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可動態重組之材質處理單元 

 
學生：汪威定          指導教授：鍾崇斌 博士 

 
國立交通大學資訊科學與工程研究所 碩士班 

 

摘  要 

 
材質過濾單元在 3-D 繪圖處理器中佔有相當比重的成本，而且其所佔比例因為以下

兩個原因持續增加中。從 Shader Model 3.0 及 High Dynamic Range 的規格開始支援浮點

格式的材質過濾運算，且 3-D 繪圖處理器架構中的材質過濾單元數量(即材質處理單元

數量，一個材質處理單元包含了一個材質過濾單元和其他元件)也持續增加。故在擬真

畫面的即時顯像下的低成本之材質過濾單元是迫切需要的。材質過濾類別的需求在執行

期間會有所改變，且各種材質過濾類別彼此間具有大量共用的運算，故一個可以彈性地

在各種材質過濾類別做功能切換的材質過濾單元可以大量節省其面積。動態可重組式運

算和 ASIC 相比，提供了一個在較低成本下能得到較高運算速度的機會。此外，需要相

同材質過濾類別需求的連續次數很長也意味著重組代價相對也少。在本篇論文中，我們

提出了一個具低面積速度乘積的可動態重組之材質過濾單元設計。首先，我們針對在單

一材質處理單元內的材質過濾單元提出一個類似 divide-and-conquer 的低面積速度乘積

設計。接著，我們整合多個材質處理單元內的上述材質過濾單元，以組成一個較大並且

跨多個材質處理單元的材質過濾單元，並且設計一套類以 round-robin 的方法提升整合過

後的材質處理單元之使用率。實驗結果顯示此較大並且跨多個材質處理單元的材質過濾

單元相較於多個單一材質處理單元內的材質過濾單元，在僅增加了 2.5%的執行時間下,

節省了 14.2%的面積以及 12.1%的面積速度乘積。 
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 A Run-Time Reconfigurable Texture Unit 
 

Student：Wei-Ting Wang      Advisor：Dr, Chung-Ping Chung 
 

Institute of Computer Science and Engineering  
National Chiao-Tung University 

 

Abstract 
Texture filters are one of cost intensive parts in 3-D Graphics Processing Unit 

architecture and cost of them is increasing due to revealed floating point filtering techniques 

in Microsoft Shader Model 3.0 with High Dynamic Range feature and increasing number of 

texture filters (i.e. # of texture unit, a texture unit is composed of a texture filter and other 

components) required in GPU architecture. Therefore, a low-cost texture filter design in 

realistic and real-time rendering is required. The usage of filter types varies over run time. 

Furthermore, there are a large number of shared operations between each filter type. An 

all-purpose texture filter which can switch flexibly for all filter type can save significant area. 

Run-time reconfigurable computing offers an opportunity of obtaining high computing speed 

at lower hardware costs, compared to ASIC. Long run-length of data requiring the same filter 

type implies small reconfigurable overhead. In this thesis, a run-time reconfigurable texture 

filter design with low area-time product is proposed. First, a divide-and-conquer-like design 

for a low area-time product texture filter within a texture unit is proposed. We form a larger 

texture filter cross multiple texture units to improve its area-time product by integrating the 

texture filters within multiple texture units, which is the second design. A round-robin-like 

design to increase the utilization of a reconfigurable texture unit is proposed. The 

experimental result shows the texture filter cross multiple texture units design achieve 14.2% 

area saving with 2.5% longer execution time and 12.1% area-time product reduction 

compared to texture filters within multiple texture units design.  
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 Chapter 1  Introduction 

 

Three-Dimensional (3-D) computer graphics rendering techniques become more 

complex due to users’ increasing demands for 3-D scene realism improvement [1]. Complex 

rendering techniques is a computationally intensive task. Computationally intensive task 

needs high hardware cost. It is challenge to design a low-cost GPU (graphics processing unit) 

architecture in real-time rendering.  

Texture mapping is a technique used to reduce the overall complexity of graphics 

rendering [2, 3]. It is a technique in which a bit-map called a texture is applied onto an object 

in the 3D world.  

Texture filtering is often necessary for high quality texture mapping. Texture filters are 

one of cost and computation intensive parts within a texture unit in Graphics Processing Unit 

(GPU) architecture [4, 5] and cost of them is increasing due to following two reasons:  

(1)Floating point filtering techniques revealed in Microsoft SM (Shader Model) 3.0 with 

HDR (High Dynamic Range) feature increase the cost of texture filter [4]; 

(2)Increasing # of texture filter (i.e. # of texture unit) [7, 8] is required in conventional 

GPU architecture [8];  

To reduce cost of texture filters is an important issue.  

Filter type requirement varies in run-time. Single-purpose texture filter may be idle in 

run-time. Furthermore, there are a large number of shared operations between each filter type. 

We can use an all-purpose reconfigurable texture filter to flexibly switch among all filter 

types.  

Reconfigurable computing offers an opportunity for obtaining high computing speed at 

lower hardware costs, compared to ASIC [9]. The principal difference when compared to 



 

 - 2 -

ASIC is the ability to make substantial changes to the data path itself in addition to the control 

flow. 

We propose a run-time reconfigurable texture unit, which can be divided into 

inside-texture filter and outside-texture filter since a texture unit is composed of a texture 

filter, an address generator, and a texture cache. The reconfiguration of our proposed texture 

unit architecture is composed of inside-texture filter reconfiguration and outside-texture filter 

(inside-texture unit) reconfiguration.  

For inside-texture filter part, we propose a divide-and-conquer-like method to design 

low-area-time product texture filters for all texture filtering algorithms used in current 3D 

games. Then, we use all types of low-area-time product texture filters and a given 

fundamental element to design a single-fundamental element all-purpose texture filter. 

Although reconfigurable computing provides flexibility for many different applications, 

it causes reconfigurable overhead while changing configurations for different applications. We 

observe over 93% of the total filtered pixels are in 31% runs which have more than 2000 

length. Each run of data has the same filter type. There is low reconfigurable overhead for 

outside-texture filter due to long run-length of data requiring the same filter type.  

We integrate above texture filters within multiple texture units to form a larger texture 

filter cross texture units in outside-texture filter part. A round-robin-like method to maximize 

the utilization of texture filter cross texture units is presented.  

The reminder of this paper is organized as follows: Section 2 introduces background of 

algorithm and architecture of texture mapping and texture filtering. Section 3 describes our 

proposed reconfigurable texture unit including inside-texture-filter reconfiguration and 

outside-texture-filter reconfiguration. The experimental results and analysis are described in 

section 4. Conclusions and future works are made in section 5. 
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Chapter 2  Background  

 

In this chapter, we will give an overview of texture mapping and texture filtering. Then, 

two processes of texture filtering algorithm called weight generation algorithm and filtering 

algorithm will be introduced. We will focus on texture filtering algorithm used in current 3D 

games. Finally, we present the conventional texture unit design, especially on texture filter 

part. 

 

2.1 Texture Mapping 

Texture mapping is a relatively efficient means to reduce computations for a realistic 

scene without the tedium of modeling and rendering every 3-D detail of a surface [2, 3]. It is a 

process in which a 2D bit-map mage called a texture is applied to an object in the 3D world, 

as shown in Fig. 2-1. x and y are pixel coordinates. S and t are texel (texture element) 

coordinates. 

The number of required triangles is increased and thus the number of calculations is 

increased due to realize realistic images or a very complex image. The number of polygons 

should be reduced because the computing power of the given system is not enough to perform 

the required calculations in time. So quality degradation in terms of scene complexity is 

introduced but in some cases this degradation is not tolerable. Hence, to have more realistic 

images with less geometric data, texture mapping has been used commonly in 3D computer 

graphics.  
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Fig. 2-1. Texture Mapping 

 

2.2 Texture Filtering 

Due to the absence of no one-to-one mapping between texels and pixels, an interpolation 

calculation is necessary for high quality mapping. Higher quality requires computation 

intensive interpolation to generate a final pixel value from many texel values. 

Commonly used texture filtering algorithms in current 3D games are bilinear (Bi), 

trilinear (Tri), anisotropic (Ani). There is a tradeoff between operation complexity and image 

quality among various texture filtering algorithms. 1-D Linear (Li) filtering algorithm will be 

introduced since all filtering algorithms are based on Linear. Texture filtering process is 

composed of filtering and weight generation. We will introduce both filtering and weight 

generation algorithms for linear, bilinear, trilinear and anisotropic filtering. 

 

2.2.1 Filtering Algorithm 

 Filtering algorithm includes linear, bilinear, trilinear and anisotropic. Both trilinear 

and anisotropic support mipmapping technique. Mipmapping is a technique to reduce the 

artifacts which arise from the use of a single bitmap image while the level of detail of an 

object decreases with an increase in the distance. It is made by an original-size texture with 

level-of-detail 0 (LOD 0), then iteratively resample it to make a half-size texture with LOD i 

(i>1). The number i depends on application designer. In figure 2-2, there are three LODs for 
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mipmapping. The original-size texture (LOD 0) is 8x8, LOD 1 is 4x4, and LOD 2 is 2x2.  

 

 

Fig. 2-2. Mipmapping and Filtering Concept 

 

The final value of linear filtering is a weighted average of two values. The final value of 

bilinear is to return the weighted average of the four texels that are closest to the center of the 

pixel being textured. Trilinear is to choose the two mipmaps that most closely match the size 

of the pixel being textured and use bilinear filter to produce a texture value from each mipmap. 

In the example of Fig 2-2, two mipmaps are LOD0 and LOD1, respectively. The final texture 

value is a weighted average of those two values according to the value of LOD.  

If we need to do texture mapping for a plane which is at an oblique angle to the camera, 

traditional isotropic filters (bilinear/trilinear) would give us insufficient horizontal resolution 

and extraneous vertical resolution. Anisotropic is a method of enhancing the image quality of 

textures on surfaces that are far away and steeply angled with respect to the camera. The final 

texture value of n:1 anisotropic is an average of the values of n trilinears results. The value n 

called anisotropic ratio, the ratio of horizontal direction to vertical direction, is defined by 

game designer. The value may be 2, 4, 8, or 16. In Fig 2-3, we use n=2 as an example. The 

comparison of bilinear, trilinear, and anisotropic filtering algorithms is shown as table 2-1. 

The equations of above three filter types are equation 1, equation 2, and equation 3, 

respectively. 
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Fig. 2-3. Anisotropic Filtering Concept 

 

Filtering 
Type 

# of 
MipMap 

# of 
Texel / 
MipMap 

# of Texel 
(# of Bi) 

Filtering Algorithm 

 

Bi 1 4 4 (1) 

(1) 
Tri 2 4 8 (2) 

(2) 
n:1 Ani 
n=2,4,8,16 

 
2 

 
4n 

 
8n (2n) 

(3) 

Table 2-1. Comparison of bilinear, trilinear, anisotropic filtering algorithms  

 

2.2.2 Weight Generation Algorithm 

Linear weight generation algorithm (WGA) is used for interpolating values from two 
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values. For example, using one fraction of coordinates (FC) input called LOD to generate two 

weight outputs for interpolating two bilinear results. Weight generation algorithm for Linear is 

shown as equation 4, where FC denotes fraction of coordinate. 

 

(4) 

 

Bilinear weight generation algorithm is used for interpolating four texels of a bilinear. As 

shown in Fig. 2-4, a texture coordinate is composed of integer part and fractional part. Using 

two FC inputs called fraction of X coordinate and fraction of Y coordinate to generate four 

weight outputs for four texels of a bilinear. Equation 5 is weight generation algorithm for 

Bilinear. 

 

 

Fig. 2-4. Bilinear Weight Generation Concept 

 

(5) 

 

A trilinear weight generation algorithm is composed of two bilinear weight generation 
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algorithms and one linear weight generation algorithm. A n:1 Anisotropic weight generation 

algorithm is composed of n*2 trilinear weight generation algorithm and used for averaging n 

trilinear results. Using an anisotropic ratio (AR=n) input to generate n weight outputs which 

have the same weight value (1/n). 

 

2.3 Texture Unit in a GPU Architecture 

There are multiple texture units in a reference GPU and each of them has a texture filter  

[7, 8]. Texture unit supports texture mapping operation mentioned in section 2-1. Each texture 

unit is composed of an address generator, a texture cache, and a texture filter, as shown in 

figure 2-5. Sampler states (SS) define texture sampling operations such as texture addressing 

and texture filtering [4]. We concentrate on filter type and anisotropic ratio requirement of a 

pixel to be filtered since we only focus on texture filter design. Input data of each texture unit 

is from its (SS) FIFO. Then, address generator transforms texture coordinate to cache address 

for cache accessing. On the other hand, address generator pass the fractional part of texture 

coordinate and LOD value to texture filter. After receiving texels from texture cache and 

weights from address generator, texture filter generates filtered pixel according to filter type 

and anisotropic ratio. 

 

 

Fig. 2-5. Texture Unit in a GPU Architecture 
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2.4 Texture Filter in a Texture Unit  

We define a texture filter composed of a bilinear filter and additional filter logic (for 

supporting trilinear and anisotropic filtering) as a Single-Bilinear All-Purpose (SBAP) texture 

filter, as shown in figure 2-6 [4, 5]. Bilinear filter is a logic with function of bilinear filtering 

algorithms mentioned before. Additional filter logic for bilinear (AFL_Bi) denotes using 

bilinear as fundamental element. An additional filter logic is composed of additional filter 

datapath and additional filter control. Additional filter datapath iteratively cooperates with the 

bilinear filter to do trilinear or anisotropic filtering. Additional filter control generates the 

number of iteration to accomplish trilinear or anisotropic filtering.  

The throughput of Single-Bilinear All-Purpose texture filter is one bilinear output per 

cycle and one Tri output every two cycles [4, 5]. In the column “# of texel (# of Bi)” of table 

2-1, we define trilinear in terms of 2 bilinears and anisotropic in terms of 2n bilinears since 

fundamental element is bilinear. 

 

 

Fig. 2-6. Single-Bilinear All-purpose Texture Filter 

 

2.5 Reconfigurable Architecture 

A reconfigurable architecture can be classified as fine-grained and coarse-grained 

according to the granularity of the fundamental element. Fine-grained architecture, such as a 

field programmable gate array (FPGA) [10-12], has higher flexibility but lower execution 
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performance compared with a coarse-grained architecture. A coarse-grained architecture has 

fundamental elements with higher computing capacity and less routing requirements; hence it 

may significantly reduce the silicon areas [13].  

However, the development of the compiler supporting the architecture has been very 

difficult because of the complex computation and various execution time [14]. The purpose of 

this study was to develop an efficient method to eliminate the waste of resources cause by idle 

fundamental elements. We adopt coarse-grained architecture due to following two reasons: 

(1) Timing issue is one of important concerns for a GPU; 

(2) The flexibility for limited numbers of filter type combinations is low. 

Applications that can be accelerated through the use of reconfigurable hardware are too 

many to be loaded simultaneously onto the available hardware. Run-time reconfigurable 

architecture is used to solve the problem. It is able to swap different configurations in and out 

of the reconfigurable hardware during run-time. Therefore, our proposed design is a run-time 

reconfigurable architecture.  

 

2.6 Motivation  

Area of texture filter need to be improved due to texture filters are one of cost intensive 

parts in GPU architecture and cost of them is increasing. Moreover, area of additional filter 

logic need to be improved due to additional filter datapath occupies a large portion of cost in a 

texture filter. Besides, reconfigurable architecture is adopted due to the following three 

reasons:  

(1) Single-purpose texture filter may be idle due to filter type requirement varies in 

run-time; 

(2) A large number of shared logic saves area for an all-purpose texture filter due to a 

large number of similar operations between each filter type; 
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(3) Less reconfigurable overhead due to long run-length of data requiring the same filter 

type; we observe that over 93% of the total filtered pixels are in 31% runs which have more 

than 2000 length, where each run of data has the same filter type. 

 

2.7 Objective 

For texture filtering algorithms used in current 3D games, we provide low-area-time 

product necessary function called Bi filter and low-area-time product AFL and achieve low 

area-time product (AT) texture filter design.  
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Chapter 3  Design 

 
In this chapter, we first describe design assumption and challenges for designing a 

reconfigurable texture filter. Then, a brief design overview is present. Our design is composed 

of two parts:  

(1) Single-bilinear all-purpose texture filter design, which is composed of filter design 

and implementing additional filter logic according to our filter design; 

(2) To save area of AFL, we propose a multi-bilinear all-purpose texture filter design, 

which is composed fair fetch and forwarding logic design and to choose proper number of 

bilinear filters to be integrated. 

 

3.1 Design Assumption and Challenge 

 The only one design assumption is using 16-bit floating point (s5.10) format as default 

operation widths. It refers to Microsoft Shader Model (SM) 3.0 with High Dynamic Range 

(HDR) feature. There are two design Challenges. How to design Bi filter for low AT and 

implement additional filter logic for low AT using low AT Tri/Ani filters for single-bilinear 

all-purpose texture filter design. The other is what number of Bi texture filters should be 

integrated for multi-bilinear all-purpose texture filter design. There is a trade off between area 

saving of AFL and overhead of fair fetching and forwarding logic. 

 

3.2 Design Overview 

There main components in MBAP TU are filter design, additional filter logic, fair 

fetching and forwarding logic. Figure 3-1 is a MBAP TU with integrating two SBAP TUs. 
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Fair fetching and forwarding logic are all necessary logics to maximize utilization of 

reconfigurable TU. It includes priority sequence generator, priority pixel fetcher, and pixel 

dispatcher.  

 

 
Fig. 3-1. Design Overview of a Two-Bilinear All-Purpose Texture Unit 

 

3.3 Single-bilinear All-purpose Texture Filter Design 

 Before designing a multi-bilinear all-purpose texture filter, we design a single-bilinear 

all-purpose texture filter design. it is composed of filter design and additional filter logic 

design. 

 

3.3.1 Filter Design 

 The goal of filter design is implementing a single-bilinear all-purpose texture filter. We 

use a Divide-and-Conquer-like method. It works by recursively breaking down a problem into 

two or more sub-problems of the same type, until these become simple enough to be solved 

directly. The solutions to the sub-problems are then combined to give a solution to the original 

problem. For filter design, we define linear as sub-problem and filter types with more 

computation requirement (Bi/Tri/Ani) as the original problem. First, we find minimum-AT Li 

filter using brute force method. Then, we implement Bi/Tri/Ani filters using minimum-AT Li 

filters to approach minimum-AT Bi/Tri/Ani filter design. 
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3.3.1.1 Weight Generator and Filter for Linear and Bilinear 

Filtering Defined in DX9 

 According to weight generation and filtering algorithm mentioned in section 2, weight 

generator (WG) and filter (F) for linear and bilinear filtering algorithms defined in DX9 is 

shown in figure 3-2 and figure 3-3, respectively. 

 

 

Fig. 3-2. Weight Generation and Filtering for Linear Algorithm 

 

 

Fig. 3-3. Weight Generation and Filtering for Bilinear Algorithm 
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3.3.1.2 Linear Filter Design 

 There are three possible equation arrangements for linear texture filtering algorithm. 

Equation 6 denotes an original form combining linear weight generation and filtering 

algorithm. Equation 7, 8 and 9 are other three rearranged equations.  

 

(6) 

(7) 

(8) 

 (9) 

 

 Table 3-1 shows comparison of above four linear filtering algorithm in terms of area and 

time. The linear filter according to equation 9 has minimum area and the same time as other to 

equations. Hence, we adopt equation 9 which has minimum-area-time product as our linear 

filtering algorithm and its corresponding design is shown as figure 3-4.  

 

Eq. Area (um^2) Time (ns) AT 
(6) 66927.171875 11.88 795094.801875 
(7) 66710.953125 12.36 824547.380625 
(8) 49812.839844 11.92 593769.05094048 
(9) 50468.140625 11.66 588458.5196875 

Table 3-1. Comparison of four linear filter designs in terms of area and time 
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Fig. 3-4. Datapath for Linear Filter 

 

3.3.1.3 Bilinear Filter Design 

 There are too many possible equation arrangements for bilinear texture filtering 

algorithm. We define bilinear filtering algorithm as original problem and divide it into many 

sub-problem called linear filtering algorithm. The first line of equation set 10 denotes an 

original form combining bilinear weight generation and filtering algorithm. The last line of 

Equation set 10 is one of rearranged equation. We use two equation 9 to replace two linear 

filtering algorithm in above equation to generate equation 11. We use another linear filtering 

algorithm to replace equation 9 since equation 11 has the same form as equation 9. The result 

of bilinear filter design, composed of three linear filter, is shown as figure 3.5. 

 

(10) 

(11) 
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Fig. 3-5. Datapath for Bilinear Filter 

 

 From table 3-2 we observe that equation 9 has area saving of 5 MULs. But it needs 1 

more SUB for both area and time overhead. So we list their area-time product to demonstrate 

significant AT saving of our bilinear design. 

 

Eq. Area (um^2) Time (ns) AT  

(9) 207667.156250 21.10 4381776.996875
(10) 139130 24.74 3442076.2 

Table 3-2. Comparison of two bilinear filter designs in terms of area, time and area-time 

product 

 

3.3.1.4 Trilinear and Anisotropic Filter Design 

 We use the same divide-and-conquer-like method to divide trilinear filtering algorithm 

into multiple bilinear and linear filtering algorithm. The last line of equation set 12 shows a 

trilinear filter is composed of two bilinear filters and one linear filter (i.e; seven linear filters). 

The datapath of above trilinear design is shown as figure 3-6. 
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(12) 

 

 

Fig. 3-6. Datapath for Trilinear Filter 

 

 Equation 13 shows a n:1 anisotropic filtering algorithm is summation of n trilinear 

results dividing n. The datapath of a n:1 anisotropic filter is shown as figure 3-7. the 

anisotropic logic (AL) provide a division for n, which is a subtraction from exponent part. 

 

 (13) 

 

 

Fig. 3-7. Datapath for Anisotropic Filter 
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3.3.2 Additional Filter Logic 

The goal of additional filter logic is to implement additional filter datapath and control 

for low AT. We define n bilinears as a fundamental element at design time, where n equals to 

the number of integrated Bi texture filters. The requirement analysis is composed of case of 

multiple outputs in single-cycle and case of single output in multi-cycle.  

For the case of multiple outputs in single-cycle, if the datapath of fundamental element 

can execute more than one computations of current filter type requirement in one-cycle, we 

divide the datapath of fundamental element into multiple current filter type requirements. For 

example, we divide a trilinear of fundamental element into 2 bilinears of current filter type 

requirements.  

For the case of single output in multi-cycle, if the datapath of fundamental element needs 

to execute the current filter type requirement in multi-cycle, we divide current filter type 

requirement (m*n bilinears) into m fundamental requirements (n biliears). Then, we use a 

fundamental element and an additional filter datapath for m iterations to achieve current filter 

type requirement. For example, we divide a k:1 anisotropic of current filter type requirement 

into k trilinears of fundamental requirements. 

 

3.3.2.1 Additional Filter Datapath 

 Table 3-3 shows data flow analysis of all filter type requirements for one bilinear as 

fundamental element. The component of data flow is derived from trilinear datapath and 

anisotropic datapath shown in figure 3-6 and figure 3-7.  

 

 



 

 - 20 -

Filter Type Requirement Data Flow 

Bilinear Bi -> R0 

Trilinear cycle 0: Bi -> R1 

cycle 1: Bi -> Li -> R0 

Anisotropic Odd cycles: Bi -> R1 

Even cycles: Bi -> Li -> AL -> add -> R0 

Table 3-3. Data flow analysis of all filter type requirements using one bilinear as fundamental 

element 

 

Figure 3-8 shows an one bilinear as fundamental element derived from table 3-3. To 

achieve a trilinear output every two cycles, we need a extra linear filter. To achieve a n:1 

anisotropic output every 2n cycles, we need an extra 16-bit register R1 to save trilinear results, 

an extra anisotropic logic to divide each trilinear result and an adder to accumulate all trilinear 

results. 16-bit register R0 is not included in additional filter datapath due to it is a necessary 

pipelined register if we consider a texture filter as a pipe stage in GPU. We use two bits to 

represent filter type (FT) requirement. 00 represents bilinear, 01 represents trilinear, and 10 

represents anisotropic. MUX 0 is to distinguish if the filter type requirement is bilinear. MUX 

1 is to distinguish if the filter type requirement is trilinear. A 1-bit register with an inverter is 

used to represent odd and even cycles.  

 

 

Fig. 3-8. One Bilinear as Fundamental Element 
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3.3.2.2 Additional Filter Control 

 The number of required iterations is different for all filter type requirement. A trilinear 

and a n:1 anisotropic requirements need 2 and 2*n iterations using a bilinear as fundamental 

element. The counter size represents maximum width to iterate 16:1 anisotropic, which is 

log2(16*2)-bit. 

.  A tool can draw and display schematics of the synthesized designs called design_vision. 

We use it to produce circuits of additional filter control for one bilinear as fundamental 

element, as shown in figure 3-9.  

 

 

Fig. 3-9. Circuit of Additional Filter Control for One Bilinear as Fundamental Element 

 

3.4 Multi-bilinear All-purpose Texture Filter Design 

 The additional filter logic and fair fetching and dispatching logic for multi-bilinear 

all-purpose texture filter will be proposed in this section. Since each single-bilinear all 

purpose texture filter needs a additional control logic, we can design a multi-bilinear all 

purpose texture filter to shared only one additional control logic with lower area than a 

additional control logic using one bilinear as fundamental element. We use a example to 

compare two instances of single-bilinear all-purpose texture filter and a two-bilinear 

all-purpose texture filter, as shown in figure 3-10 and 3-11, respectively. Fair fetching and 
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dispatching logic is to maximize the utilization of multi-bilinear all-purpose texture unit due 

to properly allocating the requirement to all address generators. 

 

 

Fig. 3-10. Two Single-Bilinear All-Purpose Texture Units for Two Bi Outputs per Cycle 

 

 

Fig. 3-11. A Multi-Bilinear All-Purpose Texture Unit for One Tri Output or Two Bi Outputs 

per Cycle 
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3.4.1 Additional Filter Logic for Multi-bilinear All-purpose 

Texture Filter  

For the additional filter datapath, table 3-4 shows data flow analysis of all filter type 

requirements for two bilinear as fundamental element. The component of data flow is derived 

from trilinear datapath and anisotropic datapath shown in figure 3-6 and figure 3-7. 

 

Filter Type Requirement Data Flow 

Bilinear Bi0 -> R0 or Bi1 -> R1 

Trilinear Bi -> Li -> R0 

Anisotropic Each cycle: Bi -> Li -> AL -> add -> R0 

Table 3-4. Data flow analysis of all filter type requirements using two bilinears as 

fundamental element  

 

Figure 3-12 shows two bilinears as fundamental element derived from table 3-3. we 

remain the same throughput, two bilinear outputs per cycle, as the design of two instances of 

one bilinear as fundamental element. We need an extra linear filter to achieve a trilinear 

output. To achieve a n:1 anisotropic output every n cycles, we need an extra anisotropic logic 

to divide each trilinear result and an adder to accumulate all trilinear results. The design of 

two bilinears as fundamental element keeps the same throughput and save an additional 

datapath for one bilinear compared to the design of two instances of one bilinear as 

fundamental element. 
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Fig. 3-12. Two Bilinears as Fundamental Element 

 

 For the additional filter control, the number of required iterations for the combination of 

all kinds of fundamental element and all filter type requirement is shown as table 3-5. The 

circuits of additional filter control using two bilinear as fundamental element, as shown in 

figure 3-13. Comparing to using one bilinear as fundamental element, the fundamental 

element with more number of bilinears needs less additional filter control overhead for both 

area and time. 

 

Fundamental Element \  
Filter Type Requirement 

Bi Tri m:1 Ani Counter size (bit) 

1 Bi 1 2 m*2 log2(16*2) 

2 Bis (Tri) 1 1 m log2(16) 

2n Bis (n:1 Ani) 1 1 m/n log2(16)-log2(n) 

Table 3-5. Number of required iterations to be iterated for filter type requirement in different 

fundamental elements 
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Fig. 3-13. Circuit of Additional Filter Control for Two Bilinears as Fundamental Element 

 

3.4.2 Fair Fetching and Dispatching Logic Design 

The fair fetching and dispatching logic is a round-robin-like method to maximize 

utilization of multi-bilinear all-purpose texture unit. Round-robin is an arrangement of 

choosing all elements in a group equally in some rational order. The fair fetching and 

dispatching logic is composed of priority sequence generators, priority pixel fetcher, and pixel 

dispatcher mentioned in figure 3-1 before.  

Fair fetching avoids load-imbalanced sampler states FIFOs. Empty FIFO may cause 

utilization loss. Priority sequence generator switches the n different priority sequences of 

fetching and filtering pixels for n FIFOs every n cycles. Priority pixel fetcher logic determines 

which pixels can be fetched and filtered in this cycle according to the above priority 

sequences and the limitation of filter width. To flexibly utilize resources in texture unit, we 

propose a pixel dispatcher logic to dispatch m (ranged from 1 to n) pixel requirements to n 

address generators (AGs) since it may allocate more than 1 AG for 1 pixel requirement in a 

cycle.  
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3.4.2.1 Priority Sequence Generator Design 

The function of priority sequence generator is to switch the n different priority sequences 

of fetching and filtering pixels for all FIFOs every n cycle. The value n is the number of pixel 

requirement (the number of integrated Bi texture filters). The priority sequence generator 

inputs n pixel requirements and outputs n priority sequences. It is composed of two 

components. n n-to-1 MUXs represent all Input-Output-Mappings. A log2n-bit counter 

switches the n different Input-Output-Mappings every n cycle.  

Figure 3-14 is an example using n=2. Table 3-6 shows two priority sequences for odd 

cycles and even cycles. A 1-bit register with an inverter is used to represent odd and even 

cycles. The width of priority sequence generator may be 1, 2, 16 bits according to data width. 

In figure 3-1, the two priority sequence generators directly connected to FIFO generate 

priority sequence from two sources (pixels from two FIFOs). 16-bit priority sequence 

generator processes pixel data. 2-bit priority sequence generator processes filter type data. 

The other two priority sequence generators recover the priority sequence to original sequence 

(from FIFO 0 to FIFO 1). The 1-bit priority sequence generator process the signals for pixels 

can be fetched and filtered in this cycle. The 16-bit priority sequence generator process the 

pixel data to destination registers. 

 

 

Fig. 3-14. Priority Sequence Generator 
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Case O0 O1 

0 I 0 I 1 

1 I 1 I 0 

Table 3-6. Input-Output mapping for integrating two bilinears 

 

3.4.2.2 Priority Pixel Fetcher Design 

Priority pixel fetcher determines which pixels can be fetched and filtered in this cycle by 

according to the priority sequences and checking the limitation of filter width. The priority 

pixel fetcher inputs n filter type of pixels (FT) and an anisotropic ratio of all pixels (AR) and 

outputs n Boolean value of pixel of each FIFO whether can be fetched and filtered or not in 

this cycle (PF). The value n is the number of pixel requirement (the number of integrated Bi 

texture filters). Figure 3-15 shows a priority pixel fetcher using n=2 as an example. Lower 

index i of input pixel denote higher priority to be fetched and filtered. Hence, FT0 has highest 

priority. The circuit of a priority pixel fetcher using n=2 is shown as figure 3-16. 

 

 

Fig. 3-15. Priority Pixel Fetcher 

 

 

Fig. 3-16. Circuit for Priority Pixel Fetcher 
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The utilization effected by different combinations of filter type requirements is discussed 

as follows: Table 3-7 lists all combinations of two filter type requirements and PF signals for 

integrating two bilinears. “none” in column “FT i” means FIFO i is empty.  

Case 0, 1, and 2 have no effects on utilization for both single-bilinear all-purpose design 

and design of integrating two bilinears. We define case 3 and 4 as utilization loss due to empty 

FIFO. The one bilinear utilization loss results from one FIFO is empty and the other one filter 

type requirement is bilinear. Both two designs have these cases. Case 5 and 6 are utilization 

gain due to integrating multiple bilinear texture filters. The utilization gain of 1 bilinear due to 

the idle bilinear filter can be utilized for trilinear or anisotropic filtering. Utilization loss due 

to integrating multiple Bi texture filters are case 7. The utilization loss of 1 bilinear due to the 

additional filter logic using two bilinears as fundamental element only supports looping based 

on trilinear.  

 

Case FT 0 FT 1 PF 0 PF 1 

0 Bi Bi 1 1 

1 Tri Bi/Tri/Ani 1 0 

2 Ani Bi/Tri/Ani 1 0 

3 Bi none 1 0 

4 none Bi 0 1 

5* Tri/Ani none 1 0 

6* none Tri/Ani 0 1 

7* Bi Tri/Ani 1 0 

Table 3-7. All combinations of two filter type requirements and PF signals for integrating two 

bilinears 

 

3.4.2.3 Pixel Dispatcher Design 

Pixel dispatcher dispatches m (ranged from 1 to n) input pixels to n AGs according to n 
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PF signals, as shown in figure 3-17. The value n is the same as former definition. We assume 

that while using two neighboring bilinear filter 0 and bilinear filter 1 to do trilinear or 

anisotropic filtering, bilinear filter 0 and bilinear filter 1 process the odd/even and even/odd 

LOD levels in odd/even cycles, respectively. Therefore, these two bilinear filter cooperate a 

trilinear or anisotropic filtering. Pixel dispatcher inputs pixels from their corresponding FIFOs 

and outputs pixels to n AGs. 

 

 

Fig. 3-17. Pixel Dispatcher 

 

In table 3-8, case 0 represents AG 0 and AG 1 are used for their corresponding Bi 

filtering. Case 1 represents both two AGs are used for FT0 filtering. Case 2 represents both 

two AGs are used for FT1 filtering. 

 

Case PF 0 PF 1 AG 0 AG 1 

0 1 1 Bi 0 Bi 1 

1 1 0 FT 0 FT 0 

2 0 1 FT 1 FT 1 

Table 3-8. All combinations of PF signals and pixel dispatch for integrating two bilinears 

 

3.4.3 Choosing the Number of Bilinears as Fundamental Element 

Compared to integrating two bilinear filters, integrating more than two of them is 

insufficient with both area and time. We will analyze both the additional filter logic and fair 
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fetching and dispatching logic. 

For additional filter datapath part, integrating more than two bilienars (n>2) needs extra 

((log2n)-1) floating-point adder time delay with no area saving. Figure 3-18 and 3-19 shows 

the additional datapath of case n=2 and n=4, respectively. The design of n=4 has an extra 

floating-point adder delay.  

 

 

Fig. 3-18. Two Instances of Two Bilinears as Fundamental Element 

 

 

Fig. 3-19. An Instance of Four Bilinears as Fundamental Element 
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For additional filter datapath part, integrating more than two bilienars (n>2) needs an 

extra additional filter control for n bilinears (except for n=32, which can perform any filter 

type requirement in one cycle) but saves (n/2) additional filter control for 2 bilinears.  

For fair fetching and dispatching logic, we divide it into three parts. Priority Pixel 

Fetcher has more complex mapping logic due to more cases. Figure 3-20 shows a circuit of 

priority pixel fetcher for integrating four bilinear filters, which is more complex than circuit of 

priority pixel fetcher for integrating two bilinear filters in figure 3-16. 

 

 
Fig. 3-20. Circuit of Priority Pixel Fetcher for Integrating Four Bilinear Filters 

 

The components of pixel dispatcher change from n 2-to-1 MUX to n n-to-1 MUX. The 

components of priority sequence generator change from n*2 2-to-1 MUXs to n*2 n-to-1 

MUXs. Moreover, worst case of utilization loss due to integrating multiple bilinears also 

changes from one bilinear to n-1 bilinears.  

Therefore, we choose case n=2 as number of integrating bilinears for our design if we 
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can show the fact that both area and time overhead for case n>2 are both larger than case n=2. 

We only compare their area since time overhead of case n>2 larger than case n=2 for both 

additional filter logic and fair fetching and dispatching logic. Table 3-9 shows the rapidly 

increasing area overhead for only pixel dispatcher part is much larger than area saving for 

additional filter control while increasing number of integrated bilinears. 

 

Area (um^2) AFL control Pixel Dispatcher Total 
N=2 18202.06128 40874.804672 59076.865952 (100%) 
N=4 7291.468872 122624.414016 129915.882888 (220%) 
N=8 2341.785612 286123.632704 288465.418316 (488%) 
N=16 472.348794 613122.07008 613594.418874 (1039%) 
N=32 0 1267118.944832 1267118.944832 (2145%) 

Table 3-9. Comparison for Area of AFL control and Pixel Dispatcher 
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Chapter 4  Experimental Results 

 
In this chapter, we first show the goal and metrics of the experiments. Then, simulation 

environment is introduced. Thirdly, we compare and discuss the comparison of area, cycle 

time, and total execution cycles. We will analyze the result of total execution cycles according 

to filter type statistics and utilization statistics of all filtering configurations. Last but not least, 

the comparison of area-time product is presented.  

 

4.1 Goal and Metrics of the Experiments 

Experiment goal is to compare single-bilinear all-purpose design (two TUs for two Bi 

outputs per cycle) and two-bilinear all-purpose design (one TU for one Tri output or two Bi 

outputs per cycle). We use two-bilinear all-purpose, which is the lowest area-time product 

design of all possible number of bilinear filters to be integrated to denote multi-bilinear 

all-purpose design in this section. 

Experiment metrics is area-time product (AT). It is composed of product of area and time. 

Time is composed of cycle time and total execution cycles. The area and cycle time is 

gathered from hardware synthesis. The total execution cycles is gathered from software 

simulation. 

 

4.2 Simulation Environments 

 

Simulation environment is composed of hardware synthesis environment and software 

simulation environment. We introduce hardware synthesis environment first. Verilog HDL 
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was adopted as the high-level language for implementing the texture unit design. Verilog HDL 

codes were written to describe the architecture and behavior of each component. The entire 

architecture was tested for functional correctness using the C language. After the function of 

the design had been tested successfully with the Altera Quartus two functional simulator, the 

design is synthesized by Synopsys design compiler with TSMC 0.18um process. 

Software simulation environment is a trace-driven C++ simulator for texture unit 

architecture. We assume no cache miss and infinite SS FIFO size and use 16 texture units and 

each of them has a bilinear filter (the same as NVIDIA GeForce 6800). The benchmark is a 

modern graphic application called DOOM 3, as shown in figure 4-1. The simulator inputs 

trace of benchmark from modified DirectX 9 reference rasterizer and outputs total execution 

cycles. The trace contains pixels to be filtered with information of filter type and anisotropic 

ratio. And DirectX 9 reference rasterizer is a software device that implements the entire 

Direct3D feature set. 
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Fig. 4-1. A frame of DOOM 3 

 

4.3 Comparisons of Area and Cycle Time 

The comparison of area is shown as figure 4-2. Area of each component in 

single-bilinear all-purpose design is listed in table 4-1. The area of a single-bilinear 

all-purpose design should be multiplied by two to compare with multi-bilinear all-purpose 

design. Therefore, total area is405695.6628 (=202847.8314 * 2).  
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Fig. 4-2. Comparisons of Area 

 

Component Area (um^2) 
fpADD 14599.56836 

AL 1081.079956 

Bilinear 133132.5156 

Ctrl_Bi 1397.712036 

Linear 47873.55078 

MUX16b2to1_0 565.487976 

MUX16b2to1_1 898.127991 

REG1b 126.403198 

REG16b 1357.171143 

REG16bWen 1816.214355 

Total_ SBAP_TF 202847.8314 

Table 4-1. Area for a single-bilinear all-purpose texture filter 

 

The area of multi-bilinear all-purpose design is composed of fair fetching and 
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dispatching logic and a multi-bilinear all-purpose texture filter. Area of each component in 

fair fetching and dispatching logic and multi-bilinear all-purpose texture filter are listed in 

table 4-2 and table 4-3, respectively. Therefore, total area is 349574.700193 (=6439.910293 + 

343134.7899). The area of fair fetching and dispatching logic called reconfigurable area 

overhead occupies only 2% of total area since floating-point operations in multi-bilinear 

all-purpose texture filter is very area-intensive.  

 

Component Area (um^2) 
PrioritySequenceGenerator1b2to1 73.180801 

PrioritySequenceGenerator2b2to1 332.640015 

PrioritySequenceGenerator16b2to1_0 2268.604736 

PixelDispatcher 1916.006348 

PriorityPixelFetch 206.236816 

PrioritySequenceGenerator16b2to1_1 1643.241577 

Total_FFDL 6439.910293 

Table 4-2. Area for fair fetching and dispatching logic  

 

Component Area (um^2) 
fpADD 14589.589844 

AL 1184.198242 

Bilinear_0 133874.296875 

Bilinear_1 139130 

Ctrl_Tri 1007.89917 

Linear 47520.953125 

MUX16b2to1_0 508.939178 

MUX16b2to1_1 1047.815918 

MUX16b2to1_2 735.134399 

MUX16b2to1_3 685.238403 

REG1bWen 176.299194 

REG16b_0 1516.838379 

REG16b_1 1157.587158 

Total_MBAP_TF 343134.7899 

Table 4-3. Area for a multi-bilinear all-purpose texture filter 
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The delay time (cycle time) of a single-bilinear all-purpose design and a multi-bilinear 

all-purpose texture filter is 43.63 ns and 43.86 ns, respectively. The slightly more delay time 

of a multi-bilinear all-purpose texture filter results from higher wireload. The delay time of 

fair fetching and dispatching logic is 0.77 ns and total delay time of a multi-bilinear 

all-purpose design is 44.63 (=43.86+0.77). The delay time of fair fetching and dispatching 

logic called reconfigurable time overhead occupies only 2% of total delay time since 

floating-point operations in multi-bilinear all-purpose texture filter is also very time-intensive. 

The comparison of cycle time is shown as figure 4-3. 
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Fig. 4-3. Comparisons of Cycle Time 
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4.4 Filter Type Statistics of All Filtering Configurations 

The analysis of utilization loss due to integrating two bilinears filters needs to discuss 

filter type statistics. The interleaved filter type requirement may cause above utilization loss. 

A filtering configuration is a combination of filter type requirement in a frame. Table 4-4 and 

Figure 4-4 show filter type usages of all filtering configurations. Bilinear requirement 

occupies only under 10%. The left 90% is another filter type which may be trilinear or 

anisotropic.  

 

Filtering 
Configuration 

% of Bi Usage % of Tri Usage % of Ani Usage 

Mixed Bi and Tri 5.6% 94.4 % 0% 

Mixed Bi and n:1 
Ani 

10.6% 0% 89.4% 

Table 4-4. Filter type usages of all filtering configurations  
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Fig. 4-4. Filter Type Usages of All Filtering Configurations 
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Figure 4-5 shows numbers of filter type usages of all filtering configurations. A frame is 

generated by hundreds of lists in directX 9 reference rasterizar. Moreover, total number of 

pixels in all lists may be different. We define four terms as follows: 

Lists of 1 FT = (# of lists using 1 filter type) / (total lists using filtering) 

Lists of 2 FTs = (# of lists using 2 filter type s) / (total lists using filtering) 

Pixels of 1 FT = (# of pixels in lists using 1 filter type) / (total pixels in lists using filtering) 

Pixels of 2 FTs = (# of pixels in lists using 2 filter type s) / (total pixels in lists using filtering) 

 Lists of 2 FTs and Pixels of 2 FTs are about under 10% and under 20%, respectively. We 

focus on statistics of Pixels of 2 FTs which represents the possibility of interleaved filter type 

more properly. Therefore, only under 20% of neighboring pixels in a frame may have 

interleaved filter type. Besides, we observe over 93% of the total filtered pixels are in 31% 

runs which have more than 2000 length. The utilization loss due to integrating two bilinears 

filters is low. 

 

Filtering 
Configuration 

Lists of 1 FT Lists of 2 FTs Pixels of 1 FT Pixels of 2 FTs 

Mixed Bi and 
Tri 

94.5% 5.5% 81% 19% 

Mixed Bi and 
n:1 Ani 

91.7% 8.3% 80.5% 19.5% 

Table 4-5. Numbers of filter type usages of all filtering configurations 
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Fig. 4-5. Numbers of Filter Type Usages of All Filtering Configurations 

 

4.5 Utilization Statistics of All Filtering Configurations 

 Utilization statistics of all filtering configurations is composed of utilization loss due to 

empty FIFO, utilization gain due to integrating 2 Bi texture filters (for MBAP design only), 

and utilization loss due to integrating 2 Bi texture filters (for MBAP design only), as 

mentioned in section 3.  

 Table 4-6 and figure 4-6 shows three types of utilization statistics for 5 filtering 

configurations. The table entry is the number of bilinears. Most utilization loss due to empty 

FIFO can be solved by utilization gain due to integrating 2 Bi texture filters in multi-bilinear 

all-purpose design. But this design has significant larger utilization loss due to integrating 2 

Bi texture filters. All filtering configurations of mixed bilinear and n:1 anisotropic have the 

same number of utilization loss due to integrating 2 Bi texture filters due to they have the 

same number of interleaved bilinear and anisotropic filter type requirement. The most 

computation-intensive filtering configuration named “Mixed Bi and 16:1 Ani” needs 
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maximum total execution cycles.  

 

Filtering 
Configuration 

Utilization 
Loss due to 
Empty FIFO 

Utilization 
Gain due to 
Integrating 2 
texture 
filters 

Utilization 
Loss due to 
Integrating  
2 texture 
filters 

Total 
Execution 
Cycles for 
SBAP 

Total 
Execution 
Cycles for 
MBAP 

Mixed Bi and 
Tri 

3686 3648 112094 340163 346923 

Mixed Bi and 
2:1 Ani 

7199 7063 178358 680365 691028 

Mixed Bi and 
4:1 Ani 

14231 14095 178358 1341115 1351292 

Mixed Bi and 
8:1 Ani 

28295 28159 178358 2662615 2671820 

Mixed Bi and 
16:1 Ani 

56423 56287 178358 5305615 5312876 

Average 21967 21850 165105 2065975 2074788 

Table 4-6. Utilization statistics for all filtering configuration 
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Fig. 4-6. Utilization Statistics for All Filtering Configuration 
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 Figure 4-7 shows total execution cycles for 5 filtering configurations. We observe it 

varies among different filtering configurations. The averaged total execution cycles are 

summation of one-fifths multiple of total execution cycles of each configuration because user 

can choose any one out of these five filtering configurations. 

 

 

Fig. 4-7. Total Execution Cycles for All Filtering Configurations 

 

4.6 Comparison of Averaged Total Execution Cycles and 

Area-Time Product 

 Figure 4-8 and figure 4-9 show comparisons of averaged total execution cycles and 

area-time product, respectively. Summary of Comparison for single-bilinear all-purpose 
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design and multi-bilinear all-purpose design is listed in table 4-7. The area is for only two 

single-bilinear all-purpose designs and a two-bilinear all-purpose design. We do not multiply 

them by eight due to comparing their ratio only. 
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Fig. 4-8. Comparisons of Averaged Total Execution Cycles 
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Fig. 4-9. Comparisons of Area-Time Product 

 

Design Area (um^2) Cycle 
time (ns)

Total 
Execution 
Cycles 

Total 
Execution 
Time 

AT 

SBAP  3245565.3024 
(100%) 

43.63 
(100%) 

2065975 
(100%) 

90138489.25 
(100%) 

292550353120555.3992 
(100%) 

MBAP 2785234.6191 
(85.8%) 

44.51 
(102.0%)

2074788 
(100.4%)

92348813.88 
(102.5%) 

257213113460633.4744 
(87.9%) 

Table 4-7. Summary of Comparison for single-bilinear all-purpose design and multi-bilinear 

all-purpose design  
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Chapter 5 Conclusion and Future Work 

 
In this work, a reconfigurable texture unit is presented for supporting current 3-D 

application. The previous chapters have discussed our designs and their experimental results. 

This chapter briefly outlines the conclusion of the work, and provides some directions for 

future work. 

 

5.1 Conclusion 

Our proposed reconfigurable texture unit design contains a reconfigurable low area-time 

product texture filter with some dedicated address generators and texture caches. The 

reconfigurable texture filter is composed of number of bilinear filters and an additional filter 

logic. We propose a divide-and-conquer-like method to decrease area-time product for 

single-bilinear all-purpose texture filter design.  

Although multi-bilinear all-purpose design saves the area of additional filter logic, the 

utilization of texture filter may decreases due to improperly resource allocation compare to 

single-bilinear all-purpose design. To solve the utilization loss, we design a round-robin-like 

fair fetching and dispatching logic to maximize the utilization of texture filter with only 2% 

overhead of both area and time in a multi-bilinear all-purpose design.  

The best number of integrated bilinears is two, which is a result of the area and time 

overhead for reconfigurable overhead much larger than area saving for shared logic while 

integrating more than two bilinears. Comparing to single-bilinear all-purpose design, the 

experimental result shows multi-bilinear all-purpose design has 14.2% significant area saving 

for additional filter logic. Most of them are additional filter datapath. Besides, 2.5% small 

amount of increased execution time due to 2.0 % increased cycle time for reconfigurable 
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overhead (fair fetching and dispatching logic) and 0.4% increased total execution cycles for 

utilization loss. The utilization loss depends on interleaved filter type requirement. Besides 

DOOM3 application, other application (for example, Quake 3) [4] also has long run-length of 

the same filter type requirement. Moreover, some applications (for example, 3DMark05) use 

only one filter type in a frame which will cause no utilization loss for our multi-bilinear 

all-purpose design. Finally, 12.1% lower area-time product implies the multi-bilinear 

all-purpose reconfigurable texture is a cost-effective design. 

 

5.2 Future Work 

The divide-and-conquer-like method to decrease area-time product for single-bilinear 

all-purpose texture filter design may be improved by other method to achieve minimum 

area-time product. 

We have proposed a low area and low area-time product texture filter design. However, 

the area and area-time product may be reduced by design other parts in texture unit by 

reconfigurable architecture. For example, an all-purpose address generator is required due to 

the reason for all-purpose texture filer requirement. Similarly, a single-bilinear all-purpose 

address generator is composed of a fundamental element (may be bilinear address generator) 

and additional address generator logic. The majority of area in an all-purpose address 

generator is additional address generator logic [15]. Therefore, it is an important issue to save 

the additional address generator logic for single-bilinear all-purpose address generator. 

Multi-bilinear all-purpose design is a solution for above issue. The anisotropic address 

generator occupies most area of an additional address generator logic. An anisotropic address 

generator can be saved by integrating two address generators based on our reconfigurable 

texture unit. The reason is that doing anisotropic filtering needs only one anisotropic address 

generator for two neighboring address generators. Moreover, slightly extra area and time 
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overhead is required based on our multi-bilinear all-purpose texture unit due to existence of 

fair fetching and dispatching logic.  

There are tradeoffs between sampler state FIFO overhead and utilization loss of overall 

GPU. Oversized FIFO causes unnecessary FIFO cost. But if the FIFO size is too small, it will 

cause GPU stall which results from full FIFO frequently. Therefore, the choice of sampler 

state FIFO size can be based on further simulation result. 
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