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Local Diagnosability of k-ary n-cube
Networks under the PMC Model

Student : Ming-Huang Lin Advisor . Jimmy J.M. Tan

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

In this thesis, we introduce: a. new measure for diagnosability, called local
diagnosability, by changing the original global viewpoint to a local viewpoint. With this
new viewpoint, we yield an easy way te diagnosea multiprocessor system. We apply the
concept of local diagnosability to k-ary n-cube with no missing links and the local
diagnosability of each node is exactly the degree of each node. Then we investigate the
local diagnosability of k-ary n-cube with arbitrarily distributed missing links. Based on
the result proved in this thesis, the number of missing links can be up to 2n—2 and the
local diagnosability of each node is the remaining degree of each node. Moreover, we

propose a more efficient diagnosis algorithm.

Keywords : diagnosability, local diagnosability, k-ary n-cube, degree.
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Chapter 1

Introduction

As the rapid development of digital technology, the architecture of multiprocessor system
has become more and more complex today, and often with a large number of processors
(nodes). It is important to maintain the reliability of such system. Therefore, fault

diagnosis has become an important issue in the design of multiprocessor systems.

It is impractical to test each- processor(node) individually in a large multiprocessor
system, when there are faulty processors (modes): -Preparata et al. [1] first introduced
a fault diagnosis model (called PMC"maodel) for system level diagnosis. This is much
more efficient than testing one node by one node. Also several different models have been

proposed in the literature [2], [3].

Hakimi and Amin [4] proved that a multiprocessor system is t-diagnosable if it is t-
connected with at least 2¢ + 1 nodes. Besides, a necessary and sufficient condition was

given for verifying if a system is t-diagnosable under the PMC model.

In this thesis, we adopt PMC model as the fault diagnosis model and proposed a

new measure of diagnosability, called local diagnosability. Besides we investigate the



local diagnosability of k-ary n-cube [5] with no missing links and learn that the local
diagnosability of each node is exactly the degree of each node, and the local diagnosability
of k-ary n-cube with arbitrarily distributed missing links, as the number of missing links
is not exceed 2n — 2, the local diagnosability of each node is the remaining degree of each

node.

The rest of this thesis can be categorized as follows: Section 2 provides terminology
and preliminaries. Section 3 introduces the concept of local diagnosability and defines the
local t-diagnosability of a system. We then study the local diagnosability of k-ary n-cube
(QF) in Section 4. Moreover, we propose a fault diagnosis algorithm in Section 5. Finally,

our conclusions are given in Section 6.



Chapter 2

Preliminaries

2.1 Terminology and Preliminaries

The architecture of an interconnection network can be represented as a graph in which

the nodes correspond to processors and the edges.to communication links.

Let G = (V, E) be a graph if Vi-is a finite'set-and F is a subset of {(u,v) | (u,v) is
an unordered pair of V'}. We say that V-is-the verter set and E is the edge set. Two
vertices u and v are adjacent if (u, v)iis an edgé of G. The neighborhood of u, denote by
N(u), is {v | (u,v) € E}. The degree deg(u) of a vertex u of G is the number of edges
incident with u. The components of a graph G are its maximal connected subgraphs. A
component is trivial if it has no edges; otherwise, it is nontrivial. The set of nodes in
component C'is denoted by V. and C, is the component which contains node x. For a set
F' C E, the notation G — F represents the graph obtained by removing the edges F from

G.

There are many mutually conflicting requirements in designing the topology for com-

puter networks. The n-cube is one of the most popular topologies [6], and the class of k-ary



n-cubes is another commonly used interconnection topology for parallel and distributed

systems. In this thesis, we study the local diagnosability of k-ary n-cube.

2.2 Basic properties of Q"

The k-ary n-cube QF is a 2n regular graph conmsists of N = k" nodes, and is highly
symmetric. Each node has the form X = z,_1, x,_9, ..., 9, where 0 < x; < k — 1, for
all 0 < i <n—1. Two nodes X = x,_1, Ty_2, ..., g and Y = y,_1, Yn_2, ..., Yo are
interconnected if and only if there exists an i, 0 < i < n — 1, such that x; = y; £ 1 (mod
k) and x; = y;, for i # j. Figure 2.1. and Figure 2.2. shows some examples of the k-ary

n-cubes.

A k-ary n-cube QF can be decomposed iite,k copies of Q% | or in general kP copies
of Qr_4 subcubes for all 3 < n.:df we refer tond*(z,y) € E(Q;) where x differs from y
in the dth position of bitwise representation; for 0 <'d < n — 1, we then have an edge of
dimension d. We say that QF is divided intok'eopies of subgraph, Q% [0], Q%[1], ..., QF[k—1]
(abbreviated as Q[0], Q[1], ..., Q[k — 1],/if there are no ambiguities), along dimension d
for some 0 < d < n—1, and the edges loop around these subgraphs above is the so called,
dimension edges. The bitwise represent of Q%[l] is labeled by x,_1...xq4 1124 1...70, for
every 0 <[ <k — 1 (see Figure 2.3). It is clear that each Q*[l] is isomorphic to Q _, for
0 <1 <k-—1. As a result, there are n ways that a Q¥ can be divided into k copies of

QF | along n different dimensions.



O
O

(a)

@ O

Figure 2.1: Examples of k-ary n-cubes; (a) Q} and (b) Q3.

2.3 The PMC Model

In the study of multiprocessor systems, there are several different models of self-diagnosis,
the PMC Model [1] was adopted each vertex (node) will test all its neighboring vertices

(neighboring nodes) and it is assumed that there is no vertex tested by itself.

Definition 1 Under the PMC model, a syndrome o for system G is defined as follows:

for any two distinct adjacent vertices u and v,

0, if v s tested by u, that u is fault-free and v is fault-free.
o(u,v)=<¢ 1, if v is tested by u, that u is fault-free and v is faulty.
0/1, if vis tested by u, that u is faulty.



2O O
(

(@)

)

Figure 2.2: Anexample'of a k-ary n-cubes; (c) Q3 .

Let o(F') represent the set of all syndromes which could be produced if F is the set of

faulty vertices.

Definition 2 Two distinct sets Fy, Fy C 'V are said to be indistinguishable if o(Fy) [ o (Fs) #
0 ; otherwise, Fy, Fy are said to be distinguishable. We say (Fy, Fy) is an indistinguishable

pair if o(Fy) N o(Fy) # 0, else, (Fy, Fy) is a distinguishable pair.

Definition 3 [1] A system of n units is t-diagnosable if all faulty units can be identified

without replacement, provided that the number of faults presented does not exceed t.
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Figure 2.3: QF is divided into Q[0], Q[1], ..., Q[k — 1].

Let Fy, F5, C V be two distinct séts and let the symmetric difference FiAF, = (F} —

Fy)J(Fy — Fy). |Fy| represent the number of nodesin F.

Lemma 1 [7] A system G(V, EY s t-diagnosable under PMC model if and only if for
each pair Fy, Fy C V with |Fy|, |F2|" <& and Fy # Fy, there is at least one test from

vV — (Fl UFQ) to F1AF2.

Lemma 2 [9] For any two distinct sets Fy, Fy C V, (F\, Fy) is a distinguishable pair if
and only if there exists a vertex uw € V — (Fy|J F2) and there exists a vertex v € FyAFy

such that (u,v) € E (see Figure 2.4).

Theorem 1 [9] Let G(V, E) be the graph of a system G. Then, G is t-diagnosable if and
only if, for each vertex set S C V with |S| =p, 0 < p <t —1, every component C of

G — S satisfies |Vo| > 2(t —p) + 1.

10



Figure 2.4: Ilustrations of a distinguishable pair (F, F).
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Chapter 3

Locally t-diagnosable

3.1 Local Diagnosability

Definition 4 A system of n units is locally t-diagnosable at vertex z, F is the set of all
faulty units, x can be identified without replacement, provided that the number of faults

presented does not exceed t.

Lemma 3 A system G(V, E) is locally t-diagnosable at vertex x under PMC model if and
only if for each pair Fy, Fy C V with |Fy|y|Fel < t and Fy # F,, and x € F1AF5, there

is at least one test from V — (Fy|J Fz) to F1A\Fs.

Lemma 4 For any two distinct sets Fy, Fy C 'V, (Fy, Fy) is a local distinguishable pair
if and only if there exists a vertex u € V — (F1|J F»), a vertex v € F1AF; and a vertex

x € F1AF,y such that (u,v) € E (see Figure 3.1).

Theorem 2 Let G(V, E) be the graph of a system G. Then, G is locally t-diagnosable at
vertex = if and only if, for each vertex set S C V with |S| = p, 0 < p <t —1, every

component C, of G — S satisfies |Vg,| > 2(t —p) + 1.

12
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Figure 3.1: Illustrations of a local distinguishable pair (Fy, F3).

Proof. = We prove |V, | > 2(t — p) + 1 is necessary by contradiction. Suppose that
there exists a set of vertices S C Vawith |S| =p;0 <p <t—1and x ¢ S such that, in
graph G-S, the connected component whichx belongs to has strictly less than 2(¢ —p) +1
vertices. Let C, be such a component, with Ve, | < 2(t — p). We then arbitrarily partition
Ve, into two disjoint subsets, Ve, i=A; J Ao with [A;] <t —p and |Ay] <t —p. Let
Fy=AUS and F, = Ay|JS. Then |Fy| <t and |Fy| < t. It is clear that there is no
edge between V — (Fy |J F2) and F1/AFy. By Lemma 4, Fy and F; are indistinguishable
and x € F1AF,. This contradicts to the assumption that G is locally ¢t-diagnosable at

vertex x.

To prove the sufficiency, suppose on the contrary, that G is not locally ¢-diagnosable
at vertex x, i.e., there exists an indistinguishable pair (Fi, Fy) with |Fj| < ¢, i = 1,2
and x € F1/AF,. By Lemma 4, there is no edge between V — (Fy |J F») and FiAF,. Let

S = F(F,. Thus, in G — S, F{AF,; is disconnected from other parts. We observe that

13



|F\AFy| < 2(t — p), where |S| = p and 0 < p <t — 1. Therefore, there is at least one
component C, of G — S with |Vg, | < 2(t — p), which is a contradiction. This completes

the proof of the theorem.

A Type I graph at vertex x is defined by every neighboring node of x must has a

different good neighbor to other neighboring nodes of x, (see Figure 3.2).

Theorem 3 Let G(V, E) be the graph of a system G. Then, G is locally t-diagnosable at

vertex z, if there exists a Type I subgraph.

Proof. In highly structure, the total number of nodes is 2t + 1, ¢ is the degree of node x
(deg(x) =t), and |V, | > 2t + 1. Each time we remove one node (not include node x) in
the highly structure, the number of nodés will loss connection to x is at most two. So, if
we removed a set of nodes P, P ¢ Vywith |P| = p, for 0 < p <t — 1, then the number of
nodes it will loss is at most 2p. The number of nodes of V-, is the total number of nodes
2t + 1 minus the number of losing nodes 2p:~As a result represent, |V¢,| > 2(t — p) + 1.

By Theorem 2, G at node x is locally t-diagnosable.

3.2 Local Diagnosability of QF with No Faulty Edges

In the following, if we not mention that a k-ary m-cube is missing links or with faulty
edges, then we consider k-ary n-cube as a complete k-ary n-cube. On the other hand, we

do not discuss the case of missing nodes.

We study case by case on the growth of the size to show that whether k-ary n-cue is

locally t-diagnosable or not. It is clear that Q] and Q2 (usually we take Q3 as a hypercube

14



Figure 3.2: An illustration of a Type I.

of n = 2) is not locally 2-diagnosable, because of there exists an indistinguishable pair

S1 € {z,a} and Sy € {y,b} at node x by Lemma 4 (see Figure 3.3).

Figure 3.3: An indistinguishable pair of S;, Sy in Qf, but also in Q3.

Lemma 5 There exists a Type I at any vertex z € Q%, and for all k > 5.

Proof. With out loss of generality, let x be any node in Q¥ for all £ > 5 and the degree
of each node x is 2. Therefore, every neighboring node of x (N(z)) has a link to test
another node which has not been tested yet, for all k is greater than 5. Clearly, there

exists a Type I in any node x (see Figure 3.4).

15



Figure 3.4: A Type I in Q%, for all k > 5.

Lemma 6 There exists a Type I at any vertex x € Q%, and for all k > 3.

Proof. Since k-ary n-cube is highly symmetrie.- With out loss of generality, let node x
be any node in the Q5. Then, we have three different cases: 1) k = 3, 2) k = 4, and 3)

k> 4.
Case 1: k = 3.

Because there are four different nodes which are adjacent to the neighboring nodes of
x, by Pigeonhole Principle, each node of the N(x) has at least a link to test a different

node.
Case 2: k =4.

Because there are six different nodes which are adjacent to the neighboring nodes of
x, by Pigeonhole Principle, each node of the N(x) has at least a link to test a different

node.

16



Case 3: k > 4.

Because there are eight different nodes which are adjacent to the neighboring nodes
of x, by Pigeonhole Principle, each node of the N(z) has at least two links to test two

different nodes.

(See Figure 3.5)

Figure 3.5: Illustrations of three cases (of the proof of Lemma 6). (a) Case 1, (b) Case 2,
and (c) Case 3.

17



For all the cases prove above, we observe that there exists a Type I at any vertex x

€ Qk, for all k > 3.

Theorem 4 There exists a Type I at any verter x € QF, for some n > 2 and for all

k> 3.

Proof. We prove this theorem by induction on n. Clearly by Lemma 6, this theorem is
true for Q%, for all k& > 3. Assume it holds for some n > 2, for all k¥ > 3. We now show

that it holds for n + 1.

Let Q% _; be obtained from k copies of subgraph QF, denoted by Q¥[0], QF[1], ..., and

QF[k — 1], by adding dimension edges between them.

Without loss of generality, we takesnodé & to be one node of the subgraph QF. Let y
and y’ be the neighboring nodes of x exelusive those in the subgraph Q* which contains
the node x. For the degree of each node is two, thetefore there are one more node (not
the node x) links to y and ¢/, y.and@" are“in different subgraph. Also, by induction

hypothesis, there exists a Type I at node'x '€ QF (see Figure 3.6).

Consequently, this theorem holds.

3.3 Local Diagnosability of QF with Faulty Edges

Commonly, there are faults occur in a multi-processor system. In this thesis, we discuss

the issue when the linking edges are broken or missing, called faulty edges.

But exactly, how many missing links or broken edges will make the system not locally

t-diagnosable for any vertex x? Let ¢t be the degree of each node, that is 2n. When there

18



Figure 3.6: An illustration of-the proof of Theorem 4.

are 2n broken edges then we learn that, if-all these 2n broken edges gather at one specific
node, then the system is not locally t-diagnosable at this node. Because this node is
totally isolated, there are no any ‘edges linking to*this node. Further more, if there are
2n — 1 broken edges, simply as above, let all these 2n — 1 broken edges gather at one
specific node x, and let node y be the only node connected to x. Then the system is
not locally t-diagnosable at node y. By lemma 4, there exists a indistinguishable pair,
S1=N(y) and Sy =y|JN(y) —x , |S1| =t and Sy =t (see Figure 3.7). As results show

above, we then investigate when there are 2n — 2 broken edges.

Q3 with two broken edges is not locally t-diagnosable at vertex x, z € Q3 , because
of there exists an indistinguishable pair Sy € {z,a,b,c} and Sy € {y,a,b, c}, by lemma 4

(see Figure 3.8).

19



Figure 3.7: An illustration of indistinguishable pair S; and Sy (of Q% with 2n broken
edges).

Lemma 7 Let Q%, for all k > 4, has no more than two faulty edges. Then there exists a

Type I at any vertex x € Q%, for all k > 4.

Proof. Let node x be any nodéiin @%, we discuss the number faulty edges around node
x. We have three cases: 1) There are two faulty edges on the neighboring edges of x, 2)
There is exactly one faulty edge on.the neighboring edges of x, and 3) No faulty edges are

the neighboring edges of x.
Case 1: There are two faulty edges on the neighboring edges of x.

Case one can be further discussed into two subcases, for how many faulty edges are

there on the dimension edges.
Case 1.1: In case one, there are two faulty edges on the dimension edges.
Case 1.2: In case one, there are only one faulty edge on the dimension edges.

(see Figure 3.9).

20



(b)

Figure 3.8: Illustrations of indistinguishable pair S; and S, (of Q3 with two broken edges).

Clearly, we learn that each neighboring nede of x in the Case 1.1 and Case 1.2, connects

at leat two different nodes which are not including node x.
Case 2: There is exactly one faulty edge on the neighboring edges of x.
Case two can be further discussed into two cases, with £k = 4 and k£ > 4.
Case 2.1: k =4.

Because there are six different nodes which are adjacent to the neighboring nodes of
x, and there are only one more faulty edge may happened, by Pigeonhole Principle, each

node of the N(x) has at least two links to test two different nodes.

21



(b)

Figure 3.9: Tllustrations of case=l (of the proof of Lemma 7), (a) Case 1.1 and (b) Case
1.2.

Case 2.2: k > 4.

Because there are seven different nodes which are adjacent to the neighboring nodes
of x, and there are only one more faulty edge may happened, by Pigeonhole Principle,

each node of the N(x) has at least two links to test two different nodes.
(see Figure 3.10).
Case 3: No faulty edges are the neighboring edges of x.

Case three can be further discussed into two subcases, with £ = 4 and k > 4.

22



Case 3.1: k =4.

Because there are six different nodes which are adjacent to the neighboring nodes of
x, and there are two faulty edges may happened, by Pigeonhole Principle, each node of

the N(z) has at least one link to test a different nodes.
Case 3.2: k > 4.

Because there are seven different nodes which are adjacent to the neighboring nodes
of x, and there are two faulty edges may happened, by Pigeonhole Principle, each node

of the N(z) has at least one link to test a different nodes.
(see Figure 3.11).

For all the cases prove above, we observe that there exists a Type I at any vertex x

€ Q% with no more than two faulty edges, for.all & > 4.

Theorem 5 Let |F| be the number of faulty edges-in QF, for some n > 2 and for all
k > 4. Then there exists a Type T in_any vertex @ € Q%, for some n > 2, for all k > 4

and |F| < 2n — 2.

Proof. We prove this theorem by induction on n. Clearly by Lemma 7, this theorem is
true for ng, for all k& > 4. Assume it holds for some n > 2, for all £k > 4. We now show

that it holds for n + 1.

Let QF., be obtained from k copies of subgraph Q. denoted by Q¥[0], Q%[1], ..., and
QF[k — 1], by adding dimension edges between them. Let x be any node in QF,,. We
investigate two cases: 1) There are not more than two faulty edges and at least one faulty

edges on the dimension edges along some dimension, 2) There are not more than one faulty

23



edges on the dimension edges.

Case 1: There are not more than two faulty edges and at least one faulty edges on

the dimension edges along some dimension.

We discuss the case, when n + 2 < |F| < 2n. By Pigeonhole Principle, there are at

least two faulty edges on the dimension edges along some dimension d, 0 < d < n.

Thus there are at most two dimensional edges that connect to each node, we then

have three more subcases:

Case 1.1: There are two faulty edges on the dimension edges and this two faulty

edges are adjacent to the node x.
By induction hypotheses, there exists a Type I at node x.

Case 1.2: There are one faulty edge on the dimension edges and the faulty edge is

adjacent to the node x.

Let y be the neighboring node 6f x, because each node has at least two good neighbors

and by induction hypotheses, there exists a Type I at node x.

Case 1.3: There are no faulty edges on the dimension edges which is adjacent to the

node x.

Let y and 3y’ be the neighboring nodes of x, because each node has at least two good

neighbor and by induction hypotheses, there exists a Type I at node x.
(see Figure 3.12).

Case 2: There are not more than one faulty edges on the dimension edges.

24



We discuss the case, when 1 < |F| < n+ 1. There are not more than one faulty edge
on the dimension edges and there are at most n + 1 faulty edges along dimension n + 1.

For each subgraph there are at most n broken edges, we have 2n — 2 > n, for some n > 2.

There are at most two dimension edges that connect to each node. We have two more

subcases:

Case 2.1: There are one faulty edge on the dimension edges, and the faulty edge is

connected to the node x.

Let y be the neighboring node of x, because each node has at least two good neighbor

and by induction hypotheses, there exists a Type I at node x.

Case 2.2: There are no faulty edges on the dimension edges which is connected to

the node x.

Let y and y' be the neighboringmode of x,sSimilarly above, each node has at least two

good neighbor and by induction *hypaotheses;-there exists a Type I at node x.

(see Figure 3.13).

3.4 Diagnosis Algorithm (Counting Algorithm)

Base on Type I, we propose an algorithm to diagnose a system and the time-complexity
is O(nlogn). It is more efficient than the fault identification algorithm which the time-

complexity is O(n*9) [7].

Let node p be the node which adjacent to node x, and node ¢ be the node which

adjacent to node p, both p and ¢ are in the Type I of node z. A vote is said to be

25



positive, negative or spoilt is defined as follows:
Positive vote, if o(q,p) = 0 and o(p,z) = 0.
Negative vote, if o(q,p) = 0 and o(p,z) = 1.
Spoilt vote, if o(q,p) =1 and o(p,z) =0, or o(q,p) =1 and o(p,x) =1

A local syndrome is the set of syndrome which are tested in Type I of node x, showed

as above.
(see Figure 3.14).

In a locally t-diagnosable system, the number of faulty nodes are under ¢t. First, we
have a set of local syndrome from the Type I of node z, then we count the positive votes
and negative votes to tell if node x is faulty'or fault free. Third, provided that the positive
votes are greater than or equal to'the negative votes, we say the node z is fault free, vice

versa.

Theorem 6 For the local syndromesfrom TypeI of node x of a locally t-diagnosable
system, the node x is fault-free if the positive votes are greater than or equal to the negative

votes.

Proof. By contradiction, let node x be the faulty node. Without loss of generality, we
have A positive votes, B negative votes and C spoilt votes in the set of local syndrome of
node x, for A+ B+ C =t and deg(x) = t. As the node x is faulty, the minimum number
of faulty nodes of Type I is 2A + C + 1, for a positive vote have two faulty nodes, a spoilt

vote have at least one faulty node and the node x is one faulty node.

As aresult, 2A+C+1> A+B+C+1,for A—B > 0. Because A+ B+C+1=1t+1,
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the total faulty nodes are greater than or equal to ¢t + 1. This contradicts the assumption

that the node x is fault-free.

Theorem 7 For the local syndrome from Type I of node x of a locally t-diagnosable

system, the node x is faulty if the positive votes are less than the negative votes.

Proof. By contradiction, let node x be the faulty-free node. Without loss of generality,
we have A positive votes, B negative votes and C spoilt votes in the set of local syndrome
of node x, for A+ B + C =t and deg(x) = t. The minimum number of faulty nodes of
Type I is 2B + C, for a negative vote have two faulty nodes and a spoilt vote have at

least one faulty node.

As aresult, 2B+ C > A+ B + Cofor /A==.B < 0. Because A + B + C = t, the total

faulty nodes is greater than ¢. This contradicts the assumption that the node x is faulty.
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(b)

Figure 3.10: Hlustrations of case 2 (of the proof of Lemma 7), (a) Case 2.1 and (b) Case
2.2.
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Figure 3.11: Hlustrations of case 3 (of the proof of Lemma 7), (a) Case 3.1 and (b) Case
3.2.
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YI @ 1.

(c)

Figure 3.12: Illustrations of case 1 (of the proof of Theorem 5), (a) Case 1.1 and (b) Case
1.2 (c) Case 1.3.
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YI m yI’

(b)

Figure 3.13: Illustrations of case 2 (of the proof of Theorem 5), (a) Case 2.1 and (b) Case
2.2.
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(b)

Figure 3.14: Illustrations of (a) Local syndrome and (b)From left to right, there are
positive, negative, spoilt, and spoilt votes.
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Chapter 4

Conclusion

In this thesis we introduce a new concept, called local diagnosability, and we studied the
local diagnosability of k-ary n-cube both with no missing links and with missing links.
We then proved that the local diagnosability of each node of k-ary n-cube equals to the
degree of each node of k-ary n-cabe, with _the miissing links limited to the number of
2n — 2. Moreover, by observing swhether there existsia Type I at a node of k-ary n-cube,
we can determine whether a node of k=ary-n-cube is locally t-diagnosable. By the method
described in this thesis, we represented-an efficient algorithm to diagnose a multiprocessor

system.
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