

>
s

FB L E e AR A

|

&

A Run-Time Reconfigurable Texture Unit

Student - Wei-Ting Wang

4 Advisor : Dr. Chung-Ping Chung

B = < i 4
PR Eana e Fopoof
F e %

A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science
September 2005

Hsinchu, Taiwan, Republic of China

dEAR LT & {0

B x X @ K £

BALTRAXEXETHEEHRZHET

(B EARITNRABXETLEZREAA)

FAREERBREZEMBL " ARAPREI

LB
Rkt a0 Atwm 2EEE - ZHREGBELIEMIBI -

WXAB THEFEIMHEIREER
15 E R R

B AE
ANGHEAZNE DERR EEBHERIRBERZAEEH S

RE _EAHEEIE A

ASBE

B AN HEEEN TERAE LALLM 2HESL BURRLGHBHARZ

Be) A RBRZREEBEORE A GE ZHETF RS 5FR &=

R 3

LA #K,

A ABRRBMCEEET AR ERENA N EFHEISCEEREER

FAFBTRERE - ME - TRAFIEP

WA X E R B X g B R BT R

AREGHEBS k %Cﬁ%‘%}i@ - iLEP \ﬁﬁ

I 48 15 48 3% | QAR A

B oxEFHExARRER
B OAERE
ﬁ%%z:EiJ%&fa .

+ERBE 9 # 9 A T 8

B X X #® K £

HALTRX AR ZEHBRHET

(RBERBAEITHEXETFHBREEZIRER)

ABHEERBHEZEMEX AAANBRIRBEASL TAHLHIE FF

%
Ao B Adm BERE - FERARLEMIBX -

WXAE T HETFAIMERERES

B R

W EE
ANBBEAEE NELE SERHEBALIBAS ANEHREMH T TR
FOERAM 2L AOBBCHASMARTZIEY BIXRBALETHEE

DEARSE FHAAA N EERECEEAKEN REFBTHERT G

ARXAHAARAANORBETFEERTHFEIN(RTFEAGRFATEC)NMMFZ
— > WEXEA P EH WL R F A B

INGE

#OMOAERE
X
%%%ﬁi’iﬁg&ﬁkn

FEERER 9% # 9 A 7 ®

HEEZ4
HELTHXETFHELEZHE

ID:GT009323620

ABBEMBEAZEMGX ABREAVBRLRBASERAZHIE £

2ot B Atw ZH5EE - FHEBUFALEMZGI

WXAE THEERIMEREIEL

16 A AR

BB MR EARA BRI EIRXEX (6WE) EE - BERERE
Bl Z45 0 AFRME - BRI SR B AR - RS R E SR X L P
XEH BFAFEMAZ EFRXARIE TR LRER T A R AN

BAFELFMHE 2R EHE BT~ FTHRIIEP -

MOMAANFSARE 2 b E R TRAFIEP LI RARFEHEAMREHE -

BOH OATERE
g =
pEgs: SERGE

FERHE 9 £ 9 A T 8

E VA AN~
off 3% Fr fE L I

WMMXOBRZEEEEES

AR FHMALHTE Bt 5% PR i B E
BT 32 35 3
THEFMIHEEESE T

A Run-Time Reconfigurable Texture Unit

SRBEERAAL EEAZE CRERT -

Uﬁ%ﬁ:{qu%% %% m%%%i

$4: ®a

i

&5 i

v/

~ P
%:74f i ol

v % R B ATE £ A B & 8

g4d TS RN L R

Rl A FFApFa1 g7y LT
¥ &

HEERE A 3D EMAILE? b fpg Echd o a2 Haribr 5 F 5 10T
3 B R F14F A 4o ¢ o ;& _Shader Model 3.0 2 High Dynamic Range =35 4 £ 32 /52
Rl FiipER - ¥ 3-D g BB ot Tl ~ g (i F i ~
BE - BHTASEE RS 70 B H TS RE fe s) FH o AR
FoATEREGT SRS A2 e AR E Y TR e T ERRDE R ARF
WREEF e P RN T ERMBBSFEFREL T 8 > pa— B7 r3E
bE Y FERE A R R OH FERE AT A RS GG fE o B ET £ T
FirASICAprt > 357 - BARM S AT R FIRFELE R D E
PSRN E R B E Y AT E RS AL o ek
£3

BT - BERG FEARGOT B RE e P ERE AR

- HFRJLE A et BB E 3 0 - B3 02 divide-and-conquer s & ff iE B Rk
K BF - APEFEIBHTALI AN dH FTHRE~ > Med- BRI
B B SR e i E o I K3t~ £ 47 4 round-robin 77 2 4% EE L R
B FASRE A2 @ F o FHREEHA LR T S BT ALY Al TiER

HAfpfosr 5 BH - /g2l ~p i Tl ~ > &R0 25% R TR T,

&40 14.2%:0% 12 12.1%<05 ik R R A

A Run-Time Reconfigurable Texture Unit

Student : Wei-Ting Wang Advisor : Dr, Chung-Ping Chung

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

Texture filters are one of cost intensive parts in 3-D Graphics Processing Unit
architecture and cost of them is increasing due to revealed floating point filtering techniques
in Microsoft Shader Model 3.0 with High Dynamic Range feature and increasing number of
texture filters (i.e. # of texture unit, a texture unit is composed of a texture filter and other
components) required in GPU architecture. Therefore, a low-cost texture filter design in
realistic and real-time rendering is required.-The usage: of filter types varies over run time.
Furthermore, there are a large number of shared operations between each filter type. An
all-purpose texture filter which can switch flexibly for all filter type can save significant area.
Run-time reconfigurable computing offers an opportunity of obtaining high computing speed
at lower hardware costs, compared to ASIC. Long run-length of data requiring the same filter
type implies small reconfigurable overhead. In this thesis, a run-time reconfigurable texture
filter design with low area-time product is proposed. First, a divide-and-conquer-like design
for a low area-time product texture filter within a texture unit is proposed. We form a larger
texture filter cross multiple texture units to improve its area-time product by integrating the
texture filters within multiple texture units, which is the second design. A round-robin-like
design to increase the utilization of a reconfigurable texture unit is proposed. The
experimental result shows the texture filter cross multiple texture units design achieve 14.2%
area saving with 2.5% longer execution time and 12.1% area-time product reduction

compared to texture filters within multiple texture units design.

FABIA PR B2 T YGRS X BRIGE 2P RHELLET > A
WO e E D TR T PR P AT - PR
BAR EARHRNA T RA R BHAFRE RHARRR R Pl e

o SR Uh 2 oY -

UL SR ’&j“%'%ihTPPﬁﬁ’* BHG§T«‘§%;&§‘§;‘—%—;““§{'\-{Z’L
FEE CERIEL FTREE HEHEE 0 FESE - FLERL CE g

E

w‘%ﬂﬁﬁa’uiawuﬁgﬁﬁfmmﬁm’ﬁQME

=
u
P
B
=%
P
/
#n
B
/

HRES 2 8 LA Ao

BERBIAOFRA N % SR AL O 2 A A FA S AN LY TR

FAEUE] AL BB A R e e g

Eé’:ré’ t“’i—’ﬁ)—l\#f;_\“ > ﬁ;’"@l’}\“ E’f"léﬂ’_ !'_3‘\,5, ")& ’ %g "ﬁ’*\z}#gbmﬁmﬁﬁ) /“B.j-/g_j-“ IFE °

T
AL
o

2006. 9.

Contents

I ORI |
Y =T I I 7 1]
Fro . I T T TSR PRT PO UOTTT P URTPRURORON 1
LOF @ AV I =1 A I 1 T v
LIST OF FIGURES.ottt e e ettt e e et e e st e e et e e e s aba e e e e sab e e e sasbaesesabeeeesabbeeesanteeeesnnens Vi
[ISR O L N = I R VI
CHAPTER 1 INTRODUCTION... ...ttt ettt ettt e et e s e eaae e e s sba e e s sesbeeesssteeessbaeessabeesesnes -1-
CHAPTER 2 BACKGROUNDoiiiitiic ettt ettt ettt e e eatae s s etae e s s eateessssaesesssseeessbeeessssbaneesanes -3-
2. L TEXTURE IMAPPINGcttttiiiie et e eittbeit e e e e e ettt b et e e s e s s s st bbb e e e s e e s s aabb b b e e e s e e e s e sab b babeeeessssab bbb baeesesssasbbabaeesesssasbbebaness -3-
2.2 TEXTURE FILTERINGuvvviiiiieiiiiiiiiiiieee s B i sttt ettt e e et r e e e s ab bbb e e e s e s s s e ababeee s -4 -

2. 2.1 Filtering AlGOTTTRM ... T e e st s 08 oot e ettt sbe bttt e se et e eesbenbesbesbesbesbeebeeneennennens -4-

2.2.2 Weight Generation Algorithm ..o i i i i -6-

2.3 TEXTURE UNIT IN A GPU ARCHITECTURE . ttuttetrisiiatinneeeeeeinsasntateesessseiiissssssessssisisssseesessimssssssesess s, -8-
2.4 TEXTURE FILTER IN A TEXTURE UNIT tetiin bt i o i it ettt bht it e ee sttt e e e e s st ba e e e s e s sabbaba e e s e s s s eanabeee s -9-
2.5 RECONFIGURABLE ARCHITECTURE ... it iiiiie et e et sevvssiesieianfhanseessesssssisssssssssssssssssssssssssssisssssssssssssissssssssess -9-
2.0 IVIOTIVATION L.utttiiiiie e s ittt ee e e e s et bbb e et s e e st et bbb et teaee s bbeateeeesesabbbe b e s e e e s s s b bbb baeeseessab b e baeeseessasbbbbaaeseessessbbbaness -10-
O =N] =l 1 A/ =R -11-

(08 o N o I T B] [N -12 -
3.1 DESIGN ASSUMPTION AND CHALLENGEutttiiiiiiiiiittiiiiie e e s esiibbtiiee e e s s sibbsseeesesssasbbabasssesssabbbbasssesssesssrbassss -12-
3.2 DESIGN OVERVIEWuttttiiiiie it ieitttiete s e e st eibbb ittt s e s s s e saab b e es e e e s s s sabb b e be e e s e s s s b bbb baeeeeessaab b b baeesesssasbbbbaaesesssessbbbaeess -12-
3.3 SINGLE-BILINEAR ALL-PURPOSE TEXTURE FILTER DESIGNuvviiiiiiiiiiiiiiiie e iiiririee e ssiirbee e e eivrbaee s -13-
O 0 I 1 1=] 1= o TR -13-
3.3.1.1 Weight Generator and Filter for Linear and Bilinear Filtering Defined in DX9cccocooiiieneiiiniennne -14 -

3.3, 1.2 LINEAN FIItEI DESIGN. ...t tiiteeeieieeie ettt sttt sttt b e e et e st e st ebesb e be e en e e s e eneebeebeabeseeneereaneabeaten -15-

3.3. 1.3 BiIliNEAr FIITEr DBSIGNeeeei ettt et b et b et et e ne et et ebeebeebeseeneeneanenbeaten -16 -

3.3.1.4 Trilinear and AniSOtropiC FIltEr DESIGNcviiiiiiieieeieieee ettt e ere e -17 -

3.3.2 AdAItIONAIl FIIEI LOGIC.eveiteiteiieeiieiesie ettt bbbttt bbb bbb -19-
3.3.2.1 Additional Filter DAtaPathcoeiiieieii ettt b e et e b -19-

3.3.2.2 AdditioNal FIIEI CONIIOLeeiiieiie ettt ettt e e st e e s sb b e e e s bt e e e st e s s s sabaesssabessssbnesssnenas -21-

3.4 MULTI-BILINEAR ALL-PURPOSE TEXTURE FILTER DESIGN......uttiiiiiiiiiiiiiiiie ettt ssiirreen e eivabaee s -21-
3.4.1 Additional Filter Logic for Multi-bilinear All-purpose Texture Filterccccociviiiniiinienn -23-

iv

3.4.2 Fair Fetching and Dispatching LOGIC DESIGN..........ciiiiriiiiieie et -25-
3.4.2.1 Priority Sequence GENErator DESIGNcccieeiiiirierieieeieteete e ste st et stesbe e e et abesbesbeseesbeeeneeresaeas -26 -
3.4.2.2 Priority PiXel FELCNEr DESIGNc.eiueiuiiiiieieieieeie ettt sttt ettt b e be e et e b e aesbesbesbesee b e e aneareateas -27 -
3.4.2.3 PiXel DiSPALCREr DESIGNcuiiuieteiteite ittt b e et sttt esb e bese et e s e e neesesbeebeseeneeseenearenben -28 -

3.4.3 Choosing the Number of Bilinears as Fundamental Elementccooeiiiiini i -29-

CHAPTER 4 EXPERIMENTAL RESULTSottt et e e s evaee s eaaee e -33-
4.1 GOAL AND METRICS OF THE EXPERIMENTS ..uuttiiiieiiiiiiiitiiieeessiiibstiessessssssssssssesssssssssssssesssssssssssssssssssnns -33-
4.2 SIMULATION ENVIRONMENTS ...ciiiittttitiie et iiitbbeti e e s et s sibbatesesssssabbabasssesssasbbbbasesesssasabbbasssasssessbbbasssesssssisnes -33-
4.3 COMPARISONS OF AREAAND CYCLE TIME....uutttiiieiiiiiiiitiiie e e ittt e e e s s eibtbae e s e s s sesabbbaassesssssabbbasesesssssannes -35-
4.4 FILTER TYPE STATISTICS OF ALL FILTERING CONFIGURATIONSuutiiiiiiiiiittiiieiessisiisbeessesssssssbssssesssssnnns -39-
4.5 UTILIZATION STATISTICS OF ALL FILTERING CONFIGURATIONS ...vviiiiiiiiiiiiriiiieiessssiisieessesssessssssssssssssnnns -41 -
4.6 COMPARISON OF AVERAGED TOTAL EXECUTION CYCLES AND AREA-TIME PRODUCTooccvviviiieeiiiinins -43 -

CHAPTER 5 CONCLUSION AND FUTURE WORKooiiieee ettt sve e -46 -
LT R O0e] N (o U L] L] N RO -46 -
B2 FUTURE WORK ittt ettt ettt et e e e et e bbbt e e e e e e sab bbb b e e e e e e s s b bbb b e e e s e e s sa bbb baeesesssasbbbbaeeseessessbbbaness -47 -

L = A O O R -49 -

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2-5

2-6

3-1

3-2

3-3

3-4

3-8

3-9

3-10

3-11

3-12

3-13

List of Figures

Texture Mapping

Mipmapping and Filtering Concept

Anisotropic Filtering Concept

Bilinear Weight Generation Concept

Texture Unit in a GPU Architecture

Single-Bilinear All-purpose Texture Filter

Design Overview of a Two-Bilinear All-Purpose Texture Unit
Weight Generation and Filtering for Linear Algorithm
Weight Generation and Filteringfor Bilinear Algorithm
Datapath for Linear Filter

Datapath for Bilinear=Filter

Datapath for Trilinear Filter

Datapath for Anisotropic Filter

One Bilinear as Fundamental Element

Circuit of Additional Filter Control for One Bilinear as Fundamental

Element

Two Single-Bilinear All-Purpose Texture Units for Two Bi Outputs

per Cycle

A Multi-Bilinear All-Purpose Texture Unit for One Tri Output or Two

Bi Outputs per Cycle

Two Bilinears as Fundamental Element

Circuit of Additional Filter Control for Two Bilinears as Fundamental

Element

Vi

13

14

14

16

17

18

18

20

21

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

3-14

3-15

3-16

3-17

3-18

3-19

3-20

4-1

4-5

4-6

4-7

4-8

Priority Sequence Generator

Priority Pixel Fetcher

Circuit for Priority Pixel Fetcher

Pixel Dispatcher

Two Instances of Two Bilinears as Fundamental Element

An Instance of Four Bilinears as Fundamental Element
Circuit of Priority Pixel Fetcher for Integrating Four Bilinear Filters
A frame of DOOM 3

Comparisons of Area

Comparisons of Cycle Time

Filter Type Usages of All Filtering Configurations

Numbers of Filter Type Usages of All'Filtering Configurations
Utilization Statistics for All Filtering Configuration

Total Execution Cycles' fonAll-Eiltering Configurations
Comparisons of Averaged Total Execution Cycles

Comparisons of Area-Time Product

Vil

26

27

27

29

30

30

35

36

38

39

41

42

43

44

45

Table 2-1

Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 3-6

Table 3-7

Table 3-8

Table 3-9

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

Table 4-6

List of Tables

Comparison of bilinear, trilinear, anisotropic filtering algorithms
Comparison of four linear filter designs in terms of area, time and
area-time product

Comparison of two bilinear filter designs in terms of area, time and
area-time product

Data flow analysis of all filter type requirements using one bilinear
as fundamental element

Data flow analysis of all filter type requirements using two bilinears
as fundamental element

Number of required iterattons to 'be iterated for filter type
requirement in different fundamental elements

Input-Output mapping for integrating two bilinears

All combinations of two filter type requirements and PF signals for
integrating two bilinears

All combinations of PF signals and pixel dispatch for integrating
two bilinears

Comparison for Area of AFL control and Pixel Dispatcher

Area for a single-bilinear all-purpose texture filter

Acrea for fair fetching and dispatching logic

Area for a multi-bilinear all-purpose texture filter

Filter type usages of all filtering configurations

Numbers of filter type usages of all filtering configurations

Utilization statistics for all filtering configuration

viii

6

15

17

20

23

24

27

28

29

32

36

37

37

39

40

42

Table 4-7 Summary of Comparison for single-bilinear all-purpose design and 45

multi-bilinear all-purpose design

Chapter 1 Introduction

Three-Dimensional (3-D) computer graphics rendering techniques become more
complex due to users’ increasing demands for 3-D scene realism improvement [1]. Complex
rendering techniques is a computationally intensive task. Computationally intensive task
needs high hardware cost. It is challenge to design a low-cost GPU (graphics processing unit)
architecture in real-time rendering.

Texture mapping is a technique used to reduce the overall complexity of graphics
rendering [2, 3]. It is a technique in which a bit-map called a texture is applied onto an object
in the 3D world.

Texture filtering is often necessary for high.quality texture mapping. Texture filters are
one of cost and computation intensive ‘parts within a texture unit in Graphics Processing Unit
(GPU) architecture [4, 5] and cost of them is increasing due to following two reasons:

(1)Floating point filtering techniques revealed in Microsoft SM (Shader Model) 3.0 with
HDR (High Dynamic Range) feature increase the cost of texture filter [4];

(2)Increasing # of texture filter (i.e. # of texture unit) [7, 8] is required in conventional
GPU architecture [8];

To reduce cost of texture filters is an important issue.

Filter type requirement varies in run-time. Single-purpose texture filter may be idle in
run-time. Furthermore, there are a large number of shared operations between each filter type.
We can use an all-purpose reconfigurable texture filter to flexibly switch among all filter
types.

Reconfigurable computing offers an opportunity for obtaining high computing speed at

lower hardware costs, compared to ASIC [9]. The principal difference when compared to

ASIC is the ability to make substantial changes to the data path itself in addition to the control
flow.

We propose a run-time reconfigurable texture unit, which can be divided into
inside-texture filter and outside-texture filter since a texture unit is composed of a texture
filter, an address generator, and a texture cache. The reconfiguration of our proposed texture
unit architecture is composed of inside-texture filter reconfiguration and outside-texture filter
(inside-texture unit) reconfiguration.

For inside-texture filter part, we propose a divide-and-conquer-like method to design
low-area-time product texture filters for all texture filtering algorithms used in current 3D
games. Then, we use all types of low-area-time product texture filters and a given
fundamental element to design a single-fundamental element all-purpose texture filter.

Although reconfigurable computing provides flexibility for many different applications,
it causes reconfigurable overhead while changing.configurations for different applications. We
observe over 93% of the total filtered pixels.are-in 31% runs which have more than 2000
length. Each run of data has the same filter type: There is low reconfigurable overhead for
outside-texture filter due to long run-length of data requiring the same filter type.

We integrate above texture filters within multiple texture units to form a larger texture
filter cross texture units in outside-texture filter part. A round-robin-like method to maximize

the utilization of texture filter cross texture units is presented.

The reminder of this paper is organized as follows: Section 2 introduces background of
algorithm and architecture of texture mapping and texture filtering. Section 3 describes our
proposed reconfigurable texture unit including inside-texture-filter reconfiguration and
outside-texture-filter reconfiguration. The experimental results and analysis are described in

section 4. Conclusions and future works are made in section 5.

Chapter 2 Background

In this chapter, we will give an overview of texture mapping and texture filtering. Then,
two processes of texture filtering algorithm called weight generation algorithm and filtering
algorithm will be introduced. We will focus on texture filtering algorithm used in current 3D
games. Finally, we present the conventional texture unit design, especially on texture filter

part.

2.1 Texture Mapping

Texture mapping is a relatively efficient means to reduce computations for a realistic
scene without the tedium of modeling-and rendering every 3-D detail of a surface [2, 3]. Itis a
process in which a 2D bit-map mage called a texture is applied to an object in the 3D world,
as shown in Fig. 2-1. x and y are.-pixel coordinates.-S and t are texel (texture element)
coordinates.

The number of required triangles is increased and thus the number of calculations is
increased due to realize realistic images or a very complex image. The number of polygons
should be reduced because the computing power of the given system is not enough to perform
the required calculations in time. So quality degradation in terms of scene complexity is
introduced but in some cases this degradation is not tolerable. Hence, to have more realistic
images with less geometric data, texture mapping has been used commonly in 3D computer

graphics.

v:

vy _--——VE’"_—_—-77

____"/

Pixels in screen Texels in texture

Fig. 2-1. Texture Mapping

2.2 Texture Filtering

Due to the absence of no one-to-one mapping between texels and pixels, an interpolation
calculation is necessary for high quality mapping. Higher quality requires computation
intensive interpolation to generate a final pixel value from many texel values.

Commonly used texture filtering, algorithms.in current 3D games are bilinear (Bi),
trilinear (Tri), anisotropic (Ani). There is a tradeoff between operation complexity and image
quality among various texture filtering algorithms. 1-D Linear (Li) filtering algorithm will be
introduced since all filtering algorithms are basedon Linear. Texture filtering process is
composed of filtering and weight generation. We will introduce both filtering and weight

generation algorithms for linear, bilinear, trilinear and anisotropic filtering.

2.2.1 Filtering Algorithm

Filtering algorithm includes linear, bilinear, trilinear and anisotropic. Both trilinear
and anisotropic support mipmapping technique. Mipmapping is a technique to reduce the
artifacts which arise from the use of a single bitmap image while the level of detail of an
object decreases with an increase in the distance. It is made by an original-size texture with
level-of-detail 0 (LOD 0), then iteratively resample it to make a half-size texture with LOD i

(i>1). The number i depends on application designer. In figure 2-2, there are three LODs for

mipmapping. The original-size texture (LOD 0) is 8x8, LOD 1 is 4x4, and LOD 2 is 2x2.

Qlolo
Q0|0
o] [[s]

0
ololo

Q oo
ofo]ojojo]o

< FEEEE

[«] [<] [(<] [<] (5 (<1 [<]

Pixels in screen

Fig. 2-2. Mipmapping and Filtering Concept

The final value of linear filtering is a weighted average of two values. The final value of
bilinear is to return the weighted average of the four texels that are closest to the center of the
pixel being textured. Trilinear is to-choose the two mipmaps that most closely match the size
of the pixel being textured and use bilinear filter.to-produce a texture value from each mipmap.
In the example of Fig 2-2, two mipmaps are LODO and LOD1, respectively. The final texture
value is a weighted average of those two values according to the value of LOD.

If we need to do texture mapping for a plane which is at an oblique angle to the camera,
traditional isotropic filters (bilinear/trilinear) would give us insufficient horizontal resolution
and extraneous vertical resolution. Anisotropic is a method of enhancing the image quality of
textures on surfaces that are far away and steeply angled with respect to the camera. The final
texture value of n:1 anisotropic is an average of the values of n trilinears results. The value n
called anisotropic ratio, the ratio of horizontal direction to vertical direction, is defined by
game designer. The value may be 2, 4, 8, or 16. In Fig 2-3, we use n=2 as an example. The
comparison of bilinear, trilinear, and anisotropic filtering algorithms is shown as table 2-1.
The equations of above three filter types are equation 1, equation 2, and equation 3,

respectively.

Fig. 2-3. Anisotropic Filtering Concept

Filtering # of # of # of Texel Filtering Algorithm
Type MipMap | Texel / (#of Bi)
MipMap
Bi 1 4 4 (1) 3
Bi, y=Y,(T.xW)
i=0 m
Tri 2 4 8(2) 1
Tri(,) = D, (Bigs,pu xW))
o @)
n:1 Ani n-1
n=2,4,8,16 | 2 4n snen) | n:l_Ami, = (Tri,xW,)
=0 ®3)

Table 2-1. Comparison of bilinear, trilinear, anisotropic filtering algorithms

2.2.2 Weight Generation Algorithm

Linear weight generation algorithm (WGA) is used for interpolating values from two

-6-

values. For example, using one fraction of coordinates (FC) input called LOD to generate two
weight outputs for interpolating two bilinear results. Weight generation algorithm for Linear is

shown as equation 4, where FC denotes fraction of coordinate.

Liggy =(1-FC)

Liggy =FC

Bilinear weight generation algorithm is used for interpolating four texels of a bilinear. As
shown in Fig. 2-4, a texture coordinate is composed of integer part and fractional part. Using
two FC inputs called fraction of X coordinate and fraction of Y coordinate to generate four
weight outputs for four texels of a bilinear. Equation 5 is weight generation algorithm for

Bilinear.

Integer Fractional

Part Part
aoqa-“"‘:H
nlnkn
Q1010 y
olololo] " - A

00 fyh)

Fig. 2-4. Bilinear Weight Generation Concept

Bigggy, = (1- XF)x(1-YF)
Bigy, = (1- XF)xYF
By, = XF x(1-TF)

Biy,, = XF xYF -

A trilinear weight generation algorithm is composed of two bilinear weight generation

-7-

algorithms and one linear weight generation algorithm. A n:1 Anisotropic weight generation
algorithm is composed of n*2 trilinear weight generation algorithm and used for averaging n
trilinear results. Using an anisotropic ratio (AR=n) input to generate n weight outputs which

have the same weight value (1/n).

2.3 Texture Unit in a GPU Architecture

There are multiple texture units in a reference GPU and each of them has a texture filter
[7, 8]. Texture unit supports texture mapping operation mentioned in section 2-1. Each texture
unit is composed of an address generator, a texture cache, and a texture filter, as shown in
figure 2-5. Sampler states (SS) define texture sampling operations such as texture addressing
and texture filtering [4]. We concentrate;on filter type and anisotropic ratio requirement of a
pixel to be filtered since we only focus on texture filter design. Input data of each texture unit
is from its (SS) FIFO. Then, address generator transforms texture coordinate to cache address
for cache accessing. On the other hand, address generator pass the fractional part of texture
coordinate and LOD value to texture filter. After receiving texels from texture cache and
weights from address generator, texture filter generates filtered pixel according to filter type

and anisotropic ratio.

GPU Texture Unit

Pixel Processing Pixel Processing

before Texture [popo [Address [Texture Cache | > fexpureFitter |1 after Texture

Mappin i Mappin
Texture Unit

Pixel Processing Pixel Processing

before Texture | —» Ss L Address Texture Cache Texture Filter o atter Texture

FIFO Gen
Mapping Mapping

Fig. 2-5. Texture Unit in a GPU Architecture

2.4 Texture Filter in a Texture Unit

We define a texture filter composed of a bilinear filter and additional filter logic (for
supporting trilinear and anisotropic filtering) as a Single-Bilinear All-Purpose (SBAP) texture
filter, as shown in figure 2-6 [4, 5]. Bilinear filter is a logic with function of bilinear filtering
algorithms mentioned before. Additional filter logic for bilinear (AFL_Bi) denotes using
bilinear as fundamental element. An additional filter logic is composed of additional filter
datapath and additional filter control. Additional filter datapath iteratively cooperates with the
bilinear filter to do trilinear or anisotropic filtering. Additional filter control generates the
number of iteration to accomplish trilinear or anisotropic filtering.

The throughput of Single-Bilinear, All=Purpose, texture filter is one bilinear output per
cycle and one Tri output every two eycles [4,-5]. In'the column “# of texel (# of Bi)” of table
2-1, we define trilinear in terms of=2 bilinears:and anisotropic in terms of 2n bilinears since

fundamental element is bilinear.

SBAP Texture Filter

Bi AFL,_Bi

Fig. 2-6. Single-Bilinear All-purpose Texture Filter

2.5 Reconfigurable Architecture

A reconfigurable architecture can be classified as fine-grained and coarse-grained
according to the granularity of the fundamental element. Fine-grained architecture, such as a

field programmable gate array (FPGA) [10-12], has higher flexibility but lower execution

-9-

performance compared with a coarse-grained architecture. A coarse-grained architecture has
fundamental elements with higher computing capacity and less routing requirements; hence it
may significantly reduce the silicon areas [13].

However, the development of the compiler supporting the architecture has been very
difficult because of the complex computation and various execution time [14]. The purpose of
this study was to develop an efficient method to eliminate the waste of resources cause by idle
fundamental elements. We adopt coarse-grained architecture due to following two reasons:

(1) Timing issue is one of important concerns for a GPU;

(2) The flexibility for limited numbers of filter type combinations is low.

Applications that can be accelerated through the use of reconfigurable hardware are too
many to be loaded simultaneously onto the available hardware. Run-time reconfigurable
architecture is used to solve the problem. It is able to swap different configurations in and out
of the reconfigurable hardware during.run-time. Therefore, our proposed design is a run-time

reconfigurable architecture.

2.6 Motivation

Area of texture filter need to be improved due to texture filters are one of cost intensive
parts in GPU architecture and cost of them is increasing. Moreover, area of additional filter
logic need to be improved due to additional filter datapath occupies a large portion of cost in a
texture filter. Besides, reconfigurable architecture is adopted due to the following three
reasons:

(1) Single-purpose texture filter may be idle due to filter type requirement varies in
run-time;

(2) A large number of shared logic saves area for an all-purpose texture filter due to a

large number of similar operations between each filter type;

-10 -

(3) Less reconfigurable overhead due to long run-length of data requiring the same filter
type; we observe that over 93% of the total filtered pixels are in 31% runs which have more

than 2000 length, where each run of data has the same filter type.

2.7 Objective

For texture filtering algorithms used in current 3D games, we provide low-area-time
product necessary function called Bi filter and low-area-time product AFL and achieve low

area-time product (AT) texture filter design.

-11-

Chapter 3 Design

In this chapter, we first describe design assumption and challenges for designing a
reconfigurable texture filter. Then, a brief design overview is present. Our design is composed
of two parts:

(1) Single-bilinear all-purpose texture filter design, which is composed of filter design
and implementing additional filter logic according to our filter design;

(2) To save area of AFL, we propose a multi-bilinear all-purpose texture filter design,
which is composed fair fetch and forwarding logic design and to choose proper number of

bilinear filters to be integrated.

3.1 Design Assumption and Challenge

The only one design assumption.is using 16-bit floating point (s5.10) format as default
operation widths. It refers to Microsoft Shader Model (SM) 3.0 with High Dynamic Range
(HDR) feature. There are two design Challenges. How to design Bi filter for low AT and
implement additional filter logic for low AT using low AT Tri/Ani filters for single-bilinear
all-purpose texture filter design. The other is what number of Bi texture filters should be
integrated for multi-bilinear all-purpose texture filter design. There is a trade off between area

saving of AFL and overhead of fair fetching and forwarding logic.

3.2 Design Overview

There main components in MBAP TU are filter design, additional filter logic, fair

fetching and forwarding logic. Figure 3-1 is a MBAP TU with integrating two SBAP TUs.

-12 -

Fair fetching and forwarding logic are all necessary logics to maximize utilization of

reconfigurable TU. It includes priority sequence generator, priority pixel fetcher, and pixel

dispatcher.
A Two-Bilinear All-Purpose Texture Unit » Sab TU,

Sub TUn > ss . —L. l’riol'ily L m-] dd: Texture — w_en
Input FIFQ,| | o 1o | | Pixel . Gen, Cache, | |giinear,

Sequence Fetcher [" o

Generator | I

AFL
Address |
SabTU, | Lles | T |"(;en1 Texture |—» Bilineor,
Input FIFO, Cache,
rator | '

Fig. 3-1. Design Overview of a Two-Bilinear All-Purpose Texture Unit

3.3 Single-bilinear All-purpose:Texture Filter Design

Before designing a multi-bilinear all-purpose texture filter, we design a single-bilinear
all-purpose texture filter design. it is compesed of filter design and additional filter logic

design.

3.3.1 Filter Design

The goal of filter design is implementing a single-bilinear all-purpose texture filter. We
use a Divide-and-Conquer-like method. It works by recursively breaking down a problem into
two or more sub-problems of the same type, until these become simple enough to be solved
directly. The solutions to the sub-problems are then combined to give a solution to the original
problem. For filter design, we define linear as sub-problem and filter types with more
computation requirement (Bi/Tri/Ani) as the original problem. First, we find minimum-AT Li
filter using brute force method. Then, we implement Bi/Tri/Ani filters using minimum-AT Li

filters to approach minimum-AT Bi/Tri/Ani filter design.

-13-

3.3.1.1 Weight Generator and Filter for Linear and Bilinear

Filtering Defined in DX9

According to weight generation and filtering algorithm mentioned in section 2, weight
generator (WG) and filter (F) for linear and bilinear filtering algorithms defined in DX9 is

shown in figure 3-2 and figure 3-3, respectively.

Li(m, and Lz'()
Lf(m) . Lz'm
1 | Lz'(,,,,n.,1 _
F (¥G)o
Tﬂ N X _I_.
Li(m,o"

Fig. 3-2. Weight Generation and Filtering.for-Linear.Algorithm

: : Bi
Bi gy and Big, I 14
. o
X
- SEIEES el
, — x || 3] x
IR ==
XF =,
> x =L x n
YF - X :: X _l-.

Fig. 3-3. Weight Generation and Filtering for Bilinear Algorithm

-14 -

3.3.1.2 Linear Filter Design

There are three possible equation arrangements for linear texture filtering algorithm.
Equation 6 denotes an original form combining linear weight generation and filtering

algorithm. Equation 7, 8 and 9 are other three rearranged equations.

Ligyg o, =T, x A~ FO)+ T, x FC

=T, -1, xFC+T0xFC(7)

Table 3-1 shows comparison of-above four:linear filtering algorithm in terms of area and
time. The linear filter according to equation 9-has minimum area and the same time as other to
equations. Hence, we adopt equation.9 which has minimum-area-time product as our linear

filtering algorithm and its corresponding design is shown as figure 3-4.

Eq. Area (Uum"2) Time (ns) AT

(6) 66927.171875 11.88 795094.801875
(7) 66710.953125 12.36 824547.380625
(8) 49812.839844 11.92 593769.05094048
9) 50468.140625 11.66 588458.5196875

Table 3-1. Comparison of four linear filter designs in terms of area and time

-15 -

i
FC Ywar

To—l_:l:,x <
Th l_'

Fig. 3-4. Datapath for Linear Filter

3.3.1.3 Bilinear Filter Design

There are too many possible equation arrangements for bilinear texture filtering
algorithm. We define bilinear filtering algorithm as original problem and divide it into many
sub-problem called linear filtering algorithm. The first line of equation set 10 denotes an
original form combining bilinear weight generation and filtering algorithm. The last line of
Equation set 10 is one of rearranged equation. WWe use two equation 9 to replace two linear
filtering algorithm in above equation to.generate equation 11. We use another linear filtering
algorithm to replace equation 9 since equation.11 has the same form as equation 9. The result

of bilinear filter design, composed of three.linear filter, is shown as figure 3.5.

Bigys, gy =Ty X By + T, X Biggey, + T, X Bl + T, X By,

= [Ty % XF x XF |+ [T, x XF x (1 - ¥F)] +[I, x (1 - XF)x ¥F | +[T, x(1— XF)x (1 - YF)]

= {[T; x (1 - YE)|x XP +[(T, xYF)| x XF} + {[T; x L - ¥F)|x (1 - XF) +[T, x YF | x (1~ XF)}
=[1, x(Q —¥YF)+T, x¥YF|x XF +[T; x(1 - YF}+ T, x YF]x(1 - XF)

=[T; +{@, -L)XYF]HI[T + T T YF]- [T + (T, -L)xYF]} < AF (10)
let Li{l’tHF)n =T, +(T, —T)xYF and Li(lm‘-+F)1 =T+, - T,)xYF
=Li(lm+F)1 +(Licm+F)0 _Li(WG+F)I)XJCF (11)

-16 -

Bi(mw;

5O
vy

L z.(lliG+ Fy2

Iz

Li
WG+ F)0
XF' +
To—l_:lz o x M+
T1 l_.
YF—— Ligery
X 3+

Fig. 3-5. Datapath for Bilinear Filter

From table 3-2 we observe that equation 9 has area saving of 5 MULSs. But it needs 1

more SUB for both area and time overhead. So.we list their area-time product to demonstrate

significant AT saving of our bilinear design.

Eq. Area (um”2) Time (ns) AT
9) 207667.156250 21.10 4381776.996875
(10) 139130 24.74 3442076.2

Table 3-2. Comparison of two bilinear filter designs in terms of area, time and area-time

product

3.3.1.4 Trilinear and Anisotropic Filter Design

We use the same divide-and-conquer-like method to divide trilinear filtering algorithm
into multiple bilinear and linear filtering algorithm. The last line of equation set 12 shows a

trilinear filter is composed of two bilinear filters and one linear filter (i.e; seven linear filters).

The datapath of above trilinear design is shown as figure 3-6.

-17 -

= Bigygryt X (1= LF) + Bigggs o X LF

= Bigg, ey + Bigrgryo — Bigpg oy) X LEF (12)

3w Li B Li [»
3 LU FBigo.r

=t
ok

Bi(mnl Tri(,m "

Fig. 3-6. Datapath for Trilinear Filter

Equation 13 shows a n:1 anisotropic filtering algorithm is summation of n trilinear
results dividing n. The datapath of a n:1 anisotropic:filter is shown as figure 3-7. the

anisotropic logic (AL) provide a division for n, which'is a subtraction from exponent part.

n-1
n:l_Anig,, = Z(Tri,. [n)
i=0 (13)

n:1 Anig,, o

Tri |
n | adders

n{ tree |
: AL
| Tri
n

Fig. 3-7. Datapath for Anisotropic Filter

-18-

3.3.2 Additional Filter Logic

The goal of additional filter logic is to implement additional filter datapath and control
for low AT. We define n bilinears as a fundamental element at design time, where n equals to
the number of integrated Bi texture filters. The requirement analysis is composed of case of
multiple outputs in single-cycle and case of single output in multi-cycle.

For the case of multiple outputs in single-cycle, if the datapath of fundamental element
can execute more than one computations of current filter type requirement in one-cycle, we
divide the datapath of fundamental element into multiple current filter type requirements. For
example, we divide a trilinear of fundamental element into 2 bilinears of current filter type
requirements.

For the case of single output in‘multi-cycle; if the datapath of fundamental element needs
to execute the current filter type requirement in multi-cycle, we divide current filter type
requirement (m*n bilinears) into m fundamental requirements (n biliears). Then, we use a
fundamental element and an additional filter datapath for m iterations to achieve current filter
type requirement. For example, we divide a k:1 anisotropic of current filter type requirement

into k trilinears of fundamental requirements.

3.3.2.1 Additional Filter Datapath

Table 3-3 shows data flow analysis of all filter type requirements for one bilinear as
fundamental element. The component of data flow is derived from trilinear datapath and

anisotropic datapath shown in figure 3-6 and figure 3-7.

-19 -

Filter Type Requirement | Data Flow

Bilinear Bi-> RO

Trilinear cycle 0: Bi -> R1

cycle 1: Bi -> Li -> R0

Anisotropic Odd cycles: Bi ->R1

Even cycles: Bi -> Li -> AL ->add -> R0

Table 3-3. Data flow analysis of all filter type requirements using one bilinear as fundamental

element

Figure 3-8 shows an one bilinear as fundamental element derived from table 3-3. To
achieve a trilinear output every two cycles, we need a extra linear filter. To achieve a n:1
anisotropic output every 2n cycles, we.need an extra 16-bit register R1 to save trilinear results,
an extra anisotropic logic to divide each-trilinear result and an adder to accumulate all trilinear
results. 16-bit register RO is not included. in-addittonal filter datapath due to it is a necessary
pipelined register if we consider a texture filter.as a pipe stage in GPU. We use two bits to
represent filter type (FT) requirement. 00 represents bilinear, 01 represents trilinear, and 10
represents anisotropic. MUX 0 is to distinguish if the filter type requirement is bilinear. MUX
1 is to distinguish if the filter type requirement is trilinear. A 1-bit register with an inverter is

used to represent odd and even cycles.

AF Datapath 1 Bi 0 FI0] Tq]
5 >
] Li 0
— B10 L= MUX1| ‘&
F . =]
AR — =

Fig. 3-8. One Bilinear as Fundamental Element

-20 -

3.3.2.2 Additional Filter Control

The number of required iterations is different for all filter type requirement. A trilinear
and a n:1 anisotropic requirements need 2 and 2*n iterations using a bilinear as fundamental
element. The counter size represents maximum width to iterate 16:1 anisotropic, which is
log2(16*2)-bit.

A tool can draw and display schematics of the synthesized designs called design_vision.
We use it to produce circuits of additional filter control for one bilinear as fundamental

element, as shown in figure 3-9.

uz S -
o NORKY™terid] iter(4:0)

I

__& Dy
afi 0]] | INvRTn3 n3

1 Bom
n2 | It iterfj)

ino i I | -
LT

o N & Dhem A NANDZKU™ e
ik I g ETTIR N T

er(l] U5 Yo _J; 9.
G NANDz%!-"'H M‘ INWVET = iter [3]

iter[40]

1™

arf10]
| b

S

Ch \’fm 5
: pi e rerjamy oyt
nd |

Fig. 3-9. Circuit of Additional Filter Control for One Bilinear as Fundamental Element

3.4 Multi-bilinear All-purpose Texture Filter Design

The additional filter logic and fair fetching and dispatching logic for multi-bilinear
all-purpose texture filter will be proposed in this section. Since each single-bilinear all
purpose texture filter needs a additional control logic, we can design a multi-bilinear all
purpose texture filter to shared only one additional control logic with lower area than a
additional control logic using one bilinear as fundamental element. We use a example to
compare two instances of single-bilinear all-purpose texture filter and a two-bilinear

all-purpose texture filter, as shown in figure 3-10 and 3-11, respectively. Fair fetching and

-21-

dispatching logic is to maximize the utilization of multi-bilinear all-purpose texture unit due

to properly allocating the requirement to all address generators.

Two SBAP TUs for Two

Bi Outputs per Cycle Lo 10

ilter,

Address> Texture —»

Y

Gen, Cache,
BAP Texturd|
ilter,
Address|7»| Texture [|_»| Bilinear,

Cache,
Gemy | AFL_Bi_ [y

Fig. 3-10. Two Single-Bilinear All-Purpose Texture Units=for Two Bi Outputs per Cycle

A MBAP TU for One Tri
OQOutput or Two Bi MBAP

Address[T*| Texture
Gen, Cache; || |Bilinear,

AFL 2 Bi

A ddress L
Gen, Texture | —»| Bilinear,

Cache,

Fig. 3-11. A Multi-Bilinear All-Purpose Texture Unit for One Tri Output or Two Bi Outputs

per Cycle

-22 -

3.4.1 Additional Filter Logic for Multi-bilinear All-purpose

Texture Filter

For the additional filter datapath, table 3-4 shows data flow analysis of all filter type
requirements for two bilinear as fundamental element. The component of data flow is derived

from trilinear datapath and anisotropic datapath shown in figure 3-6 and figure 3-7.

Filter Type Requirement Data Flow

Bilinear Bi0 -> RO or Bil ->R1
Trilinear Bi->Li->R0
Anisotropic Each cycle: Bi -> Li -> AL ->add -> R0

Table 3-4. Data flow analysis of all:filter type requirements using two bilinears as

fundamental element

Figure 3-12 shows two bilinears ‘as fundamental element derived from table 3-3. we
remain the same throughput, two bilinear outputs per cycle, as the design of two instances of
one bilinear as fundamental element. We need an extra linear filter to achieve a trilinear
output. To achieve a n:1 anisotropic output every n cycles, we need an extra anisotropic logic
to divide each trilinear result and an adder to accumulate all trilinear results. The design of
two bilinears as fundamental element keeps the same throughput and save an additional
datapath for one bilinear compared to the design of two instances of one bilinear as

fundamental element.

-23-

—» Bi0
Bil

Li

|

LF -
AR

Fig. 3-12. Two Bilinears as Fundamental Element

For the additional filter control, the number of required iterations for the combination of
all kinds of fundamental element and all filter type requirement is shown as table 3-5. The
circuits of additional filter control using two bilinear as fundamental element, as shown in
figure 3-13. Comparing to using one bilinear as fundamental element, the fundamental
element with more number of bilinears.needs lessradditional filter control overhead for both

area and time.

Fundamental Element \ Bi. | Trir | m:ITAnic | Counter size (bit)
Filter Type Requirement

1 Bi 1 |2 |[m*2 log(16*2)

2 Bis (Tri) 1 |1 |m log2(16)

2n Bis (n:1 Ani) 1 |1 |mn log2(16)-log2(n)

Table 3-5. Number of required iterations to be iterated for filter type requirement in different

fundamental elements

-24 -

iter[3:0] T er2)

terpEpn B

o] [T P T
""1'_'1'3" ut NS
| wnomzBx1 T itetp)
) _’T[U](-, 0] 0]
o) e} T r
I y)
ter] | el T Loano2e Cfitep) Hterfa0) iter0)
1 manpzn <2 L er2] iter@]
arfi0] T l ~ :
arlt D]E B

Fig. 3-13. Circuit of Additional Filter Control for Two Bilinears as Fundamental Element

3.4.2 Fair Fetching and Dispatching Logic Design

The fair fetching and dispatching logic. is a round-robin-like method to maximize
utilization of multi-bilinear all-purpose textureunit:. Round-robin is an arrangement of
choosing all elements in a group: equally in-some rational order. The fair fetching and
dispatching logic is composed of priority-sequence-generators, priority pixel fetcher, and pixel
dispatcher mentioned in figure 3-1 before.

Fair fetching avoids load-imbalanced sampler states FIFOs. Empty FIFO may cause
utilization loss. Priority sequence generator switches the n different priority sequences of
fetching and filtering pixels for n FIFOs every n cycles. Priority pixel fetcher logic determines
which pixels can be fetched and filtered in this cycle according to the above priority
sequences and the limitation of filter width. To flexibly utilize resources in texture unit, we
propose a pixel dispatcher logic to dispatch m (ranged from 1 to n) pixel requirements to n
address generators (AGSs) since it may allocate more than 1 AG for 1 pixel requirement in a

cycle.

-25-

3.4.2.1 Priority Sequence Generator Design

The function of priority sequence generator is to switch the n different priority sequences
of fetching and filtering pixels for all FIFOs every n cycle. The value n is the number of pixel
requirement (the number of integrated Bi texture filters). The priority sequence generator
inputs n pixel requirements and outputs n priority sequences. It is composed of two
components. n n-to-1 MUXs represent all Input-Output-Mappings. A log2n-bit counter
switches the n different Input-Output-Mappings every n cycle.

Figure 3-14 is an example using n=2. Table 3-6 shows two priority sequences for odd
cycles and even cycles. A 1-bit register with an inverter is used to represent odd and even
cycles. The width of priority sequence generator may be 1, 2, 16 bits according to data width.
In figure 3-1, the two priority sequence_generators directly connected to FIFO generate
priority sequence from two sources (pixelssfrom two FIFOs). 16-bit priority sequence
generator processes pixel data. 2-bit priority sequence generator processes filter type data.
The other two priority sequence generators: recover the priority sequence to original sequence
(from FIFO 0 to FIFO 1). The 1-bit priority ' sequence generator process the signals for pixels
can be fetched and filtered in this cycle. The 16-bit priority sequence generator process the

pixel data to destination registers.

iPriority

Sequence !

Fig. 3-14. Priority Sequence Generator

- 26 -

Case 00 O1

0 10 11

1 (8 10

Table 3-6. Input-Output mapping for integrating two bilinears

3.4.2.2 Priority Pixel Fetcher Design

Priority pixel fetcher determines which pixels can be fetched and filtered in this cycle by
according to the priority sequences and checking the limitation of filter width. The priority
pixel fetcher inputs n filter type of pixels (FT) and an anisotropic ratio of all pixels (AR) and
outputs n Boolean value of pixel of each FIFO whether can be fetched and filtered or not in
this cycle (PF). The value n is the number of pixel requirement (the number of integrated Bi
texture filters). Figure 3-15 shows a priority-pixel fetcher using n=2 as an example. Lower
index i of input pixel denote higher:priority to be fetched-and filtered. Hence, FTO has highest

priority. The circuit of a priority pixel fetcher using n=2 is shown as figure 3-16.

Fro—bPﬂoﬂly-DPFo

FT1 -»Pixel [PF1
AR —p/Fetcher

Fig. 3-15. Priority Pixel Fetcher

i

Fig. 3-16. Circuit for Priority Pixel Fetcher
-27 -

The utilization effected by different combinations of filter type requirements is discussed
as follows: Table 3-7 lists all combinations of two filter type requirements and PF signals for
integrating two bilinears. “none” in column “FT i” means FIFO i is empty.

Case 0, 1, and 2 have no effects on utilization for both single-bilinear all-purpose design
and design of integrating two bilinears. We define case 3 and 4 as utilization loss due to empty
FIFO. The one bilinear utilization loss results from one FIFO is empty and the other one filter
type requirement is bilinear. Both two designs have these cases. Case 5 and 6 are utilization
gain due to integrating multiple bilinear texture filters. The utilization gain of 1 bilinear due to
the idle bilinear filter can be utilized for trilinear or anisotropic filtering. Utilization loss due
to integrating multiple Bi texture filters are case 7. The utilization loss of 1 bilinear due to the

additional filter logic using two bilinears as fundamental element only supports looping based

on trilinear.

Case FTO FT1 PFO PF 1
0 Bi Bi 1 1

1 Tri Bi/Tri/Ani 1 0

2 Ani Bi/Tri/Ani 1 0

3 Bi none 1 0

4 none Bi 0 1

5* Tri/Ani none 1 0

6* none Tri/Ani 0 1

7* Bi Tri/Ani 1 0

Table 3-7. All combinations of two filter type requirements and PF signals for integrating two

bilinears

3.4.2.3 Pixel Dispatcher Design

Pixel dispatcher dispatches m (ranged from 1 to n) input pixels to n AGs according to n

-28 -

PF signals, as shown in figure 3-17. The value n is the same as former definition. We assume
that while using two neighboring bilinear filter 0 and bilinear filter 1 to do trilinear or
anisotropic filtering, bilinear filter 0 and bilinear filter 1 process the odd/even and even/odd
LOD levels in odd/even cycles, respectively. Therefore, these two bilinear filter cooperate a

trilinear or anisotropic filtering. Pixel dispatcher inputs pixels from their corresponding FIFOs

and outputs pixels to n AGs.

\ Dispatcher

PFO
Pixel 0

PF1
Pixel 1

Fig. 3-17. Pixel Dispatcher

In table 3-8, case O represents"AG 0 and AG' 1 are used for their corresponding Bi
filtering. Case 1 represents both two AGs are used for FTO filtering. Case 2 represents both

two AGs are used for FT1 filtering.

Case PF O PF1 AGO0 AG1
0 1 1 BiO Bil

1 1 0 FTO FTO
2 0 1 FT1 FT1

Table 3-8. All combinations of PF signals and pixel dispatch for integrating two bilinears

3.4.3 Choosing the Number of Bilinears as Fundamental Element

Compared to integrating two bilinear filters, integrating more than two of them is

insufficient with both area and time. We will analyze both the additional filter logic and fair
-29-

fetching and dispatching logic.

For additional filter datapath part, integrating more than two bilienars (n>2) needs extra
((logzn)-1) floating-point adder time delay with no area saving. Figure 3-18 and 3-19 shows
the additional datapath of case n=2 and n=4, respectively. The design of n=4 has an extra

floating-point adder delay.

AF Datapath 2 Bis
—» Bi0
—{ Bil =

LF -

AR

AF Datapath 2 Bis
—» Bi2
—{ Bi3 =

LF -

AR

Fig. 3-18. Two Instances of Two Bilinears as Fundamental Element

AF Datapath 4 Bis

Bil

—] Bi2 I
—| Bi3 SLH YA | s |-

(il
R et

Fig. 3-19. An Instance of Four Bilinears as Fundamental Element

-30 -

For additional filter datapath part, integrating more than two bilienars (n>2) needs an
extra additional filter control for n bilinears (except for n=32, which can perform any filter
type requirement in one cycle) but saves (n/2) additional filter control for 2 bilinears.

For fair fetching and dispatching logic, we divide it into three parts. Priority Pixel
Fetcher has more complex mapping logic due to more cases. Figure 3-20 shows a circuit of
priority pixel fetcher for integrating four bilinear filters, which is more complex than circuit of

priority pixel fetcher for integrating two bilinear filters in figure 3-16.

Y D2, I,
= ‘
; e £ oy,
Sl dlingiigice
- Ep:‘?,, _'ﬁ
ez el g, |
w2 wive? | [1L5525 haic,
C= i
brs.) LTINS 1K
D hioe gy Lty
C=

Fig. 3-20. Circuit of Priority Pixel Fetcher for Integrating Four Bilinear Filters

The components of pixel dispatcher change from n 2-to-1 MUX to n n-to-1 MUX. The
components of priority sequence generator change from n*2 2-to-1 MUXs to n*2 n-to-1
MUXs. Moreover, worst case of utilization loss due to integrating multiple bilinears also
changes from one bilinear to n-1 bilinears.

Therefore, we choose case n=2 as number of integrating bilinears for our design if we
-31-

can show the fact that both area and time overhead for case n>2 are both larger than case n=2.
We only compare their area since time overhead of case n>2 larger than case n=2 for both
additional filter logic and fair fetching and dispatching logic. Table 3-9 shows the rapidly

increasing area overhead for only pixel dispatcher part is much larger than area saving for

additional filter control while increasing number of integrated bilinears.

Area (um”2) | AFL control Pixel Dispatcher | Total

N=2 18202.06128 | 40874.804672 59076.865952 (100%)
N=4 7291.468872 | 122624.414016 129915.882888 (220%)
N=8 2341.785612 | 286123.632704 288465.418316 (488%)
N=16 472.348794 613122.07008 613594.418874 (1039%)
N=32 0 1267118.944832 | 1267118.944832 (2145%)

Table 3-9. Comparison for Area of AFL control and Pixel Dispatcher

-32-

Chapter 4 Experimental Results

In this chapter, we first show the goal and metrics of the experiments. Then, simulation
environment is introduced. Thirdly, we compare and discuss the comparison of area, cycle
time, and total execution cycles. We will analyze the result of total execution cycles according
to filter type statistics and utilization statistics of all filtering configurations. Last but not least,

the comparison of area-time product is presented.

4.1 Goal and Metrics of the Experiments

Experiment goal is to compare single-bilinear. all-purpose design (two TUs for two Bi
outputs per cycle) and two-bilinear -all-purpose:design (one TU for one Tri output or two Bi
outputs per cycle). We use two-bilinear all-purpose, which is the lowest area-time product
design of all possible number of bilinear filters to be integrated to denote multi-bilinear
all-purpose design in this section.

Experiment metrics is area-time product (AT). It is composed of product of area and time.
Time is composed of cycle time and total execution cycles. The area and cycle time is
gathered from hardware synthesis. The total execution cycles is gathered from software

simulation.

4.2 Simulation Environments

Simulation environment is composed of hardware synthesis environment and software

simulation environment. We introduce hardware synthesis environment first. Verilog HDL

-33-

was adopted as the high-level language for implementing the texture unit design. Verilog HDL
codes were written to describe the architecture and behavior of each component. The entire
architecture was tested for functional correctness using the C language. After the function of
the design had been tested successfully with the Altera Quartus two functional simulator, the
design is synthesized by Synopsys design compiler with TSMC 0.18um process.

Software simulation environment is a trace-driven C++ simulator for texture unit
architecture. We assume no cache miss and infinite SS FIFO size and use 16 texture units and
each of them has a bilinear filter (the same as NVIDIA GeForce 6800). The benchmark is a
modern graphic application called DOOM 3, as shown in figure 4-1. The simulator inputs
trace of benchmark from modified DirectX 9 reference rasterizer and outputs total execution
cycles. The trace contains pixels to be filtered with information of filter type and anisotropic
ratio. And DirectX 9 reference rasterizer is a software device that implements the entire

Direct3D feature set.

-34-

Fig. 4-1. A frame of DOOM 3

4.3 Comparisons of Area and Cycle Time

The comparison of area is shown as figure 4-2. Area of each component in
single-bilinear all-purpose design is listed in table 4-1. The area of a single-bilinear
all-purpose design should be multiplied by two to compare with multi-bilinear all-purpose

design. Therefore, total area is405695.6628 (=202847.8314 * 2).

-35-

3300000

3200000

3100000 r

3000000 |-

2900000

Area (um”2)

2800000

2700000

2600000

2500000

3245565.302

SBAP

2785234.619

MBAP

Fig. 4-2. Comparisons of Area

Component ‘W‘ ~2)
fpADD 1'14599.56836
AL 1081.079956
Bilinear 133132.5156
Ctrl_Bi 1397.712036
Linear 47873.55078
MUX16b2tol 0 565.487976

MUX16b2tol 1 898.127991

REG1b 126.403198

REG16b 1357.171143
REG16bWen 1816.214355
Total SBAP_TF 202847.8314

Table 4-1. Area for a single-bilinear all-purpose texture filter

The area of multi-bilinear all-purpose design is composed of fair fetching and

-36 -

dispatching logic and a multi-bilinear all-purpose texture filter. Area of each component in
fair fetching and dispatching logic and multi-bilinear all-purpose texture filter are listed in
table 4-2 and table 4-3, respectively. Therefore, total area is 349574.700193 (=6439.910293 +
343134.7899). The area of fair fetching and dispatching logic called reconfigurable area
overhead occupies only 2% of total area since floating-point operations in multi-bilinear

all-purpose texture filter is very area-intensive.

Component Area (Um"2)
PrioritySequenceGeneratorlb2tol 73.180801
PrioritySequenceGenerator2b2tol 332.640015
PrioritySequenceGeneratorl6b2tol 0 2268.604736
PixelDispatcher 1916.006348
PriorityPixelFetch 206.236816
PrioritySequenceGenerator16b2tol 1 1643:241577
Total FFDL 6439.910293

Table 4-2. Area for fair fetching and dispatching logic

Component Area’ (um”2)
fpADD 14589.589844
AL 1184.198242
Bilinear_0 133874.296875
Bilinear_1 139130
Ctrl_Tri 1007.89917
Linear 47520.953125
MUX16b2tol 0 508.939178
MUX16b2tol_1 1047.815918
MUX16b2tol_2 735.134399
MUX16b2tol_3 685.238403
REG1bWen 176.299194
REG16b_0 1516.838379
REG16b_1 1157.587158
Total MBAP_TF 343134.7899

Table 4-3. Area for a multi-bilinear all-purpose texture filter

-37 -

The delay time (cycle time) of a single-bilinear all-purpose design and a multi-bilinear
all-purpose texture filter is 43.63 ns and 43.86 ns, respectively. The slightly more delay time
of a multi-bilinear all-purpose texture filter results from higher wireload. The delay time of
fair fetching and dispatching logic is 0.77 ns and total delay time of a multi-bilinear
all-purpose design is 44.63 (=43.86+0.77). The delay time of fair fetching and dispatching
logic called reconfigurable time overhead occupies only 2% of total delay time since
floating-point operations in multi-bilinear all-purpose texture filter is also very time-intensive.

The comparison of cycle time is shown as figure 4-3.

446 44.51

444

4.2

44

438

43.63

Cycle Time (ns)

43.6

434

432

43
SBAP MBAP

Design

Fig. 4-3. Comparisons of Cycle Time

-38 -

4.4 Filter Type Statistics of All Filtering Configurations

The analysis of utilization loss due to integrating two bilinears filters needs to discuss
filter type statistics. The interleaved filter type requirement may cause above utilization loss.
A filtering configuration is a combination of filter type requirement in a frame. Table 4-4 and
Figure 4-4 show filter type usages of all filtering configurations. Bilinear requirement

occupies only under 10%. The left 90% is another filter type which may be trilinear or

anisotropic.

Filtering
Configuration

% of Bi Usage

% of Tri Usage

% of Ani Usage

Mixed Bi and Tri

5.6%

94.4 %

0%

Mixed Bi and n:1

Ani

10.6%

0%

89.4%

Table 4-4. Filter type usages of all filtering configurations

100.00%
90.00%
80.00% |-
70.00% |

60.00%

50.00%

O Mixed Bi and Tri
B Mixed Bi and n:1 Ani

40.00%

30.00%
20.00% |
10.00%

— i

0.00%

Bi

Ani

Filter Type Usages

Fig. 4-4. Filter Type Usages of All Filtering Configurations

-39-

Figure 4-5 shows numbers of filter type usages of all filtering configurations. A frame is
generated by hundreds of lists in directX 9 reference rasterizar. Moreover, total number of
pixels in all lists may be different. We define four terms as follows:

Lists of 1 FT = (# of lists using 1 filter type) / (total lists using filtering)

Lists of 2 FTs = (# of lists using 2 filter type s) / (total lists using filtering)

Pixels of 1 FT = (# of pixels in lists using 1 filter type) / (total pixels in lists using filtering)
Pixels of 2 FTs = (# of pixels in lists using 2 filter type s) / (total pixels in lists using filtering)

Lists of 2 FTs and Pixels of 2 FTs are about under 10% and under 20%, respectively. We
focus on statistics of Pixels of 2 FTs which represents the possibility of interleaved filter type
more properly. Therefore, only under 20% of neighboring pixels in a frame may have
interleaved filter type. Besides, we observe over 93% of the total filtered pixels are in 31%
runs which have more than 2000 length:. The utilization loss due to integrating two bilinears

filters is low.

Filtering Listsof 1 FT Lists of 2 FTs Pixelsof 1 FT | Pixels of 2 FTs
Configuration

Mixed Bi and 94.5% 5.5% 81% 19%
Tri

Mixed Bi and 91.7% 8.3% 80.5% 19.5%
n:1 Ani

Table 4-5. Numbers of filter type usages of all filtering configurations

=40 -

100.00% r
90.00%
80.00%
70.00%
00.00% |
50.00% |
40.00%
30.00%
20.00%

10.00% — ,_- l

0.00%

O Mixed Biand Tri
B Mixed Biand n:1 Ani

Listsof] FT Listsof 2 Pixelsof 1 Pixels of 2
FTs FT FTs

Fig. 4-5. Numbers of Filter Type Usages of All Filtering Configurations

4.5 Utilization Statistics of Al Filtering Configurations

Utilization statistics of all filtering configur.ations Is composed of utilization loss due to
empty FIFO, utilization gain due to integrating 2 Bi texture filters (for MBAP design only),
and utilization loss due to integrating 2 Bi texture filters (for MBAP design only), as
mentioned in section 3.

Table 4-6 and figure 4-6 shows three types of utilization statistics for 5 filtering
configurations. The table entry is the number of bilinears. Most utilization loss due to empty
FIFO can be solved by utilization gain due to integrating 2 Bi texture filters in multi-bilinear
all-purpose design. But this design has significant larger utilization loss due to integrating 2
Bi texture filters. All filtering configurations of mixed bilinear and n:1 anisotropic have the
same number of utilization loss due to integrating 2 Bi texture filters due to they have the
same number of interleaved bilinear and anisotropic filter type requirement. The most

computation-intensive filtering configuration named “Mixed Bi and 16:1 Ani” needs

-41 -

maximum total execution cycles.

Filtering Utilization Utilization Utilization Total Total
Configuration | Lossdueto | Gaindueto | Loss dueto | Execution Execution
Empty FIFO | Integrating 2 | Integrating Cycles for Cycles for

texture 2 texture SBAP MBAP
filters filters

Mixed Bi and | 3686 3648 112094 340163 346923

Tri

Mixed Biand | 7199 7063 178358 680365 691028

2:1 Ani

Mixed Bi and | 14231 14095 178358 1341115 1351292

4:1 Ani

Mixed Biand | 28295 28159 178358 2662615 2671820

8:1 Ani

Mixed Bi and | 56423 56287 178358 5305615 5312876

16:1 Ani

Average 21967 21850 11165105 2065975 2074788

Table 4-6. Utilization statistics for all filtering-configuration

200000
180000 — — — —
160000 Be —
140000 || B Utilization loss due to empty
a5 120000 —— | FIFO -
= 100000 | | Utilization gain due to integrating
ey 20000 | | two bilinear texture filters
60000 - 0O Utilization loss due to integrating
two bilinear texture filters
40000 I
20000 [I I:I
0 e . . |

Mixed Mixed Mixed Mixed Mixed Average
Biand Biand Biand Biand Biand
Tri 2:1 Ami 4:1 Ami 8:1 Am1 16:1 Ani

Filtering Configurations

Fig. 4-6. Utilization Statistics for All Filtering Configuration

-42-

Figure 4-7 shows total execution cycles for 5 filtering configurations. We observe it
varies among different filtering configurations. The averaged total execution cycles are
summation of one-fifths multiple of total execution cycles of each configuration because user

can choose any one out of these five filtering configurations.

00000

2000000

4000000

O:EAF
B MEAP

20000000

of Cwele

2000000

1000000

. om T OB W

Mixed B1 Mixed B1 Mixed B1 Mized E1 Mixed B: Average
and Tri and 221 and 4:1 and 8:1 and 16:1
A Am A A

Filtering Configurations

Fig. 4-7. Total Execution Cycles for All Filtering Configurations

4.6 Comparison of Averaged Total Execution Cycles and

Area-Time Product

Figure 4-8 and figure 4-9 show comparisons of averaged total execution cycles and

area-time product, respectively. Summary of Comparison for single-bilinear all-purpose

-43-

design and multi-bilinear all-purpose design is listed in table 4-7. The area is for only two
single-bilinear all-purpose designs and a two-bilinear all-purpose design. We do not multiply

them by eight due to comparing their ratio only.

2076000 1 2074785
2074000
2072000 |-
2070000 |-
2068000 |-
2066000 |-
2064000
2062000 -
2060000

2065975

Averaged Total Execution Cycles

SBAP MBAP

Fig. 4-8. Comparisons of Averaged Total Execution Cycles

-44 -

3E+14
2.9255E+14
29E+14
2.8E+14
2]E+14
H
<
2.6E+14
2.5E+14
24E+14
2.3E+14
SBAP MBAP
Design
Fig. 4-9. Comparisons of Area-Tim W '
Design Area (um”2) | Cycle I Total AT
time (ns) | Execution | Execution
Cycles Time
SBAP 3245565.3024 | 43.63 2065975 | 90138489.25 | 292550353120555.3992
(100%) (100%) | (100%) (100%) (100%)
MBAP 2785234.6191 | 44.51 2074788 | 92348813.88 | 257213113460633.4744
(85.8%) (102.0%) | (100.4%) | (102.5%) (87.9%)

Table 4-7. Summary of Comparison for single-bilinear all-purpose design and multi-bilinear

all-purpose design

-45-

Chapter 5 Conclusion and Future Work

In this work, a reconfigurable texture unit is presented for supporting current 3-D
application. The previous chapters have discussed our designs and their experimental results.
This chapter briefly outlines the conclusion of the work, and provides some directions for

future work.

5.1 Conclusion

Our proposed reconfigurable texture unit design contains a reconfigurable low area-time
product texture filter with some dedicated address generators and texture caches. The
reconfigurable texture filter is composed'of number of bilinear filters and an additional filter
logic. We propose a divide-and-conquer-like method to decrease area-time product for
single-bilinear all-purpose texture filter design.

Although multi-bilinear all-purpose design saves the area of additional filter logic, the
utilization of texture filter may decreases due to improperly resource allocation compare to
single-bilinear all-purpose design. To solve the utilization loss, we design a round-robin-like
fair fetching and dispatching logic to maximize the utilization of texture filter with only 2%
overhead of both area and time in a multi-bilinear all-purpose design.

The best number of integrated bilinears is two, which is a result of the area and time
overhead for reconfigurable overhead much larger than area saving for shared logic while
integrating more than two bilinears. Comparing to single-bilinear all-purpose design, the
experimental result shows multi-bilinear all-purpose design has 14.2% significant area saving
for additional filter logic. Most of them are additional filter datapath. Besides, 2.5% small

amount of increased execution time due to 2.0 % increased cycle time for reconfigurable

- 46 -

overhead (fair fetching and dispatching logic) and 0.4% increased total execution cycles for
utilization loss. The utilization loss depends on interleaved filter type requirement. Besides
DOOMBS application, other application (for example, Quake 3) [4] also has long run-length of
the same filter type requirement. Moreover, some applications (for example, 3DMark05) use
only one filter type in a frame which will cause no utilization loss for our multi-bilinear
all-purpose design. Finally, 12.1% lower area-time product implies the multi-bilinear

all-purpose reconfigurable texture is a cost-effective design.

5.2 Future Work

The divide-and-conquer-like method to decrease area-time product for single-bilinear
all-purpose texture filter design may be improved by other method to achieve minimum
area-time product.

We have proposed a low area and low area-time product texture filter design. However,
the area and area-time product may bé.reduced by design other parts in texture unit by
reconfigurable architecture. For example, an all-purpose address generator is required due to
the reason for all-purpose texture filer requirement. Similarly, a single-bilinear all-purpose
address generator is composed of a fundamental element (may be bilinear address generator)
and additional address generator logic. The majority of area in an all-purpose address
generator is additional address generator logic [15]. Therefore, it is an important issue to save
the additional address generator logic for single-bilinear all-purpose address generator.

Multi-bilinear all-purpose design is a solution for above issue. The anisotropic address
generator occupies most area of an additional address generator logic. An anisotropic address
generator can be saved by integrating two address generators based on our reconfigurable
texture unit. The reason is that doing anisotropic filtering needs only one anisotropic address

generator for two neighboring address generators. Moreover, slightly extra area and time

-47 -

overhead is required based on our multi-bilinear all-purpose texture unit due to existence of
fair fetching and dispatching logic.

There are tradeoffs between sampler state FIFO overhead and utilization loss of overall
GPU. Oversized FIFO causes unnecessary FIFO cost. But if the FIFO size is too small, it will
cause GPU stall which results from full FIFO frequently. Therefore, the choice of sampler

state FIFO size can be based on further simulation result.

-48 -

Reference

[1] Foley J, van Dam A, Feiner SK, Hughes JF, “Computer graphics: principles and
practice”, 2nd ed. Reading MA: Addison-Wesley, 1990

[2] Heckbert PS, “Survey of texture mapping”, IEEE Computer Graphics and
Applications 1986;6(11):56-67

[3] Lansdale RC, “Texture mapping and resampling for computer Graphics”, Master's
Thesis, University of Toronto, 1991

[4] J. Chittamuru, J. Euh, and W. Burleson, ""An Adaptive Low Power Texture Mapping
Architecture™, IEEE Mid West Symposium On Circuits and Systems 2002

[5] J. Euh, J. Chittamuru, and W. Burleson, "*A Low-Power Content-Adaptive Texture
Mapping Architecture for Real-Time 3D Graphics*’, Work shop on Power-Aware
Computer Systems 2002(PACS’02)

[6] Microsoft, Microsoft DirectX9 Software Development Kit, Microsoft Corporation
[7] Victor Moya del Barrio, Carlos Gonzalez, Jordi Roca, Agustin Fernandez,
“ATTILA: a cycle-level execution-driven simulator for modern GPU architectures”,
2006 IEEE International Symposium on Performance Analysis of Systems and Software
[8] John Montrym, Henry Moreton, “NVIDIA GeForce 6800, NVIDIA Corporation
[9] Katherine. Compton, cott. Hauck, ""Reconfigurable Computing: A survey of System
and software,”* ACM Computing Survey, June 2002.

[10] S. Brown, and J. Rose, ""Architecture of FPGA sans CPLDs: A Tutorial,” IEEE
Design and Test of Computers, vol. 13, no. 2, pp. 42-55, 1996.

[11] ALTERA INC., Stratix 11 Device Handbook , http://www.altera.com, San Jose, CA,
March 2005.

[12] XILINX INC., Virtex-11 Pro and Virtex-11 Pro X Platform FPGAs: Complete Data
=49 -

Sheet, http://www.xilinx.com, San Jose, CA, March 1, 2005.

[13] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, A. Cadambi, R.R. Taylor, and R.
Laufer, ""PipeRench: A Coprocessor for Streaming Multimedia Acceleration,"
Proceeding of 26th International Symposium Computer Architecture (ISCA '99), pp.
28-39, May 1999.

[14] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.R Taylor,
"PipeRench: A Reconfigurable Architecture and Compiler,” IEEE Computer, vol. 33, no
4, pp. 70-77, Apr. 2000.

[15] Jon P. Ewins, Marcus D. Waller, Martin White, Paul F. Lister, ”Implementing an

anisotropic texture filter”, Computers & Graphics 24 (2000) 253-267

-50 -

	 Chapter 1 Introduction
	2.1 Texture Mapping
	2.2 Texture Filtering
	2.2.1 Filtering Algorithm
	2.2.2 Weight Generation Algorithm

	2.3 Texture Unit in a GPU Architecture
	2.4 Texture Filter in a Texture Unit
	2.5 Reconfigurable Architecture
	2.6 Motivation
	2.7 Objective
	3.1 Design Assumption and Challenge
	3.2 Design Overview
	3.3 Single-bilinear All-purpose Texture Filter Design
	3.3.1 Filter Design

	3.3.1.1 Weight Generator and Filter for Linear and Bilinear Filtering Defined in DX9
	3.3.1.2 Linear Filter Design
	3.3.1.3 Bilinear Filter Design
	3.3.1.4 Trilinear and Anisotropic Filter Design
	3.3.2 Additional Filter Logic

	3.3.2.1 Additional Filter Datapath
	3.3.2.2 Additional Filter Control
	3.4 Multi-bilinear All-purpose Texture Filter Design
	3.4.1 Additional Filter Logic for Multi-bilinear All-purpose Texture Filter

	3.4.2 Fair Fetching and Dispatching Logic Design
	3.4.2.1 Priority Sequence Generator Design
	3.4.2.2 Priority Pixel Fetcher Design
	3.4.2.3 Pixel Dispatcher Design
	3.4.3 Choosing the Number of Bilinears as Fundamental Element

	4.1 Goal and Metrics of the Experiments
	4.2 Simulation Environments
	4.3 Comparisons of Area and Cycle Time
	4.4 Filter Type Statistics of All Filtering Configurations
	4.5 Utilization Statistics of All Filtering Configurations
	4.6 Comparison of Averaged Total Execution Cycles and Area-Time Product
	5.1 Conclusion
	5.2 Future Work

