國立交通大學

資訊科學與工程硏究所

碩 士 論 文

三正則及連通圖中漢米爾頓性質之連線需冰數目的研究

1896
The Edge－Required－Hamiltonicity of the Cubic
3－Connected Hamiltonian Graphs

研 究 生：吳宙耕
指導教授：譚建民 教授

三正則及連通圖中漢米爾頓性質之連線需求數目的研究 The Edge－Required－Hamiltonicity of the Cubic 3－Connected Hamiltonian Graphs

研 究 生：吴宙耕
指導教授：譚建民

Student ：Chou－Keng Wu
Advisor：Jimmy J．M．Tan

[^0]June 2006

Hsinchu，Taiwan，Republic of China

中華民國九十五年六月

三正則及連通圖中漢米爾頓性質之連線需求數目的研究

研究生：吴宙耕

指尊教授：語建民教授

國立交通大學 資訊科學與工程研究所

摘要

給一個圖 $G=(V, E)$ 以及邊集合 $R \subseteq E$ ，其中 R 的邊為獨立路徑。如果一個圖 G 包含漢米爾頓迴路以及含有任何的需求邊 R 且 $|R| \leq k$ ，則圖 G 稱為 k－漢米爾頓需求邊。我們定義圖 G 的漢米爾頓需求邊且 k 為最大時，稱為 $h_{r}(G)$ 。如果一個圖 $G-F$ 包含漢米爾頓但不包含壤邊 F 且 $|F| \leq k$ ，則圖 G 稱為 k－漢米爾頓容錯邊。我們定義圖 G的漢米爾頓容錯邊且 k 為最大時，稱為 $h_{f}(G)$ 。在這篇論文中，我們要證明如果圖 G 為三正則漢米爾頓圖，則 $h_{f}(G) \leq 1 \circ$ 如果圖 G 為三正則漢米爾頓圖且 $h_{f}(G)=1$ ，則 $1 \leq h_{r}(G) \leq 3$ 。我們將介紹一些 $h_{f}(G)=1$ 且 $h_{r}(G)=i$ 其中 $i=1,2,3$ 的 3 －連通漢米爾圖 G ，以及一些 $h_{f}(G)=0$ 且 $h_{r}(G)=1$ 的 $3-$ 連通漢米爾圖 G 。

關鍵字：漢米爾頓，漢米爾頓連結。

The Edge-Required-Hamiltonicity of the Cubic 3-Connected Hamiltonian Graphs

Student : Chou-Keng Wu
Advisor : Jimmy J.M. Tan
Institute of Computer Science and Engineering
National Chiao Tung University

Given a graph $G=(V, E)$ and edge set $R \subseteq E$, where the edges of R form independent paths. A graph G is k-edge-required-hamiltonian if it contains a hamiltonian cycle including any R whenever $|R| \leq k$. We define edge-required hamiltonicity of G , denoted by $h_{r}(G)$, to be the maximum of such k. A graph G is k-edge-fault-tolerant-hamiltonian if $G-F$ is hamiltonian for any faulty edge set F with $|F| \leq k$. We define edge-fault-tolerant hamiltonicity of G, denoted by $h_{f}(G)$, to be the maximum of such k. In this thesis, we prove that $h_{f}(G) \leq 1$ if G is a cubic hamiltonian graph, $1 \leq h_{r}(G) \leq 3$ if G is a cubic hamiltonian graph with $h_{f}(G)=1$. We present some cubic 3-connected hamiltonian graphs G with $h_{f}(G)=1$ and $h_{r}(G)=i$ for $i=1,2$, 3, a cubic 3-connected hamiltonian graph G with $h_{f}(G)=0$ and $h_{r}(G)=0$, and a cubic 3-connected hamiltonian graph G with $h_{f}(G)=0$ and $h_{r}(G)=1$.

Keywords : hamiltonian, hamiltonian connected.

誌謝

回首就讀碩士的時光，相當的充實，愉快與感謝。首先要感謝的是譚建民教授與徐力行教授不管在研究之指導及求學之協助，給我許多深入且準確的建議，也讓我學習到研究的態度及方法，這些都是使個人視野，知識與技能，得以不斷提升。另外也感謝口試委員高欣欣教授在口試過程中的指教並提供許多的寶貴意見。

在此要特別感謝河東洋老師。不論在方向上或是實作上給予正確的指引，無形中不斷的在鞭策著我努力向前。沒有河老師的耐心指導與大力幫忙，我沒有辦法完成這個我曾經認為無法完成的事。

感謝實驗室的所有伙伴。國晃學長，元翔學長，倫閔學長，玠峰學長等在學習過程上的幫助。感謝尚融，聖凱，銘皇い家緯，學弟智凱，因為你們，總會在我想偷懶的時候激發我的鬥志

最後感謝我的爸爸，媽媽對我的栽培，還有這段時間在經濟上及精神上給我的幫忙，使我在求學道路上無後顧之憂？順利完成學業。也感謝Mindy當我的精神支柱，讓我在壓力過大時有人可以分擔i

在此獻給所有曾經幫助過我以及關心過我的人。

Contents

1 Introduction 4
2 Preliminaries 7
3 Examples 18
3.1 Examples of graph G in Ω with $h_{f}(G)=1$ and $h_{r}(G)=1$ 18
3.2 Examples of graph G in Ω with $h_{f}(G)=1$ and $h_{r}(G)=2$ 21
3.3 Examples of graph G in Ω with $h_{f}(G)=1$ and $h_{r}(G)=3$ 24
3.4 Examples of graph G in Ω with $h_{f}(G)=0$ and $h_{r}(G)=0$ 28
3.5 Examples of graph G in Ω with $h_{f}(G)=0$ and $h_{r}(G)=1$ 35

List of Figures

2.1 The graphs (a) G, (b) K_{4}, and (c) $J(G, x)$ 9
2.2 The graphs (a) $\mathrm{P}(7,2)$ and (b) $\mathrm{P}(9,3)$ 13
2.3 The graphs (a) $\mathrm{P}(7)$, (b) $\mathrm{P}(13)$, (c) $\mathrm{P}(9)$, and (d) $\mathrm{P}(15)$ 14
2.4 The graphs (a) $\operatorname{PJ}(8)$, (b) $\mathrm{PJ}(10)$ 16
2.5 The graphs (a) $\mathrm{L}(5)$, (b) $\mathrm{L}(6)$ 17
1896
3.1 Illustrations for Theorem 1 19
3.2 Illustrations for Theorem 2. 20
3.3 Illustrations for Theorem 3.3. 23
3.4 Illustrations for Theorem 3.4. 26
3.5 The graph M. 28
3.6 A hamiltonian cycle in M. 29
3.7 Illustration for Theorem 7, Case A1 29
3.8 Illustration for Theorem 7, Case A2 30
3.9 Illustration for Theorem 7, Case B1 31
3.10 Illustration for Theorem 7, Case B2 32
3.11 Illustration for Theorem 7, Case B3.1 32
3.12 Illustration for Theorem 7, Case B3.2.1 33
3.13 Illustration for Theorem 7, Case B3.2.2 34
3.14 Illustration for Theorem 7, Case B3.2.3 34
3.15 The graph N. 35

Chapter 1

Introduction

For the graph definition and notation we follow [2]. $G=(V, E)$ is a graph if V is a finite set and E is a subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V\}$. We say that V is the vertex set and E is the edge set Two vertices w and v are adjacent if $(u, v) \in E$, vertex $u($ or $v)$ is said to be incident with edge $(u, v), w$ and v are called the ends of edge (u, v). Suppose that V^{\prime} is a subset of V. The subgraph of G whose vertex set is $V-V^{\prime}$ and whose edge set is the set of those edges of G that have both ends in $V-V^{\prime}$ is called the subgraph of G induced by $V-V^{\prime}$ and is denoted by $G-V^{\prime}$. Suppose that E^{\prime} is a subset of E. The subgraph of G whose vertex set is the set of ends of edges in $E-E^{\prime}$ and whose edge set is $E-E^{\prime}$ is called the subgraph of G induced by $E-E^{\prime}$ and is denoted by $G-E^{\prime}$. For any vertex $u \in V$, the neighborhood $N(u)$ of u is the set $\{v \mid(u, v) \in E\}$, and is called the neighborhood of u. For any vertex $x \in V, \operatorname{deg}_{G}(x)$ denotes its degree in G. A graph G is cubic if $\operatorname{deg}_{G}(x)=3$ for any vertex x in G. A graph G is 3 -connected if $G-V^{\prime}$ is still connected for every vertex set $V^{\prime} \subseteq V$ and $\left|V^{\prime}\right| \leq 2$. A path P in G is represented by $\left\langle v_{0}, v_{1}, \cdots, v_{k}\right\rangle$, a sequence of distinct vertices of G, where every $\left(v_{i}, v_{i+1}\right)$ belongs to E for $0 \leq i \leq k-1$. We can write path $P=\left\langle v_{0}, v_{1}, \cdots, v_{k}\right\rangle$ as $\left\langle v_{0}, \cdots, v_{i}, P^{\prime}, v_{j}, \cdots, v_{k}\right\rangle$ or
$\left\langle v_{0}, \cdots, v_{i}\right\rangle \cup P^{\prime} \cup\left\langle v_{j}, \cdots, v_{k}\right\rangle$, where $P^{\prime}=\left\langle v_{i}, v_{i+1}, \cdots, v_{j}\right\rangle$ is a subpath of P. A cycle is nearly a path of length at least three with a difference that the first and the last vertices of this sequence are the same. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once and a graph is hamiltonian if it contains a hamiltonian cycle. A path of G is hamiltonian path if its vertices span $V(G)$, i.e., the path runs through all vertices once.

When searching a hamiltonian cycle (or path), we may ask the cycle to traverse several predetermined edges. These predetermined edges are called required edges. The idea of searching such kind of hamiltonian cycle is the motivation of this article. Proposed by William Hamilton, the original hamiltonian problem is a puzzle on the graph of the dodecahedron in which a path of length four is specified and the player is asked to extend the given path to a spanning eycle. This classical game can be treated as a special case of searching a hamiltonian cycle including required edges. Let us denote R the set of required edges and it must be reasonable to avoid creating any short cycle or branch point (a vertex of degree ≥ 3). In other words, a reasonable R is an edge set of independent paths.

A graph G is k-edge-required-hamiltonian if it contains a hamiltonian cycle including any reasonable R whenever $|R| \leq k$. We define edge-required hamiltonicity of G, denoted by $h_{r}(G)$, to be the maximum of such k. Those graphs G with $h_{r}(G) \geq 1$ is also known as edge-hamiltonian graphs [14]. Most of the previous studies of the edge-required hamiltonicity were concentrated on sufficient conditions [5, 7]. Recently, it is proved that $h_{r}\left(Q_{n}\right)=2 n-3$ where Q_{n} is the n-dimensional hypercube with $n \geq 3$.

A dual concept to "required edges" is "faulty edges". Fault-tolerance is one of the most important properties for computer or network structures. A graph G is k-edge-fault-tolerant-hamiltonian if $G-F$ is hamiltonian for any faulty edge set F with $|F| \leq k$. Similarly, the edge-fault-tolerant hamiltonicity of G, denoted by $h_{f}(G)$, is defined to be the maximum of such k. There are some studies on edge-fault-tolerant hamiltonicity [15]. In particular, it is proved that $h_{f}\left(Q_{n}\right)=n-2[3,10]$.

We believe that the first step on studying edge-required-hamiltonicity is working on the family of cubic hamiltonian graphs. To exclude trivial cases, we further restricted our attention on cubic 3 -connected hamiltonian graphs. In the following, we use Ω to denote the set of cubic 3-connected hamiltonian graphs.

In the following section, we will proved that $h_{f}(G) \leq 1$ and $h_{r}(G) \leq 3$ if G is in Ω. Moreover, $1 \leq h_{r}(G)$ if G is in Ω and $h_{f}(G)=1$. Furthermore, $h_{f}(G)=1$ if G is in Ω and $h_{r}(G) \geq 2$. Thus, we would like to know the existence of graph in Ω with $h_{f}(G)=1$ and $h_{r}(G)=i$ for $i=1,2,3$. For this reason, we give examples of graphs in Ω with $h_{f}(G)=1$ and $h_{r}(G)=i$ for $i=1,2,3$ in sections 3.1, 3.2, and 3.3. Again, we are interested in the existence of graphs in Ω with $h_{f}(G)=0$ and $h_{r}(G)=0$. An example is given in section 3.4. Finally, we are interested in the existence of graphs in Ω with $h_{f}(G)=0$ and $h_{r}(G)=1$. An example is given in section 3.5.

Chapter 2

Preliminaries

Lemma $1 h_{f}(G) \leq 1$ and $h_{r}(G) \leq 3$ if G is a graph in Ω.

Proof. Suppose that $G=(V, E)$ is a graph in Ω. Let x be any vertex in G and $N_{G}(x)=\{u, v, w\}$. We set $F=\{(x, u),(x, v)\}$. Obviously, $\operatorname{deg}_{G-F}(x)=1$. Hence, there is no hamiltonian cycle in $G-F$. Therefore, $h_{f}(G) \leq 1$.

1896

Let $N_{G}(x)=\{u, v, w\}, N_{G}(u) \stackrel{H}{=}\left\{x, u_{1}, u_{2}\right\}$ and $N_{G}(v)=\left\{x, v_{1}, v_{2}\right\}$. We set the required edge set $R=\left\{\left(u, u_{1}\right),\left(u, u_{2}\right),\left(v, v_{1}\right),\left(v, v_{2}\right)\right\}$. Thus, (x, u) and (x, v) is not on any hamiltonian cycle including the set R. Obviously, $\operatorname{deg}_{G-\{(x, u),(x, v)\}}(x)=1$. Hence, there is no hamiltonian cycle in $G-\{(x, u),(x, v)\}$. Therefore, $h_{r}(G) \leq 3$.

The lemma is proved.

Lemma $2 h_{r}(G) \geq 1$ if G is a graph in Ω with $h_{f}(G)=1$.

Proof. Suppose that $G=(V, E)$ is a graph in Ω with $h_{f}(G)=1$. Let (x, u) be any edge of G and $N_{G}(x)=\{u, v, w\}$. We set that $F=\{(x, v)\}$ be the faulty edge set. Since
$h_{f}(G)=1$, there exists a hamiltonian cycle C in $G-F$. Obviously, $\operatorname{deg}_{G-F}(x)=2$. Thus, (x, u) is in C. Therefore, $h_{r}(G) \geq 1$.

The lemma is proved.

Lemma $3 h_{f}(G)=1$ if G is a graph in Ω with $h_{r}(G) \geq 2$.

Proof. Suppose that $G=(V, E)$ is a graph in Ω and $h_{r}(G) \geq 2$. By Lemma 1, we know that $h_{f}(G) \leq 1$. Now, we want to show that $h_{f}(G) \neq 0$. Let (x, u) be any edge of G and $N_{G}(x)=\{u, v, w\}$. We set a required edge set $R=\{(x, v),(x, w)\}$. Since $h_{r}(G) \geq 2$, there exists a hamiltonian cycle C including the edge set R. Obviously, $(x, u) \notin C$. Hence, $h_{f}(G)=1$.

The lemma is proved.

Let G and K_{4} be two graphs in Ω with $V(G) \cap V\left(K_{4}\right)=\emptyset$ where K_{4} is a complete graph with four nodes. Note that K_{4} is node symmetric. Let $x \in V(G)$ and $k \in V\left(K_{4}\right)$. Let $N(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$ be an ordered set of the neighbors of x and $N(k)=\left\{k_{1}, k_{2}, k_{3}\right\}$ be the neighbors of k. The 3 -join of G and K_{4} at x and k, denoted by $J(G, x)$, is the graph with $V(J(G, x))=(V(G)-\{x\}) \cup\left(V\left(K_{4}\right)-\{k\}\right)$ and $E(J(G, x))=\left(E(G)-\left\{\left(x, x_{i}\right) \mid\right.\right.$ $1 \leq i \leq 3\}) \cup\left(E\left(K_{4}\right)-\left\{\left(k, k_{i}\right) \mid 1 \leq i \leq 3\right\}\right) \cup\left\{\left(x_{i}, k_{i}\right) \mid 1 \leq i \leq 3\right\}$. A graph H is called a 3-join of G and K_{4} if $H=J(G, x)$ for some vertices $x \in V(G)$. It is easy to know that $J(G, x)$ is in Ω if G is in Ω. See Figure 2.1 for an illustration.

Lemma $4 h_{f}(J(G, x))=h_{f}(G)$ if G is a graph in Ω.

Figure 2.1: The graphs (a) G, (b) K_{4}, and (c) $J(G, x)$

Proof. Let G is a graph in Ω. Let $x \in V(G)$ and $k \in V\left(K_{4}\right)$. Assume that the neighbors of node x in G are $\left\{x_{1}, x_{2}, x_{3}\right\}$, the neighbors of node k in K_{4} are $\left\{k_{1}, k_{2}, k_{3}\right\}$. By Lemma 1, we know that $h_{f}(G) \leq 1$ and $h_{f}(\vec{J}(G, x)) \leq 1$.

Suppose that $h_{f}(G)=1$. We can find a hamiltonian cycle in $G-F$ for any faulty edge set F with $|F|=1$. Now, we want to show that for any faulty edge set F^{\prime} with $\left|F^{\prime}\right|=1$, we can find a hamiltonian cycle C^{\prime} in $J(G, x)-F^{\prime}$.

Case 1. $F^{\prime}=\left\{\left(x_{1}, k_{1}\right)\right\},\left\{\left(x_{2}, k_{2}\right)\right\}$, or $\left\{\left(x_{3}, k_{3}\right)\right\}$. Without loss of generality, we assume that $F^{\prime}=\left\{\left(x_{3}, k_{3}\right)\right\}$. Since $h_{f}(G)=1$, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}\right.$ $, Q\rangle$ in $G-\left\{\left(x, x_{3}\right)\right\}$ where P and Q be two paths of G. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ in $J(G, x)-\left\{\left(x_{3}, k_{3}\right)\right\}$.

Case 2. $F^{\prime}=\left\{\left(k_{1}, k_{2}\right)\right\}$, $\left\{\left(k_{1}, k_{3}\right)\right\}$, or $\left\{\left(k_{2}, k_{3}\right)\right\}$. Without loss of generality, we assume that $F^{\prime}=\left\{\left(k_{1}, k_{2}\right)\right\}$. Since $h_{f}(G)=1$, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}\right.$, $Q\rangle$ in $G-\left\{\left(x, x_{3}\right)\right\}$. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ in $J(G, x)-\left\{\left(k_{1}, k_{2}\right)\right\}$.

Case 3. $F^{\prime}=(u, v) \subseteq E(G)-\left\{\left(x_{i}, k_{i}\right) \mid 1 \leq i \leq 3\right\}-\left\{\left(k_{1}, k_{2}\right),\left(k_{1}, k_{3}\right),\left(k_{2}, k_{3}\right)\right\}$. Since $h_{f}(G)=1$, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}, Q\right\rangle$ in $G-\{(u, v)\}$. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ in $J(G, x)-\left\{\left(k_{1}, k_{2}\right)\right\}$.

Hence, we can find a hamiltonian cycle in $J(G, x)-F^{\prime}$ with $\left|F^{\prime}\right|=1$. Therefore, $h_{f}(J(G, x))=1$ when $h_{f}(G)=1$.

Suppose that $h_{f}(G)=0$. Hence, there are not any hamiltonian cycle in $G-e$ for some edge e.

Case 1. $e=\left\{\left(x, x_{1}\right)\right\},\left\{\left(x, x_{2}\right)\right\}$, or $\left\{\left(x, x_{3}\right)\right\}$. Without loss of generality, we assume that $e=\left\{\left(x, x_{3}\right)\right\}$. Assume that $h_{f}(J(G, x))=1$, then we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ in $J(G, x)-\left\{\left(k_{1}, k_{2}\right)\right\}$. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}, Q\right\rangle$ in $G-e$. We get a contradiction. Therefore, $h_{f}(J(G, x))=0$.

1896

Case 2. $e \in E(G)-\left\{\left(x, x_{1}\right),\left(x, x_{2}\right),\left(x, x_{3}\right)\right\}$. Assume that $h_{f}(J(G, x))=1$, then we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ in $J(G, x)-e$. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}, Q\right\rangle$ in $G-e$. We get a contradiction. Therefore, $h_{f}(J(G, x))=0$.

The lemma is proved.

Lemma $5 h_{r}(J(G, x))=\min \left\{2, h_{r}(G)\right\}$ if G is a graph in Ω.

Proof. By Lemma 1, we know that $h_{r}(G) \leq 3$. We have the following cases.

Case 1. $h_{r}(G)=0$. Let $R \in E(G)-\left\{\left(x, x_{1}\right),\left(x, x_{2}\right),\left(x, x_{3}\right)\right\}$ be the required edge set of
$J(G, x)$ with $|R|=1$. Assume that $h_{r}(J(G, x))=1$, then we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ including R in $J(G, x)$. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}, Q\right\rangle$ including R in G. We get a contradiction. Therefore, $h_{f}(J(G, x))=0$.

Case 2. $h_{r}(G)=1$. Let $R \in E(G)-\left\{\left(x, x_{1}\right),\left(x, x_{2}\right),\left(x, x_{3}\right)\right\}$ be the required edge set of $J(G, x)$ with $|R|=2$. Assume that $h_{r}(J(G, x))=2$, then we can find a hamiltonian cycle $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ including R in $J(G, x)$. Hence, we can find a hamiltonian cycle $\left\langle x_{1}, x, x_{2}, P, x_{3}, Q\right\rangle$ including R in G. We get a contradiction. Therefore, $h_{f}(J(G, x))=1$.

Case 3. $h_{r}(G)=2$. We have the following subcases:

Case 3.1. $R=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\} \in E(G)-\left\{\left(x, x_{1}\right),\left(x, x_{2}\right),\left(x, x_{3}\right)\right\}$. We can find a hamiltonian cycle including the required edge set R in G. Without loss of generality, we assume that $\left\langle x_{1}, x, x_{2}, P, x_{3}, Q\right\rangle$ be the hamiltonian cycle in G. And we assume that $\left\langle k_{1}, k, k_{2}, k_{3}\right\rangle$ be the hamiltonian cycle in k_{4}. Obviously, $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ is a hamiltonian cycle including the required edge set R in $J(G, x)$. Hence, $h_{f}(J(G, x))=2$.

Case 3.2. $R=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\} \in\left\{\left(x_{1}, k_{1}\right),\left(x_{2}, k_{2}\right),\left(x_{3}, k_{3}\right),\left(k_{1}, k_{2}\right),\left(k_{2}, k_{3}\right),\left(k_{1}, k_{4}\right)\right\}$. Without loss of generality, we may assume that $R=\left\{\left(x_{1}, k_{1}\right),\left(x_{2}, k_{2}\right)\right\}$ or $\left\{\left(k_{1}, k_{3}\right),\left(k_{2}, k_{3}\right)\right\}$ or $\left\{\left(x_{1}, k_{1}\right),\left(x_{1}, k_{3}\right)\right\}$. Obviously, $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ is a hamiltonian cycle including the required edge set R in $J(G, x)$. Hence, $h_{f}(J(G, x))=2$.

Case 3.3. $R=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$. Let $\left(u_{1}, v_{1}\right) \in E(G)-\left\{\left(x, x_{1}\right),\left(x, x_{2}\right),\left(x, x_{3}\right)\right\}$ and $\left(u_{2}, v_{2}\right) \in\left\{\left(x_{1}, k_{1}\right),\left(x_{2}, k_{2}\right),\left(x_{3}, k_{3}\right),\left(k_{1}, k_{2}\right),\left(k_{2}, k_{3}\right),\left(k_{1}, k_{4}\right)\right\}$. Without loss of generality, we may assume that $R=\left\{\left(u_{1}, v_{1}\right),\left(x_{1}, k_{1}\right)\right\}$ or $\left\{\left(u_{1}, v_{1}\right),\left(k_{1}, k_{3}\right)\right\}$ and assume the path P
or the path Q including $\left(u_{1}, v_{1}\right)$. Obviously, $\left\langle x_{1}, k_{1}, k_{3}, k_{2}, x_{2}, P, x_{3}, Q\right\rangle$ is a hamiltonian cycle including the required edge set R in $J(G, x)$. Hence, $h_{f}(J(G, x))=2$.

Case 4. $h_{r}(G)=3$. Let the node set $V_{l}=\{V(G)-V(x)\}, V_{r}=\left\{V\left(K_{4}\right)-V(x)\right\}$, edge cut set $S=\left\{\left(x_{i}, k_{i}\right) \mid 1 \leq i \leq 3\right\}$. Assume that we can find a hamiltonian cycle C in $J(G, x)$. It is easy to know that $|C \cup S|=2$. Hence, $h_{f}(J(G, x))=2$.

The lemma is proved.

For integers n and $k, n \geq 3$ and $1 \leq k<n$. The generalized Petersen graph $P(n, k)$ is the graph with vertex set $\{i \mid 0 \leq i<n\} \cup\left\{i^{\prime} \mid 0 \leq i<n\right\}$ and edge set $\{(i, i \oplus 1) \mid 0 \leq i<$ $n\} \cup\left\{\left(i^{\prime},(i \oplus k)^{\prime}\right) \mid 0 \leq i<n\right\} \cup\left\{\left(i^{\prime}, i^{\prime}\right) \mid 0 \leq i \leq n\right\}$ where \oplus denotes addition in integer modulo n, Z_{n}. It is known that $P(n, k)$ is cubic, 3 -connected, and hamiltonian. Hence, $P(n, k)$ is in Ω. The generalized Petersen graphs $P(7,2)$ and $P(9,3)$ are illustrated in Figure 2.2. In [1], the author had shown that $P(n, 2)$ is hamiltonian if and only if $n \neq 5$ $(\bmod 6)$.

Lemma $6 h_{f}(P(n, 1))=1$ if n is a positive integer with $n \geq 3$.

Proof. By Lemma 1, we know that $h_{f}(P(n, 1)) \leq 1$. Let F be any edge set of $P(n, 1)$ with $|F|=1$. By the symmetric property of $P(n, 1)$, we may assume that $F=\{(0,1)\}$, $\left\{\left(0^{\prime}, 1^{\prime}\right)\right\}$, or $\left\{\left(0,0^{\prime}\right)\right\}$. Obviously, $\left\langle 1,2, \ldots, n-1,0,0^{\prime},(n-1)^{\prime}, \ldots, 1^{\prime}\right\rangle$ is a hamiltonian cycle of $P(n, 1)-F$ if $F=\{(0,1)\}$ or $\left\{\left(0^{\prime}, 1^{\prime}\right)\right\}$ and $\left\langle 2,3, \ldots, 1,1^{\prime}, 0^{\prime}, \ldots, 2^{\prime}\right\rangle$ is a hamiltonian cycle of $P(n, 1)-F$ if $F=\left\{\left(0,0^{\prime}\right)\right\}$. Hence, $h_{f}(P(n, 1)) \geq 1$.

Figure 2.2: The graphs (a) $\mathrm{P}(7,2)$ and (b) $\mathrm{P}(9,3)$

The lemma is proved.

Lemma $7 h_{f}(P(n, 2))=1$ if n is even integer with $n \geq 6$.

Proof. By Lemma 1, we know that $h_{f}(P(n, 2)) \leq 1$. Let F be any edge set of $P(n, 2)$ with $|F|=1$. By the symmetric property of $P(n, 2)$, we may assume that $F=\{(0,1)\}$, $\left\{\left((n-1)^{\prime}, 1^{\prime}\right)\right\}$, or $\left\{\left(2,2^{\prime}\right)\right\}$. Obviously, $\left\langle 0,0^{\prime}, 2^{\prime}, \ldots,(n-2)^{\prime}, n-2, n-3, \ldots, 1,1^{\prime}, 3^{\prime}, \ldots,(n-\right.$ $\left.1)^{\prime}, n-1\right\rangle$ is a hamiltonian cycle of $P(n, 2)-F$. Hence, $h_{f}(P(n, 2)) \geq 1$.

The lemma is proved.

Lemma $8 h_{f}(P(n, 2))=1$ if $n=1,3(\bmod 6)$ with $n>6$.

Proof. By Lemma 1, we know that $h_{f}(P(n, 2)) \leq 1$. Let F be any edge set of $P(n, 2)$ with $|F|=1, N_{k}=\left\langle k^{\prime},(k+2)^{\prime}, k+2, k+3, k+4,(k+4)^{\prime}\right\rangle$, and $M_{k}=\left\langle\left[k^{\prime}\right]_{n},\left[(k+2)^{\prime}\right]_{n},[k+\right.$ $\left.2]_{n},[k+3]_{n},[k+4]_{n},\left[(k+4)^{\prime}\right]_{n}\right\rangle$. We have the following cases.

Figure 2.3: The graphs (a) $P(7)$, (b) $P(13)$, (c) $P(9)$, and (d) $P(15)$

Case 1. n is odd, $n=1(\bmod 6)$ and $n \geq 7$. By the symmetric property of $P(n, 2)$, we may assume that $F=\{(0, n-1)\},\left\{\left(\frac{n-1}{2},\left(\frac{n-1}{2}\right)^{\prime}\right)\right\}$, or $\left\{\left(0^{\prime},(n-2)^{\prime}\right)\right\}$. Obviously, $\left\langle 1^{\prime}, 1,0,0^{\prime}, 2^{\prime}, 2,3,4,4^{\prime}, 6^{\prime}, 6,5,5^{\prime}, 3^{\prime}\right\rangle$ is a hamiltonian cycle of $P(7,2)-F$ and $\left\langle 1^{\prime}, 1,0, N_{0}, N_{6}, \ldots, N_{n-7},(n-1)^{\prime}, n-1, n-2,(n-2)^{\prime}, N_{n-4}, N_{n-10}, \ldots, N_{9}, 3^{\prime}\right\rangle$ is a hamiltonian cycle of $P(n, 2)-F$ when $n>7$. Hence, $h_{f}(P(n, 2)) \geq 1$ when $n=1 \quad(\bmod 6)$ with $n \geq 7$. (See Figure 2.3(a) and 2.3(b) for an illustration of the case n is odd, $n=1$ $(\bmod 6)$ and $n \geq 7$.

Case 2. n is odd, $n=3(\bmod 6)$ and $n \geq 9$. By the symmetric property of $P(n, 2)$, we may assume that $F=\left\{\left(0,0^{\prime}\right)\right\}$, $\{(1,2)\}$, or $\left\{\left((n-1)^{\prime}, 1\right)\right\}$. Obviously, $\left\langle M_{0}, M_{6}, \ldots, M_{n-3}, M_{3}, M_{9}, \ldots, M_{n-6}\right\rangle_{\mathrm{n}}$ is a hamiltonian cycle of $P(n, 2)-F$ when $n \geq 9$. Hence, $h_{f}(P(n, 2)) \geq 1$ when $n=3(\bmod 6)$ with $n \geq 9$. (See Figure 2.3(c) and 2.3(d) for an illustration of the case \bar{n} is odd, $n=3(\bmod 6)$ and $n \geq 9$.)

The lemma is proved.

1896

For integer $n \geq 2$, the project plane $\operatorname{PJ}(n)$ is the graph with vertex $\{i \mid 0 \leq i<2 n\}$ and edge set $\{(i, i \oplus 1) \mid 0 \leq i<2 n\} \cup\{(i, i+n) \mid 0 \leq i<n\}$ where \oplus denotes addition in integer modulo $2 n, Z_{2 n}$. It is known that $P J(n)$ is cubic, 3 -connected, and hamiltonian. Hence, $P J(n)$ is in Ω. The project plane graphs $P J(8)$ and $P J(10)$ are illustrated in Figure 2.4.

Lemma $9 h_{f}(P J(n))=1$.

Proof. By Lemma 1, we know that $h_{f}(P J(n)) \leq 1$. Let F be any edge set of $P J(n)$

Figure 2.4: The graphs (a) PJ(8), (b) PJ(10)
with $|F|=1$. By the symmetric property of $\operatorname{PJ}(n)$, we may assume that $F=\{(0,1)\}$ or $\{(0, n)\}$. Obviously, $\langle 1,2, \ldots, n, 0, n-1, \ldots, n+1\rangle$ is a hamiltonian cycle of $P J(n)-F$ if $F=\{(0,1)\}$ and $\langle 2,3, \ldots, n+1,1,0, n-1\rangle,, n+2\rangle$ is a hamiltonian cycle of $P J(n)-F$ if $F=\{(0, n)\}$. Hence, $h_{f}(P J(n)) \geq 1$.

The lemma is proved.

For integer $n \geq 2$, the ladder graph $L(n)$ is the graph with vertex set $\{i \mid 0 \leq i \leq 2 n-1\}$ and edge set $\{(i, 2 n-i) \mid 1 \leq i<n\} \cup\{(i, i \oplus 1) \mid 0 \leq i \leq 2 n-1\} \cup\{(0, n)\}$ where \oplus denotes addition in integer modulo n, Z_{n}. It is known that $L(n)$ is cubic, 3-connected, and hamiltonian. Hence, $L(n)$ is in Ω. The ladder graphs $L(5)$ and $L(6)$ are illustrated in Figure 2.5.

Lemma $10 h_{f}(L(n))=1$.

Figure 2.5: The graphs (a) L(5), (b) L(6)

Proof. By Lemma 1, we know that $h_{f}(L(n)) \leq 1$. Let F be any edge set of $L(n)$ with $|F|=1$. By the symmetric property of $L(n)$, we may assume that $F=\{(0, n)\}$, $\{(1,2 n-1)\},\{(2,2 n-2)\}, \ldots,\{(n-\overline{\mathrm{I}}, \boldsymbol{n}+1)\},\{(1,2)\},\{(3,4)\}, \ldots$, or $\{(2 n-1,0)\}$. Obviously, $\langle 0,1,2, \ldots, 2 n-1\rangle$ is a hamiltonian cycle of $L(n)-F$ if $F=\{(0, n)\},\{(1,2 n-$ 1) $\}$, $\{(2,2 n-2)\}, \ldots$, or $\{(n-1, n+1)\},\langle 0,1,2 n-1,2, \ldots, n-2, n+2, n+1, n\rangle$ is a hamiltonian cycle of $L(n)-F$ if n is odd and $F=\{(1,2)\},\{(3,4)\}, \ldots,\{(2 n-1,0)\}$, and $\langle 0,1,2 n-1,2, \ldots, n+2, n-2, n-1, n\rangle$ is a hamiltonian cycle of $L(n)-F$ if n is even and $F=\{(1,2)\},\{(3,4)\}, \ldots,\{(2 n-1,0)\}$. Therefore, $h_{f}(P J(n)) \geq 1$.

The lemma is proved.

Chapter 3

Examples

3.1 Examples of graph G in Ω with $h_{f}(G)=1$ and $h_{r}(G)=1$

Theorem $1 h_{r}(P(n, 1))=1$ and $h_{f}(P(n, 1))=1$ if n is odd and $n \geq 3$.

Proof. By Lemma 6, we know that $h_{f}(P(n, 1))=1$. Let R be any required edge set of $P(n, 1)$ with $|R|=1$. By the symmetric property of $P(n, 1)$, we may assume that $R=\{(0,1)\},\left\{\left(0^{\prime}, 1^{\prime}\right)\right\}$, or $\left\{\left(0,0^{\prime}\right)\right\}$. Obviously, $\left\langle 0,1, \ldots, n-1,(n-1)^{\prime},(n-2)^{\prime}, \ldots, 0^{\prime}\right\rangle$ is a hamiltonian cycle including the required edge set R. Hence, $h_{r}(P(n, 1)) \geq 1$ if n is odd and $n \geq 3$. Now we prove that $h_{r}(P(n, 1)) \leq 1$ for n is odd and $n \geq 3$. Let the required edge set $R=\left\{\left(1,1^{\prime}\right),\left(n-1,(n-1)^{\prime}\right)\right\}$. We want to prove there is no hamiltonian cycle C of $P(n, 1)$ including R. (See Figure 3.1(a) for an illustration of the case $n=7$.)

We have the following two cases:

Case 1. $\left(0,0^{\prime}\right) \notin C$. Thus, the edge set $\left\{(0,1),(0, n-1),\left(0^{\prime}, 1^{\prime}\right),\left(0^{\prime},(n-1)^{\prime}\right)\right\}$ are contained in C. We got a cycle $\left\langle 0,1,1^{\prime}, 0^{\prime},(n-1)^{\prime}, n-1\right\rangle$. Thus, there is no such

(a)

(b)

(c)

Figure 3.1: Illustrations for Theorem 1.
hamiltonian cycle. (See Figure 3.1(b) for an illustration of the case $n=7$.)

Case 2. $\left(0,0^{\prime}\right) \in C$. Obviously, either $(0,1) \in C$ or $(0, n-1) \in C$. Without loss of generality, we assume $(0,1) \in C$. Then C include the path $\left\langle n-1,(n-1)^{\prime}, 0^{\prime}, 0,1,1^{\prime}, 2^{\prime}, 2,3,3^{\prime}\right.$ $\left., \ldots,(n-3)^{\prime}, n-3, n-2,(n-2)^{\prime}\right\rangle$ Note that $\left(n-1,(n-1)^{\prime}\right) \notin E(P(n, 1))$. Therefore, there is no such cycle. (See Figure 3.1(c) for an illustration of the case $n=7$.)

Therefore, there is no hamiltonian cycle contains the required edge set R. Hence, $h_{r}(P(n, 1))=1$ when n is odd and $n \geq 3$.

The theorem is proved.

Theorem $2 h_{r}(P J(n))=1$ and $h_{f}(P J(n))=1$ when n is even and $n \geq 2$.

Proof. By Lemma 11, we know that $h_{f}(P J(n))=1$. Let R be any required edge set of $P J(n)$ with $|R|=1$. By the symmetric property of $\operatorname{PJ}(n)$, we may assume that $R=\{(0,1)\}$, or $\{(0, n)\}$. Obviously, $\langle 0,1, \ldots, n-1,2 n-1,2 n-2, \ldots, n\rangle$ is a hamiltonian

Figure 3.2: Illustrations for Theorem 2.
cycle including the required edge set R. Hence, $h_{r}(P J(n)) \geq 1$ when n is even and $n \geq 2$. Now we prove that $h_{r}(P J(n)) \leq 1$ when n is even and $n \geq 2$. Let the required edge set $R=\{(1, n+1),(n-1,2 n-1)\}$. We want to prove there is no hamiltonian cycle C of $P J(n)$ including the edge set \underline{R}. (See Figure 3.2(a) for an illustration of the case $n=10$.) 1896

We have the following two cases:

Case 1. $(0, n) \notin C$. The edge set $\{(0,1),(0,2 n-1),(n-1, n),(n, n+1)\}$ are contained in C. We got a cycle $\langle 0,1, n+1, n, n-1,2 n-1\rangle$. Thus, there is no such hamiltonian cycle. (See Figure 3.2(b) for an illustration of the case $n=10$.)

Case 2. $(0, n) \in C$. Obviously, either $\{(0,2 n-1),(n, n+1)\} \in C$ or $\{(0,1),(n, n-1)\} \in$ C. Without loss of generality, we assume $\{(0,2 n-1),(n, n+1)\} \in C$. Then C include the path $\langle 1, n+1, n, 0,2 n-1, n-1, n-2,2 n-2,2 n-3, \ldots, 2, n+2\rangle$. Therefore, there is no such hamiltonian cycle. (See Figure 3.2(c) for an illustration of the case $n=10$.)

Therefore, there is no hamiltonian cycle contains R. Hence, $h_{r}(P J(n))=1$ if n is even. The lemma is proved.

3.2 Examples of graph G in Ω with $h_{f}(G)=1$ and $h_{r}(G)=2$

Lemma 11 [16] A petersen graph $P(n, 2)$ is not hamiltonian if and only if $n=5$ $(\bmod 6)$.

Theorem $3 h_{r}(P(n, 2))=2$ and $h_{f}(P(n, 2))=1$ if $n=1,3(\bmod 6)$.

Proof. By Lemma 8, we know that $h_{f}(P(n, 2))=1$. Now we prove that $h_{r}(P(n, 2))=2$ for $n=1,3 \quad(\bmod 6)$. Let R be any required edge set of $P(n, 2)$ with $|R|=2$. We have the following cases:

1896

Case 1. n is odd, $n=1 \quad(\bmod 6)$ and $n \geqq 7^{\prime} \cdot$ Obviously, $\left\langle 1^{\prime}, 1,0,0^{\prime}, 2^{\prime}, 2,3,4,4^{\prime}, 6^{\prime}, 6,5,5^{\prime}\right.$, $\left.3^{\prime}\right\rangle$ is a hamiltonian cycle of $P(7,2)$ and $\left\langle 1^{\prime}, 1,0, N_{0}, N_{6}, \ldots, N_{n-7},(n-1)^{\prime}, n-1, n-2,(n-\right.$ $\left.2)^{\prime}, N_{n-4}, N_{n-10}, \ldots, N_{9}, 3^{\prime}\right\rangle$ is a hamiltonian cycle of $P(n, 2)$ when $n>7$. It is easy to check that any two edge can be on the hamiltonian cycle. Hence, $h_{r}(P(n, 2))=2$ when $n=1 \quad(\bmod 6)$ with $n \geq 7$. (See Figure 2.3(a) and 2.3(b) for an illustration of the case n is odd, $n=1 \quad(\bmod 6)$ and $n \geq 7$.

Case 2. n is odd, $n=3(\bmod 6)$ and $n \geq 9$. Obviously, $\left\langle M_{0}, M_{6}, \ldots, M_{n-3}, M_{3}, M_{9}, \ldots\right.$, $\left.M_{n-6}\right\rangle$ is a hamiltonian cycle of $P(n, 2)$ when $n \geq 9$. It is easy to check that any two edge can be on the hamiltonian cycle. Hence, $h_{r}(P(n, 2))=2$ when $n=3(\bmod 6)$
with $n \geq 9$. (See Figure 2.3(c) and 2.3(d) for an illustration of the case n is odd, $n=3$ $(\bmod 6)$ and $n \geq 9$.

Now we prove that $h_{r}(P(n, 2))=3$ for $n=1,3(\bmod 6)$. Let $M\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ is H that the path $P_{0}=\left\langle v_{0}, x_{0}, x_{1}, \ldots, x_{i}, v_{1}\right\rangle, P_{1}=\left\langle v_{2}, y_{0}, y_{1}, \ldots, y_{j}, v_{3}\right\rangle, P_{2}=\left\langle v_{4}, z_{0}, z_{1}, \ldots\right.$, $\left.z_{k}, v_{5}\right\rangle$, and one method link the vertex $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ can give a hamiltonian cycle in $P(n, 2)$ if $n=1,3 \quad(\bmod 6)$.

Suppose the $P(9,2)$ have a hamiltonian cycle. Let the required edge set $R=\{(1,2),(2$, $3),(3,4)\}$. Because the edges $\left(2,2^{\prime}\right),\left(3,3^{\prime}\right)$ are not in C. Thus, the edges $\left(1^{\prime}, 3^{\prime}\right),\left(3^{\prime}, 5^{\prime}\right),\left(0^{\prime}\right.$, $\left.2^{\prime}\right)$, $\operatorname{and}\left(2^{\prime}, 4^{\prime}\right)$ are in C. And we can use $M\left(1,4,1^{\prime}, 5^{\prime}, 0^{\prime}, 4^{\prime}\right)$ to give a hamiltonian cycle in $P(9,2)$. We can construct a hâmiltonian cycle form $P(9,2)$ to $P(11,2)$, which insert two vertex x and y between 2 and 3 and insert two vertex x^{\prime} and y^{\prime} between 2^{\prime} and 3^{\prime}. The $P(13,2)$ also have a hamiltonian cycle, but we know the $P(13,2)$ have not a hamiltonian cycle. This is contradiction. It is easy to check that $h_{r}(P(n, 2)) \neq 3$ for $n=1,3$ $(\bmod 6)$. Therefore, $h_{r}(P(n, 2)) \neq 3$ for $n=1,3 \quad(\bmod 6)$. The theoerm is proved.

Theorem $4 h_{r}(L(n))=2$ and $h_{f}(L(n))=1$.

Proof. By Lemma 10, $h_{f}(L(n))=1$. Now, we prove $h_{r}(L(n))=2$.

Let us divide the edge set $E(L(n))$ into three sets A, B, and C where the edge sets $A=\{(i, i \oplus 1) \mid 0 \leq i \leq 2 n-1\}, B=\{(i, 2 n-i) \mid 1 \leq i<n\}$, and $C=\{(0, n)\}$. Obviously, $E(L(n))=A \cup B \cup C$. Let the required edge set $R=\{p, q\}$. We have the following cases:

Figure 3.3: Illustrations for Theorem 3.3.
Case 1. $\{p, q\} \subseteq A$. Obviously, $\langle 0,1$, S. $2 n-2,2 n-1\rangle$ forms a hamiltonian cycle including R. (See Figure 3.3(a) for anjllustration of the case $n=5$.)

1896

Case 2. $\{p, q\} \subseteq B \cup C$. Suppose that n is odd. Obviously, cycle $C_{1}=\langle 0,1,2 n-$ $1,2 n-2,2, \ldots, n-2, n+2, n+1, n-1, n\rangle$ including R. Suppose that n is even. Cycle $C_{2}=\langle 0,1,2 n-1,2 n-2,2, \ldots, n+2, n-2, n-1, n+1, n\rangle$ including R. (See Figures 3.3(b) and (c) for an illustration of the case $n=5$ and 6.)

Case 3. $p \in A$ and $q \in B \cup C$. Without loss of generality, we assume that edge $q=(i, i+1)$ where $0 \leq i \leq n-1$. When n is even, cycles $C_{1}=\langle 0,1,2 n-1,2 n-2,2, \ldots, n+2, n-$ $2, n-1, n+1, n\rangle$ or $C_{2}=\langle 0,2 n-1,1,2,2 n-2, \ldots, n-2, n+2, n+1, n-1, n\rangle$ including R. When n is odd, cycles $C_{3}=\langle 0,1,2 n-1,2 n-2,2, \ldots, n-2, n+2, n+1, n-1, n\rangle$ or $C_{4}=\langle 0,2 n-1,1,2,2 n-2, \ldots, n+2, n-2, n-1, n+1, n\rangle$ including R. (See Figure
$3.3(\mathrm{~d}),(\mathrm{e}),(\mathrm{f})$, and (g) for an illustration of the case $n=5$ and 6.$)$

Hence, $h_{r}(L(n)) \geq 2$.

Assume that there exists a hamiltonian cycle C including the required edge set $R^{\prime}=$ $\{(0,1),(0,2 n-1),(2,2 n-2)\}$. Thus, the edge set $\{(1,2),(2 n-2,2 n-1)\}$ are contained in C. We got a cycle $\langle 0,1,2,2 n-2,2 n-1\rangle$. Thus, there is no such hamiltonian cycle. Hence, $h_{r}(L(n)) \leq 2$.

Therefore, $h_{r}(L(n))=2$. The theorem is proved.

3.3 Examples of graph G in Ω with $h_{f}(G)=1$ and $h_{r}(G)=3$
 Theorem $5 h_{r}(P(n, 1))=3$ and $h_{f}(P(n, 1))=1$ when n is even.

Proof. By Lemma 6, we know that $h_{f}(P(n, 1))=1$. Now, we want to show that $h_{r}(P(n, 1))=3$. Let us divide the edge set $E(P(n, 1))$ into two sets A and B where the edge sets $A=\{(i, i \oplus 1) \mid 0 \leq i \leq n-1\} \cup\left\{\left(i^{\prime},(i \oplus 1)^{\prime}\right) \mid 1 \leq i<n-1\right\}$ and $B=\left\{\left(i, i^{\prime}\right) \mid 1 \leq i<n\right\}$. Obviously, $E(P(n, 1))=A \cup B$. Let the required edge set $R=\{p, q, r\}$. We have the following cases:

Case 1. $\{p, q, r\} \subseteq A$. Without loss of generality, we assume that $\{p, q, r\} \cap\{(0, n-$ 1), $\left.\left(0^{\prime},(n-1)^{\prime}\right)\right\}=\emptyset$. The hamiltonian cycle $\left\langle 0,1,2, \ldots, n-1,(n-1)^{\prime},(n-2)^{\prime}, \ldots, 1^{\prime}, 0^{\prime}\right\rangle$ including the required edge set R.

Case 2. $\{p, q\} \subseteq A$ and $\{r\} \subseteq B$. Without loss of generality, we assume that the edge $r=\left(0,0^{\prime}\right)$. We have the following subcases:

Case 2.1. $\{p, q\} \cap\left\{(0,1),\left(0^{\prime}, 1^{\prime}\right)\right\}=\emptyset$. The hamiltonian cycle $\left\langle 1,2, \ldots, n-1,0,0^{\prime},(n-\right.$ $\left.1)^{\prime},(n-2)^{\prime}, \ldots, 1^{\prime}\right\rangle$ including the required edge set R.

Case 2.2. $\{p, q\}=\left\{(0,1),\left(0^{\prime}, 1^{\prime}\right)\right\}$. The hamiltonian cycle $\left\langle 0,1, \ldots, n-1,(n-1)^{\prime},(n-\right.$ $\left.2)^{\prime}, \ldots, 1^{\prime}, 0^{\prime}\right\rangle$ including the required edge set R.

Case 2.3. $\{p, q\} \cap\left\{(0,1),\left(0^{\prime}, 1^{\prime}\right)\right\}=\{(0,1)\}$ or $\left\{\left(0^{\prime}, 1^{\prime}\right)\right\}$. Without loss of generality, we set $p=(0,1)$. The hamiltonian cycle $\left\langle 0,1,2, \ldots, n-1,(n-1)^{\prime},(n-2)^{\prime}, \ldots, 1^{\prime}, 0^{\prime}\right\rangle$ including the required edge set R when $q \neq\left(0^{\prime},(n-1)^{\prime}\right)$. And the hamiltonian cycle $\left\langle 0,1,1^{\prime}, 2^{\prime}, 2, \ldots, n-2, n-1,(n-1)^{\prime}, 0^{\prime}\right\rangle$ Sincluding the required edge set R when $q=$ $\left(0^{\prime},(n-1)^{\prime}\right)$.

1896

Case 3. $\{p\} \subseteq A$ and $\{q, r\} \subseteq B$. Without loss of generality, we assume that the edge $p=(0, n-1)$. The hamiltonian cycle $\left\langle 0,0^{\prime}, 1^{\prime}, 1,2,2^{\prime}, \ldots, n-2,(n-2)^{\prime},(n-1)^{\prime}, n-1\right\rangle$ including the required edge set R.

Case 4. $\{p, q, r\} \subseteq B$. The hamiltonian cycle $\left\langle 0,0^{\prime}, 1^{\prime}, 1,2,2^{\prime}, \ldots, n-2,(n-2)^{\prime},(n-\right.$ $\left.1)^{\prime}, n-1\right\rangle$ including the required edge set R.

Hence, $h_{r}(P(n, 1))=3$ when n is even. The theorem is proved.

Theorem $6 h_{r}(P J(n))=3$ and $h_{f}(P J(n))=1$ when n is odd.

Figure 3.4: Hlustrations for Theorem 3.4.

Proof. By Lemma 11, we know that $\hbar_{f}(P J(n))=1$. By Lemma 1, we know $h_{r}(P J(n)) \leq 3$. Now, we want to prove that for any required edge set $R=\{p, q, r\}$, we can find a hamiltonian cycle including the edges R.

Let the edge sets $A=\{(i, i \oplus 1) \mid 0 \leq i \leq 2 n-1\}$ and $B=\{(i, i+n) \mid 1 \leq i<n\}$. Obviously, $E(P J(n))=A \cup B$. We have the following cases:

Case 1. $\{p, q, r\} \subseteq A$. There is a hamiltonian cycle $\langle 0,1, \ldots, 2 n-2,2 n-1\rangle$ including R. (See Figure 3.4(a) for an illustration of the case $n=5$.)

Case 2. $\{p, q\} \subseteq A$ and $r \in B$. Without loss of generality, we set edge $r=(0, n)$.

Case 2.1. $\{p, q\} \cap\{(0,1),(n, n+1)\}=\emptyset$. There is a hamiltonian cycle $\langle 1,2, \ldots, n, 0,2 n-$ $1, \ldots, n+1\rangle$ including R. (See Figure 3.4(b) for an illustration of the case $n=5$.)

Case 2.2. $\{p, q\} \cap\{(0,1),(n, n+1)\}=\{(0,1)\}$. Without loss of generality, we set $p=(0,1)$. There is a hamiltonian cycle $\langle 0,1, \ldots, n-1,2 n-1,2 n-2, \ldots, n\rangle$ including R when $q \neq(n-1, n)$. And there is a hamiltonian $\langle 0,1, n+1, n+2,2,3, n+3, n+4, \ldots, 2 n-$ $2,2 n-1, n-1, n\rangle$ including R when $q=(n-1, n)$. (See Figure 3.4(c) and Figure 3.4(e) for an illustration of the case $n=5$)

Case 2.3. $\{p, q\} \cap\{(0,1),(n, n+1)\}=\{(n, n+1)\}$. Without loss of generality, we set $p=(n, n+1)$. There is a hamiltonian cycle $\langle 0,1, \ldots, n-1,2 n-1,2 n-2, \ldots, n\rangle$ including R when $q \neq(0,2 n-1)$. And there is a hamiltonian $\langle 0, n, n+1,1, n+2, n+$ $3,3,4, \ldots, n-2, n-1,2 n-1)$ including R when $\vec{q}=(0,2 n-1)$. (See Figure 3.4(d) and Figure 3.4(e) for an illustration of the case $n=5$)

Case 2.3. $\{p, q\}=\{(0,1),(n, n+1)\}$. There is a hamiltonian cycle $\langle 0,1, \ldots, n-$ $1,2 n-1,2 n-2, \ldots, n\rangle$ including R. (See Figure 3.4(e) for an illustration of the case $n=5$.)

Case 3. $p \in A$ and $\{q, r\} \subseteq B$. Without loss of generality, we set $p=(0,1)$. There is a hamiltonian cycle $\langle 0,1, n+1, n+2,2,3, n+3, n+4, \ldots, 2 n-2,2 n-1, n-1, n\rangle$ including R. (See Figure 3.4(c) for an illustration of the case $n=5$.)

Case 4. $\{p, q, r\} \subseteq B$. There is a hamiltonian cycle $\langle 0,1, n+1, n+2,2,3, n+3, n+$ $4, \ldots, 2 n-2,2 n-1, n-1, n\rangle$ including R. (See Figure 3.4(c) for an illustration of the

Figure 3.5: The graph M.
case $n=5$.)

Hence, $h_{r}(P J(n))=3$ when n is odd. The theorem is proved.

3.4 Examples of graph G in Ω with $h_{f}(G)=0$ and

$$
h_{r}(G)=0
$$

In this section, we will prove the the graph M in Figure 3.5 is in Ω with $h_{f}(M)=0$ and $h_{r}(M)=0$.

Theorem 7 Graph M is in $\Omega . h_{f}(M)=0$ and $h_{r}(M)=0$.

Proof. It is easy to check that $\kappa(M)=3$. In Figure 3.6, we give a hamiltonian cycle indicated by redden edges. Therefore, M is in Ω.

By Lemma 1, we know that $h_{f}(M) \leq 1$. Let the fault edge set $F=\left\{\left(u_{2}, v_{2}\right)\right\}$. We want to show that there is no any hamiltonian cycle in $M-F$. Let the node set $V_{l}=\left\{u_{0}, u_{1}, \ldots, u_{9}\right\}, V_{r}=\left\{v_{0}, v_{1}, \ldots, v_{9}\right\}$, edge cut set $S=\left\{\left(u_{0}, v_{5}\right),\left(v_{0}, u_{5}\right),\left(u_{1}, v_{1}\right)\right\}$.

Figure 3.6: A hamiltonian cycle in M.

Figure 3.7: Illustration for Theorem 7, Case A1

Assume that we can find a hamiltonian cycle C in $M-F$. It is easy to know that $|C \cap S|=2$. Now, we consider the edges $\left(u_{0}, v_{5}\right),\left(u_{5}, v_{0}\right)$, and $\left(u_{1}, v_{1}\right)$ in C or not in the following cases.

Case A1. $\left(u_{0}, v_{5}\right),\left(u_{5}, v_{0}\right) \in C$. Because the edge $\left(u_{1}, v_{1}\right)$ is not in C, we implies that the edges $\left(u_{2}, u_{3}\right),\left(u_{2}, u_{7}\right),\left(u_{1}, u_{0}\right)$, and $\left(u_{1}, u_{6}\right)$ are in C. And then $\left(u_{3}, u_{4}\right)$ and $\left(u_{4}, u_{9}\right)$ are in C. Therefore, $\left(u_{5}, u_{7}\right)$ and $\left(u_{6}, u_{9}\right)$ are in C. We got a path joining nodes u_{0} and u_{5} in $M_{V_{l}}$ but we lost node u_{8}. Hence, we can not find any hamiltonian cycle C in $M-F$

Figure 3.8: Illustration for Theorem 7, Case A2
with edges $\left(u_{0}, v_{5}\right)$ and $\left(u_{5}, v_{0}\right)$ are in C. (See Figure 3.7 for an illustration.)

Case A2. $\left(u_{0}, v_{5}\right),\left(u_{1}, v_{1}\right) \in C$ or $\left.\left(u_{5}, v_{0}\right) ;, u_{4}, v_{1}\right) \in C$. Without loss of generality, we consider $\left(u_{0}, v_{5}\right),\left(u_{1}, v_{1}\right) \in C$. Because the edge $\left(u_{5}, v_{0}\right)$ is not in C, we implies that the edges $\left(u_{2}, u_{3}\right),\left(u_{2}, u_{7}\right),\left(u_{5}, u_{7}\right),\left(u_{5}, u_{8}\right),\left(u_{3}, u_{4}\right)$ arè in C. And then $\left(u_{0}, u_{4}\right)$ and $\left(u_{1}, u_{6}\right)$ are in C. Thus, $\left(u_{6}, u_{8}\right)$ is in C. We got a path joining nodes u_{0} and u_{1} in $M_{V_{l}}$ but we lost node u_{9}. Hence, we can not find any hamiltonian cycle C in $M-F$ with edges $\left(u_{0}, v_{5}\right)$ and (u_{1}, v_{1}) are in C but (u_{5}, v_{0}) is not in C. (See Figure 3.8 for an illustration.)

Hence, we can not find a hamiltonian cycle in $M-F$. Therefore, $h_{f}(M)=0$.

By Lemma 3, we know that $h_{r}(M) \leq 1$. Let $R=\left(u_{1}, v_{1}\right)$ be the required edge set of M with $|R|=1$. We want to show that we can not find any hamiltonian cycle in M including the required edge set R. Assume that C be the hamiltonian cycle in M including the required edge set R. Let the cut edge set $S=\left\{\left(u_{0}, v_{5}\right),\left(u_{5}, v_{0}\right),\left(u_{2}, v_{2}\right)\right\}$. It is easy to know that $|C \cap S|=1$ or 3 , because edge (u_{1}, v_{1}) is in C. We consider the

Figure 3.9: Illustration for Theorem 7, Case B1
edges $\left(u_{0}, v_{5}\right),\left(u_{5}, v_{0}\right)$, and $\left(u_{2}, v_{2}\right)$ in C or not in the following cases.

Case B1. $\left(u_{2}, v_{2}\right) \in C$. Because the edges $\left(u_{5}, v_{0}\right),\left(u_{0}, v_{5}\right)$ are not in C. Thus, the edges $\left(u_{0}, u_{1}\right),\left(u_{0}, u_{4}\right),\left(u_{5}, u_{7}\right),\left(u_{5}, u_{8}\right)$ are in C. And then $\left(u_{6}, u_{8}\right),\left(u_{6}, u_{9}\right)$ are in C. Hence, $\left(u_{2}, u_{7}\right),\left(u_{4}, u_{9}\right)$ are in C. Now, we got a path joining nodes u_{1} and u_{2} but we lost node u_{3}. Thus, there is no such hamiltonian cycle C with edges $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are in C. (See Figure 3.9 for an illustration.) Whrman

Case B2. $\left(u_{5}, v_{0}\right) \in C$. Because the edges $\left(u_{0}, v_{5}\right),\left(u_{2}, v_{2}\right)$ are not in C. Thus, the edges $\left(v_{2}, v_{7}\right),\left(v_{2}, v_{3}\right),\left(v_{5}, v_{7}\right),\left(v_{5}, v_{8}\right)$ are in C. And then the edges $\left(v_{1}, v_{6}\right),\left(v_{0}, v_{4}\right),\left(v_{4}, v_{3}\right)$ are in C. Thus, $\left(v_{6}, v_{8}\right)$ is in C. Now, we got a path joining nodes v_{0} and v_{1} but we lost node v_{9}. Thus, there is no such hamiltonian cycle C with edges $\left(u_{1}, v_{1}\right)$ and $\left(u_{5}, v_{0}\right)$ are in C. (See Figure 3.10 for an illustration.)

Case B3. $\left\{\left(u_{5}, v_{0}\right),\left(u_{0}, v_{5}\right),\left(u_{2}, v_{2}\right)\right\} \in C$. We have the following subcases:

Figure 3.10: Illustration for Theorem 7, Case B2

Figure 3.11: Illustration for Theorem 7, Case B3.1
Case B3.1. $\left\{\left(u_{0}, u_{1}\right)\right\} \in C$ or $\left\{\left(v_{0}, v_{1}\right)\right\} \in C$. Without loss of generality, we assume that $\left\{\left(u_{0}, u_{1}\right)\right\} \in C$. Because the edges $\left(u_{1}, u_{6}\right)$ and $\left(u_{0}, u_{4}\right)$ are not in C, the edges $\left(u_{6}, u_{9}\right),\left(u_{6}, u_{8}\right),\left(u_{4}, u_{9}\right),\left(u_{4}, u_{3}\right)$ are in C. Thus, the edges $\left(u_{5}, u_{8}\right)$ and $\left(u_{3}, u_{2}\right)$ are in C. We got a path joining node u_{5} and u_{2} but we lost node u_{7}. Thus, there is no such hamiltonian cycle C. (See Figure 3.11 for an illustration.)

Case B3.2. $\left\{\left(u_{0}, u_{1}\right),\left(u_{0}, u_{1}\right)\right\} \notin C$. Hence, the edges $\left(u_{1}, u_{6}\right)$ and $\left(v_{1}, v_{6}\right)$ are in C. We have the following subcases:

Figure 3.12: Illustration for Theorem 7, Case B3.2.1

Case B3.2.1. $\left\{\left(u_{6}, u_{9}\right),\left(v_{6}, v_{9}\right)\right\} \in C$. Because the edges $\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)$ are not in C. Thus, the edges $\left(u_{0}, u_{4}\right),\left(u_{1}, u_{6}\right),\left(v_{0}, v_{4}\right),\left(v_{1}, v_{6}\right)$ are in C. And then the edges $\left(u_{8}, u_{5}\right),\left(u_{8}, u_{3}\right),\left(v_{8}, v_{5}\right),\left(v_{8}, v_{3}\right)$ are in C. Thus, $\left(u_{7}, u_{2}\right),\left(u_{7}, u_{9}\right),\left(v_{7}, v_{2}\right),\left(v_{7}, v_{9}\right)$ are in C. Now, we got a cycle $\left\langle u_{1}, u_{6}, u_{9}, u_{7}, u_{2}, y_{2}, v_{7}, v_{9}, v_{6}, v_{1}\right\rangle$ in M. Thus, there is no such hamiltonian cycle. (See Figure 3.12 for an illustration.)

Case B3.2.2. $\left\{\left(u_{6}, u_{9}\right),\left(v_{6}, v_{8}\right)\right\}$ or $\left\{\left(u_{6}, u_{8}\right),\left(v_{6}, v_{9}\right)\right\} \in C$. Without loss of generality, we consider $\left\{\left(u_{6}, u_{9}\right),\left(v_{6}, v_{8}\right)\right\} \in C$. Because the edges $\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)$ are not in C. Thus, the edges $\left(u_{0}, u_{4}\right),\left(u_{1}, u_{6}\right),\left(v_{0}, v_{4}\right),\left(v_{1}, v_{6}\right)$ are in C. And then the edges $\left(u_{8}, u_{5}\right),\left(u_{8}, u_{3}\right),\left(v_{9}, v_{4}\right),\left(v_{9}, v_{7}\right)$ are in C. Thus, $\left(u_{7}, u_{2}\right),\left(u_{7}, u_{9}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{8}\right)$ are in C. Now, we got a cycle $\left\langle u_{1}, u_{6}, u_{9}, u_{7}, u_{2}, v_{2}, v_{3}, v_{8}, v_{6}, v_{1}\right\rangle$ in M. Thus, there is no such hamiltonian cycle. (See Figure 3.13 for an illustration.)

Case B3.2.3. $\left\{\left(u_{6}, u_{8}\right),\left(v_{6}, v_{8}\right)\right\} \in C$. Because the edges $\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)$ are not in C. Thus, the edges $\left(u_{0}, u_{4}\right),\left(u_{1}, u_{6}\right),\left(v_{0}, v_{4}\right),\left(v_{1}, v_{6}\right)$ are in C. And then the edges $\left(u_{9}, u_{4}\right),\left(u_{9}, u_{7}\right),\left(v_{9}, v_{4}\right),\left(v_{9}, v_{7}\right)$ are in C. Thus, $\left(u_{3}, u_{2}\right),\left(u_{3}, u_{8}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{8}\right)$ are in

Figure 3.13: Illustration for Theorem 7, Case B3.2.2

Figure 3.14: Illustration for Theorem 7, Case B3.2.3
C. Now, we got a cycle $\left\langle u_{1}, u_{6}, u_{8}, u_{3}, u_{2}, v_{2}, v_{3}, v_{8}, v_{6}, v_{1}\right\rangle$ in M. Thus, there is no such hamiltonian cycle. (See Figure 3.14 for an illustration.)

Hence, we can not find any hamiltonian cycle in M including the required edge set $R=\left\{\left(1,1^{\prime}\right)\right\}$. Therefore, $h_{r}(M)=0$.

Theorem 8 Graph $J(M, x)$ is in $\Omega . h_{f}(J(M, x))=0$ and $h_{r}(J(M, x))=0$.

Figure 3.15: The graph N.

Proof. By Lemma 4 and Lemma 5, we know that $h_{f}(J(G, x))=0$ and $h_{r}(J(G, x))=0$. Hence, $h_{f}(J(M, x))=0$ and $h_{r}(J(M, x))=0$.

3.5 Examples of graph G in Ω with $h_{f}(G)=0$ and $h_{r}(G)=1$
 1896

In this section, we will prove the the graph \mathcal{N}^{\prime} in Figure 3.15 is in Ω with $h_{f}(N)=0$ and $h_{r}(N)=1$.

Theorem 9 Graph N is in Ω such that $h_{f}(N)=0$ and $h_{r}(N)=1$.

Proof. It is proved in [11] that graph $N-\{(0,1)\}$ is not hamiltonian. Hence, $h_{f}(N)=0$.

By Lemma 3, we know that $h_{r}(N) \leq 1$. Let C be the hamiltonian cycle indicated by darken edges in N as shown in Figure 3.15. It is easy to check that any edge can be on the hamiltonian cycle. Hence, $h_{r}(N)=1$.

Theorem $10 \operatorname{Graph} J(N, x)$ is in $\Omega . h_{f}(J(N, x))=0$ and $h_{r}(J(N, x))=1$.

Proof. By Lemma 4 and Lemma 5, we know that $h_{f}(J(G, x))=0$ and $h_{r}(J(G, x))=1$. Hence, $h_{f}(J(N, x))=0$ and $h_{r}(J(N, x))=1$.

Bibliography

[1] J.A. Bondy, Variations on the Hamiltonian theme, Canad. Math. Bull. 15, 1972, 57-62.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications, North-Holland, 1976.
[3] S. Latifi, S. Zheng, and N.Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Digest of Papers: 22nd International Symposium on Fault-Tolerant Computing, IEEE Computer Society, 1992, 178-184.
[4] F.T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kaufmann, 1992.
[5] R. Häggkvist, On F-hamiltonian graphs, in: Graph Theory and Related Topics, J.A. Bondy and U.S.R. Murty, eds., Academic Press, 1979, 219-231.
[6] L.H. Hsu, S.C. Liu, and Y.N. Yeh, Hamiltonicity of hypercubes with valency restriction on faulty edges, to appear.
[7] H.V. Kronk, Variations on a theorem of Posa, in: The Many Facets of Graph Theory, G. Chartrand and S.F. Kapoor, eds., Springer, 1969, 193-197.
[8] A. Sengupta, On ring embedding in hypercubes with faulty nodes and links, Inform. Process. Lett. 68, 1998, no. 4, 207-214.
[9] G. Simmons, Almost all n-dimensional rectangular lattices are hamilton-laceable, Congr. Numer. 21, 1978, 649-661.
[10] Y.C. Tseng, Embedding a ring in a hypercube with both faulty links and faulty nodes, Inform. Process. Lett. 59 (1996) 217-222.
[11] J.J. Wang, C.N. Hung, J. J. M. Tan, L. H. Hsu, and T.Y. Sung, Construction Schemes for Fault-Tolerant Hamiltonian Graphs, Networks, 35(4) (2000) 233-245.
[12] D. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, 2001.
[13] I. Stojmenovic, Honeycomb Networks: Topological Properties and Communication Algorithms, IEEE Trans. Parallel and Distributed Systems, vol. 8, pp. 1036-1042, 1997.
[14] C.C. Chen , On edge-hamiltonian property of Cayley graphs, Discrete Math. vol. 72 (1988), pp. 29-33.
[15] F. Harary and J.P. Hayes, Edge Fault Tolerance in Graphs, Network, vol. 23 (1993), pp. 135-142.
[16] B.R. Alspach, The Classification of Hamiltonian Generalized Petersen Graphs, J. Combin. Theory Ser. B, vol. 34 (1983), pp. 293-312.

[^0]: 國 立 交 通 大學資 訊 科 學 與工程研究所

 Submitted to Institute of Computer Science and Engineering College of Computer Science

 National Chiao Tung University
 in partial Fulfillment of the Requirements
 for the Degree of
 Master
 in

 Computer Science

