfor-

mance and derive theoretical MSE and BER.

Chapter 6 gives the conclusion remarks and outlines some topics for further research.
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Chapter 2

Multiuser Detection

At the time of introduction of CDMA, it was argued that interference from other users (after

despreading) has the statistical property just as the noise. Thus in the receiving end each user

can use a matched filter to demodulate its own signal independently. It is simple to see that

the interference level is proportional to the number of users and their signal strength. This is

referred to as the single-user detection scheme. The performance of the matched filter will be

greatly affected when the near-far effect arises. In this case, the weak user signals may be over-

whelmed by strong user signals. In this regard, using power control to balance the receiving

powers among users seems the most efficient way. However, the challenges for power control

is the requirement of fast and accurate power adjustment to maintain the received levels within

a fraction of one dB error from the possible dynamic range up to 90 dB. In addition, differ-

ent services may have different transmission rates and powers making power control difficult.

Multiuser detection (MUD) was developed to alleviate this problem. In MUD, all users are

demodulated simultaneously. Signal from other users are not treated as interference any more.

Application of the MUD algorithm greatly improves the system performance and at the same

time eliminates the precise power control requirement. In this chapter, several MUD techniques

are briefly reviewed. In Section 1, the optimal receiver are described. Section 2 presents the lin-

ear suboptimal receivers, which include the decorrelator and the LMMSE receiver. In Section
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3, we described the interference cancellation methods that include SIC, PIC, and partial PIC.

§ 2.1 Optimal Multiuser Receiver

Consider a synchronous CDMA system for the AWGN channel with � users. The received

signal at a certain bit interval can be represented by

��� �
��
���

��� � ���

�
��
���

�������� � ���� � � ��� �� (2.1)

where ��� is the received signal for the �th user, �� and �� are the channel and data bit for

the �th user, ���� is the normalized spreading waveform, and � is the bit interval length. The

AWGN is denoted by ���. The mean and the variance of ��� is zero and ��, respectively. The

maximum likelihood (ML) solution for the input bits maximizes the likelihood function shown

below.
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where � � ���� ��� � � � � �� �
� . The log-likelihood function, which is equivalent the likelihood

function, is used more frequently. The log-likelihood function is shown to be
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where � � diag���� ��� � � � � ���, � is the correlation matrix with the �� entry ��� given by

��� �

� �

�

���������� (2.4)

and � � ���� ��� � � � � ���
� is the matched filter output vector with its element given by

�� �

� �

�

���������� (2.5)
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The the matched filter output vector can be written as

� � ���� � (2.6)

where � � ���� ��� � � � � ���
� , �� �

	
	 �������, is a noise related vector. It is well known

that the optimal solution � maximizing ��� requires an exhausted bit search. This combi-

natorial problem is shown to be NP hard and the required computation complexity is on the

order of 
�	�. Although the ML criterion and the minimum BER criterion are different, their

solutions are close especially for high SNR ratios. When the asynchronous transmission is

considered, it has been shown that the complexity of the optimal receiver, implemented by a

matched filter bank followed by the Viterbi algorithm, remains 
�	�. The ML receiver re-

quires the information of the signal amplitudes, signature waveforms, and signal delays for all

users. When the criterion of minimum BER is utilized, the optimum detection, implemented

with the backward-forward dynamic programming, still requires the complexity of 
�	�. In

this case, the variance of background noise is also necessary. These requirements along with

the high computational complexity makes the optimal receiver infeasible for real-world imple-

mentation.

§ 2.2 Linear Suboptimal Receivers

The optimal MUD has been regarded as powerful yet complicated. The suboptimal MUD was

developed to reduce the complexity while still provide performance gain. In this section, we

describe the suboptimal linear multiuser receivers. The linear receiver performs a linear trans-

formation on the received signal vector �. The first linear multiuser receiver is called the decor-

relating detector or simply the decorrelator, whose name stems from the fact that the detector

simply inverts the correlation matrix in (2.6). Let

�
 � ���� (2.7)
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Then, the receiver output is given by

�
 � �
�

� �������� (2.8)

As shown, the interference from the MAI is eliminated completely. However, noise becomes

colored and its level may be enhanced. When the noise level dominates the MAI, the perfor-

mance of the decorrelator is degraded. The decorrelator is also the joint ML solution for the

simultaneous estimate of channel gains and transmission bits. The solution can be found by the

minimization of a least-squares criterion.

� ��� ���
 � ���
�

���
�������

� �

�

�
����

�
�
��������

��
��� (2.9)

In contrast to the optimal MUD, the decorrelator does not require user signal amplitudes. In

addition, it was shown that the near-far resistance is equal to the that of the optimal receiver.

The fluctuation of the interference powers do not have any influence on the performance of the

decorrelator.

Another commonly cited suboptimal linear receiver is the LMMSE receiver whose transfor-

mation matrix is defined by

� � ���
�

������������� (2.10)

After some matrix manipulation, we can obtain the transformation matrix for the LMMSE mul-

tiuser receiver as

� � ��� ��������� (2.11)

Comparing the decorrelator with LMMSE receivers, we can observe that the LMMSE receiver

becomes the decorrelator as �� approaches zero. On the other hand, the LMMSE receiver will

degenerate into the matched filter when noise �� approaches infinity. This means that LMMSE

multiuser receiver performs a compromise between noise enhancement and interference cancel-

lation. When the LMMSE receiver is used, the signal amplitudes as well as the noise variance

have to be known, in addition to the signal spreading codes and received signal delays.
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Figure 2.1: BER performance comparison of multiuser receivers for the first user (����� � �

dB, and � � ���).

It can be observed that the matrix inversion is required in linear receivers. In order to

reduce the computational burden, adaptive implementation was proposed. Let �� � ����, � �

���� ��� � � � � ���
� . Rewrite (2.9) as

�� � ���
�

����
	��

�
����

�
�
������

��
��� (2.12)

where ��� and ���� are the chip-sampled sequences of ��� and ����, respectively, and �

is the processing gain. The estimate of �� gives the channel gains and bits, which are those in

(2.8). The adaptive implementation of the decorrelator does not involve the complicated matrix

inversion operation. Similarly, the LMMSE receiver can have an adaptive implementation. Let

� � ����� ���� 	 	 	 � ��� � ��� . It can be easily shown that the LMMSE receiver output is

� � �� (2.13)

where � � �	��	�� � � �	� �
� is an � 
 � matrix. Thus, we can use the MMSE criterion to
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Figure 2.2: BER performance comparison of multiuser receivers (� � ��, and � � ���).

derive 	�. Thus,

�	� � ���
��

�

�
�� �

����
	��

�������

��
�� (2.14)

Note that some transmission bits are required for training. The MUD performance measure

includes the BER, the asymptotic multiuser efficiency, and the near-far resistance [7]. We have

carried out some simulations to evaluate the performance of the receivers described above.

Figure 2.1 shows the result for BER vs. interference power. Here, the user number is two, the

code correlation is � � ���, and ����� � � dB (�� � 	��). Note that the �-axis of the figure is

the power ratio of the two users. The conventional receiver suffers from the interference from

the second user, and its performance degrades rapidly when the normalized interference power

increases up to 5 dB. The ML receiver has the best near-far resistance among the four detectors.

The decorrelator exhibits a constant near-far resistance in all interference power ratios. The

LMMSE receiver is degenerated to the conventional receiver when the interference is weak

while to the decorrelator when the interference is strong; it performs very similarly to the ML
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Figure 2.3: BER performance comparison of multiuser receivers (random codes, � � ��, and

����� � � dB.)

receiver in weak interference. Figure 2.3 shows the BER vs. ����� for ten equicorrelated users

(� � ���). The single-user receiver suffers from MAI and perform poorly in most cases. The

linear receivers perform similarly to the ML receiver when the number of users is small.

§ 2.3 Interference Cancellation Methods

The interference cancellation scheme first estimates interference from other users and then can-

cels it from the received signal. Let ����� be the interference cancelled signal for User �. We

then have

����� � ����
�
�

����

� ����
�
�

������ (2.15)
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Figure 2.4: Interference estimate functions. (a) Soft-decision function (b) Hard-decision func-

tion (c) Null-zone function (d) Hyperbolic tangent function (e) Unit-clipper function (f) Modi-

fied unit-clipper function.

where �� represents the interference estimate of ���� . The number of interference cancelled

in (2.15) depends on the algorithm used. For description simplicity, we assume a two-stage

cancellation scheme such that �� � � ���, where � �	 is a decision function. Commonly used

decision functions are summarized in Fig. 2.4. Note that channel gains are assumed to be

known. The second stage output is obtained by

�� �

� �

�

������������ (2.16)

The decision functions in Fig. 2.4 are further described below.

(a) Soft-decision function: �� � ��

(b) Hard-decision function: �� � ��sgn����
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Figure 2.5: Block diagram for an SIC receiver.

(c) Null-zone function: �� �


�������
�� �� � 	
� �	  ��  	
��� �� � �	

(d) Hyperbolic tangent function: �� � �� ������������� 

where ��� represents the power of interference and noise for the �th user.

(e) Unit-clipper function: �� �


�������
�� �� � ��
�� ���  ��  ��
��� �� � ���

(f) Modified unit-clipper function: �� �


�������
�� �� � 	
�� �	  ��  	
��� �� � �	

�where 	  ��

In the following, we describe the basic types of interference cancellation schemes, namely,

SIC and PIC.

19



First stage Second stage

y1

y2

y3

1̂( )s n

2ˆ ( )s n

3ˆ ( )s n

1z

2z

3z

2,1C

1,2C

1,3C

2,3C

3,1C

3,2C

Respreading
Matched

Filter

Matched
Filter

Matched
Filter

Respreading

Respreading

Matched
Filter

Matched
Filter

Matched
Filter

1̂b

2̂b

3̂b

( )r n

Figure 2.6: Block diagram for a general two-stage partial SPIC receiver.

§ 2.3.1 Successive Interference Cancellation

The SIC cancels one user interference from the received signal at a time. Since only one inter-

ference needs to be estimated and subtracted in each stage, the strongest user signal is then the

best candidate. It’s structure is depicted in Figure 2.5. Assume that the received signal powers

are ranked as �� � �� � � � �� �� , and the interference cancelled signal for user � at the �th stage

is obtained as

��
���
� �� � ��

�����
� ��� ������� � � �� 	� � � � � �� � � � (2.17)

where ������ �� � ���, for all � is the initial receive signal. The SIC output at the �th stage is then

�� �

� �

�

��
���
� ��������� (2.18)

Although the SIC is simple to apply, there are some drawbacks listed below.

� Since the user is detected successively, the subsequent users will experience less interfer-

ence. To make all users have similar performance, transmission power for each user will

be different. A proper power profile may not be easy to obtain. In addition, the power

ordering operation requires additional computational complexity.

� The interference resulted from the erroneous cancellation will propagate to all the users

at following stages. This introduces the error propagation effect.
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Figure 2.7: Block diagram for a two-stage coupled partial HPIC receiver.

� A SIC scheme needs at least � stages for a �-user environment. This will greatly in-

crease the detection delay especially when the user number is large.

§ 2.3.2 Parallel Interference Cancellation

The PIC cancels interference from all other users at the same time. In contrast to SIC, the PIC

has lower detection delay and does not have the power assignment problem. It has been shown

that the PIC has superior performance over the SIC in an power balanced scenario. Conventional

PIC receivers permit a full cancellation of the MAI. One problem associated with this full PIC

is that the MAI estimate may not be reliable in the earlier canceling stages. This makes the PIC

less effective when the number of users is large. As a remedy, the partial PIC detector has been

proposed in which partial cancellation factors (PCFs) are introduced to control the interference

cancellation level. As shown in 2.6, a complete partial PIC requires ��� � � PCFs for one

stage where � is the number of users; the computational complexity is high. Simplified partial

PICs have been proposed, in which only � PCFs are needed. Two structures are commonly

used for simplified partial PICs; we call them the coupled and decoupled structures. In the

coupled structure, each user output is influenced by all � PCFs [62] as seen in Figure 2.7,

while in the decoupled structure each user output is only influenced by a specific PCF as shown
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Figure 2.8: Block diagram for a two-stage decoupled partial SPIC receiver.

in Figure 2.8. The partial HPICs mentioned in Chapter 1 all use the coupled structure. A MSE

criterion, as shown below, has been proposed to optimize PCFs [57].

!� � ���
��

������� � !�������

� ���
��

�
��� � !

�
� � 	��!���������

�
� ���

��

�
��� � !

�
� � 	��!���� 	"���

�
� ����� 	"��� (2.19)

where "��� is the error probability for the �th user. As we can see, each PCF can be determined

independently. From (2.19), we can observe that when the data bits are all correctly detected,

the optimal PCFs will approach unity. On the other hand, when the data bits are all erroneously

detected, ("��� � ��	), the optimal PCFs will approach zero. This is intuitively appealing.

Although simple, the optimal PCFs in (2.19) are not accurate for short codes. Thus, its real-

world application is limited.

The optimal PCF obtained by theoretical calculation may not be efficient when the channel

is time-varying. There exist an adaptive partial HPIC that can overcome this problem [62]. This

adaptive HPIC is blind in the sense that no training sequence is required. Due to its simplicity
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Figure 2.9: LMS algorithm for two-stage adaptive blind partial HPIC receivers.

and robustness, the LMS algorithm was used as the adaptive algorithm. A typical block diagram

for a two-stage HPIC is shown in Fig. 2.9. The weights are trained using the LMS algorithm

which minimizes a MMSE criterion defined as (for the �th stage)



���
��� � ���

����
# ����� (2.20)

where 
���
��� is the optimal weight vector at the �th stage, and

# ����� � �


�
�
����

��
���

$
���
� ��

��
�����
� ����

����� � (2.21)

The weight after trained, $���
� ��, acts as each user’ PCF. Note that this is a system identifi-

cation problem. The LMS update equation for the �th stage (with � � � stages of interference

cancellation) is formulated as

������� � �������
�����

%����� � ���� ������� (2.22)


����� � � � 
����� � �%�����������
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Figure 2.10: BER performance comparison for different multiuser receivers (� � ���, ����� �

� dB, and power balanced).

where ���� � ��������� �������
�����
� ����� � � � ���

�����
� �����

� is the input vector. The interference

estimate for the �th user in the �-stage is given by

��
���
� �� �

�
� ���

$
���
� ��

��
�����
� ����� (2.23)

Then the �-stage output from the adaptive blind partial HPIC can be obtained

�
���
� �

����
	��

��
���
� ������� (2.24)

Note that the adaptive blind partial HPIC is different from the work in [17], since this scheme

does not require the training sequence. The optimal weights are optimized in one bit interval;

its adaptation is on the chip-level.

As to the partial SPIC, both the coupled and decoupled structures have been studied. In this

dissertation, we focus on the decoupled structure which is shown in Figure 2.8. The reason to

consider this structure is that the PCF optimization is simpler and its performance is comparable
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Table 2.1: Required information for different multiuser receivers.

SU ML MBER DEC LMMSE AMMSE IC

Desired user’s signature � � � � � �

Desired user’s timing � � � � � � �

User amplitude � � � �

noise variance � �

Others’ signature � � � � �

Others’ timing � � � � �

Training data �

SU : Single-user receiver

ML : Maximum-likelihood receiver

MBER : Minimum BER receiver

DEC : Decorrelator

LMMSE : Linear mean square error receiver

AMMSE : Adaptive LMMSE

IC : Interference cancellation receiver

to other structures. We have carried out simulations to compare performance of various two-

stage PIC with LMMSE receivers. The result is shown in Figure 2.10 (� � ���, ����� � � dB,

and power balance is assumed). The LMMSE performs the best among all multiuser receivers.

The SIC has only minor advantage over the single-user receiver. This is because in the power

balanced scenario, the power ranking does not have advantages. The full HPIC performs better

than SIC. Note that the full SPIC perform poorly when the user number increases. Partial PICs

with optimal PCFs perform much better and the partial SPIC performs similarly to the LMMSE

receiver. In Table 2.1 we summarize requirement information for various MUD methods.
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Chapter 3

Optimal Two-stage Partial SPIC Receivers

§ 3.1 Introduction

In this chapter, we focus on a two-stage partial SPIC receiver with a decoupled structure. Our

motivation for using two-stage processing is that it requires low computational complexity and

is particularly suitable for real-world implementation. As indicated in [55] that in higher stage

processing, the PCFs will approach unity for stages greater than two. In other words, the PCFs

in the second stage will dominate system performance. We first consider the additive white

Gaussian noise (AWGN) channel and derive optimal PCFs for systems employing periodic

codes. The criterion for optimization is the bit error rate (BER). We then extend the result

to systems with aperiodic spreading codes. Finally, we consider optimal PCFs with multipath

channels. Simulations show that the performance of our theoretical optimal PCFs is close to

that of empirical ones. In addition, the optimal two-stage partial SPIC outperforms not only

the two-stage full SPIC, but also the three-stage full SPIC. The remainder of this chapter is

organized as follows. In Section 2, we describe the two-stage full and partial SPIC receiver

structures. In Section 3 and Section 4, we derive optimal PCFs with periodic and aperiodic

codes, both in AWGN and multipath channels. Simulation results are presented and discussed

in Section 5.
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§ 3.2 System Model

Consider a synchronous CDMA system accommodating � users. Let ��� denote the received

signal (for a certain bit interval), ��� the �th user’s transmitted signal, and ��� additive white

Gaussian noise. The equivalent baseband received signal can be described as

��� �
��
���

��� � ���

�
��
���

�������� � ���� � � ��� � � (3.1)

where �� and �� are the �th user’s amplitude and data bit, ���� denotes its signature waveform,

and � is the bit period. The signature waveform can be expressed as

���� �
����
���

���������� ��� (3.2)

where ���� � ������������ is the binary spreading chip sequence for User �, � is the

processing gain, ��� is a rectangular pulse waveform with support �� and unit magnitude. Note

that �� is the chip period.

The first stage of a PIC receiver is the conventional matched filter bank. The output can be

represented as

�� �

� �

�

���������

� ���� �
�
� ���

������� � �� (3.3)

where ��� is a correlation coefficient and �� is the noise term after despreading. They are defined

as

���
�
�

� �

�

����������� (3.4)

and

��
�
�

� �

�

���������� (3.5)
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It can be seen that the output metric in (3.3) consists of three parts: the desired signal, MAI, and

��. The conventional detector makes a decision based on ��. Thus, MAI is treated as another

noise source. When the number of users is large, MAI will seriously degrade the system per-

formance. A PIC, being a multiuser detection scheme, was proposed to alleviate this problem.

Let ����� be an interference-subtracted signal (for User �) given by

����� � ����
�
� ���

���� (3.6)

where ���� is a regenerated signal for User �. For SPIC, this signal is obtained by

���� � ������� (3.7)

Thus, the output signal in the second stage is then

�� �

� �

�

������������ (3.8)

Finally, the symbol data is detected as ��� � �����. In principle, the interference cancellation

procedure in (3.6)-(3.8) can be repeated with multiple stages to obtain better performance. It

is apparent from (3.3) and (3.7) that the regenerated signal is noisy. Thus, fully cancelling the

regenerated interference may not yield best results. One solution to this problem is to partially

cancel the interference. This idea is implemented by modifying (3.6) as

����� � ����
�
� ���

!�� ����� (3.9)

The constants !��’s are called the partial cancellation factors (PCFs) for User � and their am-

plitudes should reflect the fidelity of the interference estimate. The structure of a partial SPIC

receiver with three users is shown in Figure 3.1.

Generally,� 
 �� � � PCFs are needed for a two-stage partial PIC. It is apparent that the

computational complexity of the partial PIC is high when the number of users is large [on the

order of
���]. Two simplified structures, whose complexities are on the order of
��, were

investigated in the literature. The first one corresponds to the case in which !�� � !� [in (3.9)].
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Figure 3.1: General partial SPIC receiver structure.

In this case, all regenerated signals are first weighted and then summed. Thus, each regenerated

interference signal in (3.9) has an individual PCF and the signal to be estimated is a function

of all PCFs. We call this structure the coupled structure. The other structure is one in which

!�� � !�. In this case, all regenerated signals are summed first and then weighted. Thus, there

is one PCF for the signal to be estimated. We thus call this structure the decoupled structure. A

thorough discussion of both structures is not available in the literature. Optimal PCFs have only

been derived for the coupled structure under power balanced scenarios [61]. In what follows,

we focus on a two-stage partial SPIC receiver with a decoupled structure. Primary simulation

results (in Section 5) show that both PIC structures with optimal PCFs perform similarly.

§ 3.3 Optimal PCFs for AWGN Channels

In this section, we derive the optimal PCFs for a two-stage partial SPIC under an AWGN chan-

nel. For ease of description, we only give the results associated with synchronous transmission.

Periodic and aperiodic spreading codes are both considered.
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§ 3.3.1 Periodic Code Scenario

Assuming perfect chip synchronization, we first sample the received continuous-time signal in

(3.1) with period ��. Let � � ����� ����� � � � � ���� � ����
� be the received signal sample

vector, �� � ������ ����� � � � � �������
� be the �th user’s spreading sequence vector, and �

�
�

����� ����� � � � � ���� � ����
� be the noise sample vector. From (3.1), we have

� �
�
�

������ � �� (3.10)

Thus, we can obtain the matched filter output as

�� � ����

� ���� �
�
� ���

�����
�
� �� � �

�
� �� (3.11)

Note that ��� �� is a discrete version of the correlation term ��� shown in (3.4). Similarly, ��� �

is a discrete version of the noise-related term �� in (3.5). For notational simplicity, we still use

��� to represent ��� �� and �� to represent ��� �. Thus, (3.11) can be re-written as

�� � ���� �
�
� ���

������� � ��� (3.12)

For the second stage of a partial SPIC (with the decoupled structure), the regenerated signal

for User � is

��� � �� !�
�
� ���

�� (3.13)
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where �� � ���� . The second stage output is then

�� � ���� ��

� �� � !�
�
� ���

�����

� ���� �
�
� ���

������� � �� � !�
�
� ���

�
���� �

�
����

������� � ��

�
���

� ����

�
�� !�

�
� ���

����

�
�

�
�� � !�

�
� ���

�����

�

�
�
� ���

����

�
��� � !���� � !�

�
������

������

�
� (3.14)

The bit error probability for User �, denoted as " ���, can be written as

" ��� �
�

	
" ������ � � �

�

	
" ������ � ��

� " ������ � �� (3.15)

In (3.15), we assume that the occurrence probabilities for �� � � and �� � �� are equal, and the

error probabilities for �� � � and �� � �� are also equal. As we can see, there are three terms

in (3.14). The first term corresponds to the desired user bit. If we let �� � �, it is a deterministic

value. The second term corresponds to noise interference which is Gaussian distributed. The

third term corresponds to the interference from other users and each interference is Binomial

distributed. Note that correlation coefficients in (3.14) are small and CDMA systems are usually

operated in low signal-to-noise ratio (SNR) environments. The variance of the third term is then

much smaller than that of the second term. Thus, we can assume that �� conditioned on �� � �

is Gaussian distributed. The error probability is then

" ��� � �
����

��

�
(3.16)

where ���� is the Q-function and

�� �
�
������� � ��

��
(3.17)

�� � ������ ���� (3.18)
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Note that the expectations in (3.17) and (3.18) are operated on interfering user bits and noise.

Let ������ � ���� and ��
�
� �����

�. Evaluating (3.17), we obtain

�� � ��� ��� !���
� (3.19)

where

��
�
�
�
� ���

����� (3.20)

Similarly, we obtain the variance as

�� � �������!
�
� � 	����!� � ���� (3.21)

where the coefficients of �� are represented by

���� �
�
� ���

��

�
��� �

�
������

������

��

�
�
� ���

�
���� �

�
� �����

���������

�
� (3.22)

���� �
�
� ���

��

�
���� �

�
������

���������

�
�
�
� ���

����� (3.23)

���� �
�
� ���

���
�
�� � �� (3.24)

The optimal PCF for User � can be found as

!����� � ������
��

���

��

�
�

�
!����� � �� ���

�!�
���

���
�!�

� �

�
� (3.25)

Substituting (3.19) and (3.21) into (3.25) and simplifying the result, we have the following

equation.

��� !����� ��
�
!����� ����� � �������� � ������ � ����

�
� �� (3.26)
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We have two possible solutions now. The first solution for the first parenthesis is trivial since it

makes the squared mean value�� in (3.19) zero. The optimum PCF is then

!����� �
���� � ������

���� � ������
� (3.27)

We also derived optimal PCFs for an asynchronous CDMA system. The results are summarized

in Appendix A. In what follows we discuss some special cases to give a better understanding of

the optimal PCF characteristics. Let the correlations between any two user spreading codes be

equal (��� � � for � � �) and the power control be perfect (�� � � and �� � �). The optimal

PCF can then be expressed as

!����� �
�

� � ��� � ��� � 	�
� (3.28)

As we can see from (3.28), the optimal PCF is smaller when � or� is larger, because when the

correlations between user codes are higher and the number of users is larger, the MAI is larger

and the regenerated signal is unreliable. As a result, the PCF should be smaller. Also, when the

user power is larger or the noise is smaller (� is larger), the optimal PCF is larger. If we assume

that the noise is much smaller than the signal power (� � �), the optimal PCF can be further

simplified to

!����� �
�

� � ��� � 	
� (3.29)

Now the optimal PCF is independent of the transmission signal power. The bit error perfor-

mance would also be saturated in this interference-limited region. From (3.28), we can also see

that when the noise is large (� � �), the optimal PCF tends to be small (!� � �). Note that the

effect of the processing gain � is reflected in the receiving SNR. If � is larger, the receiving

SNR will become smaller.

§ 3.3.2 Aperiodic Code Scenario

In commercial CDMA systems, the users’ spreading codes are often modulated with another

code having a very long period. As far as the received signal is concerned, the spreading code
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is not periodic. In other words, there will be many possible spreading codes for each user. If we

use the result derived above, we then have to calculate the optimum PCFs for each possible code

and the computational complexity will become very high. Since the period of the modulating

code is usually very long, we can treat the code chips as independent random variables and

approximate the correlation coefficient, ���, as a Gaussian random variable. As a result, the

expectations in (3.17) and (3.18) can be further operated on ���. This greatly simplifies the

optimal PCF evaluation. We now rewrite (3.16) as

" ��� � �

�
�����������

� �
�������

� �

��� (3.30)

where ���	� denotes the expectation operator over the spreading code set � and ����
� and � ���

�

are the expected squared mean and variance of ��, respectively, given the &th possible code in

�. Letting '� �
	

� ��� ��, considering ��� as a Gaussian random variable, and evaluating (3.17)

and (3.18), we have

�������
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�
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�
�
���
�

���
(3.31)

where
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�
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In the above expressions, the notation( ��� denotes the( value given the &-th possible spreading

code in �. Equation (3.25) can be re-expressed as

!����� � ������
��

�
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�����
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�����

�
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�!�
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�
� (3.37)

Substituting (3.31)-(3.36) into (3.37) and simplifying the result, we finally obtain

!����� �
��
�
�
���
���

�� �������
���

�
��
�
�
���
�

�
��
�
�
���
���

�� �������
���

�
��
�
�
���
�

� � (3.38)

As we can see, (3.38) only involves (3.32) and (3.34)-(3.36) and these expressions are easy to

work with. We further consider the case in which noise is small ('� � �). Equation (3.38) can

be simplified to

!����� �
�

� � 	� � �
� (3.39)

This result is remarkably simple. We only require� and� to calculate optimal PCFs; this will

be useful in real-world applications.

§ 3.4 Optimal PCFs for Multipath Channels

§ 3.4.1 Periodic Code Scenario

Let the transfer function for User �’s channel be

���� �
�
���

)����
����� � (3.40)

As we can see from (3.40), the number of paths is * and the gain and delay for the �th channel

path are )��� and +���, respectively. We use two vectors to represent these parameters: �� �
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�+���� +���� � � � � +���
� and �� � �)���� )���� � � � � )���

� . Let +��� � +��� � 	 	 	 � +�� and the

channel power is normalized (
	
)���� � �). Without loss of generality, we may assume that

+��� � � for each user and * is the maximum possible number of paths. When a user’s path

number, say *�, is less than *, we can let all the elements in +��� and )��� be zero for *� � � �
� � *. We may also assume that the maximum delay is much smaller than the processing gain

� [67]. Before our formulation, we first define a �	� � �
 * composite signature matrix ��

as

��
�
� ������� ������ 	 	 	 � ����� (3.41)

where ����� is a vector containing �th delayed spreading code for User �. It is defined as

�����
�
� �

����! "# $
� � � � � � ��� �

��������! "# $
�� � � � � ��� � (3.42)

Since a multipath channel is involved, the current received bit signal will be interfered by pre-

vious bit signals. As mentioned above, the maximum path delay is much smaller than the

processing gain. The interference will not be severe and for simplicity we may ignore this

effect. Let �� � ����. As that in (3.10), we can obtain the received signal vector as

� �
�
�

������ � �� (3.43)

To have better results, we use a maximum ratio rake combing scheme in the receiver. Let

,�� � ��� ��, ,� � ,��, and -� � �� ��. The output of the receiver is then

�� � �� ��

� �����
�
� �� �

�
� ���

�����
�
� �� � �

� ��

� ����,� �
�
� ���

����,�� � -�� (3.44)
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This result is similar to that in (3.12) except that ��� is replaced by ,�� and �� is replaced by -�.

For the second stage of a partial SPIC, the regenerated signal is

��� � �� !�
�
� ���

��

� �� !�
�
� ���

����� (3.45)

We then have the output signal for the second stage as

�� � ���� ��

� ����

�
,� � !�

�
� ���

,����

�
� -� � !�

�
� ���

��,��

�
�
� ���

����

�
,�� � !�,�� � !�

�
������

,��,��

�
� (3.46)

As previously, we assume that �� is Gaussian distributed, the interfering bits and noise are

random, and parameters� ,�, ��, ��, ��, and ,�� are known beforehand. Thus, the output error

probability is expressed as in (3.16) where the squared mean for ��, similar to that of (3.19), is

obtained from (3.17) and (3.46) as

�� � �
�
� �,� � !� �� (3.47)

where

 �
�
�
�
� ���

,���� (3.48)

and the variance is obtained from (3.18) and (3.46) as

�� � ��
%
!���!

�
� � 	!���!� � !���

&
(3.49)

where

!��� �
�
� ���

��

�
,��,� �

�
������

,��,��

��

�
�
� ���

�
,���,� �

�
������

,��,��,��

�
� (3.50)
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!��� �
�
� ���

��

�
,���,� �

�
������

,��,��,��

�
�
�
� ���

,���� (3.51)

!��� �
�
� ���

��,
�
�� � ,�� (3.52)

The optimal PCF derivation for the multipath channels is similar to that in (3.25). Substituting

(3.47) and (3.49) into (3.25), we then obtain

!����� �
,�!��� � !��� �
,�!��� � !��� �

� (3.53)

§ 3.4.2 Aperiodic Code Scenario

If aperiodic codes are utilized, ,��’s can be seen as Gaussian random variables. Using the

method in Section III, we can obtain the corresponding optimal PCFs. From (3.47), we have

the expected squared mean as

�������
� � � ���

�
���,���� � � !���

�
 
���
�

���
� ���

�
�� !���

�
 
���
�

���
(3.54)

and the variance as

��
�����

�

�
� ��

�
��
�
!
���
���

�
!�
� � 	��

�
!
���
���

�
!� � ��

�
!
���
���

��
� (3.55)

Comparing (3.54)-(3.55) with (3.31)- (3.33), we see that the optimal PCF here is similar to that

in (3.37). We then have the optimal PCF as

!����� �
��
�
!
���
���

�� ���!���
���

�
��
�
 
���
�

�
��
�
!
���
���

�� ���!���
���

�
��
�
 
���
�

� � (3.56)

Unlike that in AWGN channel, the result for the aperiodic code scenario is more difficult to

obtain because there are more correlation terms in (3.48) and (3.50)-(3.52) to work with. Before
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evaluating expectation terms in (3.56), we define some functions as follows:

)���.� / � )���)���� (3.57)

+���.� / � +��� � +���� (3.58)

0���.� / � ������������ (3.59)

Thus, (3.57)-(3.59) define some relative figures between the .th channel path of the �th user

and the /th channel path of the �th user. The notation )���.� / denotes the path gain prod-

uct, +���.� / the relative path delay, and 0���.� / the code correlation with the relative delay

+���.� /. Expanding (3.50)-(3.52), we have seven expectation terms to evaluate. For purpose

of illustration, we show how to evaluate the first term, ���,����, here. By definition, we have

,�� as

,�� � ��� ��

�

�
�
���

�����)���

��� �
���

�����)���

�

�
�
���

�
���

)���)�����
�
��������

�
�
���

�
���

)���.� /0���.� /� (3.60)

The expectation of ,�� over all possible codes is then obtained as

��
�
,���
�

� �

� �
����

�
����

�
����

�
����

)���.�� /�0���.�� /�)���.�� /�0���.�� /�

�

�
�

����

�
����

�
����

�
����

)���.�� /�)���.�� /��

�
0���.�� /�0���.�� /�

�
� (3.61)

Let

����.�� /�� .�� /� � ���

�
0���.�� /�0���.�� /�

�
� (3.62)
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The coefficient �� in (3.62) is only a normalization constant. Since the spreading codes are

seen as random, only when +���.�� /� is equal to +���.�� /� will ����	 be non-zero. Consider

a specific set of �.�� /�� .�� /�� such that +���.�� /� � +���.�� /� � + and + � �. We then have

����.�� /�� .�� /� � ��

������
���

�
�
��������

�
���

�
� � � +� (3.63)

For +  �, we have the same result except that the sign of + in (3.63) is plus. We then conclude

that the function ����	 in (3.62) is

����.�� /�� .�� /� �


� � � �+ �� if +���.�� /� � +���.�� /� � +

�� otherwise.
(3.64)

Using (3.62), (3.64), and (3.61), we can evaluate ���,���� in (3.50)-(3.52). The general formu-

lations for the other six expectation terms are summarized in Appendix B.

We now provide a simple example to show the multipath effect on the optimal PCFs. Let

�� � ��� 1�� and �� � �2� 3�� for all �’s (2� � 3� � �). Also, let �� �
� �� � 12�3�, and

�� �� �� � 	12	3	. Then

��� ���� � � �������
� ��

	���� � �

��
� (3.65)

���!���
���� � �������

����� 	��
�
'�
�	

�
�� � ��� � ��� � 	�� � 	��� � �� � �� � �

�
�
� � �

��
�� � �� � 	

�
� ���

�'� 	�
�	

� �� � �	
�

�
'�
�	

��� � ��12	3	� (3.66)

���!���
���� � �������

����� 	��
� '�
��

%
� � �� � 	

&
�
� � �

��

�
� (3.67)

���!���
���� � �������

����� 	�� '�
��
� (3.68)
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Figure 3.2: Performance comparison for HPIC and SPIC (� � ��, � � ��
�
� , and ����� � �

dB); The optimal PCFs for the partial HPIC were obtained by trial and error and those for the

SPIC were obtained from (3.27).

Note that the first terms in (3.65)-(3.68) are those in (3.32) and (3.34)-(3.36) which correspond

to the optimal PCFs in an AWGN channel. Other terms are due to the multipath channel effect.

It is evident to see that if 3 � �, �� � �� � � and the metrics above are then degenerated to

(3.32) and (3.34)-(3.36).

In prior sections optimal PCFs for different scenarios are derived under the assumption of

static channels. The received user amplitudes are regarded known and to be varying slowly. The

extension to fading channels is straightforward. The derivation is summarized in Appendix C.

§ 3.5 Simulation Results

A. Performance comparison for various partial PIC structures
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Figure 3.3: Performance comparison for the coupled and decoupled structures (three users with

����� � ��	
�, ��
�, and 8 dB); The optimal PCFs for the coupled structure were obtained

by trial and error, and those for the decoupled structure were obtained from (3.38).

In this section we provide simulation results to verify the validity of our derived PCFs. Before

we do that, we give some comparison results to justify the PIC structure we considered. First, we

compare the performance of a partial SPIC and that of a partial HPIC. We used equicorrelated

codes of length � � �� (� � ��
�
� ) as spreading codes. Let ����� be 8 dB (�� � ���	),

and assume a perfect power control scenario. It is straightforward to see that in the perfect

power control case, optimal PCFs are equal for the coupled and decoupled structures. Figure

3.2 shows the bit error rate (BER) performance versus the number of users. Here, optimal PCFs

for the partial HPIC were determined empirically (trial and error with a resolution of 0.01).

Surprisingly, we found that the optimal partial SPIC outperformed the optimal partial HPIC.

This result differs from the result given in [56] where the full SPIC was found to be inferior to

the full HPIC.

In the second set of simulations, we compared the performance of the coupled and decou-
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Figure 3.4: BER of the partial SPIC detector versus ����� (aperiodic AWGN channels, and

power balanced).

pled structures (using a partial SPIC). As mentioned above, optimal PCFs are equal for both

structures under perfect power control. Thus, we compared their performance in an imperfect

power control scenario. The optimal PCFs for the coupled structure were determined empiri-

cally. Let the number of users be three and the spreading code be aperiodic (of length 31). We

assumed that the third user had a fixed ����� of 8 dB, and the other two users had variable

����� values of ��
� and �� 	
� dB, respectively. Figure 3.3 shows the BER performance

versus 
� for these two structures. As we can see, both structures performed similarly.

B. Validity of derived PCFs

In this paragraph, we report simulation results demonstrating the accuracy of our theoretical

solutions. A two-stage decoupled partial SPIC was considered. For the simulations conducted,

we used Gold codes for periodic code systems and random codes for aperiodic code systems.

Figure 3.4 gives the empirical and theoretical BERs for the optimal partial SPIC detector (with

the aperiodic code scenario). This figure shows the validity of the Gaussian assumption used in
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Figure 3.5: Optimal PCF versus number of users (Gold codes, asynchronous AWGN channels,

����� � � dB, and power balanced).

our derivation. As we can see, when the number of users was smaller and ����� was higher,

the Gaussian approximation was less valid. Figure 3.5 shows the optimal PCFs in (3.27) and

the empirical optimal PCFs versus the number of users. The channel here was an asynchronous

AWGN channel, the spreading codes were periodic, and ����� was 8 dB for each user. In the

figure, it can be seen that the theoretical optimal PCFs were very close to the empirical ones

in all cases. We then considered optimal PCFs for a multipath channel. The multipath channel

assumed was a two-ray channel with the transfer function 4��� � ����	 � �������� (for all

users). Theoretical optimal PCFs derived in (3.56) were compared with empirical PCFs and the

results are shown in Fig. 3.6. We can observe that the theoretical results also matched with the

empirical ones satisfactorily. Note that when the number of users was smaller, the theoretical

values were less accurate. This was because when the user number is small, the Gaussian

approximation in (3.30) is less valid. This was also consistent with the result observed in Fig.

3.4.
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Figure 3.6: Optimal PCF versus number of users (aperiodic codes, multipath channels,
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C. BER performance comparison

In what follows, we report the BER performance for various SPIC detectors. Figure 3.7

gives the performance comparison for an optimal two-stage partial SPIC, a conventional matched-

filter receiver, a two-stage full SPIC, and a three-stage full SPIC. The spreading codes were

periodic and the channel was an asynchronous AWGN channel. Also, ����� was 10 dB and

perfect power control was assumed. From the figure, we can see that the optimal two-stage

partial SPIC outperformed others in all cases. The two-stage and three-stage SPIC receivers

performed even worse than the conventional matched-filter receiver when the number of users

was large. The optimal two-stage partial SPIC always performed better than the matched-filter

receiver. Finally, Figure 3.8 shows the performance comparison for the detectors considered

above in the multipath channel. The simulation setup was identical to that in the previous cases

except that the spreading code was aperiodic. The PCFs for the optimal two-stage partial SPIC
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Figure 3.7: BER versus number of users (Gold codes, asynchronous AWGN channels,����� �

�� dB, and power balanced).

were calculated using (3.56). As in the AWGN channel, the optimal two-stage partial SPIC

outperformed other types of detectors.

D. Effect of imperfect parameter estimation

In the optimal PCF formulation, we assumed that the required parameters are perfectly

known. In practice, this may not be always possible. Some parameters will have to be esti-

mated for time-varying channels which may introduce errors. The main parameters we need to

know are the channel responses and the noise variance. Once the channel responses are known,

��’s, ���’s and ��’s can be calculated accordingly. We modeled the channel estimation error as

follows. Let ���� � ��)��� be the �-th path channel of User �, and ����� � ���� �
����, where �����

was the estimated channel response, ���� was the actual response, and 
���� was a Gaussian ran-

dom variable denoting the estimation error. We first let the noise variance be exactly known and

varied the channel estimation error. The performance impact is shown in Fig. 3.9. The result

corresponds to the case in which the user number was six, the spreading code was aperiodic, the
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channel was the multipath channel, and ����� was 10 dB. In the figure, �� denotes the standard

deviation of 
���� (same for all �’s and �’s). Since the matched-filter and the full SPIC receivers

do not rely on channel information, the channel estimation error had no influence on their per-

formance. (The BER variations in Fig. 3.9 were due to the random data used in different runs).

As we can see, the partial SPIC performance was not affected until �� � ���. Note that the

magnitude of the main path was 0.762. Thus, the estimation error was quite large in this case.

The second case we considered was noise variance estimation error. The simulation setup was

identical to the previous one. We let the channel responses be known and varied noise variance

from ��� 
 ��	 to �� 
 ��	, where ��	 was the actual noise variance. We found that the optimal

SPIC performance was almost unaffected. Thus, we conclude that the optimal partial SPIC has

good immunity to parameter estimation errors.
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Chapter 4

Analysis of Adaptive Two-stage Partial

HPIC Receivers

This chapter is dedicated to the performance analysis of a two-stage adaptive blind partial HPIC

receiver. This receiver is known to perform better than the non-adaptive partial HPIC. As men-

tioned in Chapter 2 that these two types of partial HPICs may give different optimal PCFs. The

major difference between the two partial HPICs lies in the different optimization objectives. In

the non-adaptive type partial HPIC, the optimal PCFs are determined based on the minimization

of the ensemble error average for all transmission bits. In other words, optimal PCFs apply to

all received bit signals. On the contrary, the PCF for the adaptive blind partial HPIC is obtained

by minimizing the ensemble error average within a single bit interval (given the bit decision in

first stage). Although the adaptive blind HPIC was studied extensively, its performance has not

been analyzed before. We intend to fill this gap in this chapter. We first give the LMS frame-

work for the blind partial HPIC in Section 1. In Section 2, a complete derivation for the LMS

convergence statistics in a single-user scenario is given, which includes the optimal weight,

the weight error means, and weight error variances. In Section 3, the result is extended to a

two-user case. We derive the optimal weights and the weight error means. Finally, using some

approximation techniques, we derive the corresponding analytical results for a general �-user
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Figure 4.1: LMS algorithm for two-stage adaptive blind partial HPIC receivers.

scenario in Section 4. The simulation results and discussions are presented in Section 5.

§ 4.1 System Model

Consider a synchronous �-user CDMA system in the AWGN channel. Let the spreading se-

quence of the �th user denoted by ���� with processing gain� and amplitude����� . Then

the chip-sampled received signal in a certain bit interval can be represented as

��� �
��
���

�������� � ���� � � �� � � � � � � � (4.1)
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where �� and �� are the channel gain and data bit of the �th user, and ��� is the AWGN with

variance ��. The first stage of the partial HPIC is the matched filter output given by

�
���
� �

����
	��

�������

� ���� �
�
� ���

������� �
����
	��

�������

� ���� �
�
� ���

������� �
����
	��

5��� (4.2)

where the time-averaged cross-correlation function between the �-th and the �th user is defined

as

��� �
����
	��

��������

and the noise sample after multiplying the spreading code is expressed by 5��� � �������.

We further denote the noise term after despreading as
	

	 5��� � ��. The adaptive blind partial

HPIC uses an adaptive filter to estimate the channel gains and then cancel the interference

produced by other users. The adaptive algorithm used is the well-known LMS algorithm, as

depicted in Figure 4.1. The LMS algorithm minimizes the MSE between the received signal

and the regenerated signal in a bit interval. The optimal weight vector can be obtained by



���
��� � ���

����
# ����� (4.3)

where the error signal is represented by

# ����� � �
�
����� ������

�
� �


�
�
����

��
���

$
���
� ��

��
�����
� ����

����� � (4.4)

In above equations, the superscript �� denotes the corresponding variable is operated at the �th

stage. Note that only one bit period is available for weight adaptation. We first express the
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spreading sequence vector as

��� � ������ ����� � � � � �����
� � (4.5)

The LMS update equation for the �th HPIC stage (with ��� stages of interference cancellation)

is then formulated as

������� � �������
�����

%����� � ���� ������� (4.6)


����� � � � 
����� � �%�����������

where the input signals are described as ������ � ���������� with the bit decision matrix

����� � diag������� ������� � � � � ������� �� (4.7)

After the weights are trained, they are used to cancel the interference from other users such that

the input to the �th user’ slicer in the �-stage is

��
���
� �� � ����

�
� ���

$
���
� ��

��
�����
� ����� (4.8)

Then the �th stage output from the partial HPIC (for User �) can be formed by

�
���
� �

����
	��

��
���
� ������ (4.9)

and the bit decision output for the �th user in the �th stage is denoted by ������ � sgn������ ���. We

will address a two-stage partial HPIC structure and omit the superscript for the stage number �

such that ������� � ����, $���
� �� � $���, and ������ � ��� in the sequel.

It can be seen from (4.4) that in the perfect condition, ���� � ���. In that case the ideal

convergent weights are

$��� �


� ��� ��� � ��

���� ��� � ���
(4.10)
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Thus, the convergence weights depend on whether the bit decision results in the previous stage

are correct or erroneous. The adaptive algorithm allows each user can weight to attain the

desired value symbol by symbol. This is the reason why the adaptive approach performs better

than non-adaptive methods.

As mentioned, the adaptation period is constrained in one symbol period. This is because

the optimal weight for User � may be ��� or ��� depending on the bit decision for each sym-

bol. Although the LMS algorithm is simple, its convergence may slow and the weight may not

converge to the desired value in such a short period. In addition, the resultant weight heav-

ily depends on the parameters used in the LMS algorithm so is the cancellation performance.

These parameters include the step size and weight initials. In the conventional approach, these

parameters are determined heuristically. The weight initials are usually set as the channel gains,

i.e., $��� � ��. This is reasonable since the bit error probability is usually low, most of the

weights will start their adaptation at the optimal values; only few weights are away from their

desired values by 	��. A larger step size will accelerate the convergence speed for the weights

with erroneous decision, but also inevitably introduces a larger variance. There is little research

regarding the convergence analysis for the adaptive blind partial HPIC receiver and this is the

motivation of our research.

The LMS algorithm has been analyzed and developed for over four decades. However, most

results cannot be used here. This is because the step size used in this application is large and this

will violate many assumptions assumed. The other reason is that we most concern the transient

behavior (due to small sample size) while most works only concern steady-state behavior. We

then develop a novel method to overcome this problem. We will start the analysis with a single-

user scenario. In this case, there is no MAI; however, the result can serve as a base for the

two-user and general �-user scenario.
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§ 4.2 Exact Analysis for Single-user Scenario

§ 4.2.1 Optimal Weight Analysis

Consider the CDMA system with only one active user, i.e., � � �. Since only one user is

present, we will omit the subscript � for notational simplicity. Thus, ��� � ����, � � ��,

� � ��, ������ � �
���
� ��, 5�� � 5���, � � ��, and 6�� � �������. Note that by definition,

5�� � ������ and

� �
����
	��

5��� (4.11)

The matched filter output signal in a certain bit interval in (4.2) can be rewritten as

���� �
����
	��

������

�
����
	��

��������� � ���

� �� �
����
	��

������

� �� �
����
	��

5��

� �� � � (4.12)

where the noise samples 5��� � � �� �� � � � � � � � are i.i.d. random variables with zero mean

and variance ��� � ���� . Note that in the following derivation, we refer to the first stage

decision, the first stage correct decision, and the first stage erroneous decision as the decision,

the correct decision, and erroneous decision, respectively. From (4.12), it is simple to see that

the decision ��, which equals sgn������, depends on the noise term �. It is simple to derive the

condition for correct or erroneous decision. Denote the set for which decision is correct as �� ,
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and that for which decision is erroneous as �� . Then,

�
� � ���� � ���

�


� � 7 �� for � � �

�  � for � � ��
(4.13)

and

�
� � ���� � ���

�


� �  �� for � � �

� 7 � for � � ���
(4.14)

We will first derive the optimal weight conditioned on � and then take the expectation on the

conditional optimal weight to obtain the final result. Since the input to the LMS filter depends

on ��, the optimal weight will be different for �� � � and �� � �. To facilitate the derivation,

we first define some notations. Let a random variable � conditioned on � be denoted as ��,

i.e., �� � �����. Also let the conditional random variable with � � �� be denoted as ���, i.e.,

��� � ���� � �
��. Similarly, ��� � ���� � �

��. Also let ���� � ���������, ���� � ���������, ��� �

��������, and ��� � �������� where the subscript 8 denotes the corresponding variable is a

mean value, ������� denotes the expectation operated on ��� and ���, and ����� denotes the

expectation operated on �. Let ���� denote the expectation operated on all random variables,

and we have ����� � ������������� � ��� , and ����� � ������������� � ��� . Using the

similar rule, we define the optimal weight conditioned on � � �� as �$�

���, and that on � � �� as

�$�

���. Also, let the optimal weight for correct decision be $�

��� and that for erroneous decision

be $�

���. We then have $�

��� � ��� �$�

���� and $�

��� � ��� �$�

����. The conditional optimal weight

is given by

�$�

��� � � �������� (4.15)
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where ��� � ������6����� and ��� � ������6���������. Note that ��� � ��� . We then have

�$�

��� � �������6���������
� ������������������
� ���

�
� 	 �
�

� �5����

 
(4.16)

� � �����5����� (4.17)

The conditional mean for �5��� can be obtained by taking the conditional expectation on both

sides of (4.11).

��� �
����
	��

�5���� (4.18)

� � �5�� ��� (4.19)

Thus, (4.16) can be rewritten as

�$�

��� � � �
������ (4.20)

Assuming � � �, we can obtain the optimal weight for correct decision as (the result is identical

for � � ��)

$�

��� � ��� �$�

����
� � � �������� (4.21)

Note that � is a Gaussian random variable with zero mean and variance ��� � ��
�
� � �

�. Let

9�	 denote a probability density function. Thus, the second term in the righthand side of (4.21)

can be expressed as

������� �

�
�9�������

�

'
��
�9����'

��
9����

� (4.22)

Similarly, from (4.16), we can obtain the conditional optimal weight for the erroneous decision

as

�$�

��� � ��� ������ (4.23)
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The optimal weight is then

$�

��� � ��� �$�

����
� ��� ������� (4.24)

where ������� can be evaluated as that in (4.22).

§ 4.2.2 Weight Error Mean Analysis

The LMS update equation for the single-user scenario can be formulated as

���� � 6��$��

%�� � ���� ����

$��� � � $�� � �%��6���

(4.25)

Define two weight errors as

�:��� � �$���� $�

��� (4.26)

�:��� � �$���� $�

���� (4.27)

Our objective is to find close-form expressions for the mean values of �:��� and �:���. Using

the notations defined above, we have :�� �� � ���:���� and :�� �� � ���:����. We first

consider the scenario of correct decision and rewrite (4.26) as

�:��� � �$���� $�

���

� �$���� �$�

��� � �$�

��� � $�

���� (4.28)

We then define

�;��� � �$���� �$�

��� (4.29)

�Æ� � �$�

��� � $�

���� (4.30)

From (4.28), we can have

�:��� � �;��� � �Æ�� (4.31)
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It is simple to see that ���Æ�� � �. Thus, :���� � ���:���� � ���;���� � ����;�����.

Expanding �;���, we have

�;��� � �$���� �$�

���

� �$���� � � ��6����%���� �� �$�

���

� ��� ����;���� � � ���6���� ������� �� �$�

�����

� ��� ����;���� � � �
(
�6���� ���� 	 ������ � � ������ �� �$�

�����
)

� ��� ����;���� � � �����5���� �� ���� (4.32)

Iterating (4.32), we can obtain

�;��� � ��� ���	�;��� � ���
�

	���
���

��� �	���5���� �

�

	���
���

��� �	���
�

� 2	�;��� � ���
	���
���

2	���5���� ��� �
�

�
�� 2	
�� 2

 
(4.33)

where 2 � �� ��� and �;��� � �$���� �$�

���. Note that $�� is an deterministic initial value

and �$��� � $��. Taking expectation on both sides of (4.33) with respect to ��� and ���,

we have

�;���� � 2	�;��� � ���

�
	���
���

��� �	���5�����
�

�

	���
���

��� �	���
�

� 2	�;��� � ���
	���
���

2	���5�� ���
����

�

�
�� 2	
�� 2

 
� (4.34)

Using the result from (4.19), we have

�;���� � 2	�;���� (4.35)

From above, we know that :���� � ����;�����. Thus,

:���� � 2	����;����
� 2	:��� (4.36)
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where �$��� � $�� and :��� � $��� $�

���. The same result can be obtained for the weight

error mean of erroneous decision.

:���� � 2	:��� (4.37)

where :��� � $��� $�

���.

§ 4.2.3 Weight Error Variance Analysis

In this section, we will find close-form expressions for ����:������ and that of ����:������. Let

:� �� � ����:���� :�� ����� and :� �� � ����:���� :�� �����. We then have

����:������ � :� �� � �:�����
� (4.38)

����:������ � :� �� � �:�����
�� (4.39)

Thus, the central problem in this section is to find :� �� and :� ��. We define �:� �� �

�������:��� � :�� ����� and �:� �� � �������:��� � :�� �����. From the conditional random

variable property, we have :� �� � ����:� ��� and :� �� � ����:� ���. As previously, we

first consider the scenario of correct decision. From (4.31) and (4.33), we have

�:� �� � �������:���� :�������
� �������;��� � �Æ� � 2	:������

� ����


�
�
2	
�
�;���� :���

�
� �Æ� � ���

�
	�
���

2	���5���� �

�

	�
���

�� 2	
�� 2

������
� ����

��
2	
�
�;���� :���

�
� �Æ�

���

�������


�
��

	�
���

2	���5���� �

�

	�
���

�� 2	
�� 2

������ � (4.40)
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Note that the second term in the righthand side of (4.40) is just �;� ��. This can be seem from

(4.33) and (4.35). We now evaluate this term.

�;� �� � ������


�
�
	���
���

2	���5���� �

�

�
�� 2	
�� 2

 �����
� ��

�
����


�
�
	���
���

2	���5���

������ 	��5����

�

�
�� 2	
�� 2

 	���
���

2	��

�
��

��
	
�
�� 2	
�� 2

 �
�

� ��


�����


�
�
	���
���

2	���5���

������ ��

��

�
�� 2	
�� 2

 �

��� � (4.41)

From (4.41), we can see that we have to find the autocorrelation function of �5���, which is

������5����5����. It can be shown that the function have the same value for � � �. Let

������5����5���� �

� .� � � �

/� � � ��
(4.42)

To solve the problem, we first consider a simple two-chip case in which � � 	

�5��� � �5��� � � (4.43)

where the unconstrained variables 5��� and 5��� are two i.i.d. random variables with zero

mean and variance ��� . We can evaluate the conditional joint probability function of ��5 ���� �5����
as

9��5���� �5��� �
�

	<���
���

�
���5

���� � ��5����

	���

�
�

�

	<���
���

�
���5

���� � �� � �5�����

	���

�

�
�

	<���
���

�
� ���5

���� �
�
��� � �

	
��

���

�
� ! 	 �*

	< 	 ����	
���

�
��
	

(
�5���� �

�
�
)�

�
�
���

�
� !9

%
�5���

&
(4.44)
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where ! is a normalization constant. From (4.44), we can obtain �5 ���� � �5���� �
�
�
�, and

�5� �� �
�
�
��� . Multiplying �5��� and taking expectation on the both sides of (4.43), we can

obtain

��5����
� � �5� �� � /� � ��5

�

���� (4.45)

Instituting the result of �5�� �� into (4.45), we can obtain /� as

/� �
��

�
� �

�
�

	
�
��

�
� ��

	�
� (4.46)

Direct extension of the above derivation to � 7 	 is difficult since we have to evaluate multi-

dimensional integrations. We now use a simple method to overcome this problem. First, we let

� be even and rewrite the �-constrained equation as

�=��� � �=��� � ��


� �=��� �
	�!���

��� �5���

�=��� �
	���

���!� �5
���

(4.47)

where the unconstrained variables =��� and =��� are i.i.d. random variables with the same

distribution. We can then apply the result in (4.45) and obtain�
�=�� ��

��
� �=� �� � /" � � 	 �=����� (4.48)

Note that �=� �� �
�
�
=� �� with =� �� � ��

�
��	, and �=���� � ��	. Combing with (4.48), we

can then obtain /". Note that

/" � ����


�
�!����
���

����
���!�

�5����5���

���
�

�
�

	

 �

/� � (4.49)

Thus, from (4.49) we can obtain the crosscorrelation /� for � 7 	 as

/� �
��

��
� �

�
�

�
� (4.50)
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Multiplying �5��� on both sides of (4.47) and taking expectation, we have

.� � �� � �/� �
��

�
� (4.51)

Finally, we obtain

.� �
��

�
�
� � �

�
��� � (4.52)

Simulation results show that the result (derived for an even � ) is also very accurate for an odd

� . We can then have an explicit expression of the first summation term on the righthand side

of (4.41) as

����


�
�

	�
���

2	���5���

����� � /�

�
�� 2	
�� 2

 �

� �.� � /�
�
�� 2�	
�� 2�

 
� (4.53)

Thus, combining (4.41), (4.50), (4.52) and (4.53), we have

�;� �� � ��

�
���

�
�� 2�	
�� 2�

 
� �

�
�

�

�
�� 2	
�� 2

 �
�

�
��

��

�
���

�
�� 2�	
�� 2�

 
� ��

�
�� 2	
�� 2

 �
�
� (4.54)

By definition and (4.40), we have

:� �� � ��

��
2	
�
�;���� :���

�
� �Æ�

���
� ;� ��� (4.55)

Note that the result in (4.54) is independent of �; it is a function of noise variance and the step

size only. Thus, ;� �� � ����;� ��� � �;� ��. Thus, the second term in the righthand side of

(4.55) can be evaluate using (4.54). Denote the first term in (4.55) as Æ� . Then,

:� �� � Æ� � ;
�

 ��� (4.56)

The term Æ� can be further evaluated as

Æ� � ��

��
2	
�
�;���� :���

�
� �Æ�

���
� ��� 2	���

�%
�$�

��� � $�

���

&��
� ��� 2	�

�
��

�(
�$�

���

)��� ($�

���

)��
(4.57)
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where the second moment of �$�

��� is given by

��

�(
�$�

���

)��
� ������ ���� � �

��� (4.58)

Thus, we can obtain the weight error power shown in (4.38) using (4.36), (4.54), (4.55) and

(4.57) as

����:������ � 2�	�:����� � Æ� � �;� ��� (4.59)

Similarly, the weight error power for the erroneous decision described in (4.39) can be obtained

as

����:������ � 2�	�:����� � Æ� � ;� ��� (4.60)

The second term in the righthand side of (4.60) can be expanded as

Æ� � ��� 2	�
�
��

�(
�$�

���

)��� ($�

���

)��
(4.61)

where the second moment of �$�

��� is given by

��

�(
�$�

���

)��
� ������ ���� � �

��� (4.62)

As mentioned, the result in (4.54) is independent of �. Thus, we have �;� �� � �;� �� and

;� �� � �;� ��. The third term in the righthand side of (4.60) can be evaluated using (4.54).

§ 4.3 Exact Analysis for Two-user Scenario

Extending the procedure developed in the previous section, we now proceed to analyze the two-

user case. Only the optimal weights and convergent weight error means are considered since

the closed form expression for the weight error variance is difficult to obtain. In most cases, we

only represent the result for the correct decision (denoted with superscript ‘�’). The derivation

for erroneous decision is summarized in Appendix D.
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§ 4.3.1 Optimal Weight Analysis

Define ��� � ������ �����
� and the matrix formed by ��� as ��� � ���������. Then,

the time-averaged correlation matrix is obtained as

� �
�

�

����
	��

���� (4.63)

The time-averaged correlation between these two users’ codes is given by

� �
����
	��

��������� (4.64)

Note that �� is an integer. It is simple to show that

� �
�

�

+,� �

� �

-. � (4.65)

The matched filter output vector, denoted by ���� � ��
���
� � �

���
� �� , is then

���� �
����
	��

������

�
����
	��

������������ � �������� � ���

� �����
����
	��

������

� �����
����
	��

��� (4.66)

where � � ���� ���
� is the data bit vector, � � diag���� ��� is the channel amplitude matrix,

and ��� � �5���� 5����
� is the noise vector after code multiplication. Let the second term in

the righthand side of (4.66) be denoted as � � ���� ���
� . Then

� �
����
	��

���� (4.67)

64



and

���� � ����� �� (4.68)

As that in the single user case, the decision in the first stage depends on the value of �. However,

the problem here become more involved since the distribution of � depends on �. It can be

shown that the joint probability density function for the random vector � is Gaussian and

9�� �
�

	<�����!� ���
�
��
	
�����

�
�

�
(4.69)

where the covariance matrix is given as

�� � ������ �
+, �� ���

��� ��

-. � (4.70)

Note that now the number of bits for decision is two and the number of the decision patterns

becomes four. Let � � �� � and � can be 1 or 2. Define the set for which User �’s decision is

correct as

�
�

� � ������ � ����

�


� �� 7 ���� � ����� for �� � �

��  �� � ����� for �� � ���
(4.71)

Similarly the noise subset for making erroneous decision is represented as

�
�

� � ������ � ����

�


� ��  ���� � ����� for �� � �

�� 7 �� � ����� for �� � ���
(4.72)

We then extend our notations defined in the previous section. Let a random variable � con-

ditioned on � and then on � be denoted as ��, i.e., �� � �������. Also let ��� � ��������,

"�� � �������, �� � �#�"���. We then have �� � ����. Using the similar rule, we define

the optimal weight conditioned on � and then on � as �
���, the optimal weight conditioned on �

as "
���, and the optimal weight as
���. We then have "
��� � ��� �
���� and
��� � �#� "
����.
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The optimal weight conditioned on � and then on � can be represented as

�
��� � ������ (4.73)

where the correlation matrix of input signals is expressed by

�� � ����

�
���������

�
�

�

�

+, � �������

������� �

-. � (4.74)

The crosscorrelation vector is given by

�� � ��������������
� ����� ������

(
��������� � ��������� � ������� (4.75)

Thus, the conditional optimal weight vector is

�
��� �
�

�� ��

+, � ��������
�������� �

-. 	 �
�

+,������� � ��������� ������

������� � ��������� ������

-.
� � ����

�

�
�������� (4.76)

As we can see from (4.76), the optimal weights depends on the decision patterns in ��. There

are four decision patterns, i.e., ���� � ������ � ���, ���� � ������ � ���, ���� � ������ � ���, and

���� � ������ � ���. Note that for each decision pattern, we have two bit patterns that �� � ��

and �� � ��. Let ��� denote the set of � yielding the �th decision for the �th bit pattern. For

example,

�
�� �

�
���� � �

�

� � �� � �
�

� � �� � ��
�

(4.77)

�
�� �

�
���� � �

�

� � �� � �
�

� � �� � ��
�
� (4.78)

Let ���� � ���� � ��� ���. Also let ����� � ����������. We can have similar notation for optimal

weights. Let the optimal weight conditioned on � � � �� and then on � as �
��
��� and "
��

��� �

��� �
��
����. Then,

"
��
��� � � ����� �

�

�
�������������� (4.79)
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where ��� denotes the �th decision pattern, and �� denotes the �th bit pattern.

If we further assume that �� � �, we have

�
�� �

�
���� � �

�

� � �� � �
�

� � �� � � � ��
�

(4.80)

� ����� 7 ���� � ���� �� 7 ���� � ���� (4.81)

and

�
�� �

�
���� � �

�

� � �� � �
�

� � �� � � � ��
�

(4.82)

� ����� 7 ���� � ���� �� 7 ���� � ����� (4.83)

The optimal weights for ��� becomes

"
��
��� � � � �

�
�����������

"
��
��� � � � �

�
������������

(4.84)

where � � ���� ���
� and � � diag������. The result in (4.84) for � � �� is identical for

�� � � since in (4.79) the product in ����� or ������
�
��� is independent of the value of ��. The

components in � ��
�
��� are given by

�������� �

'
��� �9����'
��� 9����

� (4.85)

The complete set of � for all decision and bit patterns is shown in Table 4.1. The complete set

of conditional optimal weights is given in Table 4.2.

Our objective is to determine 
�

��� and 
�

��� by taking expectation on "
�

��� and "
�

���. As

seen in Table 4.1, the region of �� for correct decision is different from that of ��. Thus we have

to determine the components of "
�

��� user by user. The union of noise subsets for the first user

to have correct decision is then

� � � �
�� � �

�� � �
�� � �

�� � (4.86)

The occurrence probability for ��� is obtained as

"�� �

�
���

9����� (4.87)
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Table 4.1: Sets of � for all decision and bit patterns

�
�� ����� Range for �� Range for ��

�
��

+, �

�

-. �� 7 ���� � ��� �� 7 ������ ��
��� �� 7 ���� � ��� ��  ������ ��
�
��

+, �

��

-. �� 7 ���� � ��� ��  ���� � ���
��� �� 7 ���� � ��� �� 7 ������ ��
���

+,��
��

-. ��  ���� � ��� ��  ��� � ���
�
�� ��  ���� � ��� �� 7 ������ ��

�
	�

+,��
�

-. ��  ���� � ��� �� 7 ���� � ���
�	� ��  ���� � ��� ��  ������ ��

The first user optimal weight for correct decision and a given � is

"$�

����� �
�

"��

�
��

"$��
�����"�� (4.88)

where

"�� � "�� � "�� � "�� � "��� (4.89)

The second user optimal weight for correct decision and a given � is

"$�

����� �
�

"��

�
� �

"$��
�����"�� (4.90)

where

� � � �
�� � �

�� � �
	� � �

	� (4.91)

"�� � "�� � "�� � "	� � "	�� (4.92)
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Table 4.2: Complete list of conditional optimal weights

"
��
��� � � � �

�
����������� "
��

��� � � � �
�
������������

"
��
��� � �� � �

�
������������ "
��

��� � �� � �
�
�����������

"
��
��� � �� � �

�
������������ "
��

��� � �� � �
�
�����������

"
	�
��� � ��� � �

�
���������	�� "
	�

��� � ��� � �
�
��������	��

The optimal weight is obtained through averaging "
�

��� over all � values by

$�

����� � �#� "$�

������ �
	

# "$
�

�����"#"� �	
# "#"� �

(4.93)

where � � �� 	 and the distribution for the correlation coefficient is given by

"# �
�

	�

�
�

��� � ��	

 
� (4.94)

The optimal weights for erroneous decision can be obtained in a similar way and summarized

in Appendix D.

§ 4.3.2 Weight Error Mean Analysis

The LMS update equation for a two-user scenario is rewritten as

���� � ����
��

%�� � ���� ���� (4.95)


��� � � 
�� � �%�����

where 
�� � �$���� $����
� . Define two weight errors as

�:�� �� � �$�

� ��� $�

�����

�:�� �� � �$�

� ��� $�

�����

� � �� 	� (4.96)

From the optimal weight results of the two-user case, we know "
�

��� and "
�

��� are obtained from

"
��
���’s. Thus we also give the conditional weight errors as

������ � �
����� "
��
��� (4.97)
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where the conditional weights are defined as

�
���� � �
���� � �
���� (4.98)

As in the single-user case, our goal is to determine close-form expressions of ��:�� ��� and

��:�� ���. It is obtained by ��:�� ��� � �#�":������� and ��:����� � �#�":�������. By

definition "
��
��� � ��� �
��

����. We express the conditional weight error for "
��
��� as

������ � �
����� "
��
���

� �
����� �
��
��� � �
��

��� � "
��
���� (4.99)

We then define

������ � �
����� �
��
���

�Æ
��
� �
��

��� � "
��
����

(4.100)

From (4.99) and (4.100) we have

������ � ������ � �Æ
��
� (4.101)

It is obvious that

�Æ
��

� � � � � �
� � (4.102)

Thus we obtain that

������� � �������� (4.103)

Thus "������ � "������ � �����������. We then have

������ � �
����� �
��
���

� �
����� �� �
��
��� � ���

����� ��%����� �

� ������� � � �������� �
%
������� �� ������� �� �
����� �

&
� ��� � ������� �������� � � �

�
������� �������� �� ������� � �
��

���

�
� ��� � ������� �������� � � � ��

��
��� � (4.104)
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where ������ � ��������������� and the parameter ��
��
�� in the second term on the righthand

side of the above equation is defined as

��
��
�� � ������������� ������ �
��

���� (4.105)

It can be easily shown by deduction that the recursive weight error given � and � is

������ �
	��/
���

�
�� � �����>

�
������

��
	���
���

	��/
�����

�
�� � �����&

�
��
��
�>� (4.106)

By combining (4.105) and (4.106) with the institution that

0������> �
	/

�����

�
�� � �����&

�
(4.107)

we obtain the conditional weight error as

������ � 0�������������� � �
	���
���

0������> ��
��
�>

� 0�������������� � �
	���
���

0������>
�
�����>�����>� ������ �
��

���

�
� 0��������������

��
	���
���

0������>

�
�����>

(
������

��
� �> � ������

��
� �> � �����>

)
������>�����>�

1
� ����� �

�

�
��� �������

2�
� (4.108)

Note that by some algebraic computations we obtain

�����>
(
������

��
� �> � ������

��
� �>

)� �����>�����>�� ����� �

+,�
�

-. � (4.109)

and then we can express the weight error as

������ � 0��������������

��
	���
���

0������>

�
�����>�����>� �

�
�����>�����>���� �������

�
�(4.110)
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From the above definition, we know "������ � ����������� � ����������������. The expecta-

tion for the first term on the righthand side of (4.110) can be obtained as

��

�
����

�0������������
��

� ��

�
����

�
	��/
���

�
�� � �����>

��
�������

�
� ��

��
�� � ����

�	�
"������

�
�
�� � ����

�	
"������ (4.111)

where ���� � ��������������� �� � �
���. Note that ������� � �
���� � �
��

��� and 
���� �


�� is a deterministic term. The conditional expectation for the second term can be obtained

as

��

�
����

�
	���
���

0������>�����>�����>

��

� ��

�
����

�
	���
���

0������> ���������

��

� ����

�
	���
���

0������>

�
�������

�
� (4.112)

The conditional expectation for the third term can be obtained as

��

�
����

�
	���
���

0������>
�

�
�����>�����>���� �������

��

� ����

�
	���
���

0������> �����>� �������� ��� ��
��

�

�

� ����

�
	���
���

0������>

�
����� ���>���� ��

��

�

� ����

�
	���
���

0������>

�
��� ��

��

�
(4.113)
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where the independence between 0������> and��> is assumed. Combining the expectation

terms through (4.111)-(4.113) the weight error mean vector conditioned on � and � is given by

"������ �
�
�� � ����

�	
"������� (4.114)

It has to be noted that in (4.114) the evaluation of ���� varies for different ��� as expressed by

���� �


�������������
�� � �

�

+, � ��

�� �

-. � ���� � ���� 		� ��� �	�

�� �
�
�

+, � ��
�� �

-. � ���� � ��	� 	�� �	� ����
(4.115)

Let "������ � �":�������� ":
��
������

� . The weight error mean for the first user conditioned on only

the correct decision and � is represented by

":������ �
�

"��

�
��

":�������"�� (4.116)

where � � is given in (4.86). Similarly the weight error mean for the second user is represented

as

":������ �
�

"��

�
��

":�������"�� (4.117)

where � � is given in (4.91). Then the averaged weight error mean for correct decision over �

can be obtain by

��:�� ��� � �#

�
":�������

�

	
# ":

�

�����"#"� �	
# "#"� �

(4.118)

for � � �� 	.

§ 4.4 Approximate Analysis for �-user Scenario

In prior two sections, we have derived the exact analytical results for the optimal weight, the

weight error mean, and the weight error variance for the single-user case, and the optimal
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weights, the weight error means for the two-user case. In this section, we will extend the

results to accommodate the general �-user case. Due to the difficulty of the problem, we will

seek approximate rather exact solutions. In most cases, we will only give the result for correct

decision (denoted with superscript ‘�’) and omit the derivation of erroneous decision.

First note that the received despread signal of each user composes of three parts, i.e., the

desired signal, the MAI, and noise. The key to reduce the analysis complexity is to consider

each user individually and treat all other��� interfering users as an equivalent user. By doing

so, we can transfer the general �-user case to a two-user case. In other words, we let�
� ���

������� � �$�$� (4.119)

where �$ � ���� and �$ � �
	

� ��� �
�
�

�!�. Here, �$ represent the equivalent amplitude and �

the equivalent correlation. Using this model, we can have equivalent interference second order

statistics. Also note that �$ is virtual and we do not need its actual values in derivation. In the

following analysis, we assume that the desired user is the first user. Thus, the matched filter

output is then

�
���
� � ���� � �$�$� � ��� (4.120)

Thus, we can keep the computational complexity comparable to the two-user case.

§ 4.4.1 Optimal Weight Analysis

We use two methods to approximate optimal weights. The first method directly uses the two-

user model in (4.120). All we have to do is to let the amplitude of the second user be equal

to �$ � �
	

� ��� �
�
�

�!�; optimal weights can be obtained readily. In what follows the similar

derivation for optimal weights applies, which is termed as
�

��� for correct decision and
�

��� for

erroneous decision. The associated equations are listed below with the same noise integration

ranges ��� in Table 4.1. The conditional optimal weights given � and � �� is represented as

"
��
��� � � ����� �

�

�
��� ����������� (4.121)
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where � � diag���� �$�. The optimal weights for correct decision of the first user given � is

similar to (4.88) as expressed by

"$�

����� �
�

"��

�
��

"$��
�����"�� (4.122)

with � � given in (4.86). The approximate optimal weight of correct decision analogous to (4.93)

is obtained by

$�

����� � �#� "$�

������ �
	

# "$
�

�����"#"��	
# "#"� �

(4.123)

with "# defined in (4.94). This method is referred to as the optimal weight approximation one

(OWA1). Similar procedures for $�

����� can be easily repeated.

The second method simplifies the result one step further. In the preceding optimal weight

approximation, it is necessary to derive the optimal weights "
��
��� according to different noise

subspaces��� . It can be seen that the optimal weights of the two-user case are coupled with each

other. For this reason the optimal solution for the first user requires bit decision information

pertaining to the second user, thus the long list of Table 4.1 results. If we can ignore some

coupling relationship, the optimal weight can be calculated more easily. Here we ignore the

decision coupling between two users. In other words, the first user decision is independent of

the second user decision. In this case, the decision patterns are degenerated into two, �� � ���

and �� � ���. We denote these patterns as the fifth and the sixth pattern. For each decision

pattern, we have two bit patterns, i.e., �� � �$ and �� � �$ . The noise space can be partitioned

into two subsets accordingly. Thus, for �� � ���, we have two sets as (��=1)

�
� � ��� � ��� � �� � �$

�
� � ��� � ��� � �� � �$ �
(4.124)

Hence the conditional optimal weight on �
� for correct decision is obtained to be

"$
�
����� � ��� �$
�

������
� �� � �����
�� �� � � �� 	� (4.125)
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Note that (4.125) only involves one-dimensional integration instead of two-dimensional integra-

tion. Then the optimal weight for correct decision of the first user conditioned on � in (4.122)

can be approximated as

"$�

����� �
"$
�
�����"
� � "$
�

���"
�

"�
(4.126)

where the noise integration region and the corresponding occurrence probabilities are defined

as

� � �

� � �


� (4.127)

"� � "
� � "
�� (4.128)

The optimal weight is then

$�

����� � �#� "$�

������ �
	

# "$
�

�����"#"�	
# "#"�

(4.129)

where "# is defined in (4.94). This optimal weight approximation method is referred to as the

optimal weight approximation two (OWA2).

§ 4.4.2 Weight Error Mean Analysis

We also develop two methods for weight error mean approximation. The first method follows

the same derivation of the mean weight error vector for the two-user case. The weight error

mean for the�-user case can be obtained through the direct substitution of �$ , and are referred

to as ��:����� and��:����� for correct and erroneous decision, respectively. The weight error

mean vector given � and ��� are represented from (4.114) as

"������ �
�
�� � ����

�	 %

��� "
��

���

&
(4.130)

where the optimal weights in (4.130) for the �-user case can be "
��
��� if the OWA1 is used or

"

�
��� if the OWA2 is used. The conditional weight error mean given � for correct decision is

given by

":������ �
�

"�

�
�

":�������"�� (4.131)
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where the union of noise subsets � is � � in (4.86) for the OWA1 or � in (4.127) for the OWA2.

Also "� is "�� for the OWA1 or "� for the OWA2. Finally, the averaged weight error mean is

obtained as

:������ � �#�":�������
�

�

	
# ":

�

�����"#"�	
# "#"�

� (4.132)

We call this approximation as the weight error mean approximation 1 (WEMA1).

The second method further explores simpler approximation. Note that ":������ differs ac-

cording to different � values. From (4.94), we can find that most of the correlation values fall in

the vicinity of � � �. We would like to simplify the derivation of :������ by ":������ for � � �.

Expanding (4.116) we have

":������ �
�

"��

�
":�������"�� � ":�������"�� � ":�������"�� � ":�������"��

�
� (4.133)

It should be noted that when �� � (from Table 4.1),

"�� � "��

"�� � "���
(4.134)

Thus we have

":������ �
�

"��

�
"��

%
":������� � ":�������

&
� "��

%
":������� � ":�������

& �
� (4.135)

We rewrite the first summation term in (4.135) of ":������� in vector forms using (4.114) and

(4.115) as

"������ � "������ � ��� ���
	"������ � ��� ���

	"������

� ��� ���
	�
����� "
��

��� � ��� ���
	�
����� "
��

����(4.136)

Remember that 
���� � 
���� � 
��. Note that in Table 4.1 that when � � �, ��� and

��� are symmetrical with respect to the �-axis. In a consequence we have "$��
����� � "$��

����� and
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"$��
����� � � "$��

�����. Also note that

��� ���
	 �

+,��� ���	 �
� ��� ���	

-.
��� ���

	 �
+,��� ���	 ��

�� ��� ���	

-. (4.137)

where �� ��� ���	. Thus we can express the first user component in (4.136) as

":������� � ":������� � 	
�
��� ���	�$���� "$��

����� ���$���� "$��
�����

�
� 	��� ���	":�������� (4.138)

Similarly we obtain

":������� � ":������� � 	��� ���	�$���� "$��
�����

� 	��� ���	":�������� (4.139)

Combining with (4.135), we have the approximation

":������ �
	��� ���	

"��

(
":�������"�� � ":�������"��

)
� ��� ���	":������

� ��� ���	 %$�

���� "$�

�����

&
(4.140)

where ":������ �
�

%��
�":�������"�� � ":�������"��� is assumed. The final weight error mean is

obtained as

:������ � �#�":�������
� �#�":�������� � ��
� ��� ���	 %$�

���� $�

�����

&
(4.141)

Note that $�

����� can be that in (4.123) for the OWA1 or in (4.129) for the OWA2. We call this

the weight error mean approximation 2 (WEMA2).
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§ 4.4.3 Weight Error Variance Analysis

The exact analysis for the weight error variance is difficult even for the two-user case. Thus

the analytical result in the single-user case is used to approximate weight error variance in the

�-user scenario. We rewrite (4.56) here as

:� �� � Æ� � ;
�

 �� (4.142)

As previously, we first treat the � � � user signals as one equivalent interference. Comparing

(4.120) with (4.12), we found that the desired user output in this two-user environment has

one extra term which is �$�$�. As we did in the derivation for the OWA2, we ignore the

decision coupling relationship. As a result, the second user can only affect the conditional

optimal weight. In other words, ;� �� remain the same for the�-user case. Only will Æ� �� be

changed. Note that Æ� �� is a function of � and can be obtained by Æ� �� � �#�"Æ� ��� where

"Æ� �� �
"Æ
� ��"
� �

"Æ
� ��"
�
"�

� (4.143)

Then the term "Æ
� �� is obtained as

"Æ
� �� � ��� 2	���

�%
�$
�
����� � "$
�

�����

&��
(4.144)

where the expectation term with analogy to (4.57) is given as

��

�%
�$
�
����� � "$
�

�����

&��
�


� ��

�
��� � �$�� �� � "$
�

�����
���� 7 ���� � �$�

�
� � �

��

�
��� � �$�� �� � "$
�

�����
���� 7 ���� � �$�

�
� � 	�

(4.145)

Finally the averaged Æ� �� is obtained as

Æ� �� �

	
#
"Æ� ��"#"�	
# "#"�

� (4.146)
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The weight error power for correct decision is expressed as

�
�
��:�����

�
�

� �
�(

�$�

���� $�

�����

)��
� �:�������

� � :� ��

� 2�	�:�������
� � Æ� �� � ;

�

 �� (4.147)

where :������ can be obtained from the WEMA1 or WEMA2. Similarly the weight error power

for erroneous decision can be obtained.

§ 4.4.4 Output MSE and BER

Since we have derived the approximate weight error power for the adapted weights correspond-

ing to both correct and erroneous decisions, we can then calculate the output MSE and then

BER. As mentioned in (4.10) that if the adapted weight of the �th users is �� for �� � ��� or

��� for �� � ���, its interference to other users can be perfectly canceled. Thus, the MSE for

the correct decision, denoted as ?�

���, introduced to other users when the weight obtained at

time � is used for cancellation is

?�

��� � ��� �$�

���������� �����������
� ��� �$�

���� �������� (4.148)

As a result, the overall MSE, denoted as?���, introduced to other users when the cancellation

is performed is then

?��� �
�

�

�
"������ �$�

���� ������ "������ �$�

��� � ���
��
�

(4.149)

where "��� and "��� denote the probability of correct and that of erroneous decision in the first

stage for the �th user, respectively. Note that these probabilities can be easily obtained using

Gaussian approximation. Substituting the weight error power in (4.147) into (4.149), we can
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obtain?��� as

?��� �
�

�

�
"���

�
�
�
��:�����

�
�
� 	$�

�����
%
$�

����� � ��
&
� ��� � �$�

������
�
�

�"���
�
�
�
��:�����

�
�
� 	$�

�����
%
$�

����� � ��
&
� ��� � �$�

������
�
��
� (4.150)

Note here that we extend our notations defined previously to the �th user. Assuming that the

residual error resulting from imperfect interference cancellation is Gaussian distributed with

zero mean and variance ?���, we can then obtain the BER for the �th user as

" ��
���
�  � �


� ��3
�� �

	�
� ���?���

��� � (4.151)

Note that the MSE at the end of adaptation is ?��� and it is a function of the step size �.

We can then use the numerical method to search for the optimal step size minimizing the MSE.

Using the same idea, we can also obtain the optimal step size minimizing the BER. Since

minimizing MSE is easier, we use that in later simulations.

§ 4.5 Simulation Results

In this section we report some simulation results to evaluate the validity of our analytical results.

We consider an adaptive blind two-stage partial HPIC receiver using the LMS algorithm. We

utilized the random codes as the spreading codes and the processing gain is set as � � ��.

Only the AWGN channel was used throughout the simulations. For the first set of simulations,

we compared theoretical optimal weights with empirical ones for various ����� (���	 � �
�).

Optimal weights for correct and erroneous decision were considered separately. Note that the

channel gain was normalized to unity, i.e., as �� � � for all �. Thus all weights starting

adaptation from $��� � �. Figure 4.2 shows the results for a two-user case, which includes

exact analytical optimal weights in (4.93), those obtained using the OWA2 in (4.129), and those

obtained empirically. It can be seen that both the exact and approximate optimal weights agree
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Figure 4.2: Optimal weight comparison for two power-balanced users.

with the empirical ones very well. As depicted in the figure, the optimal weights for correct

decision are almost the same as the channel gain, while the weights for erroneous decision is not;

its actual value depends on noise variance. The larger the ����� ratio, the closer the optimal

weight to ��. We also give optimal weights for 5 and 15 users (with various �����) in Fig.

4.3 and Fig. 4.4, respectively. In these figures, the results for the OWA1 (using (4.123)) and the

OWA2 (using (4.129)) are shown simultaneously. We can see that although these approximates

are performed based on the two-user model, the results are very close to the true optimums.

From Figure 4.2-Figure 4.4, we can observe that when the ����� and the number of users vary,

the optimal weights for correct decision keep very close to the channel gains which is one, while

those for erroneous decision vary. Also note that the performances of the two approximations

are very similar. Since the OWA2 is simpler, it is then desirable to use that whenever necessary.

We next consider the weight convergence of the LMS algorithm. Figure 4.5 presents the

analytical mean weights along with the empirical mean weights for a two-user scenario. The

powers of these two users are equal and ����� � � dB. The normalized step size is chosen as

82



0 2 4 6 8 10 12
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
b
/N

0

w
op

t

Correct decision

Erroneous decision

OWA1
OWA2
Empirical Result

Figure 4.3: Optimal weight comparison for five power-balanced users.

�� � ��� � ���	. The exact analysis in (4.118) and the WEMA2 in (4.141) with the OWA2

are evaluated. In the figure, we can observe that both analytical results match with the empirical

mean weights quit well. Similar comparison for 5 and 15 power-balanced users with����� � �

dB and �� � ���	 are also shown in Figure 4.6 and Figure 4.7, respectively. The WEMA1 in

(4.132) with the OWA1 is compared to WEMA2 with the OWA2. We can see that the analytical

results are more accurate for the 5-user case. For the 15-user case, there is some discrepancy

between analytical and empirical results. From above simulation results, we can conclude that

the WEMA2 with the OWA2 is suffice to give satisfactory results. This combination will render

less computational complexity. The weight error power comparison for the two-user case with

����� � � dB and �� � ���	 is given in Figure 4.8. It is obvious that the analytic result

performs close to simulated results. Also note that the weight error power incurred from correct

decision is smaller than that form erroneous decision. This is because the weights for erroneous

decision converges slower. The similar phenomenon can be observed when the user number

is larger. In Figures 4.9 and 4.10, the weight error power for 5 and 15 users are examined
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Figure 4.4: Optimal weight comparison for 15 power-balanced users.

(����� � � dB and �� � ���	). As we can see, the analytic results are still accurate even

for the erroneous decision of the 15-user case where only an estimation error about 20% is

produced. Finally, we present the results for step size optimization. Figure 4.11 gives the step

size minimizing MSE using (4.150). The figure reveals that the analytically optimized step size

is more accurate in low capacity systems. This is reasonable since the approximate analysis is

based on the single-user and two-user cases. We also give the BER comparison for the second

stage output with different user numbers in Figure 4.12. From the figure, we observe that the

analytical and empirical results are similar for low to moderate �����.
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Figure 4.5: Weight mean comparison for two power-balanced users (�� � ���	, and����� � �

dB).

0 5 10 15 20 25 30 35
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

n

w
ei

gh
t m

ea
n

Correct decision

Erroneous decision

WEMA1
WEMA2
Empirical Result

Figure 4.6: Weight mean comparison for five power-balanced users (�� � ���	, and����� � �
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Figure 4.7: Weight mean comparison for 15 power-balanced users (�� � ���	, and ����� � �

dB).
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Figure 4.8: Weight error power comparison for two power-balanced users (�� � ���	, and

����� � � dB).
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Figure 4.9: Weight error power comparison for five power-balanced users (�� � ���	, and

����� � � dB).
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Chapter 5

Improved Adaptive Blind Partial HPIC

Receivers

This chapter proposes improved algorithms for adaptive blind partial HPIC receivers. The basic

idea is to reduce the excess MSE introduced by the LMS algorithm. We use two procedures to

implement this idea. The first one is developed to reduce the number of weights in the LMS

algorithm. It is known that the excess MSE is proportional to the number of tap weights adapted.

If the number of weights can be reduced, the excess MSE can be reduced. The second procedure

is used to further process the adapted weights such that the weight variance can be reduced.

Section 1 describes the conventional adaptive blind partial HPIC receiver for completeness. In

Section 2, we then detail the proposed enhancement algorithm. In Section 3, we analyze the

performance of the proposed algorithm, which include the output MSE and the corresponding

BER. Finally, we report simulation results in Section 4.
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§ 5.1 Adaptive Blind Partial HPIC Receivers

Consider a synchronous system operated in a AWGN channel. The received signal in a certain

bit interval can be expressed as

��� �
��
���

��� � ���

�
��
���

�������� � ���� � � � � � � � (5.1)

where �� and �� are the �th user’s amplitude and data bit, ���� denotes its signature sequence,

and � is the processing gain � . The matched filter output, which is the first stage output, can

be represented as

�
���
� �

����
	��

�������

� ���� �
�
� ���

������� � ��� (5.2)

Let ������ �� denote an interference-subtracted signal for User � in the �th stage. Then,

��
���
� �� � ����

�
� ���

!
���
� 	 ����� �� (5.3)

where !���
� denote the PCFs for the �th user in the �th stage are and ����� �� is the corresponding

interference estimate. We can obtain the estimate as

�
���
� �� � ��

��
�����
� 	 ���� (5.4)

where ������ � sgn������ �. Thus, the output signal in Stage � is then

�
���
� �

����
	��

��
���
� ������� (5.5)

Finally, we can obtain the �th stage detected bit as

��
���
� � sgn������ �� (5.6)

90



A more compact form for the despread signal is given by

�
���
� � �

���
� �

�
� ���

!
���
� ��

��
�����
� ���� (5.7)

There is another partial HPIC receiver good for the power-balanced scenario. It uses a decou-

pled structure [30] and has the output as

�
���
� � !���

�
�
���
� �

�
� ���

����
�����
� ���

�
�
%
�� !���

&
�
�����
� � (5.8)

As we can see, all PCFs in the same stage are equal. Comparing (5.7) with (5.8), we can readily

find that both expressions are equivalent for the second stage. For higher stages, both structures

are different. Obviously, the optimal PCFs may differ for the these two partial HPIC. It has been

shown that the algorithm of (5.8) performs better than that in (5.7) in power-balanced systems

[68]. Thus, we use (5.8) as the conventional partial HPIC whenever comparison is necessary.

As mentioned, optimal PCFs can be obtained using the adaptive blind partial HPIC ap-

proach. We first define the error signal as

%����� � ���� ������� (5.9)

where ������� is the regenerated received signal and it is expressed as

������� �
�
�

$
���
� ��

��
�����
� ����� (5.10)

Here, $���
� �� is the adapted weight for the �th user in the �th stage. Consequently, we define

the MSE as

# ����� � �
�%
���� �������

&��
� (5.11)

Using the stochastic gradient descent method, we can obtain the weight update equation as

$
���
� �� � � � $

���
� �� � �

���6
���
� ��%

����� (5.12)
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Figure 5.1: Adaptive blind partial HPIC receivers.

where ���� is the step size in Stage �. The interference-subtracted signal for the �th user is then

��
���
� �� � ����

�
� ���

6
���
� ��$

���
� ��� (5.13)

We then have the detected bit as

��
���
� � sgn

�
�
���
�

�
(5.14)

where ����� is the matched filter output in the �th stage and it is given by

�
���
� �

����
	��

��
���
� ������� (5.15)

The structure of the adaptive blind partial HPIC receiver for a certain stage is shown in Figure

5.1.

In practical CDMA systems, users often transmit data through multipath fading channels.

Thus, it is necessary to take the multipath effect into account. Denote transfer function of the

channel impulse response for the �th user as

���� �
�
���

)����
����� (5.16)
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where )��� and +��� are the path gain and path delay of the &th path for the �th user, respectively,

and * is the number of paths. Without loss of generality, we assume that +��� � +��� � � � � �
+��. In the receiving end, we can use a matched filter with a maximal ratio combining (MRC)

to demodulate the signal. Let the equivalent baseband received signal be expressed by

��� �
�
���

��
���

����� +�������)���� (5.17)

The first stage output signal can be represented as

�
���
� �

�
���

�
���
��� )��� (5.18)

where the branch output from the MRC can be formed by

�
���
��� �

����
	��

�������� +���� (5.19)

Following the signal model for the AWGN channel, we can formulate the error signal as that in

(5.9). We first obtain the regenerated received signal as

������� �
�
���

��
���

6
���
� ��� +���$���

����� (5.20)

where $���
����� denotes the weight for the &th path of the �th user in the �th stage. Then, the

counterpart of ������ �� in (5.10) for the multipath scenario is

��
���
� �� � ����

�
���

��
� ���

6
���
� ��� +���$���

��� ��� (5.21)

The matched output using the MRC is then

�
���
� �

�
���

����
	��

��
���
� ������� +���)���� (5.22)
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§ 5.2 Proposed Algorithm

As mentioned, the adaptive blind partial HPIC essentially performs system identification. As a

consequence, if the training period is long enough (all weights converge), the mean value for

the �th weight will be

$
���
� �


� �$�

������
���� ������ � ��

�$�

������
���� ��

���
� � ���

(5.23)

In the previous chapter, we have analyzed the adaptive two-stage partial HPIC receiver. The

result reveals that the performance of the adapted weights are determined by several factors

listed as follows.

� Number of weights

� Step size

� Number of training data

� Noise variance

� Weight initials

Note that these factors may interact one another. Here, we will manipulate the first two factors,

the weight numbers and the step size to obtain improved performance. We propose an algorithm

that can reduce the number of adapted weight as well as its variance. At the same time, the

step size can be increased to accelerate convergence. First, we will show that the MSE of

the adaptive blind partial HPIC is proportional to the number of weights adapted in the LMS

algorithm. Assume that the first user is the desired user. From (4.150), we have the output MSE

as

?��� � "���

�
�
�
��:�����

�
�
� 	$�

�����
%
$�

����� � ��
&
� ��� � �$�

������
�
�

�"���
�
�
�
��:�����

�
�
� 	$�

�����
%
$�

����� � ��
&
� ��� � �$�

������
�
�
� (5.24)
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Since "��� is usually no more than ���, the total MSE is dominated by the part with correct

decision. Note that $�

����� is usually close to the desired weight value �� even when � is large.

Thus the MSE can be simplified to

�
�
��:�����

�
�

� 2�	�:�������
� � Æ� �� � ;

�

 ��� (5.25)

The first term �:�������
� can be neglected since optimal weights and initials are close to ��. The

term ;� �� is a function of step size and noise variance only.

;� �� �
��

��

�
���

�
�� 2�	
�� 2�

 
� ��

�
�� 2	
�� 2

 �
�
� (5.26)

Thus the major term in the output MSE is Æ� ��. We first represent this variance function given

� as

"Æ� �� �
"Æ
� ��"
� �

"Æ
� ��"
�
"�

(5.27)

where the components "Æ
� ��� � � �� 	 are given by

"Æ
� �� � ��� 2	���

�%
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�
����� � "$
�

�����

&��
� (5.28)

Taking the expectation on (5.28), we have
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�%
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����� � "$
�

�����
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� ��
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��� � �$�� �� � "$
�
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�
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���� 7 ���� � �$�

�
�

(5.29)

For the correct decision scenario, the conditional optimal weights are close to the ideal values,

i.e., "$
�
����� � ��. In that case, we can observe that the second moment in (5.29) is increased with

�$ for � � �. In summary, we know that the MSE of the adapted weights increases with �$ ,

and thus with �. One way to improve the system performance is to reduce the weight number

trained in the LMS algorithm. This is possible if we know the channel gains. We then propose

a procedure to do that. If a user’s matched output magnitude exceeds a threshold ��	
���
� in the

�th stage, the corresponding decided bit is deemed reliable and the weight corresponds to this
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Figure 5.2: Functions used in the proposed algorithm. (a) Weight selection function. (b) Weight

post filtering function.

bit is deactivated. In other words, this weight will not be included in the training process. This

algorithm can be easily expressed using a two step-size scenario. Let the step size for User � be

�
���
� . Then,

�
���
� �


� � if �������� � 7 ��	����
���� if �������� � � ��	����

� (5.30)

The step-size decision function, denoted as @��	, is shown in Figure 5.2(a). Note that there

must be some users whose weights are erroneously decided. If this happens, it will increase the

noise variance �� (in the computation of ;� ��). The variance increased can be calculated as

������� � �$�

���
������

�� � ������� � ���������������
� ������

� ������� (5.31)
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Figure 5.3: Flow chart for the proposed algorithm.

In (5.31), ������� is obtained by

������� � �


�
�
����
	��

��������

�����
�

����
	��

�
�
����

�����
�
�

� ���� (5.32)

We call this procedure as the weight selection procedure.

It is well known that the convergent weights in the LMS algorithm are random. Thus, if

we know the weight distribution, we can perform weight post filtering (estimation). This will

enhance the PIC performance furthermore. Figure 5.4 shows a typical probability function for

the LMS convergent weight. It is clear that some of weights are greater than the channel gains

and some weights are less than the channel gains. Note that given a binary random variable

embedded in AWGN, the MMSE estimate corresponds to a transformation with a hyperbolic
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tangent function. We can then apply the estimation theory here. To ease the derivation, we

make a simplified alternative where a piece-wise linear decision function is used for weight

post filtering; we denote this function as @��	. It is shown in Figure 5.2(b) in which a threshold

��	
���
� is required. If a trained weight is greater than some threshold, it is decided to be ��. Note

that no decision is made below ���. This is because the probability that the weights appear in

the region is low and it has little impact in overall performance. We call this the weight post

filtering procedure.

As mentioned, the weight distribution has different mean values for correct/erroneous de-

cision (in the previous stage). The weight means for erroneous decision bits will approach the

corresponding optimal weights if the processing gain � is large. However, in a practical sys-

tem, � is usually not large enough. Thus, we prefer to use a large step size ���� to speed up the

weight adaptation for users with erroneous decisions. However, a larger step size will enlarge

the weight variance which adversely affect the final performance. The two procedures propose

above can reduce the number of active weights and further filter the convergent weights. As a

result, it is possible to use a larger step size without significantly increasing the weight variance.

By careful examination, we can find a good compromise among the parameters ������ � 	���� � 	���� �
(����� � ������ ) such that the weights are determined in an optimal way. The flow chart for the

proposed algorithm is depicted in Figure 5.3.

§ 5.2.1 Gradient Guided Search Algorithm

It is well known that the HPIC was proposed based on the ML principle. The HPIC decides

the desire user bit polarity with larger likelihood while estimate other user data bits from the

previous stage. The procedure of likelihood maximization is performed simultaneously for

all users. When the MAI is strong, the full HPIC output will not converge but oscillate in

subsequent stages. The partial HPIC relieves the limit cycle phenomenon and finds a local

maximum with likelihood higher than that of the full HPIC. There are many methods that can

increase the likelihood. One method applied in the full HPIC is to flip parts of the user bits in
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one stage and output the pattern giving the highest likelihood. [69],[70]. We call this method

the gradient guided search (GGS) algorithm [71], whose procedure is outlined as follows.

(a) Let � � �. Obtain the initial input bits. This is usually performed by the matched filter

output as

����� � ������� � sgn������ �� � � �� 	� � � ���� (5.33)

(b) Flip the user bit one by one and compute the � log-likelihood functions �� #����� � � �

�� 	� � � �� using (2.3). The input bit sequence is then

#�
���
� � ���

���
� �

��
���
� � � � � �

��
���
����������� ���������� � � � ������� �� � (5.34)

(c) Choose one pattern whose log-likelihood function is the largest among� likelihood func-

tions. Note that this likelihood must be greater than that for the initial bit pattern.

������� � ���
��
���
�

���#����� � � � �� 	� � � ���� (5.35)

If no one log-likelihood function exceeds that of the original bit pattern, all user bits are

keep unchanged and the algorithm terminates.

(b) Update the initial bit pattern with the new one and proceed to the next stage from (b) with

stage number �� �.

In this chapter, the GGS algorithm is utilized as a post processing algorithm to further improve

the performance of the adaptive partial HPIC.

§ 5.3 Performance Analysis of the Proposed Algorithm

We will analyze the performance of the proposed algorithm for a two-stage HPIC. Specifically,

we will derive the output MSE and the BER. As previously, we assume the AWGN channel and
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the power-balanced scenario. Substituting ! ���
� � $

���
� in (5.2) and (5.7), we have the second

stage despread output signal for the first user as

�
���
� � ���� �

�
� ���

����� � $������� � �� (5.36)

where $� � $
���
� and ��� � ������ . Approximating interference signal as Gaussian distribution, we

can have the BER, denoted as "�, for the desired user in the first stage as

"� � �
�

��*
�� � �� � ���

�
(5.37)

where��	 is the Q-function. The probability that the user has correct decision in the first stage

and its output is greater than the threshold (����� 7 	
���
� ��, ��

���
� � ��) is

"� � �
�

���	
���
� � �*

�� � �� � ���

�
� (5.38)

In other worlds, "� is the probability of correct weight selection. The probability of erroneous

weight selection ( ����� 7 	
���
� �� and ������ � ��) is

"& � �
�

���	
���
� � �*

�� � �� � ���

�
� (5.39)

If the first stage output is greater than 	���� ��, the corresponding weight will not be adjusted. The

effective number of weights is reduced from� to �� where �� is given by

�� � ���� "� � "&� (5.40)

Note that�� may not be an integer since it represents an rough estimate of the averaged weight

number. If the weight selected for non-adaptive is erroneous, it will increase the noise variance

when the LMS algorithm is applied. The amount increased is

������� � �$�

���
���

�� � ������� � ������
� ����

� ����� (5.41)
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Let the enlarged noise variance be ��� , Then,

��� � �� ��"&������� � �$�

���
������

��
� �� ��"& 	 ������ (5.42)

The convergence analysis for the LMS algorithm developed in Chapter 4 can be directly applied

here. However, we have to change the weight number from� to�� and the noise variance from

�� to ��� . As we have seen, the number of user direct influence the equivalent interference gain.

�$ � ��
*
�� � � (5.43)

We denote the adapted weights in the second stage for correct or erroneous first stage deci-

sion as �$�

��� or �$�

���, respectively. We omit the superscript of stage number for simplicity.

Assuming that ����� is a Gaussian random variable, we can estimate the BER in the second stage

output. Note that we have the mean of ����� as ��. If cancellation is perfect, the variance of �����

is just ��. However, since the cancellation is not perfect, the variance will be increased. There

are two types of erroneous cancellation. The first one is due to cancellation from users with er-

roneous selected weights (non-adaptive), denoted by A&. The second one is due to cancellation

of adapted weights, denoted by A�. Thus, the overall noise variance is

A' � �
� � A& � A� (5.44)

Using �$�

��� � �� and (5.39), we have

A& �
�"&
�

����� � �$�

������
�

�
�"&
�

����� � �������

�
�����"&

�
� (5.45)

Since we have performed weight post filtering, various conditions for the second type of can-

cellation has to be considered. We treat A� as the sum of two components A� and A�; one is

contributed from �$�

� and the other is from �$�

�. Denoted their corresponding density function
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Figure 5.4: Probability density function for adapted weights from LMS algorithm.

as 9� �$�

� and 9� �$�

�, respectively. Figure 5.4 gives an example of simulated distributions. Due

to weight post filtering, no cancellation error is induced when �$�

� 7 0(��. Only the region

represented by the ‘A’ area in Figure 5.4 will introduce error. Thus,

A� �
�� � �

�

� )���

��

� �$�

� � ���9� �$�

�� �$
�

� (5.46)

As to �$�

�, erroneous weight decision occurs when �$�

� 7 0(��, i.e., @�� �$�

� � �� and ����� �
�$�

���
���

� � ����� � �������� � ���� � ����. Thus,

A� �
�� � �

�

� )���

��

� �$�

� � ��
�9� �$�

�� �$
�

� �
������� � �

�

� �

)���

9� �$�

�� �$
�

� (5.47)

The integration areas are represented by ‘B’ and ’C’ in Figure 5.4, respectively. Then, A� and

A� can be combined as

A� �
A���� "� � "� � A��"� � "&

�� "� � "& � (5.48)
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Figure 5.5: Second stage parameter optimization for the proposed algorithm. (Weight selection

is not performed).

Finally, we can express the BER in the second stage HPIC output as

" ������  � �
�

���
�� � A& � A�

 
� (5.49)

§ 5.4 Simulation Results

A. Parameter optimization

In this section, we will report simulation results to demonstrate the effectiveness of the pro-

posed algorithm. We have used random codes of length 31 as spreading sequences. Partial

HPIC receivers up to five stages are considered. First, we determine the optimal parameters

for each receiver in order to obtain the best system performance. We let the user number

be � � 	�, ����� � � dB, and power was balanced. For the conventional partial HPIC,

we have empirically found the optimal PCFs for stage 2 to 5 as ����� ���� ����� ��$�. As

to the adaptive blind partial HPIC, the normalized step sizes, defined as ����� � ������ , are
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Figure 5.6: Second stage parameter optimization fo the proposed algorithm (����� � �����).

����		� ������ ������ ������. For the proposed algorithm, we have additional two parameters

	
���
� and 	���� . To simplify the problem, we do not perform weight selection and determine 	 ����

first. Figure 5.5 shows the BER performance vs. 	���� and ���� for the second stage output. From

the figure, we can see that the optimal step size is around ����� that is larger than the step size

used in the in the conventional approach. This is because the weight post filtering operation

removes some weight noise for users regarded reliable. The weight variance is then decreased

and the resulting interference cancellation is more accurate. Thus, a larger step size is permitted

for faster convergence. We then incorporate the weight selection operation into the parameter

optimization. The result is shown in Fig. 5.6. Here, we let the step size be fixed as �����. In

the figure, we can observe that the optimal parameter setting is 	 ���� � ��	 and 	���� � ���. Note

that the system performance is not sensitive for higher 	 ���� values. This is because most reli-

able weights have been selected during weight selection. The theoretical BER in (5.49) for the

proposed algorithm is also evaluated in Figure 5.7. We can observe that our analysis resembles

performance trend as the simulated results; however, there exhibits some gaps in between. The

inaccuracy may be due to the Gaussian assumption used in the calculation. Optimal parame-
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Figure 5.7: Second stage BER performance for the proposed algorithm (� � 	�, ����� � �����,

and ����� � � dB).

ters found in a specific stage may not be optimal for all the stages. However, the optimization

will be cumbersome. For simplicity, we will use the parameters found in the second stage for

all stages. The superscript on parameters for denoting the stage number is then omitted in the

sequel. In the fading channels; however, those parameters should be tuned again to obtain the

best performance.

B. Performance comparison

In the following, we present the performance comparison for various multiuser receivers

which include the conventional matched filter, the non-adaptive partial HPIC (referred to as

PHPIC), the adaptive blind partial HPIC (referred to as the APHPIC), the proposed algorithm,

and the GGS algorithm. The GGS algorithm serves as a post-processor for both the APHPIC

and the proposed algorithm. Note that we let the GGS only perform one iteration (one bit

correction) in each cancellation stage. Figure 5.8 expresses the second stage performance of

the proposed algorithm and other methods vs. different user numbers (����� � � dB). We
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Figure 5.8: Second stage BER performance comparison vs. user numbers (	� � ��	, 	� � ���,

�� � �����, and ����� � � dB).

can find that the conventional matched filter receiver perform worst due to the heavy MAI. The

PHPIC performs worse than the APHPIC and the proposed algorithm. The combined APHPIC

and GGS receivers provides more performance improvement in light loading condition. This is

because the GGS algorithm performs at most one bit correction in one stage; it is more effective

for low error rate scenario. The proposed algorithm is better than the APHPIC and the post

GGS processing enhances the proposed algorithm in all cases. We also show the performance

for higher stage processing in Figures 5.9-5.11. As we can see, the GGS algorithm gives less and

less improvement as the stage number increases. All adaptive partial HPIC receivers perform

close to the single user bound when the number of users is small. However, adaptive receivers

degrade in heavy loading scenarios. If we want to further improve the performance, we have

to increase the adaptation length and decrease the step size. In such a way, we can reduce

the weight variance from inaccurate interference cancellation. We then compare the proposed

algorithm with other methods under different ����� (ten users). Fig. 5.12 and 5.13 show

the results for the second and the fifth stage, respectively. We observe that the performance
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Figure 5.9: Third stage BER performance comparison vs. user numbers (the parameter setting

is the same as that in Figure 5.8 for all stages).

of the proposed algorithm is close to the single user bound when the number stage is five and

����� is low to median. We also compare the system performance under the power-imbalanced

scenario. The user powers are equally distributed and the power ratio between the strongest and

weakest users is �� dB. In Fig.5.14 and Fig.5.15, we present the BER performance for the

weakest user in the second and fifth stage. It can be seen that the proposed algorithm provides

a significant performance gain in the fifth stage, especially when the user number is large.

Note that the proposed algorithm makes the performance of the weakest user indistinguishable

as compared to that of the single user case when the user number is less than twenty. The

reason for this superior performance may be due to the weight selection process where stronger

users are almost all recognized and excluded from the training phase. This results is similar

to the behavior in SIC, where the most reliable user is first detected and subtracted from the

received signal. In the following, we consider the performance of the HPIC receivers under the

fading channel environment. Figure 5.16 demonstrates the performance comparison of 5-stage

receivers for a single-path rician fading channel. The reflect-to-diffuse ratio was set 7 dB and
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Figure 5.10: Fourth stage BER performance comparison vs. user numbers (the parameter set-

ting is the same as that in Figure 5.8 for all stages).

����� � � dB. Note that the channel gain was constant during a bit interval and varied bit

by bit independently. We can observe that the proposed algorithm outperforms the PHPIC and

APHPIC receivers. We next use a two-path fading channel; the second path is one chip delay

with respect to the main path, and each path gain is Gaussian distributed with zero mean. The

result is shown in Figure 5.17. The proposed algorithm still has the best performance. The GGS

algorithm is not employed here since it is not suitable for the bit-asynchronous systems.

C. Effect of channel estimation error

In the adaptive HPIC receiver scenario, channel information is necessary for initial setting

and for interference cancellation. The proposed algorithm also requires channel information

to determine the optimal parameters. All of the simulations conducted above have assumed

perfect channel estimation. However, in practice, channel estimation cannot be perfect and its

error has to be taken into account. Consider a model for channel estimation error as

��� � �� �
� (5.50)
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Figure 5.11: Fifth stage BER performance comparison vs. user numbers (the parameter setting

is the same as that in Figure 5.8 for all stages).

where 
� is a Gaussian distributed random variable with zeros mean and standard deviation

��. We then use ��� instead of �� in the receiver. Figure 5.18 show the simulation results. As

seen from the figure, the proposed algorithm always performs better than the APHPIC under

different channel estimation error scenarios. Note that the GGS algorithm will fail when the

channel estimation error is large. The proposed algorithm is the most robust one among the

multiuser receivers compared.
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Figure 5.12: Second stage BER performance comparison vs. ����� ratios (� � ��, and the

parameter setting is the same as that in Figure 5.8 for all stages).
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Figure 5.13: Fifth stage BER performance comparison vs. ����� ratios (� � ��, and the

parameter setting is the same as that in Fig. 5.8.
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Figure 5.14: Second stage BER performance comparison for the weakest user (power-

imbalanced, ����� � � dB, and the parameter setting is the same as that in Fig. 5.8).
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Figure 5.15: Fifth stage BER performance comparison for the weakest user (power-imbalanced,

����� � � dB and the parameter setting is the same as that in Fig. 5.8).
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Figure 5.16: Fifth stage BER performance comparison for single-path rician fading channels

(����� � � dB, 	� � ���, and 	� � ��� for all stages).
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Figure 5.17: Fifth stage BER performance comparison for two-ray multipath fading channels

(����� � �� dB, 	� � �, and 	� � ��� for all stages).
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Figure 5.18: Fifth stage BER performance comparison vs. channel estimation errors (� � 	�,
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Chapter 6

Conclusions

In DS-CDMA communication systems, MAI is considered as the main factor limiting the sys-

tem performance. Among many multiuser detection schemes, the PIC receiver is considered as

a simple yet effective approach. It has been shown that the performance of the PIC can be fur-

ther improved if interference is not fully cancelled. The performance of a partial PIC depends

heavily on the PCFs. Thus, how to determine PCFs optimally is of great concern.

In this dissertation, we have studied two types of partial PICs. Using the BER criterion, We

first develop a two-stage decoupled partial SPIC and derive a set of closed-form solutions for

optimal PCFs. These PCFs are useful for periodic and aperiodic spreading codes in additive

white Gaussian noise channels, and for those in multipath channels. Simulation results show

that the derived optimal PCFs agree closely with empirical optimal PCFs. The optimal two-

stage partial SPIC outperforms a conventional matched filter detector, a two-stage full SPIC

detector, and even a three-stage full SPIC. Simulations have also shown that the derived de-

coupled partial SPIC performs similarly to the optimal two-stage partial SPIC with coupled

structure. We have also shown that the derived PCFs are not sensitive to parameter estimation

errors. It can be noted that the optimal PCFs for aperiodic spreading code systems in AWGN

channels have a simple expression. This will be a great advantage for real-world applications

since the optimal PCFs can be calculated efficiently on-line in a time-varying environment.
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We then conduct performance analysis for a two-stage adaptive blind partial HPIC receiver

in the AWGN channel. We first derive the analytical result for the optimal weight, the adapted

weight mean, and the adapted weight variance in a single-user case. Then, we derive the op-

timal weights and adapted weight mean for a two-user case. Finally, we extend the result to a

general �-user case. With the results obtained above, we are able to derive the formula for the

output MSE and the BER. Using the output MSE criterion, the optimal step size can then be

obtained. Simulation results show that the analytical results are accurate. In the final part of

the dissertation, we propose an improved adaptive blind partial HPIC receiver. The main idea

is to reduce weight variance introduced by the LMS algorithm so as to reduce the output MSE.

We use two approaches; the first is to reduce the number of adapted weights and the second is

further process the convergent weights. To implement these ideas, we propose the weight se-

lection and weight post filtering schemes. Simulation results show that the proposed algorithm

outperforms the conventional adaptive approach in all scenarios. In power-imbalanced systems,

the proposed algorithm can approach the optimum performance. We also derive analytical re-

sults for the proposed algorithm which include output MSE and BER. It has been shown that

the analysis results are reasonably accurate.

In concluding this dissertation, we suggest some topics for further research. The optimal

PCFs derived for the SPIC in the multipath scenarios are complicated and not suitable for real-

time calculations. We then need a simpler approximate expression. Also, we are mainly con-

cerned with BPSK modulation. Note that the same result can be extended to accommodate

QAM modulation. In this case, however, we have to take the interference between inphase and

quadrature components into account. It turns out that for the inphase or quadrature component

of one user, we may treat the number of interfering users as 	� � �.

In the analysis of adaptive blind HPIC, we do not derive the weight variance for the two-user

case. As an alternative, we use the result from the single user to perform�-user approximation.

This contribute resultant inaccuracy significantly. Since we use the two-user result in weight

mean analysis, the analytical weight mean is more accurate than the analytical weight variance.
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The other problem is that we do not consider the multipath scenario. It seems that we can extend

our results to the scenario; however, the derivation may become much more complex.

The proposed improved adaptive algorithm has not taken full information we have. The

weight selection process only consider the two-stepsize case. It can be expected that a continu-

ous step size will give even better result. Also, we have not considered the initial value problem.

If the first stage decision is likely to be erroneous, the initial should be close to zero. On the

other hands, it should be close to ���. The weight post filtering does not achieve its optimal

performance either. As we mentioned, the optimal filtering function consists of a hyperbolic

tangent function. The parameters of the function should depend on the weight variance. So,

it will be different stage by stage. The information we have is the channel gain which is ���.

Whether or not the processing schemes mentioned above can fully explore the information de-

serves further study.
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Appendix A

Periodic Code System Optimal PCFs for

Asynchronous AWGN Channels

Let ���� denote the �th bit for the �th user and +� the user delay. Then the received signal for

asynchronous channels can then be represented by

��� �
�
�

�
�

��������� �� � +��� ��� �� � +� � ���� (A.1)

We further define the relative delay between User � and � as +�� � +� � +�, and the cross-

correlation functions are given by

����+�� �


�
' �
�����

����� +�� � � ������ � +��  �' �
���
����� +�������� � +�� � ��

(A.2)

and

�����+�� �


�
' �����
�

����� +�������� � +��  �' ���
�
����� +�� � � ������ � +�� � ��

(A.3)
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For simplicity we use ��� and ���� instead of ����+�� and �����+�� in the sequel. The matched

filter output for the �th users’ �th bit is obtained as

���� �

� ���������

�����

�������� +���

� B����� �
�
� ���

B�

�
�������� ���� � �������������

�
� ���� (A.4)

where the delay index and noise term are expressed as &�� and ����. They are defined as

&��
�
�


� �� +�� � �

�� othwrwise,
(A.5)

and

���� �

� ���������

�����

�������� +���� (A.6)

The regenerated received signal using partial SPIC is given by

����� � ���� !�
�
� ���

�
�

��������� �� � +��� ��� �� � +�� (A.7)

Thus, the second stage output is obtained as
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Without loss of generality, we may assume that +� � +�� � � �. Then &�� � � for all �’s and the

result can be simplified to
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(A.9)

where %�� and &�� are defined as
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The squared-mean for ���� is obtained from (3.17) and (A.9) as
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where
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Similarly, the variance can also be obtained as
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where ����� � � � � �, are defined as
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Thus, the optimal PCF can be obtained by substituting (A.12) and (A.14)-(A.16) into (3.27).
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Appendix B

Expressions for Expected Terms in

(3.50)-(3.51)

Extending the definition in (3.62), we have

����.�� /�� � � � � .�� /� � � ��

�
0���.�� /�� � � � � 0���.�� /�

�
(B.1)

where � is an integer. To make expression simpler, we let 
� � �.�� /��. Equation (B.1) can

then be rewritten as

����
�� � � � �
� � � ��
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� (B.2)

We further omit the subscript in ��	 and use the following notational substitution
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In what follows, six expected terms are given without detailed derivation. The first term is
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The second term is
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The third term is
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The fourth term is
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The fifth term is
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Finally, the sixth term is
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Appendix C

Optimal PCFs under Fading Channels

In Chapter 3 optimal PCFs for different scenarios are derived under the assumption of static

channels. The received user amplitudes are regarded known and to be varying slowly. Now

we relax the constraint by taking the user amplitudes as random variables. Take the optimal

PCFs for aperiodic codes in AWGN case as an example, the components in the squared mean

is refined to be
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where the expectation subscript � represents the expectation on user amplitudes and �� �
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����� represents the expected user power over the fading channel. Similarly we define the

expected interference power as �� �
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where

���


�
�
���
���

�
� ��

�
�

�
�
��� � 	

��
�
�� � 	�� � �

��

 
�
� � �

�

�
�� � ��� � 	

��
� (C.3)

���

�
�
���
���

�
� ��

�
�

�
�
� � 	

��

 
�
� � �

�
� (C.4)

127



���


�
�
���
���

�
�

��

�
� �� (C.5)

When the multipath fading channel is considered, it is assumed that each multipath has inde-

pendent fading distribution for each user. In that case the expectation term in (3.61) can be

represented as
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When the probability density function of the fading channel has zero mean, the resulting deriva-

tion would be simplified as

���

�
,���
�

�
�

����

�
����

�
����

�
����

�


�
)����)����)����)���

�
	

��

�
0���.�� /�0���.�� /�

�
�

�
����

�
����

����������

�
� � +���.�� /�

��

 
(C.7)

where ����� � �
�)������ denotes the expected branch power of the .�th path for the �th user

and
	

��
����� � �� . Other expectation terms can be derived in a similar way.
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Appendix D

Supplemental Derivation for Analytical

Results in Chapter 4

In chapter 4 the optimal weights, weight error means and weight error variance are provided for

only the correct decision in most cases. This Appendix completes the analytical result for the

erroneous decision and whatever not detailed in chapter 4.

§ D.1 Two-user Scenario

The union of noise subsets for erroneous decision is represented by

� � � �
�� � �

�� � �
	� � �

	� � (D.1)

� � � �
�� � �

�� � �
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�� � (D.2)

Thus we have
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We can express the conditional optimal weight for a given � as
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The finally optimal weights are given as
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where � � �� 	 and "# is defined in (4.94).

The conditional weight error mean can be obtained to be
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where � � is given is (D.1) and (D.2). Then the averaged mean weight error for correct decision

over � can be obtain by
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for & � �� 	.

§ D.2 �-user Scenario

The derivation for OWA1 is similar to the that in two-user cases and can be obtained from (D.5).

As far as OWA2 is concerned, the noise regions for the erroneous decision of the first user is

expressed as the sixth pattern as
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The conditional optimal weight is described as
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where the noise domain and the corresponding occurrence probabilities are defined as

� � �
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�� (D.10)
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The averaged optimal weight is obtained after averaging all correlation coefficients as
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with "# defined in (4.94).

The conditional optimal weights for WEMA1 of the erroneous decision is obtained as
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where the union of noise subsets � is � � given is (D.1) for OWA1 or � in (D.10) for OWA2.

Also "� is "�� for OWA1 or "� for OWA2. Eventually the averaged mean weight error over �

is obtained as
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The WEMA2 for the erroneous decision is obtained readily by
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pp. 384ąV391, Mar. 1998.

[51] R. Cusani, M. Di Felice, and J. Mattila, “A simple Bayesian multistage interference can-

celler for multiuser detection in TDD-CDMA receivers,” IEEE Trans. Veh. Technol., vol.

50, no. 4, pp. 920-924, July 2001.

[52] D. Guo, L. K. Rasmussen, and T. J. Lim, “Linear parallel interference cancellation in long-

code CDMA multiuser detection,” IEEE J. Select. Areas Commu., on , vol. 17 no. 12,pp.

2074-2081, Dec. 1999.

137



[53] D. Guo; L. K. Rasmussen, S. Sun and T. J. Lim, “A matrix-algebraic approach to linear

parallel interference cancellation in CDMA,” IEEE Trans. Commun., vol. 48, no. 1, pp.

152-161, Jan. 2000.

[54] Y. Li, M. Chen and S. Cheng, “Determination of cancellation factors for soft-decision

partial PIC detector in DS/CDMA systems,” Electron. Letters, vol. 36, no. 3, Feb. 2000.

[55] N. S. Correal, R. M. Buehrer, and B. D. Worner, “A DSP-based DS-CDMA multiuser

receiver employing partial parallel interference cancellation,” IEEE J. Select. Areas Com-

mun., vol. 17, no. 4, pp. 613-630, Apr. 1999.

[56] R. B. Buehrer and S. P. Nicoloso, “Comments on ”Partial Parallel Interference Cancella-

tion for CDMA””, IEEE Trans. Commun., vol. 47, no. 5, pp. 658-661, May 1999.

[57] B. S. Abrams, A, E, Zeger, and T. E. Jones, “Efficiently structured CDMA receiver with

near-far imuuity,” IEEE Trans. Veh. Technol., vol. 44, no. 1, pp. 1-13, Feb. 1995.

[58] X. Gao and C. Li, “Performance of partial parallel interference cancellation in DS-CDMA

system with delay estimation errors,” in Proc. 11th Int. Symp. Personal, Indoor and Mobile

Radio Communications, pp.724-727, London, UK, Sept. 18-21, 2000.

[59] J. Chen, J. Wang, and M. Sawahashi, “MCI cancellation for multicode wideband CDMA

systems,” IEEE J. Select. Areas Commun., vol. 20, no. 2, pp. 450-462, Feb. 2002.

[60] S. Marinkovic, B. S. Vucetic, and J. Evans, “Improved iterative parallel interference can-

cellation for coded CDMA systems,” in Proc. 2001 IEEE International Symposium on

Information Theory, pp. 34, June 2001.

[61] P. G. Renucci and B. D. Woerner, “Optimization of soft interference cancellataion for

DS-CDMA,” Electron. Letters, vol. 34, no. 8, pp. 731-733, Apr. 1998.

138



[62] G. Xue, J. Weng, T. Le-Ngoc, and S. Tahar, “Adaptive multistage parallel interference

cancellation for CDMA,” IEEE J. Select. Areas Commun.,vol. 17, no. 10, pp. 1815-1827,

Oct. 1999.

[63] S. R. Kim, I. Choi, S. Kang, and J. G. Lee, “Adaptive weighted parallel interference can-

cellation for CDMA systems,” Electron. Letters, vol. 34, no. 22, pp. 2085 -2086, Oct.

1998.

[64] K.-C. Lai and J. J. Shynk, “Steady-state analysis of the adaptive successive interference

canceler for DS/CDMA signals ,” IEEE Trans. Signal Processing,, Vol. 49 no. 10, pp.

2345 -2362, Oct. 2001.

[65] L. Hanzo,Single and multi-carrier DS-CDMA :multi-user detection, space-time spreading,

synchronisation, networking, and standards, Chichester :J. Wiley, 2003.

[66] S. Verdu, “Demodulation in the presence of multiuser interference: progress and miscon-

ceptions,” in Intellegent methods in signal processing and comminications, D. Docampo,

A. Figueras-Vidal, Eds., pp. 15-44, Birkhauser, Boston: 1997.

[67] 3GPP, “3rd Generation Partnership Project; Technical Specification Group (TSG) RAN

WG4; Deployment Aspects (3G TR 25.943 version 2.0.0),” March 2000.

[68] M. Chen, Y. Li, S. Cheng, and H. Wang “On the bit estimators of partial parallel inter-

ference cancellation for DS-CDMA,” IEEE International Conf. on Commun., ICC2001,

vol.6, pp.1945-1949, 11-14, June 2001.

[69] M. Nasiri-Kenari, R. R. Sylvester, and C. K. Rushforth, “An efficient soft-in-soft-out mul-

tiuser detector for synchronous CDMA with error-control coding,” IEEE Trans. Veh. Tech-

nol., vol. 47, no. 3, pp. 947-953, Aug. 1998.

[70] Z. Guo and K. B. Letaief, “An effective multiuser receiver for DS/CDMA systems,” IEEE

J. Select. Areas Commun., vol. 19, no. 6, pp. 1019-1028, June 2001.

139



[71] J. Hu and R. S. Blum, “A gradient guided search algorithm for multiuser detection,” IEEE

Commun. Letters, vol. 4. no. 11, pp.340-342, Nov. 2000.

140




