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摘要 

 

在多處理器系統中，診斷能力是判斷一個系統可靠度的重要依據。以往的文獻都

是以全域的角度來看一個系統的診斷能力，本篇論文提出一種局部的診斷方法，

並且用局部的診斷方法來證明類超立方體的診斷能力，最後我們提出一個診斷演

算法，可以用來快速的診斷一個點的好與壞，其時間複雜度為O(nlgn)，其中n

為一個系統的點數總和，比Sungupta提出的演算法O(n5)更有效率 。 

 

關鍵字：診斷能力、局部診斷能力、類超立方體、比較模式、診斷演算法。 
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Abstract 
 

Interconnection networks have been an active research area for parallel and 
distributed computer system. We usually use a graph G=(V,E) to represent the 
topology of a network, where vertices represent processors and edges represent links 
between processors. The diagnosability has played an important role in the reliability 
of an interconnection network. In this thesis, we present a novel idea on system 
diagnosis called local diagnosability. There is a strong relationship between the local 
diagnosability and the traditional global one. For this local sense, we focus more on a 
single processor and require only identifying the status of this particular processor 
correctly. We propose a sufficient condition to determine the local diagnosability of a 
given processor, and we prove the diagnosability of Hypercube Like network HLn is 
n for n≧5 in this local sense. Moreover, we proposed a diagnosis algorithm to easily 
compute the local diagnosability of each node based on the comparison model.  
 

 
Keywords : diagnosability, t-diagnosable, comparison model, MM* model,  

Hypercube Like network, local diagnosability, diagnosis algorithm 
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Chapter 1

Introduction

With the rapid development of technology, multiprocessor systems are more and more

important. The reliability of the processors in multiprocessor systems is therefore be-

coming an important issue. In order to maintain the reliability of a system, whenever a

processor (node) is found faulty, it should be replaced by a fault-free processor (node).

The process of identifying all the faulty nodes is called the diagnosis of the system. The

maximum number of faulty nodes that the system can guarantee to identify is called the

diagnosability of the system.

There are several approaches for interconnected processors to diagnose faulty proces-

sors by themselves. One major approach is called the comparison model, first proposed

by Malek and Maeng [7], [8]. This approach performs the diagnosis by sending the same

input to a pair of adjacent processors and comparing their responses.

In the previous studies on diagnosis, most investigators focused on the global diagnosis

ability of a system but ignored some local systematic details. For example, if a system is

of diagnosability t, it is at most t-diagnosable, i.e. given any syndrome σ, all the faulty

nodes in a system S can be precisely identified if S is with at most t faulty nodes. But it
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is possible to correctly point out all faulty nodes in some part of the system S under any

given syndrome if S is with more than t faulty nodes. Thus, only considering the global

status let us lose some local detail of a system.

In this paper, we present a novel idea on system diagnosis which is called local diag-

nosability. More local information about a system can be retrieved through this concept.

In other words, every node in a system has its own local diagnosability which states some

kind of connection status around it. Moreover, we proposed a counting algorithm to easily

compute the local diagnosability of each node based on the comparison model. Finally,

we can get back to the original global diagnosis in the point of view of local diagnosis and

prove some existing theorems and other new ones.

The rest of this paper is organized as follows: Chapter 2 provides preliminaries and

necessary background for diagnosing a system. Chapter 3 introduces the concepts of local

diagnosability and some sufficient condition to check whether it is locally t-diagnosable

around a certain node in a system. In Chapter 4, we discuss the diagnosability of Hyper-

cbue like network. Then we purpose a counting algorithm to compute the local diagnos-

ability of each node in Chapter 5, and the conclusions are given in Chapter 6.
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Chapter 2

Preliminaries

2.1 Graph definition and notation

In this chapter, we give the basic of graph definition and notation [13]. G= (V,E) is a

graph if V is a finite set and E is a subset of { (u,v) |(u,v) is an unordered pair of V}.

The degree of vertex v in a graph G is the number of edges incident to v. A vertex cover

of G is a subset K ⊆ V(G) such that every edge of E(G) has at least one end vertex in

K. A vertex cover set with the minimun cardinality is called a minumun vertex cover.

2.2 Hypercube-Like Interconnection Networks

Vaidya et al. [14] introduced a class of hypercube-like interconnection networks, called

HL-graphs, which can be defined by applying the ⊕ operation repeatedly as follows:

HL0={K1}; for m≥ 1, HLm={G0⊕G1|G0,G1 ∈HLm−1 }, which has node set V(G0⊕G1)=

V(G0)∪V(G1) and edge set E(G0⊕G1)=E(G0)∪E(G1)∪M. M is an arbitrary perfect match-

ing between the nodes of G0 and G1; i.e., M is a set of edges connecting the nodes of G0

and G1 in a one to one function. See Fig. 2.1.
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Figure 2.1: Examples of Hypercube Like Network; HL3

2.3 The comparison model for diagnosis

For the purpose of self-diagnosis of a given system, several different models have been

proposed in the literature [7], [8], [9]. Preparata et al. [9] first introduced a model, the

so-called PMC-model, for system level diagnosis in multiprocessor systems. In this model,

it is assumed that a processor can test the faulty or fault-free status of another processor.

The comparison model, called the MM model, proposed by Maeng and Malek [8],
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[9], is considered to be another practical approach for fault diagnosis in multiprocessor

systems. In this approach, the diagnosis is carried out by sending the same testing task to

a pair {u,v} of processors and comparing their responses. The comparison is performed

by a third processor w that has direct communication links to both processors u and v.

The third processor w is called a comparator of u and v.

If the comparator is fault-free, a disagreement between the two responses is an in-

dication of the existence of a faulty processor. To gain as much knowledge as possible

about the faulty status of the system, it was assumed that a comparison is performed

by each processor for each pair of distinct neighbors with which it can communicate di-

rectly. This special case of the MM-model is referred to as the MM*-model. Sengupta

and Dahbura [10] studied the MM model and the MM*-model, gave a characterization

of diagnosable systems under the comparison approach, and proposed a polynomial time

algorithm to determine faulty processors under MM*- model. In this paper, we study the

diagnosability of Hypercube Like Network under the MM*-model.

In the study of multiprocessor systems, the topology of networks is usually represented

by a graph G=(V,E), where each node v ∈ V represents a processor and each edge (u,v)∈E

represents a communication link. The diagnosis by comparison approach can be modeled

by a labeled multigraph, called the comparison graph, M=(V,C) where V is the set of all

processors and C is the set of labeled edges. A labeled edge (u, v)w ∈ C, with w being

a label on the edge, connects u and v, which implies that processors u and v are being

compared by w. Under the MM-model, processor w is a comparator for processors u and

v only if (w,u) ∈ E and (w,v) ∈ E. The MM*-model is a special case of the MM model;

it is assumed that each processor w such that (w,u) ∈ E and (w,v) ∈ E is a comparator
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for the pair of processors u and v. The comparison graph M = (V,C) of a given system

can be a multigraph for the same pair of nodes may be compared by several different

comparators.

For (u, v)w ∈ C, the output of comparator w of u and v is denoted by r((u, v)w), a

disagreement of the outputs is denoted by the comparison results r((u, v)w) = 1, whereas

an agreement is denoted by r((u, v)w) = 0. We list all of the possible result in Table 2.1.

Table 2.1: The possible result in Comparision

In this paper, in order to be consistent with the MM model, we have the following

assumptions [10]:

1. All faults are permanent;

2. A faulty processor produces incorrect outputs for each of its given testing tasks;
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3. The output of a comparison performed by a faulty processor is unreliable; and

4. Two faulty processors with the same input do not produce the same output.

2.4 Preliminaries

Theorem 1 [10] For any F1,F2 where F1,F2 ⊂ V and F1 6= F2, (F1,F2) is a distinguish-

able pair if and only if at least one of the following conditions is satisfies:(Fig. 2.2)

1. ∃i,k ∈ V-F1-F2 and ∃j ∈ (F1-F2)
⋃

(F2-F1) such that (i, j)k ∈ C.

2. ∃i,j ∈ F1-F2 and ∃k ∈ V-F1-F2 such that (i, j)k ∈ C.

3. ∃i,j ∈ F2-F1 and ∃k ∈ V-F1-F2 such that (i, j)k ∈ C.

Theorem 1 gives a necessary and sufficient condition to ensure distinguishability of a

pair of set of vertices (F1,F2).

Definition 1 A system G=(V,E) is t-diagnosable if and only if ∀ F1 6= F2, |F1| ≤ t, |F2|

≤ t, F1 and F1 are distinguishable.
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Figure 2.2: Illustrations of a distinguishable pair (F1,F2)
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Chapter 3

Local Diagnosability

In this chapter, we will define the definition of local diagnosability. And we will provide

some practical theorem about local diagnosability. By these theorem, we can easily check

the diagnosability of a system.

Definition 2 A system G=(V,E) is locally t-diagnosable if and only if ∀ F1 6= F2, |F1|

≤ t, |F2| ≤ t, x ∈ F1∆F2, F1 and F1 are distinguishable.

Theorem 2 Let G(V,E) be the graph of a system G. Then G is t-diagnosable if and only

if ∀x ∈ V(G), G is locally t-diagnosable at node x.

Proof. We prove the necessary condition by contradiction first. By Definition 2, there

exists an indistinguishable pair(F1,F2) with |F1|≤ t,|F2|≤ t, and x ∈ F1 ∆ F2. This

contradicts that G is t-diagnosable. Then we prove the sufficiency. Suppose G is not

t-diagnosable. Then there exists an indistinguishable pair(F1,F2) with |F1|≤ t, |F2|≤ t.

Pick any node y in F1∆F2, the system is not locally t-diagnosable at y. It contracts with

Definition 2.
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Theorem 3 The diagnosability of a system G(V,E) is t(G) if and only if t(G)=min {t(x)|

∀x ∈ V(G)}, where t(x) is the local diagnosability of the node x.

Proof. The theorem holds from Theorem 2.

Theorem 4 Let G(V,E) be the graph of a system G. Then G is locally t-diagnosable at

node x if, for each vertex set S ⊂ V(G) with |S|= p, 0≤p≤t-1 let the connected component

which x belongs to in G-S be denoted by Cx, the cardinality of the vertex cover of Cx

including x is at least 2(t-p)+1.

Proof. We prove this by contradiction. Suppose G is not locally t-diagnosable at node

x. By Definition 2, ∃F1 6= F2 ⊆V with |F1|≤ t,|F2|≤ t, and x ∈ F1 ∆ F2, (F1,F2) is

an indistinguishable pair. Let S=F1 ∩ F2 with |S|= p, and let the component which x

belongs to in G-S is Cx. Assume that the cardinality of the vertex cover of Cx is at

least 2(t-p)+1. As we know, |F1∆F2|= 2(t-p). Then the maximun overlapping of Cx

and F1∆F2 is F1∆F2 itself. In the worst case, the vertex cover in Cx all fall into Cx ∩

(F1∆F2) where |Cx ∩ (F1∆F2)|=2(t-p). There is still one vertex which is a member of

the whole vertex cover of Cx in Cx - (F1∆F2). Consequently, there is an edge lying in

Cx - (F1∆F2). Then (F1,F2) is a distinguishable pair since it satisfies the condition 1 of

Theorem 1. Therefore G is locally t-diagnosable at node x By Definition 2 which is a

contradiction.

Definition 3 Let G(V,E) be a graph, for any x ∈ V, a subgraph ES(x;n) is defined

as ES(x;n)=[V(x;n),E(x;n)], for some n ∈ N, where V(x;n)={x} ∪ {vij|1≤i≤n,1≤j≤4}

E(x;n)={(x,vk1),(vk1,vk2),(vk2,vk3),(vk3,vk4)|1≤k≤n}
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Theorem 5 If there is subgraph ES(x;n) around x in a system G(V,E) and deg(x) ≥ n,

then t(x) ≥ n.

Proof. We prove this theorem by following the condition of the Theorem 4. First we let

lk=(vk1, vk2, vk3, vk4) for some k, 1 ≤k ≤n, in ES(x;n). Then consider the vertex cover

on each lk. The cardinality of vertex on each lk is 2. After deleting a set of nodes S in

ES(x;n) where |S|= p, 0 ≤ p ≤n-1, there are at least (n-p) complete lk quadruples where

the word ”complete” means that all vk1, vk2, vk3, vk4 on a lk have not been deleted in G-S.

Then the cardinality of vertex cover including x on the connected component Cx which

contains x is more than 1+ 2(n-p). Therefore, the system G with a subgraph ES(x;n) is

locally n-diagnosable at x by Theorem 4.

Theorem 6 In a system G(V,E), for some x ∈ V(G), if deg(x)=n, then t(x) ≤ n.

Proof. We prove this theorem by contradiction. Suppose on the contrary that t(x) ¿

n, say t(x)= n+1. Then the system is locally (n+1)-diagnosable on x and deg(x)= n.

Assume there is a subgraph ES(x;n) around x. Let F1 and F2 be the set of {x} ∪ {

vk3 } and { vk1 for all k, 1≤ k ≤ n, in ES(x;n), respectively. Then, (F1, F2) is not a

distinguishable pair according to Theorem 1, which is a contradiction. Then the proof is

completed.

Theorem 7 If there is a subgraph ES(x;n) around x in a system G(V,E) and deg(x)=n,

then t(x)=n.

Proof. This theorem holds from the combination of Theorem 5 and Theorem 6, therefore

this theorem is also completed.
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By Theorem 7, we can check the local diagnosability of any node in a system. It’s

more convenient than global view.
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Chapter 4

Diagnosability of Hypercube Like
Network

Theorem 8 The diagnosability of Hyprecube Like Network HLn is n for n ≥ 5.

Proof. We prove the theorem by induction on n, the dimension of Hyprecube Like

Network HLn.

Basis: We will prove that HL5 is 5-diagnosable. Consider any node x in HL5, we find

that there is a subgraph ES(x,5) around x (See Fig. 4.1). Hence node x in HL5 is locally

5-diagnosable by Theorem 7. Because HL5 is node symmetric, therefore every node in

HL5 is locally 5-diagnosable. Hence HL5 is 5-diagnosable by Theorem 2.

Hypothesis: The claim holds for HLn−1.

Induction: Consider an n-cube, HLn. We want to show that each node of HLn all

have the subgraph ES(x,n) around it. Consider any node x in HLn, we can separate HLn

into two HLn−1 which called G and H. Without loss of generality, we may assume that

x is in G. By hypothesis, there is a subgraph ES(x,n-1) in G. Consider x’ in H, there is

a subgraph ES(x’,n-1) in H. Hence there is a subgraph ES(x,n) in HLn. Therefore x is
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locally n-diagnosable by Theorem 7. And HLn is node symmetric, each node in HLn is

locally n-diagnosable, hence HLn is n diagnosable Theorem 2.

or

x x

HL3 HL3

H L3                                        H L3

x
HL4

H L4                                        H L4

HL5
x

Figure 4.1: It shows HL5 has a subgraph ES(x,5) around x.

Theorem 9 If the local diagnosability of any node in HLn−1 equals to it’s degree with

n-3 edge faults, then the local diagnosability of any node in HLn equals to it’s degree with

n-2 edge faults.

Proof. First we explain why not the edge fault in HLn equalts to n-1. We give a

counterexample in the Fig. 5.2. We can see that F1,F2 are indistinghushable pair by

Throrem 1. See Fig. 4.2.
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B

F2

A

F1

Figure 4.2: The illustration of indistinghushable pair.

Now we are going to prove the theorem. Suppose the local diagnosability of any node

in HLn−1 with n-3 edge faults equals to it’s degree . Consider HLn which has n-2 faulty

edges is constructed with two copies of HLn−1, one is G and the other is H. Without loss

of generality, we may assume that x is in G and deg(x)=m. And the degree of node x’ in

H correspond to x is m’. We prove it in three cases.

case 1.1: There are k faulty edges in the crossed edge, where 1≤k≤n-2, and (x,x’) is

faulty. See Fig. 4.3.

Since there are k faulty edges in the crossed edge, where 1≤k≤n-2, the faulty edges in

G are at most n-3. Since the faulty edges in G are at most n-3, the local diagnosability

17



of x in G equals to it’s degree m. Hence there is a subgraph ES(x,m) around x in HLn

because (x,x’) is faulty. By theorem 7, the local diagnosability of x in HLn equals to it’s

degree m with n-2 faulty edges.

case 1.2: There are k faulty edges in the crossed edge, where 1≤k≤n-2, and (x,x’) is

fault-free. See Fig. 4.3.

Since there are k faulty edges in the crossed edge, where 1≤k≤n-2, the faulty edges in

G,H are at most n-3. Since the faulty edges in G,H are at most n-3, the local diagnosability

of x in G equal to it’s degree m-1 and the local diagnosability of x’ in H equal to it’s degree

m’-1. Hence there is a subgraph ES(x,m-1) around x in G and ES(x’,m’-1) in H. So there

is a subgraph ES(x,m) around x in HLn. By theorem 7, the local diagnosability of x in

HLn equals to it’s degree m with n-2 faulty edges.

case 2: All faulty edges are in G.(i.e there are n-2 faulty edges in G.) See Fig. 4.4.

If there is a faulty edge S belongs to {(x,v11),(x,v21),(x,v31),(x,v41)}, we assume

that S is fault-free. Hence there are n-3 faulty edges in G. By assumption, the local

diagnosability of x in G equals to it’s degree,So we can find ES(x,m-1) in G. Consider

x’ in H, we can also find ES(x’,m’-1) in H by assumption. Therefore, we can easily find

ES(x,m) in HLn. Then the local diagnosability of x in HLn equals to it’s degree with n-2

faulty edges by Theorem 7.

If there is a faulty edge S=(x,y) belongs to {(v11,v12),(v21,v22),(v31,v32),(v41,v42)},

we assume that S is fault free.Hence there are n-3 faulty edges in G. By assumption, the

local diagnosability of x in G equals to it’s degree,So we can find ES(x,m-1) in G. Consider

x’ in H, we can also find ES(x’,m’-1) in H by assumption. Consider node y’ in H, we can
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find ES(y’,deg(y’)-1) in H. Therefore, we can easily find ES(x,m) in HLn. Hence the local

diagnosability of x in HLn equals to it’s degree with n-2 faulty edges by Theorem 7.

If there is a faulty edge S belongs to {(v12,v13),(v22,v23),(v32,v33),(v42,v43)} or

{(v13,v14), (v23,v24),(v33,v34),(v43,v44)}, it can be proved using by the same way.

case 3: There are x faulty edges in G, where 1≤x≤n-2. And there are y faulty edges

in H, where 1≤y≤n-2. See Fig. 4.5.

Because faulty edges in H and G are at most n-2. By the assumption, the local

diagnosability of x in G equals to it’s degree m-1. Hence we can find ES(x,m-1) in G.

We can find ES(x’,m’-1) in H by the same way. Hence we can find ES(x,m) in HLn.

Therefore the local diagnosability of x in HLn equals to it’s degree with n-2 faulty edges

by Theorem 7.

In case 1,2,3, we proved all possible distribution of faulty edges. Therefore, the proof

is complete.
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HLn-1 HLn-1

... ...

at most n-3 faulty edges                   at most n-3 faulty edges

x X’

G                                                       H

Figure 4.3: Case 1: There are x faulty edges in the crossed edge, where 1≤x≤n-2.

20



... ...

n-2 faulty edges                                  no faulty edge

HLn-1 HLn-1

G                                                       H

x X’

... ...

...

HLn-1 HLn-1

G                                                       H

n-2 faulty edges                                  no faulty edge

x X’

y

y’

Figure 4.4: Case 2: All faulty edges are in G.(i.e there are n-2 fault edges in G.)
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... ...

1<=faulty edges<=n-3                 1<=faulty edges<=n-3 

HLn-1 HLn-1

G                                                       H

x X’

Figure 4.5: Case 3: There are x faulty edges in G, where 1 ≤x≤n-2. And there are y
faulty edges in H, where 1≤y≤n-2

22



Chapter 5

Counting Algorithm

We propose an algorithm in Theorem 10 to compute the local diagnosability of each node

based on the comparison model, which is called Counting algorithm. This algorithm is

very efficient, the time complexity is O(nlgn) where n is the number of nodes in a system.

It is more efficient than the Sengupta’s algorithm[10], which the time complexity is O(n5).

Theorem 10 For any node x in a t-diagnosable system S, the number of faulty nodes in

system S is ≤t. First use the Comparison Model to test the nodes in V(x;t), it will output

some syndrome. Now we will diagnose node x by the syndrome which output from V(x;t).

Case 1: If A0(x)≥A4(x), X is fault-free node, Case 2: If A0(x)<A4(x), x is faulty, where

Ai(x) is the number of output Gi around x where 1≤i≤7. See Fig. 5.1.

Proof. We prove the Case I by contradiction. Suppose x is faulty, then the number

of faulty node is at least n=1+3A0(x)+2A1(x)+A2(x)+2A3(x) +A5(x)+A6(x)+A7(x) but

t(x)=A0(x)+A1(x)+A2(x)+A3(x)+A4(x)+A5(x)+A6(x)+A7(x) it contradict with n>t(x),

hence x is fault-free.
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0 0 1 1 0 0 1 1
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7

Figure 5.1: 8 types of output around x

We prove the Case II by contradiction. Suppose x is fault-free, then the number of

faulty node is at least m=A1+A2+A3+2A4+A5+A6+A7, but t(x)=A0(x)+A1(x)+A2(x)+A3(x)

+A4(x) +A5(x)+A6(x)+A7(x) it contradict with m>t(x), hence x is faulty.

There is an example of counting algorithm. Suppose the system is 7-diagnosable, we

test ES(x;7) under the Comparison Model. The result is in Fig. 5.2. Hence A0=3, A4=2,

A5=1, A6=1. Because A0>A4, by Theorem 10 node x is fault-free.

0 0 0 1 1 1 1

0 0 0 0 0 0 1

0 0 0 0 0 1 0

X

Figure 5.2: The test result in ES(x;7)
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Chapter 6

Conclusions

The reliability of an interconnection network is an important issue. The diagnosability

is also an important factor in measuring the reliability of an interconnection network. In

this paper,we propose a new point of view which is called the local diagnosability, and

a theorem to verify the diagnosability of multiprocessor systems under the comparison-

based model. Then we prove the diagnosability of Hyper-cube Like network under the

comparison-based model more easily in our theorem. Finally we propose a counting

algorithm, it can diagnose a t-diagnosable system efficiently.
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