Bl % A 2

FYFVR] S T R

el

i

&=

Yrae 2 2 T ;E

A PMC 55 T % G

11\14
m

Local Diagnosability of Star‘Network under PMC Model

SR L

TES R SN 2

s N e 3 F A4k



B PMC B8 T 45 KB AP ET 4 277
Local Diagnosability of Star Network under PMC Model

LSl N T Student : Shang-Jung Chuang
SR R RE Advisor : Jimmy J.M. Tan

= 4% e

R
k]

= IF e
-
R
gt
o+
=

A Thesis
Submitted to Institute of.Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
June 2006

Hsinchu, Taiwan, Republic of China

PEARA LT ERD



Local Diagnosability of Star Network under PMC
Model

Student : Shang-Jung Chuang Advisor : Jimmy J.M. Tan

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract
Under the PMC model, we introduce a new measure of diagnosability, called local
diagnosability, and derive a structtre for determining whether a node of a system is
locally t-diagnosable. For star graph, we prove that the local diagnosability of each
node is equal to its degree under the PMC model. Then, we propose a concept for
system diagnosis, called strong local diagnosability property. A system G = (V,E) is
said to have a strong local diagnosability property, if the local diagnosability of each
node is equal to its degree. We show that an n-dimensional star graph S, has this
strong property, n > 3. Next, we study the local diagnosability of a faulty star graph.
We prove that S, keeps this strong property even if it has up to n-3 faulty edges.
Furthermore, we prove that S, keeps this strong property no matter how many edges
are faulty, provided that each node of a faulty star graph S, is incident with at least
two fault-free edges. Besides, we propose a new diagnosasis algorithm whose time
complexity is O(NlogN) where N is the number of nodes in a system.

Keywords :local diagnosability, PMC model, strong local diagnosability property.
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Chapter 1

Introduction

Recently, high-speed multiprocessor systems have become more and more popular in
computer technology. The reliability of the processors in a system is significant since even
few faulty processors may cause the system failure. Whenever processors are found faulty,
we should replace the faulty ones.with fault-free ones to maintain the reliability of the
system. Identifying all the faulty precessors.-of a system is called diagnosis of the system.
The maximum number of faulty proeessors that can be ensured to be identified is called
the diagnosability of the system. A system G is t-diagnosable if all the faulty processors
can be precisely pointed out given that the number of faulty processors is at most t. The

maximum number ¢ for which G is ¢t-diagnosable is called the diagnosability of G.

The problem of identifying faulty processors in a multiprocessor system has been
widely studied in literatures [1] [10] [12]. The base of this area and the original diagnostic
model were established by Preparata, Metze and Chien [1]. This model, known as the
PMC model, has been extensively studied [1], [7], [8], [9]. In [13], Hakimi and Amin
proved that a system is t-diagnosable if it is t-connected with at least 2t + 1 nodes. They

also gave a necessary and sufficient condition for verifying if a system is t-diagnosable



under the PMC model.

Following the diagnosis model above, most previous studies focused on the diagnosis-
ability of a system in a global sense, but ignored some local systematic details. A system
is t-diagnosable if all the faulty processor can be identified whenever the number of faulty
processors is at most t. However, it is possible to correctly point out all the faulty pro-
cessors in a t-diagnosable system when the number of faulty processors is greater that
t. For example, consider two arbitrary multiprocessor systems which are m-diagnosable
and n-diagnosable, respectively, where m and n are integers and m > n. A new system
can be generated by integrating these two systems with few communication links is some
way. The diagnosability of this new system is upper bounded by n, but it is possible to
identify all the faulty processors if‘the number. of the faulty ones is between m and n.

Thus, if only considering the global status, we losé some local details of the system.

In the paper, we aim to propose a-new-definition called local dianosability. There
is a strong relationship between the-local diagnosability and the traditional global one.
For this local sense, we focus more on a single processor, and require only identifying
the status of this particular processor correctly. More specifically, every processor in a
system has its own local diagnosability. Under the PMC model, we propose a suffucient
condition to determine the local diagnosability of a given processor z. For most practical
multiprocessor systems, the number of links connecting to each processor is in the order of
logN, where N is the total number of processors. The time complexity of our algorithm to
diagnose a given processor is bound by O(log N) and to diagnose all the faulty processors
in a system with N processors is bound by O(log N) under the PMC model, provided

that there is a substructure H(x;n) we will introduce.



Chapter 2

Preliminaries

2.1 Star graph

An n-dimensional star graph, alsoaeferred to‘as an n-star or S, is an undirected graph
consisting of n! nodes and (n = 1)n!/2 édges. [5]. Each node is uniquely assigned a label
a1y . . . Ay, - . . G, which is a distinct| permutation of the set of symbols {aq,as, ..., a,}.
Without loss of generality, let this symbol set:be the set of integers {1,2,...,n}. Two
nodes are linked by an edge labeled ¢ if and only if the label of one node can be obtained
from the label of another node by interchanging the first symbol with the ¢ th symbol,
2 < i < n. For example, in a 4 — star containing 4! nodes, two nodes 1234 and 4231 are
neighbors and joined through an edge labeled 4. In S,, each node is connected to n — 1
neighbors by n — 1 edges. Each S,, can be decomposed into n(n — 1)-dimensional star
graph S,,_;. We denote the (n — 1)-dimensional star graph by S’ _; whose n th symbol is

1, for 0 <i <n—1. A 4-star graph S is shown in Fig 2.1.

Lemma 1 [1/] There are no 3-cycles and 4-cycles in a star graph.



Figurte 2.1: The 4-star graph Sy

2.2 The PMC Model

For all of the multi-processor systems, we wish we could search all the faulty nodes in
the multi-processor system efficiently. Several diagnosis models were proposed to identify
those faulty nodes in the multi-processor system. PMC model is one of them provided
with the self-diagnosed ability. Every node in the system can send a signal to each of his
neighbors, and receive the return signal from them. For instance, there is an edge (u,v)
implies that u can test v by checking the response send by v, and v also can test u. After

the testing, the result is either 0 or 1 of u testing v. We assume that u is fault-free, then



the result would be 0 if v is fault-free. Otherwise, the result is 1. However, the result is

undependable if u is a originally faulty node. Here are all possible results of u test v in

Table 2.1.

Figure 2.2: r(u, v) is the result of u testing v

After the whole process, we have a binary sequence called syndrome. The first thing
we want to ask is how to find out the faulty nodes from the syndrome. According to

previous researches, we can make it if there are not so many faulty nodes in the system.

Theorem 1 For every two distinct subsets of nodes Fy and Fy, (Fy, Fy) is a distinguish-

able pair if and only if at least one of the following conditions is satisfied (as illustrated

in Fig. 1):

Ju eV — Fy — Fy and v € F1AF, such that (u,v) € E.



Figure 2.3: illustration of Theorem 1 - the distinguishability of two distinct subsets of
nodes.

Theorem 2 A system with N nodes is t-diagnosable if

1) N >2t+1,

2) each node has order at least b and -

3) for each U C'V such that | L : 10<p<t—1,|T(G,U) |>p.



Chapter 3

Local diagnosability

The traditional diagnosability of a system is discussed in a global point of view. We can
also call it global diagnosabiliy. There were some researches which neglected the local
viewpoint discussing the global diagnosability ow well-known systems. In this paper, we
propose a new definition called local diagnosability emphasizing the diagnosability of a
node. For example, for any two integérsn-and n/with m > n > 4, the diagnosability of
two hypercube @), and @), is m and.n, respectively. However, the diagnosabiliy of the
graph which is combined by @), and @),, is n at most. We observe that the diagnosability
of a integral system is the worst cast of two previous systems. It is desirable to take notice
of some local part or one single node of a system, where the local diagnosability of the

node is not as low as the global diagnosability of the whole system.

Definition 1 A system G(V, E) is locally t-diagnosable at node x € V(G) if, given a
test syndrome op produced by the system under the presence of a set of faulty nodes F
containing node x with |F| < t, every set of faulty nodes F' consistent with or and

|F'| <'t, must also contain node .



As expected, the main purpose of the following property is to identify whether a system

is locally t-diagnosable at a particular node.

Proposition 1 A system G(V, E) is locally t-diagnosable at node x € V(G) if, for each
pair of distinct sets Fy, Fy C V(G) such that Fy # Fy, |Fi|,|Fy] < t, and v € F1AF,

(F1, Fy) is a distinguishable pair.

Then, we define the local diagnosability of a given node as follows.

Definition 2 The local diagnosability t,(z) of a node x € V(G) in a system G(V, E) is

defined to be the mazimum number of t for G being locally t-diagnosable at x, that is,

ti(x) = max{t'| Giislocally.t = diagnosable at x}.

The concept of a system being local diagnosability is consistent with the global one.

The relationship between them is as‘follows.

Proposition 2 A system G(V, E) is t-diagnosable if and only if G is locally t-diagnosable

at x, for every v € V(G).

Obviously the local diagnosability is discussed in much more detail than the global
one. It is not enough that only the global diagnosability of the whole system is decided,
while the local diagnosability of every single node can be observed. In the following, we
propose a condition to verify whether a system G is locally ¢-diagnosable at a given node

x.

10



Theorem 3 A system G(V, E) is locally t-diagnosable at a given node x € V(G) if, for
every set of nodes S C V(G), |S|=p, 0 <p<t—1, andx & S, the component C, of

G — S contains x satisfying |V (Cy,)| > 2(t —p) + 1

Proof. To prove that |V(C,)| > 2(t — p) + 1 is necessary, we show this by contradiction.
That is, |V(C;)| < 2(t — p). We then arbitrarily partition C, into two disjoin subsets,
Cp = AU A, with |[A;] <t—pand |Ay] <t—p. Let F; = A;US and F, = AyUS. Then,
|Fi| < tand |Fy| < t. It is clear that there is no edge between V' — (Fy U Fy) and F1AF,.
By Proposition 1, F} and F; are indistinguishable. This contradicts the assumption that

G is locally t-diagnosable at a given node x € V(G).

Furthermore, on the contrary, that G is not t-diagnosable at x € V(G). That is, there
exists an indistinguishable pair (F{, Fy)-with W/} < t and F;, < ¢, and x € F;AF,. By
proposition 1, there is no edge between V.= (F UFy)-and F1AF,. Let S = FiNFy. Thus, in
G — S, F1AF, is disconnected from from other parts. We observe that |F1AF,| < 2(t—p),
where |S| = p and 0 < p <t — 1. Therefore, there is at least one component C, of G — S
contains x with V(C,) < 2(t — p), which is a contradiction. This completes the proof of

the theorem.

Though the theorem given above seems very strong, it is not useful to calculate the
local diagnosability of a node in a system. We propose a effective algorithm which has
time complexity O(N log N) is better than the previous result. First of all, we introduce

a structure that we will use frequently.

Definition 3 Let x be a node in a graph G(V,E). For n < degg(x), an substructure

H(xz;n) of order n at node x is defined as H(x;n) = (V(z;n), E(z;n)), where the set

11



Figure 3.1: subgraph H(z;n) of G of order n at node x.

of nodes V(x;n) = {a} U{v; | 1 <i < n, 1< j <2} and the set of edges E(z;n) =

{(@,vp1), (g1, vp2) | 1 < k <}

The structure is common in many well-known systems like hypercube and star graph.
We say that there is a substructure H(aizm) C G at node z if G contains H(z;n) of order

n at node x as a subgraph.

Theorem 4 Let x be a node in a system GV aE ). -The local diagnosability of x is at least

n if there exists H(x;n) C G at x.

Proof. We use Theorem 3 to prove this result. It is clear that |V (H(x;n))| > 2n + 1.
H(z;n) will lose one nodes when vy is removed but two nodes when vy is removed, for
1 <k <n. It means H(x;n) will lose two nodes at most when a node which is not x is
removed. In other words, for any set of nodes S C V/(G), |S| =p,0<p<n—1,andx ¢ S.
After S is removed, the number of nodes of H(z;n) is not less than 2n+1—2p = 2(n—p)+1.

By Theorem 3, the local diagnosability of x is at least n.

Proposition 3 Let x be a node in a system G(V, E) with degs(x) = n. The local diag-

nosability of x is at most n.

12



Proof. We prove it by contradiction. That is, the local diagnosability of x is n + 1 at
least. Consider two sets of nodes S7 and Sy, where S; contains node x and all neighbors
of x, and Sy contains all neighbors of . There is no edge between G — 57U .S, and S1ASs.
We can see that Sy and Sy are indistinguishable since |S1| = n+ 1 and |S3| = n, which is

a contradiction. Therefore, the proposition is hold.

By Theorem 4 and Proposition 3, we have the following result.

Theorem 5 Let x be a node in a system G(V, E) with degg(x) = n. The local diagnos-

ability of x is n if there exists an substructure H(x;n) C G at x.

Theorem 5 is more useful than Theorem 3 to estimate the local diagnosability of a node
in a system, while the substructure H (z;n) exists. However, the substructure H (z;n)
does exist in most well-known-systems even the systems lose some links. This is very
comforting that we can easilytestimate“the local diagnosability of many multiprocessor
systems and interconnection networks. In the paper, we show that the diagnosability of
every node in star graph S, is equal to its degree since missing links are not greater than

n — 3.

Definition 4 Let G = (V,E) be a graph and v € V be a vertex. The vertex v has the

strong local diagnosability property if the following condition holds:
t1(v) = deg(v)

Definition 5 Let G(V, E) be a graph. G has the strong local diagnosability property if

the following condition holds:

Yv € V(G), the vertex v has the strong local diagnosability property.

13



By Definition 5 and Definition 6, we have the following proposition.

Theorem 6 A n-star-structured system S,, has the strong local diagnosability property,

n > 3.

Proof. We prove this by induction on n. Since an n-dimensional star graph S,, is vertex-
symmetric, we can concentrate on the construction of H(z;n — 1) structure at a given
node x. For n = 3,deg(v) = 2 and it is clear that S5 contains H(x;n — 1) of order 2
at node z. As the inductive hypothesis, we assume that S,,_; contains H(x;n — 2) of
order n — 2 at each node, for some n > 4. Now we consider S,,, S,, can be decomposed
into (n — 1) subcomponents S° ,, S} | ... and S"~| by some dimension. Without loss
of generality, we may assume that the node ms€ SY ;. By the inductive hypothesis,
SO | contains H(z;n — 2) of order m — 2 at‘node z. There exists a node ) n another
subcomponent which is the neighbor of-@-i-—Node (1) has an adjacent neighbor that is
its subcomponent due to deg(z")/=mn, where n > 3. Thus, S, contains H(z;n — 1) of

order n — 1 at node x. By Theorem 5, Definition 4 and Definition 5, S,, has the strong

local diagnosability property.

Theorem 7 Let S, be an n-dimensional star graph with n > 3, and S C E(S,) be a set
of edges, 0 < |S| < n —2. Removing all the edges in S from S,, the local diagnosability

of each node is still equal to its remaining degree.

Proof. We prove this by induction on n. Forn =4,0 < |S| < 1, if |S| = 0, it is clear that
S, contains H(x;3) of order 3 at every node. It is a routine work to see that every node

has a structure H (z; k) of order k at it, where k is the remaining degree of the node. As

14



the inductive hypothesis, we assume that the result is true for S,,—1,0 < |S]| < (n—2) —2,
for some n > 4. Now we consider S,,0 < |[S| < n —2. If |[S| = 0, refer to the proof
of Theorem 6, S, contains a structure H(x;n — 1) of order n — 1 at every node. If

1 <|S| €< n—2, we have two cases to discuss.

Case 1: S C 5! |, forsome 0 < ¢ < n—1. It means that S is totally in a n—1-dimensional
star graph component and other components are fault-free. Without loss of generality,
we assume that S C SY ;. Let z be a node in S°_,. Consider H(z;n — 1) = (V(x;n —
1), E(x;n—1)), where the set of nodes V(z;n—1) = {z}U{v; |1 <i<n—-1,1<j <2}
and the set of edges E(x;n—1) = {(z,vr1), (vg1, vk2) | 1 < k < n—1}. If there are q edges
of N = {(z,v11) | 1 <k <n—1} which are removed, for 1 < g <n -3, H(z;n—1—q)
still exist. It means that we don’t have to care about the edges which are subset of N. Let
M be the set {(vg1, vg2) | 1 < B2 n—1} andilet R C M be another set, 1 < |R| <n—3.
If R is removed, we do care about if H{(a;b) is destroyed or not, for some 1 < b <n — 3.
Without loss of generality, R contains (vi1,vig).and (va1,v92). After removing (viy, v12)
and (v, va2), there exists one node i adjacent v1; in S¢_,, and j adjacent vy; in Sg_l, for
1<c<n-—1,1<c¢<n-—1. Bylemma xx, there is no 4 cycle in star graph, so ¢ # j.

Thus, the structure H (z;b) is hold.

Case 2: Otherwise, let the the number of missing edges in each Sﬁhl is M;,0 < M; <
n—4,i <0 < n—1.Without loss of generality, consider the node d in S?_,, and we ignore
the edges which are adjacent to another S,,_; component. By the inductive hypothesis,
there exists H(d;q) in SY_,, 1 < ¢ < n — 2. If there is no node in S’ , adjacent to d,
1 <@ < n—1, the local diagnosability of d is equal to its degree.Otherwise, there is a

node b in S'n — 1 adjacent to d, for some 1 < i < n — 1. Without loss of generality, d is

15



in S,Ll and 0 < M; < n —4. We can sure that there are at least two nodes adjacent
b.Thus, H(x;q+ 1) does exist and the local diagnosability of d is equal to its degree. This

completes the proof of the theorem.

Corollary 1 Let S, be an n-dimensional hypercube with n < 3, and S C E(S,) be a set

of edges, 0 < |S| <n—2. Then S, — S has the strong local diagnosability property.

16



Chapter 4

Conditional Fault Local
Diagnosability

In previous section, we know that S, does.not have the strong local diagnosability por-
perty, if there are n —1 faulty edges; all thesedaulty edges are incident with a single vertex
and this vertex is incident with-only fault-free edge.= Therefore, we are led to the following
question: How many edges can-be removedifrom S, such that S, keeps the strong local
diagnosability property under the conditional that each vertex of the faulty star graph S,

is incident with at least two fault-free edges?

Theorem 8 Let S,, be an n-dimensional hypercube with n > 3, and S C E(S,,) be a set
of edges. Assume that each vertex of S, — S is incident with at least two fault-free edges.
Removing all the edges in S from S, the local diagnosability of each vertex is still equal

to its remaining degree.

Proof. For any node x in 5, we assume the degree of x is ¢ and all its neighbors are
denoted by {a1, as, ...,a,}. Each of a; has at last two neighbors, for 1 < i < g. Let b; be

the neighbor of a;, and b; # x. By lemma 1, we can sure that b, and b, have no common

17



neighbor and b, # b,, for 1 < p < g, 1 < q < g, p # q. As the result, there must exist
H(z;g) in S,,. Therefore, the diagnosability of every single node is equal to its remaining

degree.

18



Chapter 5

A Diagnosis Algorithm

In the section, we aim to propose a diagnosis algorithm whose time complexity is O(N log N),
where N is the number of nodes. Given a substructure H(x;n) at node z, we shall present
a diagnosis algorithm to determine whether this mode is faulty or not for a given syndrome
under the PMC model. Let H{zyn) be the substructure at a given node = in V(G), the
diagnosing signal are sent back andiforth-inside H(x;n). Since there are communication
links between x and vy, vx and vg,for all 1<k < n. Given a substructure H(z;n) at a
node z, we define r, = (r!,7?), where 7! is the result of v, testing x and r? is the result of
Uk testing vg;. Then, r; can be in one of the four different states which are r(0) = (0, 0),
r(1) = (0,1), r(2) = (1,0), r(2) = (1,1). Let R(7) be the set of collection of all r(i), for
all 0 <14 < 3. Obviously, the summation of the cardinality of R(0) to R(3) is n, that is,

Z?:o |R(i)| = n.

Let x be a node in a system. Suppose that the degree of x is n and suppose that there
is an substructure H(z;n) at x. Then the local diagnosability of z is n, which means
we maybe not be able to identify all the faulty nodes, if the number of faulty nodes in

H(z;n) is (n + 1) or more. Therefore, we assume that the number of faulty nodes is at

19



most n. Under this assumption, we have an efficient algorithm to determine whether node

x is faulty or not.

Theorem 9 Let x be a node with degree n in a system G = (V, E). Suppose that there
is an substructure H(z;n) C G at z. Define ry, = (r',7?) to be the testing result, where
r! is the result of vy testing x and r? is the result of vio testing vy. Then, r; can be in

one of the four states (as illustrated in Fig):
r(0) = (0,0), r(1) = (0,1), r(2) = (1,0), (3) = (1,1)

Let R(i) be the set of the collection of all r(i), and |R(i)| be the cardinality of R(7).

Then, under the assumption that the number of faulty nodes is at most n,
i) x is fault-free, if| R(0)| > |R(2)|;.0om

it) x is faulty, if|R(0)| < |R(2)]

Figure 5.1: four different output states

20



Proof. Let l; = (vr1,vg2) be an ordered double, 1 < k < n, with respect to H(z;n). We
prove the first part of this theorem by contradiction. Suppose that the number of faulty
nodes in H(z;n) is at most n and suppose that z is faulty, the counting of all the other

faulty nodes is as follows:
For those [}, with result r(0), there are at least 2 faulty nodes which are vy, vga.
For those [}, with result r(1), there is at least 1 faulty node which is vy;.
For those [ with result r(2), the number of faulty nodes is uncertain.
For those [}, with result r(3), there is at least 1 faulty node which is either vg; or vgs.
Thus, the number of faulty nodes is at least
L+ 2|R(0)] + |R(1)| + |R(3)f= PoidpJR@I L + |R(0)] — [R(2)])

By the assumption that |R{0)| < [R(2)], the number of faulty nodes is strictly more
than 37 | R(i)| which is equal tom. This contradicts to the assumption that the number

of faulty nodes in H(z;n) is at most n. Therefore, x is fault-free.

Now, we prove the second part of the theorem. Suppose that the number of faulty
nodes in H(xz;n) is at most n and suppose that z is fault-free, the counting of all the

other faulty nodes is as follows:
For those [}, with result r(0), the number of faulty nodes is uncertain.
For those [ with result r(1), there is at least 1 faulty node which is either vg; or vs.
For those [ with result r(2), there are at least 2 faulty nodes where are vg; and vgs.

For those [}, with result r(3), there is at least 1 faulty nodes where is vy;.
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Thus, the number of faulty nodes is at least
[RO|+2[R(2)] + [R(3)| = 3, [ R()] + (|R(2)| = |R(0)])

By the assumption that |R(0)| < |R(2)|, the number of faulty nodes is larger than
Z?:o |R(7)| which is equal to n. This contradicts to the assumption that the number of

faulty nodes in H(x;n) is at most n. Therefore, z is faulty.
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Chapter 6

Conclusions

The issue of identifying all the faulty processors is important in the design of intercon-
nection networks or multiprocessor systems, which is implementable is very large scale
integration (VLSI) or wafer-scale integration (WSI). The process of identifying all the

faulty processors is called diagnosis of a system.

In this paper, we propose a new eoncept-of logal diagnosability for a system and derive
a structure for determining whether a system is locally t-diagnosable at a given node.
Through this concept, the diagnosability of a system can be determined by computing
the local diagnosability of each node. We also introduce a concept for system diagnosis,
called strong local diagnosability property. Then, we prove that the star graph has this
strong property. Next, we consider a faulty star graph S,, with n > 3. We prove that S,
keeps this strong property even if it has up to n — 3 edges. Furthermore, we prove that S,
keeps this strong property no matter how many edges are faulty, provided that each node
of a faulty star graph S, is incident with at least two fault-free edge.Finally, we propose
a local diagnosis algorithm whose time complexity is O(N log N) where N is the number

of nodes in a system.
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There are several different fault diagnosis model in the area of diagnosability. It
is worth investigating, under various models, whether a system has this strong local
diagnosability property after removing some edges. It is also an attractive work to develop
more different measures or diagnosability based on network reliability, network topology,

application environment and statistics related to fault patterns.
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