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Abstract

Parallel interference cancellation (PIC) is considered a simple yet effective multiuser detector
for direct-sequence code-division multiple-access (DS-CDMA) systems. However, its perfor-
mance may deteriorate due to unreliable interference cancellation in the early stages. Thus, a
partial PIC detector in which partial cancellation factors (PCFs) are introduced to control the
interference cancellation level has been developed as a remedy. Although PCFs are crucial,
complete solutions for their optimal values are not available. In this dissertation we focus on
the determination of optimal PCFs and performance analysis for various partial PICs. In the
first part of the work, we consider a two-stage soft-decision partial PIC receiver. Using the
minimum bit error rate (BER) criterion, we derive a complete set of optimal PCFs in the sec-
ond stage. This includes optimal PCFs for periodic and aperiodic spreading codes in additive

white Gaussian channels and multipath channels. Simulation results show that our theoretical



optimal PCFs agree closely with empirical ones. Our two-stage partial PIC using derived opti-
mal PCFs outperforms not only a two-stage, but also a three-stage full PIC. In the second part
of the work, we analyze the performance of a two-stage adaptive blind hard-decision partial
PIC. In this scheme, the adapted weights serving as optima PCFs are trained using the least
mean square (LMS) agorithm. We derive the analytical results for optimal weights, weight
error means, and weight error variances. Based on these results, we also derive the output mean
sguare error (MSE) and BER for each user. The step size known to be a critical parameter in
the LMS algorithm controls the LM S convergence behavior and partial PIC performance. Us-
ing the output M SE criterion, we can then optimize the step size. Simulation results indicates
that our analytical results can well match with empirical ones. In the final part of the work,
we propose an improved adaptive blind hard-decision partial PIC and analyze its performance.
The main idea s to reduce the number.6f active weightsin the LM S algorithm and to perform
weight post filtering such that the r&wltapﬁ excess MSE can be reduced. We also derive the
output MSE and BER for the proposed algérithm. Sirﬁulation results verify that the proposed

algorithm outperformsthe conventi ondl partia-PHC approach and analytical results are accurate.
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Chapter 1

| ntroduction

§1.1 Background

Since G. Marconi first used radio for wirélescomfnunication in 1897, many new methods
have been developed. In the 196051‘ and 19703,: Bell Labbratori% developed the cellular concept
in wireless communication systems. At the same time, the semiconductor industry has also
experienced enormous progress such that-eesign and manufacture of low-cost radio frequency
devices appeared feasible. These result in the today’s exponential growth in cellular radio and
personal communication systems throughout the world. As known, the most critical resource
in wireless communication is the spectrum. In order to support as many users as possible on
alimited spectrum, multiple access techniques have been developed. The progressive multiple
access schemes also witness the development of the advanced techniques, which raises to deal
with the increasing demands for both voice and data service, accompanied by the performance
guarantee under diverse environments and stringent device specification.

The first-generation (1G) mobile cellular system was developed in early 1980's and de-
ployed in mid 1980’s. The 1G system used the frequency division multiple access (FDMA) as
the multiple access scheme. The well known standards include the advanced mobile phones

system (AMPS) in the United States, the total access communications system (TACS) in Eu-



rope, and the NTT system in Japan. Due to the use of the cell structure, frequencies can then be
reused and handover among cells is required between cells. In the 1G era, the service content
consists the voice data only. The rapidly increasing demand for higher system capacity has
soon pushed the development of an improved system, the second generation (2G) system. The
2G system claimed to support at least three-folded capacity than the 1G system. Most of 2G
systems adopted time division multiple access (TDMA) as the multiple access scheme. The
scheme uses non-overlapping time-slots to transmit data of different users. Since more users
can use the same frequency band, its efficiency is higher than the pure FDMA systems. Since
then the cellular system becomes digital, and the advanced signal processing techniques, such
as the voice compression, error control coding, and encryption, were incorporated. The repre-
sentative standards are the 1S-136 in the United States and the GSM in Europe. Specifically, the
GSM system enjoysagreat success. Atthe end of 2003, the GSM system has a total subscribers
over one billion in more than 170 ‘network§ p\‘/‘er‘the world. In additional to the aforementioned
capacity advantage, the 2G communication Sykstérn al$0 provides low-rate data services. It uses
voice activity detectors and insert “data inthetunused slots. This enables the packet-based data
services, such as e-mail and internet browsi ng:« " Fypical standards include generation packet
radio service (GPRS) and enhanced daté rate for GSM evolution (EDGE). Yet, there is another
2G system that uses a totally different multiple access scheme, the code division multiple ac-
cess (CDMA) [1]. In conventional multiple access methods, the transmission is partitioned into
dedicated channelsin frequency and/or time domain such that the interference among users can
be avoided. In the CDMA system, however, orthogonal codes are used as the user signatures.
These codes, when transmitted, occupy the same frequency band and same time period. The
CDMA belongs to the spread spectrum communication technique and its required bandwidth
iswider than the TDMA system. Conventional CDMA systems were used in military applica
tion since it has the advantages of high tolerance for jamming or unintentional interference, as
well as low detectability [2]. The magjor advantage of commercial CDMA s to provide higher
capacity (than TDMA and FDMA). The first commercial CDMA system was developed by



Qualcomm and referred to as the 1S-95 in United States.

Although the 2G system can support data service, its data-rate is low. As a result, the
third-generation (3G) standard, which is supposed to supply atransmission rate of 2M bits per
second, were developed. It turns out that most standard bodies chose CDMA as the multiple
access scheme. This includes cdma2000, WCDMA, and TD-SCDMA [3]. As mentioned, in
CDMA all users share the same frequency bands and time slots, and thus the main factor lim-
iting the system capacity is the interference from other users. Hence suppression of cochannel
interference becomes a magjor challenge for CDMA systems. The major distinction between
CDMA and other multiple access schemes is the virtual code space in which users can be iden-
tified when sharing the same time slots and frequency bands. There are two major classes of
spreading codes utilized in the CDMA system based on the correlation property between codes.
The first class is the orthogonal codes;Whi ch are Walsh codes in general. The other class be-
longs to the pseudonoise(PN) code. Wheq Walsh codes are used, there will be no interference
between users. However, there-ar several réasons for which the PN codes are preferred in
real-world applications. Firstly, ‘tl;le Aumber-of-Walsh codes is limited (the number of active
users is limited). Secondly, the ofthogonal property only holds in synchronous transmission
and additive white Gaussian noise (AWGN) channel. In the uplink transmission or multipath
environments, code orthogonality can not be hold. The PN sequence has the property that the
normalized auto-correlations equal —1/N for all time lags, where N is the processing gain.
This makes the receiver more robust to the coherent interference in multipath environments.
Although the CDMA receiver inherently has the interference suppression property, however, as
the user number increases, interference (due to non-orthogonal codes) becomes stronger and
stronger. The performance is then degraded accordingly. The interference from other usersis
generally referred to as multiple access interference (MAI). In order to combat the MAI, some

signal processing techniques have been proposed and these include

e Source and channel coding / interleaving

e Spatial-temporal signal processing



e Multiuser detection

This dissertation focus on the third one, the multiuser detection (MUD) algorithms.

8§1.2 Multiuser Detection

The significant progress of the MUD development was due to the work of S. Verdu. He pro-
posed a multiuser receiver utilizing the maximum-likelihood criterion [4] and showed a great
performance enhancement. However, He also showed that the computational complexity grows
exponentialy with the user number. The high computational complexity adversely affects its
real-world applications. Thus, a variety of low-complexity suboptimum receivers were then
proposed [5]-[7],[8]. ‘

The first category of suboptimal:féceivers isthe linear receiver. It performs MUD through a
linear transformation of the matched fi Iter%qiu‘tp‘uts THe rational e behind this approach is simi-
lar to that of equalization in TDMA systems [9]. The aecorrd ating detector (or decorrelator),
being a linear receiver, uses the corrélation Matrix inverse as the transformation matrix [10].
It can completely eliminate the MAI‘and achieve the near-far resistance close to the optimal
receiver. Another feature of the decorrelator is that the algorithm does not require the receive
signal powers (for each user) nor the noise variance. However, it may enhance noise and thus
the performance is degraded when signal to noise ratio (SNR) is low . The linear minimum
mean square error (LMMSE) detector, an improvement to the decorrelator, gives a compro-
mise between interference suppression and noise enhancement [11],[12]. Leveraging the linear
property, the linear receivers lends the performance analysis feasible [10],[13], [14]. Although
the linear approaches are much more simpler than the optimal one, they may require matrix
inversion operations. The computational complexity is on the order of O(K3) where K isthe
user number. In [15] and [16], iterative algorithms, which do not require matrix inversion, were
proposed to obtain the decorrelator and linear MM SE receivers. These iterative methods were

shown to have a close rel ationship with the soft-decision interference cancellation methods that



will be described later. The other strategy reducing the complexity of these detectorsis the use
of adaptive algorithms, which includes the least mean square (LMS) algorithm [17],[18], [19]
[20], the recursive least square (RLS) algorithm [21], and the Kalman filtering algorithm [22].

In addition to the aforementioned linear detectors, another category of interest isthe subtrac-
tive type multistage interference cancellation method. Cancellation of this type involves only
vector operations making it a good candidate for real-world implementation. For a particular
desired user, the subtractive-type canceller estimates interference from other users, regenerates
it, and cancels it from the received signal. This canceller is usually implemented with a mul-
tistage structure. The temporary data decision for a stage is obtained from its previous stage.
The successive interference cancellation (SIC) cancels interference from other users one by
one [23],[24],[25], while the paralel interference cancellation (PIC) cancelsit all at one time
[26], [27], [28]. A hybrid of PIC and!SIC is also possible [29]. To have best performance,
signal power ranking is necessary:in SIC: ;'Ijhe strongest user usually has lowest probability of
decision errors and cancellation-of iits interference gives the most significant result. For these
reasons, SIC works well where uéers haverunbalanced powers. However, SIC requires addi-
tional complexity for power rankihg and the longerprocessing delay. By contrast, PIC cancels
the interference disregard to the interferénce pbwer distribution and is more suitable for power-
balanced systems.

As mentioned, the subtractive-type of MUD estimates the interference from other users and
then subtract it from the received signal. Each interference estimate involves bit estimation and
spread signal regeneration. According to how the transmit bits are estimated, an interference
cancellation algorithm can be classified as linear or nonlinear [30], [31], [32], [33]. For each
stage, the simplest bit estimate is the soft-decision operated on the previous stage output (for
each user) [34], [30], [35]. This bit estimate gives a linear receiver. It has been shown that
the soft-decision PIC (SPIC) can converge to the decorrelator when the number of stage is
infinite [32]. In practice, a two-stage SPIC may approximate the decorrelator well [37]. Due

to the linear property, we can use the Gaussian approximation [38] or an improved Gaussian



approximation [34] to carry out SPIC performance analysis. The analysis was extended to
include the scenario when the timing and phase errors were present [39]. Although simple,
some undesirable properties were reported that the SPIC may perform worse than the matched
filter when the correlation between user signals exceeds a certain threshold [40]. The analysis
for SIC can also be found in [25].

The other commonly used bit estimate is the hard-decision. In this approach, channel infor-
mation is generally required. The hard-decision PIC (HPIC) was investigated in [26], [41], [42]
while the hard-decision SIC was investigated in [64]. The HPIC operated in a multipath fading
channel was considered in [43],[44]. Theoretical analysis for this type of interference cancel-
lation appears more complicated due to the non-linear decision operation. A two-stage HPIC
was analyzed in [45]. Other performance criteria such as the signal-to-interference-noise-ratio
(SINR) or the capacity were discussediifi [46] “The decision functionis not limited to be soft or
hard. In [47], the hyperbolic tangént funct;iqn‘was used as the decision function. This function
can reflect the reliability of intefference eﬁi mate more faithfully. Note that the hard-decision
and soft-decision functions are spécial casesof-the hyperbolic tangent function. The null-zone
decision function was also studied for:PIC [48];1[49] and SIC [50]. Other decision functions
can be found in [31], [51]. o

One problem in the PIC approach is that the interference estimates may not be reliable in
early stages. In other words, interference cancellation does not necessarily reduce interference.
To aleviate this problem, partia PIC was then developed. Partia cancellation factors (PCFs)
ranging from O to 1, were introduced to control the signal cancellation level. The partial HPIC
approach was first proposed in [30]. Since the interference estimate reliability is different, the
PCF is usually different for each stage. It has been shown that the performance of the linear
MM SE receiver can be achieved using partial SPIC through proper choice of PCFs [52],[53].
The PCF optimization for multistage SPIC has also been considered in [54]. It was shown that
partial SPIC can converge to the decorrelator with very few stages. It was also shown that the

partial SPIC can be seen as a realization of the steepest descent MM SE optimization method



where the PCF acts as the step size in each stage. The bias reduction in the partial SPIC was
further analyzed in [55] and [56].

Let the number of user be K. Thus, a specific user has K — 1 interfering users. To have
best cancellation result, we then require K — 1 PCFs. However, we have total K users to
consider. Thus, ageneral partia PIC require K (K — 1) PCFs. Aswe can see, the computational
complexity of the general partial PIC is high. In order to reduce the computational complexity,
two simplified structures were developed; we refer to them as the coupled and the decoupled
structure. In these two structures, only K PCFs are involved. The difference of these two
structures lies in the position where the PCF is inserted. In the coupled structure, PCFs are
inserted (multiplied) after each regenerated user signal. For a specific user, the interference
estimate isjust the summation of K — 1 weighted regenerated signal. Thus, the estimateinvolve
K — 1 PCFs. For the decoupled struéfure, the i — 1 regenerated signals are first summed
and then a PCF is inserted (multiplied): ;'Ijh‘us, ifor ‘a specific user, the interference estimate
only involve one PCF. In partial HPIC, the édubled structure is usually employed and only the
approximated optimal PCFs are d)ailable for-atwo-stage processing [57]. The derived PCFs
is obtained by minimizing the M SE between signal“outputs and desired data. The approximate
optimal PCFs for partial HPIC with timi‘ng error can be found in [58] while the optimal PCFs
supports the multicode transmission was reported in [59]. The PCFs for coded systems with
HPIC were investigated in [60]. The coupled partial SPIC has been considered in [61] and the
closed-form results applied to a power balanced control scenario were derived. Besides the
theoretical solutions, the LM S adaptive algorithm was also used to search optimal PCFs for
partial HPIC [62],[63]. Due to its special architecture, this approach does not need training
sequence. We call it a adaptive blind partial HPIC agorithm. It was found that this partial
HPI C outperforms non-adaptive ones. The LM S algorithm was al so utilized to track the channel
information in hard-decision SIC [64].

The MUD agorithms are by no means limited to those described above. However, other

algorithms either require higher computational complexity, or consider special operation condi-



tions (no user information for example). The objective of thiswork isto study low-complexity
MUD algorithms that are suitable for real-world implementation. As mentioned, the interfer-
ence cancellation method only involves vector operations making its computational complexity
lower than others'. We will then focus on this type of MUD. For other MUD related works,

please see [65].

8§1.3 Objectiveand Overview

As mentioned, the PIC performance may deteriorate due to unreliable interference cancellation
in the early stages. Thus, the partial PIC detector in which partial cancellation factors (PCFs)
are introduced to control the interference cancellation level has been developed as aremedy. It
is apparent that these PCFs are crucial:However, complete solutions for their optimal values
are not available. Also, performance ana!ysi§ Is on‘ly avallable for limited scenarios. In this
dissertation we focus on the determinati o‘n; df optimal weights and performance analysis for
various partial PICs. There are ‘three main-parts in tHis work. In the first part of the work,
we consider a two-stage decoupled soft-decision partial PIC receiver. The reason to consider
this architecture has manifold. Firstly, it is known that the value of PCFs will approach to
one when the number of stage is greater than two [55]. Thus, there is no need to consider
a higher stage structure. Secondly, theoretical analysis is much more simpler for a two-stage
structure. The analysisis also smpler for the decoupled SPIC. The performance of the partial
SPIC is similar to that of other structures (for example, the coupled partial HPIC). Using the
minimum bit error rate (BER) criterion, we derive acompl ete set of optimal PCFsfor the second
stage. Thisincludes optimal PCFs for periodic and aperiodic spreading codes in additive white
Gaussian channels and multipath channels. Simulation results show that our theoretical optimal
PCFs agree closely with empirical ones. Our two-stage partial PIC using derived optimal PCFs
outperforms not only a two-stage, but also athree-stage full PIC.

In the second part of the work, we analyze the performance of a two-stage adaptive blind



partial HPIC receiver. Thisisknown to be adifficult problem and the corresponding result is not
reported in literature. In this scheme, the adapted weights serving as optimal PCFs are trained
using the least mean square (LMYS) algorithm. The analysis difficulty arises from the nonlinear
operation involved in the decision process and itsinteraction with the LM Salgorithm. Although
there exist many theoretical results for the LM S algorithm, most of them consider the steady-
state performance and are valid only for the small step size scenario. This cannot be applied in
the problem considered here. Thisis because the sample size availableis small and alarge step
size must be used. Also the weights will not converge at the end of each bit interval and the
LMSagorithmisdtill initstransient-state. Note that theinput to the LM S algorithm dependson
the decision in the previous stage and this complicates the problem furthermore. We derive the
analytical results for optimal weights, weight error means, and weight error variances. Based
on these results, we also derive the outplit mean sguare error (MSE) and BER for each user. The
step size known to be a critical pafameter, i;n§ the LM Sl gorithm controls the LM S convergence
behavior and partial PIC performance. Usihg the output MSE criterion, we are able to obtain
an optimal step size. Simulation re‘sults‘i ndicatesthat our analytical results can well match with
empirical ones. ”

In the fina part of the work, we proposé an improved adaptive blind multistage hard-
decision partial PIC and analyze its performance. It iswell known that the LM S is a stochastic
gradient descent algorithm and its excess MSE is proportional to the number of filter taps and
the step size value. The main idea here is to reduce the number of active weightsin the LMS
algorithm and reduce the adapted weight variance such that the resultant excess MSE can be
reduced. To implement this idea, we include a decision making mechanism before adaptation
and a weight post filtering function after adaptation. We also derive the output MSE and BER
for the proposed algorithm. Simulation results verify that the proposed algorithm outperforms

the conventional partial PIC approach and analytical results are accurate.



8§1.4 Organization of the Dissertation

The organization of this dissertation is described as follows. In Chapter 2 we survey significant
contributions in multiuser detection. The optimal and several suboptimal multiuser receivers
are described.

Chapter 3 presents a two-stage partial SPIC multiuser receiver with a decoupled structure.
We derive the optimal partial cancellation factors (PCFs) based on the minimum BER criterion.
We consider periodic and periodic code scenarios, the AWGN as well as multipath channels.

Chapter 4 focuses on the analysis of a two-stage adaptive partial HPIC receivers. In this
regard, the LM S algorithm is used to obtain optimal PCFs. We derive the optimal weights and
analyze the weight error mean and weight error variance for one and two-user cases. We then
extend the results to the general K -user case. Due to the difficulty of the problem, we are only
able to obtain approximate results. However, simul ations show that our results are accurate. We
also use our theoretical results to dpti mize tﬁé step sizej used in the LMS agorithm.

In Chapter 5, we propose an ‘ir‘hpro‘v‘ed adaptive bl ind multistage HPIC receiver. We show
that the convergence rate of the L MS algorithmcan be accel erated and the performance can be
enhanced. Based on the convergence ahalysis given in Chapter 4, we also analyze its perfor-
mance and derive theoretical MSE and BER.

Chapter 6 gives the conclusion remarks and outlines some topics for further research.

10



Chapter 2

Multiuser Detection

At the time of introduction of CDMA, it was argued that interference from other users (after
despreading) has the statistical property just ésthenoise. Thus in the receiving end each user
can use a matched filter to demadulate its bwnsignal independently. It is simple to see that
the interference level is proporti ohal to the nUrﬁber of: users and their signal strength. Thisis
referred to as the single-user deteéti on ‘scheme.* The pérformance of the matched filter will be
greatly affected when the near-far éffect arises. In thiscase, the weak user signals may be over-
whelmed by strong user signals. In this regard, using power control to balance the receiving
powers among users seems the most efficient way. However, the challenges for power control
isthe requirement of fast and accurate power adjustment to maintain the received levels within
a fraction of one dB error from the possible dynamic range up to 90 dB. In addition, differ-
ent services may have different transmission rates and powers making power control difficult.
Multiuser detection (MUD) was developed to dleviate this problem. In MUD, all users are
demodulated simultaneously. Signal from other users are not treated as interference any more.
Application of the MUD agorithm greatly improves the system performance and at the same
time eliminates the precise power control requirement. In this chapter, several MUD techniques
are briefly reviewed. In Section 1, the optimal receiver are described. Section 2 presentsthelin-

ear suboptimal receivers, which include the decorrelator and the LMM SE receiver. In Section

11



3, we described the interference cancellation methods that include SIC, PIC, and partial PIC.

§2.1 Optimal Multiuser Receiver

Consider a synchronous CDMA system for the AWGN channel with K users. The received

signal at a certain bit interval can be represented by

K
r(t) = > su(t) +v(t)

k=1

K
= ) apai(t) + v(t), te{0,T} (2.1)

k=1
where s (t) is the received signal for the kth user, a; and b, are the channel and data bit for
the kth user, z,(¢) is the normalized spréading Wwaveform, and 7" is the bit interval length. The
AWGN is denoted by (). The meanand the variance of v(t) is zero and o, respectively. The
maximum likelihood (ML) solutronfor the i‘npu‘t bifs maximizes the likelihood function shown

below. L Wa |

o & :
m&xexp{—ﬁfo [r(t)‘— Zk akbkxk(t)] dt} (2.2)
where b = [by, b, ...,bg]T. The log-likelihood function, which is equivalent the likelihood

function, is used more frequently. The log-likelihood function is shown to be

L) = 2 /0 S [abyars ()] r(£)dt — /0 [Zakbkxk(t)] it

k
= 2bT"Ay —bTARAD (2.3

where A = diag[a,, as, . . ., ax], R isthe correlation matrix with the ij entry p,;. given by

T
o= [ wiomde (2.

andy = [y1,9o,...,yx|T isthe matched filter output vector with its element given by
T
Yp = / r(t)xg(t)dt. (2.5)
0

12



The the matched filter output vector can be written as
y =RADb +« (2.6)

wherey = [v1,7%, ..., 7&)% % = Y, 2k(n)v(n), isanoise related vector. It iswell known
that the optimal solution b maximizing £(b) requires an exhausted bit search. This combi-
natorial problem is shown to be NP hard and the required computation complexity is on the
order of O(2%). Although the ML criterion and the minimum BER criterion are different, their
solutions are close especially for high SNR ratios. When the asynchronous transmission is
considered, it has been shown that the complexity of the optimal receiver, implemented by a
matched filter bank followed by the Viterbi agorithm, remains O(2%). The ML receiver re-
quires the information of the signal amplitudes, signature waveforms, and signal delays for all
users. When the criterion of minimufi BER ris‘ utilized, the optimum detection, implemented
with the backward-forward dynamic proglyémming, gtill requires the complexity of O(2%). In
this case, the variance of backgrand noisé is also nedessary. These requirements along with
the high computational complexity mak% theopti mal receiver infeasible for real-world imple-

mentation.

§2.2 Linear Suboptimal Receivers

The optimal MUD has been regarded as powerful yet complicated. The suboptimal MUD was
developed to reduce the complexity while still provide performance gain. In this section, we
describe the suboptimal linear multiuser receivers. The linear receiver performs alinear trans-
formation on the received signal vector y. Thefirst linear multiuser receiver is called the decor-
relating detector or simply the decorrelator, whose name stems from the fact that the detector

simply inverts the correlation matrix in (2.6). Let

Mp=R" (2.7)

13



Then, the receiver output is given by

zp = Mpy
= Ab+R 4. (2.8)

As shown, the interference from the MAI is eliminated completely. However, noise becomes
colored and its level may be enhanced. When the noise level dominates the MAI, the perfor-
mance of the decorrelator is degraded. The decorrelator is also the joint ML solution for the
simultaneous estimate of channel gains and transmission bits. The solution can be found by the

minimization of aleast-squares criterion.

{A,b}p = min min / [r(t) - Zk akbkxk(t)]2 dt. (2.9)
0

b a,>0Vk
In contrast to the optimal MUD, the decorrelator does not require user signal amplitudes. In
addition, it was shown that the neaerar resistanée is‘equal to the that of the optimal receiver.
The fluctuation of the interference powers*dofnp‘t have any influence on the performance of the
decorrelator. '~ ‘ :
Another commonly cited suboptimal i near”rec‘,eiver isthe LMM SE receiver whose transfor-
mation matrix is defined by

M, = mNiIn E[||b — My]|[*]. (2.10)

After some matrix manipulation, we can obtain the transformation matrix for the LMM SE mul-

tiuser receiver as
M, = [R+o*A7?7. (2.12)

Comparing the decorrelator with LMM SE receivers, we can observe that the LMM SE receiver
becomes the decorrelator as o2 approaches zero. On the other hand, the LMM SE receiver will
degenerate into the matched filter when noise o approaches infinity. This means that LMMSE
multiuser receiver performs a compromise between noise enhancement and interference cancel-
lation. When the LMM SE receiver is used, the signal amplitudes as well as the noise variance

have to be known, in addition to the signal spreading codes and received signal delays.

14
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Figure 2.1: BER performance compafison-of- multiuser receivers for the first user (E,/Ny = 7
dB, and p = 0.8). | -

It can be observed that the matrix inversion is required in linear receivers. In order to
reduce the computational burden, adaptive implementation was proposed. Let ¢, = aiby, ¢ =

1,5, ...,5k]T. Rewrite (2.9) as

¢ = min Nz[ )= 3, swnm)] . (2.12)

where r(n) and z,(n) are the chip-sampled sequences of r(t) and x(t), respectively, and N
is the processing gain. The estimate of ¢ gives the channel gains and bits, which are those in
(2.8). The adaptive implementation of the decorrelator does not invol ve the complicated matrix
inversion operation. Similarly, the LMM SE receiver can have an adaptive implementation. Let
r = [r(0),7(1),---,r(N — 1)]”. It can be easily shown that the LM M SE receiver output is

2L = DLI' (213)
where Dy, = [d;,ds,...dg|" isan K x N matrix. Thus, we can use the MM SE criterion to
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Figure 2.2: BER performance.Gomparison of multiuser receivers (K = 10, and p = 0.8).
derived,. Thus,

d, = min F
dy

b, — ];Yj dk(n)r(n)] dt (2.14)

n=0

Note that some transmission bits are required for training. The MUD performance measure
includes the BER, the asymptotic multiuser efficiency, and the near-far resistance [7]. We have
carried out some simulations to evaluate the performance of the receivers described above.
Figure 2.1 shows the result for BER vs. interference power. Here, the user number is two, the
code correlationis p = 0.8, and E, /N, = 7 dB (IVy = 20?). Note that the z-axis of thefigureis
the power ratio of the two users. The conventional receiver suffers from the interference from
the second user, and its performance degrades rapidly when the normalized interference power
increases up to 5 dB. The ML receiver has the best near-far resistance among the four detectors.
The decorrelator exhibits a constant near-far resistance in al interference power ratios. The
LMMSE receiver is degenerated to the conventional receiver when the interference is weak

while to the decorrelator when the interference is strong; it performs very similarly to the ML

16



10 T

T ]
—+— Conv. receiver |]
—©- Decorrelator  |]
—— LMMSE 1
—&- Optimal ML 1

BER

107 I I I I I I I

User number

Figure 2.3: BER performance comparison of multiuser receivers (random codes, N = 15, and
Ey/Ny = 6 dB.) 7

receiver in weak interference. Figire 2.3 showsthe BER vs. E, /N, for ten equicorrelated users
(p = 0.8). The single-user receiver suffersfrom MAI and perform poorly in most cases. The

linear receivers perform similarly to the ML receiver when the number of usersis small.

8 2.3 Interference Cancellation M ethods

The interference cancellation scheme first estimates interference from other users and then can-
celsit from the received signal. Let 74 (¢) be the interference cancelled signal for User k. We

then have
fr(t) = r(t)—Z%(t)
= (1) = > g5m5(t) (2.15)

17



(d)

Figure 2.4: Interference estimate functions.! (&) Soft-decision function (b) Hard-decision func-
tion (c) Null-zone function (d) Hyperbolictangent function (e) Unit-clipper function (f) Modi-

fied unit-clipper function.

where g; represents the interference estimateof ajb;. The number of interference cancelled
in (2.15) depends on the algorithm used.For description simplicity, we assume a two-stage
cancellation scheme such that g; = F'(y;), where F(-) isadecision function. Commonly used
decision functions are summarized in Fig. 2.4. Note that channel gains are assumed to be

known. The second stage output is obtained by

T
= / () (1) . (2.16)
0
The decision functionsin Fig. 2.4 are further described bel ow.
(a) Soft-decision function: g; = y;

(b) Hard-decision function: g; = a;sgn[y,|

18
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kek+l y Y

SelectMax .
{ali=kk+1- K}

v

ZL §(t) <«——  Regeneraticn

Figure 2.5: Block diagram for an SIC receiver.

aj Yy =>¢§
(c) Null-zonefunction: g; = ¢ 0 TES < ¢
&=

(d) Hyperbolic tangent function: ¢, = a;tanh(a;y;fo?)
where 0]2- represents the power of interference’and noise for the jth user.

aj Y; = a;

(e) Unit-clipper function: g; = ¢ vy,  —a; <y; < a;

—aj Yj < —a;

a; Yy =€
() Modified unit-clipper function: g; = ¢ v, —¢<y; <& ,Where £ <a;
—a; y; < —¢

In the following, we describe the basic types of interference cancellation schemes, namely,

SIC and PIC.
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Figure 2.6: Block diagram for a general two-stage partial SPIC receiver.

8§2.3.1 Successivelnterference Cancellation

The SIC cancels one user interference from the received signal at atime. Since only one inter-
ference needs to be estimated and-subtragted in each stage, the strongest user signal is then the
best candidate. It's structure is depicted iﬁ Ifigure 2.5.7Assume that the received signal powers
arerankedasa; > asy...,> ag, and the interference céncelled signal for user £ at the ith stage

is obtained as
P () = pUD (1) — gix;(t), k=1,2,... K, k#i (2.17)
where f,(f) (t) = r(t), for al k istheinitial receive signal. The SIC output at the ith stageisthen
2 = /0 : PO () () dt. (2.18)
Although the SIC is simple to apply, there are some drawbacks listed bel ow.

e Sincethe user is detected successively, the subsequent users will experience lessinterfer-
ence. To make all users have similar performance, transmission power for each user will
be different. A proper power profile may not be easy to obtain. In addition, the power

ordering operation requires additional computational complexity.

e The interference resulted from the erroneous cancellation will propagate to all the users

at following stages. Thisintroduces the error propagation effect.
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Figure 2.7: Block diagram for a two-stage coupled partial HPIC receiver.

e A SIC scheme needs at least K stages for a K -user environment. This will greatly in-

crease the detection delay especially,when the user number islarge.

§2.3.2 Parallel Interference Cancellation

The PIC cancels interference from all'other users at thé same time. In contrast to SIC, the PIC
has lower detection delay and doesnot:have the power assignment problem. It has been shown
that the PIC has superior performance over theSICinan power balanced scenario. Conventional
PIC receivers permit afull cancellation of the MAI. One problem associated with this full PIC
isthat the MAI estimate may not be reliable in the earlier canceling stages. This makesthe PIC
less effective when the number of usersislarge. Asaremedy, the partial PIC detector has been
proposed in which partial cancellation factors (PCFs) are introduced to control the interference
cancellation level. As shown in 2.6, a complete partial PIC requires K (K — 1) PCFs for one
stage where K isthe number of users; the computational complexity is high. Simplified partial
PICs have been proposed, in which only K PCFs are needed. Two structures are commonly
used for simplified partial PICs; we call them the coupled and decoupled structures. In the
coupled structure, each user output is influenced by al K PCFs [62] as seen in Figure 2.7,

whilein the decoupled structure each user output is only influenced by a specific PCF as shown
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Figure 2.8: Block diagram for atwo-stage decoupled partial SPIC receiver.

in Figure 2.8. The partial HPICs mentioned in Chapter 1 all use the coupled structure. A MSE

criterion, as shown below, has been propased to opti mi ze PCFs[57].
C}C = HCI}H E{[akbk — C}Ci)k]2}
A =
= Héin {az + Cl? T QGkaE{bkl;k}}
_ : 2 2 -
e rrcl%‘n {ak + Ck 2aka(1 2Pe,]€)}

== ak(l - 2Pe,k) (219)

where P, ;; isthe error probability for the kth user. Aswe can see, each PCF can be determined
independently. From (2.19), we can observe that when the data bits are al correctly detected,
the optimal PCFs will approach unity. On the other hand, when the data bits are all erroneously
detected, (P, ~ 1/2), the optimal PCFs will approach zero. This is intuitively appealing.
Although simple, the optimal PCFs in (2.19) are not accurate for short codes. Thus, its real-
world application is limited.

The optimal PCF obtained by theoretical calculation may not be efficient when the channel
istime-varying. There exist an adaptive partial HPIC that can overcomethisproblem [62]. This
adaptive HPIC is blind in the sense that no training sequence is required. Due to its simplicity
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Figure 2.9: LM S agorithm for two-stage adaptive blind partial HPIC receivers.

and robustness, the LM S al gorithmwas used as the adaptive algorithm. A typical block diagram
for a two-stage HPIC is shown in :Fig. 2.9. The wei gHts are trained using the LM S algorithm
which minimizesa MM SE criterton defined as (for the ith stage)

w s min J@ (n) (2.20)

opt wii)

where w}, is the optimal weight vector at the ith stage, and

JW(n) = E{

The weight after trained, w'” (), acts as each user’ PCF. Note that this is a system identifi-

K 2
r(n) —Zwé”(nﬁ%‘%k(n)] } (2.21)
k=1

cation problem. The LMS update equation for the ith stage (with i — 1 stages of interference

cancellation) isformulated as

eDn) = r(n)—rD(n) (2.22)
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Figure 2.10: BER performance chparisopfor different multiuser receivers (p = 0.1, Ej, /No =

6 dB, and power balanced).

where x@ = [0V (n), 50D il ) o b Do dn)]T is the input vector. The interference

estimate for the kth user in the i-stage'is given by

i) =Y w (N a(n). (2.23)

y,(f) = Z f,ii) (n)xy(n). (2.24)

Note that the adaptive blind partial HPIC is different from the work in [17], since this scheme
does not require the training sequence. The optimal weights are optimized in one bit interval;

its adaptation is on the chip-level.
Asto the partial SPIC, both the coupled and decoupled structures have been studied. In this
dissertation, we focus on the decoupled structure which is shown in Figure 2.8. The reason to

consider thisstructureisthat the PCF optimizationis simpler and its performance is comparable
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Table 2.1: Required information for different multiuser receivers.

SU ML MBER DEC LMMSE AMMSE IC
Desired user'ssignature | v v v v v v
Desired user’stiming v v v v v v v
User amplitude v v v v
noise variance v v
Others' signature v v v v v
Others' timing v v v v v
Training data | | v
SU . Single-user receiver
ML © Maximum-likelihood receiver.~
MBER : Minimum BER receiver
DEC . Decorrelator
LMMSE : Linear mean square error receiver
AMMSE : Adaptive LMMSE
IC . Interference cancellation receiver

to other structures. We have carried out simulations to compare performance of various two-
stage PIC with LMM SE receivers. Theresult isshownin Figure2.10 (p = 0.1, E,/N, = 6 dB,
and power balance is assumed). The LMMSE performs the best among all multiuser receivers.
The SIC has only minor advantage over the single-user receiver. Thisis because in the power
balanced scenario, the power ranking does not have advantages. The full HPIC performs better
than SIC. Note that the full SPIC perform poorly when the user number increases. Partial PICs
with optimal PCFs perform much better and the partial SPIC performssimilarly to the LMMSE

receiver. In Table 2.1 we summarize requirement information for various MUD methods.
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Chapter 3

Optimal Two-stage Partial SPIC Recelvers

§3.1 Introduction

In this chapter, we focus on a tw‘d—stage paﬁtilal SPIC receiver with a decoupled structure. Our
motivation for using two-stage prdc ng isthét it req;ﬁi res low computational complexity and
is particularly suitable for real-waorld irhplemehtati on: Asindicated in [55] that in higher stage
processing, the PCFs will approach unity:ferstages greater than two. In other words, the PCFs
in the second stage will dominate system performance. We first consider the additive white
Gaussian noise (AWGN) channel and derive optimal PCFs for systems employing periodic
codes. The criterion for optimization is the bit error rate (BER). We then extend the result
to systems with aperiodic spreading codes. Finally, we consider optimal PCFs with multipath
channels. Simulations show that the performance of our theoretical optima PCFs is close to
that of empirical ones. In addition, the optimal two-stage partial SPIC outperforms not only
the two-stage full SPIC, but also the three-stage full SPIC. The remainder of this chapter is
organized as follows. In Section 2, we describe the two-stage full and partial SPIC receiver
structures. In Section 3 and Section 4, we derive optimal PCFs with periodic and aperiodic
codes, both in AWGN and multipath channels. Simulation results are presented and discussed
in Section 5.
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§3.2 System Mode

Consider a synchronous CDMA system accommodating K users. Let r(¢) denote the received
signal (for acertain bit interval), s, (¢) the kth user’s transmitted signal, and n(¢) additive white

Gaussian noise. The equivalent baseband received signal can be described as

K

r(t) = Y su(t) +n(t)

k=1
K

= Z akbk!L’k (t) + n(t), te [0, T] (31)
k=1

where a;, and b, are the kth user’'s amplitude and data bit, = (¢) denotes its signature waveform,
and T isthe bit period. The signature waveform can be expressed as
B NS 7 o
md) = ZD Ml (t = T2 (3.2)
where x;; € {1/V/N, —1/\/N}‘ ‘:is the bin‘ar:yc‘sprea:{‘i?ng chip sequence for User k, N is the
processing gain, [, isa rectangulér pdlséwavefOrm With support 7T, and unit magnitude. Note
that 7, is the chip period. | | ‘ 4
Thefirst stage of a PIC receiver isthe conventional matched filter bank. The output can be

represented as

T
- / F(#)ae () dt
0
= apb, + Z ajbjpjk + Vi (33)
i#k
where p;;, isacorrelation coefficient and -, isthe noiseterm after despreading. They are defined

as

T
A .
Pk = /0 ;(t)w(t)dt, (34)

and

T
A
= /0 n(t)zy(t)dt. (3.5)



It can be seen that the output metric in (3.3) consists of three parts. the desired signal, MAI, and
~e. The conventional detector makes a decision based on 3. Thus, MAI is treated as another
noise source. When the number of usersislarge, MAI will seriously degrade the system per-
formance. A PIC, being a multiuser detection scheme, was proposed to alleviate this problem.

Let 7 () be an interference-subtracted signal (for User k) given by

Pe(t) = r(t) = §(t) (3.6)

ik

where §;(t) is aregenerated signal for User j. For SPIC, thissignal is obtained by

5i(t) = yjxy(t). (3.7)

Thus, the output signal in the second stage is then

T .

2= fk(t)ﬂfk(t)dt (3.8)

Finally, the symbol datais detected as bk - ‘s‘gn(zk). Iﬁ principle, the interference cancellation
procedure in (3.6)-(3.8) can be repeated with multi ple stages to obtain better performance. It
is apparent from (3.3) and (3.7) that the'régenerated signal is noisy. Thus, fully cancelling the
regenerated interference may not yield best results. One solution to this problem isto partially

cancel the interference. Thisideaisimplemented by modifying (3.6) as

(t) = r(t) =D Cr 8(0). (3.9)

ik
The constants C;;’s are called the partial cancellation factors (PCFs) for User k and their am-
plitudes should reflect the fidelity of the interference estimate. The structure of a partial SPIC
receiver with three usersis shownin Figure 3.1.
Generally, K x (K — 1) PCFs are needed for atwo-stage partial PIC. It is apparent that the
computational complexity of the partial PIC is high when the number of usersis large [on the
order of O(K?)]. Two simplified structures, whose complexitiesare on the order of O(K), were

investigated in the literature. Thefirst one correspondsto the case inwhich C';, = C; [in (3.9)].
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Figure 3.1: General partial SPIC receiver structure.

In this case, all regenerated signals are first weighted and then summed. Thus, each regenerated
interference signal in (3.9) has an individual PCF and the signal to be estimated is a function
of al PCFs. We call this structure.the coupled strtcture. The other structure is one in which
Cji = Cy. Inthis case, all regenerated signals are suhmed first and then weighted. Thus, there
isone PCF for the signal to be estimated. We'thus call tjhi s structure the decoupled structure. A
thorough discussion of both structurestsnot a\/ailable inthe literature. Optimal PCFs have only
been derived for the coupled structuré under; power balanced scenarios [61]. In what follows,
we focus on a two-stage partial SPIC receiver with a decoupled structure. Primary simulation

results (in Section 5) show that both PIC structures with optimal PCFs perform similarly.

§3.3 Optimal PCFsfor AWGN Channels

In this section, we derive the optimal PCFs for atwo-stage partial SPIC under an AWGN chan-
nel. For ease of description, we only give the results associated with synchronous transmission.

Periodic and aperiodic spreading codes are both considered.
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§3.3.1 Periodic Code Scenario

Assuming perfect chip synchronization, we first sample the received continuous-time signal in
(3.1) with period T... Letr = [r(0),7(T.),...,r((N — 1)T.)]" be the received signal sample
vector, x;, £ [Tk0yTk1s- - Ten—1)" be the kth user's spreading sequence vector, and v =

[v(0),v(T,),...,v((N —1)T,)]* bethe noise sample vector. From (3.1), we have

r= apbyxy + V. (3.10)
k

Thus, we can obtain the matched filter output as

T
Yp = T X

= arbt Z qjjbjx;-r’xk + X V. (3.12)

: i#k
Note that xTx;, is a discrete version of the-correlation-term p;, shown in (3.4). Similarly, x7v
is a discrete version of the noise-rel ated term 4, in (3.5). For notational simplicity, we still use

pj o represent x7x;, and -, to represent x. v Thus;(3.11) can be re-written as

Y = apby + Z a;b;pir + Vi- (312
i#k
For the second stage of a partial SPIC (with the decoupled structure), the regenerated signal
for User k is

Bp=1—Cp ) _§ (3.13)
J#k
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where s; = y;x;. The second stage output is then

2 = f{xk

= yr — Cj Z YiPik
J#k

= agby + Z a;bipjk + e — Ck Z (ajbj + Z Umbm Pmj + %’) Pik

j#k j#k m#j

= aiby (1 —C ZP?}:) + (% —C Z’Yjﬂjk)

ik itk

+ Z a;b; (ij — Crpjr — Cy, Z pijmk) : (3.14)

J7#k m#j,k

The bit error probability for User k, denoted as P(z;), can be written as

Pla) = P 1+ P(alb = 1)
= Pladhds O, (315)

1

In (3.15), we assumethat the occuhrence probébiliti&efdr b, = 1landb, = —1 areequal, and the
error probabilitiesfor b, = 1 andhy:= =1 are 40 equal. Aswe can see, there are three terms
in (3.14). Thefirst term corresponds to the desired ‘User bit. If welet b, = 1, itisadeterministic
value. The second term corresponds to noise interference which is Gaussian distributed. The
third term corresponds to the interference from other users and each interference is Binomial
distributed. Note that correlation coefficientsin (3.14) are small and CDMA systemsare usually
operated in low signal-to-noiseratio (SNR) environments. The variance of thethird termisthen
much smaller than that of the second term. Thus, we can assume that =, conditionedon b, = 1

is Gaussian distributed. The error probability isthen

P(z) = Q{ %’“ } (3.16)

where Q{.} isthe Q-function and
M, = (E{zk|bk - 1})2 (3.17)
Vi = E{Z} - M,. (3.18)
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Note that the expectationsin (3.17) and (3.18) are operated on interfering user bits and noise.
Let E{vvT} = oIy and ; 2 a?/o?. Evaluating (3.17), we obtain

My = di (1 —CpAp) (3.19)
where
A 2
A2 P (3.20)
ik

Similarly, we obtain the variance as
Vk == 02(917;,30,3 — 292,16014; + Qg,k) (321)

where the coefficients of V;, are represented by

F y : p 2 .n ‘n .
Qi = Y n; (ij + M Pjn%ﬂ%ﬁli) LD (Pfk + ) pjmﬂmkﬂjk) , (322

itk gk Tk m#j.k

1

Qo = Z 77j<p§k + Z pijmIchk) + Z P?k, (3.23)

i#k m#j.k i#k
Qs = Y mipl+1. (3:24)
j#k
The optimal PCF for User k£ can be found as

Chopt = argr%a;X{A;—:}
dM Y
= {Ck,opt: Vit i 0}.

_Mlc

— = 3.25
dCy, dCy, (3:29)

Substituting (3.19) and (3.21) into (3.25) and simplifying the result, we have the following
eguation.

(1 = Chopt M) |:Clc,opt (U — A pQos) + Ak Qs — QQ,k] = 0. (3.26)
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We have two possible solutions now. The first solution for the first parenthesisistrivial since it
makes the squared mean value M, in (3.19) zero. The optimum PCF isthen

Qo — Q3 p\p

. 3.27
Qi — Qo p g 3:27)

Ck,opt -

We also derived optimal PCFs for an asynchronous CDMA system. The results are summarized
in Appendix A. In what follows we discuss some special cases to give a better understanding of
the optimal PCF characteristics. Let the correlations between any two user spreading codes be
equal (p;r = p for j # k) and the power control be perfect (a, = a and 7, = n). The optimal
PCF can then be expressed as

Coopt = d
BT T L+ p(K = 2))

As we can see from (3.28), the optimal PCF is smaller when p or K islarger, because when the

(3.28)

correlations between user codes are-higher.and the number of usersislarger, the MAL is larger
and the regenerated signal is unréliable. A‘S é;teﬁllt, the PCF should be smaller. Also, when the
user power islarger or the noiseissmaller{z islargen); the optimal PCF islarger. If we assume
that the noise is much smaller than the & gna power (n > 1), the optimal PCF can be further
simplified to |

Chopt = ;. (3.29)

1+ p(K —2)

Now the optima PCF is independent of the transmission signal power. The bit error perfor-
mance would also be saturated in thisinterference-limited region. From (3.28), we can also see
that when the noiseislarge (n < 1), the optimal PCF tends to be small (C, — 0). Notethat the
effect of the processing gain V is reflected in the receiving SNR. If N is larger, the receiving

SNR will become smaller.

83.3.2 Aperiodic Code Scenario

In commercial CDMA systems, the users’ spreading codes are often modulated with another

code having a very long period. As far as the received signal is concerned, the spreading code
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isnot periodic. In other words, there will be many possible spreading codes for each user. If we
use theresult derived above, we then have to cal culate the optimum PCFsfor each possible code
and the computational complexity will become very high. Since the period of the modulating
code is usualy very long, we can treat the code chips as independent random variables and
approximate the correlation coefficient, p;;, as a Gaussian random variable. As a result, the
expectations in (3.17) and (3.18) can be further operated on p;;. This greatly simplifies the
optimal PCF evaluation. We now rewrite (3.16) as

(0
P(a) = Q { %{{Qg }}} (3:30)

where E{-} denotes the expectation operator over the spreading code set £ and M,(f) and V,El)
are the expected squared mean and variance:of z;, respectively, given the ith possible code in
L. Letting I, = Z#k n;, considering p,y, asaGguésian random variable, and evaluating (3.17)
and (3.18), we have | s

M) SR E (A0)) (331)
where
P {A,ﬁ”} - % (3.32)
and
E V") = o (EE{le’)k}C,f — 2B {00 O + Eﬁ{Qg{L}) (3.33)
where

+ ; (3.34)

1 K-2\ K-1
Jop {ngk} = I,C(NJF )+ (3.35)



I
E{of)} = T4l (3.36)

In the above expressions, the notation X ) denotesthe X value given the I-th possible spreading

code in L. Equation (3.25) can be re-expressed as

0
Clc,opt — argr%ax Lj\/il](;}
e LBV}
0
B _ Wy dBEAMY} 4BV
= {Ck,opt. E{V, }7@ Ec{M, }7@ =0p. (3.37)

Substituting (3.31)-(3.36) into (3.37) and simplifying the result, we finally obtain
B {05} — B {00} B}
B 00} - B8 B AN}

Aswe can see, (3.38) only involves (3.32) and (8:34)-(3.36) and these expressions are easy to

(3.38)

k,opt —

work with. We further consider the casein Which‘ noiseissmal (I, > K). Equation (3.38) can
be simplified to | i ‘

TR Sl iy 3.39
Ck:,pt N+2K—4 ( )

Thisresult isremarkably smple. We onfy requi re N and K to calculate optimal PCFs; thiswill
be useful in real-world applications.

83.4 Optimal PCFsfor Multipath Channels

§3.4.1 Periodic Code Scenario
Let the transfer function for User &’'s channel be
L
Wilz) = 3 iz ™ (3.40)
=1

Aswe can see from (3.40), the number of pathsis L. and the gain and delay for the ith channel

path are hy; and 7 ;, respectively. We use two vectors to represent these parameters: t, =
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[Tkts Te2s - - o> Teop) @nd by = [hga, hroy oo her]”. Let 7y < 70 < -+ < 73 and the
channel power is normalized (> hiﬂ. = 1). Without loss of generality, we may assume that
T, = 0 for each user and L is the maximum possible number of paths. When a user’s path
number, say L', islessthan L, we can let al the elementsin 7, ; and hy; be zerofor L' + 1 <
i < L. We may also assume that the maximum delay is much smaller than the processing gain
N [67]. Before our formulation, we first definea (2N — 1) x L composite signature matrix S

as
AL - -
Sk = [Xk,1 Xk2, 5 X L] (3.41)

where x;, ; isavector containing :th delayed spreading code for User k. It is defined as

N— Tk, 1—1

x,”—{ o‘ xk,‘Q 0", (3.42)

Since a multipath channel is mvolved the current recelved bit signal will be interfered by pre-
vious bit signals. As mentioned above, the maximum path delay is much smaller than the
processing gain. The mterference will not be severe and for simplicity we may ignore this

effect. Let f, = Syh,. Asthat in (3.10),' we'can obtain the received signal vector as
Z arbrfy +v. (3.43)
k

To have better results, we use a maximum ratio rake combing scheme in the receiver. Let

ojr = £/ £, 0k = ork, and uy, = v'f,. The output of the receiver isthen

e = 1'f}
= akbkfkak + Z ajbjfffk + VTfk
ik
= apbror + Z a;b; o)k + uy. (3.44)
J#k
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Thisresult issimilar to that in (3.12) except that p; isreplaced by o, and +;, isreplaced by uy.
For the second stage of a partial SPIC, the regenerated signal is

f‘k = I — Ck Z éj
ik
ik

We then have the output signal for the second stage as

2L = f‘{fk
= agby (Qk — Ck Z Q§,k> + up — Ck Z'Uijk
j#k J#k
+ Z a;b; (@jk 7 Ckojr — G, Z Qijmk) : (3.46)
ik A¥ ~ matjk

As previously, we assume that 2k IS Gaﬂgsslan disr;tnr‘i‘buted, the interfering bits and noise are
random, and parameters N, K, tk‘,‘;hk, Mk andj gjk are kbown beforehand. Thus, the output error
probability is expressed as in (3.16) wheréth& &aared mean for 2., similar to that of (3.19), is
obtained from (3.17) and (3.46) a5 * J

M, = da} (ox — C4T1)? (3.47)
where
A 2
Ly = o, (3.48)
J#k

and the variance is obtained from (3.18) and (3.46) as
Vk == O'2 (EUCC]% — 2EQ,ICC]C + 537].3) (349)

where

2
Sk = Zﬂj (ij@j + Z Qijmk) + Z <Q§k@j + Z Qijkajk> ; (3.50)

J7#k m7 g,k J#k m#j.k

37



Sok =D 1 (Q?k@j + > Qijkajk) +) o (351)

i#k m#j.k i#k

Sk = ) 0j0% + 0. (352)
i#k

The optimal PCF derivation for the multipath channels is similar to that in (3.25). Substituting
(3.47) and (3.49) into (3.25), we then obtain

Or=ok — =3kl 'k
Cy opt — - . (353)
Ok=1 )k — Zok Lk

§3.4.2 Aperiodic Code Scenario

If aperiodic codes are utilized, o;;'s can'/beiseen as Gaussian random variables. Using the
method in Section |11, we can obtain the 9@rr$pohdi~ng optimal PCFs. From (3.47), we have

the expected squared meanas = s j

v ! e - r— ‘ 2
E(M =B B {T(})
= aic CkEg{F,(f)}Y (3.54)
and the variance as
BV} = o* (B2} CF - 280 {20\ ) Ch + B {2()}). (3.55)

Comparing (3.54)-(3.55) with (3.31)- (3.33), we see that the optimal PCF here is similar to that
in (3.37). We then have the optimal PCF as

Ee{Z5u} = Pe{Z3} Be {1V}
Be{Z0k) = Be{Z5 ) Be {1y}

Unlike that in AWGN channel, the result for the aperiodic code scenario is more difficult to

Choopt = (3.56)

obtain because there are more correlation termsin (3.48) and (3.50)-(3.52) to work with. Before
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eval uating expectation termsin (3.56), we define some functions as follows:

h]k(pa q) = hj,phk,qa (357)
Tik (pa q) = Tjp = Tk, (358)
C]k(p7 Q) = ig:pik,q- (359)

Thus, (3.57)-(3.59) define some relative figures between the pth channel path of the jth user
and the gth channel path of the kth user. The notation £, (p, ¢) denotes the path gain prod-
uct, 7% (p, ¢) the relative path delay, and (;x(p, ¢) the code correlation with the relative delay
7ix(p, ¢). Expanding (3.50)-(3.52), we have seven expectation terms to evaluate. For purpose
of illustration, we show how to evaluate the first term, E {07, }, here. By definition, we have

Qjk @S

ok =% f «i;‘

= : :ijphjyp d“: :Xk7qhk7q
- p:l 1ESE / ; q:l
e, i
[ ‘NT ~
§ :E :hj,phk,qxj,pxk,q
p=1 ¢=1
L

DY hinlp, )Gk, a)- (3.60)

The expectation of o;;, over all possible codesis then obtained as

L L L L
Ec{o}} = E{ DY hilpra C]k(pla%)hyk(p%QQ)C]k(anQQ)}

p1=1q1=1p2=1¢2=1
L L L L
= Z Z Z Z h]k plan ]k p2;¢12) {Cjk(p17QI)<jk(p27Q2)}- (3.61)
p1=1q1=1p2=1 g2=1
Let
.7:]'19(]91;(11,202,(]2) = NQE{Cjk(plaQI)Cjk(pQJQQ)}- (3.62)
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The coefficient N2 in (3.62) is only a normalization constant. Since the spreading codes are
seen as random, only when 7 (p1, ¢1) isequal to 7;x(p2, ¢2) Will Fj(-) be non-zero. Consider
aspecific set of {p1, ¢1, P2, ¢2} suchthat 7;;,(p1, ¢1) = Tjk(p2, ¢2) = 7 and 7 > 0. We then have

N—1-1

Fiu(proa1,p2.02) = N* Y E{l‘inrTl‘i,w}

w=0
= N-r1. (3.63)
For 7 < 0, we have the same result except that the sign of 7 in (3.63) is plus. We then conclude
that the function F;;(-) in (3.62) is
if Tjk(pla Q) = Tjk(p27 02)

N — |7_|, =T
}—jk(prhPQ,QQ) = ) (3.64)
0, otherwise.

Using (3.62), (3.64), and (3.61), wecan evaluate EL;{Q],C} in (3.50)-(3.52). The general formu-
lations for the other six expectatlon terms éﬂe summanzed in Appendix B.

We now provide a simple exar_nple‘to show the mq‘ltl path effect on the optimal PCFs. Let
t, = [0, D]" and hy, = [a, §]" for allks (E32 = 1). Also, let G, £ (N — D)a23?, and
G, 2 (N — 2D)a*3*. Then o

2G.,(K —1)

E TV} = E{A)} + N

(3.65)

B A=Y} = Eg{Qlk}—FQQa{ [N2+10N+4Qa+2( —2)(4N + 3K + G, +1)

K1 K
+— (N+3K—2)}+4Qb{ 6K — 12}
I
+F]€4(6N — 10D)a* 8, (3.66)
_ K -1
E A=) = B} + 2ga[ (N 43K —2) + = ] (3.67)
_ I
EAZ0) = B A0} + anﬁ’;. (3.68)
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Figure 3.2: Performance comparison for HRIC@nd SPIC (N = 31, p = 1/V/N,and E,/N, = 8
dB); The optimal PCFs for the partlal HPIC were obtal ned by trial and error and those for the
SPIC were obtained from (3.27).%

Note that the first termsin (3.65)-(3.68) ‘arethose in (3.32) and (3.34)-(3.36) which correspond
to the optimal PCFsin an AWGN channel. Other terms are due to the multipath channel effect.
It isevident to seethat if 5 = 0, G, = G, = 0 and the metrics above are then degenerated to
(3.32) and (3.34)-(3.36).

In prior sections optimal PCFs for different scenarios are derived under the assumption of
static channels. Thereceived user amplitudes are regarded known and to be varying slowly. The

extension to fading channelsis straightforward. The derivation is summarized in Appendix C.

8§ 3.5 Simulation Results

A. Performance comparison for various partial PIC structures
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BER

Ay

Figure 3.3: Performance comparison for the coupled and decoupled structures (three users with
Ey/Ny = 8—2An, 8— Ay, and 8dBY; The optimal PCFs for the coupl ed structure were obtained

by trial and error, and those for the decoupled structure were obtained from (3.38).

In this section we provide simulation results to verify the validity of our derived PCFs. Before
we do that, we give some comparison resultsto justify the PIC structure we considered. First, we
compare the performance of a partial SPIC and that of a partial HPIC. We used equicorrelated
codes of length N = 31 (p = 1/v/N) as spreading codes. Let E,/N, be 8 dB (0> = Ny/2),
and assume a perfect power control scenario. It is straightforward to see that in the perfect
power control case, optima PCFs are equal for the coupled and decoupled structures. Figure
3.2 showsthe bit error rate (BER) performance versusthe number of users. Here, optimal PCFs
for the partial HPIC were determined empirically (trial and error with a resolution of 0.01).
Surprisingly, we found that the optimal partial SPIC outperformed the optimal partial HPIC.
This result differs from the result given in [56] where the full SPIC was found to be inferior to
the full HPIC.

In the second set of simulations, we compared the performance of the coupled and decou-
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Figure 3.4: BER of the partial SPIC detector, versus-F, /N, (aperiodic AWGN channels, and
power balanced). | -

pled structures (using a partial SPI C). As mehﬁ oned above, optimal PCFs are equal for both
structures under perfect power control. Thus, ' we compared their performance in an imperfect
power control scenario. The optima PCFs for the coupled structure were determined empiri-
cally. Let the number of users be three and the spreading code be aperiodic (of length 31). We
assumed that the third user had a fixed E,/N, of 8 dB, and the other two users had variable
Ey /Ny valuesof 8 — Anand 8 — 2An dB, respectively. Figure 3.3 shows the BER performance
versus An for these two structures. Aswe can see, both structures performed similarly.
B. Validity of derived PCFs

In this paragraph, we report simulation results demonstrating the accuracy of our theoretical
solutions. A two-stage decoupled partial SPIC was considered. For the simulations conducted,
we used Gold codes for periodic code systems and random codes for aperiodic code systems.
Figure 3.4 gives the empirical and theoretical BERs for the optimal partial SPIC detector (with

the aperiodic code scenario). Thisfigure showsthe validity of the Gaussian assumption used in
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K

Figure 3.5: Optimal PCF versus number of users (Gold codes, asynchronous AWGN channels,
B,/N, = 8 dB, and power balanged): 2 X

our derivation. Aswe can see, when the number of ‘visers was smaller and E, /N, was higher,
the Gaussian approximation was lesSvalids-Figure 3.5 shows the optimal PCFsin (3.27) and
the empirical optimal PCFs versus the number of users. The channel here was an asynchronous
AWGN channel, the spreading codes were periodic, and E}, /N, was 8 dB for each user. In the
figure, it can be seen that the theoretical optima PCFs were very close to the empirical ones
in all cases. We then considered optimal PCFs for a multipath channel. The multipath channel
assumed was a two-ray channel with the transfer function Wy (z) = 0.762 + 0.6482~2 (for all
users). Theoretical optimal PCFs derived in (3.56) were compared with empirical PCFs and the
results are shown in Fig. 3.6. We can observe that the theoretical results also matched with the
empirical ones satisfactorily. Note that when the number of users was smaller, the theoretical
values were less accurate. This was because when the user number is small, the Gaussian

approximation in (3.30) islessvalid. Thiswas aso consistent with the result observed in Fig.
3.4.
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Figure 3.6: Optimal PCF versus number! df[Users‘(aperiodic codes, multipath channels,

Ey/Ny = 10 dB, and power balanced), |

C. BER performance comparison | ‘

In what follows, we report the BER performance for various SPIC detectors. Figure 3.7
givesthe performance comparison for an optimal two-stage partial SPIC, aconventional matched-
filter receiver, a two-stage full SPIC, and a three-stage full SPIC. The spreading codes were
periodic and the channel was an asynchronous AWGN channel. Also, F,/N, was 10 dB and
perfect power control was assumed. From the figure, we can see that the optimal two-stage
partial SPIC outperformed othersin all cases. The two-stage and three-stage SPIC recelvers
performed even worse than the conventional matched-filter receiver when the number of users
was large. The optimal two-stage partial SPIC always performed better than the matched-filter
receiver. Finally, Figure 3.8 shows the performance comparison for the detectors considered
above in the multipath channel. The simulation setup was identical to that in the previous cases

except that the spreading code was aperiodic. The PCFs for the optimal two-stage partial SPIC
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Figure 3.7: BER versus number of:users(Gold codes, asynchronous AWGN channels, £,/ N, =
10 dB, and power balanced). 7

were calculated using (3.56). Aénin the AWG‘N channel, the optimal two-stage partial SPIC
outperformed other types of detectors.
D. Effect of imperfect parameter estimation

In the optimal PCF formulation, we assumed that the required parameters are perfectly
known. In practice, this may not be aways possible. Some parameters will have to be esti-
mated for time-varying channels which may introduce errors. The main parameters we need to
know are the channel responses and the noise variance. Once the channel responses are known,
a;’s, pji’sand ;s can be calculated accordingly. We modeled the channel estimation error as
follows. Lét g;; = axhy; be the i-th path channel of User k, and g;. ; = gk i + Agii, Where g ;
was the estimated channel response, g;,; was the actual response, and Ag;, ; was a Gaussian ran-
dom variable denoting the estimation error. Wefirst let the noise variance be exactly known and
varied the channel estimation error. The performance impact is shown in Fig. 3.9. The result

correspondsto the case in which the user number was six, the spreading code was aperiodic, the
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Figure 3.8: BER versus number0f jusers (aperiodic spreading codes, multipath channels,
Ey/N, = 10 dB, and power balancéd). -~

channel wasthe multipath channél sand £, /N, Was 10 dB. Inthefigure, o, denotesthe standard
deviation of Ag;; (samefor all £’sand?’s). 'Since the matched-filter and the full SPIC receivers
do not rely on channel information, the channel estimation error had no influence on their per-
formance. (The BER variationsin Fig. 3.9 were due to the random data used in different runs).
As we can see, the partial SPIC performance was not affected until o, = 0.3. Note that the
magnitude of the main path was 0.762. Thus, the estimation error was quite large in this case.
The second case we considered was noise variance estimation error. The simulation setup was
identical to the previous one. We let the channel responses be known and varied noise variance
from 0.1 x 02 t0 10 x o2, where o2 was the actual noise variance. We found that the optimal
SPIC performance was almost unaffected. Thus, we conclude that the optimal partial SPIC has

good immunity to parameter estimation errors.

a7



—+— Rake receiver

—— 2-stage partial SPIC
—6— 2-stage full SPIC
—x— 3-stage full SPIC

10 !

BER

10| !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 3.9: BER with channel estimation error (aperiodic spreading codes, multipath channels,
K=6, E,/N, = 10 dB, and power balanced).
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Chapter 4

Analysis of Adaptive Two-stage Partial

HPIC Receivers

This chapter isdedicated to the pe‘fformancé anaysis df atwo-stage adaptive blind partial HPIC
receiver. Thisreceiver is known to:‘ perform bétfer than ihe non-adaptive partial HPIC. As men-
tioned in Chapter 2 that these two typeé of partia HPICs may give different optimal PCFs. The
major difference between the two partial HRICS Iies‘i n the different optimization objectives. In
the non-adaptive type partial HPIC, the optimal PCFs are determined based on the minimization
of the ensemble error average for all transmission bits. In other words, optimal PCFs apply to
all received bit signals. On the contrary, the PCF for the adaptive blind partial HPIC is obtained
by minimizing the ensemble error average within a single bit interval (given the bit decision in
first stage). Although the adaptive blind HPIC was studied extensively, its performance has not
been analyzed before. We intend to fill this gap in this chapter. We first give the LMS frame-
work for the blind partial HPIC in Section 1. In Section 2, a complete derivation for the LMS
convergence statistics in a single-user scenario is given, which includes the optimal weight,
the weight error means, and weight error variances. In Section 3, the result is extended to a
two-user case. We derive the optimal weights and the weight error means. Finally, using some

approximation techniques, we derive the corresponding analytical results for a general K -user
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Figure 4.1: LM S algorithm for two-stage adaptive blind partial HPIC receivers.

scenario in Section 4. The simulation freslilts and di scussions are presented in Section 5.

§4.1 System Mode

Consider a synchronous K -user CDMA system in the AWGN channel. Let the spreading se-
quence of the kth user denoted by z;,(n) with processing gain N and amplitude +1/+v/N. Then
the chip-sampled received signal in a certain bit interval can be represented as

K

r(n) :Zakbkxk(n)+v(n), n=0,...,N—1 (4.1)
k=1
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where a;, and b, are the channel gain and data bit of the kth user, and v(n) is the AWGN with
variance 0. The first stage of the partial HPIC is the matched filter output given by

N—-1

y) = > ax(n)r(n)

n=0

= aiby +Za] iPik + Z$k

J7#k
= akbk + Z aj; ]p]k + Z Vk (42)
J7#k
where the time-averaged cross-correlation function between the i-th and the jth user is defined

as

X

Pipgi P ) oi ()

n=
\
|

—

and the noise sample after multi piyi ng the spreabli hg cbde is expressed by v (n) = zx(n)v(n).
We further denote the noiseterm after despreadl ng asz vi(n) = ;. Theadaptiveblind partial
HPIC uses an adaptive filter to estl mate the channel gains and then cancel the interference
produced by other users. The adaptive‘agorithm used is the well-known LMS algorithm, as
depicted in Figure 4.1. The LMS algorithm minimizes the MSE between the received signal
and the regenerated signal in abit interval. The optimal weight vector can be obtained by

w') = minJO(n 4.3)
opt

w(?)

where the error signal is represented by
T () = E{[r(n) - ()}
r(n) — ng)(n)i)gl)xk(n)] } ) (4.4)

k=1

In above equations, the superscript (i) denotes the corresponding variable is operated at the ith
stage. Note that only one bit period is available for weight adaptation. We first express the
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spreading sequence vector as
x(n) = [z1(n), 22(n), ..., vk (n)]". (4.5)

The LM S update equation for the ith HPIC stage (with i — 1 stages of interference cancellation)

isthen formulated as

eDn) = r(n)—rDn) (4.6)

BO 2 digges, . ). (4.7)
After the weights are trained, they are use& no cancel the interference from other users such that
the input to the kth user’ dlicer in thez stage is
9 sz Y V(). (4.8)
e

Then the :th stage output from the partial HPIC (for User k) can be formed by
y =Y i (n)ai(n) (49)

and the bit decision output for the kth user in the ith stage is denoted by 5\ = sgn[y\” (n)]. We
will address a two-stage partial HPIC structure and omit the superscript for the stage number ¢
such that 7 (n) = #(n), w'> (n) = w,(n), and b = b, in the sequel.

It can be seen from (4.4) that in the perfect condition, 7(n) = r(n). In that case the ideal

convergent weights are

a, b = b
we(Ny={ 7 F R (4.10)
—ag, by # by.
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Thus, the convergence weights depend on whether the bit decision resultsin the previous stage
are correct or erroneous. The adaptive algorithm alows each user can weight to attain the
desired value symbol by symbol. Thisis the reason why the adaptive approach performs better
than non-adaptive methods.

As mentioned, the adaptation period is constrained in one symbol period. Thisis because
the optimal weight for User k£ may be +a,, or —a; depending on the bit decision for each sym-
bol. Although the LM S algorithm is simple, its convergence may slow and the weight may not
converge to the desired value in such a short period. In addition, the resultant weight heav-
ily depends on the parameters used in the LMS agorithm so is the cancellation performance.
These parameters include the step size and weight initials. In the conventional approach, these
parameters are determined heuristically. Theweight initials are usually set as the channel gains,
i.e., wg(0) = a,. Thisisreasonable since the bit error probability is usually low, most of the
weights will start their adaptationiat the optj mal values; only few weights are away from their
desired values by 2a,,. A larger step size will accel erate the convergence speed for the weights
with erroneous decision, but alsoi hevitably introduces alarger variance. Thereislittle research
regarding the convergence analysié for-the adaptive blind partial HPIC receiver and thisis the
motivation of our research. | |

The LM S agorithm has been analyzed and devel oped for over four decades. However, most
results cannot be used here. Thisis because the step size used in thisapplication islarge and this
will violate many assumptions assumed. The other reason isthat we most concern the transient
behavior (due to small sample size) while most works only concern steady-state behavior. We
then devel op anovel method to overcome this problem. We will start the analysiswith asingle-
user scenario. In this case, there is no MAI; however, the result can serve as a base for the

two-user and general K -user scenario.
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8§4.2 Exact Analysisfor Single-user Scenario

§4.2.1 Optimal Weight Analysis

Consider the CDMA system with only one active user, i.e,, K = 1. Since only one user is
present, we will omit the subscript & for notational simplicity. Thus, z(n) = z1(n), a = ay,
b=by,yV(n) = yg)(n), v(n) = vy (n), vy = 7, and x(n) = bz, (n). Note that by definition,
v(n) = z(n)v(n) and

v = v(n). (4.12)

oy =3 S ien)

= ab+ Zy(n)

n=0

— bty (4.12)

where the noise samplesv(n),n = 0,1,..., N — 1 arei.i.d. random variables with zero mean
and variance o2 = ¢?/N. Note that in the following derivation, we refer to the first stage
decision, the first stage correct decision, and the first stage erroneous decision as the decision,
the correct decision, and erroneous decision, respectively. From (4.12), it is simple to see that
the decision b, which equals sgn[y"], depends on the noise term ~. It is simple to derive the

condition for correct or erroneous decision. Denote the set for which decision is correct as V¢,



and that for which decision is erroneous as Ve. Then,

V2 =0}
v>—a for b=1
_ (4.13)
vy<a for b=-—
and
Vo2 D)
v<—a for b=1
= (4.14)
v>a for b=—

We will first derive the optimal weight conditioned on v and then take the expectation on the
conditional optimal weight to obtain the~fina| "r&cult Since the input to the LM Sfilter depends
on b, the optimal weight will be dlfferent for b ~Ch, and b #+ b. To facilitate the derivation,
we first define some notations. =L et.a random varlable 2 conditioned on ~ be denoted as %,
i.e, z = {z|v}. Also let the condltlonal random variable with € V¢ be denoted as z¢, i.e,,
2¢ = {z|y € V°}. Similarly, z¢ = {z|’y c Ve} AISDIet 2= Ey {3}, 25 = Eva{2°}, 25, =
E.{%5,}, and 25, = E,{Z5,} where the'subscript A/ denotes the corresponding variable is a
mean value, E, ,{.} denotes the expectation operated on v(n) and z(n), and £, {.} denotesthe
expectation operated on «. Let E{.} denote the expectation operated on all random variables,
and we have F{z‘} = E,{F,{°}} = 2§;, and E{2*} = E {E,.{Z°}} = 25;. Using the

similar rule, we define the optimal weight conditioned ony € V¢ asw¢ ,, andthat ony € Ve as

opt?

wg,;. Also, let the optimal weight for correct decision be wg,, and that for erroneous decision

be wg,,;. We then have wg,, = £, {5, } and w;,, = E,{w;, }. The conditional optimal weight

isgiven by

Wop = (QF) 'D° (4.15)
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where Q¢ = B, . {¥°(n)?} and p¢ = E, ,{X°(n)7(n)}. Notethat Q¢ = 1/N. We then have

ey = NE,{X°(n)7(n)}
= NbOE,{2°(n)7*(n)}
= Nb (%bwmn)) (4.16)
= a+ Nbis,(n). (4.17)

The conditional mean for 7°(n) can be obtained by taking the conditional expectation on both

sidesof (4.11).

N—-1
¥ = vy (n) (4.18)
n=0
= Ni%,(n). (4.19)
Thus, (4.16) can berewrittenas % e,
TS ik DS, (4.20)

Assuming b = 1, we can obtain the optimal-weight for correct decision as (the result isidentical
forb = —1) k. S
w(c)pt = E’Y{wgpt}
= a+ B {5} (4.21)
Note that + is a Gaussian random variable with zero mean and variance 0> = No, = o°. Let

f(+) denote a probability density function. Thus, the second term in the righthand side of (4.21)
can be expressed as

B} = / 2 f (V) dy

Jyerf (v)dv_ (4.22)
Joe F(0)dy
Similarly, from (4.16), we can obtain the conditional optimal weight for the erroneous decision
as
We, = —a+ b3t (4.23)
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The optimal weight is then

opt

E’Y{wgpt}

—a— E, {7}

where E., {7¢} can be evaluated asthat in (4.22).

§4.2.2 Weight Error Mean Analysis

The LMS update equation for the single-user

Definetwo weight errorsas & Iz
) =

e (o T

scenario can be formulated as

opt*

(4.24)

(4.25)

(4.26)
(4.27)

Our objective is to find close-form expressions for the mean values of é<(n) and é¢(n). Using

the notations defined above, we have €§,(n) = E{é°(n)} and €5,(n) = E{e(n)}. We first

consider the scenario of correct decision and rewrite (4.26) as

é(n) = w(n) —
= w(n)
We then define
£(n) =
5 —
From (4.28), we can have
é(n) =

~c ~C c
- wopt + wopt - wopt‘

(4.28)

(4.29)
(4.30)

(4.31)



It is smple to see that E{6} = 0. Thus, €5,(n) = E{&(n)} = E{&(n)} = E,{&,(n)}.
Expanding £¢(n), we have

e(n) = w(n) — g,

= (0 1) + pxe () (n — 1) - i,

= (1=p/N)E(n—1) +p(X(n— 1)7(n — 1) — dg,,/N)

= (1= p/N)En = 1)+ p[{(n = 1)(ab-i%(n — 1) + 8(n — 1)) — @5, /N]

= (1 — p/N)E(n —1) 4 ub(5*(n — 1) — v/N). (4.32)

Iterating (4.32), we can obtain
() = (1= p/N)"E(0 +ub{z SRS Y }

— a"E(0) + MEZ &”_iﬂcgi;), T-pz%%-(ll__(); ) (4.33)

wherea =1 — p/N and £¢(0 ) = w (0) '"'WNotethat w(0) isan deterministic initial value

and w°(0) = w(0). Taking expectatlon on both sides of (4.33) with respect to v(n) and x(n),

we have
R n—1 1 n—1 .
gu(n) = a"*(0) + pb {Z(l — )"t (i) — N (- u)"‘lv}
=0 i=0
- . pby (1 —an
= a6(0)+ub;a VM(Z)—W<1_Q>. (4.34)
Using the result from (4.19), we have
£y(n) = a"e%(0). (4.35)
From above, we know that €, (n) = E,{£5,(n)}. Thus,
€u(n) = o"E{&°(0)}
= a"€e(0) (4.36)



where °(0) = w(0) and °(0) = w(0) — w§,,. The same result can be obtained for the weight

error mean of erroneous decision.
ey(n) = a"€e(0) (4.37)

where €¢(0) = w(0) — w§,,.

84.2.3 Weight Error Variance Analysis

In this section, we will find close-form expressionsfor E{[¢¢(n)]?} and that of E{[¢¢(n)]?}. Let
e$-(n) = E{[e°(n) — €,(n)]*} and ¢,(n) = E{[e*(n) — €,(n)]*}. We then have

B{EMP} = 6+ [ ()] (4.39)
B @l = ) + [ ) (4:39)

Y=\t
Thus, the central problem in this section is‘;rto find &, (n) and €} (n). We define €,(n) =
Eyo{[6€(n) — €§,(n)]?} and &, () = B tles(n) — e“}w(n)]Z}. From the conditional random

variable property, we have ¢, (n) = E;{gg,(n)} ande;(n) = E,{&(n)}. Aspreviously, we

first consider the scenario of correct decision. From (4.31) and (4.33), we have

ef/(n) == Ev,:v{[gc(n)_é]:w(n)ﬁ}

= By {[E5(n) + 05— a"e*(0)]’}

<

2B, { [(Z Q" (i) — % Z 11__Oj>1 } . (4.40)
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Note that the second term in the righthand side of (4.40) isjust £5.(n). This can be seem from
(4.33) and (4.35). We now evaluate this term.

S amior(i - L (11__0;n>] }

&v(n) = MQEv,x{

1=0
— 1 2y (i) (1—a™) «
— 2 E,. n—i~c(; o M — n—i
u{ A S W0 (1),

72 1—am\?
+W . ( 1 -« ) }
— {Ew { [Z an—iﬁc(i)] } % (11—_65) } (4.41)

From (4.41), we can see that we have to find the autocorrelation function of o¢(i), which is

E, . {7°(i)7°(4)}. It can be shown that thefuncfibh:hwethemevdueforz’ #j. Let
) el S NS DG, 1 = ]
Ey . i @71} L (4.42)

= | qy ““Z 7£ J-

To solve the problem, we first considet a Smpletwo-chip case in which N' = 2

II

(O RBe(1) = (4.43)

where the unconstrained variables »<(0) and »°(1) are two i.i.d. random variables with zero

mean and variance o2. \We can eval uate the conditional joint probability function of {z<(0), 7¢(1)}

as
P07 = g e { - HOT U
I N {_(v°(0))2+h 7(0)] }
2102 20?2
1 [(7°(0) — 57> + 37
- 2no? exp{— o2 }
B 1 1 [75(0) — 4]
= ¢ 27r-03/2€ p{—§ %Ug }
= Cf(°(0)) (4.44)



where C' is a normalization constant. From (4.44), we can obtain 7§, (0) = §,(1) = 3~, and

75 (0) = 102, Multiplying 7¢(0) and taking expectation on the both sides of (4.43), we can

obtain
(#5,(0))* + 75:(0) + g, = 75, (0). (4.45)

Instituting the result of 7§, (0) into (4.45), we can obtain ¢, as

2 2 2
Vz o _ 19 (4.46)

@ = 2 T4 aN’

Direct extension of the above derivation to N > 2 is difficult since we have to evaluate multi-

dimensional integrations. We now use a simple method to overcome this problem. First, we let

N be even and rewrite the v-constrained equation as

"(?F(O) = S (i)
éc(l) ——‘j Zij\;;vl/g < (1)

f°(0) + 6°(1) . 7 ‘1\ } { (4.47)

where the unconstrained variablneﬁ QC(O) and#5(1) are i.i.d. random variables with the same

distribution. We can then apply the'result in (4.45).and obtain

(85,0)) "+ 65:(0) + a0 = - 5, 0). (4.49

Note that 65 (0) = 165.(0) with 65 (0) = No2/2, and 65,(0) = /2. Combing with (4.48), we

can then obtain ¢,. Note that

N/2—1 N-1
@ = E{ > D°(i)ﬂc(j)}

N 2
- (3) (449
2
Thus, from (4.49) we can obtain the crosscorrelation ¢, for N > 2 as
2 2
y o
Yy = — — —=. 4.50
w=Nz TN (4.50)
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Multiplying 2¢(7) on both sides of (4.47) and taking expectation, we have

,.YZ
N —1 = —. 451
pu+( )qu N (4.51)

Finally, we obtain

2 N-1
=L+ 2 10

v (4.52)

Simulation results show that the result (derived for an even N) is also very accurate for an odd
N. We can then have an explicit expression of the first summation term on the righthand side
of (4.41) as

2
- n—i~c/(s l—a" ’ 1—a®
Ev,:v { [;OZ 4 (Z)] } =y ( 1—a ) + (pu - qu) (1_702) . (453)
Thus, combining (4.41), (4.50), (4.52)‘ andy(4.53), we have
) = AT EERA Lot (1—am\?
VI T MU ECHIERI BV \ 11— o
n2‘ | s 2n ] n\ 2
_ s L= L2 l-a
= {Nq <,1~; a2) o < o > } : (4.54)

By definition and (4.40), we have

&(n) = E, { [a" (5°(0) - ec(0)> + SC] 2} 425 (n). (4.55)

Note that the result in (4.54) isindependent of ~; it isafunction of noise variance and the step

sizeonly. Thus, £§,(n) = E,{&},(n)} = &,(n). Thus, the second term in the righthand side of

(4.55) can be evaluate using (4.54). Denote the first term in (4.55) as d§,. Then,
€, (n) = o +ev(n). (4.56)
The term 45, can be further evaluated as
5 = B, { [a" (5C(0) - eC(o)) + Scr}
= (1= "B, { (5, — )"}
= (1= a"? (B {[65]"} — [w5,]°) (457)
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where the second moment of w¢

opt 1S given by

B, {[@5:)°} = B{(a+ )%y € V). (459

Thus, we can obtain the weight error power shown in (4.38) using (4.36), (4.54), (4.55) and
(4.57) as

B{[E(n)]*} = o™ [e(0)]? + &5 + &5 (n). (4.59)

Similarly, the weight error power for the erroneous decision described in (4.39) can be obtained

as
E{[e¢(n)]"} = o™"[e(0)]* + o7 + €5 (n). (4.60)

The second term in the righthand sidéof (4.60) ‘can‘be expanded as
, =,

ot = 0 S RRBAL § — [v5]") s
where the second moment of 1, isgivenby ‘
e 12) | | )
B, {[@5]"} = By{(a )7 € ¥°). (4.62)

As mentioned, the result in (4.54) is independent of v. Thus, we have £§.(n) = £5,(n) and
e$,(n) = &5, (n). Thethird term in the righthand side of (4.60) can be evaluated using (4.54).

8§4.3 Exact Analysisfor Two-user Scenario

Extending the procedure devel oped in the previous section, we now proceed to analyze the two-
user case. Only the optimal weights and convergent weight error means are considered since
the closed form expression for the weight error variance is difficult to obtain. In most cases, we
only represent the result for the correct decision (denoted with superscript ‘c’). The derivation

for erroneous decision is summarized in Appendix D.
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§4.3.1 Optimal Weight Analysis

Definex(n) = [z1(n), 22(n)]" and the matrix formed by x(n) asR.(n) £ {x(n)x(n)"}. Then,

the time-averaged correlation matrix is obtained as

=

-1

R = R(n). (4.63)

1
N

S
Il
o

The time-averaged correlation between these two users’ codesis given by

N—-1

p= Z x1(n)za(n). (4.64)

n=0

Notethat Np isaninteger. It is simpleto show that

A, 1 o
R = — |- . (4.65)

The matched filter output vector;denoted by 3 = [y, (|7 isthen

YO = 3 S

= NRAb+ » v(n) (4.66)

where b = [by, by]" is the data bit vector, A = diag{ay,a»} is the channel amplitude matrix,
andv(n) = [v1(n), v2(n)]" isthe noise vector after code multiplication. Let the second termin
the righthand side of (4.66) be denoted as~ = [y, 72|%. Then

v=> v(n), (4.67)



and
y() = NRADb + +. (4.68)

Asthat inthe single user case, the decisionin thefirst stage depends on the value of 4. However,
the problem here become more involved since the distribution of 4 depends on p. It can be

shown that the joint probability density function for the random vector ~ is Gaussian and

1 1 _
f(v) = 27]C. 12 exp {—§’YTC71’Y} (4.69)

where the covariance matrix is given as

po?  o?

C., 2 E{yy"} = {U pa] . (4.70)

Note that now the number of bits for. décision i&two and the number of the decision patterns

becomesfour. Let j = 3 — k andk can bq 1 or 2 Défine the set for which User £’sdecisionis

1

correct as
Vi 2 (e =)
>“(ag % abjp) for b, =1
Y < ap — ajbjp for b, = —1.
Similarly the noise subset for making erroneous decision is represented as
Vi 2 {ylbe # b}
< —(ag + a;b; for b, =1

Yk > ap — ajbjp for b, = —1.

We then extend our notations defined in the previous section. Let a random variable z con-
ditioned on « and then on p be denoted as z, i.e, 2 = {z|v|p}. Alsolet z,, = E, . {Z},
iv = Ev{Zu}, 2v = E,{Zn}. Wethen have z,, = E{z}. Using the similar rule, we define
the optimal weight conditioned on « and then on p as w,,,;, the optimal weight conditioned on p

asw,,;, and the optimal weight asw,,,,. Wethen have w,,, = E{W,,;} andw,; = E,{ W, }.
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The optimal weight conditioned on « and then on p can be represented as

Wopr = Q7D (4.73)

where the correlation matrix of input signalsis expressed by

Q = Ev,:v X(H)X(H)T}
b

1 b
_ L e (4.74)
N blbgp 1
The crosscorrelation vector is given by
P £ E,.{x(n)f(n)}
= B, {BX(n)[a1b1d1(n) + asbsds(n) + #(n)]}. (4.75)

Thus, the conditional optimal weight vectorisiz,,

- - N 1 —[%1?)”2@ i arbiby + 025152P + 51’~Y1
T T2 | 5% 22 4 PR, -
bibap I ‘; asbaby + a1b2by p + bayo

— ABb+%BR"1fyl 556 I (4.76)

As we can see from (4.76), the optimal weights depends on the decision patternsin B. There
are four decision patterns, i.e., {b; = by, by = by}, {by = by, by # by}, {by # by, by # bo}, and
{by # by,b, = by}. Note that for each decision pattern, we have two bit patterns that b, = b,
and b; # by. Let UY denote the set of ~ yielding the ith decision for the jth bit pattern. For

example,
U = {7Im e Vi, eVs,b =b} @4.77)
U? = {7yl € V5, € V5, b # b} (4.78)

Let 57 = {z|y € U¥|p}. Alsolet 3% = E, . {%"}. We can have similar notation for optimal

weights. Let the optimal weight conditioned on v € U and then on p as w7, and w2, =
E{w3.}. Then,
wo, = AB'D/ + NB’R”EAY{&”} (4.79)
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where Bi denotes the ith decision pattern, and b’ denotes the jth bit pattern.

If we further assumethat b, = 1, we have

U = {AmeVi,neV;b=1=b} (4.80)
= {v|n > —(a1 + ap), 72 > —(az + aip)} (4.81)
and
U? = {‘Y|71 EV, €V, b=1# 52} (4.82)
= {v/n > (a1 —azp), 72 > —(az —aip)}. (4.83)

The optimal weights for B' becomes

-~ — ~ 11

Wop = a + %R 1E7{'y~1}2 (4.84)

wizg a1, (517)

where @ = [a1,a5]7 and J £ diag{L, —i}?.?j'lﬂ"he result in (4.84) for b = —1 isidentical for

by = 1 sincein (4.79) the produétin Bib’or B! £ {~} isindependent of the value of b,. The

componentsin £/ {~} are given by LA

s v () dy
Joii F(v)dy

The complete set of + for all decision and bit patternsis shown in Table 4.1. The complete set

B {47} = (4.85)

of conditional optimal weightsis givenin Table 4.2.

Our objective is to determine w¢ , and w¢ As

opt opt Dy taking expectation on wg, and w;

opt opt*
seen in Table 4.1, theregion of v, for correct decision isdifferent from that of ~,. Thuswe have
to determine the components of w¢,, user by user. The union of noise subsets for the first user

to have correct decision isthen
C, =U" uUR U U, (4.86)
The occurrence probability for U¥ is obtained as

Py= [ iy (487)
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Table 4.1: Sets of ~ for al decision and bit patterns

U7 Bib/ Range for 7, Range for v,

ot 1 v > —(ay +asp) Yo > —(a1p+ as)
U2 1 1> —(a1 —azp) Yo < —(a1p— as)
[0z 1 1> —(ay +azp) Y2 < —(as + aip)
U2 | -1 1> —(a1 —azp) Yo > —(a1p— as)
LDEAN . | 1< —(ay +azp) Yo < —ay+ayp)
U2 -1 v < —(a; —agp) Y2 > —(a1p — az)
Ut -1 7 < —(a; +azp) Y2 > —(az + a1p)
U2 | 1] m<gla—ap) 72<—(mp—a)

Thefirst user optimal weight for.Correct decision'and a given p is

©c
wopt,l

where

P, =

1

Qi

iy i

opt,1

995 ()
1 Cl

Pi .

Py + Py + Py + Po.

The second user optimal weight for correct decision and agiven p is

,uv)c

where

opt,2 = P(C

]_ <ij

w
2@2

opt,2

]Di .

C,=U"uTn2uUtt uu*
Pe, = P+ Pia+ Py + Pyo.

2
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(4.91)
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Table 4.2: Complete list of conditional optimal weights
opt =a-+ S R’ 1E’Y{’YH} opt =a-+ . JR’ 1E"/{712}
wg;,t =—a+ +JR'E{¥""} wggt = —a+ +RE{¥7}

Wi =Ja— FIRTE{Y} Wi =Ja— tRE{¥7}
wil, = —Ja— LIR'E,{5"} W% =-Ja— LR 'E,{5"}

opt — opt —

The optimal weight is obtained through averaging w¢,, over al p vaues by

Z wg t 'PpPQ
=E = =L P 4.93
optz { opt 7,} Zp PpP(Ci ( )
wherei = 1, 2 and the distribution for the correlation coefficient is given by
1 N
P = _— . 4.94
= a5avs 2) (499

The optimal weights for erroneous decision can be obtained in a similar way and summarized

in Appendix D. s

§4.32 Weight Error Mean'/Analysis &~
The LMS update equation for atwo-user scenario is rewritten as

t(n) = x(n)'wi(n)
e(n) = r(n)—r(n) (4.95)
w(n+1) = w(n)+ pe(n)x(n)
where w(n) = [w(n), ws(n)]*. Define two weight errors as

~c — 7 C _ C .
€; (n) wy (n) wopt,z i = 1, 2. (496)
&(n) = 0§ (n) — woyy;

From the optimal weight results of the two-user case, we know w , and W, are obtained from

g f,;,t’s Thus we also give the conditional weight errors as

€’ (n) = w(n) — w” (4.97)

opt
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where the conditional weights are defined as
w'(n) = {w(n)|y € U7}. (4.98)

As in the single-user case, our goal is to determine close-form expressions of E{¢$(n)} and
E{e(n)}. Itisobtained by E{cf(n)} = E,{€5;,(n)} and E{ef(n)} = E,{€;,(n)}. By

definition w'), = B, {W,}. We express the conditional weight error for %/, as

opt
él(n) = w(n)—wy,
= W (n) — Wi, + W, — We,. (4.99)
We then define
E](n) - W](n) a Wi (4.100)
6" s Ny,
From (4.99) and (4.100) we have= ‘ JJ\ 3 ' _‘
=& (1) ;553 n) + 8" (4.101)
It is obvious that L .
5y =10 o] (4.102)
Thus we obtain that
€ir(n) = &y (n). (4.103)

Thus €%, (n) = €%,(n) = E,{&% (n)}. We then have

El(n) = Win) - wy,
= Wi (n—1) - Wi, +ux(n—1)e&(n—1)

= &/(n—1) +px"(n—1) (7 (n—1) - x7(n—1)"w(n - 1))

— (- uQi(n—1)E(n—1)+ (;zif(n ~ D) (n—1) — Q¥(n - l)vvii;t)

= (I-pQi(n—1)(n—1)+ p®” (n—1) (4.104)
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where Q¥ (n) = {x (n)x (n)"} and the parameter & (n) in the second term on therighthand
side of the above equation is defined as

¥ (n) 2 % ()7 (n) = QY (n) Wy, (4.105)

It can be easily shown by deduction that the recursive weight error given~ and p is

+MZ [T (1-nQom)e”om). (4.106)

By combining (4.105) and (4.106) with the institution that

Win,m) 2 ] (1 . uQ“(l)) (4.107)
emb
we obtain the conditional weight errdr as

.. T~ .. ‘ ‘nrl
&'(n) = WY(n,—1)&d +MZW””W)‘I’ (m)
=5 m=0 1
n—1 ]

= W(n,—1)e ”@w‘;wwm) (%7 (m)i (m) ~ QU (n)¥i,)
= Wi(n, —1)&%(0) N

+11y_ W (n,m) (Xij(m) a1, (m) + asbyT5 (m) + 7 (m)]

—x"(m)x" (m)" [ABZbJ + NRIBW”] ) (4.108)
Note that by some algebraic computations we obtain
T [
X7 (m) [anbi @ (m) + asbp® (m)] — % (m)x" (m)"AB = | |, (4.109)
0
and then we can express the weight error as

(n) = ( —1)&"(0)

+1y W (n,m) <x’ (m)v" (m) —

1
N

X" (m)fc“'(m)TR—IBi&”)(A.llo)

m
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From the above definition, we know €7, (n) = E,{€/,(n)} = E,{E,,{€"(n)}}. The expecta-
tion for the first term on the righthand side of (4.110) can be obtained as

_ (1 _ MQU)" £9.(0) (4.112)

where Q7 = E{x"(n)x"(n)"|]y € U7}. Notethat £%,(0) = w¥(0) — W, and w (0) =
w(0) isadeterministic term. The conditional expectation for the second term can be obtained
as

E’y{ (] {szj TL m) Z]( ) Z](m)}}

lgltd

- EA,{ Uw{Zjan)Bz ”()}}

m=0
n<l JEPPR
= W) Big
- Ev,m{ZW”(n,m)} ]\7 . (4.112)
m=0

The conditional expectation for the third term can be obtained as

n—1
W id L _ij <ij ~1Rizij
E, {E {ZW”(n,m)Nx](m)x](m)TR 'B 73}}

m=0

= EU’I{ZWU(n,m) "R(m)[B"R" 132?\{”}

R
e
8

> Wii(n,m) BiW (4.113)
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where the independence between Wi (n, m) and R(m) is assumed. Combining the expectation

terms through (4.111)-(4.113) the weight error mean vector conditioned on « and p is given by

&lin) = (1- nQ7)" & 0. (4.114)

It has to be noted that in (4.114) the evaluation of Q' variesfor different U as expressed by

) _ -
R, = {ij} = {11,22,31,42}

Qi = L . (4.115)

R_= {ij} = {12,21,32,41}.

1
N

Let €7 (n) = [63\34 (n), 63\3“( )]T. The weight error mean for the first user conditioned on only
the correct decision and p is represented by
1= 5> €l () P (4.116)
‘n ] ‘E(Cl (cl ik
where C, isgivenin (4.86). Similarly the Welght errormean for the second user is represented
as L ¥ ‘ P I
v 1 Z J
651 (n D L, (n) P (4117)
Co C,
where C, is givenin (4.91). Then the averaged weight error mean for correct decision over p

can be obtain by

E{(n)} = p{eMz(n)
= : (4.118)

fori=1,2.

84.4 Approximate Analysisfor K-user Scenario

In prior two sections, we have derived the exact analytical results for the optimal weight, the

weight error mean, and the weight error variance for the single-user case, and the optimal
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weights, the weight error means for the two-user case. In this section, we will extend the
results to accommodate the general K-user case. Due to the difficulty of the problem, we will
seek approximate rather exact solutions. In most cases, we will only give the result for correct
decision (denoted with superscript ‘c’) and omit the derivation of erroneous decision.

First note that the received despread signal of each user composes of three parts, i.e., the
desired signal, the MAI, and noise. The key to reduce the analysis complexity is to consider
each user individually and treat all other K — 1 interfering users as an equivalent user. By doing
so, we can transfer the general K -user case to atwo-user case. In other words, we let

> " abipir = arbip (4.119)
ik
where by € {£1} anda; = (3, a3)"/?. Here, a; represent the equivalent amplitude and p
the equivalent correlation. Using this mddel, we can have equivalent interference second order
statistics. Also note that b; is virttial and vyé do not need its actual valuesin derivation. In the
following analysis, we assume thet the desiréd Liser is the first user. Thus, the matched filter
output isthen \ Ve |

o) = dBEa b p + . (4.120)

Thus, we can keep the computational complexity comparable to the two-user case.

§4.4.1 Optimal Weight Analysis

We use two methods to approximate optimal weights. The first method directly uses the two-
user model in (4.120). All we have to do is to let the amplitude of the second user be equal
toar = (32, a3)"/?; optimal weights can be obtained readily. In what follows the similar

derivation for optimal weights applies, whichistermed asw¢ , for correct decisonand w¢ , for

opt opt
erroneous decision. The associated equations are listed below with the same noise integration

ranges U¥ in Table 4.1. The conditional optimal weights given p and U¥ is represented as
w? = AB'b’/ + WR*BZEA,{&”} (4.121)

opt —

74



where A = diag{a, a;}. The optimal weights for correct decision of the first user given p is
similar to (4.88) as expressed by

1

Dopt1 = B Wep,1 Pij (4.122)

G
with C; givenin (4.86). The approximate optimal weight of correct decision analogousto (4.93)
is obtained by

“c
Zp wopt,IPpPQ

E —
wopt 1 — {wopt 1} Zp PpP(Cl

(4.123)

with P, defined in (4.94). This method is referred to as the optimal weight approximation one
(OWA1). Similar procedures for wj, ; can be easily repeated.

The second method simplifies the result one step further. In the preceding optimal weight
approximation, it is necessary to derive the optlmal weights w f);,t according to different noise
subspacesU¥ . It can be seen that the opti rrtal wel ights of the two-user case are coupled with each
other. For this reason the optimal sol ution ‘fOrthe first user requires bit decision information
pertaining to the second user, thus thelong-list of Table 4.1 results. If we can ignore some
coupling relationship, the optimal welght:can be calculated more easily. Here we ignore the
decision coupling between two users. In other words, the first user decision is independent of
the second user decision. In this case, the decision patterns are degenerated into two, b; = 131
and b, # b;. We denote these patterns as the fifth and the sixth pattern. For each decision
pattern, we have two bit patterns, i.e., b; = by and b; # b;. The noise space can be partitioned

into two subsets accordingly. Thus, for b; = b;, we have two sets as (b;=1)

U =U" U, b =b

(4.124)
U°2 = U2 UU%, by # by
Hence the conditional optimal weight on U for correct decision is obtained to be
wi;];t,t = 'Y{wopt 1
= a + E, {3}, j=1,2. (4.125)
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Notethat (4.125) only involves one-dimensional integration instead of two-dimensional integra-
tion. Then the optimal weight for correct decision of the first user conditioned on p in (4.122)

can be approximated as

%51 ~ 52
g - W1 P51 + wg)y Pra
opt,1 —
Py

where the noise integration region and the corresponding occurrence probabilities are defined

(4.126)

as
B = U'ulU™ (4.127)
Py = Py + Py, (4.128)
The optimal weight is then
S, Wy Py P

wop1 = Ep{tigpiiti=, S PP, (4.129)

where P, is defined in (4.94). This optlmal wel ght apprOX| mation method is referred to as the
optimal weight approximation two (OWA2)

§4.42 Weight Error Mean A‘naJysis o

We also develop two methods for weight error mean approximation. The first method follows
the same derivation of the mean weight error vector for the two-user case. The weight error
mean for the K'-user case can be obtained through the direct substitution of «;, and are referred
toas E{¢5(n)} and E{e$(n)} for correct and erroneous decision, respectively. The weight error

mean vector given p and U are represented from (4.114) as
ehn) = (T-pQ7)" (w(0) — wh,) (4.130)
where the optimal weightsin (4.130) for the K'-user case can be Wopt if the OWAL is used or

v5]

W,y if the OWA2 is used. The conditional weight error mean given p for correct decision is

given by

] [
Gaa(m) = 5 > &Py (4.131)



where the union of noise subsetsD isC, in (4.86) for the OWA1 or B in (4.127) for the OWA?2.
Also Py is Pg, for the OWAL or Py for the OWA2. Finaly, the averaged weight error mean is

obtained as

6?\/1,1(”) = 6M1 }}
ZpeM,l( )PpPD
ZpPpPD .

We call this approximation as the weight error mean approximation 1 (WEMAL).

(4.132)

The second method further explores simpler approximation. Note that €5, , (n) differs ac-
cording to different p values. From (4.94), we can find that most of the correlation valuesfall in
the vicinity of p = 0. We would like to simplify the derivation of ¢, , (n) by €5, ;(n) for p ~ 0.
Expanding (4.116) we have

1
P,

é?w 1(n)

{an ‘(h)‘pn 2 )ﬁ1"2+é?\},1(n)P21+€ﬁ71(n)ng}. (4.133)
= = > :

It should be noted that when p —% 0 (from Table4 1)

Pll—P12
P21:P22-

(4.134)

Thuswe have

Ea(n) = PL {Pu (eha(n) + é171(n)) + Por (6.1 (n) + &7, (n)) } (4.135)

We rewrite the first summation term in (4.135) of 63\’“( ) in vector forms using (4.114) and
(4.115) as

én(n) + &(n) = (I— pRy)"€y(0) + (I— pR)"€)7(0)
= (I— puRy)" (W' (0) = Wop) + (T — pR-)" (W'*(0) — W,,).(4.136)

opt opt

Remember that w'!(0) = w'?(0) = w(0). Note that in Table 4.1 that when p — 0, U and

U'* are symmetrical with respect to the z-axis. In a consequence we have ), , = 1, , and
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Woh o = —hy 5. AlSO note that

TR (/N A
| & (L= n/N)". (4.137)
o laewmr a
Lo looa -y

where A < (1 — pu/N)™. Thuswe can express the first user component in (4.136) as

énra(n) + &7, (n)

12

2{(1 = p/N)"(wi(0) = Wopy1) + A(w2(0) — Wop 1) }
~ 2(1— p/N)"éy,(0). (4.138)

Similarly we obtain

o) + 5~ 21N 10— )
- J‘2'(1—u/N) ne2l (0). (4.139)

i
J

Combining with (4.135), we havé ,fhe abprbxs mation

1 —u/N
65\/[,1(”) = (Tg/) [ (O)Pn + €M1(0)P21]
~ (1= p/N)"€y,(0)
= (1= p/N)" (wi(0) — w5ps) (4.140)
where €5, ,(0) = Pi[éMl(())PH + €371(0) Py is assumed. The final weight error mean is

obtained as

Saln) = By, (m)
~ (&, (n)lp =~ 0}
(1= N (05(0) — wSye,) (4.141)

Note that wg,, ; can be that in (4.123) for the OWA1 or in (4.129) for the OWA2. We call this
the weight error mean approximation 2 (WEMA2).
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8§4.4.3 Weight Error Variance Analysis

The exact analysis for the weight error variance is difficult even for the two-user case. Thus
the analytical result in the single-user case is used to approximate weight error variance in the

K-user scenario. We rewrite (4.56) here as
€/(n) = oy +5(n) (4.142)

As previously, we first treat the K’ — 1 user signals as one equivalent interference. Comparing
(4.120) with (4.12), we found that the desired user output in this two-user environment has
one extra term which is a;b;p. As we did in the derivation for the OWA2, we ignore the
decision coupling relationship. As a result, the second user can only affect the conditional
optimal weight. In other words, 5, (n) remalnthesamefor the K -user case. Only will &5, (n) be

changed. Note that 65, () isafunetion of p and can be obtained by &¢.(n) = E,{0%(n)} where

8¢ ( ‘)“ 551( )P“];;é ( )P52. (4.143)

Then the term 6,7 (n) is obtained as

559 (1) — 0% )2

6V (n) - (1 - ) E {( optl wopt,l) } (4144)
where the expectation term with analogy to (4.57) isgiven as

B, (@5, - 930,1)"}

B R s M e ) S S
Ey {(ar —arp+m — gy, )* I > (a1—am)} J=2
Finally the averaged 45, (n) is obtained as
> ga(n)PpPB
5 (n) = =~ 4.146
V( ) Zp PpPB ( )
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The weight error power for correct decision is expressed as

iR} = B{ 5 - g’}
— @ + )

= a™[e31 ()] + o7 (n) + &5 (n) (4.147)

where €5, , (0) can be obtained from the WEMA1 or WEMAZ2. Similarly the weight error power

for erroneous decision can be obtained.

8§4.4.4 Output MSE and BER

Since we have derived the approximate weight error power for the adapted weights correspond-
ing to both correct and erroneous decisions; we,can then calculate the output MSE and then
BER. As mentioned in (4.10) that:if the qdapted V\)(?ight of the kth usersis a;, for b, = by or
—ay, for by, # by, its interference toyother users-can be perfectly canceled. Thus, the MSE for
the correct decision, denoted as wg (1), i‘nt‘rordmg’ced to-other users when the wei ght obtained at

timen isused for cancellationis -

wi(n) = E{[g(n)bezy(n) — axbezy(n)]*}

= E{[@i(n) — ax]"}/N. (4.148)

Asaresult, the overall MSE, denoted as wy,(n), introduced to other users when the cancellation

is performed is then

wWﬁz%&uEWﬂm—m%+EMM@WHWWﬂ (4.149)

where P, and P, ;, denote the probability of correct and that of erroneous decision in the first
stage for the kth user, respectively. Note that these probabilities can be easily obtained using
Gaussian approximation. Substituting the weight error power in (4.147) into (4.149), we can
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obtain oy (n) as

mn) = o { P E(GEMIP) + 20800000 (w6 = 00) + 0 = 05y

+Pe,k{E{[e§ (m)]*} + 2wiy g (n) (whyy + ax) +ai — [wzpt,k]Q}}.(4.150)

Note here that we extend our notations defined previously to the kth user. Assuming that the
residual error resulting from imperfect interference cancellation is Gaussian distributed with

zero mean and variance wy (NV), we can then obtain the BER for the kth user as

Py”) = Q { NE +Z“f( = } : (4.151)
o £k W

Note that the MSE at the end of adaptation.is (V) and it is a function of the step size ..

We can then use the numerical methdd to search forthe optimal step size minimizing the M SE.
Using the same idea, we can alSo obtain-the optimal step size minimizing the BER. Since

minimizing MSE is easier, we use that inlater simulations.

845 Simulation Results

In this section we report some simulation resultsto evaluate the validity of our analytical results.
We consider an adaptive blind two-stage partial HPIC receiver using the LMS algorithm. We
utilized the random codes as the spreading codes and the processing gain isset as N = 31.
Only the AWGN channel was used throughout the simulations. For the first set of simulations,
we compared theoretical optimal weights with empirical ones for various £, /Ny (Ny/2 = o?).
Optimal weights for correct and erroneous decision were considered separately. Note that the
channel gain was normalized to unity, i.e, asa, = 1 for al k. Thus al weights starting
adaptation from w;(0) = 1. Figure 4.2 shows the results for a two-user case, which includes
exact analytical optimal weightsin (4.93), those obtained using the OWA2 in (4.129), and those
obtained empirically. It can be seen that both the exact and approximate optimal weights agree
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Figure 4.2: Optimal welght comparison for two power-balanced users.

with the empirical ones very well, Asldepicted.in the figure, the optimal weights for correct
decision are amost the same as th‘échann‘el ga n while theweightsfor erroneous decisionisnot;
its actual value depends on noise variance. ' The larger the E,, /N, ratio, the closer the optimal
weight to —1. We aso give optimal weights for 5 and 15 users (with various E,/N,) in Fig.
4.3 and Fig. 4.4, respectively. In these figures, the results for the OWA1 (using (4.123)) and the
OWA?2 (using (4.129)) are shown simultaneously. We can see that although these approximates
are performed based on the two-user model, the results are very close to the true optimums.
From Figure 4.2-Figure 4.4, we can observe that when the E}, /N, and the number of usersvary,
the optimal weightsfor correct decision keep very close to the channel gainswhichisone, while
those for erroneous decision vary. Also note that the performances of the two approximations
arevery similar. Sincethe OWA2 issimpler, it isthen desirable to use that whenever necessary.

We next consider the weight convergence of the LMS algorithm. Figure 4.5 presents the
analytical mean weights along with the empirical mean weights for a two-user scenario. The

powers of these two users are equal and £, /N, = 6 dB. The normalized step size is chosen as
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Erroneous decision

Figure 4.3: Optimal weight comparison for five power-balanced users.

fo = p1/N = 0.02. The exact analysisin{(4.118) andithe WEMAZ in (4.141) with the OWA?2
areevauated. Inthefigure, we can observe tha‘t‘ both.anal ytical results match with the empirical
mean weights quit well. Similar comparisonfor’s and 15 power-balanced userswith E;, /Ny = 6
dB and o = 0.02 are aso shown in Figure 4.6 and Figure 4.7, respectively. The WEMAL1 in
(4.132) with the OWA 1 is compared to WEMA2 with the OWA2. We can see that the analytical
results are more accurate for the 5-user case. For the 15-user case, there is some discrepancy
between analytical and empirical results. From above simulation results, we can conclude that
the WEMA2 with the OWA2 is suffice to give satisfactory results. This combination will render
less computational complexity. The weight error power comparison for the two-user case with
Ey/Ny = 6 dB and ;5o = 0.02 is given in Figure 4.8. It is obvious that the analytic result
performs close to simulated results. Also note that the weight error power incurred from correct
decision is smaller than that form erroneous decision. Thisis because the weightsfor erroneous
decision converges slower. The similar phenomenon can be observed when the user number

is larger. In Figures 4.9 and 4.10, the weight error power for 5 and 15 users are examined

83



15

T
1 /

—<— OWAL1

—-©- OWA2

-+ Empirical Result

05 bl

Correct decision

Erroneous decision

EbIN0
Figure 4.4: Optimal weight comparison for 15 power-balanced users.

(Ey/Ny = 6 dB and 1y = 0.02). Aswecan see, the analytic results are still accurate even
for the erroneous decision of thé 15-user case where only an estimation error about 20% is
produced. Finaly, we present the resultsfor'step size optimization. Figure 4.11 gives the step
size minimizing M SE using (4.150). The figure revealsthat the analytically optimized step size
ismore accurate in low capacity systems. This is reasonable since the approximate analysisis
based on the single-user and two-user cases. We also give the BER comparison for the second
stage output with different user numbersin Figure 4.12. From the figure, we observe that the

analytical and empirical results are similar for low to moderate E;,/N.
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Figure 4.5: Weight mean comparigsonfor twopewer-bal anced users (110 = 0.02, and E, /Ny = 6
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Chapter 5

|mproved Adaptive Blind Partial HPIC

Recalvers

This chapter proposesimproved al‘gorithmstr adapti\)e blind partial HPIC receivers. The basic
ideaisto reduce the excess MSE ij\ntroduced by the LMS algorithm. We use two procedures to
implement thisidea. The first oneiis dé\/eloped to reduce the number of weightsin the LMS
algorithm. Itisknown that the excessMSEis proporti onal to the number of tap weights adapted.
If the number of weights can be reduced, the excess M SE can be reduced. The second procedure
is used to further process the adapted weights such that the weight variance can be reduced.
Section 1 describes the conventional adaptive blind partial HPIC receiver for completeness. In
Section 2, we then detail the proposed enhancement algorithm. In Section 3, we analyze the
performance of the proposed a gorithm, which include the output M SE and the corresponding
BER. Finaly, we report ssmulation resultsin Section 4.
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§5.1 AdaptiveBlind Partial HPIC Receivers

Consider a synchronous system operated in a AWGN channel. The received signal in a certain

bit interval can be expressed as

Mw

r(n) = sk(n

k=1
K

= Zakbkxk +v(n), 0<n<N-1 (5.1)
k=1

where a;, and b, are the kth user’s amplitude and data bit, = (n) denotesits signature sequence,
and NN isthe processing gain N. The matched filter output, which is the first stage output, can

be represented as

b=

P T )

=1

S
<

o | akbk—kZaJ ]p]k-i-’)’/g (5.2)
: T

Let 7 rk ( ) denote an mterferencewbtracted S|gnal for User & inthe ith stage. Then,
i) =r(m) =357 (m) 53

where CJ@ denote the PCFs for the jth user in the ith stage are and S§Z> (n) isthe corresponding

interference estimate. We can obtain the estimate as
Dn) = a;b - a5(n) (5.4)

where b\ = sgn[y!"]. Thus, the output signal in Stage i is then

y =Y i (n)ar(n). (55)

b = sgnfyy]. (5.6)



A more compact form for the despread signal is given by
o =0 = P o 6
i#k
There is another partial HPIC receiver good for the power-balanced scenario. It uses a decou-

pled structure [30] and has the output as

' =0 (%i” -2 ay@?‘”mk) + (1= 09y, (58
ik

Aswe can seg, all PCFsin the same stage are equal. Comparing (5.7) with (5.8), we can readily

find that both expressions are equivalent for the second stage. For higher stages, both structures

aredifferent. Obviously, the optimal PCFs may differ for the these two partial HPIC. It has been

shown that the algorithm of (5.8) performs better than that in (5.7) in power-balanced systems

[68]. Thus, we use (5.8) asthe cqnventionﬁl; pgrtial HPI C whenever comparison is necessary.
As mentioned, optimal PCFs can be obtainied-using the adaptive blind partial HPIC ap-

proach. We first define the error ‘signal - —
e Y= 7 (n) (59)
where #()(n) is the regenerated received signal and it is expressed as

PO (n) =" w ()b ™V (n). (5.10)
k

Here, w,(:) (n) is the adapted weight for the kth user in the ith stage. Consequently, we define
the MSE as

JOm) = B | (r(n) = 19 ())’] (5.11)
Using the stochastic gradient descent method, we can obtain the weight update equation as

1) = ) ) + O3 )6 ) 512
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Figure 5.1: Adaptive blind partial HPIC receivers.

where (V) isthe step size in Stage. The interference-subtracted signal for the kth user isthen

f,(ci> (ny="r(n) — Z X;i) (”)W§Z>(N) (5.13)
j#k |
We then have the detected bit as

b = son || (5.14)

where 3" is the matched filter output in the ith stage and it is given by

- N_l -
u =Y i (n)a(n). (5.15)
n=0

The structure of the adaptive blind partial HPIC receiver for a certain stage is shown in Figure
5.1

In practical CDMA systems, users often transmit data through multipath fading channels.

Thus, it is necessary to take the multipath effect into account. Denote transfer function of the

channel impulse response for the kth user as
L
Wk(Z) = Z hk,lziTk’l (516)
=1
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where hy,; and 73, ; are the path gain and path delay of the /th path for the kth user, respectively,
and L is the number of paths. Without loss of generality, we assumethat 7,1 < 7,0 < ... <
Tk,1,- IN the receiving end, we can use a matched filter with a maximal ratio combining (MRC)
to demodulate the signal. Let the equivalent baseband received signal be expressed by

L

K
r(n) = Z Zxk(n — Tha)brarhp,- (5.17)

=1 k=1
Thefirst stage output signal can be represented as

L

’

=1
where the branch output from the MRC can be formed by

Ly

Y T(n)xk‘(n"v—" Thi)- (5.19)
ElEak ety

=

)

I
o

Following the signal model for the AWGN channe| We can formulate the error signal asthat in
(5.9). Wefirst obtain the regenerated recelved s&gnal as

b |
= Z Z X,(f (n — T )w Z} (n) (5.20)
=1 k=1

where wk z( ) denotes the weight for the /th path of the kth user in the ith stage. Then, the

counterpart of fk (n) in (5.10) for the multipath scenario is

) = = 5 ), 521

I=1 j#k

The matched output using the MRC isthen

ooy

=1

=

7218 $k n — Tk l)hk:l (522)

i
(o=}
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§5.2 Proposed Algorithm

As mentioned, the adaptive blind partial HPIC essentially performs system identification. Asa
consequence, if the training period is long enough (all weights converge), the mean value for

the kth weight will be

_ wS (i)’ b(i) —b
w](;) _ [ opt,lf](.) A](Ci) k (523)
[wgpt,k] Y, b, # by
In the previous chapter, we have analyzed the adaptive two-stage partial HPIC receiver. The
result reveals that the performance of the adapted weights are determined by several factors

listed as follows.

Number of weights

Step size

Number of training data

Noise variance

Weight initials

Note that these factors may interact one another. Here, we will manipulate the first two factors,
the weight numbers and the step size to obtain improved performance. We propose an algorithm
that can reduce the number of adapted weight as well as its variance. At the same time, the
step size can be increased to accelerate convergence. First, we will show that the MSE of
the adaptive blind partial HPIC is proportional to the number of weights adapted in the LMS
algorithm. Assumethat the first user isthe desired user. From (4.150), we have the output M SE

as

D) = Por{ B{EMP} + 205 (n) (S, — ar) +af =[G, )*}

P { E{[E ()]} + 208, (0) (s + 1) +af = [0, 7} (524)
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Since F,; is usually no more than 0.1, the total MSE is dominated by the part with correct
decision. Note that w,, . is usualy close to the desired weight value a;, even when K islarge.
Thus the M SE can be simplified to

E{[EmI} = ™[0 + 07 (n) + £5(n). (5.25)

Thefirst term [, , (0)]* can be neglected since optimal weightsand initialsare closeto a,. The

term &5, (n) isafunction of step size and noise variance only.

< (n) = %{NUQ(II:O;?:)—U?(II:Z”) } (5.26)

Thus the major term in the output MSE is o5, (n). We first represent this variance function given

pas -
510 N D o K52
5 (AN () P 5.27)
£ FERR
where the components 53]' (n), 7 =1, 2 are-given-by
50\ 1 D & s \?
6V (n) - (]' -« ) E’Y {(wopt,l - wopt,l) } . (528)
Taking the expectation on (5.28), we have
~ . 2 .
E, {(wg;t,l - wg;m) } = E, {(a1 +arp+7— w?;ﬂ)?hl > —(a; + CLIP)} (5.29)

- . 2 y
E, {(wgit,l - wg;%m) } = E, {(a1 —ap+7— wg}%t,l)Qh/l > —(ay — alp)} .

For the correct decision scenario, the conditional optimal weights are close to the ideal values,

5]

e, Wy,

1 =~ ay. Inthat case, we can observe that the second moment in (5.29) isincreased with
ar for p # 0. In summary, we know that the MSE of the adapted weights increases with a;,
and thus with K. One way to improve the system performance is to reduce the weight number
trained in the LM S algorithm. Thisis possible if we know the channel gains. We then propose
a procedure to do that. If a user’s matched output magnitude exceeds a threshold a,@ﬁ” in the

ith stage, the corresponding decided bit is deemed reliable and the weight corresponds to this
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Figure 5.2: Functions used in the proposed agorithm. (a) Weight selection function. (b) Weight

post filtering function.

bit is deactivated. In other words, this weight will not be included in the training process. This
algorithm can be easily expressed usirig a two step:size scenario. Let the step size for User 5 be

ugi). Then,

(5.30)

i e i i
i Ty < gl

The step-size decision function, denoted as és(-), is shown in Figure 5.2(a). Note that there
must be some users whose weights are erroneously decided. If this happens, it will increase the

noise variance o (in the computation of £$,(n)). The variance increased can be calculated as

B{(a;b; — wS(N)bjpj)®} = E{(a;b; — a;(=b;))*}E{p%}
= 4aj/N

= 4a?/N. (5.31)
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In (5.31), E{p3,} isobtained by

N.

> (n)wk(n)] }

B{f) = E{ :
— iE{xj(n)ka(n)z}

= 1/N. (5.32)

We call this procedure as the weight selection procedure.

It is well known that the convergent weights in the LMS algorithm are random. Thus, if
we know the weight distribution, we can perform weight post filtering (estimation). This will
enhance the PIC performance furthermore. Figure 5.4 shows a typical probability function for
the LMS convergent weight. It is clear that some of weights are greater than the channel gains
and some weights are less than the channel gains. Note that given a binary random variable

embedded in AWGN, the MM SE estimate corresponds to a transformation with a hyperbolic
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tangent function. We can then apply the estimation theory here. To ease the derivation, we
make a simplified aternative where a piece-wise linear decision function is used for weight
post filtering; we denote thisfunction as ¢4 (-). It is shown in Figure 5.2(b) in which athreshold
akgj(f) isrequired. If atrained weight is greater than some threshold, it is decided to be a,. Note
that no decision is made below —ay. Thisis because the probability that the weights appear in
the region is low and it has little impact in overall performance. We call this the weight post
filtering procedure.

As mentioned, the weight distribution has different mean values for correct/erroneous de-
cision (in the previous stage). The weight means for erroneous decision bits will approach the
corresponding optimal weights if the processing gain N is large. However, in a practical sys-
tem, IV is usually not large enough. Thus, we prefer to use alarge step size 11(¥) to speed up the
weight adaptation for users with erronéous décisions. However, alarger step size will enlarge
the weight variance which adversély affec; the final performance. The two procedures propose
above can reduce the number ofzactive wei Qh‘ts"‘and fuifther filter the convergent weights. As a
result, it ispossibleto use al arger”étep Si;é without sighificantly increasing the weight variance.
By careful examination, we can find a good compromise among the parameters { (), £1”, 34!
(1) = 1 /N such that the weights are determined in an optimal way. The flow chart for the
proposed algorithm is depicted in Figure 5.3.

8§5.2.1 Gradient Guided Search Algorithm

It is well known that the HPIC was proposed based on the ML principle. The HPIC decides
the desire user bit polarity with larger likelihood while estimate other user data bits from the
previous stage. The procedure of likelihood maximization is performed simultaneously for
al users. When the MAI is strong, the full HPIC output will not converge but oscillate in
subsequent stages. The partial HPIC relieves the limit cycle phenomenon and finds a local
maximum with likelihood higher than that of the full HPIC. There are many methods that can
increase the likelihood. One method applied in the full HPIC is to flip parts of the user bitsin
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one stage and output the pattern giving the highest likelihood. [69],[70]. We call this method
the gradient guided search (GGS) algorithm [71], whose procedure is outlined as follows.

(@) Let: = 1. Obtain theinitial input bits. Thisis usually performed by the matched filter

output as

b = (i = sgn[yM], k = 1,2, .. K} (5.33)

(b) Flip the user bit one by one and compute the K log-likelihood functions E(B,(f)), k =
1,2,... K using (2.3). Theinput bit sequence isthen

B = (5,0, B2, 80, B0, BT (534)

(c) Choose one pattern whose Iog-likel‘i hood fuhction isthe largest among K likelihood func-
tions. Note that this likelihood rust be greater than that for the initial bit pattern.
plH— m(a_t)x{ﬁ(l_),(j)), k=12 .. K} (5.35)
= W iso
If no one log-likelihood function exceeds that of the original bit pattern, all user bits are
keep unchanged and the algorithm terminates.

(b) Updatetheinitial bit pattern with the new one and proceed to the next stage from (b) with
stage number i + 1.

In this chapter, the GGS algorithm is utilized as a post processing algorithm to further improve

the performance of the adaptive partial HPIC.

85.3 Performance Analysisof the Proposed Algorithm

We will analyze the performance of the proposed algorithm for atwo-stage HPIC. Specifically,
we will derive the output M SE and the BER. As previously, we assume the AWGN channel and
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the power-balanced scenario. Substituting C\” = w!” in (5.2) and (5.7), we have the second
stage despread output signal for the first user as
= aib; + Z a;b; i)pj1+ M (5.36)
J#1
where w; = w!” and b; = 0" Approximating interference signal as Gaussian distribution, we

can have the BER, denoted as P,, for the desired user in the first stage as

P.=0Q ( NCEre /N> (5.37)

where Q(+) isthe Q-function. The probability that the user has correct decisionin thefirst stage

and its output is greater than the threshold (y\" > ¢ a,, bV = b)) is

WG — 1)
P, = Q( \/02 ; _1/N> (5.39)

In other worlds, P, isthe probabmty of correct we| ght selection. The probability of erroneous

Weightselectlon(y1 >§s ap andb1 qévbl)ls ‘

P, = Q( a1(§£ ) ) (5.39)

Vor+ (K —1)/N
If the first stage output is greater than £{%a,, the corresponding weight will not be adjusted. The
effective number of weightsisreduced from K to K; where K isgiven by

K, =K(1—P,— P,). (5.40)

Note that £; may not be an integer since it represents an rough estimate of the averaged weight
number. If the weight selected for non-adaptive is erroneous, it will increase the noise variance

when the LM S algorithm is applied. The amount increased is

E{(ajb; — @S(N)b;)*} = E{(a;b; + a;b)*}
= 4@?

= 4da’. (5.41)



L et the enlarged noise variance be o7, Then,

O'ZQ = O'2 + KPzE{(a]bJ - ch(N)l;Jp]k)Q}

= 0>+ KP,-4a}/N (5.42)

The convergence analysisfor the LM S algorithm devel oped in Chapter 4 can be directly applied
here. However, we have to change the weight number from K to K; and the noise variance from

o2 to o7. Aswe have seen, the number of user direct influence the equivalent interference gain.

ar = a VK — 1 (5.43)

We denote the adapted weights in the second stage for correct or erroneous first stage deci-
sion as w$(n) or w$(n), respectively. We omit the superscript of stage number for simplicity.
Assuming that yf) is a Gaussian random variabl €;,we can estimate the BER in the second stage
output. Note that we have the medn of 7i)-as a I €ancellation is perfect, the variance of y{”
isjust o2. However, since the cancellation ié hot perfe(j:t, the variance will be increased. There
are two types of erroneous cancell atl on; “The firstoneiis due to cancellation from users with er-
roneous selected weights (non-adaptive), denoted by VZ The second one is due to cancellation

of adapted weights, denoted by V,,. Thus, the overall noise variance is
Vy=0"+V.+V, (5.44)

Using @$(N) = a; and (5.39), we have
KP,

V., = T(@jbj — W5(N)by)’
KP,
= T(ajbj — a;(=b;))?
4a§KPZ

Since we have performed weight post filtering, various conditions for the second type of can-
cellation has to be considered. We treat V,,, as the sum of two components V. and V; oneis

contributed from @ and the other is from @w$. Denoted their corresponding density function
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Figure 5.4: Probability defsity functi on for adapted weights from LMS algorithm.

as f(w$) and f(w$), reSpectiver: Figure 5.4 giVeﬁan example of simulated distributions. Due
to weight post filtering, no cancellation error is induced when w§ > (ya;. Only the region
represented by the ‘A’ areain Figure 5.4 will introduce error. Thus,

K —1 (4o

Ve="%§

(@5 — ar)* f (@) dr§ (5.46)

As to 0§, erroneous weight decision occurs when w§ > (qaq, i.€., ¢r(ws) = ay and (a;b; —
@E(N)b;)? = (a;b; — (a;)(~b)))? = 4a? = 4a}. Thus,
K -1 Yo 4a?(K; — 1) [

(@5 + ay)* f(wf)dus +

Ve
N /.. N

F)das  (547)
§ran

The integration areas are represented by ‘B’ and 'C’ in Figure 5.4, respectively. Then, V. and
V. can be combined as

V., = Vi(l __-[2 - fﬂ) + Vﬁ(fiz-— }2)
Yo 1—P,— P,

. (5.48)
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Figure 5.5: Second stage parameter optimization for the proposed algorithm. (Weight selection

isnot performed).

Finally, we can express the BER:in the second stage HPI C output as

(") 28 ( \/O_Qj{j—w> . (5.49)

854 Simulation Results

A. Parameter optimization

In this section, we will report simulation results to demonstrate the effectiveness of the pro-
posed algorithm. We have used random codes of length 31 as spreading sequences. Partial
HPIC receivers up to five stages are considered. First, we determine the optimal parameters
for each receiver in order to obtain the best system performance. We let the user number
be K = 20, E,/N, = 7 dB, and power was balanced. For the conventiona partial HPIC,
we have empirically found the optimal PCFs for stage 2 to 5 as {0.7,0.8,0.85,0.9}. As
to the adaptive blind partial HPIC, the normalized step sizes, defined as p) = u®/N, are

103



0.022

0.02

0.018 -\

0.016
o014
0.012
0.01

0.008

0.006 I I I I I I I I I
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

38
Figure 5.6: Second stage parametex. optimizétion fo the proposed algorithm (uﬁf) = 0.048).

{0.022,0.013,0.007,0.003}. Fof the propl)c;‘séd-élgo‘rit‘hm, we have additional two parameters
¢ and ¢, To simplify the préblem, we'do ot perform weight selection and determine ¢
first. Figure 5.5 showsthe BER pérforménée Vs ¢ and 1. for the second stage output. From
the figure, we can see that the optimal step size'is éround 0.048 that is larger than the step size
used in the in the conventional approach. This is because the weight post filtering operation
removes some weight noise for users regarded reliable. The weight variance is then decreased
and the resulting interference cancellation ismore accurate. Thus, alarger step sizeis permitted
for faster convergence. We then incorporate the weight selection operation into the parameter
optimization. The result is shown in Fig. 5.6. Here, we let the step size be fixed as 0.048. In
the figure, we can observe that the optimal parameter settingis¢” = 1.2 and £} = 0.4. Note
that the system performance is not sensitive for higher 5}2) values. Thisis because most reli-
able weights have been selected during weight selection. The theoretical BER in (5.49) for the
proposed algorithm is also evaluated in Figure 5.7. We can observe that our analysis resembles
performance trend as the simulated results; however, there exhibits some gaps in between. The

inaccuracy may be due to the Gaussian assumption used in the calculation. Optimal parame-
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Figure 5.7: Second stage BER performahcefdr the proposed algorithm (K = 20, u(()2) = 0.048,
and E,/Ny, = 7 dB). ‘

ters found in a specific stage may not be optimal for @l the stages. However, the optimization
will be cumbersome. For si mpliéity, we will uée the parameters found in the second stage for
all stages. The superscript on parameters for denoting the stage number is then omitted in the
sequel. In the fading channels; however, those parameters should be tuned again to obtain the
best performance.
B. Performance comparison

In the following, we present the performance comparison for various multiuser receivers
which include the conventional matched filter, the non-adaptive partial HPIC (referred to as
PHPIC), the adaptive blind partial HPIC (referred to as the APHPIC), the proposed algorithm,
and the GGS algorithm. The GGS algorithm serves as a post-processor for both the APHPIC
and the proposed algorithm. Note that we let the GGS only perform one iteration (one bit
correction) in each cancellation stage. Figure 5.8 expresses the second stage performance of

the proposed algorithm and other methods vs. different user numbers (E,/N, = 7 dB). We
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Figure 5.8: Second stage BER performance comparison vs. user numbers (§; = 1.2, £, = 0.4,

o = 0.048, and E, /N, = 7 dB). :

can find that the conventional matched filter réceiver perform worst due to the heavy MAI. The
PHPIC performs worse than the APHPIC and ‘t‘he‘proposed algorithm. The combined APHPIC
and GGS receivers provides more performance improvement in light loading condition. Thisis
because the GGS algorithm performs at most one bit correction in one stage; it is more effective
for low error rate scenario. The proposed algorithm is better than the APHPIC and the post
GGS processing enhances the proposed algorithm in all cases. We also show the performance
for higher stage processing in Figures5.9-5.11. Aswe can see, the GGS agorithm giveslessand
less improvement as the stage number increases. All adaptive partial HPIC receivers perform
close to the single user bound when the number of usersis small. However, adaptive receivers
degrade in heavy loading scenarios. If we want to further improve the performance, we have
to increase the adaptation length and decrease the step size. In such a way, we can reduce
the weight variance from inaccurate interference cancellation. We then compare the proposed
algorithm with other methods under different £,/N, (ten users). Fig. 5.12 and 5.13 show

the results for the second and the fifth stage, respectively. We observe that the performance
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Figure 5.9: Third stage BER performan¢é comparison vs. user numbers (the parameter setting

isthe same asthat in Figure 5.8 forall stages).

of the proposed algorithm is close to the sing‘|e user bound when the number stage is five and
Ey /Ny islow to median. We also ‘Compar‘e the wstem performance under the power-imbalanced
scenario. The user powers are equally distributed and the power ratio between the strongest and
weakest users is 15 dB. In Fig.5.14 and Fig.5.15, we present the BER performance for the
weakest user in the second and fifth stage. It can be seen that the proposed algorithm provides
a significant performance gain in the fifth stage, especially when the user number is large.
Note that the proposed al gorithm makes the performance of the weakest user indistinguishable
as compared to that of the single user case when the user number is less than twenty. The
reason for this superior performance may be due to the weight selection process where stronger
users are aimost all recognized and excluded from the training phase. This results is similar
to the behavior in SIC, where the most reliable user is first detected and subtracted from the
received signal. In the following, we consider the performance of the HPIC receivers under the
fading channel environment. Figure 5.16 demonstrates the performance comparison of 5-stage

receivers for a single-path rician fading channel. The reflect-to-diffuse ratio was set 7 dB and
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Figure 5.10: Fourth stage BER performance ¢omparison vs. user numbers (the parameter set-

ting isthe same asthat in Figure 5.8 for all stages). -

Ey/Ny = 7 dB. Note that the channel gain Was constant during a bit interval and varied bit
by bit independently. We can obsarve that the brdposed algorithm outperforms the PHPIC and
APHPIC receivers. We next use a two-path fading channel; the second path is one chip delay
with respect to the main path, and each path gain is Gaussian distributed with zero mean. The
resultisshown in Figure 5.17. The proposed agorithm still has the best performance. The GGS
algorithm is not employed here since it is not suitable for the bit-asynchronous systems.
C. Effect of channel estimation error

In the adaptive HPIC receiver scenario, channel information is necessary for initial setting
and for interference cancellation. The proposed algorithm also requires channel information
to determine the optimal parameters. All of the simulations conducted above have assumed
perfect channel estimation. However, in practice, channel estimation cannot be perfect and its

error has to be taken into account. Consider a model for channel estimation error as

dk = a + Aa (550)
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Figure 5.11: Fifth stage BER performante comparison vs. user numbers (the parameter setting

isthe same asthat in Figure 5.8 forall stages).

where A, is a Gaussian distributed random Variable Wwith zeros mean and standard deviation
o,. We then use a, instead of a, inithe'recaver. ‘ Figure 5.18 show the simulation results. As
seen from the figure, the proposed algorithm @ways performs better than the APHPIC under
different channel estimation error scenarios. Note that the GGS agorithm will fail when the
channel estimation error is large. The proposed agorithm is the most robust one among the

multiuser receivers compared.
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Figure 5.14: Second stage BER perfdrmahce‘comparison for the weakest user (power-
imbalanced, Ey,/No = 7 dB, and the parameter setting is the same as that in Fig. 5.8).

10°

— Conv. receiver
10tk | —— PHPIC

—— APHPIC

—— APHPIC+GGS
—&— Proposed

—— Proposed+GGS
Singleuser bound

5 10 15 20 25 30
Number of users

Figure 5.15: Fifth stage BER performance comparison for the weakest user (power-imbal anced,
Ey /Ny = 7 dB and the parameter setting is the same as that in Fig. 5.8).
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Figure 5.16: Fifth stage BER perforimance compar‘ison for single-path rician fading channels
(By/No = 7B, & = 1.4, and ¢ ;= 0/3 for-all stages):
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Figure 5.17: Fifth stage BER performance comparison for two-ray multipath fading channels
(Ep/No=17dB, & =5, and &, = 0.5 for all stages).
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Figure 5.18: Fifth stage BER performance comparison vs. channel estimation errors (K = 20,
Ey /Ny =T7dB, pp = 0.048, &, = 1.5, and &, = 0.5 for all stages).
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Chapter 6

Conclusions

In DS-CDMA communication systems, MAI is considered as the main factor limiting the sys-
tem performance. Among many muldi usér detécti‘on schemes, the PIC receiver is considered as
asimple yet effective approach. It has been shqwn that the performance of the PIC can be fur-
ther improved if interference is ndt fully cancelled The performance of a partial PIC depends
heavily on the PCFs. Thus, how to‘ detérmi ne PCFs opfi mally is of great concern.

In this dissertation, we have stﬁdied two typesof ‘partial PICs. Using the BER criterion, We
first develop a two-stage decoupled partial SPIC and derive a set of closed-form solutions for
optimal PCFs. These PCFs are useful for periodic and aperiodic spreading codes in additive
white Gaussian noise channels, and for those in multipath channels. Simulation results show
that the derived optimal PCFs agree closely with empirical optima PCFs. The optimal two-
stage partial SPIC outperforms a conventional matched filter detector, a two-stage full SPIC
detector, and even a three-stage full SPIC. Simulations have also shown that the derived de-
coupled partial SPIC performs similarly to the optimal two-stage partial SPIC with coupled
structure. We have also shown that the derived PCFs are not sensitive to parameter estimation
errors. It can be noted that the optimal PCFs for aperiodic spreading code systemsin AWGN
channels have a smple expression. Thiswill be a great advantage for real-world applications

since the optimal PCFs can be calculated efficiently on-linein atime-varying environment.
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We then conduct performance analysis for a two-stage adaptive blind partial HPIC receiver
in the AWGN channel. We first derive the analytical result for the optimal weight, the adapted
weight mean, and the adapted weight variance in a single-user case. Then, we derive the op-
timal weights and adapted weight mean for a two-user case. Finally, we extend the result to a
general K -user case. With the results obtained above, we are able to derive the formulafor the
output MSE and the BER. Using the output M SE criterion, the optimal step size can then be
obtained. Simulation results show that the analytical results are accurate. In the final part of
the dissertation, we propose an improved adaptive blind partial HPIC receiver. The main idea
isto reduce weight variance introduced by the LM S algorithm so as to reduce the output M SE.
We use two approaches; the first is to reduce the number of adapted weights and the second is
further process the convergent weights. To implement these ideas, we propose the weight se-
lection and weight post filtering schemés: Simlati on results show that the proposed algorithm
outperformsthe conventional adaptive apprqag:h i all’scenarios. In power-imbalanced systems,
the proposed a gorithm can approach the obtirﬁum performance. We also derive analytical re-
sults for the proposed algorithm Whi chinclude-output M SE and BER. It has been shown that
the analysis results are reasonably accurate.

In concluding this dissertation, we éugg&ét some topics for further research. The optimal
PCFs derived for the SPIC in the multipath scenarios are complicated and not suitable for real -
time calculations. We then need a simpler approximate expression. Also, we are mainly con-
cerned with BPSK modulation. Note that the same result can be extended to accommodate
QAM modulation. In this case, however, we have to take the interference between inphase and
guadrature components into account. It turns out that for the inphase or quadrature component
of one user, we may treat the number of interfering usersas 2K — 1.

In the analysis of adaptive blind HPIC, we do not derive the weight variance for the two-user
case. Asan dlternative, we use the result from the single user to perform K -user approximation.
This contribute resultant inaccuracy significantly. Since we use the two-user result in weight

mean analysis, the analytical weight mean is more accurate than the analytical weight variance.
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The other problem isthat we do not consider the multipath scenario. It seemsthat we can extend
our results to the scenario; however, the derivation may become much more complex.

The proposed improved adaptive algorithm has not taken full information we have. The
weight selection process only consider the two-stepsize case. It can be expected that a continu-
ous step size will give even better result. Also, we have not considered theinitial value problem.
If the first stage decision is likely to be erroneous, the initial should be close to zero. On the
other hands, it should be close to +a,. The weight post filtering does not achieve its optimal
performance either. As we mentioned, the optimal filtering function consists of a hyperbolic
tangent function. The parameters of the function should depend on the weight variance. So,
it will be different stage by stage. The information we have is the channel gain which is +ay.
Whether or not the processing schemes mentioned above can fully explore the information de-

serves further study.
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Appendix A

Periodic Code System Optimal PCFsfor
Asynchronous AWGN Channels

Let by, denote the sth bit for the kth user;ain‘d T the‘ user delay. Then the received signal for

asynchronous channels can then be represented by
r(t) =Y ) bt iT — I (t — iT — 7) + n(t). (A1)

We further define the relative delay between User j and £k as 7, = 7; — 73, and the cross-

correlation functions are given by

fT . a;(t —1jp — T)ag(t)dt 7% <0
pir(min) = ' (A.2)
[, 0i(t = Tik)ax(t)dt s Tik 2 0,
and
T+T'k
. ! a-(t—T-k)ak(t)dt ,T'k<0
pilmi) =4 ] (A-3)
0] aj(t—Tjk+T)ak(t)dt » Tik 20
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For smplicity we use p;, and p;;, instead of p;i(7;;) and p,i(7;;) in the sequel. The matched

filter output for the kth users' ith bit is obtained as

(t+1)T+7
Yki = / r(t)ak(t - Tk)dt
T +7p
= Agbpi+ Y A (bj,i—ljkﬁjk + b',i—ljk+1pjk> + Tk,
7k

where the delay index and noise term are expressed as [, and 7, ;. They are defined as

Al =20
ljk: — )
0, othwrwise,

and
(i4+1) T+
nk,i = / o n(t)ak(t — Tk)dt.
T-I—'r;c s,

The regenerated received signal usu ng partlal SPI C is glven by

rk(t) = ZZ%Z(LJ ZT—LT])HT(t—ZT—T]).

o i‘

Thus, the second stage output is obtal ned as

(t+1)T+7

s = / f(t)ak(t‘—rk)d.t

iT+Tk

= Yk, — C Z (yj,i—ljkﬁjk + yj,i—ljk-l—lpjk:)
J#k

= Apbp; + Z Aj <bj,i—ljkﬁjk + bj,i—ljk-i-lpjk) + ki
7k

~Cp Y {Aj (bj,z'—ljkﬁjk + b',i—ljk—l—lpjk:)

J7k

m#j

F0m ity — 1 +1Pmj Pik + bm,i—lmj—ljk-i-mejpjk)

‘H?j,i—ljkﬁjk + Mji—l+1Pjk }
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(A.5)

(A.6)
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Without loss of generality, we may assumethat 7; > 7,5 # k. Thenl;, = 1 for all ;'sand the

result can be ssimplified to

Zki =

Akbk,i{l - C}, Z (ﬁ?k + P§k> } — A Cy Z <bk:,z'—1 + bk,i+1)ﬁjkﬂjk
ik ik
Tm <Tj Tm >Tj
—C YT Agbjicapimbk — Cr DD Ajbjir pm P
ik mEk 7k mAk
+ Z Ajbj,i—lq)jk + Z A]'bjyi\lf]’k + Nk i
ik j#k
—Ck Z <77j,i—ljkﬁjk + nj,i—ljk-i-lpjk) (A.9)
ik

where @, and ¥, are defined as

~ TS L m<Tj ~ ~
Pjr = pjr(l — Ck) — Ci {Emfji p]mpmk 2k (PjmPrm + pjmpmk)}

y (A.10)
Wi, = pje(1 = Cy) — Cy {27;729 i Mmpmk + Emyéj i (PimPmk + p]mpmk)}
The squared-mean for z; ; is obtal ned from (3 17) and (A 9) as
M‘,m = 2@ O (A.11)
where
A ~2 2
Ay = Z (pjk + ij)- (A.12)
i#k
Similarly, the variance can also be obtained as
Vi = 02 (QCF = 200, Cp + Que) (A.13)
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where 2, ;, 1 < i < 3, are defined as

My =

2

Tm <Tj
22 Y Pty 3 (@zk b+ (z 5 vfﬁjmﬁmk>

J7k J7#k J#k m#jk

Tm >Tj
J#k m#j .k J#k
Tm <Tj
+y > 2 (pjmﬁj,kﬁm,k + PjmPjkPmk + ﬁjmﬁjkﬂmk)
J#k m#j.k
Tm=Tj
+ Z Z (pjmﬁjkﬁmk + pjmpjkpmk>a (A.14)
J#k m#£j.k

Qi = Yoyt i) + 3 (7t %), (A.15)
J#k ; J#k

E|S

off % (pﬂcm,@) 1 (A.16)
= “L ]fk .

Thus, the optimal PCF can be obtal ned by substltuu ng (A.12) and (A.14)-(A.16) into (3.27).
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Appendix B

Expressionsfor Expected Termsin
(3.50)-(3.51)

Extending the definition in (3.62);welhave: -

Fir(p1, a1, - - -, Pisdi ) 2 NiE{Cjk(pla Q) - -5 Gik(pis Qz)} (B.1)

where i is an integer. To make expression'simpler, we let w; = {p;, ¢;}. Equation (B.1) can

then be rewritten as

.,ij;(wl, e ,Wi) = NlE{C]]C(Wl), ey Qk(wl)} (BZ)
We further omit the subscript in F(-) and use the following notational substitution
L? L
Yo=Y N (B.3)
w;=0 pi=0¢;=0
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In what follows, six expected terms are given without detailed derivation. Thefirst termis

EE{Q]kQ] N3 Z Z Z h]’f Wl Jk WQ)hJJ(W?))f(WlaW?:W?)):

wi=1we=1wz=1

IFTjk(Wl) = Tjk(w2)7Tjj(W3) =0,

F(wi, Wy, W3) = N(N - ‘Tjk(Wl)D.

ELSE IF |7 (w1) — mn(w2)| = |75;(ws)|,

Flwr,w,wy) = N = max { |re(w1)], [756(w5), | 735 (w3)] }.
ELSE
f(Wl,WQ,Wg) = 0

END. (B.4)

The second term is 1
2 ‘LQ LJQ J‘ o ‘.‘l‘ k

Ec{ojk0jmomk} = N3 Z Z Z h]k W) jm(w2)hmk(w3)f(wlaW27W3)7

wlﬁl Wo == W3—17

IF T (W1) + T (Wo )= T]k(w3) |

F (w1, w2, w5) = N TGRS [(90)] 75 ()] e ()|
ELSE
F(wy, wo, w3) =0
END. (B.5)

122



Thethirdtermis

EC{ngQ]} = N4 Z Z Z Z hjk Wl J’C W2 h]](W3)h]](W4).7:(W1,W2,W3,W4),

wi=1wo=1 wz=1wy=1

IF 7jp(w1) = 7jk(W2), 7j5(Ws) = 755 (ws) = 0,
F(wi, Wo, w3, wy) = N? (N — ‘Tjk(wl)D.
ELSE IF 7j5(w1) = Tju(W2), 7j5(W3) = 755(wy),
F (Wi, Wy, W3, Wy) = (N — ‘Tjk wl)‘) <N— ‘Tjj(Wg)‘).
ELSE IF ‘Tjk(wl — Tip(W ‘ = 7jj(W3), 7j5(W4) =0,
or| 7y (W1) — Tji(W2)| = 755(wa), 7j5(ws) = 0,
F(wy, Wy, w3, wy) =N — max{‘T]k W ‘ ‘T]k ws), ‘T]] w3 ‘ ‘T]](W4)‘}
ELSE IF [ry(w1) — (w2 }-;:' Prstoig i (wa) |, 7 (w1) # 0, 7 (w) # 0,
ik (W2),

i ("Wl);:t 75 (W3)|,

Tii(Wa) |,

(w1) 2 755(w) |}

5 (Ws)],

.....

F(wi,wa, wa, wi) SN mak--{"lrml)

‘Tjk Wl) o Tﬂc( )

ELSE IF | 7ye(wi) — (W) = e )iT-_yg(W4)\

F(wWy, Wo, W3, Wy) = N2 max{{T]k W) |, |7k (Wa), 755 (w3) |, ‘Tjj(w4)‘}'
ELSE

F(wi, W, w3, wy) =0

END. (B.6)
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Thefourthtermis

L2 L2 Lz rL?

Fe{dhthud = 51 D0 D0 D0 D7 i (90 i (52 o () i () F (w1, w5, w5,

wi=1wo=1wz=1wy=1

IF Tjm (W1) = Tjm(W2), Tk (W3) = Tk (W),
F (W1, Wa, WaWy) = (N— \ij(m)\) (N - ‘ka(w?))‘)-
ELSE IF |75 (W1) = Tjm (W) | = |7k (W3) — Touse(Wa) |, Tjon (W1) 7 0, T (W2) # 0,
Tk (W3) 7 0, Tk (Wa) # 0,

F(wq, Wy, wawy) = N — max { ‘ij(wl)

) ij(Wg), ka(w?)) ) ka(w4) )

7im(W1) = T (W) |7 (W1) ok (W) | [T (1) e (W)}

ELSE IF |75 (W1) — Tjm(W2)| = |7 (W3) — T (W) |,
F(wy, Wy, wzwy) = N ..T'ma‘xl {‘ij(WI)" | 7m (W2), | Tk (W) ‘ka(w4)‘}.
ELSE I; N\

f(Wl,WQ,Wg,W4) =; 0 ; : E

END. o 5 oo
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Thefifthtermis

L2 L2 Lz L2

E{0jm0mk 0jn0n} = % DX DD by (W) k(W) hjn (W) ok (W)

wi=1 wo=1wg=1wy=1

f(wla Wy, W3, W4)7
IF Ty (W1) + Tonke(W2) = Tjn(W3) + Tk (Wa), Tjm (W1) # 0, Tk (W) # 0, 7j,(Ws) # 0,
Tnk:(w4) 7£ 07

F(wi,wa, w3, wy) = N — max{‘ij(wl)‘, ‘ka(Wz), ‘Tjn(w3)‘a ‘Tnk(w4)‘a

‘ij(wl) + Tmk (WQ) ij(W1) - Tjn(Wg) ‘}

ELSE IF 7 (W1) + Tk (W2) = Tjn(W3) + Tar (W),
F(wi,wa, w3, wy) = N — max{‘ij(wl)‘, ‘ka(Wz), ‘Tjn(w3)‘a ‘Tnk(w4)‘}-

ELSE

f(W17W27W3,W4) B '. =

END. (B.8)
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Finally, the sixth term is

L? L2 L2 IL?

Ec{0jmomkojroji} = % ST DTS by (W) bk (W) B (W) g (W) -

wi=1wo=1wz=1wy=1

f(Wl,Wg,Wg,W4),
IF T (W1) + 7ok (W2) = Tjx(W3), 755 (Wa) =0,

f(W1,W2,W3,W4) = N(N - ma‘X{‘ij(wl)

Tjk(w;»,)‘}).

7ij(wl) 7£ 07 ka(w2) 7£ 07

Tmk (W2)7

b

ELSE IF |7 (W1) + Tonk(W2) — Tje(w3)| = |75(wa)

Tik (W3) 7£ 0,

Flwi,wa, ws, wi) = N = max { |7 ()

755 (Wa)|

Tijm(W1) iTjj(W4)‘}-

) ka(WQ), Tjk(WS) )

‘ij (Wl) + Tk (W2)

ELSE IF |7 (W1) + Touk (an)r'f;‘%jl;(‘;‘.’;ﬂ = [ 755(w4),

F (Wi, W, W3, Wy) FNI= m_d;x.{"rgm(wl)‘a ‘ka(wg), ‘Tjk(WzJ,)‘, ‘Tjj(W4)‘}.

L= |

ELSE L &

f(Wb Wiy, W3, W4) ::0 . d

END. e (B.9)
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Appendix C
Optimal PCFsunder Fading Channels

In Chapter 3 optimal PCFs for different scenarios are derived under the assumption of static
channels. The received user amplitudeé are }egarded known and to be varying slowly. Now
we relax the constraint by taki ng"the user éjamp‘l\i‘tudés as random variables. Take the optimal
PCFs for aperiodic codesin AWGN case as an exampije, the components in the squared mean
is refined to be A X% V3

Bt 2
Eea{M{} =g (1 - C/cE,c{A;(gl)D (C1)

where the expectation subscript A represents the expectation on user amplitudes and g, =
E 4{a?} represents the expected user power over the fading channel. Similarly we define the

expected interference power asl, = 3_, ., F4{a?}/o? and the resulting variance is given by

Be (W} = 0*(Bea{ Q0 }CE = 2B A{0),}Ci + Eea{94))}) (€2
where
l 1 3(K-2) (K-2)(K-3))\ K-1
ea{olh) = w(F+ - ERE) 55
K—-1)(K -2
( ])V(2 ), (C.3
0l _ 1 K-2\ K-1
Eﬁ,A{QQ,k} - |k<N+ e >+ v (C.4)



|
Bea{ofl} = % +1. (C5)

When the multipath fading channel is considered, it is assumed that each multipath has inde-
pendent fading distribution for each user. In that case the expectation term in (3.61) can be

represented as

L L L L
Era{oy} = Z Z Z Z EA{hjk(Pl,%)hjk(PQ,QQ)}
p1=1q1=1p2=1g2=1
Eﬁ{Cjk(plaQI)Cjk(p%(D)}' (C.6)

When the probability density function of the fading channel has zero mean, the resulting deriva-

tion would be simplified as

L .8 Wy
Eﬁ:A{Qik} = ZZ w ZEA{hjmhkqthpzhkqo}'

pi=l =1 plz*flmﬁl

Eﬂ{C]k(pla 01)Cjk (2, qz)}

= Z nglgk,ql < T;@EP 1’q1)> (C.7)

p1=1lq=1

where g;,, = E4{h?, } denotes the expected branch power of the p;th path for the jth user

Jp1
and ) g;, = g;. Other expectation terms can be derived in asimilar way.

128



Appendix D

Supplemental Derivation for Analytical

Resultsin Chapter 4

In chapter 4 the optimal weights, Wweight-error means énd weight error variance are provided for
only the correct decision in most cases, This Appendi* completes the analytical result for the

erroneous decision and whatever not detailed-in‘chapter 4.

8§D.1 Two-user Scenario

The union of noise subsets for erroneous decision is represented by

E, =T uU? U uU*S. (D.1)

E, = U2 UTU2 U U U TR, (D.2)

Thuswe have

Pry = P31 + Pso + Py + P (D.3)

Pr, = Py; + Poy + Psy + Psg.
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We can express the conditional optimal weight for agiven p as

optl Z V(Z);tl R L= 172 (D4)

l K

The finally optimal weights are given as

Z o tzp P]Ez
Wopti = Ep{tigy i} = . (D.5)
P P >, PP,
where: = 1,2 and P, isdefined in (4.94).
The conditional weight error mean can be obtained to be
~e 1 ~17
Evra(n ):gzez\ym( n) P I=1,2 (D.6)

1 I
where I, isgivenis(D.1) and (D.2). Then the averaged mean weight error for correct decision

over p can be obtain by

Efes(m)} i Ep{ean)
- T, _— Zp eM,l(n)PpPEl

S p (D.7)

forl =1,2.

8§D.2 K-user Scenario

Thederivation for OWA 1 issimilar to the that in two-user cases and can be obtained from (D.5).

As far as OWA2 is concerned, the noise regions for the erroneous decision of the first user is

expressed as the sixth pattern as
USIZIU?’IUUM, blzb[ (D8)
U2 = U2 UU2, by # by '
The conditional optimal weight is described as
61 P + ~ 62 P
Wopt1 = Dopt. 61PB TB.1762 (D.9)
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where the noise domain and the corresponding occurrence probabilities are defined as

B = U uU®™ (D.10)
Py = Ps + Bso. (D.11)

The averaged optimal weight is obtained after averaging all correlation coefficients as

wg 1 =E {we 1} = Zp optlp s
opt,1 — opt, -
/4 P D zp PpPB

(D.12)

with P, defined in (4.94).
The conditional optimal weightsfor WEMA1 of the erroneous decision is obtained as
e 1 i
€1 (n) = FDZGJ& 1(n) P (D.13)
" )]
where the union of noise subsets ]D IS IE1 glven iS(D.1) for OWA1 or B in (D.10) for OWAZ2.
Also Py is Pc, for OWALlor Py for OWA2 Eventually the averaged mean weight error over p

isobtained as

6 Dy i ()1}

Zp é?\/[,l(”)PpPD. (D.14)
Zp PPPD
The WEMAZ2 for the erroneous decision is obtained readily by
€ua(n) = (1= pu/N)" (wi(0) — wiy,) - (D.15)
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