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Edge-bipancyclicity of conditional
faulty hypercubes

Student: Sheng-Kai Wang Advisor: Jimmy J.M.Tan

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Xu et al. showed that for any set of faulty edges F of an n-dimensional hypercube Qj
with |[FI=<n-1, each edge of Q,-F lies on a cycle of every even length from 6 to 2", n=
4, provided not all edges in F are incident with the same vertex. In this paper, we find
that under similar condition, the number of faulty edges can be much greater and the
same result still holds. More precisely, we show that, for up to |F|=2n-5 faulty edges,
each edge of the faulty hypercube Qq-F lies on a cycle of every even length from 6 to
2" with each vertex having at least two healthy edges adjacent to it, for n=3.
Moreover, this result is optimal in the sense that the result can not be guaranteed, if
there are 2n-4 faulty edges.

Keywords: cycles, Pancyclic, Conditional fault, Hypercube,
Fault-tolerant
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Chapter 1

Introduction

The ring embedding problem, which deals with all the possible lengths of the cycles in
a given graph, is investigated in a lot of interconnection networks [2, 3, 4].If a graph
contains cycles of all lengths, it is called pancyclic [7]. Bipancyclicity is essentially a
restriction of the concept of pancyelicity_to cyclerof even lengths. A bipartite graph is
vertez-bipancyclic [6] if every vertex-ies on a.eycle of every even length from 4 to |V (G)|.
Similarly, a bipartite graph is edge-bipaneyelic-if every edge lies on a cycle of every even
length from 4 to |V(G)|. A bipartite graph-is§-k-edge-fault-tolerant edge-bipancyclic if
G — F remains edge-bipancyclic for any set of faulty edges F' C E(G) with |F| < k. A
path P is a sequence of adjacent vertices, written as (vg, vy, ..., vy,). The length of a path
P, denoted by [(P), is the number of edges in P. A hamiltonian cycle is a graph with a

spanning cycle.In addition we call e a healthy edge when e is fault-free in a graph.

Chan and Lee [1] considered an injured n-dimensional hypercube where each vertex is
incident with at least two healthy edges, and proved that it still contains a hamiltonian
cycle even it has (2n — 5) edge faults. Tsai [8] proved that such injured hypercube @,

contains a cycle of every even length from 4 to 2", even if it has up to (2n —5) edge faults.



Recently, Xu et al. [9] showed that for any set of faulty edges F' od Q™ with |F| <n —1,
each edge of @, — F lies on a cycle of every even length from 6 to 2", n > 4, provided
not all faulty edges are incident with the same vertex. We observe that not all faulty
edges a re incident with the same vertex is equivalent to stating that each vertex has at
least two healthy edges adjacent to it, if |F| < n — 1. In this paper, we consider a set of
faulty edges satisfies the condition that each vertex of (), — F' is incident with at least
two healthy edges. Such a set of faulty edges F' is called a set of conditional faulty edges
and @, — F is called a conditional faulty hypercube. We find that under this condition,
the number of faulty edges can be much greater and the same result still holds. We show
that, for up to |F| = 2n — 5 conditional faulty edges, each edge of a faulty hypercube
@, — F lies on a cycle of every even length from 6 to 2" with each vertex having at least
two healthy edges adjacent to it, for ms28.:We observe that, if |F| < 2n — 5, we may
arbitrarily delete some more edggs to make a faulty. edge set F/ O F and |F'| = 2n — 5.

If our result holds for F’, it holds for F. From now on, we shall assume |F| = 2n — 5.

The above result is optimal inf:the sense that result can not be guaranteed, if there
are 2n — 4 conditional faulty edges. For example, take a cycle of length four in @, let
(u1,us, us, ug) be the consecutive vertices on this cycle. Suppose that all the (n —2) edges
incident to vertex uy (respectively vertex ug) are faulty except those two edges on the four
cycle are healthy. There are 2(n — 2) conditional faulty edges. (see Fig.1.1) Then there

does not exist a hamiltonian cycle in this faulty @, for n > 3.

We now give a formal definition of a hypercube. An n-dimensional hypercube is
denoted by @,, with the vertex set V(@Q,,) and the edge set F(Q,). Each vertex u of @,

can be distinctly labeled by a n-bit binary strings, © = u,_1u,_o...ujug. There is an edge



Faulty edges

Figure 1.1: Tllustration for the @, with (2n-4) edge fault.

between two vertices if and only if their binary labels differ in exactly one bit position.
Let v and v be two adjacent vertices. If the binary labels of v and v differ in ith position,
then the edge between them is said to be in dimension 7 and the edge (u,v) is called an
ith dimension edge. Let 7 be a fixed position, we use Q°_; to denote the subgraph of
Q,, induced by {u € V(Q,)|u; = 0} and Q._; to denote the subgraph of Q,, induced by
{u e V(Q,)|u; = 1}. We say that. @, is decomposed into Q°_; and Q) , by dimension
i, and Q°_, and Q! | are (n —1)-dimensional subcube of Q,, induced by the vertices
with the 7th bit position being @ ‘and 1-#espeetively. Q° , and Q! , are all isomorphic
to Q,_1. For each vertex u € V(Q%.y), there is'exactly one vertex in Q! _;, denoted by
uM | such that (u,uV) € E(Q,). Conversely, for each u € V(Q! ,), there is one vertex
in Q°_,, denoted by u(?, such that (u,u?) € E(Q,). Let D; be the set of all edges with
one end in Q% , and the other in Q! ,. These edges are called crossing edges in the ith

dimension between between Q% _; and Q;,_,. We also call D; the set of all ith dimension

edges. Consequently, |D;| =2""! for all 0 <i <n — 1.



Chapter 2

Some Preliminaries

To prove our main theorem, we need some preliminary results.

Lemma 1 /5] Q,, is edge-bipancyclic, and is (n-2)-edge-fault-tolerant edge-bipancyclic,

forn > 3.

Lemma 2 [9] Each edge of Q4 =F lies ona cycle of every even length from 6 to 2™ = 16
for any F C E(Q4) with |F| = 3, provided not all the faulty edges in F are incident with

the same vertex.
Lemma 3 [9] Any two edges in @, are included in a hamiltonian cycle, forn > 2 .

Proof. We prove the lemma by induction on n > 2. Obviously, the lemma is true for
n = 2. Assume that the lemma is true for every k& with 2 < k < n. Let e and €’ be
two edges in @), and express ,, = Ly ® R;, such that none of e and €’ is k-dimensional.
Without loss of generality, we may assume e € L. Furthermore, we can suppose that e’

is in Ly, otherwise consider €’ instead of e’. By the induction hypothesis, there exists a



Hamiltonian cycle C' containing e and ¢’ in L. Let uyv;, be an edge on C different from
e and €’. The corresponding C’ is a Hamiltonian cycle in Rj, containing ugvg, eg and e’,.
Let P = C —upvr and P’ = C' — ugvgr. Then P+ upvy, + P+ upvg is a Hamiltonian

cycle in @),, containing e and €’. O

The above lemma can be improved; In addition to the hamiltonian cycle, there are

cycles of smaller lengthes passing through these two edges. We have the following lemma.

Lemma 4 Any two edges in Q,, are included in a cycle of length 2™, 2" — 2 and 2" — 4

respectively, forn > 3.

Proof. Let ey, e5 be two arbitrary edges in (),,. Since n > 3, we can decompose (),, into
two subcubes QY | and Q! _, by some dimension 4, such that e; and ey are not crossing

edges. We then consider the following tweseases:

Case 1: Both edges e; and es-are in the same subcube Q' _,. Without loss of generality,

0

we assume that {ej,e2} C E(Q,%). "By Lemma 3; there exists a hamiltonian cycle Cy

going through e; and ey in Q°_;, and"the length of Cj is 2"~!. Since n > 3, there is
a third edge (u,v) other than e; and ey on cycle Cy. We write Cy as (u, Py,v,u). It
follows from the definition of the hypercubes, (u),v™) is an edge in Q} ,. By Lemma
1, in Q! |, there exists a cycle C of every even length 4 < [(C) < 2"! going through
(u®,vM). We write C; as (u), P, oM uM). Thus, (u, Py, v,v", P;,u™, u) can form a

cycle of length 2™, 2™ — 2 or 2" — 4 respectively passing through edges e; and e; in @), if

we adjust the length of P, properly.

Case 2: e; and ey are in different subcubes. Without loss of generality, we assume

that e; € E(Q%_,), ea € E(QL_;). By Lemma 1, there exists a cycle Cy of every even

n—1

7



length, 4 < I(Cy) < 2! going through e; in QY ;. Since n > 3, we can choose an edge
(u,v) on cycle Cy and by definition, (u™ v(V) is an edge in Q! _, such that (u,v) # ey,
and (uM,vM) # ey. We write Cj as (u, Py, v,u). By Lemma 3, there exists a cycle C of
length 27! going through e, and (uV,vM). We write C; as (u™™), P, v uM). Thus, we
can adjust the length of Py properly such that it produces a cycle (u, Py, v, vV, P, u™® u)

of length 27, 2™ — 2 or 2" — 4 respectively going through edges e, e; in Q).

This proves the lemma. O

Lemma 5 Let (), be an n-dimensional hypercube, n > 2, and let e; and ey be two edges in
the same dimension ©. Then there exists another dimension j # i such that decomposing
Q, into Q°_, and QL _| by dimension j, we have (1) neither e; nor ey is crossing edges,

(2) not e; and ey are in the same subcube.

Proof. Let e; = (a,b) and ey = (s,t) be two edges in the same dimension i. Let
a=ay..a;..a; and s = s,,...s;...5y. Then b=",,...b;»..by and t = t,,...T;...t;. Since e; # €9
and n > 2, there exists another dimension j'# i, such that a; # s;. We decompose @),
into Q°_, and Q! ;| by dimension j. Then, e; and e, are not crossing edges and in the

different subcubes. O

In some special cases, Lemma 4 still holds even if there is one faulty edge. We need

the following lemma later.

Lemma 6 Let ), be an n-dimensional hypercube and eq be a faulty edge in the ith di-
mension. Any two healthy edges e; and ey in the ith dimension are included in a cycle of

length 2™, 2™ — 2 and 2" — 4 respectively, for n > 4.



Proof. Since ¢y, e; and ey are all in the ith demension, and n > 4. By Lemma 5, we
can choose a dimension j different from 7 such that e; and ey are in different subcubes.
Without loss of generality, we may assume that e; is in Q% ; and ey is in Q) ; and
eo is in Q% ;. By Lemma 1, in Q% , — {eo}, there exists a cycle Cy of every length
4 < 1(Cy) < 271 going through e;. Since n > 4, we can choose an edge (u,v) on cycle
Cy such that (u,v) # ey, and (u™®,vM) #£ ey. We write Cy as (u, Py, v,u). By Lemma 3,
in Q. _,, there exists a hamiltonian cycle C; going through e, and (u™™,v")). We write

Cy as (u, PoM uM). Thus, (u, Py, v,v®, P, uM u) is a cycle of length 27, 2" — 2 or

2™ — 4 respectively, if we adjust the length of P, properly. O

Let I be a set of faulty edges of @,,. Suppose that we decompose Q,, into Q°_; and
I, by dimension j, and let F, = FN E(Q°_,), Fr = F N E(Q}._,). Suppose that
F is a set of conditional faulty edges of Q,. Ifwe arbitrarily decompose Q,, into Q% _,
and Q! _, by a dimension, F; and Flr may - not be conditional faulty edges in Q°_, and
QL | respectively. However, we Will show that it is always possible to find some suitable

dimension such that decomposing:by. this dimension, both F; and Fj are conditional

faulty sets in Q°_, and Q! _, respectively.

Lemma 7 Consider the n-dimensional hypercube Q,, for n > 4. Let F be a set of
conditional faulty edges with |F| = 2n —5. There are at most two vertices in Q,, incident

with (n-2) faulty edges.

Proof. If there are three vertices in @,, incident with (n-2) faulty edges, the number of
faulty edge F' is at least 3n — 8. However, (3n — 8) > (2n — 5) for all n > 4 which is a

contradiction. O



Lemma 8 Consider the n-dimensional hypercube Q,,, n > 4. Let F' be a set of conditional
faulty edges with |F| = 2n — 5. If there are two vertices x and y both incident with n-2
faulty edges, then x and y are adjacent in Q,, and the edge (x,y) is a faulty edge. Suppose
that (z,y) is in dimension j. Then decomposing Q, into Q°_, and QL _, by dimension
j, both F and Fr are sets of conditional faulty edges in Q°_, and QL | respectively.

Moreover, |Fr| < 2n —6 and |Fg| < 2n — 6.

Proof. If there are two vertices z and y in @), incident with (n—2) faulty edges, then these
two vertices are connected by a faulty edge. Otherwise, |F| =2(n—2)=2n—4 >2n—5
which is a contradiction. Suppose the edge (z,y) is in dimension j, we decompose @,
into two subcubes. It is clearly that each vertex in Q% ; and Q! , is still incident with
at least two healthy edges, and F, and Eg.are both conditional faulty edges in Q°_; and

L, respectively. Then, |F| = |Fg| = w=:3.< 2w— 6, for n > 4. O

Lemma 9 Consider an n-dimensional hypercube @y, for n > 4. Let F' be a set of con-
ditional faulty edges with |F| = 2m.=5. Suppose thal there exists exactly one vertex x
having (n-2) faulty edges indcident with it. Since n — 2 > 2, let ey and es be two faulty
edges incident with x, and let e; and ey be jth and kth dimension edges respectively. Then
decomposing Q,, into Q°_, and QL _| by either one of these two dimensions j and k, Fp,
and Fr are still sets of conditonal faulty edges in Q°_, and Q) | respectively. Moreover,

|Fr| <2n—6 and |Fgr| < 2n — 6.

Proof. If there exists only one vertex = having (n — 2) faulty edges incident with it, there
are at least two faulty edges e; and ey incident with it, since n > 4. Obviously, these

two faulty edges are in different dimensions. Without loss of generality, we may assume

10



that e; is in dimension j and es is in dimension k, for 5 # k. We can decompose (),, into
0 and Q! , by either jth or kth dimension, and either e; or e, is a crossing edge.
Therefore, each vertex in these two subcubes is incident with at least two healthy edges

and |Fp| <2n —6 and |Fg| < 2n — 6. 0

Lemma 10 Let Q,, be an n-dimensional hypercube, F be a set of faulty edges with |F| > 2,
and e be a healthy edge, n > 2. Then there exists a dimension j, decomposing @, into
Q% | and QL | by this dimension, such that e is not a crossing edge and not all the faulty

edges are in the same subcube.

Proof. Suppose that e = (u,v) is in dimension i. If there is a faulty edge f not in
dimension 4, say in dimension j. We decompose @, into Q% ; and Q) ; by dimension
j. Then f is a crossing edge but.e is not,.and all.the faulty edges are not in the same
subcube. Otherwise, all the faulty edges are.ii the same dimension ¢ as e is in. We now
choose any two faulty edges f; and foin-tBy Lemma 5, @, can be decomposed into

0 and Q! | by some dimension"j. % i such that edges f; and f, are not in the same

subcube, and e; is not a crossing edge. O

11



Chapter 3

Main theorem

We now prove our main result.

Theorem 1 Let (), be an n-dimensional hypercube, and F be a set of conditional faulty
edges with |F| < 2n — 5. Then each-edge of the eonditional faulty hypercube Q,, — F lies

on a cycle of every even length from 6 to 2™, forn = 3.

Proof. We prove this lemma by“induction on n.+For n = 3, since 2n — 5 = n — 2, by
Lemma 1, the result is true. For n =4, 2n — 5 = n — 1, by Lemma 2, the result holds.

Assume the lemma holds for n — 1, for some n > 5, we shall show that it is true for n.

As we mentioned before, we may assume |F| = 2n — 5. Let e = (u,v) be an edge in
@, — F. We shall find a cycle of every even length from 6 to 2" passing through e in
Q. — F. Assume that e is an ith dimension edge, e € D;, for some i € {1,2,...;n}. The

proof is divided into three major cases:

Case 1: There are two vertices x and y in Q,, incident with (n — 2) faulty edges. By

Lemma 8, (z,y) is an edge in (),, and is a faulty edge. We denote this edge by e;. Suppose

12



Figure 3.1: Hlustration for of Theorem Case 1.1.

that e; is a jth dimension edge. We decompose @,, into Q¥_; and Q}_, by dimension j.

We then consider two further cases:

1.1 e = (z,y) and e = (u,v) are in the.same dimension. Thus, j =i and ey € D;.
(Fig. 3.1) In this case, e is an edge crossing-@% , and Q. ;. Without loss of generality,
assume that u € V(QY_;) and v € W (Qp_s)i Since n > 5, u has a neighbor vertex

n—1
w € Q°_,, by the definition of hypercube, w™ is a neighbor of v such that the edge
(w,wM) is a healthy edge and (w,w™") is a crossing edge between Q° | and Q. ,. By
lemma 1, there exists a cycle Cy in Q°_, — Fy, passing through (u,w) of every even length
4 < 1(Cy) < 27 and a cycle C) in Q) |, — Fr going through (v,w™) of every even
length 4 < I(C}) < 2L, We write Cy as {u, Py, w,u), and C; as (v, P,,w", v). Thus,
(u, Py, w,w™ v, u) is a cycle of length 6 with [(Py) = 3. For every even [, 8 < [ < 2",

we may choose Cy and C; such that [(Cp) = {(Cy) = L. Thus, (u, Py, w,w™, Py, v,u) can

form a cycle of length [ through e in @),, — F, if we adjust the length of Py and P, properly.

13



0 1
Q n-1 Q n-1

Figure 3.2: Ilustration for of Theorem Case 1.2.

1.2 ef and e are in different dimension. Thus, j # i and e; ¢ D;. (Fig 3.2) In this
case, e is in Q°_, or Q! _,. Without doss of generality, we may assume that e € F(Q°_,).
By Lemma 1, there exists a cycléC' in Q% ;:+— Fy, going through the edge e of every even
length [, 6 < 1 < 2771, Let Cybe a cyele of length 2"~ — 2 or 2"~! passing through e
in Q% , — Fy. Since n > 5, there‘gxists an edge (s, ¢) on Cy such that neither s nor ¢ is
adjacent to e and (s,t) # e. We write Cj as (s, Py, t,s). By definition, (s, ¢(") is an
edge in QL _, and (s,s51), (t,t(V)) are healthy edges. By Lemma 1, there exists a cycle
Cy in Q! | — Fr through (s, tM) of every even length 4 < [(C}) < 2"'. We write C;
as (s, P, t™M sM). For every even [, 271 +2 < 1 < 27, (s, Py, t,tM), P, sM) | s) is a cycle

of length [ going through e in @), — I if we adjust the length of Py and P, properly.

Case 2: There is exactly one vertez in Q,, incident with (n — 2) faulty edges. Let x
be the vertex having (n — 2) faulty edges incident with it. Let f; and fs be two faulty

edges incident with x, so f; and fo are in different dimensions j and k. By Lemma

14



9, decomposing @, into Q° ; and Q! ; by either jth or kth dimension, both Fj =

FNE@QY_,) and Fr = FN E(QL_,) are sets of conditional faulty edges in QY_; and

n—1
QL | respectively. Between dimension j and k, we choose one to decompose @Q,, into Q¥ _,

and Q! |, say dimension j, such that the required edge e is not a crossing edge. Therefore,

there is a faulty edge crossing Q°_; and @Q.,_;, we denote this edge by ey, and e; € FND;

is incident with z. Without loss of generality, we may assume that = € V(QY_,).

0 1
Q n-1 Q n-1

Figure 3.3: Ilustration for 'of Theorem Case 2.1.

2.1: Suppose |Fr| < 2n —7 and |Fg| < 2n — 7. (Fig. 3.3) Without loss of generality,
we further assume that e € E(Q°_;). By induction hypothesis, there exists a cycle C
in Q°_, — Fy, of every even length 6 < [(C) < 2"! passing through e. Let Cy be a
cycle of length 2"t — 4 < [(Cy) < 2" through e in Q° , — Fy. Since |Cy — e] >
2=t — 4 — 1> 2(2n—5) = 2|F N Dy, for all n > 5. There exists an edge (s,t) on Cj
such that (s,t) is not e, and both (s, s() and (¢,¢™)) are healthy edges. We write C; as

(s, Py, t,s). By induction hypothesis, there exists a cycle C; in QL _; — Fr of every even

length 6 < I(C;) < 27! passing through (sV tM). We write C; as (s, Py, ¢ s},

15



For every even [, 2" ' +2 < [ < 27 (s, Py,t,t", Py, 5" s) can form a cycle of length

going through e in @Q,, — F', if we adjust the length of Py and P; properly.

2.2: |FL| =2n — 6 or |Fg| = 2n — 6, say the former case. In this case, |[FF N D;| =1

and |F N E(QL_,)| = |Fg| = 0.

w w(l)
u &
e
v
(1)
0 1
Q n-1 Q n-1

Figure 3.4: Illustration-ferrof:Theorem Case 2.2.1(a).

2.2.1: e is in subcube Q°_,. To find a'cycle of length 6 passing through e = (u,v), we
discuss the case that whether e is incident with x or not. If e is incident with x, without
loss of generality, we assume that u = 2. (Fig. 3.4) Thus, (v,v(!)) is a healthy edge. Since
Fy, is a set of conditional faulty edges in Q°_;, vertex u = x has two healthy edges incident
with it. Let w be a neighbor of u in Q°_, such that (w,u) and (w,w™) are healthy edges
and w # v. Thus, (u,v,v™, vV, wM w, u) is a cycle of length 6 in Q,, — F. Otherwise, e
is not incident with z, then (u,u) and (v,v)) are healthy edges. (Fig. 3.5) By Lemma
1, there exists a cycle C; = (uM), P, v uM) of length four in Q. , through the edge

(u®, vW). Thus, (u,u?, P, oM, v,u) is a cycle of length 6 in Q,, — F, where [(P;) = 3.

16
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u u(1)
v V(1)
0 1
Q n-1 Q n-1

Figure 3.5: Illustration for of Theorem Case 2.2.1(b).

Let e; be a faulty edge in QY_; that is not adjacent to e;. Though e; is a faulty edge,
we treat it as a healthy edge temporarily, then thé.total number of faulty edge in Q°_, is
2n — 7. By induction hypothesiss there exists a cycle-Cy of every length 6 < [(Cy) < 2!
going through e in Q°_| — {Fy, = {e; }}-If C; passesie;, we choose e; , or else, we choose
any one edge on Cyy which is not adjacent to esLet the chosen edge be denoted by (s, ).
We write cycle Cy as (s, Py,t,s). Since |[F'N D;| =1 and |Fg| =0, (s,sY), (¢,t1)) and
(s, tM) are all healthy edges. Thus, (s, Py, t,t®, s s) is a cycle of length 8 in Q,, — F
if [(Py) = 6. Suppose that 10 < [ < 2" and [ is even. By Lemma 1, in Q! |, there
exists a cycle Cs of length 4 < [(C3) < 2"' passing through (s, tM). We write Cs
as (s, Py tM) sMY Thus, (s, Py, t,t™M Ps, s s, t) is a cycle of length [ through e in

Q, — F, if we adjust the length of P, and P; properly.

2.2.2: e is in subcube Q) ;. (Fig. 3.6) By Lemma 1, there exists a cycle C' of every

even length 4 <[ < 2" passing through e in Q! . Suppose that 2”71 +2 <[ < 2" and

17



0 1
Q n-1 Q n-1

Figure 3.6: Ilustration for of Theorem Case 2.2.2.

[ is even. Since FJ, is a set of conditional faulty edges, there are at most (n — 3) faulty
edges adjacent to e; in Q%_,. For n 5, n—3 22, we can choose a faulty edge e; = (s,t)
in Q%_; such that e, is not adjacent to-ep and (s%) #9)) is not e. Treating the edge e, as a
healthy edge, by induction hypothesis, there exists a‘cycle Cy of length 6 < [(Cy) < 2!
going through e, in Q° | — Fy,. Wewrite Cj as (8,%,, s), and observe that (s, s(!)) and
(t,tM)) are healthy edges. By Lemma 4, there exists a cycle C; of every length 2"~ — 4,
2"=1 — 2 or 2! through (s, tM) and e in Q! ;. We write C; as (s, Py, t(1) s},
Thus, (s, Py, t,t), P, s s) is a cycle of even length [ through e in Q,, — F, if we adjust

the length of Py and P; properly.

Case 3: Every vertex in Q,, is incident with at most (n — 3) faulty edges. In this case,

suppose that e = (u,v) is in dimension i. By Lemma 10, @), can be decomposed into

0

0 ,and Q! _, by a dimension j different from 7 such that e is not a crossing edge and

not all the faulty edges are in the same subcube. Then |F| < 2n — 6 and |Fg| < 2n — 6.
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Next, we consider two further cases:
3.1: At least one faulty edge is a jth dimension edge. Thus, |[F'N D;| # 0.

We then consider two cases: (a)|Fp| < 2n—7 and |Fr| <2n—7, and (b)|FL| =2n—6

or |[Fr| = 2n — 6. The proof of this subcase is exactly the same as that of case 2.
3.2: None of the faulty edges is a jth dimension edge. Thus, |[FF'N D;| = 0.

3.2.1: |FL| < 2n — 7 and |Fg| < 2n — 7. Without loss of generality, we may assume
that e € F(Q"_;). By induction hypothesis, there exists a cycle C' of even length 6 <
[(C) <27 1in Q°_, — Fy, passing through e. Let C be a cycle of even length 271 — 4 <
1(Cy) < 2! going through e in Q% | — Fy. There exists an edge (s,t) other than e in
Cy. Since [FND;| =0, (s,5W0) and (¢,t) are healthy edges. We write Cy as (s, P, t, s).
By induction hypothesis, there exists’a cycle Gy of every even length 6 < [(C}) < 2" ! in
QL —{Fr— (sM,tM)} through (s®; M) Wewrite C; as (s, P, M s(), For even
[, 2" 42 <1 <2 (s, Py, t,t" Py, sM.5) can forni a cycle of length I going through e

in @), — F, if we adjust the length.of P, and P, properly.

3.2.2: Suppose |Fr| = 2n — 6 or |Fg| = 2n — 6, say the former case. In this case,

0

|Fr| = 1. We then consider two cases: (a) e is in subcube @, _;, and (b) e is in subcube

1
n—1*

(a) e = (u,v) is in subcube Q°_,. Since | N D;| = 0, both (u,u™) and (v,v®)
are healthy edges. Let [ be an even number with 6 < [ < 2"°!. By Lemma 1, there
exists a cycle C of every even length from 4 to 2"~ passing through (u(V), v()) in Q% | —
{Fr— (u® v}, We write C; as (u), P, o™ uM). No matter (u"), v") is healthy or

not, (u,u, P, v v, u) forms a cycle of length [ through e in @, — F. Suppose that
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2n=1 42 <1 < 2" Let e; be a faulty edge in Q°_,. We may treat e; as a healthy edges
temporarily. By induction hypothesis, there exists a cycle Cy of length 6 < [(Cy) < 27!
going through e in Q% | — {F;, — {e1}}. If Cy passes the edge e;, we choose e; to be
deleted. Otherwise, we choose another edge other than e on cycle Cy. Let the chosen
edge be denoted by (s,t). We write the cycle Cy as (s, Py, t,s). Treating (s, ¢t()) as a
healthy edge, by Lemma 1, there exists a cycle C3 of every even length from 4 to 271
passing through (s tM) in Q} | — {Fr — (s, tM)}. We write Cs as (s Py, (1) (D),

then (s, Py, t,tM), P3, sV s) is the cycle of length [ through e in Q, — F.

(b): e is in subcube Q! ;. Let e; be the only faulty edge in Q. ;. By Lemma 1, there
exists a cycle C of every even length from 6 to 2"~! through e in Q! | — {e;}. Suppose
that 277! +2 <1 <27 and [ is even. Let eg = (s,t) be a faulty edge in Q°_; such that
(s, tM)) £ e. By induction hypothesis, there exists a cycle Cy of length 6 < [(Cp) < 27!
in Q°_, —{FL—{eo}} going through ¢ We write C as (s, Py, t,s). If (s, t1)) = ¢, treat
e; as a healthy edge temporarily; by Lemma 4, there‘exists a cycle C; of length 271 — 4,
2"=1 — 2 or 277! respectively goirig through both (s, t1) and e in QL _,. We write C;
as (s, Pt s Thus, (s, Py, t,t™", P, s s) can form a cycle of length [ through e
in Q, — F, if we adjust the length of Py and P, properly. Otherwise, if (51, ¢()) = e;, by
Lemma 6, there exists a cycle Cy of length 271, 27~ — 2 or 2"~! — 4, respectively, going
through both e and (s, tM) in QL | — {e;}. We write C3 as (s, P, ¢t sy, Thus,
(s, Py, t,t™M) P, s s) can form a cycle of length [ through e in @, — F, if we adjust the

length of Py and P; properly.

This completes the proof. O
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Chapter 4

Conclusions

Since every component in the network may have different reliability, it is important to con-
sider properties of a network with some conditional faults. We consider the n-dimensional
hypercube with some faulty edges such that each vertex is incident to at least two non-
faulty edges. We use induction to,prove that the m-dimensional hypercube Q,, n > 3, is

(2n — 5)-edge fault-tolerant conditienal edge bipancyclic.

There exists an n-dimensional:hypercube'with (2n-4) edge faults, in which each vertex
incident to at least two nonfaulty edges, such that for any pair of vertices does not exist
path joining them. for example, let v = 00...0 and v = 100...1. One can consider the
(2n — 4) faulty edge in @, : €;(u) and e;(v) for all 1 <1i < n — 2 (see Fig. 1.1). obviously,
vertices u and v each have exactly two nonfaulty edges incident to them. Hence the four
edges eg(u), e, — 1(u),eo(v), and e, — 1(v) from a 4-cycle by themselves. Therefore, in
this @),,, n > 3, it is impossible to make a faulty a hamiltonian cycle joining any pair of
vertices. On the other hand, it is also impossible to make a hamiltonian cycle for n > 3.

There, our result are optimal.In our future work, there is a direction to be studied:
If hypercube @), is faulty free, there exist n cycles with the same length being L for
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each integer 4 < L < 2" . We will discuss that whether they are mutually independent

or not.
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