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摘要 

 

給一個圖G = (V, E)以及邊集合R ⊆ E，其中R的邊為獨立路徑。如果一個圖G包含

漢米爾頓迴路以及含有任何的需求邊R且|R| ≤ k，則圖G稱為k-漢米爾頓需求邊。

我們定義圖G的漢米爾頓需求邊且k為最大時，稱為hr(G)。如果一個圖G-F 包含

漢米爾頓但不包含壞邊F且|F| ≤ k，則圖G稱為k-漢米爾頓容錯邊。我們定義圖G

的漢米爾頓容錯邊且k為最大時，稱為hf(G)。在這篇論文中，我們要證明如果圖

G為三正則漢米爾頓圖，則hf(G) ≤ 1。如果圖G為三正則漢米爾頓圖且hf(G) = 1，

則 1 ≤ hr(G) ≤ 3。我們將介紹一些hf(G) = 1 且hr(G) = i其中i = 1, 2, 3 的 3-連通漢

米爾圖G，以及一些hf(G) = 0 且hr(G) = 1 的 3-連通漢米爾圖G。 

 

關鍵字：漢米爾頓、漢米爾頓連結。 
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Abstract 
 

Given a graph G = (V,E) and edge set R ⊆ E, where the edges of R form independent 

paths. A graph G is k-edge-required-hamiltonian if it contains a hamiltonian cycle 

including any R whenever |R| ≤ k. We define edge-required hamiltonicity of G, 

denoted by hr(G), to be the maximum of such k. A graph G is 

k-edge-fault-tolerant-hamiltonian if G – F is hamiltonian for any faulty edge set F 

with |F| ≤ k. We define edge-fault-tolerant hamiltonicity of G, denoted by hf (G), to 

be the maximum of such k. In this thesis, we prove that hf (G) ≤ 1 if G is a cubic 

hamiltonian graph, 1 ≤ hr(G) ≤ 3 if G is a cubic hamiltonian graph with hf (G) = 1. We 

present some cubic 3-connected hamiltonian graphs G with hf (G) = 1 and hr(G) = i 

for i = 1, 2, 3, a cubic 3-connected hamiltonian graph G with hf (G) = 0 and hr(G) = 0, 

and a cubic 3-connected hamiltonian graph G with hf (G) = 0 and hr(G) = 1. 

 
Keywords : hamiltonian, hamiltonian connected. 
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Chapter 1

Introduction

For the graph definition and notation we follow [2]. G = (V, E) is a graph if V is a finite

set and E is a subset of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the

vertex set and E is the edge set. Two vertices u and v are adjacent if (u, v) ∈ E, vertex

u(or v) is said to be incident with edge (u, v), u and v are called the ends of edge (u, v).

Suppose that V ′ is a subset of V . The subgraph of G whose vertex set is V − V ′ and

whose edge set is the set of those edges of G that have both ends in V − V ′ is called the

subgraph of G induced by V − V ′ and is denoted by G− V ′. Suppose that E ′ is a subset

of E. The subgraph of G whose vertex set is the set of ends of edges in E−E ′ and whose

edge set is E−E ′ is called the subgraph of G induced by E−E ′ and is denoted by G−E ′.

For any vertex u ∈ V , the neighborhood N(u) of u is the set {v | (u, v) ∈ E}, and is called

the neighborhood of u. For any vertex x ∈ V , degG(x) denotes its degree in G. A graph

G is cubic if degG(x) = 3 for any vertex x in G. A graph G is 3-connected if G − V ′ is

still connected for every vertex set V ′ ⊆ V and |V ′| ≤ 2. A path P in G is represented

by 〈v0, v1, · · · , vk〉, a sequence of distinct vertices of G, where every (vi, vi+1) belongs to E

for 0 ≤ i ≤ k − 1. We can write path P = 〈v0, v1, · · · , vk〉 as 〈v0, · · · , vi, P
′, vj, · · · , vk〉 or
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〈v0, · · · , vi〉 ∪P ′∪ 〈vj, · · · , vk〉, where P ′ = 〈vi, vi+1, · · · , vj〉 is a subpath of P . A cycle is

nearly a path of length at least three with a difference that the first and the last vertices

of this sequence are the same. A hamiltonian cycle of G is a cycle that traverses every

vertex of G exactly once and a graph is hamiltonian if it contains a hamiltonian cycle.

A path of G is hamiltonian path if its vertices span V (G), i.e., the path runs through all

vertices once.

When searching a hamiltonian cycle (or path), we may ask the cycle to traverse several

predetermined edges. These predetermined edges are called required edges. The idea of

searching such kind of hamiltonian cycle is the motivation of this article. Proposed by

William Hamilton, the original hamiltonian problem is a puzzle on the graph of the

dodecahedron in which a path of length four is specified and the player is asked to extend

the given path to a spanning cycle. This classical game can be treated as a special case

of searching a hamiltonian cycle including required edges. Let us denote R the set of

required edges and it must be reasonable to avoid creating any short cycle or branch point

(a vertex of degree ≥ 3). In other words, a reasonable R is an edge set of independent

paths.

A graph G is k-edge-required-hamiltonian if it contains a hamiltonian cycle including

any reasonable R whenever |R| ≤ k. We define edge-required hamiltonicity of G, de-

noted by hr(G), to be the maximum of such k. Those graphs G with hr(G) ≥ 1 is also

known as edge-hamiltonian graphs [14]. Most of the previous studies of the edge-required

hamiltonicity were concentrated on sufficient conditions [5, 7]. Recently, it is proved that

hr(Qn) = 2n− 3 where Qn is the n-dimensional hypercube with n ≥ 3.
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A dual concept to “required edges” is “faulty edges”. Fault-tolerance is one of the

most important properties for computer or network structures. A graph G is k-edge-

fault-tolerant-hamiltonian if G−F is hamiltonian for any faulty edge set F with |F | ≤ k.

Similarly, the edge-fault-tolerant hamiltonicity of G, denoted by hf (G), is defined to be

the maximum of such k. There are some studies on edge-fault-tolerant hamiltonicity [15].

In particular, it is proved that hf (Qn) = n− 2 [3, 10].

We believe that the first step on studying edge-required-hamiltonicity is working on

the family of cubic hamiltonian graphs. To exclude trivial cases, we further restricted our

attention on cubic 3-connected hamiltonian graphs. In the following, we use Ω to denote

the set of cubic 3-connected hamiltonian graphs.

In the following section, we will proved that hf (G) ≤ 1 and hr(G) ≤ 3 if G is in Ω.

Moreover, 1 ≤ hr(G) if G is in Ω and hf (G) = 1. Furthermore, hf (G) = 1 if G is in Ω and

hr(G) ≥ 2. Thus, we would like to know the existence of graph in Ω with hf (G) = 1 and

hr(G) = i for i = 1, 2, 3. For this reason, we give examples of graphs in Ω with hf (G) = 1

and hr(G) = i for i = 1, 2, 3 in sections 3.1, 3.2, and 3.3. Again, we are interested in

the existence of graphs in Ω with hf (G) = 0 and hr(G) = 0. An example is given in

section 3.4. Finally, we are interested in the existence of graphs in Ω with hf (G) = 0 and

hr(G) = 1. An example is given in section 3.5.
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Chapter 2

Preliminaries

Lemma 1 hf (G) ≤ 1 and hr(G) ≤ 3 if G is a graph in Ω.

Proof. Suppose that G = (V, E) is a graph in Ω. Let x be any vertex in G and

NG(x) = {u, v, w}. We set F = {(x, u), (x, v)}. Obviously, degG−F (x) = 1. Hence, there

is no hamiltonian cycle in G− F . Therefore, hf (G) ≤ 1.

Let NG(x) = {u, v, w}, NG(u) = {x, u1, u2} and NG(v) = {x, v1, v2}. We set the

required edge set R = {(u, u1), (u, u2), (v, v1), (v, v2)}. Thus, (x, u) and (x, v) is not on

any hamiltonian cycle including the set R. Obviously, degG−{(x,u),(x,v)}(x) = 1. Hence,

there is no hamiltonian cycle in G− {(x, u), (x, v)}. Therefore, hr(G) ≤ 3.

The lemma is proved. 2

Lemma 2 hr(G) ≥ 1 if G is a graph in Ω with hf (G) = 1.

Proof. Suppose that G = (V, E) is a graph in Ω with hf (G) = 1. Let (x, u) be any

edge of G and NG(x) = {u, v, w}. We set that F = {(x, v)} be the faulty edge set. Since

7



hf (G) = 1, there exists a hamiltonian cycle C in G−F . Obviously, degG−F (x) = 2. Thus,

(x, u) is in C. Therefore, hr(G) ≥ 1.

The lemma is proved. 2

Lemma 3 hf (G) = 1 if G is a graph in Ω with hr(G) ≥ 2.

Proof. Suppose that G = (V,E) is a graph in Ω and hr(G) ≥ 2. By Lemma 1, we know

that hf (G) ≤ 1. Now, we want to show that hf (G) 6= 0. Let (x, u) be any edge of G

and NG(x) = {u, v, w}. We set a required edge set R = {(x, v), (x,w)}. Since hr(G) ≥ 2,

there exists a hamiltonian cycle C including the edge set R. Obviously, (x, u) /∈ C. Hence,

hf (G) = 1.

The lemma is proved. 2

Let G and K4 be two graphs in Ω with V (G) ∩ V (K4) = ∅ where K4 is a complete

graph with four nodes. Note that K4 is node symmetric. Let x ∈ V (G) and k ∈ V (K4).

Let N(x) = {x1, x2, x3} be an ordered set of the neighbors of x and N(k) = {k1, k2, k3} be

the neighbors of k. The 3-join of G and K4 at x and k, denoted by J(G, x), is the graph

with V (J(G, x)) = (V (G) − {x}) ∪ (V (K4) − {k}) and E(J(G, x)) = (E(G) − {(x, xi) |

1 ≤ i ≤ 3}) ∪ (E(K4)− {(k, ki) | 1 ≤ i ≤ 3}) ∪ {(xi, ki) | 1 ≤ i ≤ 3}. A graph H is called

a 3-join of G and K4 if H = J(G, x) for some vertices x ∈ V (G). It is easy to know that

J(G, x) is in Ω if G is in Ω. See Figure 2.1 for an illustration.

Lemma 4 hf (J(G, x)) = hf (G) if G is a graph in Ω.

8



x k

(a) (b) (c)

Figure 2.1: The graphs (a) G, (b) K4, and (c) J(G, x)

Proof. Let G is a graph in Ω. Let x ∈ V (G) and k ∈ V (K4). Assume that the neighbors

of node x in G are {x1, x2, x3}, the neighbors of node k in K4 are {k1, k2, k3}. By Lemma

1, we know that hf (G) ≤ 1 and hf (J(G, x)) ≤ 1.

Suppose that hf (G) = 1. We can find a hamiltonian cycle in G−F for any faulty edge

set F with |F | = 1. Now, we want to show that for any faulty edge set F ′ with |F ′| = 1,

we can find a hamiltonian cycle C ′ in J(G, x)− F ′.

Case 1. F ′ = {(x1, k1)}, {(x2, k2)}, or {(x3, k3)}. Without loss of generality, we as-

sume that F ′ = {(x3, k3)}. Since hf (G) = 1, we can find a hamiltonian cycle 〈x1, x, x2, P, x3

, Q〉 in G−{(x, x3)} where P and Q be two paths of G. Hence, we can find a hamiltonian

cycle 〈x1, k1, k3, k2, x2, P, x3, Q〉 in J(G, x)− {(x3, k3)}.

Case 2. F ′ = {(k1, k2)}, {(k1, k3)}, or {(k2, k3)}. Without loss of generality, we as-

sume that F ′ = {(k1, k2)}. Since hf (G) = 1, we can find a hamiltonian cycle 〈x1, x, x2, P, x3

, Q〉 in G − {(x, x3)}. Hence, we can find a hamiltonian cycle 〈x1, k1, k3, k2, x2, P, x3, Q〉

in J(G, x)− {(k1, k2)}.

9



Case 3. F ′ = (u, v) ⊆ E(G)−{(xi, ki) | 1 ≤ i ≤ 3}−{(k1, k2), (k1, k3), (k2, k3)}. Since

hf (G) = 1, we can find a hamiltonian cycle 〈x1, x, x2, P, x3, Q〉 in G−{(u, v)}. Hence, we

can find a hamiltonian cycle 〈x1, k1, k3, k2, x2, P, x3, Q〉 in J(G, x)− {(k1, k2)}.

Hence, we can find a hamiltonian cycle in J(G, x) − F ′ with |F ′| = 1. Therefore,

hf (J(G, x)) = 1 when hf (G) = 1.

Suppose that hf (G) = 0. Hence, there are not any hamiltonian cycle in G−e for some

edge e.

Case 1. e = {(x, x1)}, {(x, x2)}, or {(x, x3)}. Without loss of generality, we assume

that e = {(x, x3)}. Assume that hf (J(G, x)) = 1, then we can find a hamiltonian cycle

〈x1, k1, k3, k2, x2, P, x3, Q〉 in J(G, x)−{(k1, k2)}. Hence, we can find a hamiltonian cycle

〈x1, x, x2, P, x3, Q〉 in G− e. We get a contradiction. Therefore, hf (J(G, x)) = 0.

Case 2. e ∈ E(G) − {(x, x1), (x, x2), (x, x3)}. Assume that hf (J(G, x)) = 1, then

we can find a hamiltonian cycle 〈x1, k1, k3, k2, x2, P, x3, Q〉 in J(G, x)− e. Hence, we can

find a hamiltonian cycle 〈x1, x, x2, P, x3, Q〉 in G− e. We get a contradiction. Therefore,

hf (J(G, x)) = 0.

The lemma is proved. 2

Lemma 5 hr(J(G, x)) = min{2, hr(G)} if G is a graph in Ω.

Proof. By Lemma 1, we know that hr(G) ≤ 3. We have the following cases.

Case 1. hr(G) = 0. Let R ∈ E(G)− {(x, x1), (x, x2), (x, x3)} be the required edge set of
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J(G, x) with |R| = 1. Assume that hr(J(G, x)) = 1, then we can find a hamiltonian cycle

〈x1, k1, k3, k2, x2, P, x3, Q〉 including R in J(G, x). Hence, we can find a hamiltonian cycle

〈x1, x, x2, P, x3, Q〉 including R in G. We get a contradiction. Therefore, hf (J(G, x)) = 0.

Case 2. hr(G) = 1. Let R ∈ E(G)− {(x, x1), (x, x2), (x, x3)} be the required edge set of

J(G, x) with |R| = 2. Assume that hr(J(G, x)) = 2, then we can find a hamiltonian cycle

〈x1, k1, k3, k2, x2, P, x3, Q〉 including R in J(G, x). Hence, we can find a hamiltonian cycle

〈x1, x, x2, P, x3, Q〉 including R in G. We get a contradiction. Therefore, hf (J(G, x)) = 1.

Case 3. hr(G) = 2. We have the following subcases:

Case 3.1. R = {(u1, v1), (u2, v2)} ∈ E(G) − {(x, x1), (x, x2), (x, x3)}. We can find

a hamiltonian cycle including the required edge set R in G. Without loss of generality,

we assume that 〈x1, x, x2, P, x3, Q〉 be the hamiltonian cycle in G. And we assume that

〈k1, k, k2, k3〉 be the hamiltonian cycle in k4. Obviously, 〈x1, k1, k3, k2, x2, P, x3, Q〉 is a

hamiltonian cycle including the required edge set R in J(G, x). Hence, hf (J(G, x)) = 2.

Case 3.2. R = {(u1, v1), (u2, v2)} ∈ {(x1, k1), (x2, k2), (x3, k3), (k1, k2), (k2, k3), (k1, k4)}.

Without loss of generality, we may assume that R = {(x1, k1), (x2, k2)} or {(k1, k3), (k2, k3)}

or {(x1, k1), (x1, k3)}. Obviously, 〈x1, k1, k3, k2, x2, P, x3, Q〉 is a hamiltonian cycle includ-

ing the required edge set R in J(G, x). Hence, hf (J(G, x)) = 2.

Case 3.3. R = {(u1, v1), (u2, v2)}. Let (u1, v1) ∈ E(G)− {(x, x1), (x, x2), (x, x3)} and

(u2, v2) ∈ {(x1, k1), (x2, k2), (x3, k3), (k1, k2), (k2, k3), (k1, k4)}. Without loss of generality,

we may assume that R = {(u1, v1), (x1, k1)} or {(u1, v1), (k1, k3)} and assume the path P

11



or the path Q including (u1, v1) . Obviously, 〈x1, k1, k3, k2, x2, P, x3, Q〉 is a hamiltonian

cycle including the required edge set R in J(G, x). Hence, hf (J(G, x)) = 2.

Case 4. hr(G) = 3. Let the node set Vl = {V (G) − V (x)}, Vr = {V (K4) − V (x)},

edge cut set S = {(xi, ki)|1 ≤ i ≤ 3}. Assume that we can find a hamiltonian cycle C in

J(G, x). It is easy to know that |C ∪ S| = 2. Hence, hf (J(G, x)) = 2.

The lemma is proved. 2

For integers n and k, n ≥ 3 and 1 ≤ k < n. The generalized Petersen graph P (n, k) is

the graph with vertex set {i | 0 ≤ i < n}∪{i′ | 0 ≤ i < n} and edge set {(i, i⊕1) | 0 ≤ i <

n} ∪ {(i′, (i⊕ k)′) | 0 ≤ i < n} ∪ {(i, i′) | 0 ≤ i < n} where ⊕ denotes addition in integer

modulo n, Zn. It is known that P (n, k) is cubic, 3-connected, and hamiltonian. Hence,

P (n, k) is in Ω. The generalized Petersen graphs P (7, 2) and P (9, 3) are illustrated in

Figure 2.2. In [1], the author had shown that P (n, 2) is hamiltonian if and only if n 6= 5

(mod 6).

Lemma 6 hf (P (n, 1)) = 1 if n is a positive integer with n ≥ 3.

Proof. By Lemma 1, we know that hf (P (n, 1)) ≤ 1. Let F be any edge set of P (n, 1)

with |F | = 1. By the symmetric property of P (n, 1), we may assume that F = {(0, 1)},

{(0′, 1′)}, or {(0, 0′)}. Obviously, 〈1, 2, . . . , n−1, 0, 0′, (n−1)′, . . . , 1′〉 is a hamiltonian cycle

of P (n, 1) − F if F = {(0, 1)} or {(0′, 1′)} and 〈2, 3, . . . , 1, 1′, 0′, . . . , 2′〉 is a hamiltonian

cycle of P (n, 1)− F if F = {(0, 0′)}. Hence, hf (P (n, 1)) ≥ 1.

12
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Figure 2.2: The graphs (a) P(7,2) and (b) P(9,3)

The lemma is proved. 2

Lemma 7 hf (P (n, 2)) = 1 if n is an even integer with n ≥ 6.

Proof. By Lemma 1, we know that hf (P (n, 2)) ≤ 1. Let F be any edge set of P (n, 2)

with |F | = 1. By the symmetric property of P (n, 2), we may assume that F = {(0, 1)},

{((n−1)′, 1′)}, or {(2, 2′)}. Obviously, 〈0, 0′, 2′, . . . , (n−2)′, n−2, n−3, . . . , 1, 1′, 3′, . . . , (n−

1)′, n− 1〉 is a hamiltonian cycle of P (n, 2)− F . Hence, hf (P (n, 2)) ≥ 1.

The lemma is proved. 2

Lemma 8 hf (P (n, 2)) = 1 if n = 1, 3 (mod 6) with n > 6.

Proof. By Lemma 1, we know that hf (P (n, 2)) ≤ 1. Let F be any edge set of P (n, 2)

with |F | = 1, Nk = 〈k′, (k+2)′, k+2, k+3, k+4, (k+4)′〉, and Mk = 〈[k′]n, [(k+2)′]n, [k+

2]n, [k + 3]n, [k + 4]n, [(k + 4)′]n〉. We have the following cases.

13
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Case 1. n is odd, n = 1 (mod 6) and n ≥ 7. By the symmetric property of

P (n, 2), we may assume that F = {(0, n − 1)}, {(n−1
2

, (n−1
2

)′)}, or {(0′, (n − 2)′)}. Ob-

viously, 〈1′, 1, 0, 0′, 2′, 2, 3, 4, 4′, 6′, 6, 5, 5′, 3′〉 is a hamiltonian cycle of P (7, 2) − F and

〈1′, 1, 0, N0, N6, . . . , Nn−7, (n−1)′, n−1, n−2, (n−2)′, Nn−4, Nn−10, . . . , N9, 3
′〉 is a hamil-

tonian cycle of P (n, 2) − F when n > 7. Hence, hf (P (n, 2)) ≥ 1 when n = 1 (mod 6)

with n ≥ 7. (See Figure 2.3(a) and 2.3(b) for an illustration of the case n is odd, n = 1

(mod 6) and n ≥ 7.)

Case 2. n is odd, n = 3 (mod 6) and n ≥ 9. By the symmetric property of

P (n, 2), we may assume that F = {(0, 0′)}, {(1, 2)}, or {((n − 1)′, 1)}. Obviously,

〈M0,M6, . . . ,Mn−3,M3,M9, . . . , Mn−6〉 is a hamiltonian cycle of P (n, 2)−F when n ≥ 9.

Hence, hf (P (n, 2)) ≥ 1 when n = 3 (mod 6) with n ≥ 9. (See Figure 2.3(c) and 2.3(d)

for an illustration of the case n is odd, n = 3 (mod 6) and n ≥ 9.)

The lemma is proved. 2

For integer n ≥ 2, the project plane PJ(n) is the graph with vertex {i | 0 ≤ i < 2n}

and edge set {(i, i⊕1) | 0 ≤ i < 2n} ∪{(i, i+n) | 0 ≤ i < n} where ⊕ denotes addition in

integer modulo 2n, Z2n. It is known that PJ(n) is cubic, 3-connected, and hamiltonian.

Hence, PJ(n) is in Ω. The project plane graphs PJ(8) and PJ(10) are illustrated in

Figure 2.4.

Lemma 9 hf (PJ(n)) = 1.

Proof. By Lemma 1, we know that hf (PJ(n)) ≤ 1. Let F be any edge set of PJ(n)

15
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Figure 2.4: The graphs (a) PJ(8), (b) PJ(10)

with |F | = 1. By the symmetric property of PJ(n), we may assume that F = {(0, 1)} or

{(0, n)}. Obviously, 〈1, 2, . . . , n, 0, n− 1, . . . , n+1〉 is a hamiltonian cycle of PJ(n)−F if

F = {(0, 1)} and 〈2, 3, . . . , n+1, 1, 0, n−1, . . . , n+2〉 is a hamiltonian cycle of PJ(n)−F

if F = {(0, n)}. Hence, hf (PJ(n)) ≥ 1.

The lemma is proved. 2

For integer n ≥ 2, the ladder graph L(n) is the graph with vertex set {i | 0 ≤ i ≤ 2n−1}

and edge set {(i, 2n − i) | 1 ≤ i < n} ∪{(i, i ⊕ 1) | 0 ≤ i ≤ 2n − 1} ∪{(0, n)} where ⊕

denotes addition in integer modulo n, Zn. It is known that L(n) is cubic, 3-connected,

and hamiltonian. Hence, L(n) is in Ω. The ladder graphs L(5) and L(6) are illustrated

in Figure 2.5.

Lemma 10 hf (L(n)) = 1.
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Proof. By Lemma 1, we know that hf (L(n)) ≤ 1. Let F be any edge set of L(n)

with |F | = 1. By the symmetric property of L(n), we may assume that F = {(0, n)},

{(1, 2n− 1)}, {(2, 2n− 2)}, . . . , {(n− 1, n + 1)}, {(1, 2)}, {(3, 4)}, . . ., or {(2n− 1, 0)}.

Obviously, 〈0, 1, 2, . . . , 2n−1〉 is a hamiltonian cycle of L(n)−F if F = {(0, n)}, {(1, 2n−

1)}, {(2, 2n − 2)}, . . ., or {(n − 1, n + 1)}, 〈0, 1, 2n − 1, 2, . . . , n − 2, n + 2, n + 1, n〉 is a

hamiltonian cycle of L(n) − F if n is odd and F = {(1, 2)}, {(3, 4)}, . . ., {(2n − 1, 0)},

and 〈0, 1, 2n − 1, 2, . . . , n + 2, n − 2, n − 1, n〉 is a hamiltonian cycle of L(n) − F if n is

even and F = {(1, 2)}, {(3, 4)}, . . ., {(2n− 1, 0)}. Therefore, hf (PJ(n)) ≥ 1.

The lemma is proved. 2
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Chapter 3

Examples

3.1 Examples of graph G in Ω with hf(G) = 1 and

hr(G) = 1

Theorem 1 hr(P (n, 1)) = 1 and hf (P (n, 1)) = 1 if n is odd and n ≥ 3.

Proof. By Lemma 6, we know that hf (P (n, 1)) = 1. Let R be any required edge set

of P (n, 1) with |R| = 1. By the symmetric property of P (n, 1), we may assume that

R = {(0, 1)}, {(0′, 1′)}, or {(0, 0′)}. Obviously, 〈0, 1, . . . , n− 1, (n− 1)′, (n− 2)′, . . . , 0′〉 is

a hamiltonian cycle including the required edge set R. Hence, hr(P (n, 1)) ≥ 1 if n is odd

and n ≥ 3. Now we prove that hr(P (n, 1)) ≤ 1 for n is odd and n ≥ 3. Let the required

edge set R = {(1, 1′), (n − 1, (n − 1)′)}. We want to prove there is no hamiltonian cycle

C of P (n, 1) including R. (See Figure 3.1(a) for an illustration of the case n = 7.)

We have the following two cases:

Case 1. (0, 0′) /∈ C. Thus, the edge set {(0, 1), (0, n − 1), (0′, 1′), (0′, (n − 1)′)} are

contained in C. We got a cycle 〈0, 1, 1′, 0′, (n − 1)′, n − 1〉. Thus, there is no such
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Figure 3.1: Illustrations for Theorem 1.

hamiltonian cycle. (See Figure 3.1(b) for an illustration of the case n = 7.)

Case 2. (0, 0′) ∈ C. Obviously, either (0, 1) ∈ C or (0, n− 1) ∈ C. Without loss of gen-

erality, we assume (0, 1) ∈ C. Then C include the path 〈n−1, (n−1)′, 0′, 0, 1, 1′, 2′, 2, 3, 3′

, . . . , (n− 3)′, n− 3, n− 2, (n− 2)′〉. Note that (n− 1, (n− 1)′) /∈ E(P (n, 1)). Therefore,

there is no such cycle. (See Figure 3.1(c) for an illustration of the case n = 7.)

Therefore, there is no hamiltonian cycle contains the required edge set R. Hence,

hr(P (n, 1)) = 1 when n is odd and n ≥ 3.

The theorem is proved. 2

Theorem 2 hr(PJ(n)) = 1 and hf (PJ(n)) = 1 when n is even and n ≥ 2.

Proof. By Lemma 11, we know that hf (PJ(n)) = 1. Let R be any required edge

set of PJ(n) with |R| = 1. By the symmetric property of PJ(n), we may assume that

R = {(0, 1)}, or {(0, n)}. Obviously, 〈0, 1, . . . , n−1, 2n−1, 2n−2, . . . , n〉 is a hamiltonian
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Figure 3.2: Illustrations for Theorem 2.

cycle including the required edge set R. Hence, hr(PJ(n)) ≥ 1 when n is even and n ≥ 2.

Now we prove that hr(PJ(n)) ≤ 1 when n is even and n ≥ 2. Let the required edge set

R = {(1, n + 1), (n − 1, 2n − 1)}. We want to prove there is no hamiltonian cycle C of

PJ(n) including the edge set R. (See Figure 3.2(a) for an illustration of the case n = 10.)

We have the following two cases:

Case 1. (0, n) /∈ C. The edge set {(0, 1), (0, 2n− 1), (n− 1, n), (n, n + 1)} are contained

in C. We got a cycle 〈0, 1, n + 1, n, n − 1, 2n − 1〉. Thus, there is no such hamiltonian

cycle. (See Figure 3.2(b) for an illustration of the case n = 10.)

Case 2. (0, n) ∈ C. Obviously, either {(0, 2n−1), (n, n+1)} ∈ C or {(0, 1), (n, n−1)} ∈

C. Without loss of generality, we assume {(0, 2n − 1), (n, n + 1)} ∈ C. Then C include

the path 〈1, n + 1, n, 0, 2n− 1, n− 1, n− 2, 2n− 2, 2n− 3, . . . , 2, n + 2〉. Therefore, there

is no such hamiltonian cycle. (See Figure 3.2(c) for an illustration of the case n = 10.)
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Therefore, there is no hamiltonian cycle contains R. Hence, hr(PJ(n)) = 1 if n is

even. The lemma is proved. 2

3.2 Examples of graph G in Ω with hf(G) = 1 and

hr(G) = 2

Lemma 11 [16] A petersen graph P (n, 2) is not hamiltonian if and only if n = 5

(mod 6).

Theorem 3 hr(P (n, 2)) = 2 and hf (P (n, 2)) = 1 if n = 1, 3 (mod 6).

Proof. By Lemma 8, we know that hf (P (n, 2)) = 1. Now we prove that hr(P (n, 2)) = 2

for n = 1, 3 (mod 6). Let R be any required edge set of P (n, 2) with |R| = 2. We have

the following cases:

Case 1. n is odd, n = 1 (mod 6) and n ≥ 7. Obviously, 〈1′, 1, 0, 0′, 2′, 2, 3, 4, 4′, 6′, 6, 5, 5′,

3′〉 is a hamiltonian cycle of P (7, 2) and 〈1′, 1, 0, N0, N6, . . . , Nn−7, (n−1)′, n−1, n−2, (n−

2)′, Nn−4, Nn−10, . . . , N9, 3
′〉 is a hamiltonian cycle of P (n, 2) when n > 7. It is easy to

check that any two edge can be on the hamiltonian cycle. Hence, hr(P (n, 2)) = 2 when

n = 1 (mod 6) with n ≥ 7. (See Figure 2.3(a) and 2.3(b) for an illustration of the case

n is odd, n = 1 (mod 6) and n ≥ 7.)

Case 2. n is odd, n = 3 (mod 6) and n ≥ 9. Obviously, 〈M0,M6, . . . , Mn−3,M3,M9, . . . ,

Mn−6〉 is a hamiltonian cycle of P (n, 2) when n ≥ 9. It is easy to check that any two

edge can be on the hamiltonian cycle. Hence, hr(P (n, 2)) = 2 when n = 3 (mod 6)
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with n ≥ 9. (See Figure 2.3(c) and 2.3(d) for an illustration of the case n is odd, n = 3

(mod 6) and n ≥ 9.)

Now we prove that hr(P (n, 2)) = 3 for n = 1, 3 (mod 6). Let M(v0, v1, v2, v3, v4, v5) is

H that the path P0 = 〈v0, x0, x1, . . . , xi, v1〉, P1 = 〈v2, y0, y1, . . . , yj, v3〉, P2 = 〈v4, z0, z1, . . . ,

zk, v5〉, and one method link the vertex (v0, v1, v2, v3, v4, v5) can give a hamiltonian cycle

in P (n, 2) if n = 1, 3 (mod 6).

Suppose the P (9, 2) have a hamiltonian cycle. Let the required edge set R = {(1, 2), (2,

3), (3, 4)}. Because the edges (2, 2′), (3, 3′) are not in C. Thus, the edges (1′, 3′), (3′, 5′), (0′,

2′), and(2′, 4′) are in C. And we can use M(1, 4, 1′, 5′, 0′, 4′) to give a hamiltonian cycle

in P (9, 2). We can construct a hamiltonian cycle form P (9, 2) to P (11, 2), which insert

two vertex x and y between 2 and 3 and insert two vertex x′ and y′ between 2′ and 3′.

The P (13, 2) also have a hamiltonian cycle, but we know the P (13, 2) have not a hamil-

tonian cycle. This is contradiction. It is easy to check that hr(P (n, 2)) 6= 3 for n = 1, 3

(mod 6). Therefore, hr(P (n, 2)) 6= 3 for n = 1, 3 (mod 6). The theoerm is proved. 2

Theorem 4 hr(L(n)) = 2 and hf (L(n)) = 1.

Proof. By Lemma 10, hf (L(n)) = 1. Now, we prove hr(L(n)) = 2.

Let us divide the edge set E(L(n)) into three sets A, B, and C where the edge sets

A = {(i, i ⊕ 1) | 0 ≤ i ≤ 2n − 1}, B = {(i, 2n − i) | 1 ≤ i < n}, and C = {(0, n)}.

Obviously, E(L(n)) = A ∪ B ∪ C. Let the required edge set R = {p, q}. We have the

following cases:
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Figure 3.3: Illustrations for Theorem 3.3.

Case 1. {p, q} ⊆ A. Obviously, 〈0, 1, . . . , 2n − 2, 2n − 1〉 forms a hamiltonian cycle

including R. (See Figure 3.3(a) for an illustration of the case n = 5.)

Case 2. {p, q} ⊆ B ∪ C. Suppose that n is odd. Obviously, cycle C1 = 〈0, 1, 2n −

1, 2n − 2, 2, . . . , n − 2, n + 2, n + 1, n − 1, n〉 including R. Suppose that n is even. Cycle

C2 = 〈0, 1, 2n − 1, 2n − 2, 2, . . . , n + 2, n − 2, n − 1, n + 1, n〉 including R. (See Figures

3.3(b) and (c) for an illustration of the case n = 5 and 6.)

Case 3. p ∈ A and q ∈ B∪C. Without loss of generality, we assume that edge q = (i, i+1)

where 0 ≤ i ≤ n − 1. When n is even, cycles C1 = 〈0, 1, 2n − 1, 2n − 2, 2, . . . , n + 2, n −

2, n− 1, n + 1, n〉 or C2 = 〈0, 2n− 1, 1, 2, 2n− 2, . . . , n− 2, n + 2, n + 1, n− 1, n〉 including

R. When n is odd, cycles C3 = 〈0, 1, 2n − 1, 2n − 2, 2, . . . , n − 2, n + 2, n + 1, n − 1, n〉

or C4 = 〈0, 2n− 1, 1, 2, 2n− 2, . . . , n + 2, n− 2, n− 1, n + 1, n〉 including R. (See Figure
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3.3(d),(e),(f), and (g) for an illustration of the case n = 5 and 6.)

Hence, hr(L(n)) ≥ 2.

Assume that there exists a hamiltonian cycle C including the required edge set R′ =

{(0, 1), (0, 2n− 1), (2, 2n− 2)}. Thus, the edge set {(1, 2), (2n− 2, 2n− 1)} are contained

in C. We got a cycle 〈0, 1, 2, 2n − 2, 2n − 1〉. Thus, there is no such hamiltonian cycle.

Hence, hr(L(n)) ≤ 2.

Therefore, hr(L(n)) = 2. The theorem is proved. 2

3.3 Examples of graph G in Ω with hf(G) = 1 and

hr(G) = 3

Theorem 5 hr(P (n, 1)) = 3 and hf (P (n, 1)) = 1 when n is even.

Proof. By Lemma 6, we know that hf (P (n, 1)) = 1. Now, we want to show that

hr(P (n, 1)) = 3. Let us divide the edge set E(P (n, 1)) into two sets A and B where

the edge sets A = {(i, i ⊕ 1) | 0 ≤ i ≤ n − 1} ∪{(i′, (i ⊕ 1)′) | 1 ≤ i < n − 1} and

B = {(i, i′) | 1 ≤ i < n}. Obviously, E(P (n, 1)) = A ∪ B. Let the required edge set

R = {p, q, r}. We have the following cases:

Case 1. {p, q, r} ⊆ A. Without loss of generality, we assume that {p, q, r} ∩ {(0, n −

1), (0′, (n− 1)′)} = ∅. The hamiltonian cycle 〈0, 1, 2, . . . , n− 1, (n− 1)′, (n− 2)′, . . . , 1′, 0′〉

including the required edge set R.
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Case 2. {p, q} ⊆ A and {r} ⊆ B. Without loss of generality, we assume that the edge

r = (0, 0′). We have the following subcases:

Case 2.1. {p, q}∩{(0, 1), (0′, 1′)} = ∅. The hamiltonian cycle 〈1, 2, . . . , n−1, 0, 0′, (n−

1)′, (n− 2)′, . . . , 1′〉 including the required edge set R.

Case 2.2. {p, q} = {(0, 1), (0′, 1′)}. The hamiltonian cycle 〈0, 1, . . . , n−1, (n−1)′, (n−

2)′, . . . , 1′, 0′〉 including the required edge set R.

Case 2.3. {p, q} ∩ {(0, 1), (0′, 1′)} = {(0, 1)} or {(0′, 1′)}. Without loss of generality,

we set p = (0, 1). The hamiltonian cycle 〈0, 1, 2, . . . , n − 1, (n − 1)′, (n − 2)′, . . . , 1′, 0′〉

including the required edge set R when q 6= (0′, (n − 1)′). And the hamiltonian cycle

〈0, 1, 1′, 2′, 2, . . . , n − 2, n − 1, (n − 1)′, 0′〉 including the required edge set R when q =

(0′, (n− 1)′).

Case 3. {p} ⊆ A and {q, r} ⊆ B. Without loss of generality, we assume that the edge

p = (0, n − 1). The hamiltonian cycle 〈0, 0′, 1′, 1, 2, 2′, . . . , n − 2, (n − 2)′, (n− 1)′, n − 1〉

including the required edge set R.

Case 4. {p, q, r} ⊆ B. The hamiltonian cycle 〈0, 0′, 1′, 1, 2, 2′, . . . , n − 2, (n − 2)′, (n −

1)′, n− 1〉 including the required edge set R.

Hence, hr(P (n, 1)) = 3 when n is even. The theorem is proved. 2

Theorem 6 hr(PJ(n)) = 3 and hf (PJ(n)) = 1 when n is odd.
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Figure 3.4: Illustrations for Theorem 3.4.

Proof. By Lemma 11, we know that hf (PJ(n)) = 1. By Lemma 1, we know

hr(PJ(n)) ≤ 3. Now, we want to prove that for any required edge set R = {p, q, r},

we can find a hamiltonian cycle including the edges R.

Let the edge sets A = {(i, i ⊕ 1) | 0 ≤ i ≤ 2n − 1} and B = {(i, i + n) | 1 ≤ i < n}.

Obviously, E(PJ(n)) = A ∪B. We have the following cases:

Case 1. {p, q, r} ⊆ A. There is a hamiltonian cycle 〈0, 1, . . . , 2n − 2, 2n − 1〉 including

R. (See Figure 3.4(a) for an illustration of the case n = 5.)

Case 2. {p, q} ⊆ A and r ∈ B. Without loss of generality, we set edge r = (0, n).
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Case 2.1. {p, q}∩{(0, 1), (n, n+1)} = ∅. There is a hamiltonian cycle 〈1, 2, . . . , n, 0, 2n−

1, . . . , n + 1〉 including R. (See Figure 3.4(b) for an illustration of the case n = 5.)

Case 2.2. {p, q} ∩ {(0, 1), (n, n + 1)} = {(0, 1)}. Without loss of generality, we set

p = (0, 1). There is a hamiltonian cycle 〈0, 1, . . . , n− 1, 2n− 1, 2n− 2, . . . , n〉 including R

when q 6= (n−1, n). And there is a hamiltonian 〈0, 1, n+1, n+2, 2, 3, n+3, n+4, . . . , 2n−

2, 2n− 1, n− 1, n〉 including R when q = (n− 1, n). (See Figure 3.4(c) and Figure 3.4(e)

for an illustration of the case n = 5)

Case 2.3. {p, q} ∩ {(0, 1), (n, n + 1)} = {(n, n + 1)}. Without loss of generality, we

set p = (n, n + 1). There is a hamiltonian cycle 〈0, 1, . . . , n − 1, 2n − 1, 2n − 2, . . . , n〉

including R when q 6= (0, 2n − 1). And there is a hamiltonian 〈0, n, n + 1, 1, n + 2, n +

3, 3, 4, . . . , n− 2, n− 1, 2n− 1〉 including R when q = (0, 2n− 1). (See Figure 3.4(d) and

Figure 3.4(e) for an illustration of the case n = 5)

Case 2.3. {p, q} = {(0, 1), (n, n + 1)}. There is a hamiltonian cycle 〈0, 1, . . . , n −

1, 2n − 1, 2n − 2, . . . , n〉 including R. (See Figure 3.4(e) for an illustration of the case

n = 5.)

Case 3. p ∈ A and {q, r} ⊆ B. Without loss of generality, we set p = (0, 1). There is a

hamiltonian cycle 〈0, 1, n+1, n+2, 2, 3, n+3, n+4, . . . , 2n− 2, 2n− 1, n− 1, n〉 including

R. (See Figure 3.4(c) for an illustration of the case n = 5.)

Case 4. {p, q, r} ⊆ B. There is a hamiltonian cycle 〈0, 1, n + 1, n + 2, 2, 3, n + 3, n +

4, . . . , 2n − 2, 2n − 1, n − 1, n〉 including R. (See Figure 3.4(c) for an illustration of the
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Figure 3.5: The graph M .

case n = 5.)

Hence, hr(PJ(n)) = 3 when n is odd. The theorem is proved. 2

3.4 Examples of graph G in Ω with hf(G) = 0 and

hr(G) = 0

In this section, we will prove the the graph M in Figure 3.5 is in Ω with hf (M) = 0 and

hr(M) = 0.

Theorem 7 Graph M is in Ω. hf (M) = 0 and hr(M) = 0.

Proof. It is easy to check that κ(M) = 3. In Figure 3.6, we give a hamiltonian cycle

indicated by redden edges. Therefore, M is in Ω.

By Lemma 1, we know that hf (M) ≤ 1. Let the fault edge set F = {(u2, v2)}.

We want to show that there is no any hamiltonian cycle in M − F . Let the node set

Vl = {u0, u1, . . . , u9}, Vr = {v0, v1, . . . , v9}, edge cut set S = {(u0, v5), (v0, u5), (u1, v1)}.
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Figure 3.6: A hamiltonian cycle in M .
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Figure 3.7: Illustration for Theorem 7, Case A1

Assume that we can find a hamiltonian cycle C in M − F . It is easy to know that

|C ∩ S| = 2. Now, we consider the edges (u0, v5), (u5, v0), and (u1, v1) in C or not in the

following cases.

Case A1. (u0, v5), (u5, v0) ∈ C. Because the edge (u1, v1) is not in C, we implies that

the edges (u2, u3), (u2, u7), (u1, u0), and (u1, u6) are in C. And then (u3, u4) and (u4, u9)

are in C. Therefore, (u5, u7) and (u6, u9) are in C. We got a path joining nodes u0 and

u5 in MVl
but we lost node u8. Hence, we can not find any hamiltonian cycle C in M −F
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Figure 3.8: Illustration for Theorem 7, Case A2

with edges (u0, v5) and (u5, v0) are in C. (See Figure 3.7 for an illustration.)

Case A2. (u0, v5), (u1, v1) ∈ C or (u5, v0), (u1, v1) ∈ C. Without loss of generality, we

consider (u0, v5),(u1, v1) ∈ C. Because the edge (u5, v0) is not in C, we implies that the

edges (u2, u3), (u2, u7), (u5, u7), (u5, u8), (u3, u4) are in C. And then (u0, u4) and (u1, u6)

are in C. Thus, (u6, u8) is in C. We got a path joining nodes u0 and u1 in MVl
but we lost

node u9. Hence, we can not find any hamiltonian cycle C in M − F with edges (u0, v5)

and (u1, v1) are in C but (u5, v0) is not in C. (See Figure 3.8 for an illustration.)

Hence, we can not find a hamiltonian cycle in M − F . Therefore, hf (M) = 0.

By Lemma 3, we know that hr(M) ≤ 1. Let R = (u1, v1) be the required edge set

of M with |R| = 1. We want to show that we can not find any hamiltonian cycle in

M including the required edge set R. Assume that C be the hamiltonian cycle in M

including the required edge set R. Let the cut edge set S = {(u0, v5), (u5, v0), (u2, v2)}.

It is easy to know that |C ∩ S| = 1 or 3, because edge (u1, v1) is in C. We consider the
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Figure 3.9: Illustration for Theorem 7, Case B1

edges (u0, v5), (u5, v0), and (u2, v2) in C or not in the following cases.

Case B1. (u2, v2) ∈ C. Because the edges (u5, v0), (u0, v5) are not in C. Thus, the edges

(u0, u1), (u0, u4), (u5, u7), (u5, u8) are in C. And then (u6, u8), (u6, u9) are in C. Hence,

(u2, u7), (u4, u9) are in C. Now, we got a path joining nodes u1 and u2 but we lost node

u3. Thus, there is no such hamiltonian cycle C with edges (u1, v1) and (u2, v2) are in C.

(See Figure 3.9 for an illustration.)

Case B2. (u5, v0) ∈ C. Because the edges (u0, v5), (u2, v2) are not in C. Thus, the edges

(v2, v7), (v2, v3), (v5, v7), (v5, v8) are in C. And then the edges (v1, v6), (v0, v4), (v4, v3) are

in C. Thus, (v6, v8) is in C. Now, we got a path joining nodes v0 and v1 but we lost node

v9. Thus, there is no such hamiltonian cycle C with edges (u1, v1) and (u5, v0) are in C.

(See Figure 3.10 for an illustration.)

Case B3. {(u5, v0), (u0, v5), (u2, v2)} ∈ C. We have the following subcases:
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Figure 3.10: Illustration for Theorem 7, Case B2
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Figure 3.11: Illustration for Theorem 7, Case B3.1

Case B3.1. {(u0, u1)} ∈ C or {(v0, v1)} ∈ C. Without loss of generality, we assume

that {(u0, u1)} ∈ C. Because the edges (u1, u6) and (u0, u4) are not in C, the edges

(u6, u9), (u6, u8), (u4, u9), (u4, u3) are in C. Thus, the edges (u5, u8) and (u3, u2) are in

C. We got a path joining node u5 and u2 but we lost node u7. Thus, there is no such

hamiltonian cycle C. (See Figure 3.11 for an illustration.)

Case B3.2. {(u0, u1), (u0, u1)} /∈ C. Hence, the edges (u1, u6) and (v1, v6) are in C.

We have the following subcases:

32



4u

0u 0v

1u

2u
3u

5u

6u

7u8u

9u

1v

2v
3v

4v
5v

6v

7v 8v

9v

Figure 3.12: Illustration for Theorem 7, Case B3.2.1

Case B3.2.1. {(u6, u9), (v6, v9)} ∈ C. Because the edges (u0, u1), (v0, v1) are not

in C. Thus, the edges (u0, u4), (u1, u6), (v0, v4), (v1, v6) are in C. And then the edges

(u8, u5), (u8, u3), (v8, v5), (v8, v3) are in C. Thus, (u7, u2), (u7, u9), (v7, v2), (v7, v9) are in

C. Now, we got a cycle 〈u1, u6, u9, u7, u2, v2, v7, v9, v6, v1〉 in M . Thus, there is no such

hamiltonian cycle. (See Figure 3.12 for an illustration.)

Case B3.2.2. {(u6, u9), (v6, v8)} or {(u6, u8), (v6, v9)} ∈ C. Without loss of gener-

ality, we consider {(u6, u9), (v6, v8)} ∈ C. Because the edges (u0, u1), (v0, v1) are not

in C. Thus, the edges (u0, u4), (u1, u6), (v0, v4), (v1, v6) are in C. And then the edges

(u8, u5), (u8, u3), (v9, v4), (v9, v7) are in C. Thus, (u7, u2), (u7, u9), (v3, v2), (v3, v8) are in

C. Now, we got a cycle 〈u1, u6, u9, u7, u2, v2, v3, v8, v6, v1〉 in M . Thus, there is no such

hamiltonian cycle. (See Figure 3.13 for an illustration.)

Case B3.2.3. {(u6, u8), (v6, v8)} ∈ C. Because the edges (u0, u1), (v0, v1) are not

in C. Thus, the edges (u0, u4), (u1, u6), (v0, v4), (v1, v6) are in C. And then the edges

(u9, u4), (u9, u7), (v9, v4), (v9, v7) are in C. Thus, (u3, u2), (u3, u8), (v3, v2), (v3, v8) are in
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Figure 3.13: Illustration for Theorem 7, Case B3.2.2
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Figure 3.14: Illustration for Theorem 7, Case B3.2.3

C. Now, we got a cycle 〈u1, u6, u8, u3, u2, v2, v3, v8, v6, v1〉 in M . Thus, there is no such

hamiltonian cycle. (See Figure 3.14 for an illustration.)

Hence, we can not find any hamiltonian cycle in M including the required edge set

R = {(1, 1′)}. Therefore, hr(M) = 0. 2

Theorem 8 Graph J(M,x) is in Ω. hf (J(M,x)) = 0 and hr(J(M,x)) = 0.
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Figure 3.15: The graph N .

Proof. By Lemma 4 and Lemma 5, we know that hf (J(G, x)) = 0 and hr(J(G, x)) = 0.

Hence, hf (J(M, x)) = 0 and hr(J(M, x)) = 0. 2

3.5 Examples of graph G in Ω with hf(G) = 0 and

hr(G) = 1

In this section, we will prove the the graph N in Figure 3.15 is in Ω with hf (N) = 0 and

hr(N) = 1.

Theorem 9 Graph N is in Ω such that hf (N) = 0 and hr(N) = 1.

Proof. It is proved in [11] that graph N−{(0, 1)} is not hamiltonian. Hence, hf (N) = 0.

By Lemma 3, we know that hr(N) ≤ 1. Let C be the hamiltonian cycle indicated by

darken edges in N as shown in Figure 3.15. It is easy to check that any edge can be on

the hamiltonian cycle. Hence, hr(N) = 1. 2
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Theorem 10 Graph J(N, x) is in Ω. hf (J(N, x)) = 0 and hr(J(N, x)) = 1.

Proof. By Lemma 4 and Lemma 5, we know that hf (J(G, x)) = 0 and hr(J(G, x)) = 1.

Hence, hf (J(N, x)) = 0 and hr(J(N, x)) = 1. 2
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