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以可攜式裝置達成的安全登入系統 

學生：張君偉        指導教授：曾文貴 博士 

國立交通大學資訊工程與科學系 

摘要 

在這篇論文中，我們考慮在可攜式安全裝置的協助下，密碼驗證

金鑰交換系統的表現。可攜式安全裝置可以是智慧型手機或個人行動

助理等可安全存放資料及和個人電腦溝通的裝置。使用者攜帶其所有

的可攜式安全裝置至公開電腦，便可自動且安全的進行身分驗證級金

鑰交換的動作。 

除了在一般密碼驗證金鑰交換系統所討論的安全性需求，好比身

分驗證，金鑰的語意安全以及向前性安全。我們額外的考量了密碼保

護以限制一個不完全信賴的公共電腦，在金鑰交換以及身分驗證的過

程中得知使用者金鑰的可能性。 

在實務上，使用者只需記憶自己的帳號和密碼。在沒有可攜式安

全裝置的場合，使用者亦可在可信賴的電腦上，輸入帳號和密碼，來

進行身分驗證以及金鑰交換。 

關鍵字：密碼驗證，可攜式安全裝置，金鑰交換 



Secure Login System with portable devices

Student: Jun-Wei Zhang Advisor: Dr. Wen-Guey Tzeng

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

We consider the password-based authenticated key exchange with help of

the secure portable device. The secure portable device may be a smartphone

or PDA which can store authentication information securely and communi-

cate with computers. A user can bring his own secure portable device to

some public computer and perform authentication and key exchange auto-

matically and securely with his device. Beside the security requirements one

usually consider in the password-based authenticated key exchange, such as

the authentication, the semantic security of session keys and forward security

of session keys, we additionally consider the password protection to against

semi-trusted public computers from learning user’s password. Users only

need to have their password in hand and may perform a password authenti-

cation by inputing identities and passwords on computers. Our results hold

in the random oracle model.

Keywords: Password Authentication, Key Exchange Protocol, Secure Portable

Device
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Chapter 1

Introduction

1.1 Motivation

Many servers on the Internet today rely on password authentication to verify

the identity of a user. In particular, a user is asked to provide his identity and

password to login the server before requiring services, such as ordering books

or watching stream video. Usually, most users tend to memorize short and

low entropy passwords such as their birthdays or favorite movie names. Those

passwords come from a relative small dictionary. Thus if the adversary get

some information which is enough to verify a password guess, he can perform

a exhaustive search in the dictionary of possible passwords to determine user’s

password. Such attack is called offline dictionary attack. Many security

experts researched associated with password authentication to against such

attacks. On the other hand, as the growth of Internet services, there are

many servers on the Internet, it’s difficult for a user to remember a different

password for each server. However, to use a common password between

difference servers may cause security problem. For example, if a user chose
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the same password for a bookstore server and a bank server, an adversary or

a corrupted bookstore server may impersonate the user to the bank server.

This is quite dangerous in practice.

Mobile devices, such as cellphones or personal digital assistants (PDA),

are more and more popular day by day. Most people carry at least one

such devices in their daily living. These devices are so useful since they

can perform certain functions and store personal information for users. The

functions may include to give a phone call or to browse on the Internet, and

the personal information may be the address list or calendar. User’s password

is also one kind of personal information, one may ask that can these devices

can memorize the passwords for users? If a user can put all his passwords into

the device, then he can just remember the password for his device. Moreover,

if the device is able to perform the password authentication on it’s own, the

user can just bring his device to some computer, press ”login” button and

all tasks, including the authentication of the user and the construction of

the session key for later uses, are automatically done by the three-parties

communication between the device, the computer and the server.

However, there are many problems if we simply store user’s password into

the device and perform some password-based authenticated key exchange

protocol in existence, between the device and the server. Consider the case if

a user lost his device, he must change all his passwords stored in the device or

someone may obtain those password from the device, this is very inconvenient
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for the user. On the other hand, after the execution of the protocol, a session

key should be shared between the server and the computer for later use, but

notice that the protocol is performed by the device and the server, and one

can not directly transfer the session key from the device to the computer

since an adversary may eavesdrop the communication. Moreover, even if the

computer can obtain the session key securely, we still need to prevent the

computer to gain some useful information about user’s password from the

session key. For example, a common method to convert a password-based

authenticated key exchange protocol in the symmetric password model to

a password-based authenticated key exchange protocol in the asymmetric

password model is to ”execute the protocol with verification data, and then

sign the agreed session key with user’s password”. But one can easily find

that a converted protocol will suffer an offline dictionary attack since the

computer know both the session key and the signature of the session key.

The device here is a helper but not in place of the user, we allow the

user to login some server in the original way. In particular, if a user do not

have the device or do not bring it with him, he can still perform the password

authentication by inputing his identity and password on the computer. How-

ever in this case, some security requirements cant no be meet. For example,

at least the computer can easily get user’s password by a key logging.

Give a more precise problem description: We want to construct a three-

parties (the device, the computer and the server) password-based authenti-
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cated key exchange protocol, which can protect the session key, the password

and the authentication. In particular, we consider the following security no-

tions : the semantic security of the session keys, which we model by a ex-

tended game based on [CPP04]; the authentication, which restrict the proba-

bility that some adversary can impersonate a legal user; the forward security

of the session keys, which entails that if the user leak his password acciden-

tally, the session keys used before are still semantic security; the password

protection, which means that the computer cannot learn any useful informa-

tion about user’s passwords from the execution of the protocol.

1.2 Our Contribution

Our contribution in this paper is a password-based authenticated key ex-

change protocol which satisfy the previous mentioned requirements. Our

protocol is provably secure in the random oracle model, assuming the hard-

ness of the Decisional Diffie-Hellman problem and the computation Diffie-

Hellman problem.

Our protocol is named password-based authenticated key exchange with

secure portable device (PAKE-SPD). PAKE-SPD protects the session

keys, the authenticaion and the passwords according to formal security mod-

els described in chapter 3. It provides some additional properties, such as

lost-free, which means that the lost of the device does not cause the user

have to change his password, in particular, the only thing he needs to do is
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to tell the servers to revoke his lost device. PAKE-SPD is convenience for

use, if a user do not bring his mobile device with him, he can still perform

the password authentication by inputing his identity and password on the

computer.

PAKE-SPD is in the asymmetric password model, it means that the

server only holds some transformed password that can be only used to verify

user. Then if the same password is used between different servers, the server

can not impersonate the user with the stored authentication information

(transformed password) stored.

PAKE-SPD is easily for the implementation. The difference between

two login modes, with or without device, is only the verification data used

in the protocol. Thus, one can use a single flag to denote the mode and

all processes are the same between two modes except taking different input

data.

1.3 Related Work

The related study of password-based authenticated key exchange protocols

which can resist to dictionary attacks started from Bellovin and Michael

[BM92], [BM93]. In which they proposed Encrypted Key Exchange protocol

(EKE). Suppose there are two parties A and B. The main idea of their

protocol is that A generate a public/private key pair and then send this public

key encrypted with the common password to B, where the encryption is done
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by some symmetric encryption scheme. B can use the common password to

decrypt the ciphertext and obtain the public key. Then he randomly choose

a session key and encrypted this key with obtained public key. The resulting

ciphertext is then re-encrypted with the common password and finally sent

back to A. Now A can easily obtain the session key by decrypting with both

the private key he generated and the common password.

Bellare, Pointcheval and Phillip proved the security of the EKE protocol

in [BPR00]. However, the proof is going in the ideal-cipher model which

is very strong (even stronger than the random oracle model). In the EKE

protocol, one must be care about how to encrypt the public key with the

common password such that the cleartexts encrypted should not have any

redundancy. Otherwise one can apply the partition attack on it: One first

guesses a password, decrypts the cihertext and check if the obtained cleartext

has the same redundancy. If not it means that the guess is wrong and one

candidate can be eliminated.

In [BMP00], Boyko, MacKenzie and Patel proposed a protocol named

PAK which is secure in the random oracle model and a modification ver-

sion named PAK-X in which only the client side stores a plaintext version

of the password (and thus in asymmetric password model). In [MPS00],

MacKenzie, Patel and Swaminathan modified OKE and protected-OKE to

obtain a password-based authenticated key exchange protocol that can be

proved secure in the random oracle. In [CPP04], Dario, David and Thomas
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proposed a general way to uses any trapdoor hard-to-invert isomorphisms

to construct a password-based authenticated key exchange protocol which is

secure in the random oracle model. The protocols above are all proven secure

in the random model. In [GL01], Goldreich and Lindell proposed a protocol

which can be proved secure in the standard model, their proposal is based on

sole existence of trapdoor permutations. In [KOY01], Katz, Ostrovsky and

Yung proposed a protocol based on the Decisional Difie-Hellman problem.

Their protocol requires only roughly 8 times more computation than stan-

dard Diffie-Hellman key exchange and can be proven secure in the standard

model.

There are many studies of the security model of password-based authen-

ticated key exchange. In [CBH05], Choo, Boyd and Hitchcock examined

indistinguishability-based proof models and mentioned the difference be-

tween them. In [GL03], Gennaro and Lindell presented a general framework

for password-based authenticated key exchange protocols, their procotol is

based on a notion of smooth projective hashing [CS02]

On the other hand, many variants of password-based authenticated key

exchange have been proposed. In [KR06], Vladimir and Charles assumed that

there exist some long keys shared between the server and the client. They

proposed a protocol that is strong enough to against denial of server attacks.

In [MSJ02], MacKenzie, Shrimpton and Jakobsson proposed a password-

based authenticated key exchange protocol in which a single server is re-

7



placed by a set of servers, such that the password is secure unless too many

servers are compromised. Under a similar setting, Raimondo and Gennaro

proposed a threshold password-based authenticated key exchange in [RG03].

In [ACFP05], Abdalla, Chevassut, Fouque and Pointcheval proposed a pro-

tocol in which they considered about the appearance of the gateway.

The most studies above were processing in the symmetric password model,

in which we assume that the password is directly shared by A and B. In the

asymmetric password model, only one party A may have his password and

the other one, B holds only the transformed passwords such as the hashed

value of user’s password. In [BM92], the authors give a idea to convert a

protocol in symmetric password model to a protocol in asymmetric password

model: One can execute the original protocol with the transformed password

in place of the original password. The resulting session key should be known

only to A and B. Then A signs the session key with his original password and

sends the signature to B. B then verifies the signature with the transformed

password and concludes the protocol successfully only if the signature is

correct.
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Chapter 2

Preliminary

In this chapter, we discuss the original security model for password-based key

exchange protocol and some of its variations. The variations involve gate-

way password-based authenticated key exchange GPAKE [ACFP05] and

key exchange in the combined keys model [KR06].

2.1 Password-based Authenticated Key Ex-

change

The model described in this section is based on that in [CPP04]. The ad-

versary A is defined to be a probabilistic machine that can control all com-

munications between every parties. The goal of the adversary A is to break

any protocol by attempting to impersonate a user or distinguish some agreed

session key from a random one.

Initialization. We have fixed a set of protocol participants each of which

is either a Client C ∈ Client or a server S ∈ Server. For convenience we

denote any participant as P ∈ Client∪Server. Each C ∈ Client holds some
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password which is chosen from a relative small space of possible passwords.

In a protocol of symmetric model, each S ∈ Server holds the passwords of

all users. The participants and corresponding passwords are well set in the

initiation before execution of the protocol.

The protocol determines how participants behave in response to the input

from their environment. Each participant may execute the protocol multiple

times with different partners, this is modeled by allowing each participant an

unlimited number of instance in which to execute the protocol. Let instance

Ci (resp. Si) denote instance i of client C (resp. S ). The adversary A is

defined to be a probabilistic machine that is in control of all communications

between parties, which is formalized by allow A to ask the following queries

• Execute(Ci, Sj) : This query models passive attacks, where the adver-

sary may eavesdrop all the communication between Ci, Sj. This oracle

will execute the protocol between instance Ci and Sj, and outputs a

transcript of this execution.

• Send(Pi, M) : This query models actives attacks, where the adversary

may send a message M to instance Pi. This oracle computes a response

according to the protocol and decides if Pi accepts or terminates. Then

it outputs the response and the decision (if exists).

• Reveal(Pi) : This query models the lost of the session key by any

instance Pi. This query is available only if the attacked instance Pi
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accepts, which means it actually holds some session key. The output

of this oracle is the session key.

Usually, there are two main security notions for authenticated key ex-

change protocols. The first one is the semantic security of the session key,

which means that the agreed key should be unknown to anybody else than

the participants instances. The second one is authentication, which means

that there should always exist a partner instance for any terminated instance.

Semantic Security. The semantic security of the session key is modeled

by an additional query Test(Pi). Test oracle is available to A only if the

attacked instance is Fresh, where the freshness notion captures the intuitive

fact that a session key is not obviously known to the adversary. Formally, we

say an instance Pi is fresh if (a) Pi has accepted (b) neitherPi nor its partner

have been ask for a Reveal query. If Pi is fresh, the output of Test(Pi)

depends on a random bit z. When z = 0, the output is the session key which

Pi holds. When z = 1, the output is a random key.

In the Bellare-Rogaway model [BPR00], we restrict the adversary A can

query Test oracle at most once. In the random-or-real model, the adversary

A can query Test oracle many times, the output of Test is corresponding to

the same random bit z. We say an adversary A is successful if he correctly

guess the random bit z.

Authentication. Here we consider the unilateral authentication of a client

instance. We say a client instance Ci authenticates with a server Sj instance
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if Sj terminates (sets a terminate flag) with partner Ci and both instances

have the same session key. The adversary A successfully impersonates a client

instance if a server instance terminates without any accepted client instance

which shares the session key with it. The unilateral authentication of a server

instance can be defined vice versa. If a protocol can provide authentications

of both clients and servers, this protocol then provides mutual authentication.

2.2 Gateway Password-based Authenticated

Key Exchange

One variation of the original password-based authenticated key exchange is

gateway password-based authenticated key exchange [ACFP05]. The major

modification is on the participant settings. Beside clients and servers, it takes

into account the presence of gateways (firewalls) when clients communicate

with servers. This model is in the symmetric password model, the common

password is shared between the client and the server. The gateway does not

hold the authentication information and lies between the communication of

the client and the server. The communication channel between the server

and the gateway is assumed to be authenticated and private while the com-

munication channel between the server and the client is insecure and under

the control of an adversary.

The goal of the protocol is to establish an implicitly authenticated session

key between the client and the gateway with the help of the server. Besides

the semantic security of the session key, there are two additional security
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notions to be considered in this model : Key privacy and Server Password

protection.

The notion of key privacy is to capture the idea that the agreed session

keys should only be known to the client and the gateway and not to the

server. In order to meet this goal, one have to consider that the adversary

can access to all secret information stored in the server and then show such

adversary can not distinguish the real session key from a random one in a

passive attack. Notice that in an active attack, an adversary can always

get the session key by using the secret data to play the client’s role in an

execution of the protocol.

The notion of server password protection is to capture that the gateway

should not be able to learn the password stored in the server. The gateway

can know the agreed session key and some secret data he chose. We ask

that after some executions of the protocol, it should be still hard for the

gateway to gain some useful information about the password. There are two

different behaviors assumptions about the gateway: a malicious gateway or

a semi-trust gateway.

When we consider a malicious gateway, it means that the gateway can do

what it want. So in each interaction, the adversary may be able to eliminate

one candidate password from the dictionary by guessing a password and

simulating the client. Then the security goal is to restrict the adversary can

not do much better than. When we consider a semi-trusted gateway, it means
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that the gateway may follow all protocol but try to obtain user’s password

from what he knowns and the randomness he choose in the communications.

2.3 Key Exchange in the Combined Keys Model

This is another variation of the original password-based authenticated key

exchange. For each user, beside the low entropy password pw, we assume

that the user may carry some storage device. The storage device can be a

smart card or a storage card, which contains long and high entropy key l.

Both long key l and user’s password pw are required for the authentication.

If the authentication failed because one provide a wrong long key, we say that

a long key failure occurs. If the authentication failed because one provide

a wrong password, we say that a password failure occurs. Since a password

is shorter(lower entropy) than a long key, a password failure is more danger

than a long key failure. In fact, password failures may correspond to the

attempts of the dictionary attacks or denial of server attacks. Beside long

keys and passwords, the client is assumed to have the public key of the server.

In this model, we will consider the following security requirement :

1. The adversary obtained the long key of the client, and attacks the

server. The goal of the adversary is to distinguish a session key used

by a fresh server instance, from a random key. This is a stronger than

semantic security of the session key.

2. The adversary obtained both the password and the long key of the
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client, and attacks the client. The goal of the adversary is to distinguish

a session key used by a fresh client instance, from a random key.

3. The adversary obtained only the password of the client, and attacks

the server. The goal of the adversary is to distinguish a session key

used by a fresh client server, from a random key.

4. The adversary obtained only the password of the client, and attacks the

server. The goal of the adversary is to cause a password failure. This

may corresponding to the denial of access attacks, where the server

suspend client’s account because there are too many password failure.

5. The adversary obtained both the password and the long key of the

client. The goal of the adversary is to cause any two honest partners

output different session keys. This is about the implicitly authentica-

tion.
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Chapter 3

Security Model

In this chapter, we present the security model we use to define the execution

of our protocol for password-based authenticated key exchange with the se-

cure portable device. One can see this model as a combination of gateway

password-based key exchange and key exchange in the combined key model.

In particular, We assume that there exits the secure portable device which

contains some high entropy secret data. To login a server, the user carry

his secure portable device to some public computer, then a device-computer-

server connection will be constructed and the protocol will be executed over

this connection. The goal of the protocol is to provide the authentication of

the secure portable device (and thus the user) and the secure shared session

key between the public computer and the server.

3.1 Overview

A password-based authenticated key exchange with the secure portable de-

vice is a three-party protocol among a secure portable device, a public com-
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puter and a server. The purpose is to establish an session key between the

public computer and the server, and to provide an authentication from the

secure portable device to the server.

Since the connection between the public computer and the secure portable

device is short and totally visible to the user. We assume that the communi-

cation channel between the public computer and the secure portable device

is assumed to be authenticated but may loss some information to the adver-

sary. The channel between the public computer and the server is insecure

and under the control of the adversary.

The security requirements of our password-based authenticated key ex-

change with the secure portable device are some different from those models

above. In particular, besides asking the semantic security, the authentication

and the forward security, we also ask that the chances of the public computer

learning some information on the password after some interactions should be

negligible. Moreover, even if the adversary has stolen the secure portable

device, it is still difficult for him to gain any information about password.

3.2 Security Model

Participants. As in [CPP04], we restrict there are only one secure portable

device, one public computer, and one server in our model. But one can indeed

easily extend this model, and corresponding proof, to the general case. Let

D denote the secure portable device, PC denote the public computer and
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S denote the server. Each of them may have several instance involved in

the same time. Let Di denote the i-th instance of D, PCj denote the j-th

instance of PC and Sk denote the k-th instance of S. For conveniency we

denote by U when we consider about anyone of them.

Partnering. As in the most often assumption, we use the notion of partner

based on the session identifications (sid), this means that a secure portable

device instance Di, a public computer instance PCj and a server instance Sk

are said to be partners if

1. Di, PCj and Sk are accepted.

2. Di, PCj and Sk share the same session identifications.

Where sid can be defined as the partial .transcript

Password. The user has a low-entropy secret pw which is chosen uniformly

at random from a relative small space dictionary. f is some one-way function

defined in the protocol which maps a password pw to a sign/verfiy key pair

(sk, vk). The device D holds both keys (sk, vk) and the server S holds only

verify key vk.

Semantic Security of the Session Key

Since we assume an authenticated channel between the public computer and

the secure portable device, the security model is similar to 2.1. In particular,

to the communication between the secure portable device and the public

computer, the adversary can only do eavesdrop. Thus we can then restrict
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the instances involved in oracle queries can only be PC or S, and the ability

to eavesdrop is captured by adding some extra information in the Send and

Execute queries.

On the other hand, we will combine the public computer with the secure

portable device when we consider about the semantic security, the authenti-

cation, and the forward security.

The list of oracles available to the adversary are as follows:

• Execute(PCj, Sk) : This query models passive attacks. Notice the

output involves the transcript between the secure portable device and

the public computer and the transcript between the public computer

and the server.

• Send(Ui, M) : This query models active attacks. But here we restrict

U can only be PC or S. When (PCj, Sk) is queried, this oracle will

output the response of PC on input M and the transcript between

PCj and its partner secure portable device.

• Reveal(Ui) : Here we restrict U can only be PC or S. This oracle will

outputs the session key of Ui if Ui has accepted.

semantic security The semantic security of the session key is modeled by

added an additional oracle Test. The Test oracle is defined as follows:

• Test(Ui) : Since only the public computer and the server may have the

session key, U can only be PC or S. If the session key for Ui is set, and
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Ui is fresh, this oracle will choose a random bit z uniformly at random

and return the session key for Ui if z = 1 or a random of key of the

same size if z = 0.

Freshness The notation of freshness is the same as the one in [CPP04],

that is, a instance Ui is fresh if

1. Ui has accepted.

2. Neither Ui nor its partners has been queried to Reveal oracle.

Formally, let Succss denote the event in which the adversary is successful.

The advantage of the adversary A in violating the semantic security of the

protocol P and the advantage function of the protocol P are denoted by

Advss
P (A) = 2Pr[Succss]− 1

Advss
P (t) = maxA(Advss

P (A))

where the maximum is taken over all adversary A with time-complexity less

than t.

Authentication.

One goal of the adversary is to impersonate a device (and thus a user). We

consider only unilateral authentication of the device only. Let Succauth de-

note the event that A successfully impersonates an device instance in an

execution of P, which means that there exists a server instance Sj which

terminates but there does not exists partner instance for Sj. Formally,
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we define the advantage of an adversary A as Advauth
P (A) = Pr[Succauth

P ]

and the advantage function of the protocol P is defined as Advauth
P (t) =

maxA(Advauth
P (A)), where the maximum is taken over all adversarys A with

time-complexity less than t.

Forward Security.

In practice, the greatest threat to password-based authenticated key ex-

change scheme may simply be that a user leaks his password to the adversary

. Once the password is exposed, future uses of it are compromised. We may

hope that the user will change his password in time. However, the loss of

the password may bring another danger. An adversary may eavesdrop and

record the past transcript based on this leaked password. Now that he ob-

tains the password, maybe he can gain some useful information about the

past communications.

The security goal of forward security is to protect against this kind of

threat. Even if the password is known to the adversary and the adversary

holds all past transcript, the past communications, namely the session keys

used before is still semantic security to the adversary.

Since the adversary holds the past transcript, he can not interact with

party instance involved in the past communications. It means that the ad-

versary can only do passive attack but not active attack. Thus, to give the

security model for the froward security, we can modify the security model for

the semantic security by disabling the Send oracle and providing the pass-
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word used in Execute oracle to the adversary. The goal of the adversary is

to distinguish the session key used by a fresh instance from a random key.

Formally, let Succfs denote the event in which the adversary is successful.

The advantage of the adversary A in violating the forward security of the

protocol P and the advantage function of the protocol P are denoted by

Advfs
P (A(pw)) = 2Pr[Succfs

P ]− 1

Advfs
P (t) = maxA(Advfs

P (A(pw)))

where pw is the password and the maximum is taken over all adversarys A

with time-complexity less than t.

Password Protection.

As a similar notions in [ACFP05], one of the security threat is that the pub-

lic computer may learn the password during the execution of the protocol.

Clearly, after a success execution of the protocol, the public computer will

know the session key, the authenticator, some short-time secret and random-

ness used by the public computer. However, we ask the probability that the

public computer can distinguish the true password from a random one in the

dictionary should be only negligibly large then O(1/N), where N is the size

of the dictionary.

Since the public computer is semi-trust, it means that the public com-

puter will follow the protocol P but may try to obtain user’s password from

the information he knows in the communication. We model this ability by
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defining a oracle like Execute, but it additionally provide the adversary the

ability to choose the randomness used by the public computer. Formally, we

define

• Semi−Execute(M) : This oracle models the ability to choose the ran-

domness. The input M should be a message for starting the execution

of the protocol or the randomness used by the public computer. This

oracle outputs the transcript between the three parities.

The adversary should output a guess password after some oracle queries,

we say the adversary wins if he correctly guess the password used in Semi−

Execute oracle. Let Succpp
P denote the event in which the adversary is suc-

cess. Let Advpp
P (A) be the advantage of the adversary A in violating the pass-

word protection and Advpp
P (t) = maxA(Advpp

P (A)) be the advantage function

of the protocol P, where the maximum is taken over all adversarys A with

time-complexity less than t.
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Chapter 4

The Protocol

In this chapter, we will describe PAKE-SPD, the password-based authen-

ticated key exchange protocol with secure portable device. PAKE-SPD

supports two different environments : One environment is that a user bring

his secure portable device to some public computer, and want to login the

system and construct a secure channel automatically with the secret data

stored in his device. The other is similar, but the secret data is from the

identity and password that user key-in on some public computer.

Our PAKE-SPD is build based on previous password-based authenti-

cated key exchange protocols in [CPP04].

4.1 Password Setting

Let p be a large prime number such that the discrete logarithm problem

defined in Z∗
p is hard and let G ∈ Z∗

p be a cyclic subgroup of prime order

q, where g is a random generator of G. We assume that for each server,

a user has a identity id and corresponding password pw chosen from the
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dictionary. There exists a one-way function f which maps each password in

the dictionary to a unique ElGamal signature key pair (sk = x ∈ Zq, vk =

gx), where sk is the sign key and vk is the corresponding verification key.

We then use a randomness t ∈ Zq to mask the original (sk = x, vk = gx)

and get (sk = (x + t) ∈ Zq, vk = gx · gt) as the masked sign key and masked

verification key.

In our protocol, each user only remember his identity id and password

pw, and his secure portable device carries only the masked sign key sk′ and

the masked verification key vk′. The server has only the masked verification

key vk′ and the verification key vk

4.2 Password-base Authenticated Key Exchange

with the Secure Portable Device

The description of our protocol is given in Figure 4.1, where

H0 : ID × ServerName×G×G×G → G

H1 : ID × ServerName×G×G×G×G×G× → Zq

H2 : ID × ServerName×G×G×G×G×G× → G

are random oracles. One can notice that in the environment with the secure

portable device, the execution of the protocol actually uses only the masked

key pair. The password (and corresponding ElGamal key pair) is not used.
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Figure 4.1: Password-base Authenticated Key Exchange with the Secure
Portable Device
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4.3 Password-base Authenticated Key Exchange

without the Secure Portable Device

In the environment without the secure portable device, the user should key-in

his identity and password on the public computer for login the server. Thus,

the public computer can simulate the secure portable device by applying f on

the password. The only difference is that in this environment, the execution

of the protocol uses the original ElGamal key pair but not the masked one.

The description of the protocol is given in Figure 4.2
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Figure 4.2: Password-base Authenticated Key Exchange without the Secure
Portable Device

28



Chapter 5

Security Analysis

In this chapter we present the standard definition of Diffie-Hellman prob-

lem and give both decisional and computational Diffie-Hellman assumption.

Then we show that our protocol provides an unilateral authentication for the

device D, explicitly, an unilateral authentication for the identity id, while the

agreed session keys are both semantically secure and forward secure. More-

over, we will show that even if the the adversary has corrupted the public

computer, or the adversary has stolen the secure portable device, it is still

hard for the adversary to gain any useful information about user’s password.

Our proof is in the random oracle, under DDH and CDH assumption.

For convenience, we prove the security of PAKE-SPD with the secure

portable device, but one can easily extend this proof to the case for PAKE-

SPD without the secure portable device, expect the password protection.
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5.1 Security Assumption

Let p be a large prime number such that the discrete logarithm problem

defined in Z∗
p is hard. Let G ∈ Z∗

p be a cyclic group of prime order q and g

is a random generator of G. x and y are two elements randomly chosen from

Zq − {0}.

The Computational Diffie-Hellman(CDH) problem can be defined as the

task of computing gxy given g, gx, and gy, and the Decision Diffie-Hellman(DDH)

problem is defined as the task to distinguish gxy from a random element in

G, given gx, gy, and g.

We say the Computational Diffie-Hellman assumption holds in G means

that it is computationally intractable to compute gxy. We can define this

assumption more precisely by considering a experiment ExpCDH
G (A, g), in

which we choose two random elements x, y in Zq − {0}, and then give both

gx, gy to the adversary A. Let r be the output of A. Then, the experiment

ExpCDH
G (A, g) outputs 1 if r = gxy and 0 otherwise.

Define the advantage of A in violating the CDH assumption with respect

to the generator g as AdvCDH
G,g (A) = Pr[ExpCDH

G (A, g) = 1], where the prob-

ability is taken over the random values x and y in Zq − {0} and the random

bits A uses. The advantage function, AdvCDH
G,g (t), is defined as the maximum

values of AdvCDH
G,g (A) over all A with time-complexity at most t, this means

the maximal success probability over every adversary running within time t.

The Decision Diffie-Hellman assumption states that give two elements
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gx, gy in G, where x and y were chosen randomly from Zq −{0}, it is compu-

tationally intractable to distinguish gxy from a random element in G. Con-

sider a experiment ExpDDH
G (A, g), in which we choose two random elements

x, y in Zq − {0}, choose a random bit b, and set z = gxy if b = 0 or choose

z randomly from G if b = 1. Then we give gx, gy, z to the adversary A. Let

r be the output of A. the experiment ExpDDH
G (A, g) outputs 1 if r = b or 0

otherwise.

Define the advantage of A in violating the DDH assumption with respect

to the generator g as AdvDDH
G,g (A) = 2·Pr[ExpDDH

G (A, g) = 1]−1. The advan-

tage function, AdvDDH
G,g (t), is defined as the maximum values of AdvDDH

G,g (A)

over all A with time-complexity at most t, this means the maximal success

probability over every adversary running within time t.

Often we assume that, independently of what generator g we choose, the

CDH and DDH problem with respect to the generator g are hard. It means

that for any generator g, AdvCDH
G,g (t) and AdvDDH

G,g (t) are very small for any

reasonable t.

5.2 Security Proof

Semantic Security and Authentication

As the following theorems states, PAKE-SPD can provide the unilateral

authentication and the agreed session key are semantically secure as long as

the CDH assumption and the DDH assumption hold in G.
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Theorem 1 (Semantic Security/Unilateral Authentication) Con-

sider the protocol PAKE-SPD over G which is a cyclic group of prime

order q, generated by g. Let Dict be an uniformly distributed dictionary of

size N . For any adversary A within a time bound t, with less than qactive

active interactions and qpassive passive eavesdropping, and ask less than qH0,

qH1, qH2 hash queries to H0, H1, H2 respectively, we have :

Advss
PAKE−SPD(A) ≤ AdvDDH

G,g (t)+2·(1
q
+4(qactive+qpassive)(qH1+qH2)

2AdvCDH
G,g (t+

ε)+4(qactive + qpassive)(qH1 + qH2)AdvCDH
G,g (t+ ε′)+ 4qactive

N
+

4(qactive+qpassive)
2

2q
+

2q′2H0

2q
)

Advauth
PAKE−SPD(A) ≤ 1

q
+ 2(qactive + qpassive)(qH1 + qH2)

2AdvCDH
G,g (t + ε) +

2(qactive+qpassive)(qH1 +qH2)AdvCDH
G,g (t+ε′)+ 2qactive

N
+(qactive+qpassive)

2/(2q)+

q′2H0
/2q.

where ε is the time for O((qH1 + qH2)
2) group operations, ε′ is the time

for O(qH1 + qH2) group operations, and q′H0
= qH0 + qH1 + qH2.

We will prove Theorem 1 by a sequence of game reductions. The proof

starts from G0, which represents a real execution of the protocol in the ran-

dom oracle model, to G5.

For each game Gn, we define an event SUCCss−auth
n corresponding to the

case in which the adversary break the semantically secure but not violate the

authentication, and the other event SUCCauth
n corresponding to the case in

which the adversary breaks the authentication. Formally, event SUCCss−auth
n

happens if the adversary correctly guesses the bit involved in the Test query,
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but SUCCauth
n does not happen. Event SUCCauth

n occurs if in some time,

the adversary successfully make a server instance Si, terminates without a

partner instance Sj.

Game G0: This is the real protocol in the random oracle model, which

starts by choosing a random password pw and then use pw to generate the

verify key vk and the sign key sk. By the definition, we have

Advss
PAKE−SPD = 2·Pr[SUCCss

0 ]−1 ≤ 2(Pr[SUCCss−auth
0 ]+Pr[SUCCauth

0 ])−1,

ADV auth
PAKE−SPD = Pr[SUCCauth

0 ]

Game G1: In this game, we modify G0 by simulate all oracles as in the real

attack. The detail of simulation is in Figure 5.1. Notice that we will use the

suffix c or s to denote that a value is involved in a computer instance or a

server instnce. One can easily find that this game is perfectly indistinguish-

able from the real game. Notice in the following games, the Execute oracle

is answered by a series queries to Send oracle, Thus we have

Pr[SUCCss−auth
1 ] = PR[SUCCss−auth

0 ],

P r[SUCCauth
1 ] = PR[SUCCauth

0 ]

Game G2: We now modify the way on which queries to H1 and H2 are

managed. In particular, whenever a query to H1 or H2 occurs, we query H0
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Figure 5.1: Game 1
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as well. The output of H1 and H2 is still a element chosen randomly in G.

The detail of the simulation is in Figure 5.2. The number of queries to H0,

becomes qH0 + qH1 + qH2 , let q′H0
= qH0 + qH1 + qH2 .

Then, we halt all executions in which a collision occurs in the partial

transcript (id, S,A, B, C), or a collisions occur on the output of H0.

Since either A, B or C were simulated and thus chosen at random, the

probability of collisions in the partial transcripts is at most (qactive+qpassive)
2/(2q),

according to the birthday paradox. On the collisions of the output of H0, by

a similar reasoning, the probability of such collisions is bounded by q′2H0
/2q.

Consequently,

|Pr[SUCCss−auth
2 ]− Pr[SUCCss−auth

1 ]| ≤ (qactive + qpassive)
2/(2q) + q′2H0

/2q,

|Pr[SUCCauth
2 ]− Pr[SUCCauth

1 ]| ≤ (qactive + qpassive)
2/(2q) + q′2H0

/2q

Game G3: In this game, we add two additional secret random oracle H ′
1

and H ′
2 which are not accessible from the adversary. Recall that in previous

games, the authenticator is the signature of of the output of H1 and the

partial Diffie-Hellman key exchange information d is the value of generator g

raise to the output of H2. In G3, we will compute the authenticators directly

from the output of H ′
1 and compute the partial Diffie-Hellman key exchange

information using H ′
2.

After this modification, the authenticators and the partial Diffie-Hellman

key exchange information become unpredictable to any adversary. Thus,
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Figure 5.2: Game 2
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under the DDH assumption, the agreed session keys are indistinguishable

from random keys to the adversary.

Notice that PW is computed from PW = H0(id, S, A = ga, B, vk). We

can find that the common secret K = (C/PW )−a depends only on A, B, C

and on the verify key vk shared by the participants. This implies that G3 and

G2 are indistinguishable as long as the adversary does not explicitly query

H1 or H2 on input (id, S, A = ga, B, C, (C/PW )−a, vk). Thus, games G3 and

G2 are indistinguishable unless the following event AskH occurs

• AskH (id, S,A = ga, B, C, (C/PW )−a, vk) has been queried by the

adversary to H1 or H2 for some transcript ((id, A,B), (S, C), (Auth))

with extra information gd.

Then we have

|Pr[Succss−auth
2 ]− Pr[Succss−auth

3 ]| ≤ Pr[AskH]

|Pr[Succauth
2 ]− Pr[Succauth

3 ]| ≤ Pr[AskH]

Before to show that Pr[AskH] is small enough, notice that by those mod-

ifications above, we no longer need to know the value K nor to compute the

value K ′ either, because we don’t use them to compute the authenticator and

the partial Diffie-Hellman key exchange informations. Thus we can simplify

our simulations on computing Cs . The detail of simulation can be found in

Figure 5.3
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Although the real password is not used, the original response of S, PW ·Ac
s

and the modified response of S, Ac
s are perfectly indistinguishable.

Since the authenticator is computed by a random oracle that is kept secret

from the adversary. This mean that, for each execution of the protocol,

the adversary cannot guess the authenticator better than at random, unless

the same partial transcript (id, S,A, B, C) appeared in some another session

with a real instance. But this case, the partial transcript collision, has been

excluded in G2.

Under the DDH assumption, because the adversary can not know any-

thing about the partial Diffie-Hellman key exchange information which comes

from a secret random oracle, he can distinguish the real session key and the

random key only with negligible probability. Thus we can conclude that

Pr[Succss−auth
3 ] ≤ 1

2
+

AdvDDH
G,g (t)

2

The case for the event Succauth
3 is similar. Thus,

Pr[Succauth
3 ] ≤ 1

q

Game G4: In this game, we want to introduce a random challenge (gx, gxy)

into our simulation, where x and y is chosen randomly in Zq. In particular,

we will try to compute gy from (gx, gxy).

We insert the challenge (gx, gxy) into a random instance of the simulation

of the device D. In particular, we choose a random device instance, Dα,

uniformly and randomly in the set of all device instances involved in the
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Figure 5.3: Game 3
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simulation. Then we use gx to replace ga in the Dα instance. Since x is

a random element chosen from Zq, Dα is indistinguishable from the other

device instances from the adversary.

We introduce the other part of challenge, gxy into the simulation of the

hash oracle H0. When the input of H0, (id, S, A, B, vk) meets A = gx, we

answer the hash oracle query as following : We first select a random value

v in Zq, then set the response of H0 to gxv probability 1/2 or set the the

response of H0 to gxv · gxy with probability 1/2.

When A 6= gx, the behavior of H0 is the same as the original one. When

A = gx, one can find thatthe output of H0 is still a random element in G. Its

execution should be still indistinguishable from an execution of the original

one.

Notice that once we introduce the random challenge (gx, gxy) into our

simulation, for any partial transcript (A = ga, B, C) used by an device

instance(and thus A = ga was simulated), we can bound the probability

that there exist two distinct passwords pw1, pw2 (and correspondingly val-

ues vk1, vk2 and PW1,PW2) such that (id, S,A, B, C, (C/PW1)
−a, vk1) and

(id, S,A, B, C, (C/PW2)
−a, vk2) have both been queried to H1 or H2 oracle.

Formally, define the event

• ColH - which occurs if for some partial transcript (A = ga, B, C) used

in a communication by a device instance, there exist two valid element

PW1 = H0(id, S,A, B, vk1) and PW2 = H0(id, S, A, B, vk2), such that
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both (id, S, ga, B, C, (C/PW1)
−a, vk1) and (id, S, ga, B, C, (C/PW2)

−a, vk2)

have been queried to H1 or H2.

Then we claim that Pr[CollH] ≤ 2(qactive+qpassive)(qH1+qH2)
2AdvCDH

G,g (t+

ε)

Proof. Since the partial transcript is used by a device instance, we have

that A = ga = gx with probability 1/(qactive + qpassive). Suppose to be in the

execution where gx is used, then we have PW1 = H0(D, S, A,B, vk1) = gxv1

or gxv1 · gxy ,and PW2 = H0(D, S, A,B, vk2 = gxv2 or gxv2 · gxy. With prob-

ability 1/2, PW1 and PW2 were generated from different forms. (one from

gxv and the other from gxv · gxv. Wz.o.l.g, let PW1 = gxv1 and PW2 =

gxv2 · gxy). By the definition, both (id, S, ga, B, C, (C/PW1)
−x, vk1) and

(id, S, ga, B, C, (C/PW2)
−x, vk2) have been queried. Now consider the value

(C/PW1)
−x

(C/PW2)−x
= (

PW2

PW1

)−x = (
gxv2 · gxy

gxv1
)−x =

gv2 · gy

gv1

Then we can compute gy = ( (C/PW2)−x

(C/PW1)−x ) · gv1 · g−v2 .

It tells that if the event CollH happens, one can compute gy by first com-

puting all possible answers and choosing a random one for the output. The

probability that gy has been outputted correctly is 1
2·(qactive+qpassive)·(qH1

+qH2
)2

.

We halt the simulation and claim the adversary is successful if CollH

occurs. Then we have

|Pr[Succss−auth
4 ]−Pr[Succss−auth

3 ]| ≤ 2(qactive+qpassive)(qH1+qH2)
2AdvCDH

G,g (t+ε)

|Pr[Succauth
4 ]−Pr[Succauth

3 ]| ≤ 2(qactive + qpassive)(qH1 + qH2)
2AdvCDH

G,g (t + ε)
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where ε is the time for O((qH1 + qH2)
2) group operations.

The detail of the simulation is in Figure 5.4.

Game G5: Since the password is actually never used in the simulation, we

may choose it at the very end of the simulation. Thus, the entire simulation

is basicly independent from the chosen password. In fact the security of the

protocol only depends on the public parameters.

Before evaluating the probability of the event AskH, notice that we have

excluded the collisions of partial transcript, the events AskH can be split

into three mutually-exclusive sub-events:

• AskH−Passive : it means that the transcript ((id, A = ga, B), (S, C =

gac), (Auth, gd)) comes from an execution between instances of servers

and devices and the tuple (id, S,A = ga, B, C = gxc, (C/PW )−a, vk)

have been queried to H1 or H2. With probability of 1/(qactive+qpassive),

this transcript is used by Dα (A = gx) so that (C/PW )−x is in the hash

record. Notice that PW can be gxv or gxv · gxy.

With probability of 1/2, PW = gxv · gxy, consider the value

(
C

PW
)−x = (

gxc

gxvgxy
)−x =

gc

gvgy
)

Then we can compute gy = gc

gv ·(C/PW )−x .

Since we can compute all possible value in H1 − list and H2 − list

and randomly select one of them for the answer. There are at most

(qH1+qH2) such possible answers. It follows that Pr[AskH−Passive] ≤
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Figure 5.4: Game 4
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2(qactive + qpassive)(qH1 + qH2)AdvCDH
G,g (t + ε′) where ε′ is the time to

compute (qH1 + qH2) possible answers, O((qH1 + qH2) group operations.

• AskH−WithDevice : it means the transcript ((id, A,B), (S, C), (Auth, gd))

comes from an execution in which a device instance is attended, but

(S, C) has not been sent by and instance of servers. This means that

A, B has been simulated but C has been created by the adversary. Since

we excluded the event CollH, for any (A, B, C) involved in a transcript

with an device instance, there is at most one pw (and correspondingly

vk) such that PW = H0(id, S,A, B, vk) and the corresponding hash

query is made: the probability over a random password chosen at the

very end only is pw less than qactive/N . So we have

Pr[AskH −WithDevice] ≤ qactive/N

• AskH−WithServer : it means the transcript ((id, A,B), (S, C), (Auth, gd))

comes from an execution in which a server instance is attended, but

(id, A,B) has not been sent by and instance of servers. This means

that C has been simulated but A, B has been created by the adversary.

A success query on this input may correspond to an attack where the

adversary tries to impersonate the device. But each authenticator sent

by the adversary can be related to at most one pw. But we choose and

set vk, sk at the very end only, we have :

Pr[AskH −WithServer] ≤ qactive/N
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Now we can bound event AskH by

Pr[AskH] ≤ 2(qactive+qpassive)(qH1+qH2)AdvCDH
G,g (t+ε′)+qactive/N+qactive/N

where ε′ is the time for O((qH1 + qH2) group operations.

Combine all the equations above, one gets

Advss
PAKE−SPD(A) ≤ AdvDDH

G,g (t) + 2 · (+1
q

+ 4(qactive + qpassive)(qH1 +

qH2)
2AdvCDH

G,g (t+ ε)+4(qactive + qpassive)(qH1 + qH2)AdvCDH
G,g (t+ ε′)+ 4qactive

N
+

4(qactive+qpassive)
2

2q
+

2q′2H0

2q
)

and

Advauth
PAKE−SPD(A) ≤ 1

q
+ 2(qactive + qpassive)(qH1 + qH2)

2AdvCDH
G,g (t + ε) +

2(qactive+qpassive)(qH1 +qH2)AdvCDH
G,g (t+ε′)+ 2qactive

N
+(qactive+qpassive)

2/(2q)+

q′2H0
/2q.

where ε is the time for O((qH1 + qH2)
2) group operations, ε′ is the time

for O((qH1 + qH2) group operations, and q′H0
= qH0 + qH1 + qH2 .

Forward Security

As the following theorems states, PAKE-SPD can provide forward security,

it means that even if the adversary has corrupted some user and got his

password, the past communication, namely the session key exchanged before,

is still semantic security to the adversary.

Theorem 2 (Forward Security) Consider the protocol PAKE-SPD

over G which is a cyclic group of prime order q, generated by g. Let Dict be

an uniformly distributed dictionary of size N . For any adversary A within a
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time bound t, with less than qp passive eavesdropping, and ask qH0, qH1, qH2

hash queries to H0, H1, H2 respectively, we have :

Advfs
PAKE−SPD(A(pw)) ≤ AdvDDH

G,g (t)+2·(qp(qH0+qH1)AdvCDH
G,g (t+O(1))+q2

H0
/2q)

where O(1) is used to choose a random answer from the H1 or H2 list.

Proof. Recall that to model the forward security, we provide the password

for the adversary but disallow the adversary to query Send oracle, since

the adversary can not communicate with the parties involved in the past

transcript.

As in Theorem 1, the proof goes from a sequence of game reductions. For

each game Gn, we define an event Succfs
n corresponding to the case in which

the adversary break the forward security (to distinguish a session key used

by some fresh instance from a random key). Formally, Succfs
n occurs if the

adversary correctly guesses the bit involved in the Test query.

Game G0: The is the real protocol in the random oracle model, which

starts by choosing a random pw and then give ps to the adversary. The key

pair (vk, sk) is generated from pw. By the definition, we have

Advfs
PAKE−SPD(A(pw)) = 2 · Pr[Succfs

0 ]− 1

Game G1: In this game, we modify G0 by simulating all oracles as in the

real attack. This game is perfectly indistinguishable from the real game,

Thus

Pr[Succfs
1 ] = Pr[Succfs

0 ]
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Game G2: Now, we halts the simulation if there is a collision on the output

of H0. According to the birthday paradox, the probability of this collision is

bounded by q2
H0

/2q. Consequently,

|Pr[Succfs
2 ]− Pr[Succfs

1 ]| ≤ q2
H0

/2q

Game G3: We now modify the way to generate the partial Diffie-Hellman

key exchange information and the authenticator. In particular, both them

are now generated randomly, do not depend on the transcript or the pass-

word. Since the partial Diffie-Hellman key exchange information and the

authenticator are both the output of the random oracles H1 and H2 and A

can not query Send oracle. This implies that G3 and G2 are indistinguish-

able as long as the adversary does not explicitly query H1 or H2 on input

(id, S, A = ga, B = gb, C, (C/PW )−a, vk). Let AskH denote the event that

adversary do such query, Formally, we define

• AskH - (id, S, A = ga, B = gb, C, (C/PW )−a, vk) has been queried by

the adversary to H1 or H2 for some transcript (id, A,B), (S, C), (gd, Auth).

Thus,

|Pr[Succfs
3 ]− Pr[Succfs

2 ]| ≤ Pr[AskH]

After this modification, we knot that b is simulated and kept secret to

the adversary and the partial Diffie-Hellman key exchange information, gd, is

randomly generated, the question for the adversary to distinguish the session
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key gbd from a random key is exactly a DDH problem, Thus we have

Pr[Succfs
3 ] ≤ 1

2
+

AdvDDH
G,g (t)

2

Game G3: To show that Pr[AskH] is small enough, we need to introduce

a random challenge (gx, gxy) into our simulation, where x and y is chosen

randomly in Zq. In particular, we will try to compute gy from (gx, gxy).

We insert the challenge into some random partner instances. In partic-

ular, let (Dα, Sβ) be the random partner instances we select. Then we use

gx to replace A = ga in (Dα and use gxy · PW to replace C = gac · PW in

Sβ. One can find such such replacement give the same distribution of the

transcript. Thus, the partner instances (Dα, Sβ) are indistinguishable from

the other partner instances.

If AskH occurs, it means that the adversary has queried (id, S,A =

ga, B = gb, C, (C/PW )−a, vk) to either H1 or H2 for some transcript ((id, A, B), (S, C), (gd, Auth)).

With the probability of 1/qp, this transcript is generated by (Dα, Sβ). Thus

we have A = gx and C = gxy · PW . Further, (C/PW )−x = gy and we get

the answer for the random challenge.

Thus, if AskH occurs, one can answer the random challenge by randomly

choosing a answer from H1 or H2 list. Under the CDH assumption, we have

Pr[AskH] ≤ qp(qH0 + qH1)AdvCDH
G,g (t + O(1))

where O(1) is used to choose a random answer from the H1 or H2 list.
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Combine all the equations above, one gets

Pr[Succfx
0 ] ≤ AdvDDH

G,g (t) + 2 · (qp(qH0 + qH1)AdvCDH
G,g (t + O(1)) + q2

H0
/2q)

where O(1) is used to choose a random answer from the H1 or H2 list.

Password Protection

As the following theorems states, the public computer can not learn anything

about user’s password after some executions of the protocol.

Theorem 3 (Password Protection) Consider the protocol PAKE-SPD

over G which is a cyclic group of prime order q, generated by g. Let Dict be

an uniformly distributed dictionary of size N . For any adversary A within a

time bound t, with less than qp executions of the protocol, and ask qH0, qH1,

qH2 hash queries to H0, H1, H2 respectively, we have :

Pr[Succpp
0 ] ≤ 1

N
+ 2(qp)(qH1 + qH2)AdvCDH

G,g (t + ε) +
q2
p

2q
+

q′2H0

2q

where ε is the time cost for O(qH1 + qH2) group operations and q′H0
= qH0 +

qH1 + qH2.

Proof. First notice that the only randomness which the public computer

may decide is the choice of B = gb. We will use similar game reductions as

we used to prove Theorem 1. In particular, we define games G0, G1, G2 in

the same manner as in the proof of Theorem 1. By a similar reasoning, one

gets
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Pr[SUCCpp
1 ] = PR[SUCCpp]

|Pr[SUCCpp
2 ]− Pr[SUCCpp

1 ]| ≤
q2
p

2q
+

q′2H0

2q

where q′H0
= qH0 +qH1 +qH2 and the event SUCCpp

n occurs if the adversary

correctly guess the password in the game Gn.

In the game G3, since we control the behaviors of the device and the

server, we can find that the common secret K = K ′ = gc do not depend on

B. By a same reasoning, games G3 and G2 are indistinguishable unless event

AskH happens. Notice that in G3, the adversary can compute the session

key by (gd)b, but what we care is the protection of user’s password pw. We

define the same event AskH , thus,

|Pr[SUCCpp
3 ]− Pr[SUCCpp

2 ]| ≤ Pr[AskH]

Game G4 is the same as in the proof of Theorem 1. However, we don

not need to exclude the event ColH anymore because A can not control the

device or the server. Thus,

Pr[SUCCpp
4 ] = Pr[SUCCpp

3 ]

Game G5 is also the same as in the proof of Theorm 1. Since in each

transcript ((id, A,B), (C, S), (Auth, gd), A and C are simulated, the only

element that the adversary can control is B. Thus, we can make sure that

AskH−WithDevice and AskH−WithServer will not occurs. Consequently,

50



AskH = AskH − Passive and one get Pr[AskH − Passive] = 2(qactive +

qpassive)(qH1 +qH2)AdvCDH
G,g (t+ε) from a same reasoning in Theorem 1, where

ε is the time cost for O((qH1 + qH2)) group operations.

Recall that in G5, the choice of the password is at the very end of the

simulation. Thus the adversary will outputs his guess before we choose the

real password. It means that Pr[Succpp
5 ] = 1/N , where N is the size of the

dictionary .

Combine all equations, we have

Pr[Succpp
0 ] ≤ 1

N
+ 2(qp)(qH1 + qH2)AdvCDH

G,g (t + ε) +
q2
p

2q
+

q′2H0

2q
,

where ε is the time cost for O(qH1 + qH2) group operations and q′H0
= qH0 +

qH1 + qH2 .

On the Lost of the Secure Device Notice that we store only sk′ = x+ t

and vk′ = gx+t in the secure device, where t is a random value chosen from

Zq. In particular, the original password-corresponding key pair (vk, sk) is

masked by t. t should be chosen each time a secure device is registered for a

user.

If an adversary has stolen user’s secure device, he can obtain (vk′, sk′)

and use this device to perform password authentication. However, he can

not get user’s password or (vk, sk) since he don’t know the value t. once

the user find his device lost, he can perform the password authentication

and login the server without the secure device, then he can tell the server to
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revoke the lost secure device by deleting (sk = x + t, vk = gx+t. Thus the

adversary can not login the system anymore. Finally, the user can register a

new secure device by securely share a new random t′ ∈ Zq with the server.

(sk = x + t′, vk = gx+t′ will be the new masked key pair.
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Chapter 6

Conclusions

For the combination of the traditional password authentication and the mo-

bile device, we give a solution by presenting a three-parties password-based

authenticated key exchange protocol named PAKE-SPD. We modified the

security model in [CPP04] to fit our scenario and discussed some security

notions, including the semantic security and the forward security of session

keys, the protection of user passwords and the authentication. The main idea

of these security notions is to prevent anyone to gain any useful information

about user’s passwords or session keys. We prove the security of our proto-

col PAKE-SPD formally in the random oracle, assuming DDH and CDH

holds. Consequently, in the execution of PAKE-SPD, the session keys, the

authentication and the passwords are protected well.

When the authentication is performed by the secure device, one can find

that the authentication data used in the protocol is (sk′ = x + t, gx+t).

sk = x = f(pw) and password pw is chosen from a small dictionary of size

N , but t is chosen randomly from Zq. Then sk′ = x + t is actually a random
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element in Zq. In the other word, we extend the size of the dictionary with the

randomness t, from a relative small size of N , to the size of Zq. Thus, PAKE-

SPD can against the online dictionary attack if we force the authentication

must be performed by the secure portable device.

A main drawback of PAKE-SPD is the computational cost of the devices.

Since a mobile device is made for a user to carry with him. it should be

lightweight and then have a low computational power. In PAKE-SPD,

it requires about three power operations in a modular group, three hash

operation and one sign operation. We can reduce the power operations by

pre-computing [BPV98]. However, it is usually a memory-speed trade-off. A

better solution should be to design a protocol such that less operations are

required for the device.
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Appendix A

PAKE-SPD in the Symmetric
Password Model

One can modify the protocol described in chapter 4 to get a simplified pro-

tocol which is executed in the symmetric password Model. The basic idea is

to use the message authentication code to replace the signature.

Password Setting in the Symmetric Password Model

Let p be a large prime number such that the discrete logarithm problem

defined in Z∗
p is hard and let G ∈ Z∗

p be a cyclic subgroup of prime order

q, where g is a random generator of G. We assume that for each server,

a user has a identity id and corresponding password pw chosen from the

dictionary. We then use a random string t to enhance the original pw and

get pw′ = f(pw, t) as the enhanced password, where f is some hash function.

In this protocol, each user only remember his identity id and password

pw, and his secure portable device carries the enhanced password pw′. The

server has both user’s password pw and the enhanced password pw′.
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Password-base Authenticated Key Exchange with the
Secure Portable Device in the Symmetric Password Model

The description of our protocol is given in Figure A.1, where H0, H1, H2

are random oracles. One can notice that in the environment with the se-

cure portable device, the execution of the protocol actually uses only the

enchanced password pw′. The original password pw is not used.

Password-base Authenticated Key Exchange without the
Secure Portable Device in the Symmetric Password Model

In a similar manner, the user should key-in his identity and password on the

public computer if he did not bring the secure portable device. Thus, the

public computer can use this password to execute the protocol.The descrip-

tion of the protocol is given in Figure A.2

The Security of Password-base Authenticated Key Ex-
change with the Secure Portable Device in the Symmet-
ric Password Model

We can use a similar proof for PAKE-SPD in the asymmetric password

model to prove the security of PAKE-SPD in the asymmetric password

model. In particular, one can use another secure random oracle H ′′
1 to replace

H ′
1 in the proof. H ′′

1 takes the same input as H ′
1 but the output of H ′′

1 is not

a random signature but a random message authenticated code. The message

authenticated code which generated by a secret random oracle is still random

to the adversary. Thus, the other parts of the security analysis are the same.
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Figure A.1: Password-base Authenticated Key Exchange with the Secure
Portable Device in the Symmetric Password Model
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Figure A.2: Password-base Authenticated Key Exchange without the Secure
Portable Device in the Symmetric Password Model
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In the asymmetric password model, the server does not exactly know

user’s password but a transformed password. To get user’s password, the

server must perform offline dictionary attack on the transformed password.

This kind of attack can be prevented if the user chose his password carefully.

In fact, to choose a strong password is recommended for the password au-

thentication today. There are many methods to test if a password is strong

enough and one can make sure that this password does not appear in any

existing dictionaries. However, in the symmetric password model, the server

holds user’s password. Thus not matter how strong the password is, we can

not prevent that a server may use user’s password to login some other server.

The user should choose different and irrelative passwords between different

servers.
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