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Abstract 
Under the PMC model, we introduce a new measure of diagnosability, called local 
diagnosability, and derive a structure for determining whether a node of a system is 
locally t-diagnosable. For star graph, we prove that the local diagnosability of each 
node is equal to its degree under the PMC model. Then, we propose a concept for 
system diagnosis, called strong local diagnosability property. A system G = (V,E) is 
said to have a strong local diagnosability property, if the local diagnosability of each 
node is equal to its degree. We show that an n-dimensional star graph Sn has this 
strong property, n ≥ 3. Next, we study the local diagnosability of a faulty star graph. 
We prove that Sn keeps this strong property even if it has up to n-3 faulty edges. 
Furthermore, we prove that Sn keeps this strong property no matter how many edges 
are faulty, provided that each node of a faulty star graph Sn is incident with at least 
two fault-free edges. Besides, we propose a new diagnosasis algorithm whose time 
complexity is O(NlogN) where N is the number of nodes in a system. 
 
Keywords :local diagnosability, PMC model, strong local diagnosability property. 
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摘要 

在PMC模式下面，我們介紹了一個新的診斷模式較做局部診斷能力，並且利用了

一個結構來決定一個點的t-局部診斷能力。以星狀圖為例子來說，我們證明出在

PMC模式下它的每個點的局部診斷能力和它的分支相同。於是我們提出了新的系

統診斷觀念，叫做強局部診斷性質。一個系統若是其每點的局部診斷能力和它的

分支相同則稱之具有強局部診斷性質。我們證明出星狀圖Sn在n ≥ 3 的時候有此性

質，甚至在n-3 個邊壞掉的情況下此性質仍然存在。此外，若是我們保持每個點

都有兩個好邊的話，則無論壞多少邊性質還是會存在。最後我們提出了一個局部

診斷演算法其時間複雜度是O(NlogN)，而N是代表一個系統內點的數目。 

 

關鍵字：局部診斷能力、PMC 模式、強局部診斷性質。 
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Chapter 1

Introduction

Recently, high-speed multiprocessor systems have become more and more popular in

computer technology. The reliability of the processors in a system is significant since even

few faulty processors may cause the system failure. Whenever processors are found faulty,

we should replace the faulty ones with fault-free ones to maintain the reliability of the

system. Identifying all the faulty processors of a system is called diagnosis of the system.

The maximum number of faulty processors that can be ensured to be identified is called

the diagnosability of the system. A system G is t-diagnosable if all the faulty processors

can be precisely pointed out given that the number of faulty processors is at most t. The

maximum number t for which G is t-diagnosable is called the diagnosability of G.

The problem of identifying faulty processors in a multiprocessor system has been

widely studied in literatures [1] [10] [12]. The base of this area and the original diagnostic

model were established by Preparata, Metze and Chien [1]. This model, known as the

PMC model, has been extensively studied [1], [7], [8], [9]. In [13], Hakimi and Amin

proved that a system is t-diagnosable if it is t-connected with at least 2t + 1 nodes. They

also gave a necessary and sufficient condition for verifying if a system is t-diagnosable
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under the PMC model.

Following the diagnosis model above, most previous studies focused on the diagnosis-

ability of a system in a global sense, but ignored some local systematic details. A system

is t-diagnosable if all the faulty processor can be identified whenever the number of faulty

processors is at most t. However, it is possible to correctly point out all the faulty pro-

cessors in a t-diagnosable system when the number of faulty processors is greater that

t. For example, consider two arbitrary multiprocessor systems which are m-diagnosable

and n-diagnosable, respectively, where m and n are integers and m � n. A new system

can be generated by integrating these two systems with few communication links is some

way. The diagnosability of this new system is upper bounded by n, but it is possible to

identify all the faulty processors if the number of the faulty ones is between m and n.

Thus, if only considering the global status, we lose some local details of the system.

In the paper, we aim to propose a new definition called local dianosability. There

is a strong relationship between the local diagnosability and the traditional global one.

For this local sense, we focus more on a single processor, and require only identifying

the status of this particular processor correctly. More specifically, every processor in a

system has its own local diagnosability. Under the PMC model, we propose a suffucient

condition to determine the local diagnosability of a given processor x. For most practical

multiprocessor systems, the number of links connecting to each processor is in the order of

logN , where N is the total number of processors. The time complexity of our algorithm to

diagnose a given processor is bound by O(log N) and to diagnose all the faulty processors

in a system with N processors is bound by O(log N) under the PMC model, provided

that there is a substructure H(x; n) we will introduce.
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Chapter 2

Preliminaries

2.1 Star graph

An n-dimensional star graph, also referred to as an n-star or Sn, is an undirected graph

consisting of n! nodes and (n − 1)n!/2 edges [5]. Each node is uniquely assigned a label

a1a2 . . . am . . . an, which is a distinct permutation of the set of symbols {a1, a2, . . . , an}.

Without loss of generality, let this symbol set be the set of integers {1, 2, . . . , n}. Two

nodes are linked by an edge labeled i if and only if the label of one node can be obtained

from the label of another node by interchanging the first symbol with the i th symbol,

2 ≤ i ≤ n. For example, in a 4− star containing 4! nodes, two nodes 1234 and 4231 are

neighbors and joined through an edge labeled 4. In Sn each node is connected to n − 1

neighbors by n − 1 edges. Each Sn can be decomposed into n(n − 1)-dimensional star

graph Sn−1. We denote the (n− 1)-dimensional star graph by Si
n−1 whose n th symbol is

i, for 0 ≤ i ≤ n− 1. A 4-star graph S4 is shown in Fig 2.1.

Lemma 1 [14] There are no 3-cycles and 4-cycles in a star graph.
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Figure 2.1: The 4-star graph S4

2.2 The PMC Model

For all of the multi-processor systems, we wish we could search all the faulty nodes in

the multi-processor system efficiently. Several diagnosis models were proposed to identify

those faulty nodes in the multi-processor system. PMC model is one of them provided

with the self-diagnosed ability. Every node in the system can send a signal to each of his

neighbors, and receive the return signal from them. For instance, there is an edge (u, v)

implies that u can test v by checking the response send by v, and v also can test u. After

the testing, the result is either 0 or 1 of u testing v. We assume that u is fault-free, then
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the result would be 0 if v is fault-free. Otherwise, the result is 1. However, the result is

undependable if u is a originally faulty node. Here are all possible results of u test v in

Table 2.1.

Figure 2.2: r(u, v) is the result of u testing v

After the whole process, we have a binary sequence called syndrome. The first thing

we want to ask is how to find out the faulty nodes from the syndrome. According to

previous researches, we can make it if there are not so many faulty nodes in the system.

Theorem 1 For every two distinct subsets of nodes F1 and F2, (F1, F2) is a distinguish-

able pair if and only if at least one of the following conditions is satisfied (as illustrated

in Fig. 1):

∃u ∈ V − F1 − F2 and ∃v ∈ F1∆F2 such that (u, v) ∈ E.
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Figure 2.3: illustration of Theorem 1 - the distinguishability of two distinct subsets of
nodes.

Theorem 2 A system with N nodes is t-diagnosable if

1) N ≥ 2t + 1,

2) each node has order at least t, and

3) for each U ⊂ V such that | U |= N − 2t + p and 0 ≤ p ≤ t− 1, | T (G, U) |> p.
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Chapter 3

Local diagnosability

The traditional diagnosability of a system is discussed in a global point of view. We can

also call it global diagnosabiliy. There were some researches which neglected the local

viewpoint discussing the global diagnosability on well-known systems. In this paper, we

propose a new definition called local diagnosability emphasizing the diagnosability of a

node. For example, for any two integer m and n with m � n ≥ 4, the diagnosability of

two hypercube Qm and Qn is m and n, respectively. However, the diagnosabiliy of the

graph which is combined by Qm and Qn is n at most. We observe that the diagnosability

of a integral system is the worst cast of two previous systems. It is desirable to take notice

of some local part or one single node of a system, where the local diagnosability of the

node is not as low as the global diagnosability of the whole system.

Definition 1 A system G(V, E) is locally t-diagnosable at node x ∈ V (G) if, given a

test syndrome σF produced by the system under the presence of a set of faulty nodes F

containing node x with |F | ≤ t, every set of faulty nodes F ′ consistent with σF and

|F ′| ≤ t, must also contain node x.
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As expected, the main purpose of the following property is to identify whether a system

is locally t-diagnosable at a particular node.

Proposition 1 A system G(V, E) is locally t-diagnosable at node x ∈ V (G) if, for each

pair of distinct sets F1, F2 ⊂ V (G) such that F1 6= F2, |F1|, |F2| ≤ t, and x ∈ F1∆F2,

(F1, F2) is a distinguishable pair.

Then, we define the local diagnosability of a given node as follows.

Definition 2 The local diagnosability tl(x) of a node x ∈ V (G) in a system G(V, E) is

defined to be the maximum number of t for G being locally t-diagnosable at x, that is,

tl(x) = max{t | G is locally t− diagnosable at x}.

The concept of a system being local diagnosability is consistent with the global one.

The relationship between them is as follows.

Proposition 2 A system G(V, E) is t-diagnosable if and only if G is locally t-diagnosable

at x, for every x ∈ V (G).

Obviously the local diagnosability is discussed in much more detail than the global

one. It is not enough that only the global diagnosability of the whole system is decided,

while the local diagnosability of every single node can be observed. In the following, we

propose a condition to verify whether a system G is locally t-diagnosable at a given node

x.
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Theorem 3 A system G(V, E) is locally t-diagnosable at a given node x ∈ V (G) if, for

every set of nodes S ⊂ V (G), |S| = p, 0 ≤ p ≤ t − 1, and x /∈ S, the component Cx of

G− S contains x satisfying |V (Cx)| ≥ 2(t− p) + 1

Proof. To prove that |V (Cx)| ≥ 2(t− p) + 1 is necessary, we show this by contradiction.

That is, |V (Cx)| ≤ 2(t − p). We then arbitrarily partition Cx into two disjoin subsets,

Cx = A1∪A2 with |A1| ≤ t−p and |A2| ≤ t−p. Let F1 = A1∪S and F2 = A2∪S. Then,

|F1| < t and |F2| < t. It is clear that there is no edge between V − (F1 ∪ F2) and F1∆F2.

By Proposition 1, F1 and F2 are indistinguishable. This contradicts the assumption that

G is locally t-diagnosable at a given node x ∈ V (G).

Furthermore, on the contrary, that G is not t-diagnosable at x ∈ V (G). That is, there

exists an indistinguishable pair (F1, F2) with F1 ≤ t and F2 ≤ t, and x ∈ F1∆F2. By

proposition 1, there is no edge between V −(F1∪F2) and F1∆F2. Let S = F1∩F2. Thus, in

G−S, F1∆F2 is disconnected from from other parts. We observe that |F1∆F2| ≤ 2(t−p),

where |S| = p and 0 ≤ p ≤ t− 1. Therefore, there is at least one component Cx of G− S

contains x with V (Cx) ≤ 2(t− p), which is a contradiction. This completes the proof of

the theorem.

Though the theorem given above seems very strong, it is not useful to calculate the

local diagnosability of a node in a system. We propose a effective algorithm which has

time complexity O(N log N) is better than the previous result. First of all, we introduce

a structure that we will use frequently.

Definition 3 Let x be a node in a graph G(V, E). For n ≤ degG(x), an substructure

H(x; n) of order n at node x is defined as H(x; n) = (V (x; n), E(x; n)), where the set
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Figure 3.1: subgraph H(x; n) of G of order n at node x.

of nodes V (x; n) = {x} ∪ {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ 2} and the set of edges E(x; n) =

{(x, vk1), (vk1, vk2) | 1 ≤ k ≤ n}.

The structure is common in many well-known systems like hypercube and star graph.

We say that there is a substructure H(x; n) ⊆ G at node x if G contains H(x; n) of order

n at node x as a subgraph.

Theorem 4 Let x be a node in a system G(V, E). The local diagnosability of x is at least

n if there exists H(x; n) ⊆ G at x.

Proof. We use Theorem 3 to prove this result. It is clear that |V (H(x; n))| ≥ 2n + 1.

H(x; n) will lose one nodes when vk2 is removed but two nodes when vk2 is removed, for

1 ≤ k ≤ n. It means H(x; n) will lose two nodes at most when a node which is not x is

removed. In other words, for any set of nodes S ⊂ V (G), |S| = p, 0 ≤ p ≤ n−1, and x /∈ S.

After S is removed, the number of nodes of H(x; n) is not less than 2n+1−2p = 2(n−p)+1.

By Theorem 3, the local diagnosability of x is at least n.

Proposition 3 Let x be a node in a system G(V, E) with degG(x) = n. The local diag-

nosability of x is at most n.
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Proof. We prove it by contradiction. That is, the local diagnosability of x is n + 1 at

least. Consider two sets of nodes S1 and S2, where S1 contains node x and all neighbors

of x, and S2 contains all neighbors of x. There is no edge between G−S1∪S2 and S1∆S2.

We can see that S1 and S2 are indistinguishable since |S1| = n + 1 and |S2| = n, which is

a contradiction. Therefore, the proposition is hold.

By Theorem 4 and Proposition 3, we have the following result.

Theorem 5 Let x be a node in a system G(V, E) with degG(x) = n. The local diagnos-

ability of x is n if there exists an substructure H(x; n) ⊆ G at x.

Theorem 5 is more useful than Theorem 3 to estimate the local diagnosability of a node

in a system, while the substructure H(x; n) exists. However, the substructure H(x; n)

does exist in most well-known systems even the systems lose some links. This is very

comforting that we can easily estimate the local diagnosability of many multiprocessor

systems and interconnection networks. In the paper, we show that the diagnosability of

every node in star graph Sn is equal to its degree since missing links are not greater than

n− 3.

Definition 4 Let G = (V, E) be a graph and v ∈ V be a vertex. The vertex v has the

strong local diagnosability property if the following condition holds:

t1(v) = deg(v)

Definition 5 Let G(V, E) be a graph. G has the strong local diagnosability property if

the following condition holds:

∀v ∈ V (G), the vertex v has the strong local diagnosability property.

13



By Definition 5 and Definition 6, we have the following proposition.

Theorem 6 A n-star-structured system Sn has the strong local diagnosability property,

n ≥ 3.

Proof. We prove this by induction on n. Since an n-dimensional star graph Sn is vertex-

symmetric, we can concentrate on the construction of H(x; n − 1) structure at a given

node x. For n = 3, deg(v) = 2 and it is clear that S3 contains H(x; n − 1) of order 2

at node x. As the inductive hypothesis, we assume that Sn−1 contains H(x; n − 2) of

order n − 2 at each node, for some n ≥ 4. Now we consider Sn, Sn can be decomposed

into (n − 1) subcomponents S0
n−1, S1

n−1, ..., and Sn−1
n−1 by some dimension. Without loss

of generality, we may assume that the node x ∈ S0
n−1. By the inductive hypothesis,

S0
n−1 contains H(x; n − 2) of order n − 2 at node x. There exists a node x(1) n another

subcomponent which is the neighbor of x i. Node x(1) has an adjacent neighbor that is

its subcomponent due to deg(x(1)) = n, where n ≥ 3. Thus, Sn contains H(x; n − 1) of

order n − 1 at node x. By Theorem 5, Definition 4 and Definition 5, Sn has the strong

local diagnosability property.

Theorem 7 Let Sn be an n-dimensional star graph with n ≥ 3, and S ⊆ E(Sn) be a set

of edges, 0 ≤ |S| ≤ n − 2. Removing all the edges in S from Sn, the local diagnosability

of each node is still equal to its remaining degree.

Proof. We prove this by induction on n. For n = 4, 0 ≤ |S| ≤ 1, if |S| = 0, it is clear that

S4 contains H(x; 3) of order 3 at every node. It is a routine work to see that every node

has a structure H(x; k) of order k at it, where k is the remaining degree of the node. As
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the inductive hypothesis, we assume that the result is true for Sn−1, 0 ≤ |S| ≤ (n−2)−2,

for some n ≥ 4. Now we consider Sn, 0 ≤ |S| ≤ n − 2. If |S| = 0, refer to the proof

of Theorem 6, Sn contains a structure H(x; n − 1) of order n − 1 at every node. If

1 ≤ |S| ≤ n− 2, we have two cases to discuss.

Case 1: S ⊆ Sq
n−1, for some 0 ≤ q ≤ n−1. It means that S is totally in a n−1-dimensional

star graph component and other components are fault-free. Without loss of generality,

we assume that S ⊆ S0
n−1. Let x be a node in S0

n−1. Consider H(x; n − 1) = (V (x; n −

1), E(x; n−1)), where the set of nodes V (x; n−1) = {x}∪{vij | 1 ≤ i ≤ n−1, 1 ≤ j ≤ 2}

and the set of edges E(x; n−1) = {(x, vk1), (vk1, vk2) | 1 ≤ k ≤ n−1}. If there are q edges

of N = {(x, vk1) | 1 ≤ k ≤ n− 1} which are removed, for 1 ≤ q ≤ n− 3, H(x; n− 1− q)

still exist. It means that we don’t have to care about the edges which are subset of N . Let

M be the set {(vk1, vk2) | 1 ≤ k ≤ n− 1}, and let R ⊆ M be another set, 1 ≤ |R| ≤ n− 3.

If R is removed, we do care about if H(x; b) is destroyed or not, for some 1 ≤ b ≤ n− 3.

Without loss of generality, R contains (v11, v12) and (v21, v22). After removing (v11, v12)

and (v21, v22), there exists one node i adjacent v11 in Sc
n−1, and j adjacent v11 in Sd

n−1, for

1 ≤ c ≤ n − 1, 1 ≤ c ≤ n − 1. By lemma xx, there is no 4 cycle in star graph, so i 6= j.

Thus, the structure H(x; b) is hold.

Case 2: Otherwise, let the the number of missing edges in each Si
n−1 is Mi, 0 ≤ Mi ≤

n−4, i ≤ 0 ≤ n−1.Without loss of generality, consider the node d in S0
n−1, and we ignore

the edges which are adjacent to another Sn−1 component. By the inductive hypothesis,

there exists H(d; q) in S0
n−1, 1 ≤ q ≤ n − 2. If there is no node in Si

n−1 adjacent to d,

1 ≤ i ≤ n − 1, the local diagnosability of d is equal to its degree.Otherwise, there is a

node b in Sin− 1 adjacent to d, for some 1 ≤ i ≤ n− 1. Without loss of generality, d is
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in S1
n−1 and 0 ≤ M1 ≤ n − 4. We can sure that there are at least two nodes adjacent

b.Thus, H(x; q + 1) does exist and the local diagnosability of d is equal to its degree.This

completes the proof of the theorem.

Corollary 1 Let Sn be an n-dimensional hypercube with n ≤ 3, and S ⊂ E(Sn) be a set

of edges, 0 ≤ |S| ≤ n− 2. Then Sn − S has the strong local diagnosability property.
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Chapter 4

Conditional Fault Local
Diagnosability

In previous section, we know that Sn does not have the strong local diagnosability por-

perty, if there are n−1 faulty edges, all these faulty edges are incident with a single vertex

and this vertex is incident with only fault-free edge. Therefore, we are led to the following

question: How many edges can be removed from Sn such that Sn keeps the strong local

diagnosability property under the conditional that each vertex of the faulty star graph Sn

is incident with at least two fault-free edges?

Theorem 8 Let Sn be an n-dimensional hypercube with n ≥ 3, and S ⊆ E(Sn) be a set

of edges. Assume that each vertex of Sn − S is incident with at least two fault-free edges.

Removing all the edges in S from Sn, the local diagnosability of each vertex is still equal

to its remaining degree.

Proof. For any node x in Sn, we assume the degree of x is g and all its neighbors are

denoted by {a1, a2, ..., ag}. Each of ai has at last two neighbors, for 1 ≤ i ≤ g. Let bi be

the neighbor of ai, and bi 6= x. By lemma 1, we can sure that bp and bq have no common
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neighbor and bp 6= bq, for 1 ≤ p ≤ g, 1 ≤ q ≤ g, p 6= q. As the result, there must exist

H(x; g) in Sn. Therefore, the diagnosability of every single node is equal to its remaining

degree.
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Chapter 5

A Diagnosis Algorithm

In the section, we aim to propose a diagnosis algorithm whose time complexity is O(N log N),

where N is the number of nodes. Given a substructure H(x; n) at node x, we shall present

a diagnosis algorithm to determine whether this node is faulty or not for a given syndrome

under the PMC model. Let H(x; n) be the substructure at a given node x in V (G), the

diagnosing signal are sent back and forth inside H(x; n). Since there are communication

links between x and vk1, vk1 and vk2, for all 1 ≤ k ≤ n. Given a substructure H(x; n) at a

node x, we define rk = (r1, r2), where r1 is the result of vk1 testing x and r2 is the result of

vk2 testing vk1. Then, rk can be in one of the four different states which are r(0) = (0, 0),

r(1) = (0, 1), r(2) = (1, 0), r(2) = (1, 1). Let R(i) be the set of collection of all r(i), for

all 0 ≤ i ≤ 3. Obviously, the summation of the cardinality of R(0) to R(3) is n, that is,∑3
i=0 |R(i)| = n.

Let x be a node in a system. Suppose that the degree of x is n and suppose that there

is an substructure H(x; n) at x. Then the local diagnosability of x is n, which means

we maybe not be able to identify all the faulty nodes, if the number of faulty nodes in

H(x; n) is (n + 1) or more. Therefore, we assume that the number of faulty nodes is at
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most n. Under this assumption, we have an efficient algorithm to determine whether node

x is faulty or not.

Theorem 9 Let x be a node with degree n in a system G = (V, E). Suppose that there

is an substructure H(x; n) ⊆ G at x. Define rk = (r1, r2) to be the testing result, where

r1 is the result of vk1 testing x and r2 is the result of vk2 testing vk1. Then, rk can be in

one of the four states (as illustrated in Fig):

r(0) = (0, 0), r(1) = (0, 1), r(2) = (1, 0), r(3) = (1, 1)

Let R(i) be the set of the collection of all r(i), and |R(i)| be the cardinality of R(i).

Then, under the assumption that the number of faulty nodes is at most n,

i) x is fault-free, if|R(0)| ≥ |R(2)|; or,

ii) x is faulty, if|R(0)| < |R(2)|

Figure 5.1: four different output states
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Proof. Let lk = (vk1, vk2) be an ordered double, 1 ≤ k ≤ n, with respect to H(x; n). We

prove the first part of this theorem by contradiction. Suppose that the number of faulty

nodes in H(x; n) is at most n and suppose that x is faulty, the counting of all the other

faulty nodes is as follows:

For those lk with result r(0), there are at least 2 faulty nodes which are vk1, vk2.

For those lk with result r(1), there is at least 1 faulty node which is vk1.

For those lk with result r(2), the number of faulty nodes is uncertain.

For those lk with result r(3), there is at least 1 faulty node which is either vk1 or vk2.

Thus, the number of faulty nodes is at least

1 + 2|R(0)|+ |R(1)|+ |R(3)| =
∑3

i=0 |R(i)|+ (1 + |R(0)| − |R(2)|)

By the assumption that |R(0)| ≤ |R(2)|, the number of faulty nodes is strictly more

than
∑3

i=0 |R(i)| which is equal to n. This contradicts to the assumption that the number

of faulty nodes in H(x; n) is at most n. Therefore, x is fault-free.

Now, we prove the second part of the theorem. Suppose that the number of faulty

nodes in H(x; n) is at most n and suppose that x is fault-free, the counting of all the

other faulty nodes is as follows:

For those lk with result r(0), the number of faulty nodes is uncertain.

For those lk with result r(1), there is at least 1 faulty node which is either vk1 or vk2.

For those lk with result r(2), there are at least 2 faulty nodes where are vk1 and vk2.

For those lk with result r(3), there is at least 1 faulty nodes where is vk1.
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Thus, the number of faulty nodes is at least

|R(1)|+ 2|R(2)|+ |R(3)| =
∑3

i=0 |R(i)|+ (|R(2)| − |R(0)|)

By the assumption that |R(0)| < |R(2)|, the number of faulty nodes is larger than∑3
i=0 |R(i)| which is equal to n. This contradicts to the assumption that the number of

faulty nodes in H(x; n) is at most n. Therefore, x is faulty.
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Chapter 6

Conclusions

The issue of identifying all the faulty processors is important in the design of intercon-

nection networks or multiprocessor systems, which is implementable is very large scale

integration (VLSI) or wafer-scale integration (WSI). The process of identifying all the

faulty processors is called diagnosis of a system.

In this paper, we propose a new concept of local diagnosability for a system and derive

a structure for determining whether a system is locally t-diagnosable at a given node.

Through this concept, the diagnosability of a system can be determined by computing

the local diagnosability of each node. We also introduce a concept for system diagnosis,

called strong local diagnosability property. Then, we prove that the star graph has this

strong property. Next, we consider a faulty star graph Sn with n ≥ 3. We prove that Sn

keeps this strong property even if it has up to n−3 edges. Furthermore, we prove that Sn

keeps this strong property no matter how many edges are faulty, provided that each node

of a faulty star graph Sn is incident with at least two fault-free edge.Finally, we propose

a local diagnosis algorithm whose time complexity is O(N log N) where N is the number

of nodes in a system.
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There are several different fault diagnosis model in the area of diagnosability. It

is worth investigating, under various models, whether a system has this strong local

diagnosability property after removing some edges. It is also an attractive work to develop

more different measures or diagnosability based on network reliability, network topology,

application environment and statistics related to fault patterns.
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