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摘要 

Xu et al.先前曾提過相關的論文研究，證明了當N大於四時，在n維度的超力

方體下若壞邊的數量小餘n-1 時，通過任意指定的一個邊，仍可找到從 6 到 2n這

樣各種長度的迴圈，而限制條件在於並非所有壞邊皆集中在同一個點，意即每個

點仍然存在有兩個好邊。 
在這篇論文中，我們在相似的條件下，若壞邊不集中在同一個點，則壞邊個

數能夠增加到 2n-5 個，且通過任意指定的一個邊，仍可找到長度從 6 到 2n的各種

的迴圈。此外我們仍證明了，當壞邊達到 2n-4 時，如此是無法被證明的，所以

我們的結論是最佳的結果。 
 
 
關鍵字：迴圈，邊泛迴圈，條件式容錯超力方體，容錯 
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Abstract 
 

Xu et al. showed that for any set of faulty edges F of an n-dimensional hypercube Qn 
with |F|≦n-1, each edge of Qn-F lies on a cycle of every even length from 6 to 2n, n≧
4, provided not all edges in F are incident with the same vertex. In this paper, we find 
that under similar condition, the number of faulty edges can be much greater and the 
same result still holds. More precisely, we show that, for up to |F|=2n-5 faulty edges, 
each edge of the faulty hypercube Qn-F lies on a cycle of every even length from 6 to 
2n with each vertex having at least two healthy edges adjacent to it, for n≧3. 
Moreover, this result is optimal in the sense that the result can not be guaranteed, if 
there are 2n-4 faulty edges. 
 
Keywords: cycles, Pancyclic, Conditional fault, Hypercube, 

Fault-tolerant 
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Chapter 1

Introduction

The ring embedding problem, which deals with all the possible lengths of the cycles in

a given graph, is investigated in a lot of interconnection networks [2, 3, 4].If a graph

contains cycles of all lengths, it is called pancyclic [7]. Bipancyclicity is essentially a

restriction of the concept of pancyclicity to cycle of even lengths. A bipartite graph is

vertex-bipancyclic [6] if every vertex lies on a cycle of every even length from 4 to |V (G)|.

Similarly, a bipartite graph is edge-bipancyclic if every edge lies on a cycle of every even

length from 4 to |V (G)|. A bipartite graph is k-edge-fault-tolerant edge-bipancyclic if

G − F remains edge-bipancyclic for any set of faulty edges F ⊂ E(G) with |F | ≤ k. A

path P is a sequence of adjacent vertices, written as 〈v0, v1, ..., vm〉. The length of a path

P , denoted by l(P ), is the number of edges in P . A hamiltonian cycle is a graph with a

spanning cycle.In addition we call e a healthy edge when e is fault-free in a graph.

Chan and Lee [1] considered an injured n-dimensional hypercube where each vertex is

incident with at least two healthy edges, and proved that it still contains a hamiltonian

cycle even it has (2n − 5) edge faults. Tsai [8] proved that such injured hypercube Qn

contains a cycle of every even length from 4 to 2n, even if it has up to (2n−5) edge faults.
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Recently, Xu et al. [9] showed that for any set of faulty edges F od Qn with |F | ≤ n− 1,

each edge of Qn − F lies on a cycle of every even length from 6 to 2n, n ≥ 4, provided

not all faulty edges are incident with the same vertex. We observe that not all faulty

edges a re incident with the same vertex is equivalent to stating that each vertex has at

least two healthy edges adjacent to it, if |F | ≤ n − 1. In this paper, we consider a set of

faulty edges satisfies the condition that each vertex of Qn − F is incident with at least

two healthy edges. Such a set of faulty edges F is called a set of conditional faulty edges

and Qn − F is called a conditional faulty hypercube. We find that under this condition,

the number of faulty edges can be much greater and the same result still holds. We show

that, for up to |F | = 2n − 5 conditional faulty edges, each edge of a faulty hypercube

Qn − F lies on a cycle of every even length from 6 to 2n with each vertex having at least

two healthy edges adjacent to it, for n ≥ 3. We observe that, if |F | < 2n − 5, we may

arbitrarily delete some more edges to make a faulty edge set F ′ ⊇ F and |F ′| = 2n − 5.

If our result holds for F ′, it holds for F . From now on, we shall assume |F | = 2n − 5.

The above result is optimal in the sense that result can not be guaranteed, if there

are 2n − 4 conditional faulty edges. For example, take a cycle of length four in Qn, let

〈u1, u2, u3, u4〉 be the consecutive vertices on this cycle. Suppose that all the (n−2) edges

incident to vertex u1 (respectively vertex u3) are faulty except those two edges on the four

cycle are healthy. There are 2(n − 2) conditional faulty edges. (see Fig.1.1) Then there

does not exist a hamiltonian cycle in this faulty Qn, for n ≥ 3.

We now give a formal definition of a hypercube. An n-dimensional hypercube is

denoted by Qn with the vertex set V (Qn) and the edge set E(Qn). Each vertex u of Qn

can be distinctly labeled by a n-bit binary strings, u = un−1un−2...u1u0. There is an edge
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Figure 1.1: Illustration for the Qn with (2n-4) edge fault.

between two vertices if and only if their binary labels differ in exactly one bit position.

Let u and v be two adjacent vertices. If the binary labels of u and v differ in ith position,

then the edge between them is said to be in dimension i and the edge (u, v) is called an

ith dimension edge. Let i be a fixed position, we use Q0
n−1 to denote the subgraph of

Qn induced by {u ∈ V (Qn)|ui = 0} and Q1
n−1 to denote the subgraph of Qn induced by

{u ∈ V (Qn)|ui = 1}. We say that Qn is decomposed into Q0
n−1 and Q1

n−1 by dimension

i, and Q0
n−1 and Q1

n−1 are (n − 1)-dimensional subcube of Qn induced by the vertices

with the ith bit position being 0 and 1 respectively. Q0
n−1 and Q1

n−1 are all isomorphic

to Qn−1. For each vertex u ∈ V (Q0
n−1), there is exactly one vertex in Q1

n−1, denoted by

u(1), such that (u, u(1)) ∈ E(Qn). Conversely, for each u ∈ V (Q1
n−1), there is one vertex

in Q0
n−1, denoted by u(0), such that (u, u(0)) ∈ E(Qn). Let Di be the set of all edges with

one end in Q0
n−1 and the other in Q1

n−1. These edges are called crossing edges in the ith

dimension between between Q0
n−1 and Q1

n−1. We also call Di the set of all ith dimension

edges. Consequently, |Di| = 2n−1 for all 0 ≤ i ≤ n − 1.
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Chapter 2

Some Preliminaries

To prove our main theorem, we need some preliminary results.

Lemma 1 [5] Qn is edge-bipancyclic, and is (n-2)-edge-fault-tolerant edge-bipancyclic,

for n ≥ 3.

Lemma 2 [9] Each edge of Q4 −F lies on a cycle of every even length from 6 to 2n = 16

for any F ⊂ E(Q4) with |F | = 3, provided not all the faulty edges in F are incident with

the same vertex.

Lemma 3 [9] Any two edges in Qn are included in a hamiltonian cycle, for n ≥ 2 .

Proof. We prove the lemma by induction on n ≥ 2. Obviously, the lemma is true for

n = 2. Assume that the lemma is true for every k with 2 ≤ k < n. Let e and e′ be

two edges in Qn and express Qn = Lk � Rk such that none of e and e′ is k-dimensional.

Without loss of generality, we may assume e ∈ Lk. Furthermore, we can suppose that e′

is in Lk, otherwise consider e′L instead of e′. By the induction hypothesis, there exists a

6



Hamiltonian cycle C containing e and e′ in Lk. Let uLvL be an edge on C different from

e and e′. The corresponding C ′ is a Hamiltonian cycle in Rk containing uRvR, eR and e′R.

Let P = C − uLvL and P ′ = C ′ − uRvR. Then P + uLvL + P ′ + uRvR is a Hamiltonian

cycle in Qn containing e and e′. 2

The above lemma can be improved; In addition to the hamiltonian cycle, there are

cycles of smaller lengthes passing through these two edges. We have the following lemma.

Lemma 4 Any two edges in Qn are included in a cycle of length 2n, 2n − 2 and 2n − 4

respectively, for n ≥ 3.

Proof. Let e1, e2 be two arbitrary edges in Qn. Since n ≥ 3, we can decompose Qn into

two subcubes Q0
n−1 and Q1

n−1 by some dimension i, such that e1 and e2 are not crossing

edges. We then consider the following two cases:

Case 1: Both edges e1 and e2 are in the same subcube Qi
n−1. Without loss of generality,

we assume that {e1, e2} ⊆ E(Q0
n−1). By Lemma 3, there exists a hamiltonian cycle C0

going through e1 and e2 in Q0
n−1, and the length of C0 is 2n−1. Since n ≥ 3, there is

a third edge (u, v) other than e1 and e2 on cycle C0. We write C0 as 〈u, P0, v, u〉. It

follows from the definition of the hypercubes, (u(1), v(1)) is an edge in Q1
n−1. By Lemma

1, in Q1
n−1, there exists a cycle C1 of every even length 4 ≤ l(C1) ≤ 2n−1 going through

(u(1), v(1)). We write C1 as 〈u(1), P1, v
(1), u(1)〉. Thus, 〈u, P0, v, v(1), P1, u

(1), u〉 can form a

cycle of length 2n, 2n − 2 or 2n − 4 respectively passing through edges e1 and e2 in Qn, if

we adjust the length of P1 properly.

Case 2: e1 and e2 are in different subcubes. Without loss of generality, we assume

that e1 ∈ E(Q0
n−1), e2 ∈ E(Q1

n−1). By Lemma 1, there exists a cycle C0 of every even
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length, 4 ≤ l(C0) ≤ 2n−1 going through e1 in Q0
n−1. Since n ≥ 3, we can choose an edge

(u, v) on cycle C0 and by definition, (u(1), v(1)) is an edge in Q1
n−1 such that (u, v) 6= e1,

and (u(1), v(1)) 6= e2. We write C0 as 〈u, P0, v, u〉. By Lemma 3, there exists a cycle C1 of

length 2n−1 going through e2 and (u(1), v(1)). We write C1 as 〈u(1), P1, v
(1), u(1)〉. Thus, we

can adjust the length of P0 properly such that it produces a cycle 〈u, P0, v, v(1), P1, u
(1), u〉

of length 2n, 2n − 2 or 2n − 4 respectively going through edges e1, e2 in Qn.

This proves the lemma. 2

Lemma 5 Let Qn be an n-dimensional hypercube, n ≥ 2, and let e1 and e2 be two edges in

the same dimension i. Then there exists another dimension j 6= i such that decomposing

Qn into Q0
n−1 and Q1

n−1 by dimension j, we have (1) neither e1 nor e2 is crossing edges,

(2) not e1 and e2 are in the same subcube.

Proof. Let e1 = (a, b) and e2 = (s, t) be two edges in the same dimension i. Let

a = an...ai...a1 and s = sn...si...s1. Then b = bn...bi...b1 and t = tn...ti...t1. Since e1 6= e2

and n ≥ 2, there exists another dimension j 6= i, such that aj 6= sj. We decompose Qn

into Q0
n−1 and Q1

n−1 by dimension j. Then, e1 and e2 are not crossing edges and in the

different subcubes. 2

In some special cases, Lemma 4 still holds even if there is one faulty edge. We need

the following lemma later.

Lemma 6 Let Qn be an n-dimensional hypercube and e0 be a faulty edge in the ith di-

mension. Any two healthy edges e1 and e2 in the ith dimension are included in a cycle of

length 2n, 2n − 2 and 2n − 4 respectively, for n ≥ 4.
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Proof. Since e0, e1 and e2 are all in the ith demension, and n ≥ 4. By Lemma 5, we

can choose a dimension j different from i such that e1 and e2 are in different subcubes.

Without loss of generality, we may assume that e1 is in Q0
n−1 and e2 is in Q1

n−1 and

e0 is in Q0
n−1. By Lemma 1, in Q0

n−1 − {e0}, there exists a cycle C0 of every length

4 ≤ l(C0) ≤ 2n−1 going through e1. Since n ≥ 4, we can choose an edge (u, v) on cycle

C0 such that (u, v) 6= e1, and (u(1), v(1)) 6= e2. We write C0 as 〈u, P0, v, u〉. By Lemma 3,

in Q1
n−1, there exists a hamiltonian cycle C1 going through e2 and (u(1), v(1)). We write

C1 as 〈u(1), P1, v
(1), u(1)〉. Thus, 〈u, P0, v, v(1), P1, u

(1), u〉 is a cycle of length 2n, 2n − 2 or

2n − 4 respectively, if we adjust the length of P0 properly. 2

Let F be a set of faulty edges of Qn. Suppose that we decompose Qn into Q0
n−1 and

Q1
n−1 by dimension j, and let FL = F ∩ E(Q0

n−1), FR = F ∩ E(Q1
n−1). Suppose that

F is a set of conditional faulty edges of Qn. If we arbitrarily decompose Qn into Q0
n−1

and Q1
n−1 by a dimension, FL and FR may not be conditional faulty edges in Q0

n−1 and

Q1
n−1 respectively. However, we will show that it is always possible to find some suitable

dimension such that decomposing by this dimension, both FL and FR are conditional

faulty sets in Q0
n−1 and Q1

n−1 respectively.

Lemma 7 Consider the n-dimensional hypercube Qn, for n ≥ 4. Let F be a set of

conditional faulty edges with |F | = 2n− 5. There are at most two vertices in Qn incident

with (n-2) faulty edges.

Proof. If there are three vertices in Qn incident with (n-2) faulty edges, the number of

faulty edge F is at least 3n − 8. However, (3n − 8) > (2n − 5) for all n ≥ 4 which is a

contradiction. 2

9



Lemma 8 Consider the n-dimensional hypercube Qn, n ≥ 4. Let F be a set of conditional

faulty edges with |F | = 2n − 5. If there are two vertices x and y both incident with n-2

faulty edges, then x and y are adjacent in Qn and the edge (x,y) is a faulty edge. Suppose

that (x,y) is in dimension j. Then decomposing Qn into Q0
n−1 and Q1

n−1 by dimension

j, both FL and FR are sets of conditional faulty edges in Q0
n−1 and Q1

n−1 respectively.

Moreover, |FL| ≤ 2n − 6 and |FR| ≤ 2n − 6.

Proof. If there are two vertices x and y in Qn incident with (n−2) faulty edges, then these

two vertices are connected by a faulty edge. Otherwise, |F | = 2(n− 2) = 2n− 4 > 2n− 5

which is a contradiction. Suppose the edge (x, y) is in dimension j, we decompose Qn

into two subcubes. It is clearly that each vertex in Q0
n−1 and Q1

n−1 is still incident with

at least two healthy edges, and FL and FR are both conditional faulty edges in Q0
n−1 and

Q1
n−1 respectively. Then, |FL| = |FR| = n − 3 ≤ 2n − 6, for n ≥ 4. 2

Lemma 9 Consider an n-dimensional hypercube Qn, for n ≥ 4. Let F be a set of con-

ditional faulty edges with |F | = 2n − 5. Suppose that there exists exactly one vertex x

having (n-2) faulty edges indcident with it. Since n − 2 ≥ 2, let e1 and e2 be two faulty

edges incident with x, and let e1 and e2 be jth and kth dimension edges respectively. Then

decomposing Qn into Q0
n−1 and Q1

n−1 by either one of these two dimensions j and k, FL

and FR are still sets of conditonal faulty edges in Q0
n−1 and Q1

n−1 respectively. Moreover,

|FL| ≤ 2n − 6 and |FR| ≤ 2n − 6.

Proof. If there exists only one vertex x having (n−2) faulty edges incident with it, there

are at least two faulty edges e1 and e2 incident with it, since n ≥ 4. Obviously, these

two faulty edges are in different dimensions. Without loss of generality, we may assume
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that e1 is in dimension j and e2 is in dimension k, for j 6= k. We can decompose Qn into

Q0
n−1 and Q1

n−1 by either jth or kth dimension, and either e1 or e2 is a crossing edge.

Therefore, each vertex in these two subcubes is incident with at least two healthy edges

and |FL| ≤ 2n − 6 and |FR| ≤ 2n − 6. 2

Lemma 10 Let Qn be an n-dimensional hypercube, F be a set of faulty edges with |F | ≥ 2,

and e be a healthy edge, n ≥ 2. Then there exists a dimension j, decomposing Qn into

Q0
n−1 and Q1

n−1 by this dimension, such that e is not a crossing edge and not all the faulty

edges are in the same subcube.

Proof. Suppose that e = (u, v) is in dimension i. If there is a faulty edge f not in

dimension i, say in dimension j. We decompose Qn into Q0
n−1 and Q1

n−1 by dimension

j. Then f is a crossing edge but e is not, and all the faulty edges are not in the same

subcube. Otherwise, all the faulty edges are in the same dimension i as e is in. We now

choose any two faulty edges f1 and f2 in F . By Lemma 5, Qn can be decomposed into

Q0
n−1 and Q1

n−1 by some dimension j 6= i such that edges f1 and f2 are not in the same

subcube, and e0 is not a crossing edge. 2
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Chapter 3

Main theorem

We now prove our main result.

Theorem 1 Let Qn be an n-dimensional hypercube, and F be a set of conditional faulty

edges with |F | ≤ 2n − 5. Then each edge of the conditional faulty hypercube Qn − F lies

on a cycle of every even length from 6 to 2n, for n ≥ 3.

Proof. We prove this lemma by induction on n. For n = 3, since 2n − 5 = n − 2, by

Lemma 1, the result is true. For n = 4, 2n − 5 = n − 1, by Lemma 2, the result holds.

Assume the lemma holds for n − 1, for some n ≥ 5, we shall show that it is true for n.

As we mentioned before, we may assume |F | = 2n − 5. Let e = (u, v) be an edge in

Qn − F . We shall find a cycle of every even length from 6 to 2n passing through e in

Qn − F . Assume that e is an ith dimension edge, e ∈ Di, for some i ∈ {1, 2, ..., n}. The

proof is divided into three major cases:

Case 1: There are two vertices x and y in Qn incident with (n − 2) faulty edges. By

Lemma 8, (x, y) is an edge in Qn and is a faulty edge. We denote this edge by ef . Suppose
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Figure 3.1: Illustration for of Theorem Case 1.1.

that ef is a jth dimension edge. We decompose Qn into Q0
n−1 and Q1

n−1 by dimension j.

We then consider two further cases:

1.1 ef = (x, y) and e = (u, v) are in the same dimension. Thus, j = i and ef ∈ Di.

(Fig. 3.1) In this case, e is an edge crossing Q0
n−1 and Q1

n−1. Without loss of generality,

assume that u ∈ V (Q0
n−1) and v ∈ V (Q1

n−1). Since n ≥ 5, u has a neighbor vertex

w ∈ Q0
n−1, by the definition of hypercube, w(1) is a neighbor of v such that the edge

(w,w(1)) is a healthy edge and (w,w(1)) is a crossing edge between Q0
n−1 and Q1

n−1. By

lemma 1, there exists a cycle C0 in Q0
n−1 −FL passing through (u,w) of every even length

4 ≤ l(C0) ≤ 2n−1 and a cycle C1 in Q1
n−1 − FR going through (v, w(1)) of every even

length 4 ≤ l(C1) ≤ 2n−1. We write C0 as 〈u, P0, w, u〉, and C1 as 〈v, P1, w
(1), v〉. Thus,

〈u, P0, w, w(1), v, u〉 is a cycle of length 6 with l(P0) = 3. For every even l, 8 ≤ l ≤ 2n,

we may choose C0 and C1 such that l(C0) = l(C1) = l
2
. Thus, 〈u, P0, w, w(1), P1, v, u〉 can

form a cycle of length l through e in Qn−F , if we adjust the length of P0 and P1 properly.
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Figure 3.2: Illustration for of Theorem Case 1.2.

1.2 ef and e are in different dimension. Thus, j 6= i and ef /∈ Di. (Fig 3.2) In this

case, e is in Q0
n−1 or Q1

n−1. Without loss of generality, we may assume that e ∈ E(Q0
n−1).

By Lemma 1, there exists a cycle C in Q0
n−1 −FL going through the edge e of every even

length l, 6 ≤ l ≤ 2n−1. Let C0 be a cycle of length 2n−1 − 2 or 2n−1 passing through e

in Q0
n−1 − FL. Since n ≥ 5, there exists an edge (s, t) on C0 such that neither s nor t is

adjacent to ef and (s, t) 6= e. We write C0 as 〈s, P0, t, s〉. By definition, (s(1), t(1)) is an

edge in Q1
n−1, and (s, s(1)), (t, t(1)) are healthy edges. By Lemma 1, there exists a cycle

C1 in Q1
n−1 − FR through (s(1), t(1)) of every even length 4 ≤ l(C1) ≤ 2n−1. We write C1

as 〈s(1), P1, t
(1), s(1)〉. For every even l, 2n−1 +2 ≤ l ≤ 2n. 〈s, P0, t, t

(1), P1, s
(1), s〉 is a cycle

of length l going through e in Qn − F if we adjust the length of P0 and P1 properly.

Case 2: There is exactly one vertex in Qn incident with (n − 2) faulty edges. Let x

be the vertex having (n − 2) faulty edges incident with it. Let f1 and f2 be two faulty

edges incident with x, so f1 and f2 are in different dimensions j and k. By Lemma
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9, decomposing Qn into Q0
n−1 and Q1

n−1 by either jth or kth dimension, both FL =

F ∩ E(Q0
n−1) and FR = F ∩ E(Q1

n−1) are sets of conditional faulty edges in Q0
n−1 and

Q1
n−1 respectively. Between dimension j and k, we choose one to decompose Qn into Q0

n−1

and Q1
n−1, say dimension j, such that the required edge e is not a crossing edge. Therefore,

there is a faulty edge crossing Q0
n−1 and Q1

n−1, we denote this edge by ef , and ef ∈ F ∩Dj

is incident with x. Without loss of generality, we may assume that x ∈ V (Q0
n−1).
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Figure 3.3: Illustration for of Theorem Case 2.1.

2.1: Suppose |FL| ≤ 2n − 7 and |FR| ≤ 2n − 7. (Fig. 3.3) Without loss of generality,

we further assume that e ∈ E(Q0
n−1). By induction hypothesis, there exists a cycle C

in Q0
n−1 − FL of every even length 6 ≤ l(C) ≤ 2n−1 passing through e. Let C0 be a

cycle of length 2n−1 − 4 ≤ l(C0) ≤ 2n−1 through e in Q0
n−1 − FL. Since |C0 − e| ≥

2n−1 − 4 − 1 > 2(2n − 5) = 2|F ∩ Dj|, for all n ≥ 5. There exists an edge (s, t) on C0

such that (s, t) is not e, and both (s, s(1)) and (t, t(1)) are healthy edges. We write C0 as

〈s, P0, t, s〉. By induction hypothesis, there exists a cycle C1 in Q1
n−1 − FR of every even

length 6 ≤ l(C1) ≤ 2n−1 passing through (s(1), t(1)). We write C1 as 〈s(1), P1, t
(1), s(1)〉.
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For every even l, 2n−1 + 2 ≤ l ≤ 2n, 〈s, P0, t, t
(1), P1, s

(1), s〉 can form a cycle of length l

going through e in Qn − F , if we adjust the length of P0 and P1 properly.

2.2: |FL| = 2n − 6 or |FR| = 2n − 6, say the former case. In this case, |F ∩ Dj| = 1

and |F ∩ E(Q1
n−1)| = |FR| = 0.

w
 w
(1)


u


v
 v

(1)


e


e
f


Q
0

n-1


Q
1
n-1


Figure 3.4: Illustration for of Theorem Case 2.2.1(a).

2.2.1: e is in subcube Q0
n−1. To find a cycle of length 6 passing through e = (u, v), we

discuss the case that whether e is incident with x or not. If e is incident with x, without

loss of generality, we assume that u = x. (Fig. 3.4) Thus, (v, v(1)) is a healthy edge. Since

FL is a set of conditional faulty edges in Q0
n−1, vertex u = x has two healthy edges incident

with it. Let w be a neighbor of u in Q0
n−1 such that (w, u) and (w,w(1)) are healthy edges

and w 6= v. Thus, 〈u, v, v(1), u(1), w(1), w, u〉 is a cycle of length 6 in Qn −F . Otherwise, e

is not incident with x, then (u, u(1)) and (v, v(1)) are healthy edges. (Fig. 3.5) By Lemma

1, there exists a cycle C1 = 〈u(1), P1, v
(1), u(1)〉 of length four in Q1

n−1 through the edge

(u(1), v(1)). Thus, 〈u, u(1), P1, v
(1), v, u〉 is a cycle of length 6 in Qn − F , where l(P1) = 3.
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Figure 3.5: Illustration for of Theorem Case 2.2.1(b).

Let e1 be a faulty edge in Q0
n−1 that is not adjacent to ef . Though e1 is a faulty edge,

we treat it as a healthy edge temporarily, then the total number of faulty edge in Q0
n−1 is

2n− 7. By induction hypothesis, there exists a cycle C0 of every length 6 ≤ l(C0) ≤ 2n−1

going through e in Q0
n−1 − {FL − {e1}}. If C0 passes e1, we choose e1 , or else, we choose

any one edge on C0 which is not adjacent to ef . Let the chosen edge be denoted by (s, t).

We write cycle C0 as 〈s, P0, t, s〉. Since |F ∩ Dj| = 1 and |FR| = 0, (s, s(1)), (t, t(1)) and

(s(1), t(1)) are all healthy edges. Thus, 〈s, P0, t, t
(1), s(1), s〉 is a cycle of length 8 in Qn −F

if l(P0) = 6. Suppose that 10 ≤ l ≤ 2n and l is even. By Lemma 1, in Q1
n−1, there

exists a cycle C3 of length 4 ≤ l(C3) ≤ 2n−1 passing through (s(1), t(1)). We write C3

as 〈s(1), P3, t
(1), s(1)〉. Thus, 〈s, P0, t, t

(1), P3, s
(1), s, t〉 is a cycle of length l through e in

Qn − F , if we adjust the length of P0 and P3 properly.

2.2.2: e is in subcube Q1
n−1. (Fig. 3.6) By Lemma 1, there exists a cycle C of every

even length 4 ≤ l ≤ 2n−1 passing through e in Q1
n−1. Suppose that 2n−1 + 2 ≤ l ≤ 2n and
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Figure 3.6: Illustration for of Theorem Case 2.2.2.

l is even. Since FL is a set of conditional faulty edges, there are at most (n − 3) faulty

edges adjacent to ef in Q0
n−1. For n ≥ 5, n−3 ≥ 2, we can choose a faulty edge e2 = (s, t)

in Q0
n−1 such that e2 is not adjacent to ef and (s(1), t(1)) is not e. Treating the edge e2 as a

healthy edge, by induction hypothesis, there exists a cycle C0 of length 6 ≤ l(C0) ≤ 2n−1

going through e2 in Q0
n−1 − FL. We write C0 as 〈s, P0, t, s〉, and observe that (s, s(1)) and

(t, t(1)) are healthy edges. By Lemma 4, there exists a cycle C1 of every length 2n−1 − 4,

2n−1 − 2, or 2n−1 through (s(1), t(1)) and e in Q1
n−1. We write C1 as 〈s(1), P1, t

(1), s(1)〉.

Thus, 〈s, P0, t, t
(1), P1, s

(1), s〉 is a cycle of even length l through e in Qn − F , if we adjust

the length of P0 and P1 properly.

Case 3: Every vertex in Qn is incident with at most (n−3) faulty edges. In this case,

suppose that e = (u, v) is in dimension i. By Lemma 10, Qn can be decomposed into

Q0
n−1 and Q1

n−1 by a dimension j different from i such that e is not a crossing edge and

not all the faulty edges are in the same subcube. Then |FL| ≤ 2n− 6 and |FR| ≤ 2n− 6.
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Next, we consider two further cases:

3.1: At least one faulty edge is a jth dimension edge. Thus, |F ∩ Dj| 6= 0.

We then consider two cases: (a)|FL| ≤ 2n−7 and |FR| ≤ 2n−7, and (b)|FL| = 2n−6

or |FR| = 2n − 6. The proof of this subcase is exactly the same as that of case 2.

3.2: None of the faulty edges is a jth dimension edge. Thus, |F ∩ Dj| = 0.

3.2.1: |FL| ≤ 2n − 7 and |FR| ≤ 2n − 7. Without loss of generality, we may assume

that e ∈ E(Q0
n−1). By induction hypothesis, there exists a cycle C of even length 6 ≤

l(C) ≤ 2n−1 in Q0
n−1 −FL passing through e. Let C0 be a cycle of even length 2n−1 − 4 ≤

l(C0) ≤ 2n−1 going through e in Q0
n−1 − FL. There exists an edge (s, t) other than e in

C0. Since |F ∩Dj| = 0, (s, s(1)) and (t, t(1)) are healthy edges. We write C0 as 〈s, P0, t, s〉.

By induction hypothesis, there exists a cycle C1 of every even length 6 ≤ l(C1) ≤ 2n−1 in

Q1
n−1 − {FR − (s(1), t(1))} through (s(1), t(1)). We write C1 as 〈s(1), P1, t

(1), s(1)〉. For even

l, 2n−1 + 2 ≤ l ≤ 2n, 〈s, P0, t, t
(1), P1, s

(1), s〉 can form a cycle of length l going through e

in Qn − F , if we adjust the length of P0 and P1 properly.

3.2.2: Suppose |FL| = 2n − 6 or |FR| = 2n − 6, say the former case. In this case,

|FR| = 1. We then consider two cases: (a) e is in subcube Q0
n−1, and (b) e is in subcube

Q1
n−1.

(a) e = (u, v) is in subcube Q0
n−1. Since |F ∩ Dj| = 0, both (u, u(1)) and (v, v(1))

are healthy edges. Let l be an even number with 6 ≤ l ≤ 2n−1. By Lemma 1, there

exists a cycle C1 of every even length from 4 to 2n−1 passing through (u(1), v(1)) in Q1
n−1−

{FR − (u(1), v(1))}. We write C1 as 〈u(1), P1, v
(1), u(1)〉. No matter (u(1), v(1)) is healthy or

not, 〈u, u(1), P1, v
(1), v, u〉 forms a cycle of length l through e in Qn − F . Suppose that
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2n−1 + 2 ≤ l ≤ 2n. Let e1 be a faulty edge in Q0
n−1. We may treat e1 as a healthy edges

temporarily. By induction hypothesis, there exists a cycle C0 of length 6 ≤ l(C0) ≤ 2n−1

going through e in Q0
n−1 − {FL − {e1}}. If C0 passes the edge e1, we choose e1 to be

deleted. Otherwise, we choose another edge other than e on cycle C0. Let the chosen

edge be denoted by (s, t). We write the cycle C0 as 〈s, P0, t, s〉. Treating (s(1), t(1)) as a

healthy edge, by Lemma 1, there exists a cycle C3 of every even length from 4 to 2n−1

passing through (s(1), t(1)) in Q1
n−1 −{FR − (s(1), t(1))}. We write C3 as 〈s(1), P3, t

(1), s(1)〉,

then 〈s, P0, t, t
(1), P3, s

(1), s〉 is the cycle of length l through e in Qn − F .

(b): e is in subcube Q1
n−1. Let e1 be the only faulty edge in Q1

n−1. By Lemma 1, there

exists a cycle C of every even length from 6 to 2n−1 through e in Q1
n−1 − {e1}. Suppose

that 2n−1 + 2 ≤ l ≤ 2n, and l is even. Let e0 = (s, t) be a faulty edge in Q0
n−1 such that

(s(1), t(1)) 6= e. By induction hypothesis, there exists a cycle C0 of length 6 ≤ l(C0) ≤ 2n−1

in Q0
n−1−{FL−{e0}} going through e. We write C0 as 〈s, P0, t, s〉. If (s(1), t(1)) = e1, treat

e1 as a healthy edge temporarily, by Lemma 4, there exists a cycle C1 of length 2n−1 − 4,

2n−1 − 2, or 2n−1 respectively going through both (s(1), t(1)) and e in Q1
n−1. We write C1

as 〈s(1), P1, t
(1), s(1)〉. Thus, 〈s, P0, t, t

(1), P1, s
(1), s〉 can form a cycle of length l through e

in Qn −F , if we adjust the length of P0 and P1 properly. Otherwise, if (s(1), t(1)) 6= e1, by

Lemma 6, there exists a cycle C3 of length 2n−1, 2n−1 − 2, or 2n−1 − 4, respectively, going

through both e and (s(1), t(1)) in Q1
n−1 − {e1}. We write C3 as 〈s(1), P3, t

(1), s(1)〉. Thus,

〈s, P0, t, t
(1), P3, s

(1), s〉 can form a cycle of length l through e in Qn − F , if we adjust the

length of P0 and P3 properly.

This completes the proof. 2
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Chapter 4

Conclusions

Since every component in the network may have different reliability, it is important to con-

sider properties of a network with some conditional faults. We consider the n-dimensional

hypercube with some faulty edges such that each vertex is incident to at least two non-

faulty edges. We use induction to prove that the n-dimensional hypercube Qn, n ≥ 3, is

(2n − 5)-edge fault-tolerant conditional edge bipancyclic.

There exists an n-dimensional hypercube with (2n-4) edge faults, in which each vertex

incident to at least two nonfaulty edges, such that for any pair of vertices does not exist

path joining them. for example, let u = 00 . . . 0 and v = 100 . . . 1. One can consider the

(2n− 4) faulty edge in Qn : ei(u) and ei(v) for all 1 ≤ i ≤ n− 2 (see Fig. 1.1). obviously,

vertices u and v each have exactly two nonfaulty edges incident to them. Hence the four

edges e0(u), en − 1(u), e0(v), and en − 1(v) from a 4-cycle by themselves. Therefore, in

this Qn, n ≥ 3, it is impossible to make a faulty a hamiltonian cycle joining any pair of

vertices. On the other hand, it is also impossible to make a hamiltonian cycle for n ≥ 3.

There, our result are optimal.In our future work, there is a direction to be studied:

If hypercube Qn is faulty free, there exist n cycles with the same length being L for
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each integer 4 ≤ L ≤ 2n . We will discuss that whether they are mutually independent

or not.
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