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The Edge-Required-Hamiltonicity of the Cubic 3-Connected

Hamiltonian Graphs

Student : Chou-Keng Wu Advisor : Jimmy J.M. Tan

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Given a graph G = (V,E) and edge set:.R c E, where the edges of R form independent
paths. A graph G is k-edge-required-hamiltonian”if it contains a hamiltonian cycle
including any R whenever |R| < k. We define edge-required hamiltonicity of G,
denoted by h(G), to be the maximum of such k. A graph G s
k-edge-fault-tolerant-hamiltonian if G — F is hamiltonian for any faulty edge set F
with |F| < k. We define edge-fault-tolerant hamiltonicity of G, denoted by h; (G), to
be the maximum of such k. In this thesis, we prove that h; (G) < 1 if G is a cubic
hamiltonian graph, 1 < h(G) < 3 if G is a cubic hamiltonian graph with h; (G) = 1. We
present some cubic 3-connected hamiltonian graphs G with h; (G) = 1 and hy(G) =i
fori=1, 2, 3, a cubic 3-connected hamiltonian graph G with h; (G) = 0 and h,(G) =0,
and a cubic 3-connected hamiltonian graph G with h; (G) = 0 and h(G) = 1.

Keywords : hamiltonian, hamiltonian connected.
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Chapter 1

Introduction

For the graph definition and notation we follow [2]. G = (V, E) is a graph if V' is a finite
set and E' is a subset of {(u,v) | (u,v) is an unordered pair of V'}. We say that V is the
vertex set and E is the edge set. *Two vertices wrand v are adjacent if (u,v) € F, vertex
u(or v) is said to be incident with-edge (u.v), urand v are called the ends of edge (u,v).
Suppose that V' is a subset of V. iThe-subgraph-of G whose vertex set is V — V'’ and
whose edge set is the set of those ‘edges of G-that have both ends in V' — V'’ is called the
subgraph of G induced by V — V"’ and is denoted by G — V’. Suppose that E’ is a subset
of E. The subgraph of G whose vertex set is the set of ends of edges in £ — E’ and whose
edge set is £ — £’ is called the subgraph of G induced by E'— E’ and is denoted by G — E’.
For any vertex u € V', the neighborhood N (u) of u is the set {v | (u,v) € E}, and is called
the neighborhood of u. For any vertex = € V', degg(z) denotes its degree in G. A graph
G is cubic if degg(z) = 3 for any vertex x in G. A graph G is 3-connected if G — V" is
still connected for every vertex set V' C V and |[V’| < 2. A path P in G is represented
by (vo, vy, -+, vg), a sequence of distinct vertices of G, where every (v;, v;11) belongs to E

for 0 <4 <k — 1. We can write path P = (vg, vy, -, vg) as (vo, -+, v;, P, vj, -+, v5) Or



(v, -+, v;) UP'U (vj, -+, vk), where P' = (v;,vi41,- -+, v;) is a subpath of P. A cycle is
nearly a path of length at least three with a difference that the first and the last vertices
of this sequence are the same. A hamiltonian cycle of G is a cycle that traverses every
vertex of GG exactly once and a graph is hamiltonian if it contains a hamiltonian cycle.
A path of G is hamiltonian path if its vertices span V(G), i.e., the path runs through all

vertices once.

When searching a hamiltonian cycle (or path), we may ask the cycle to traverse several
predetermined edges. These predetermined edges are called required edges. The idea of
searching such kind of hamiltonian cycle is the motivation of this article. Proposed by
William Hamilton, the original hamiltonian problem is a puzzle on the graph of the
dodecahedron in which a path oflengthsfour.is specified and the player is asked to extend
the given path to a spanning eycle. This classical game can be treated as a special case
of searching a hamiltonian cyéle including-required edges. Let us denote R the set of
required edges and it must be reasonableto-avoid creating any short cycle or branch point
(a vertex of degree > 3). In other words, a reasonable R is an edge set of independent

paths.

A graph G is k-edge-required-hamiltonian if it contains a hamiltonian cycle including
any reasonable R whenever |R| < k. We define edge-required hamiltonicity of G, de-
noted by h,.(G), to be the maximum of such k. Those graphs G with h,.(G) > 1 is also
known as edge-hamiltonian graphs [14]. Most of the previous studies of the edge-required
hamiltonicity were concentrated on sufficient conditions [5, 7]. Recently, it is proved that

h(Qr) = 2n — 3 where @, is the n-dimensional hypercube with n > 3.



A dual concept to “required edges” is “faulty edges”. Fault-tolerance is one of the
most important properties for computer or network structures. A graph G is k-edge-
fault-tolerant-hamiltonian if G — F is hamiltonian for any faulty edge set F' with |F| < k.
Similarly, the edge-fault-tolerant hamiltonicity of G, denoted by hf(G), is defined to be
the maximum of such k. There are some studies on edge-fault-tolerant hamiltonicity [15].

In particular, it is proved that h(Q,) =n — 2 [3, 10].

We believe that the first step on studying edge-required-hamiltonicity is working on
the family of cubic hamiltonian graphs. To exclude trivial cases, we further restricted our
attention on cubic 3-connected hamiltonian graphs. In the following, we use () to denote

the set of cubic 3-connected hamiltonian_graphs.

In the following section, we will proved that hr(G) < 1 and h,(G) < 3 if G is in Q.
Moreover, 1 < h,(G) if G is in Qand i (G) = 1. Furthermore, hy(G) = 1if G is in Q and
h,(G) > 2. Thus, we would like to know the existence of graph in 2 with h;(G) =1 and
h,(G) =i for i = 1,2,3. For this reason, we give examples of graphs in Q with h¢(G) =1
and h.(G) = i for i = 1,2,3 in sections 3.1, 3.2, and 3.3. Again, we are interested in
the existence of graphs in  with hs(G) = 0 and h,(G) = 0. An example is given in
section 3.4. Finally, we are interested in the existence of graphs in Q with h¢(G) = 0 and

h.(G) = 1. An example is given in section 3.5.



Chapter 2

Preliminaries

Lemma 1 h(G) <1 and h,(G) < 3 if G is a graph in Q.

Proof. Suppose that G = (V,E)is a graph. in Q. Let x be any vertex in G and
Neg(z) = {u,v,w}. We set F' = {(z,u),{z,v)}s Obviously, degs_r(z) = 1. Hence, there

is no hamiltonian cycle in G —F. Therefore,.h¢(G) < 1.

Let Ng(z) = {u,v,w}, Ng(u) =4z, us} and Ng(v) = {x,v,v2}. We set the
required edge set R = {(u,u1), (u,us), (v,v1), (v,v9)}. Thus, (z,u) and (z,v) is not on
any hamiltonian cycle including the set R. Obviously, dega—{(zu) (0} (®) = 1. Hence,

there is no hamiltonian cycle in G — {(z,u), (z,v)}. Therefore, h,.(G) < 3.
The lemma is proved. O
Lemma 2 h,.(G) > 1 if G is a graph in Q with hy(G) = 1.

Proof. Suppose that G = (V, E) is a graph in Q with hs(G) = 1. Let (x,u) be any

edge of G and Ng(z) = {u,v,w}. We set that F = {(z,v)} be the faulty edge set. Since

7



hy(G) = 1, there exists a hamiltonian cycle C' in G — F. Obviously, dege_p(x) = 2. Thus,

(z,u) is in C. Therefore, h,.(G) > 1.

The lemma is proved. O

Lemma 3 hy(G) =1 if G is a graph in Q with h,(G) > 2.

Proof. Suppose that G = (V, E) is a graph in  and h,(G) > 2. By Lemma 1, we know
that h(G) < 1. Now, we want to show that hy(G) # 0. Let (x,u) be any edge of G
and Ng(z) = {u,v,w}. We set a required edge set R = {(x,v), (z,w)}. Since h,(G) > 2,
there exists a hamiltonian cycle C' including the edge set R. Obviously, (z,u) ¢ C. Hence,

hy(G) = 1.

The lemma is proved. g

Let G and K4 be two graphs in Qiwith V(G) N V(K,) = () where K, is a complete
graph with four nodes. Note that K} is node symmetric. Let z € V(G) and k € V(Ky).
Let N(z) = {x1, 22,23} be an ordered set of the neighbors of z and N (k) = {ky, ko, k3} be
the neighbors of k. The 3-join of G and K, at x and k, denoted by J(G, z), is the graph
with V(J(G, z)) = (V(G) = {z}) U (V(Ky) — {k}) and E(J(G,2)) = (E(G) — {(z,z;) |
1<i<3}HU(E(Ky) —{(k, k)| 1<i<3})U{(x,k;)|1<i<3}. Agraph H is called
a 3-join of G and K4 if H = J(G,z) for some vertices x € V(G). It is easy to know that

J(G,z) is in Q if G is in Q. See Figure 2.1 for an illustration.

Lemma 4 h(J(G,x)) = hs(G) if G is a graph in Q.



(@) (b) (€)

Figure 2.1: The graphs (a) G, (b) K4, and (c) J(G,z)

Proof. Let G is a graph in Q. Let z € V(G) and k € V(K,). Assume that the neighbors
of node z in G are {xy, x5, x3}, the neighbors of node k in K, are {ky, ko, k3}. By Lemma

1, we know that h(G) < 1 and he(J(G, z)) <.

Suppose that hy(G) = 1. We can finda hamiltorian cycle in G — F for any faulty edge
set F with |F| = 1. Now, we want tosshow that for any faulty edge set F’ with |F'| = 1,

we can find a hamiltonian cycle C" in" J(G,x) — F.

Case 1. F' = {(x1,k1)}, {(z2,k2)}, or {(z3,ks3)}. Without loss of generality, we as-
sume that F' = {(x3, k3)}. Since hy(G) = 1, we can find a hamiltonian cycle (x1, x, xo, P, 3
, Q) in G—{(x,x3)} where P and @ be two paths of G. Hence, we can find a hamiltonian

Cy€1€ <.T1,]€1,k33,k2,$2,P, ZE3,Q> in J(G,I) - {($37k3)}.

Case 2. F' = {(k1,k2)}, {(Kk1,ks)}, or {(ke, k3)}. Without loss of generality, we as-
sume that F' = {(ky, k2)}. Since hy(G) = 1, we can find a hamiltonian cycle (z1, z, z2, P, 3
,Q) in G — {(x,z3)}. Hence, we can find a hamiltonian cycle (z1, k1, ks, k2, 2, P, 23, Q)

in J(G,x) — {(ki, ka2)}.



Case 3. F' = (u,v) C E(G)—{(zs, k;) | 1 < i <3} —{(k1, ka), (K1, k3), (ko, k3)}. Since
h¢(G) = 1, we can find a hamiltonian cycle (z1, z, 22, P, z3,Q) in G — {(u,v)}. Hence, we

can find a hamiltonian cycle (x1, k1, k3, ko, T2, P, 3, Q) in J(G,x) — {(k1, k2)}.

Hence, we can find a hamiltonian cycle in J(G,z) — F’ with |F’| = 1. Therefore,

h¢(J(G,z)) =1 when h¢(G) = 1.

Suppose that hf(G) = 0. Hence, there are not any hamiltonian cycle in G — e for some

edge e.

Case 1. e = {(z,21)}, {(x,22)}, or {(z,23)}. Without loss of generality, we assume
that e = {(x,x3)}. Assume that h;(J(Gyw)) = 1, then we can find a hamiltonian cycle
(w1, k1, k3, ko, o, P, x5, Q) in J(Gsx) —{(kiiks) . " Hence, we can find a hamiltonian cycle

(w1, 2,29, Pyx3,Q) in G — e. We get a contradictioni. Therefore, h;(J(G,z)) = 0.

Case 2. e € E(G) — {(v,z1)i(wsx2), (@7s) }. Assume that h(J(G,z)) = 1, then
we can find a hamiltonian cycle (21, k1, ks, ko, x2, P, x3,Q) in J(G,z) — e. Hence, we can
find a hamiltonian cycle (z1,x, x9, P, 3, Q) in G — e. We get a contradiction. Therefore,

hy(J(G, z)) = 0.

The lemma is proved. g

Lemma 5 h,.(J(G,z)) = min{2, h.(G)} if G is a graph in Q.

Proof. By Lemma 1, we know that h,.(G) < 3. We have the following cases.

Case 1. h,.(G) =0. Let R € E(G) — {(z,x1), (x,22), (z,23)} be the required edge set of

10



J(G,z) with |R| = 1. Assume that h,(J(G,x)) = 1, then we can find a hamiltonian cycle
(21, k1, k3, ko, o, P, 23, Q) including R in J(G, z). Hence, we can find a hamiltonian cycle

(21,2, 29, P, 23, Q) including R in G. We get a contradiction. Therefore, h¢(J(G,z)) = 0.

Case 2. h,.(G) =1. Let R € E(G) — {(x,x1), (x,22), (z,23)} be the required edge set of
J(G,z) with |R| = 2. Assume that h,(J(G,x)) = 2, then we can find a hamiltonian cycle
(x1, k1, k3, ko, xo, P, 23, Q) including R in J(G, z). Hence, we can find a hamiltonian cycle

(x1, 2,29, P,x3,Q) including R in G. We get a contradiction. Therefore, hy(J(G,x)) = 1.

Case 3. h,.(G) = 2. We have the following subcases:

Case 3.1. R = {(u1,v), (u%3)} € E(G).— {(z,21), (z,22), (x,23)}. We can find
a hamiltonian cycle including the required edge set R in G. Without loss of generality,
we assume that (zq,x, s, P,x3,Q)) be the hamiltotiian cycle in G. And we assume that
(k1,k, ko, k3) be the hamiltoniani:eycle in ky. Obviously, (1, ki, ks, ko, z2, P, x3,Q) is a

hamiltonian cycle including the required edge set R in J(G,z). Hence, hy(J(G,x)) = 2.

Case 3'2' R - {(ula Ul)a (UQ, UZ)} S {(xlv kl)y (372, k?)? (1'3, k3)7 (kla k2)7 (k27 k3)7 (kb k4)}
Without loss of generality, we may assume that R = {(x1, k1), (22, ko) } or {(k1, k3), (k2, k3)}
or {(x1, k1), (x1,k3)}. Obviously, (1, ki, ks, ke, x2, P, x3, Q) is a hamiltonian cycle includ-

ing the required edge set R in J(G,z). Hence, h¢(J(G,x)) = 2.

Case 3.3. R = {(ug,v1), (ug,v2)}. Let (ug,v1) € E(G) — {(x,21), (x,22), (x,23)} and
(ug,v2) € {(x1, k1), (22, k2), (23, k3), (K1, k2), (K2, k3), (K1, ka) }. Without loss of generality,

we may assume that R = {(u1,v1), (x1,k1)} or {(uq,v1), (k1,ks)} and assume the path P

11



or the path @ including (uy,v;) . Obviously, (x1, k1, k3, ko, T2, P, 23, Q) is a hamiltonian

cycle including the required edge set R in J(G,x). Hence, hf(J(G,x)) = 2.

Case 4. h,(G) = 3. Let the node set V; = {V(G) — V(2)}, V;, = {V(K4) — V(2)},
edge cut set S = {(z;, k;)|1 < i < 3}. Assume that we can find a hamiltonian cycle C' in

J(G,z). It is easy to know that |C'U S| = 2. Hence, hy(J(G,x)) = 2.

The lemma is proved. g

For integers n and k, n > 3 and 1 < k < n. The generalized Petersen graph P(n, k) is
the graph with vertex set {i | 0 < i <n}U{i' |0 <i < n} and edge set {(i,i®1) |0 <i<
n}U{@,(i@k))|0<i<n}U{(i?") |0 <i< n} where @ denotes addition in integer
modulo n, Z,. It is known that P(r, k) is cubic, 3-connected, and hamiltonian. Hence,
P(n,k) is in Q. The generalized Petersen graphs-P(7,2) and P(9,3) are illustrated in
Figure 2.2. In [1], the author had shown that P(n,2) is hamiltonian if and only if n # 5

(mod 6).

Lemma 6 hy(P(n,1)) =1 if n is a positive integer with n > 3.

Proof. By Lemma 1, we know that hs(P(n,1)) < 1. Let F' be any edge set of P(n,1)
with |F| = 1. By the symmetric property of P(n,1), we may assume that I = {(0,1)},
{(07;1)}, or {(0,0")}. Obviously, (1,2,...,n—1,0,0', (n—1),...,1’) is a hamiltonian cycle
of P(n,1) — Fif ' = {(0,1)} or {(0/,1)} and (2,3,...,1,1',0/,...,2') is a hamiltonian

cycle of P(n,1) — F if F = {(0,0')}. Hence, h¢(P(n,1)) > 1.

12



(a) (b)

Figure 2.2: The graphs (a) P(7,2) and (b) P(9,3)

The lemma is proved. O
Lemma 7 hf(P(n,2)) =1 if n'is an even integer with n > 6.

Proof. By Lemma 1, we know that fiy(P(7;2)) < 1. Let F be any edge set of P(n,2)
with |F| = 1. By the symmetric propertysof P(n,2), we may assume that I = {(0,1)},
{((n=1)",1"}, or {(2,2")}. Obviously, (0,0',2',...,(n—2),n—2,n—3,...,1,1",3 ... (n—

1)’,n — 1) is a hamiltonian cycle of P(n,2) — F. Hence, h(P(n,2)) > 1.

The lemma is proved. O

Lemma 8 h(P(n,2)) =1ifn=1,3 (mod 6) withn > 6.

Proof. By Lemma 1, we know that h(P(n,2)) < 1. Let F' be any edge set of P(n,2)
with |F| =1, Ny = (K, (k+2)",k+2,k+3,k+4, (k+4)"), and My = ([K'],, [(k+2)']n, [k +

2], [k + 3]0, [k + 4]0, [(k +4)],). We have the following cases.

13



Figure 2.3: The graphs (a) P(7), (b) P(13), (¢) P(9), and (d) P(15)

14



Case 1. n is odd, n = 1 (mod6) and n > 7. By the symmetric property of
P(n,2), we may assume that £ = {(0,n — 1)}, {(%5=, (%52))}, or {(0/,(n —2)")}. Ob-
viously, (1/,1,0,0,2',2.3,4,4',6',6,5,5,3") is a hamiltonian cycle of P(7,2) — F and
(1',1,0, No, Ng, ..., Nz, (n—=1), n—1,n—=2,(n—2)", Ny_4, N;y_10, . .., No, 3') is a hamil-
tonian cycle of P(n,2) — F when n > 7. Hence, hy(P(n,2)) > 1 whenn =1 (mod 6)
with n > 7. (See Figure 2.3(a) and 2.3(b) for an illustration of the case n is odd, n =1

(mod 6) and n > 7.)

Case 2. n is odd, n = 3 (mod6) and n > 9. By the symmetric property of
P(n,2), we may assume that F' = {(0,0)}, {(1,2)}, or {((n — 1)/,1)}. Obviously,
(Mg, Mg, ..., M, 35, M3, My, ..., M, ¢).is.a hamiltonian cycle of P(n,2) — F when n > 9.
Hence, hy(P(n,2)) > 1 when n =3 (mod 6) with n > 9. (See Figure 2.3(c) and 2.3(d)

for an illustration of the case n#sodd, n =3 (mod 6) and n > 9.)

The lemma is proved. g

For integer n > 2, the project plane PJ(n) is the graph with vertex {i | 0 < i < 2n}
and edge set {(i,i®1) |0 <i < 2n} U{(i,i+n) | 0 < i< n} where @ denotes addition in
integer modulo 2n, Zy,. It is known that P.J(n) is cubic, 3-connected, and hamiltonian.
Hence, PJ(n) is in Q. The project plane graphs PJ(8) and PJ(10) are illustrated in

Figure 2.4.

Lemma 9 h(PJ(n)) = 1.

Proof. By Lemma 1, we know that hy(PJ(n)) < 1. Let F' be any edge set of P.J(n)

15



Figure 2.4: The graphs (a) PJ(8), (b) PJ(10)

with |F| = 1. By the symmetric property of P.J(n), we may assume that F' = {(0,1)} or
{(0,n)}. Obviously, (1,2,...,n,0—1,...,7n421) is a hamiltonian cycle of P.J(n) — F if
F={0,1)}and (2,3,...,n+151,0,n=1". ;1. +2) is a hamiltonian cycle of PJ(n) — F

if ' ={(0,n)}. Hence, hy(PJ(n)) 21
The lemma is proved. | a

For integer n > 2, the ladder graph L(n) is the graph with vertex set {i | 0 <1i < 2n—1}
and edge set {(i,2n —i) |1 < i <n} U{(,i®1) |0 <i<2n—1} U{(0,n)} where &
denotes addition in integer modulo n, Z,. It is known that L(n) is cubic, 3-connected,
and hamiltonian. Hence, L(n) is in Q. The ladder graphs L(5) and L(6) are illustrated

in Figure 2.5.

Lemma 10 hs(L(n)) = 1.

16



Figure 2.5: The graphs (a) L(5), (b) L(6)

Proof. By Lemma 1, we know that h;(L(n)) < 1. Let F' be any edge set of L(n)
with |F| = 1. By the symmetrigtproperty of L(n), we may assume that F' = {(0,n)},
{1 2n— D}, {220 - 2)}, ..o {n— L D} {(1,2)}, {(3,4)}, ..., or {(2n—1,0)}.
Obviously, (0,1,2,...,2n—1) is a hamiltonian cycle of L(n)—F if F = {(0,n)}, {(1,2n—
D}, {(2,2n—2)}, ..., or {(n—‘l,n#—‘l)}, (0;1;2n — 1,2,...,n—2,n+2n+1,n)is a
hamiltonian cycle of L(n) — F if n is‘odd and F = {(1,2)}, {(3,4)}, ..., {(2n — 1,0)},
and (0,1,2n — 1,2,...,n4+2,n —2,n — 1,n) is a hamiltonian cycle of L(n) — F if n is

even and F = {(1,2)}, {(3,4)}, ..., {(2n — 1,0)}. Therefore, hy(PJ(n)) > 1.

The lemma is proved. O
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Chapter 3

Examples

3.1 Examples of graph G in Q with h¢(G) = 1 and
h(G)=1

Theorem 1 h,(P(n,1)) =1 and hg(P(n,1)) = 14f n is odd and n > 3.

Proof. By Lemma 6, we know: that/hf(P(#, 1)) = 1. Let R be any required edge set
of P(n,1) with |R| = 1. By the ‘symmetric property of P(n,1), we may assume that
R={(0,1)}, {(0,1}, or {(0,0")}. Obviously, (0,1,...,n—1,(n—1),(n—2),...,0) is
a hamiltonian cycle including the required edge set R. Hence, h,(P(n,1)) > 1 if n is odd
and n > 3. Now we prove that h,(P(n,1)) <1 for n is odd and n > 3. Let the required
edge set R = {(1,1'),(n —1,(n —1)")}. We want to prove there is no hamiltonian cycle

C of P(n,1) including R. (See Figure 3.1(a) for an illustration of the case n = 7.)
We have the following two cases:

Case 1. (0,0") ¢ C. Thus, the edge set {(0,1), (0,n — 1), (0/,1"), (0/,(n — 1)")} are

contained in C'. We got a cycle (0,1,1,0’,(n — 1)’,n — 1). Thus, there is no such

18



Figure 3.1: Illustrations for Theorem 1.

hamiltonian cycle. (See Figure 3.1(b) for an illustration of the case n = 7.)

Case 2. (0,0') € C. Obviously, either (0, 1) €€ or (0,n — 1) € C. Without loss of gen-
erality, we assume (0, 1) € C. Then € include the path (n—1,(n—1),0,0,1,1",2,2,3,3
yooy(n=3),n—=3,n—2,(n—=2)), Nete that (n=1,(n—1)") ¢ E(P(n,1)). Therefore,

there is no such cycle. (See Figure 3.1(c) for an illustration of the case n = 7.)

Therefore, there is no hamiltonian cycle contains the required edge set R. Hence,

h,(P(n,1)) =1 when n is odd and n > 3.
The theorem is proved. O
Theorem 2 h,(PJ(n)) =1 and hy(PJ(n)) =1 when n is even and n > 2.

Proof. By Lemma 11, we know that hy(PJ(n)) = 1. Let R be any required edge
set of PJ(n) with |R| = 1. By the symmetric property of PJ(n), we may assume that

R=1{(0,1)}, or {(0,n)}. Obviously, (0,1,...,n—1,2n—1,2n—2,...,n) is a hamiltonian
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Figure 3.2: Illustrations for Theorem 2.

cycle including the required edge set R. Hence, h,.(P.J(n)) > 1 when n is even and n > 2.

Now we prove that h,(PJ(n)) < 1 wheilnlis even and n > 2. Let the required edge set

R={(1,n+1),(n—1,2n— 1)} We‘wqﬁnt to prove there is no hamiltonian cycle C' of
1= A i ‘

PJ(n) including the edge set R (See Figufé“.3.2(a) V‘for an illustration of the case n = 10.)

We have the following two cases: :

Case 1. (0,n) ¢ C. The edge set {(0,1), (0,2n—1), (n—1,n), (n,n+ 1)} are contained
in C. We got a cycle (0,1,n+ 1,n,n — 1,2n — 1). Thus, there is no such hamiltonian

cycle. (See Figure 3.2(b) for an illustration of the case n = 10.)

Case 2. (0,n) € C. Obviously, either {(0,2n—1), (n,n+1)} € C or {(0,1), (n,n—1)} €
C. Without loss of generality, we assume {(0,2n — 1), (n,n + 1)} € C. Then C include
the path (1,n+1,n,0,2n —1,n —1,n —2,2n — 2,2n — 3,...,2,n + 2). Therefore, there

is no such hamiltonian cycle. (See Figure 3.2(c) for an illustration of the case n = 10.)
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Therefore, there is no hamiltonian cycle contains R. Hence, h,.(PJ(n)) = 1 if n is

even. The lemma is proved. O

3.2 Examples of graph G in  with h/(G) = 1 and
h(G) =2

Lemma 11 [16] A petersen graph P(n,2) is not hamiltonian if and only if n = 5

(mod 6).
Theorem 3 h,.(P(n,2)) =2 and hy(P(n,2)) =1 ifn=1,3 (mod 6).

Proof. By Lemma 8, we know that'Af(P(n,2)) = 1. Now we prove that h,(P(n,2)) = 2
for n =1,3 (mod 6). Let R be any required edge set of P(n,2) with |R| = 2. We have

the following cases:

Casel. nisodd,n =1 (mod 6)andn = Obviously, (1',1,0,0",2",2,3,4,4',6',6,5,5,
3’) is a hamiltonian cycle of P(7,2) and (1’,1,0, Ng, Ng, ..., N,_7,(n—1) , n—1,n—2, (n—
2) . Ny—4, Np_10, - - -, No, 3') is a hamiltonian cycle of P(n,2) when n > 7. Tt is easy to
check that any two edge can be on the hamiltonian cycle. Hence, h,(P(n,2)) = 2 when
n =1 (mod 6) with n > 7. (See Figure 2.3(a) and 2.3(b) for an illustration of the case

nisodd,n=1 (mod 6) and n>17.)

Case 2. nisodd,n =3 (mod 6)andn > 9. Obviously, (Mg, Ms, ..., M, 3, M3, My, ...,
M,,_¢) is a hamiltonian cycle of P(n,2) when n > 9. It is easy to check that any two

edge can be on the hamiltonian cycle. Hence, h,(P(n,2)) = 2 when n = 3 (mod 6)
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with n > 9. (See Figure 2.3(c) and 2.3(d) for an illustration of the case n is odd, n = 3

(mod 6) and n > 9.)

Now we prove that h,.(P(n,2)) = 3forn =1,3 (mod 6). Let M (v, v1, va, v3, g, v5) i8
H that the path Py = (v, xo, 1, ..., 2, v1), PL = (U2, Y0, Y1, - - -, Yj, V3), Po = (v4, 20, 21, - - -,
2k, Us), and one method link the vertex (vg, vy, ve, v3, vy, v5) can give a hamiltonian cycle

in P(n,2)ifn=1,3 (mod 6).

Suppose the P(9,2) have a hamiltonian cycle. Let the required edge set R = {(1,2), (2,
3),(3,4)}. Because the edges (2,2), (3,3) are not in C'. Thus, the edges (1',3'), (3',5'), (0,
2'),and(2',4") are in C. And we can use M (1,4,1’,5,0',4") to give a hamiltonian cycle
in P(9,2). We can construct a hamiltonian ¢yéle form P(9,2) to P(11,2), which insert
two vertex z and y between 2-and 3 and insert.two vertex z’ and y’ between 2’ and 3'.
The P(13,2) also have a hamiltonian €ycle, but we know the P(13,2) have not a hamil-
tonian cycle. This is contradiction.=It is easy to check that h,.(P(n,2)) # 3 forn = 1,3

(mod 6). Therefore, h,.(P(n,2)) # 3 for n =1,3 (mod 6). The theoerm is proved. O

Theorem 4 h,(L(n)) =2 and hy(L(n)) = 1.

Proof. By Lemma 10, hf(L(n)) = 1. Now, we prove h,(L(n)) = 2.

Let us divide the edge set E(L(n)) into three sets A, B, and C' where the edge sets
A={(,iol)|0<i<2n—-1}, B={(;,2n—1i) | 1 <i < n}, and C = {(0,n)}.
Obviously, E(L(n)) = AU BUC. Let the required edge set R = {p,q}. We have the

following cases:
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Figure 3.3: Illustrations for Theorem 3.3.

Case 1. {p,q} C A Obviodél”y, <0,1,J‘ -,2n +."2,2n — 1) forms a hamiltonian cycle

including R. (See Figure 3.3(a) “-"for an illustration of the case n = 5.)

Case 2. {p,q} € BUC. Suppééé‘-that s odd. Obviously, cycle C; = (0,1,2n —
1,2n—2,2,...,n—2,n+2,n+ 1,n — 1,n) including R. Suppose that n is even. Cycle
Cy=1(0,1,2n—1,2n —2,2,....n+2,n—2,n— 1,n+ 1,n) including R. (See Figures

3.3(b) and (c) for an illustration of the case n =5 and 6.)

Case 3. p € Aand ¢ € BUC. Without loss of generality, we assume that edge ¢ = (,i+1)
where 0 < i <n — 1. When n is even, cycles C; = (0,1,2n — 1,2n — 2,2,... ,n+2,n —
2n—1,n+1,n)orCo=(0,2n—1,1,22n—-2,...,n—2,n+2,n+1,n—1,n) including
R. When n is odd, cycles C3 = (0,1,2n — 1,2n — 2,2,...,n —2n+2,n+ 1,n — 1,n)

or Cy =(0,2n—1,1,2,2n—2,...,n+2,n—2,n — 1,n+ 1,n) including R. (See Figure
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3.3(d),(e),(f), and (g) for an illustration of the case n =5 and 6.)
Hence, h,(L(n)) > 2.

Assume that there exists a hamiltonian cycle C' including the required edge set R’ =
{(0,1),(0,2n —1),(2,2n —2)}. Thus, the edge set {(1,2), (2n —2,2n — 1)} are contained
in C. We got a cycle (0,1,2,2n — 2,2n — 1). Thus, there is no such hamiltonian cycle.

Hence, h,.(L(n)) < 2.

Therefore, h,(L(n)) = 2. The theorem is proved. O

3.3 Examples of graph G in Q with h¢(G) = 1 and
h.(G) =3

Theorem 5 h,(P(n,1)) =3 and hy(P{n,1))-= 1 when n is even.

Proof. By Lemma 6, we know that hf(P(n,1)) = 1. Now, we want to show that
h.(P(n,1)) = 3. Let us divide the edge set E(P(n,1)) into two sets A and B where
the edge sets A = {(4,i® 1) | 0 < i <n—1} W@, (i@ 1)) |1 <i<n-—1} and
B = {(i,7) | 1 <i < n}. Obviously, E(P(n,1)) = AU B. Let the required edge set

R = {p,q,r}. We have the following cases:

Case 1. {p,q,r} € A. Without loss of generality, we assume that {p,q,r} N {(0,n —
1), (0, (n—1))} = 0. The hamiltonian cycle (0,1,2,...,n—1,(n—1),(n—=2),...,1",0)

including the required edge set R.
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Case 2. {p,q} C A and {r} C B. Without loss of generality, we assume that the edge

r = (0,0). We have the following subcases:

Case 2.1. {p,q}N{(0,1),(0/, 1)} = 0. The hamiltonian cycle (1,2,...,n—1,0,0, (n—

1), (n—2),...,1) including the required edge set R.

Case 2.2. {p,q} ={(0,1),(0",1)}. The hamiltonian cycle (0, 1,...,n—1,(n—1)", (n—

2),...,1",0') including the required edge set R.

Case 2.3. {p,q} N {(0,1),(0/,1)} = {(0,1)} or {(0/,1")}. Without loss of generality,
we set p = (0,1). The hamiltonian cycle (0,1,2,....,n —1,(n — 1), (n — 2),...,1",0)
including the required edge set Riwhen ¢ # (0, (n — 1)’). And the hamiltonian cycle
0,1,1,2,2,....n — 2,n — 1, (@ — 1Y, 0/)-including the required edge set R when ¢ =

(0, (n = 1)").

Case 3. {p} C A and {q,r} C B. Without loss of generality, we assume that the edge
p = (0,n — 1). The hamiltonian cycle (0,0,1’,1,2,2',....n—2,(n—2)',(n —1),n — 1)

including the required edge set R.

Case 4. {p,q,r} € B. The hamiltonian cycle (0,0,1,1,2,2',....,n —2,(n — 2)',(n —

1)’,n — 1) including the required edge set R.

Hence, h.(P(n,1)) = 3 when n is even. The theorem is proved. O

Theorem 6 h,.(PJ(n)) =3 and hy(PJ(n)) =1 when n is odd.
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Figure 34 Illﬁéﬂa‘titﬂ)ﬁ‘s for Theorem 3.4.
Proof. By Lemma 11, Wekno{xr%h%—hT(PJ'(n)) = 1. By Lemma 1, we know
h.(PJ(n)) < 3. Now, we want o ‘prove that for any required edge set R = {p,q,r},

we can find a hamiltonian cycle including the edges R.

Let the edge sets A ={(5,1®1) |0 <i<2n—1} and B={(i,i+n) | 1 <i<n}.

Obviously, E(PJ(n)) = AU B. We have the following cases:

Case 1. {p,q,r} € A. There is a hamiltonian cycle (0,1,...,2n — 2,2n — 1) including

R. (See Figure 3.4(a) for an illustration of the case n = 5.)

Case 2. {p,q} C A and r € B. Without loss of generality, we set edge r = (0, n).
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Case 2.1. {p,q}n{(0,1), (n,n+1)} = 0. There is a hamiltonian cycle (1,2, ..., n,0,2n—

1,...,n+ 1) including R. (See Figure 3.4(b) for an illustration of the case n = 5.)

Case 2.2. {p,q} N{(0,1),(n,n+ 1)} = {(0,1)}. Without loss of generality, we set
p=(0,1). There is a hamiltonian cycle (0,1,...,n—1,2n—1,2n—2,...,n) including R
when ¢ # (n—1,n). And there is a hamiltonian (0,1,n+1,n+2,2,3,n+3,n+4,...,2n—
2,2n —1,n — 1,n) including R when ¢ = (n — 1,n). (See Figure 3.4(c) and Figure 3.4(e)

for an illustration of the case n = 5)

Case 2.3. {p,q} N{(0,1),(n,n+ 1)} = {(n,n+ 1)}. Without loss of generality, we
set p = (n,n + 1). There is a hamiltonian cycle (0,1,...,n —1,2n — 1,2n — 2,...,n)
including R when ¢ # (0,2n — 1)% "And there'is. a hamiltonian (0,n,n + 1,1,n 4+ 2,n +
3,3,4,...,n—2,n—1,2n — 1)-including R when '¢-= (0,2n — 1). (See Figure 3.4(d) and

Figure 3.4(e) for an illustration of the‘case n.= 5)

Case 2.3. {p,q} = {(0,1),(n,n + 1)}. There is a hamiltonian cycle (0,1,...,n —
1,2n — 1,2n — 2,...,n) including R. (See Figure 3.4(e) for an illustration of the case

n=>5.)

Case 3. p € A and {¢,r} C B. Without loss of generality, we set p = (0,1). There is a
hamiltonian cycle (0,1,n+1,n+2,2,3,n+3,n+4,...,2n—2,2n—1,n— 1,n) including

R. (See Figure 3.4(c) for an illustration of the case n = 5.)

Case 4. {p,q,7} C B. There is a hamiltonian cycle (0,1,n + 1,n+ 2,2,3,n + 3,n +

4,...,2n —2,2n — 1,n — 1,n) including R. (See Figure 3.4(c) for an illustration of the
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Figure 3.5: The graph M.

case n = 5.)

Hence, h,.(PJ(n)) = 3 when n is odds/Fhe theorem is proved. O

3.4 Examples of ‘graph G in-() with h¢(G) = 0 and
h.(G) =0

In this section, we will prove the the graph M in Figure 3.5 is in  with hy(M) = 0 and

h,(M) = 0.
Theorem 7 Graph M is in Q. hp(M) =0 and h,(M) = 0.

Proof. It is easy to check that k(M) = 3. In Figure 3.6, we give a hamiltonian cycle

indicated by redden edges. Therefore, M is in 2.

By Lemma 1, we know that hy(M) < 1. Let the fault edge set F' = {(ug,v2)}.
We want to show that there is no any hamiltonian cycle in M — F. Let the node set

Vi = {uo,ug, ..., uo}, Vi = {vg,v1,...,09}, edge cut set S = {(ug,vs), (vo, us), (u1,v1)}.
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Figure 3.7: Hlustration for Theorem 7, Case Al

Assume that we can find a hamiltonian cycle C' in M — F. It is easy to know that
|C'N S| = 2. Now, we consider the edges (ug, vs), (us,v0), and (uy,v;) in C' or not in the

following cases.

Case Al. (ug,vs), (us,v9) € C. Because the edge (u1,v;) is not in C, we implies that
the edges (ug,us3), (ug, ur), (u1,up), and (uy,ug) are in C. And then (ug,uys) and (ug,ug)
are in C. Therefore, (us,u7) and (ug, ug) are in C. We got a path joining nodes uy and

us in My, but we lost node ug. Hence, we can not find any hamiltonian cycle C' in M — F'
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Figure 3.8: Ilustration for Theorem 7, Case A2

with edges (ug, vs) and (us,vg) are in C. (See Figure 3.7 for an illustration.)

Case A2. (ug,vs), (ug,v) € C or (5,00 )5 (w1, v1) € C. Without loss of generality, we
consider (ug,vs),(u1,v1) € C. Bécause fhe edge‘(u5, vp) is not in C, we implies that the
edges (ug, us), (ug, ur), (us, ur)y (ts, ug), (is; uy) aré in C. And then (ug, us) and (uy, ug)
are in C. Thus, (ug, us) is in C'=We.got a/path joinihg nodes up and u; in My, but we lost

node ug. Hence, we can not find any hamiltonian cycle C'in M — F with edges (uo, vs)

and (u1,vq) are in C but (us,vg) is not in C. (See Figure 3.8 for an illustration.)
Hence, we can not find a hamiltonian cycle in M — F. Therefore, hy(M) = 0.

By Lemma 3, we know that h,(M) < 1. Let R = (uy,v1) be the required edge set
of M with |R| = 1. We want to show that we can not find any hamiltonian cycle in
M including the required edge set R. Assume that C' be the hamiltonian cycle in M
including the required edge set R. Let the cut edge set S = {(uo, vs), (us, vo), (u2,v2)}.

It is easy to know that |[C'N S| =1 or 3, because edge (uj,v;) is in C'. We consider the
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Figure 3.9: Hlustration for Theorem 7, Case Bl

edges (ug, vs), (us,vo), and (ug,v) in C or not in the following cases.

Case B1. (up,v2) € C. Because the edgesyus, vo), (uo, v5) are not in C. Thus, the edges
(uo, ur), (ug,us), (us,uz), (us,us) are in C. And then (ug, ug), (ug, ug) are in C. Hence,
(ug,uz), (us, ug) are in C. Now, we got é pafh joinming nodes u; and uz but we lost node
ug. Thus, there is no such hantltonian eycle € With edges (u1,v1) and (ug,vq) are in C.

(See Figure 3.9 for an illustration.)

Case B2. (us,v) € C. Because the edges (ug, vs), (u2,vs) are not in C. Thus, the edges
(v2,v7), (v2,v3), (vs,v7), (vs,vs) are in C. And then the edges (v1,vg), (vo,v4), (v4,v3) are
in C. Thus, (vg, vg) is in C. Now, we got a path joining nodes vy and v; but we lost node
vg. Thus, there is no such hamiltonian cycle C' with edges (uq,v1) and (us,vg) are in C.

(See Figure 3.10 for an illustration.)

Case B3. {(us,v0), (ug, vs), (uz,v2)} € C. We have the following subcases:
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Figure 3.11: Illustration for Theorem 7, Case B3.1

Case B3.1. {(ug,u1)} € C or {(vg,v1)} € C. Without loss of generality, we assume
that {(ug,u1)} € C. Because the edges (uy,ug) and (ug,us) are not in C, the edges
(ug, ug), (ug,us), (Ug,ug), (ug,us) are in C. Thus, the edges (us,us) and (uz,us) are in
C. We got a path joining node us and uy but we lost node u;. Thus, there is no such

hamiltonian cycle C. (See Figure 3.11 for an illustration.)

Case B3.2. {(ug,uy), (up,us)} ¢ C. Hence, the edges (u1,uq) and (v, vg) are in C.

We have the following subcases:
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Figure 3.12: Illustration for Theorem 7, Case B3.2.1

Case B3.2.1. {(ug,uq), (vs,v9)} € C. Because the edges (ug,u1), (vo,v1) are not
in C. Thus, the edges (ug,uy), (u1,ug), (vo,vs), (v1,v6) are in C. And then the edges
(us, us), (ug, us), (vs, vs), (vs, v3) argsdn € ‘Thus‘7 (ur,us), (uz,ug), (v7,v2), (v7,v9) are in
C. Now, we got a cycle (ul,u6;u9,u7,q2f,p2,‘v7, Vg, Vg, v1) in M. Thus, there is no such

hamiltonian cycle. (See Figuré 3.12 for an ‘illustrati‘on.)

Case B3.2.2. {(ug,ug), (ve,vs)} OF {(uﬁ,ugj, (ve,v9)} € C. Without loss of gener-
ality, we consider {(ug,u), (vs,vs)} € C. Because the edges (ug,u1), (vo,v1) are not
in C. Thus, the edges (ug,uy), (u1,ug), (vo,vs), (v1,v6) are in C. And then the edges
(us, us), (us, us), (vg, v4), (vg,v7) are in C. Thus, (ur,us), (ur,ug), (vs,v2), (v3,vs) are in
C. Now, we got a cycle (uq,ug, ug, Uz, s, Uz, V3, Vg, Vg, v1) in M. Thus, there is no such

hamiltonian cycle. (See Figure 3.13 for an illustration.)

Case B3.2.3. {(ug,us), (vs,vs)} € C. Because the edges (ug,u1), (vo,v1) are not
in C. Thus, the edges (ug,uy), (u1,ug), (vo,vs), (v1,v6) are in C. And then the edges

(ug, wa), (ug, uz), (9, va), (vg, v7) are in C. Thus, (us,us), (us,us), (vs, v2), (vs,vs) are in
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Figure 3.14: Tllustration for Theorem 7, Case B3.2.3

C. Now, we got a cycle (uq, ug, us, us, ug, Uz, V3, vs, Vg, v1) in M. Thus, there is no such

hamiltonian cycle. (See Figure 3.14 for an illustration.)

Hence, we can not find any hamiltonian cycle in M including the required edge set

R ={(1,1)}. Therefore, h,(M) = 0. O

Theorem 8 Graph J(M,z) is in Q. hy(J(M,z)) =0 and h,(J(M,z)) = 0.

34



Figure 3.15: The graph N.

Proof. By Lemma 4 and Lemma 5, we know that h;(J(G,z)) = 0 and h,(J(G,x)) = 0.

Hence, h¢(J(M,x)) =0 and h,(J(M,z)) = 0. O

3.5 Examples of graph G in 2 with hy(G) = 0 and
h(G) =1 ‘

In this section, we will prove the the graph'N in Figure 3.15 is in  with hy(N) = 0 and

he(N) = 1.

Theorem 9 Graph N is in Q such that hy(N) =0 and h,(N) = 1.
Proof. Itis proved in [11] that graph N —{(0, 1)} is not hamiltonian. Hence, h¢(N) = 0.

By Lemma 3, we know that h,.(N) < 1. Let C be the hamiltonian cycle indicated by
darken edges in NV as shown in Figure 3.15. It is easy to check that any edge can be on

the hamiltonian cycle. Hence, h,.(N) = 1. O
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Theorem 10 Graph J(N,z) is in Q. hy(J(N,z)) =0 and h,(J(N,z)) = 1.

Proof. By Lemma 4 and Lemma 5, we know that h;(J(G,z)) = 0 and h,(J(G,z)) = 1.

Hence, hy(J(N,z)) = 0 and h,(J(N,z)) = 1. O
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