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摘要 

 
陣列與環是平行計算與分散式計算中兩種最基本的網路類型。一般而言，路

徑與迴圏是普遍被使用來表示這兩種網路的拓樸結構。在本論文中，我們著眼於

連結網路上的路徑與迴圏嵌入問題。由於網路上的任何元件隨時隨地都可能因損

壞、損毀而使得整個網路無法正常運作，因此，網路的容錯能力是設計任何一個

網路系統時所不能忽視的重要考量。所以，我們也深入討論與網路容錯相關的研

究議題。藉由將網路抽象地以數學上的「圖」來表示，我們可以嚴謹地探討各種

連結網路的特性。 
 
  首先，我們研究具有「超級容錯漢彌爾頓」性質的網路。若一個 k－正則漢

彌爾頓連通網路在任意移除了 k－2 個節點或連線之後仍然保有漢彌爾頓的特

性，且在任意移除了 k－3 個節點或連線之後仍然具有漢彌爾頓連通的特性，則

我們稱此網路為「超級容錯漢彌爾頓」網路。給定 n 個具有相同節點數的 k－正

則超級容錯漢彌爾頓網路，其中 n≥3 且 k≥4，我們可以使用「迴圏複合」的架

構來建構（k＋2）－正則的超級容錯漢彌爾頓網路。 
 
  其次，我們研究漢彌爾頓迴圏問題的變形，文獻上稱之為「相互獨立漢彌爾

頓迴圏」。給定一固定的節點作為起始點，若一個網路的任意 n 條漢彌爾頓迴圏

從此固定的起始節點開始，在後續的每一個時間點上都剛好繞經不同的中間節



點，最後這 n 條漢彌爾頓迴圏又同時回到起始節點，則我們稱此 n 條漢彌爾頓迴

圏具有相互獨立的特性。在本論文中，我們研究了如何在立方體、星狀圖及蝴蝶

圖上嵌入相互獨立漢彌爾頓迴圏的方法。 
 
    最後，我們討論網路的條件式容錯能力。在本論文中，我們假定網路中的任

一節點必須保有至少二個功能正常的相鄰節點或保有至少二個通訊功能正常的

連線。在這個前提假設之下，我們針對立方體網路上的容錯式路徑嵌入問題進行

深入的探討。相較於文獻中的既有的研究成果，我們證明了超立方體網路的容錯

能力，在條件式損壞模型的假設之下其實是可以大幅增加的。 
 
 
關鍵字：連結網路、立方體、星狀圖、蝴蝶圖、漢彌爾頓、漢彌爾頓連通、容錯、

超級容錯漢彌爾頓、條件式損壞、陣列、環、迴圏嵌入、路徑嵌入 
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Abstract 
 
In many parallel computer systems, processors are connected on the basis of 
interconnection networks, referred to as networks henceforth. Among various kinds of 
networks, linear arrays and rings are widely applied in parallel and distributed 
computation. In particular, paths and cycles are two topological structures commonly 
used to model linear arrays and rings, respectively. Therefore we investigate how to 
embed paths and cycles into some interconnection networks in this thesis. Because the 
components of a network may fail not only accidentally but frequently, it is of great 
importance for a network to be capable of tolerating as many faults as possible. In this 
thesis the fault-tolerance related issues are also concerned. With the graph 
representation of an interconnection network, we can discuss these issues in a formal 
way. 
 
Firstly, we study a family of super fault-tolerant hamiltonian networks, namely cycle 
composition networks. A k-regular hamiltonian and hamiltonian connected network is 
super fault-tolerant hamiltonian if it remains hamiltonian after removing up to k-2 
vertices and/or edges and remains hamiltonian connected after removing up to k-3 
vertices and/or edges. Super fault-tolerant hamiltonian networks have an optimal 
flavor with regard to fault-tolerant hamiltonicity and fault-tolerant hamiltonian 
connectivity. For this motivation, we observe that the cycle composition is an 
effective framework to construct a (k+2)-regular super fault-tolerant hamiltonian 
network on the basis of n k-regular super fault-tolerant hamiltonian networks, 
containing the same number of vertices, provided that n≥3 and k≥4. 



Secondly, we investigate a variant of hamiltonian cycles, namely mutually 
independent hamiltonian cycles, on some interconnection networks. A set of 
hamiltonian cycles, having the same start vertex, is said to be mutually independent if 
any two of these hamiltonian cycles traverse different vertices at every time step 
except the start-up and termination. In this thesis, we show that the maximum number 
of mutually independent hamiltonian cycles can be embedded onto the binary 
wrapped butterfly network. Moreover, embedding mutually independent hamiltonian 
cycles onto faulty hypercubes and onto faulty star networks are also addressed. 
 
Next, we investigate the conditional-fault tolerance of hypercubes. There is one thing 
worth noting. That is, if components of a network fail independently, then it is 
unlikely that all failures would be close to each other. When faulty vertices are 
concerned, it is reasonable to require that every vertex should have at least g fault-free 
neighbors. Analogously, when faulty edges are concerned, it can be assumed that 
every vertex is still incident to at least g fault-free edges. In this thesis we first study 
the fault diameter of the n-cube only for g=1, and then we explore the feasibility of 
fault-tolerant path embedding on hypercubes when g=2. 
 
 
Keywords: Interconnection network; Hypercube; Star graph; Butterfly graph; 
Hamiltonian; Hamiltonian connected; Fault tolerance; Super fault-tolerant 
hamiltonian; Conditional fault; Linear array; Ring; Cycle embedding; Path 
embedding. 
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Chapter 1

Introduction

Many areas of human activity require enormous computational power; computer vision,
robotics, air traffic control, weather prediction, stock market analysis, artificial intelligence,
and numerous military applications are just few examples. The need to interconnect hun-
dreds or more processing elements in computers solving such huge tasks in such a way
that will ensure optimal network performance is paramount. Hence the interconnection
network has been a critical factor affecting the system performance [24]. A multiproces-
sor/multicomputer/communication interconnection network is usually modeled as a graph,
in which the vertices correspond to processors/computers, and the edges correspond to con-
nections or communication links. Many issues, such as communication models, routing
strategies, fault tolerance, reliability, fault diagnosis, etc. are intriguing around the theme of
interconnection networks.

Network embedding is another interesting subject because the portability of the guest
network into the host network would permit executing the guest specified algorithms on the
host with as little modification as possible. By definition [43], embedding one guest network
G into another host network H is a form of injective mapping, η, from the vertex set of G to
the vertex set of H . An edge of G corresponds to a path of H under η. Often embedding takes
cycles, paths, trees, or meshes as guest networks because these architectures are extensively
applied in parallel systems. In this thesis, we mainly focus on path and cycle embedding.
Before we proceed to go through the details of our research issues, we briefly introduce some
graph-theoretic notions to be used later.

1.1 Graph-theoretic terminologies

Because the underlying topology of an interconnection network is modeled as a graph,
we use the terms, graph and network, vertex and node, edge and link, interchangeably.
Throughout this thesis, we concentrate on loopless undirected graphs. For the graph def-
initions and notations we follow the ones given by Hsu and Lin [30]. A graph G con-
sists of a nonempty vertex set V (G) and an edge set E(G), which is a subset of {(u, v) |
(u, v) is an unordered pair of V (G)}. Two vertices, u and v, of G are adjacent if (u, v) ∈
E(G). A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let S be a
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nonempty subset of V (G). The subgraph induced by S is the subgraph of G with its vertex
set S and with its edge set that consists of those edges joining any two vertices in S. We
use G − S to denote the subgraph of G induced by V (G) − S. Analogously, the subgraph
generated by a nonempty subset F ⊆ E(G) is the subgraph of G with its edge set F and
its vertex set consisting of those vertices of G incident with at least one edge of F . We use
G−F to denote the subgraph of G with vertex set V (G) and edge set E(G)−F . The degree
of a vertex u in G, denoted by degG(u), is the number of edges incident to u. A graph G is
k-regular if all its vertices have the same degree k. For any node u of G, its neighborhood
NG(u) is defined by NG(u) = {v ∈ V (G) | (u, v) ∈ E(G)}. A graph G is bipartite if its vertex
set can be partitioned into two disjoint partite sets, V0(G) and V1(G), such that every edge
joins a vertex of V0(G) and a vertex of V1(G).

A matching of size k in a graph G is a set of k edges with no shared endpoints. The
vertices incident with the edges of a matching are called saturated by the matching; the
others are unsaturated. A perfect matching is a matching that saturates every vertex of G.
A path P of length k from vertex x to vertex y in a graph G is a sequence of distinct vertices
〈v1, v2, . . . , vk+1〉 such that x = v1, y = vk+1, and (vi, vi+1) ∈ E(G) for every 1 ≤ i ≤ k
if k ≥ 1. More precisely, path P is represented as 〈v1, e1, v2, e2, v3, . . . vk, ek, vk+1〉, where
ei = (vi, vi+1) ∈ E(G) for every 1 ≤ i ≤ k. A path of length 0, consisting of a single vertex
x, is denoted by 〈x〉. For convenience, we write P as 〈v1, . . . , vi, Q, vj, . . . , vk+1〉, where
Q = 〈vi, vi+1, . . . , vj〉. The i-th vertex of P is denoted by P (i); i.e., P (i) = vi. Moreover,
we use P−1 to denote the path 〈vk+1, vk, . . . , v1〉. To emphasize the beginning and ending
vertices of P , we also write P as P [x, y]. We use ℓ(P ) to denote the length of P . For any
two distinct vertices u and v of G, the distance between u and v, denoted by dG(u, v), is the
length of the shortest path joining u and v in G. The diameter of G, denoted by D(G), is
defined to be max{dG(u, v) | u, v ∈ V (G)}. A cycle is a path with at least three vertices such
that the last vertex is adjacent to the first one. For clarity, a cycle of length k is represented
by 〈v1, v2, . . . , vk, v1〉.

A path (or cycle) of a graph G is a hamiltonian path (or hamiltonian cycle) if it spans
G. A graph is hamiltonian if it has a hamiltonian cycle. A graph is hamiltonian connected
if there exists a hamiltonian path between every pair of distinct vertices. A bipartite graph
is hamiltonian laceable [58] if there exists a hamiltonian path between any two vertices that
are in different partite sets. Moreover, a hamiltonian laceable graph G is hyper-hamiltonian
laceable [45] if, for any vertex v ∈ Vi(G), there exists a hamiltonian path of G−{v} between
every pair of distinct vertices in V1−i(G). Later Hsieh et al. [27] introduced strongly hamil-
tonian laceability. A hamiltonian laceable graph G is strongly hamiltonian laceable if there
exists a path of length |V (G)| − 2 between every pair of distinct vertices in the same partite
set.

1.2 Some structured interconnection networks

Many interconnection networks have been proposed in research by [1,13,15,18,26,43,52,55].
In this section, we introduce several of the most popular interconnection networks.

2



1.2.1 Hypercubes

Hypercube [55] is one of the most attractive interconnection networks already discovered
for parallel computation. Not only is it ideally suited to both special-purpose and general-
purpose tasks, but it can efficiently simulate many other networks [43]. The formal definition
of hypercubes is given as follows.

For the sake of clarity, we use boldface letters to denote n-bit binary strings. Let u =
bn−1 . . . bi . . . b0 be an n-bit binary string. For 0 ≤ i ≤ n−1, we use (u)i to denote the binary
string bn−1 . . . b̄i . . . b0. Moreover, we use (u)i to denote bit bi of u. The Hamming weight
of u, denoted by wH(u), is |{0 ≤ j ≤ n − 1 | (u)j = 1}|. The n-dimensional hypercube (or
n-cube for short), Qn, consists of 2n nodes and n2n−1 links. Each node corresponds to an
n-bit binary string. Two nodes, u and v, are adjacent if and only if v = (u)i for some i, and
we call the link (u, (u)i) i-dimensional. We define dim((u,v)) = i if v = (u)i. The Hamming
distance between two nodes u and v, denoted by h(u,v), is defined to be |{0 ≤ j ≤ n − 1 |
(u)j 6= (v)j}|. Hence two nodes, u and v, are adjacent if and only if h(u,v) = 1. It is well
known that Qn is a bipartite graph with partite sets V0(Qn) = {u ∈ V (Qn) | wH(u) is even}
and V1(Qn) = {u ∈ V (Qn) | wH(u) is odd}. Moreover, Qn is both node-transitive and
link-transitive [55].

A variety of issues on hypercubes have been addressed by many researchers [8, 23, 39,
46, 64, 66, 67]. For example, Latifi et al. [39] proved that an n-cube Qn has a hamiltonian
cycle even if it has n − 2 faulty links. Moreover, Tseng [67] showed that a faulty n-cube,
containing fe ≤ n − 4 faulty links and fv ≤ n − 1 faulty nodes with fe + fv ≤ n − 1, has a
fault-free cycle of length at least 2n − 2fv. On the other hand, Tsai et al. [64] showed that
Qn (n ≥ 3) is both hamiltonian laceable and strongly hamiltonian laceable even if it has
n − 2 faulty links. In addition, Fu [23] investigated path embedding in an n-cube with up
to n − 2 faulty nodes.

1.2.2 Star networks

The star network was proposed by Akers and Krishnameurthy [1], as an attractive al-
ternative to the n-cube topology for interconnecting processors in parallel computers. It
can be defined as follows. Let n be a positive integer, and let 〈n〉 = {1, . . . , n}. The n-
dimensional star network, denoted by Sn, is a graph with vertex set V (Sn) = {u1 . . . un |
ui ∈ 〈n〉 and ui 6= uj for i 6= j}. Its adjacency is described as follows: a vertex u = u1 . . .
ui . . . un is adjacent to another vertex v = v1 . . . vi . . . vn through an edge of dimension i,
2 ≤ i ≤ n, if u1 = vi, v1 = ui, and uj = vj for j ∈ 〈n〉 − {1, i}. By such definition,
Sn is an (n − 1)-regular graph with n! vertices. Moreover, it is both vertex-transitive and
edge-transitive [1]. Three star networks, S2, S3, and S4, are illustrated in Figure 1.1.

The star network has also received many researchers’ attention due to its nice topological
properties. For example, the diameter and fault diameters were computed in [1,40,54]. The
hamiltonian properties of star graphs were studied in [21, 22, 27, 36, 47, 68]. In particular,
Fragopoulou and Akl [21,22] studied the problem of embedding n− 1 directed edge-disjoint
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Figure 1.1: Illustrations for S2, S3, and S4.

spanning trees onto an n-dimensional star network. These spanning trees could be used to
design communication algorithms.

1.2.3 The binary wrapped butterfly networks

Among various kinds of popular network topologies, butterfly networks are very suitable for
VLSI implementation and parallel computing. In particular, the binary wrapped butterfly
graph has gained many researchers’ efforts for its nice topological properties. For example,
it belongs to the family of constant degree-four Cayley graphs [10, 69]. Therefore, it is
vertex-transitive. In research by [25, 34, 61, 65, 70], embedding various topologies, such as
rings, linear arrays, and binary trees, etc., into the butterfly networks were addressed. The
definition of the binary wrapped butterfly graph is given as follows.

Let Zn = {0, 1, . . . , n − 1} denote the set of integers modulo n. The n-dimensional
binary wrapped butterfly graph (or butterfly graph for short) BF (n) is a graph with vertex set
Zn×Z

n
2 . Each vertex is labeled by a two-tuple 〈ℓ, a0 . . . aℓ . . . an−1〉 with a level ℓ ∈ Zn and an

n-bit binary string a0 . . . aℓ . . . an−1 ∈ Z
n
2 . A level-ℓ vertex 〈ℓ, a0 . . . aℓ . . . an−1〉 is adjacent to

two vertices, 〈(ℓ + 1)mod n, a0 . . . aℓ . . . an−1〉 and 〈(ℓ − 1)mod n, a0 . . . aℓ−1 . . . an−1〉, by straight
edges, and is adjacent to another two vertices, 〈(ℓ + 1)mod n, a0 . . . aℓ−1aℓaℓ+1 . . . an−1〉 and
〈(ℓ − 1)mod n, a0 . . . aℓ−2aℓ−1aℓ . . . an−1〉, by cross edges. More formally, the edges of BF (n)
can be defined in terms of four generators g, g−1, f , and f−1 as follows [69]:

g(〈ℓ, a0 . . . aℓ . . . an−1〉) = 〈(ℓ + 1)mod n, a0 . . . aℓ . . . an−1〉,

f(〈ℓ, a0 . . . aℓ . . . an−1〉) = 〈(ℓ + 1)mod n, a0 . . . aℓ−1aℓaℓ+1 . . . an−1〉,

g−1(〈ℓ, a0 . . . aℓ . . . an−1〉) = 〈(ℓ − 1)mod n, a0 . . . aℓ . . . an−1〉,

f−1(〈ℓ, a0 . . . aℓ−1 . . . an−1〉) = 〈(ℓ − 1)mod n, a0a1 . . . aℓ−2aℓ−1aℓ . . . an−1〉,
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Figure 1.2: (a) BF (3); (b) BF (3) with level-0 vertices replicated to ease visualization.

where aℓ ≡ aℓ +1 (mod 2). A level-ℓ edge of BF (n) is an edge that joins a level-ℓ vertex and
a level-(ℓ+1)mod n vertex. To avoid the degenerate case, we concern only the case that n ≥ 3.
So, BF (n) is 4-regular. Figure 1.2(a) depicts the structure of BF (3), and Figure 1.2(b) is
another layout of BF (3) with the level-0 vertices replicated to ease visualization.

1.2.4 Cycle composition networks

The following framework, proposed by Chen et al. [12], recursively constructs a family of
interconnection networks. Let G0, G1, . . . , Gn−1 be n k-regular graphs with the same number
of vertices. The cycle composition network H = G( G0, G1, . . . , Gn−1; M0,1, M1,2, . . . ,
Mn−2,n−1, Mn−1,0) is defined to be the graph with vertex set V (H) =

⋃n−1
i=0 V (Gi) and edge

set E(H) =
⋃n−1

i=0 (E(Gi) ∪Mi,i+1), where Mi,j is an arbitrary perfect matching between the
vertex set of Gi and the vertex set of Gj. It is noticed that both addition and subtraction
will be taken modulo n. For convenience, we abbreviate G(G0, G1, . . . , Gn−1; M0,1, M1,2, . . .,
Mn−2,n−1, Mn−1,0) as G〈0,1,...,n−1,0〉. See Figure 1.3 for illustration.

For instance, the k-ary n-cube, an extension of hypercubes, is constructed as a special
case in this way. Many attractive topological properties of k-ary n-cubes were addressed in
research [2, 5, 7, 73]. Similarly, the recursive circulant [52] are also constructed in the same
fashion.
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1.3 Synopsis

Linear arrays and rings are two of the most fundamental networks for parallel and distributed
computation. There is a wide range of efficient algorithms developed on the basis of these
two topologies [43]. In particular, paths and cycles are two types of structures commonly
used to model linear array and rings. Because the components of a network may fail not
only accidentally but frequently, it is demanded to consider the fault-tolerance related issues
on interconnection networks. For these two reasons, embedding paths and cycles into a
faulty network is of crucial importance. Faults in a network may take various forms such
as hardware/software errors, vertex/edge faults, etc. Throughout this thesis, vertex-faults
and/or edge-faults are addressed.

First of all, we devote to fault-tolerant hamiltonian properties on cycle composition
networks. A graph G is called l-fault-tolerant hamiltonian (respectively, l-fault-tolerant
hamiltonian connected) if it remains hamiltonian (respectively, hamiltonian connected) after
removing at most l vertices and/or edges. The fault-tolerant hamiltonicity of G, Hf (G),
is defined to be the maximum integer l such that G − F remains hamiltonian for every
F ⊂ V (G) ∪ E(G) with |F | ≤ l if G is hamiltonian, and undefined otherwise. Obviously,
Hf (G) ≤ δ(G) − 2, where δ(G) = min{degG(v) | v ∈ V (G)}. A regular graph G is optimal
fault-tolerant hamiltonian if Hf(G) = δ(G)− 2. The fault-tolerant hamiltonian connectivity
of G, Hκ

f (G), is defined to be the maximum integer l such that G − F remains hamiltonian
connected for every F ⊂ V (G) ∪ E(G) with |F | ≤ l if G is hamiltonian connected, and
undefined otherwise. Obviously, Hκ

f (G) ≤ δ(G) − 3. A regular graph G is optimal fault-
tolerant hamiltonian connected if Hκ

f (G) = δ(G) − 3. We say a regular graph G is super
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fault-tolerant hamiltonian if Hf (G) = δ(G) − 2 and Hκ
f(G) = δ(G) − 3. For instance,

twisted-cubes, crossed-cubes, möbius cubes, and recursive circulant graphs are all super
fault-tolerant hamiltonian [11, 31–33, 63]. Let G0, G1, . . . , Gn−1 be n k-regular super fault-
tolerant hamiltonian graphs with the same number of vertices. Then Chen et al. [12] proved
that the cycle composition network G〈0,1,...,n−1,0〉 is super fault-tolerant hamiltonian, provided
that n ≥ 3 and k ≥ 5. In this thesis, we will improve the previous result by showing that
G〈0,1,...,n−1,0〉 is still super fault-tolerant hamiltonian even when k = 4.

Secondly, we investigate a variant of hamiltonian cycles, namely mutually independent
hamiltonian cycles, on some interconnection networks. The mutually independent hamilto-
nian cycles are defined as follows [49,59]. Let G be a graph with N vertices. A hamiltonian
cycle C of G is described by 〈u1, u2, . . . , uN , u1〉 to emphasize the order of vertices on C.
Accordingly, u1 is referred to as the beginning vertex. Two hamiltonian cycles of G begin-
ning from a given vertex s, namely C1 = 〈u1, u2, . . . , uN , u1〉 and C2 = 〈v1, v2, . . . , vN , v1〉,
are independent if u1 = v1 = s and ui 6= vi for 2 ≤ i ≤ N . We say a set of m hamiltonian
cycles {C1, . . . , Cm} of G, beginning from the same vertex, is m-mutually independent if Ci

and Cj are independent whenever i 6= j. In this thesis, we show that the maximum number
of mutually independent hamiltonian cycles can be embedded onto the binary wrapped but-
terfly network. In particular, fault-tolerant embedding of mutually independent hamiltonian
cycles onto faulty hypercubes and faulty star networks are also addressed.

Next, we turn our attention to fault distributions. It is worth noting that, if components
of a network fail independently, then the likelihood that all failures would be close to each
other becomes low. Motivated by this observation, Esfahanian [20] introduced the concept
of forbidden faulty sets. The components of any forbidden faulty set cannot be faulty at the
same time. In particular, for the n-cube, he has defined each forbidden faulty set to consist
of all n neighbors of one processor; thus, there are 2n forbidden faulty sets for an n-cube,
each containing n processors. Later Latifi et al. [42] extended such a concept by defining
the conditional node-faults which require every node to have at least g fault-free neighbors,
g ≥ 1. In this thesis, we concentrate mainly on g = 2.

The condition of having at least two fault-free neighbors for every node is statistically
reasonable. We give the n-cube as an example under the consideration of at most 2n − 5
faults. Suppose, with a random fault model, the probability of node failure is identical, and
nodes fail independently. Let PN(n) denote the probability that every node of an n-cube,
containing 2n − 5 faulty nodes, is adjacent to at least two fault-free neighbors. Because Qn

has 2n nodes, there are
(

2n

2n−5

)
ways to distribute 2n − 5 faulty nodes. In the random fault

model, all these fault distributions have equal probability of occurrence. Clearly, PN(3) = 1

and PN(4) = 1−
24×(4

3)
(24

3 )
= 31

35
, where 24 ×

(
4
3

)
is the number of faulty node distributions that

there exists some node having three faulty neighbors. When n ≥ 5, the number of faulty node
distributions that there exists some node having n faulty neighbors is 2n×

(
2n−n
n−5

)
. Moreover,

the number of faulty node distributions that there exists some node having exactly n − 1
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faulty neighbors is 2n ×
(

n
n−1

)(
2n−n
n−4

)
. Since

(
2n−n
n−4

)
≥
(
2n−n
n−5

)
for n ≥ 5, we can derive that

PN(n) = 1 − Pr(some node has at least n − 1 faulty neighbors)

= 1 −
2n ×

(
2n−n
n−5

)
+ 2n ×

(
n

n−1

)(
2n−n
n−4

)
(

2n

2n−5

)

≥ 1 −
2n × (1 + n) ×

(
2n−n
n−4

)
(

2n

2n−5

)

= 1 −
2n × (1 + n) × (2n − 2n + 5) ×

∏2n−5
k=n−3 k

∏2n

k=2n−n+1 k

= 1 −
(n − 3)(n − 2)

2n − n + 1
×

n − 1

2n − n
× . . . ×

2n − 5

2n − 3
×

n + 1

2n − 2
×

2n − 2n + 5

2n − 1
, L(n).

It is not difficult to compute PN(n) numerically, such as PN(5) = 6157
6293

, PN(6) = 9696527
9706503

,
etc. Since limn→∞ L(n) = 1, PN(n) approaches to 1 as n increases. Under the condition of
requiring every node to have at least two fault-free neighbors, we will explore the feasibility of
embedding paths, as long as possible, into hypercubes if there are utmost 2n−5 conditional
node-faults.

On the other hand, conditional link-faults, which require that every node of a network
will be incident to at least two fault-free links, can be addressed as well. This condition is
also meaningful. Let PL(n) denote the probability that every node of an n-cube containing
2n− 5 faulty links is incident to at least two fault-free links. Suppose the probability of link
failure is identical, and links fail independently. Then PL(n) can be computed as follows:

PL(n) =





1 if n = 3,

1 −
2n×( n

2n−5)
(n×2n−1

2n−5 )
if n = 4,

1 −
2n×(n×2n−1−n

n−5 )+2n×( n
n−1)(

n×2n−1−n
n−4 )

(n×2n−1

2n−5 )
if n ≥ 5.

Then PL(n) approaches to 1 as n increases. Accordingly, it is also intriguing to consider
path embedding on hypercubes with conditional link-faults.

The rest of this thesis is organized as follows. In Chapter 2, we improve the result
of Chen et al. [12] by showing that a cycle composition network is still super fault-tolerant
hamiltonian even if it is constructed from a collection of 4-regular super fault-tolerant hamil-
tonian graphs. In Chapter 3 and Chapter 4, we study the problem of embedding mutually
independent hamiltonian cycles onto butterfly graphs, faulty hypercubes, and faulty star
networks, respectively. The fault diameter of a conditionally faulty n-cube, with hybrid
node and link faults, is studied in Chapter 5. In Chapter 6 and Chapter 7, we investigate
fault-tolerant path embedding in hypercubes with conditional link-faults and conditional
node-faults, respectively. Finally, the concluding remarks are presented in Chapter 8.
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Chapter 2

Fault-tolerant Hamiltonian

Connectedness of Cycle Composition

Networks

A suitable network is generally designed to satisfy some specified requirements. For example,
the hamiltonian property is one of the major concerns for designing the network topology,
and fault tolerance is desirable in massive parallel systems. So these two properties can
be concerned simultaneously. A graph G is called l-fault-tolerant hamiltonian (respectively,
l-fault-tolerant hamiltonian connected) if it remains hamiltonian (respectively, hamiltonian
connected) after removing at most l vertices and/or edges. The fault-tolerant hamiltonicity
of G, Hf (G), is defined to be the maximum integer l such that G−F remains hamiltonian for
every F ⊂ V (G)∪E(G) with |F | ≤ l if G is hamiltonian, and undefined otherwise. Obviously,
Hf (G) ≤ δ(G) − 2, where δ(G) = min{degG(v) | v ∈ V (G)}. A regular graph G is optimal
fault-tolerant hamiltonian if Hf(G) = δ(G)− 2. The fault-tolerant hamiltonian connectivity
of G, Hκ

f (G), is defined to be the maximum integer l such that G − F remains hamiltonian
connected for every F ⊂ V (G) ∪ E(G) with |F | ≤ l if G is hamiltonian connected, and
undefined otherwise. Obviously, Hκ

f (G) ≤ δ(G) − 3. A regular graph G is optimal fault-
tolerant hamiltonian connected if Hκ

f (G) = δ(G) − 3. We say a regular graph G is said
to be super fault-tolerant hamiltonian if Hf (G) = δ(G) − 2 and Hκ

f (G) = δ(G) − 3. For
instance, twisted-cubes, crossed-cubes, möbius cubes, and recursive circulant graphs are all
super fault-tolerant hamiltonian [11, 31–33,63].

A network will have higher fault-tolerant capability if it is super fault-tolerant hamilto-
nian. With such motivation Chen et al. [12] proposed a systematic framework to recursively
construct super fault-tolerant hamiltonian graphs. Let G0, G1, . . . , Gn−1 be n k-regular su-
per fault-tolerant hamiltonian graphs with the same number of vertices. The cycle compo-
sition network H = G(G0, G1, . . . , Gn−1; M0,1, M1,2, . . . , Mn−2,n−1, Mn−1,0) is defined to be
the graph with vertex set V (H) =

⋃n−1
i=0 V (Gi) and edge set E(H) =

⋃n−1
i=0 (E(Gi) ∪Mi,i+1),

where Mi,j denotes an arbitrary perfect matching between V (Gi) and V (Gj). See Figure 1.3.
It is noted that both addition and subtraction will be considered modulo n. Then Chen et
al. [12] showed that G(G0, G1, . . . , Gn−1; M0,1, M1,2, . . ., Mn−2,n−1, Mn−1,0), abbreviated as

9



G〈0,1,...,n−1,0〉 henceforth, is super fault-tolerant hamiltonian for n ≥ 3 and k ≥ 5.

Theorem 2.1. [12] Assume n ≥ 3 and k ≥ 5. Let G0, G1, . . . , Gn−1 be n k-regular super
fault-tolerant hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n−1, let
Mi,i+1 be a perfect matching between V (Gi) and V (Gi+1). Then G〈0,1,...,n−1,0〉 is (k+2)-regular
super fault-tolerant hamiltonian.

For example, the recursive circulant graph, which was proposed by Park and Chwa [52], is
essentially constructed as a special case in this way, and it is shown to be super fault-tolerant
hamiltonian under a certain condition [63]. Similarly, k-ary n-cubes are also constructed
using this framework [73]. In this chapter, we will improve Theorem 2.1 by showing that
G〈0,1,...,n−1,0〉 is still super fault-tolerant hamiltonian even when k = 4. Such an extension is
significant because only the remaining case of k = 3 needs to be concerned carefully or to
be checked by computer, while the topological properties of cycle composition networks are
investigated.

2.1 Fault-tolerant hamiltonicity

For the ease of exposition, the notations we use in this chapter are described in advance.
We denote the graph G(Gi, Gi+1, . . . , Gj; Mi,i+1, Mi+1,i+2, . . . , Mj−1,j) by G〈i,i+1,...,j〉. Let u
be a vertex of Gi. We use (u)− to denote the vertex of Gi−1 such that ((u)−, u) ∈ Mi−1,i,
and use (u)+ to denote the vertex of Gi+1 such that (u, (u)+) ∈ Mi,i+1. Hence we have
u = ((u)−)+ = ((u)+)−. Moreover, all additions and subtractions are considered modulo n.
In order to prove the main results, we need the following lemmas.

Lemma 2.1. Assume that n ≥ 1. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n − 2, let Mi,i+1

be a perfect matching between V (Gi) and V (Gi+1). Moreover, let Fi ⊆ V (Gi) ∪ E(Gi) with
|Fi| ≤ 1 for every 0 ≤ i ≤ n − 1 and let Xi,i+1 ⊆ Mi,i+1 with |Xi,i+1| ≤ 1 such that
|Fi| + |Fi+1| + |Xi,i+1| ≤ 2 is satisfied for all 0 ≤ i ≤ n − 2. Let u and v be two vertices
of G0 − F0. Then there exists a hamiltonian path of G〈0,...,n−1〉 − ((

⋃n−1
i=0 Fi) ∪ (

⋃n−2
i=0 Xi,i+1))

joining u to v.

Proof. For convenience, let F = (
⋃n−1

i=0 Fi)∪ (
⋃n−2

i=0 Xi,i+1). We prove this lemma by induc-
tion on n. Obviously, the result is trivial when n = 1. For any n ≥ 2, suppose that the
result holds for n − 1. Depending on the value of |V (G0)|, two cases are distinguished.

Case 1: Suppose that |V (G0)| = 5. Thus G0 is isomorphic to the complete graph of five
vertices, K5. Firstly, we assume |F0| = 0. Since |F0| + |F1| + |X0,1| ≤ 2, we can choose two
vertices x, y of G0 such that |{x, y}∩{u, v}| ≤ 1 and |F ∩{(x)+, (y)+, (x, (x)+), (y, (y)+)}| =
0. Accordingly, we can construct a hamiltonian path P = 〈u, P1, x, y, P2, v〉 of G0, where
P1 or P2 may be a path of length 0. On the other hand, assume that |F0| = 1. Since G0

is 4-regular super fault-tolerant hamiltonian, there exists a hamiltonian path P of G0 − F0

joining u to v. Since |F0| + |F1| + |X0,1| ≤ 2 and |F0| = 1, there exists an edge (x, y)
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Figure 2.1: Illustration for Lemma 2.1.

on P such that |F ∩ {(x)+, (y)+, (x, (x)+), (y, (y)+)}| = 0. Accordingly, we write P =
〈u, P1, x, y, P2, v〉, where P1 or P2 may be a path of length 0. By induction hypothesis, there
exists a hamiltonian path T of G〈1,...,n−1〉 − ((

⋃n−1
i=1 Fi) ∪ (

⋃n−2
i=1 Xi,i+1)) joining (x)+ to (y)+.

Then 〈u, P1, x, (x)+, T, (y)+, y, P2, v〉 is a hamiltonian path of G〈0,1,...,n−1〉 −F joining u to v.
See Figure 2.1 for illustration.

Case 2: Suppose that |V (G0)| ≥ 6. Since G0 is super fault-tolerant hamiltonian, there
exists a hamiltonian path P of G0−F0 joining u to v. Since |F0|+|F1|+|X0,1| ≤ 2, there exists
an edge (x, y) on P such that |F∩{(x)+, (y)+, (x, (x)+), (y, (y)+)}| = 0. Accordingly, we write
P = 〈u, P1, x, y, P2, v〉, where P1 or P2 may be a path of length 0. By induction hypothesis,
there exists a hamiltonian path T of G〈1,...,n−1〉 − ((

⋃n−1
i=1 Fi) ∪ (

⋃n−2
i=1 Xi,i+1)) joining (x)+ to

(y)+. Then 〈u, P1, x, (x)+, T, (y)+, y, P2, v〉 is a hamiltonian path of G〈0,1,...,n−1〉 − F joining
u to v.

Lemma 2.2. Assume that n ≥ 1. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n− 2, let Mi,i+1 be a
perfect matching between V (Gi) and V (Gi+1). Moreover, let Fi ⊆ V (Gi)∪E(Gi) with |Fi| ≤ 1
for every 0 ≤ i ≤ n − 1 and let Xi,i+1 ⊆ Mi,i+1 with |Xi,i+1| ≤ 1 for every 0 ≤ i ≤ n − 2
such that |Fi| + |Fi+1| + |Xi,i+1| ≤ 2 is satisfied for all 0 ≤ i ≤ n − 2. Let u be a vertex of
G0 − F0, and let v be a vertex of Gt − Ft with t ≥ 0. Then there exists a hamiltonian path
of G〈0,...,n−1〉 − ((

⋃n−1
i=0 Fi) ∪ (

⋃n−2
i=0 Xi,i+1)) joining u to v.

Proof. For convenience, let F = (
⋃n−1

i=0 Fi) ∪ (
⋃n−2

i=0 Xi,i+1). When t = 0, the statement
follows from Lemma 2.1. Hence we suppose t > 0 in the following. Since Gt is 4-regular, we
have |V (Gt)| ≥ 5. Moreover, since |Ft−1| + |Ft| + |Xt−1,t| ≤ 2, we can choose a vertex w of
Gt − (Ft ∪ {v}) such that |F ∩ {w, (w)−, (w, (w)−)}| = 0 and (w)− 6= u.

Let y0 = u and xt−1 = (w)−. Since every Gi, 0 ≤ i ≤ t − 1, is 4-regular and |Fi| +
|Fi+1| + |Xi,i+1| ≤ 2, we sequentially choose a vertex xi of Gi − Fi and denote (xi)

+ by
yi+1, such that xi 6= yi and |F ∩ {xi, yi+1, (xi, yi+1)}| = 0 from i = 0 to i = t − 3 if t ≥ 3.
Next, we choose a vertex xt−2 of Gt−2 − (Ft−2 ∪{yt−2}) and denote (xt−2)

+ by yt−1 such that
|F ∩ {xt−2, yt−1, (xt−2, yt−1)}| = 0 and yt−1 6= xt−1 if t ≥ 2. Since every Gi, 0 ≤ i ≤ t − 1, is
super fault-tolerant hamiltonian, there exists a hamiltonian path Pi of Gi−Fi joining yi to xi.
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Figure 2.2: Illustration for Lemma 2.2.

By Lemma 2.1, there exists a hamiltonian path T of G〈t,...,n−1〉 − ((
⋃n−1

i=t Fi)∪ (
⋃n−2

i=t Xi,i+1))
joining w to v. Then 〈u = y0, P0, x0, (x0)

+ = y1, . . . , xt−2, (xt−2)
+ = yt−1, Pt−1, xt−1 =

(w)−, w, T, v〉 is a hamiltonian path of G〈0,...,n−1〉 − F joining u to v. See Figure 2.2 for
illustration.

Using Lemma 2.2, we prove the following theorem.

Theorem 2.2. Assume that n ≥ 3. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n − 1, let Mi,i+1 be
a perfect matching between V (Gi) and V (Gi+1). Then G〈0,1,...,n−1,0〉 is optimal fault-tolerant
hamiltonian.

Proof. Obviously, G〈0,1,...,n−1,0〉 is 6-regular. Thus we are going to show that it is 4-fault-
tolerant hamiltonian. Let F be a faulty set of G〈0,1,...,n−1,0〉 with |F | ≤ 4. For convenience,
let Fi = F ∩ (V (Gi) ∪ E(Gi)) for 0 ≤ i ≤ n − 1. Without loss of generality, we assume that
|F0| ≥ |Fi| for all 1 ≤ i ≤ n− 1. Depending on the value of |F0|, five cases are distinguished.

Case 1: Suppose that |F0| = 4. Let F0 = {f1, f2, f3, f4}. Since G0 is 2-fault-tolerant
hamiltonian, there is a hamiltonian cycle C in G0 − {f3, f4}.

Subcase 1.1: Suppose that both f1 and f2 are on C but they are not adjacent. Thus,
we can write C = 〈x1, f1, y1, H1, x2, f2, y2, H2, x1〉, where H1 or H2 may be a path of length
0. By Lemma 2.2, there exists a hamiltonian path S1[(x1)

−, (y1)
−] in Gn−1, and there

exists a hamiltonian path S2[(x2)
+, (y2)

+] in G〈1,...,n−2〉. Then 〈x1, (x1)
−, S1, (y1)

−, y1, H1, x2,
(x2)

+, S2, (y2)
+, y2, H2, x1〉 is a hamiltonian cycle of G〈0,1,...,n−1,0〉 − F . See Figure 2.3(a) for

illustration.

Subcase 1.2: Suppose that both f1 and f2 are on C, and they are adjacent. Thus
we write C = 〈x, R, y, f1, f2, x〉. By Lemma 2.2, there exists a hamiltonian path H of
G〈1,...,n−1〉 joining (y)+ to (x)+. Then 〈x, R, y, (y)+, H, (x)+, x〉 is a hamiltonian cycle of
G〈0,1,...,n−1,0〉 − F . See Figure 2.3(b) for illustration.

Subcase 1.3: Suppose that either f1 or f2 is on C. Without loss of generality, we
assume that f1 is on C. Thus we write C as 〈x, R, y, f1, x〉. Then a hamiltonian cycle of
G〈0,1,...,n−1,0〉 − F can be formed in the same way as that used in Subcase 1.2.
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Figure 2.3: Illustration for Case 1 of Theorem 2.2.

Subcase 1.4: Suppose that neither f1 nor f2 is on C. Therefore we write C as 〈x, R, y, x〉
with any edge (x, y) ∈ E(C). Then a hamiltonian cycle of G〈0,1,...,n−1,0〉 − F can be formed
in the same way as that used in Subcase 1.2.

Case 2: Suppose that |F0| = 3. Let F0 = {f1, f2, f3}. Since G0 is 2-fault-tolerant
hamiltonian, there exists a hamiltonian cycle C in G0 − {f2, f3}. Hence we have either
f1 /∈ V (C) ∪ E(C) or f1 ∈ V (C) ∪ E(C). Accordingly, we write C = 〈x, R, y, x〉 by
picking any edge (x, y) on C if f1 /∈ V (C) ∪ E(C); we write C = 〈x, R, y, f1, x〉 if f1

is on C. Let F ′ = F − F0. Since |F | ≤ 4 and |F0| = 3, |F ′| ≤ 1. Moreover, we
have either |{(x)+, (y)+, (x, (x)+), (y, (y)+)} ∩ F | = 0 or |{(x)−, (y)−, (x, (x)−), (y, (y)−)} ∩
F | = 0. With symmetry, we assume that |{(x)+, (y)+, (x, (x)+), (y, (y)+)} ∩ F | = 0. By
Lemma 2.2, there exists a hamiltonian path H of G〈1,...,n−1〉 −F ′ joining (y)+ to (x)+. Then
〈x, R, y, (y)+, H, (x)+, x〉 is a hamiltonian cycle of G〈0,1,...,n−1,0〉 − F .

Case 3: Suppose that |F0| = 2 and |Fi| = 2 with any 1 ≤ i ≤ n − 1. Since both G0 and
Gi are 2-fault-tolerant hamiltonian, there exists a hamiltonian cycle C in G0 −F0, and there
exists a hamiltonian cycle T in Gi −Fi. Since every Gj, 0 ≤ j ≤ n− 1, is 4-regular, we have
|V (Gj)| ≥ 5.

Subcase 3.1: Suppose that i ∈ {1, n − 1}. With symmetry, we assume that i = 1.
Apparently, there exists a vertex u in G0 − F0 such that (u)+ is in G1 − F1. Without loss
of generality, we write C = 〈u, R1, x, u〉 and T = 〈(u)+, y, R2, (u)+〉 so that (y)+ is different
from (x)−. By Lemma 2.2, there exists a hamiltonian path H of G〈2,...,n−1〉−F joining (x)− to
(y)+. Then 〈u, R1, x, (x)−, H, (y)+, y, R2, (u)+, u〉 is a hamiltonian cycle of G〈0,1,...,n−1,0〉 −F .
See Figure 2.4(a).

Subcase 3.2: Suppose that i /∈ {1, n − 1}. Obviously, there exist a vertex u in G0 − F0

and a vertex v in Gi − Fi such that (u)+ 6= (v)−. Without loss of generality, we write C =
〈u, x, R1, u〉 and T = 〈v, R2, y, v〉 so that (y)+ is different from (x)−. By Lemma 2.2, there ex-
ists a hamiltonian path P1 of G〈1,...,i−1〉 joining (u)+ to (v)−. Similarly, there exists a hamilto-
nian path P2 of G〈i+1,...,n−1〉 joining (y)+ to (x)−. Then 〈u, (u)+, P1, (v)−, v, R2, y, (y)+, P2, (x)−,
x, R1, u〉 is a hamiltonian cycle of G〈0,1,...,n−1,0〉 − F . See Figure 2.4(b) for illustration.

Case 4: Suppose that |F0| = 2 and |Fi| ≤ 1 for every 1 ≤ i ≤ n − 1. Since G0 is
2-fault-tolerant hamiltonian, there exists a hamiltonian cycle C in G0 − F0. Since G0 is
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Figure 2.5: Illustration for Case 4 and Case 5 of Theorem 2.2.

4-regular, we have |V (G0 − F0)| ≥ 3. For convenience, let m = |V (G0 − F0)|. Accordingly,
we write C = 〈u0, u1, u2, . . . , um−1, u0〉. Without loss of generality, we assume that |F ∩
{(u0)

+, (u1)
−, (u0, (u0)

+), (u1, (u1)
−)}| = 0. Let F ′ = F − F0. By Lemma 2.2, there exists

a hamiltonian path T of G〈1,...,n−1〉 − F ′ joining (u0)
+ to (u1)

−. Then 〈u0, (u0)
+, T , (u1)

−,
u1, . . . , um−1, u0〉 is a hamiltonian cycle of G〈0,1,...,n−1,0〉−F . See Figure 2.5(a) for illustration.

Case 5: Suppose that |F0| ≤ 1. That is, |Fi| ≤ 1 for all 0 ≤ i ≤ n−1. For convenience, let
Xi,i+1 = F∩Mi,i+1 for 0 ≤ i ≤ n−1. Suppose that there exists an integer t of {0, 1, . . . , n−1}
such that |Ft| + |Ft+1| + |Xt,t+1| ≥ 3. Without loss of generality, t can be assumed to be
n− 1. Otherwise, t is fixed to be n− 1. Accordingly, we have |Fi|+ |Fi+1|+ |Xi,i+1| ≤ 2 for
0 ≤ i ≤ n − 2. Since |Fn−1| + |F0| + |Xn−1,0| ≤ 4, we can choose a vertex x of Gn−1 − Fn−1

such that |F ∩ {(x)+, (x, (x)+)}| = 0. Let F ′ = F − Xn−1,0. By Lemma 2.2, there exists a
hamiltonian path T of G〈0,1,...,n−1〉−F ′ joining x to (x)+. Then 〈x, T, (x)+, x〉 is a hamiltonian
cycle of G〈0,1,...,n−1,0〉 − F . See Figure 2.5(b) for illustration.
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2.2 Fault-tolerant hamiltonian connectedness

In this section, we are going to show that the cycle composition network is optimal fault-
tolerant hamiltonian connected. This result is divided into three propositions.

Proposition 2.1. Assume that n ≥ 1. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-
tolerant hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n − 1, let
Mi,i+1 be a perfect matching between V (Gi) and V (Gi+1). Let F be a subset of V (G0)∪E(G0)
with |F | = 3. Then G〈0,1,...,n−1,0〉 − F is hamiltonian connected.

Proof. Let F = {f1, f2, f3}. Since G0 is 2-fault-tolerant hamiltonian, there exists a hamil-
tonian cycle C in G0 − {f2, f3}. Since G0 is 4-regular, we have |V (C)| ≥ 3. Let u and
v be two vertices of G〈0,1,...,n−1,0〉 − F . Then we need to construct a hamiltonian path of
G〈0,1,...,n−1,0〉 − F joining u to v. The following cases are distinguished.

Case 1: Suppose that u and v are in G0 − F . Since G0 is 1-fault-tolerant hamiltonian
connected, there exists a hamiltonian path H of G0−{f3} joining u to v. Suppose that f1 and
f2 are exclusive from H . Thus we write H = 〈u, P1, x, y, P2, v〉 with any edge (x, y) ∈ E(H).
Suppose that either f1 or f2 is exclusive from H . Without loss of generality, we assume that
f2 is exclusive from H . Hence we may write H = 〈u, P1, x, f1, y, P2, v〉. Suppose that both
f1 and f2 are on H , and they are adjacent. Thus we write H = 〈u, P1, x, f1, f2, y, P2, v〉.
By Lemma 2.2, there exists a hamiltonian path T of G〈1,...,n−1〉 joining (x)+ to (y)+. Then
〈u, P1, x, (x)+, T, (y)+, y, P2, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v. See
Figure 2.6(a) for illustration.

Suppose that both f1 and f2 are on H , and they are not adjacent. Hence we may write
H = 〈u, A1, x1, f1, y1, A2, x2, f2, y2, A3, v〉. Using Lemma 2.2, we can find a hamiltonian
path D1 of G〈1,...,n−2〉 joining (x1)

+ to (y1)
+. Similarly, there exists a hamiltonian path D2

of Gn−1 joining (x2)
− to (y2)

−. Therefore, 〈u, A1, x1, (x1)
+, D1, (y1)

+, y1, A2, x2, (x2)
−, D2,

(y2)
−, y2, A3, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.6(b)

for illustration.

Case 2: Suppose that u and v are in Gi for some 1 ≤ i ≤ n − 1. With symmetry, we
assume that i 6= n−1. Suppose that f1 is on the hamiltonian cycle C of G0−{f2, f3}. Since
|V (C)| ≥ 3, we write C = 〈x, P, y, f1, x〉. Otherwise, we write C = 〈x, P, y, x〉 with any edge
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Figure 2.7: Illustration for Case 2 of Proposition 2.1.

(x, y) ∈ E(C).

Subcase 2.1: Suppose that (x)+ 6= u and (x)+ 6= v. Thus either (y)− 6= (u)+ or
(y)− 6= (v)+. Without loss of generality, we assume that (y)− 6= (v)+. By Lemma 2.2, there
exists a hamiltonian path T1 of G〈1,...,i〉 − {v} joining u to (x)+. Similarly, there exists a
hamiltonian path T2 of G〈i+1,...,n−1〉 joining (y)− to (v)+. Then 〈u, T1, (x)+, x, P, y, (y)−, T2,
(v)+, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.7(a) for
illustration.

Subcase 2.2: Suppose that (x)+ = u or (x)+ = v. Without loss of generality, we assume
that (x)+ = u. By Lemma 2.2, there exists a hamiltonian path T of G〈1,...,n−1〉 −{u} joining
(y)− to v. Then 〈u = (x)+, x, P, y, (y)−, T, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F
joining u to v. See Figure 2.7(b) for illustration.

Case 3: Suppose that u is in G0 − F , and v is in Gi with any i > 0. Since i 6= 1 or
i 6= n − 1, we may assume that i 6= 1. Since |V (C)| ≥ 3, we write C = 〈u, T, z, u〉 with
z 6= u. Moreover, T can be written as 〈u, P1, x, f1, y, P2, z〉 if f1 is on T , and can be written
as 〈u, P1, x, y, P2, z〉 otherwise.

Subcase 3.1: Suppose that (z)− 6= v. Since G1 is 1-fault-tolerant hamiltonian connected,
there exists a hamiltonian path H of G1 joining (x)+ to (y)+. By Lemma 2.2, there exists
a hamiltonian path R of G〈2,...,n−1〉 joining (z)− to v. Then 〈u, P1, x, (x)+, H, (y)+, y, P2, z,
(z)−, R, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.8(a).

Subcase 3.2: Suppose that (z)− = v. By Lemma 2.2, there exists a hamiltonian path
H of G〈1,...,n−1〉−{v} joining (x)+ to (y)+. Then 〈u, P1, x, (x)+, H, (y)+, y, P2, z, (z)− = v〉 is
a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.8(b) for illustration.

Case 4: Suppose that u is in Gi and v is in Gj for any 1 ≤ i < j ≤ n− 1. Suppose that
f1 is on C. Then we write C = 〈x, P, y, f1, x〉. Otherwise, we write C = 〈x, P, y, x〉 with any
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(x, y) ∈ E(C). Since (x)+ 6= u or (y)+ 6= u, we may assume that (x)+ 6= u.

Subcase 4.1: Suppose that (y)− 6= v. By Lemma 2.2, there exists a hamiltonian path
T1 of G〈1,...,i〉 joining u to (x)+. Similarly, there exists a hamiltonian path T2 of G〈i+1,...,n−1〉

joining (y)− to v. Then 〈u, T1, (x)+, x, P, y, (y)−, T2, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉−
F joining u to v. See Figure 2.9(a) for illustration.

Subcase 4.2: Suppose that (y)− = v. By Lemma 2.2, there exists a hamiltonian path
H of G〈1,...,n−1〉 − {v} joining u to (x)+. Then 〈u, H, (x)+, x, P, y, (y)− = v〉 is a hamiltonian
path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.9(b) for illustration.

Proposition 2.2. Assume that n ≥ 1. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-
tolerant hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n − 1, let
Mi,i+1 be a perfect matching between V (Gi) and V (Gi+1). Let F be a faulty set of G〈0,1,...,n−1,0〉

such that |F | = 3 and |F ∩ (V (G0) ∪ E(G0))| = 2. Then G〈0,1,...,n−1,0〉 − F is hamiltonian
connected.
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Figure 2.10: Illustration for Case 1 of Proposition 2.2.

Proof. For convenience, let Fi = F ∩ (V (Gi) ∪ E(Gi)) and Xi,i+1 = F ∩ Mi,i+1 for every
0 ≤ i ≤ n−1. Moreover, let F ′ = F −F0. Obviously, we have |F0| = 2, |F ′| = 1, and |Fi| ≤ 1
for all 1 ≤ i ≤ n − 1. Since G0 is 4-regular, we have |V (G0)| ≥ 5 and |V (G0 − F0)| ≥ 3.
Moreover, since G0 is 2-fault-tolerant hamiltonian, there exists a hamiltonian cycle C in
G0 − F0. Let u and v be any two vertices of G〈0,1,...,n−1,0〉 − F . Then we have to construct a
hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v.

Case 1: Suppose that u and v are in G0 − F0. Since |V (G0 − F0)| ≥ 3, we may
write C = 〈u, P, y, u〉, where y 6= u. Moreover, we may write P = 〈u, H1, x, v, H2, y〉.
Note that the length of H1 becomes zero if u = x. Since |F ′| = 1, we have |X0,1| +
|F1| = 0 or |Xn−1,0| + |Fn−1| = 0. With symmetry, we assume that |X0,1| + |F1| = 0. By
Lemma 2.2, there exists a hamiltonian path T of G〈1,...,n−1〉 − F ′ joining (x)+ to (y)+. Then
〈u, H1, x, (x)+, T, (y)+, y, H−1

2 , v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v.
See Figure 2.10 for illustration.

Case 2: Suppose that u and v are in either G1 − F1 or Gn−1 − Fn−1. With symmetry,
we assume that u and v are in G1 − F1.

Subcase 2.1: Suppose that |X0,1| + |F1| = 1. Since |V (G0 − F0)| ≥ 3, we choose a
vertex x of the hamiltonian cycle C such that |F ′ ∩ {(x)+, (x, (x)+)}| = 0. Hence cycle C
can be written as 〈y, x, z, P, y〉. Since (x)+ 6= u or (x)+ 6= v, we assume that (x)+ 6= v.
Since G1 is 1-fault-tolerant hamiltonian connected, there exists a hamiltonian path Q[u, v]
of G1 − F1. Since (x)+ 6= v, we write Q = 〈u, T1, (x)+, w, T2, v〉. Note that T1 or T2 may be
a path of length 0. Moreover, we select a vertex from {y, z}, say y, such that (y)− 6= (w)+.
By Lemma 2.2, there exists a hamiltonian path H of G〈2,...,n−1〉 joining (y)− to (w)+. Then
〈u, T1, (x)+, x, z, P, y, (y)−, H, (w)+, w, T2, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉−F joining
u to v. See Figure 2.11(a) for illustration.

Subcase 2.2: Suppose that |X0,1| + |F1| = 0. Thus we can choose a vertex x of C such
that |F ′∩{(x)+, (x, (x)+)}| = 0 and (x)+ /∈ {u, v}. Hence the hamiltonian cycle C of G0−F0

can be written as C = 〈y, x, z, P, y〉.

Subcase 2.2.1: Suppose that |{(y)+, (z)+} ∩ {u, v}| ≥ 1. Without loss of generality, we
assume that (z)+ = u. By Lemma 2.2, there exists a hamiltonian path T of G〈1,...,n−1〉 −
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Figure 2.11: Illustration for Case 2 of Proposition 2.2.

(F ′ ∪ {u}) joining (x)+ to v. Then 〈u = (z)+, z, P, y, x, (x)+, T, v〉 is a hamiltonian path of
G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.11(b) for illustration.

Subcase 2.2.2: Suppose that |{(y)+, (z)+}∩{u, v}| = 0. Since |F ′∩{(y)−, (y, (y)−)}| = 0
or |F ′∩{(z)−, (z, (z)−)}| = 0, we assume that |F ′∩{(y)−, (y, (y)−)}| = 0. Since G1 is 1-fault-
tolerant hamiltonian connected, there exists a hamiltonian path Q of G1−{((x)+, ((y)−)−)}.
Since (x)+ /∈ {u, v}, Q can be represented by 〈u, T1, w1, (x)+, w2, T2, v〉. Note that T1 or T2

may be a path of length 0. Accordingly, we have that |F ′ ∩ {(w1)
+, (w1, (w1)

+)}| = 0
or |F ′ ∩ {(w2)

+, (w2, (w2)
+)}| = 0. Without loss of generality, we assume that |F ′ ∩

{(w2)
+, (w2, (w2)

+)}| = 0. By Lemma 2.2, there exists a hamiltonian path H of G〈2,...,n−1〉−F ′

joining (y)− to (w2)
+. Then 〈u, T1, w1, (x)+, x, z, P, y, (y)−, H, (w2)

+, w2, T2, v〉 is a hamilto-
nian path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.11(c).

Case 3: Suppose that u and v are in Gi−Fi with 1 < i < n−1. Without loss of generality,
we assume that

∑i−1
j=1 |Fj | +

∑i−1
j=0 |Xj,j+1| = 0. Since |V (G0 − F0)| ≥ 3, we first choose a

vertex x of C such that |F ′ ∩ {(x)−, (x, (x)−)}| = 0. Thus, we can write C = 〈z, x, y, P, z〉.
Next, we choose a vertex t of Gi − (Fi ∪ {u}) such that |F ′ ∩ {(t)+, (t, (t)+)}| = 0 and
(t)+ 6= (x)−. Since Gi is 1-fault-tolerant hamiltonian connected, there is a hamiltonian path
H in Gi−Fi joining u to t. Then H can be represented by 〈u, R1, w, v, R2, t〉, where R1 or R2

may be a path of length 0. Since (y)+ 6= (w)− or (z)+ 6= (w)−, we assume that (y)+ 6= (w)−.
By Lemma 2.2, there exists a hamiltonian path T1 of G〈0,...,i−1〉 − F ′ joining (w)− to (y)+.
Similarly, there exists a hamiltonian path T2 of G〈i+1,...,n−1〉 − F ′ joining (x)− to (t)+. As
a result, 〈u, R1, w, (w)−, T1, (y)+, y, P, z, x, (x)−, T2, (t)

+, t, R−1
2 , v〉 is a hamiltonian path of

G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.12(a) for illustration.

Case 4: Suppose that u is in G0 − F0, and v is in Gi − Fi with any i > 0. Since
|V (G0−F0)| ≥ 3, we can write C = 〈x, u, y, P, x〉. Since |F ′| = 1, we have |X0,1|+ |F1| = 0 or
|Xn−1,0|+ |Fn−1| = 0. Without loss of generality, we assume |X0,1|+ |F1| = 0. Hence, we have
(x)+ 6= v or (y)+ 6= v. Without loss of generality, we assume (x)+ 6= v. By Lemma 2.2, there
exists a hamiltonian path H of G〈1,...,n−1〉−F ′ joining (x)+ to v. Then 〈u, y, P, x, (x)+, H, v〉
is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to v. See Figure 2.12(b) for illustration.
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Figure 2.12: Illustration for Case 3, Case 4 and Case 5 of Proposition 2.2.

Case 5: Suppose that u is in Gi − Fi, and v is in Gj − Fj for any 1 ≤ i < j ≤ n − 1.
Since |F ′| = 1, we have |X0,1|+ |F1| = 0 or |Xn−1,0|+ |Fn−1| = 0. Without loss of generality,
we assume |Xn−1,0| + |Fn−1| = 0. Since |V (G0 − F0)| ≥ 3, we can choose a vertex x of
C such that (x)+ 6= u and |F ′ ∩ {(x)+, (x, (x)+)}| = 0. Moreover, there exists at least
one neighbor of x on C, namely y, satisfying (y)− 6= v. Accordingly, we can write C =
〈x, P, y, x〉. By Lemma 2.2, there exists a hamiltonian path T1 of G〈1,...,i〉 − F ′ joining u to
(x)+. Similarly, there exists a hamiltonian path T2 of G〈i+1,...,n−1〉 − F ′ joining (y)− to v.
Then 〈u, T1, (x)+, x, P, y, (y)−, T2, v〉 is a hamiltonian path of G〈0,1,...,n−1,0〉 − F joining u to
v. See Figure 2.12(c) for illustration.

Lemma 2.3. Assume that n ≥ 3. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n− 2, let Mi,i+1 be a
perfect matching between V (Gi) and V (Gi+1). Moreover, let Fi ⊆ V (Gi)∪E(Gi) with |Fi| ≤ 1
for every 0 ≤ i ≤ n− 1 and let Xi,i+1 ⊆ Mi,i+1 with |Xi,i+1| ≤ 1 for every 0 ≤ i ≤ n− 2 such
that |Fi| + |Fi+1| + |Fi+2| + |Xi,i+1| + |Xi+1,i+2| ≤ 2 is satisfied for all 0 ≤ i ≤ n − 3. Let u
and v be two vertices of Gt −Ft with 0 < t < n− 1. Then there exists a hamiltonian path of
G〈0,...,n−1〉 − ((

⋃n−1
i=0 Fi) ∪ (

⋃n−2
i=0 Xi,i+1)) joining u to v.

Proof. For convenience, let F = (
⋃n−1

i=0 Fi)∪(
⋃n−2

i=0 Xi,i+1). Since Gt is 4-regular super fault-
tolerant hamiltonian, there exists a hamiltonian path P of Gt−Ft joining u to v. Depending
on the value of |Ft|, we distinguish the following two cases.

Case 1: Suppose that |Ft| = 1. We have |V (Gt − Ft)| ≥ 4. Let w1 = u. Thus we
write P as 〈u = w1, w2, w3, w4, R, v〉. Since |Ft| = 1, we have |Ft−1| + |Ft+1| + |Xt−1,t| +
|Xt,t+1| ≤ 1. Hence, we select a vertex wi from {w2, w3} such that |F ∩ {(wi)

−, (wi)
+,

(wi, (wi)
−), (wi, (wi)

+)}| = 0. Accordingly, we can see that either |F ∩ { (wi−1)
+, (wi+1)

−,
(wi−1, (wi−1)

+), (wi+1, (wi+1)
−) }| = 0 or |F ∩ {(wi−1)

−, (wi+1)
+, (wi−1, (wi−1)

−), (wi+1,
(wi+1)

+) }| = 0. Without loss of generality, we assume |F ∩ { (wi−1)
+, (wi+1)

−, (wi−1,
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(wi−1)
+), (wi+1, (wi+1)

−)}| = 0. Hence we can further write P as 〈u = w1, P1, wi−1, wi,
wi+1, P2, v〉. By Lemma 2.2, there exists a hamiltonian path T of G〈0,...,t−1〉 − ((

⋃t−1
i=0 Fi) ∪

(
⋃t−2

i=0 Xi,i+1)) joining (wi)
− to (wi+1)

−. Similarly, there exists a hamiltonian path Q of
G〈t+1,...,n−1〉−((

⋃n−1
i=t+1 Fi)∪(

⋃n−2
i=t+1 Xi,i+1)) joining (wi−1)

+ to (wi)
+. Then 〈u = w1, P1, wi−1,

(wi−1)
+, Q, (wi)

+, wi, (wi)
−, T , (wi+1)

−, wi+1, P2, v〉 is a hamiltonian path of G〈0,...,n−1〉−F
joining u to v.

Case 2: Suppose that |Ft| = 0. Firstly, assume that |V (Gt)| ≥ 6. Hence we can
select two adjacent edges (x, y), (y, z) ∈ E(P ) such that |F∩{(x)+, (y)+, (y)−, (z)−, (x, (x)+),
(y, (y)+), (y, (y)−), (z, (z)−)}| = 0 or |F ∩ {(x)−, (x, (x)−), (y)−, (y, (y)−), (y, (y)+), (z, (z)+),
(y)+, (z)+}| = 0. Without loss of generality, we assume that |F ∩ {(x)+, (y)+, (y)−, (z)−,
(x, (x)+), (y, (y)+), (y, (y)−), (z, (z)−)}| = 0. Accordingly, P can be written as 〈u, P1, x, y,
z, P2, v〉, where P1 or P2 may be a path of length 0. By Lemma 2.2, there exists a hamiltonian
path T of G〈0,...,t−1〉 − ((

⋃t−1
i=0 Fi)∪ (

⋃t−2
i=0 Xi,i+1)) joining (y)− to (z)−. Similarly, there exists

a hamiltonian path Q of G〈t+1,...,n−1〉 − ((
⋃n−1

i=t+1 Fi) ∪ (
⋃n−2

i=t+1 Xi,i+1)) joining (x)+ to (y)+.
Then 〈u, P1, x, (x)+, Q, (y)+, y, (y)−, T, (z)−, z, P2, v〉 is a hamiltonian path of G〈0,...,n−1〉 − F
joining u to v.

Secondly, assume that |V (Gt)| = 5. Thus Gt is isomorphic to the complete graph of five
vertices, K5. Let V (Gt) = {u = w1, w2, w3, w4, w5 = v}. First of all, we choose a vertex from
{w2, w3, w4}, say w2, such that |F ∩ {(w2)

−, (w2)
+, (w2, (w2)

−), (w2, (w2)
+)}| = 0. Then we

choose two vertices x, y from {w3, w4, w5} such that |F∩{(x)+, (x, (x)+), (y)−, (y, (y)−)}| = 0.
Accordingly, a hamiltonian path of Gt can be written as 〈u = w1, P1, x, w2, y, P2, w5 = v〉.
Then a hamiltonian path of G〈0,...,n−1〉 − F joining u to v can be formed in a way similar to
that mentioned above.

Lemma 2.4. Assume that n ≥ 3. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n− 2, let Mi,i+1 be a
perfect matching between V (Gi) and V (Gi+1). Moreover, let Fi ⊆ V (Gi)∪E(Gi) with |Fi| ≤ 1
for every 0 ≤ i ≤ n − 1, and let Xi,i+1 ⊆ Mi,i+1 with |Xi,i+1| ≤ 1 for every 0 ≤ i ≤ n − 2
such that |Fi| + |Fi+1| + |Fi+2| + |Xi,i+1| + |Xi+1,i+2| ≤ 2 is satisfied for all 0 ≤ i ≤ n − 3.
Let u be a vertex of Gs − Fs, and let v be a vertex of Gt − Ft with 0 ≤ s ≤ t ≤ n − 1. Then
there exists a hamiltonian path of G〈0,...,n−1〉 − ((

⋃n−1
i=0 Fi) ∪ (

⋃n−2
i=0 Xi,i+1)) joining u to v.

Proof. For convenience, let F = (
⋃n−1

i=0 Fi) ∪ (
⋃n−2

i=0 Xi,i+1). When s = 0, the statement
follows from Lemma 2.2. When 0 < s = t < n − 1, the statement follows from Lemma 2.3.
So, we consider the case when 0 < s < t in the following. Since Gs is 4-regular, we have
|V (Gs)| ≥ 5. Moreover, since |Fs| + |Fs+1| + |Xs,s+1| ≤ 2, we can choose a vertex x of
Gs − (Fs ∪ {u}) such that |F ∩ {x, (x)+, (x, (x)+)}| = 0 and (x)+ 6= v. By Lemma 2.2, there
exists a hamiltonian path P of G〈0,...,s〉− ((

⋃s
i=0 Fi)∪ (

⋃s−1
i=0 Xi,i+1)) joining u to x. Similarly,

there exists a hamiltonian path T of G〈s+1,...,n−1〉−((
⋃n−1

i=s+1 Fi)∪(
⋃n−2

i=s+1 Xi,i+1)) joining (x)+

to v. Then 〈u, P, x, (x)+, T, v〉 is a hamiltonian path of G〈0,...,n−1〉 − F joining u to v.
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Proposition 2.3. Assume that n ≥ 1. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-
tolerant hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n − 1, let
Mi,i+1 be a perfect matching between V (Gi) and V (Gi+1). Let F be a faulty set of G〈0,1,...,n−1,0〉

such that |F | = 3 and |F ∩ (V (Gi) ∪ E(Gi))| ≤ 1 for 0 ≤ i ≤ n − 1. Then G〈0,1,...,n−1,0〉 − F
is hamiltonian connected.

Proof. Let u be a vertex of Ga − Fa, and let v be a vertex of Gb − Fb for any 0 ≤ a ≤
b ≤ n − 1. For convenience, let Fi = F ∩ (V (Gi) ∪ E(Gi)) and Xi,i+1 = F ∩ Mi,i+1 for
every 0 ≤ i ≤ n − 1. Obviously, we have |Fi| ≤ 1. Moreover, let t be an integer such that
|Xt,t+1| = max{|Xi,i+1| | 0 ≤ i ≤ n − 1}. Depending on the value of |Xt,t+1|, two cases are
distinguished.

Case 1: Suppose that |Xt,t+1| ≥ 1. Without loss of generality, t can be assumed to be
n − 1. Accordingly, we have |Xi,i+1| ≤ 1 for every 0 ≤ i ≤ n − 2. Let F ′ = F − Xn−1,0.
Therefore we have |F ′| ≤ 2 and |Fi| + |Fi+1| + |Fi+2| + |Xi,i+1| + |Xi+1,i+2| ≤ 2 for all
0 ≤ i ≤ n − 3. By Lemma 2.4, G〈0,1,...,n−1〉 − F ′ is hamiltonian connected.

Case 2: Suppose that |Xt,t+1| = 0. Then we set t to be a − 1. Obviously, we have
|Fi| + |Fi+1| + |Xi,i+1| ≤ 2 for all 0 ≤ i ≤ n − 2. By Lemma 2.2, G〈a,a+1,...,n−1,0,...,a−1〉 − F is
hamiltonian connected.

As a result, we conclude that G〈0,1,...,n−1,0〉 − F is hamiltonian connected.

Theorem 2.3. Suppose that n ≥ 3. Let G0, G1, . . . , Gn−1 be n 4-regular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n − 1, let Mi,i+1 be
a perfect matching between V (Gi) and V (Gi+1). Then G〈0,1,...,n−1,0〉 is optimal fault-tolerant
hamiltonian connected.

Proof. Obviously, G〈0,1,...,n−1,0〉 is 6-regular. Thus, we need to show that G〈0,1,...,n−1,0〉 is
3-fault-tolerant hamiltonian connected. Let F be a faulty set of G〈0,1,...,n−1,0〉 with |F | ≤ 3.
For convenience, let Fi = F ∩ (V (Gi)∪E(Gi)) for 0 ≤ i ≤ n− 1. Without loss of generality,
we assume that |F0| ≥ |Fi| for all 1 ≤ i ≤ n− 1. Depending on the value of |F0|, three cases
are distinguished. The first case that |F0| = 3 is proved by Proposition 2.1. The second
case when |F0| = 2 is proved by Proposition 2.2. Finally, the case for |F0| ≤ 1 follows from
Proposition 2.3.

According to Theorem 2.1, Theorem 2.2, and Theorem 2.3, we have the next corollary.

Corollary 2.1. Suppose that n ≥ 3 and k ≥ 4. Let G0, G1, . . . , Gn−1 be n k-regular super
fault-tolerant hamiltonian graphs with the same number of vertices. For any 0 ≤ i ≤ n−1, let
Mi,i+1 be a perfect matching between V (Gi) and V (Gi+1). Then G〈0,1,...,n−1,0〉 is (k+2)-regular
super fault-tolerant hamiltonian.
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Chapter 3

Mutually Independent Hamiltonian

Cycles in Butterfly Networks

It is well known that the problem of finding hamiltonian cycles in general graphs is NP-
complete. Thus the hamiltonicity has gained many researchers’ efforts, and has been dis-
cussed in many areas. For instance, hamiltonian cycles in Cayley graphs were widely ad-
dressed in computer science [38], in the study of word-hyperbolic groups and automatic
groups [19], in creating Escher-like repeating patterns in hyperbolic plane [17], and in com-
binatorial designs [16]. Unlike the previous results, we would like to concern a variant of
hamiltonian cycles, namely mutually independent hamiltonian cycles [59,60], with regard to
parallel and distributed computation.

The mutually independent hamiltonian cycles are defined as follows. Let G be a graph
with N vertices. A hamiltonian cycle C of G is described by 〈u1, u2, . . . , uN , u1〉 to em-
phasize its order of vertices. Accordingly, u1 is referred to as the beginning vertex. Two
hamiltonian cycles of G beginning from a given vertex s, namely C1 = 〈u1, u2, . . . , uN , u1〉
and C2 = 〈v1, v2, . . . , vN , v1〉, are independent if u1 = v1 = s and ui 6= vi for 2 ≤ i ≤ N . Two
hamiltonian paths of G, P1 = 〈u1, u2, . . . , uN〉 and P2 = 〈v1, v2, . . . , vN 〉, are independent if
u1 = v1, uN = vN , and ui 6= vi for every 1 < i < N ; P1 and P2 are fully independent if
ui 6= vi for every 1 ≤ i ≤ N . We say a set of m hamiltonian cycles {C1, . . . , Cm} of G,
beginning from the same vertex, is m-mutually independent if Ci and Cj are independent
whenever i 6= j. A set of m hamiltonian paths {P1, . . . , Pm} of G are m-mutually indepen-
dent (respectively, m-mutually fully independent) if any two different hamiltonian paths are
independent (respectively, fully independent). Moreover, the mutually independent hamil-
tonicity of G, denoted by IHC(G), is defined as the maximum integer m such that, for
any vertex u, there exist m-mutually independent hamiltonian cycles of G beginning from
u. Many popular interconnection networks, such as hypercubes [59], star graphs [49], pan-
cake graphs [49], bubble-sort graphs [57], etc. have the maximum numbers of mutually
independent hamiltonian cycles.

The concept of mutually independent hamiltonian cycles can be applied in many differ-
ent areas. For example, communication applications on interconnection networks are often
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viewed as the interleaving of local computation stages and global communication stages.
Such applications can be performed via a message routing protocol, by which information is
transmitted along the communication links in packets of equal size. For the sake of simplifi-
cation, the store-and-forward all-port communication model [35] has been widely adopted as
one basic routing scheme, in which every processor is assumed to be capable of exchanging
messages of fixed length with all its neighbors at each time step. Although routing mes-
sages over a spanning tree on the given network is intuitively the best strategy for message
transmission, Baldi and Ofek [3] presented a systematic comparison between ring and tree
embedding for group (many-to-many) multicast, and concluded that ring embedding remains
a promising alternative. It is worth mentioning that there may be two potential shortcom-
ings incurred by routing messages in a ring structured network [43]. Firstly, at least two
message packets are likely to reside in the same processor, so as to provoke the contention for
the local computation resources. Secondly, two or more message packets will contend for the
use of some communication link (in the same direction). Clearly, the mutually independent
hamiltonian cycles can ease the effects of such shortcomings.

As another example, a Latin square of order n is an n × n array containing the integers
from 1 to n, arranged so that each integer appears exactly once in each row, and exactly once
in each column. If we delete some rows from a Latin square, we will get a Latin rectangle.
Obviously, a Latin square of order n can be thought of as the intermediate vertices of n
mutually independent hamiltonian cycles on the complete graph with n + 1 vertices. Thus
the concept behind mutually independent hamiltonian cycles can be interpreted as a Latin
square/rectangle for graphs. We can consider the following scenario. A tour agency will
organize a 10-day tour to Japan in the Christmas vacation. Suppose that there will be many
people joining this tour. However, the maximum number of people stay in each local area
is limited, say 100 people, for the sake of a hotel contract. One trivial solution is based
on the First-Come-First-Served intuition. So, only 100 people can join this tour. Note
that we cannot schedule the tour in a pipelined manner because the holiday period is fixed.
Fortunately, we observe that scheduling a tour is like a hamiltonian cycle of a graph, in
which a vertex denotes a hotel and an edge denotes the connection between two hotels if
they can be traveled in a reasonable time. Therefore, we can organize all the attendees into
a number of subgroups; each subgroup has its own tour in such a way that no two subgroups
will stay in the same area during the same time period. So any two different tours are indeed
independent hamiltonian cycles. If there exist five mutually independent hamiltonian cycles,
then we may allow up to 500 attendees to visit Japan on a Christmas vacation. Obviously, if
we can find the maximum number of mutually independent hamiltonian cycles, the number
of tour attendees would be maximized.

3.1 Topological structure of butterfly networks

For any ℓ ∈ Zn and i ∈ Z2, we use BF i
ℓ (n) to denote the subgraph of BF (n) induced by

{〈h, a0 . . . aℓ . . . an−1〉 ∈ V (BF (n)) | aℓ = i}. Obviously, {BF 0
ℓ (n), BF 1

ℓ (n)} forms a partition
of BF (n). Moreover, BF i

ℓ1
(n) is isomorphic to BF j

ℓ2
(n) for any i, j ∈ Z2 and any ℓ1, ℓ2 ∈ Zn.

With this observation, Wong [70] proposed a stretching operation to obtain BF i
ℓ (n) from
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BF (n − 1). More precisely, the stretching operation can be described as follows.

Let i ∈ Z2 and ℓ ∈ Zn for n ≥ 3. Furthermore, let Gn denote the set of all subgraphs
of BF (n). Suppose that G ∈ Gn. We define the following subsets of V (BF (n + 1)) and
E(BF (n + 1)):

V1 = {〈h, a0 . . . aℓ−1iaℓ . . . an−1〉 | 0 ≤ h < ℓ, 〈h, a0 . . . aℓ−1aℓ . . . an−1〉 ∈ V (G)},

V2 = {〈h + 1, a0 . . . aℓ−1iaℓ . . . an−1〉 | ℓ < h ≤ n − 1, 〈h, a0 . . . aℓ−1aℓ . . . an−1〉 ∈ V (G)},

V3 = {〈ℓ, a0 . . . aℓ−1iaℓ . . . an−1〉 | 〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 is incident to

a level-(ℓ − 1)mod n edge in G},

V4 = {〈ℓ + 1, a0 . . . aℓ−1iaℓ . . . an−1〉 | 〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 is incident to

a level-ℓ edge in G},

E1 = {(〈h, a0 . . . aℓ−1iaℓ . . . an−1〉, 〈h + 1, b0 . . . bℓ−1ibℓ . . . bn−1〉) | 0 ≤ h < ℓ,

(〈h, a0 . . . aℓ−1aℓ . . . an−1〉, 〈h + 1, b0 . . . bℓ−1bℓ . . . bn−1〉) ∈ E(G)},

E2 = {(〈h + 1, a0 . . . aℓ−1iaℓ . . . an−1〉, 〈(h + 2)mod (n + 1), b0 . . . bℓ−1ibℓ . . . bn−1〉) | ℓ ≤ h ≤ n − 1,

(〈h, a0 . . . aℓ−1aℓ . . . an−1〉, 〈(h + 1)mod n, b0 . . . bℓ−1bℓ . . . bn−1〉) ∈ E(G)},

E3 = {(〈ℓ, a0 . . . aℓ−1iaℓ . . . an−1〉, 〈ℓ + 1, a0 . . . aℓ−1iaℓ . . . an−1〉) |

〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 is incident to at least one level-(ℓ − 1)mod n edge

and at least one level-ℓ edge in G}.

The stretching function γi
ℓ :
⋃

n≥3 Gn →
⋃

n≥4 Gn is defined by assigning γi
ℓ(G) as the graph

with the vertex set V1 ∪V2 ∪V3 ∪V4 and the edge set E1 ∪E2 ∪E3. Clearly γi
ℓ is well-defined

and one-to-one. We have γi
ℓ(G) ∈ Gn+1 if G ∈ Gn. In particular, γi

ℓ(BF (n)) = BF i
ℓ (n + 1).

In Figure 3.1, we illustrate a subgraph G of BF (3), γ0
0(G) in γ0

0(BF (3)), and γ0
1(G) in

γ0
1(BF (3)). Obviously, γi

ℓ1
(BF (n)) is isomorphic to γj

ℓ2
(BF (n)) for any ℓ1, ℓ2 ∈ Zn and

i, j ∈ Z2. Moreover, γi
ℓ(P ) is a path in BF (n + 1) if P is a path in BF (n).

In fact, BF (n) can be further partitioned. Let m be an integer with 1 ≤ m ≤ n.
Assume that ℓ1, . . . , ℓm ∈ Zn such that ℓ1 < . . . < ℓm. For any i1, . . . , im ∈ Z2, we use
BF i1,...,im

ℓ1,...,ℓm
(n) to denote the subgraph of BF (n) induced by {〈h, a0 . . . an−1〉 ∈ V (BF (n)) |

aℓj
= ij for 1 ≤ j ≤ m}. In Figure 3.2, we illustrate BF 0,0

0,1 (4), BF 0,0
0,2 (4), BF 0,0

0,3 (4), BF 0,0,0
0,2,3 (4),

BF 0,0,0
0,1,3 (4), and BF 0,0,0

0,1,2 (4). Clearly BF 0,0
0,1 (4) is isomorphic with BF 0,0

0,3 (4); furthermore,

BF 0,0,0
0,2,3 (4), BF 0,0,0

0,1,3 (4), and BF 0,0,0
0,1,2 (4) are also isomorphic. However, BF 0,0

0,1 (4) is not isomor-

phic to BF 0,0
0,2 (4).

Lemma 3.1. Assume that n ≥ 3 and i, j, k ∈ Z2. Then BF i,j
0,1(n) is isomorphic with

BF i,j
0,n−1(n); BF i,j,k

0,1,2(n), BF i,j,k
0,1,n−1(n), and BF i,j,k

0,n−2,n−1(n) are isomorphic.

Obviously, {BF i1,...,im
ℓ1,...,ℓm

(n) | i1, . . . , im ∈ Z2, ℓ1, . . . , ℓm ∈ Zn, ℓ1 < . . . < ℓm} forms a
partition of BF (n) for any 1 ≤ m ≤ n. To avoid the complication caused from modular

25



(c)

0

1

2

3

0

(b)

0

1

2

3

0

0

1

2

0

(a)

000 100 010 110 001 101 011 111

0000 01000010 01100001 010100110111 0000 10000010 10100001 100100111011

Figure 3.1: (a) A subgraph G of BF (3); (b) γ0
0(G) in γ0
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1(G) in γ0
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arithmetic, we restrict our attention on the case that 1 ≤ m ≤ n−1, 0 ≤ ℓ1 < . . . < ℓm, and
ℓj < n − m + j − 1 for each 1 ≤ j ≤ m. The following two lemmas can be easily verified.

Lemma 3.2. Let 1 ≤ m ≤ n − 1. Suppose that i1, . . . , im ∈ Z2 and ℓ1, . . . , ℓm are integers
such that 0 ≤ ℓ1 < . . . < ℓm and ℓj < n − m + j − 1 for each 1 ≤ j ≤ m. Then

BF i1,...,im
ℓ1,...,ℓm

(n) =





γim
ℓm

◦ γ
im−1

ℓm−1
◦ . . . ◦ γi3

ℓ3
(BF i1,i2

ℓ1,ℓ2
(3)) if m = n − 1,

γim
ℓm

◦ γ
im−1

ℓm−1
◦ . . . ◦ γi2

ℓ2
(BF i1

ℓ1
(3)) if m = n − 2,

γim
ℓm

◦ γ
im−1

ℓm−1
◦ . . . ◦ γi1

ℓ1
(BF (n − m)) otherwise.

Lemma 3.3. Let G be a connected spanning subgraph of BF i,j
0,1(n), with i, j ∈ Z2 and n ≥ 3.

Assume that 2 ≤ ℓ ≤ n − 1. Let

F0 = {〈ℓ, a0 . . . an−1〉 ∈ V (G) | 〈ℓ, a0 . . . an−1〉 is not incident to any level-(ℓ − 1) edge in G},

F1 = {〈ℓ, a0 . . . an−1〉 ∈ V (G) | 〈ℓ, a0 . . . an−1〉 is not incident to any level-ℓ edge in G}.

For any p, q ∈ Z2, let

F0 = {〈ℓ, a0 . . . aℓ−1pqaℓ . . . an−1〉 | 〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 ∈ F0}

∪{〈ℓ + 1, a0 . . . aℓ−1pqaℓ . . . an−1〉 | 〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 ∈ F0},

F1 = {〈ℓ + 1, a0 . . . aℓ−1pqaℓ . . . an−1〉 | 〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 ∈ F1}

∪{〈ℓ + 2, a0 . . . aℓ−1pqaℓ . . . an−1〉 | 〈ℓ, a0 . . . aℓ−1aℓ . . . an−1〉 ∈ F1},

M0 =
⋃

〈ℓ,a0...an−1〉/∈F0∪F1

{(〈ℓ, a0 . . . aℓ−1pqaℓ . . . an−1〉, 〈ℓ + 1, a0 . . . aℓ−1pqaℓ . . . an−1〉)} , and

M1 =
⋃

〈ℓ,a0...an−1〉/∈F0∪F1

{(〈ℓ + 1, a0 . . . aℓ−1pqaℓ . . . an−1〉, 〈ℓ + 2, a0 . . . aℓ−1pqaℓ . . . an−1〉)}.

Then F0 ∩ F1 = ∅, F0 ∩ F1 = ∅, F0 ∪ F1 = V (BF i,j,p,q
0,1,ℓ,ℓ+1(n + 2)) − V (γq

ℓ+1 ◦ γp
ℓ (G)), and

M0 ∪ M1 ⊆ E(γq
ℓ+1 ◦ γp

ℓ (G)).

3.2 Hamiltonian cycles and paths in butterfly networks

Let G be a subgraph of BF (n). A cycle C in G is called an ℓ-scheduled cycle of G if
every level-ℓ vertex of G is incident to a level-(ℓ − 1)mod n edge and a level-ℓ edge on C [70].
Furthermore, a cycle C in G is a totally scheduled cycle of G if it is an ℓ-scheduled cycle of
G for all ℓ ∈ Zn [70]. Obviously, γi

ℓ(C) with i ∈ {0, 1} is a totally scheduled cycle of γi
ℓ(G)

if C is a totally scheduled cycle of G.

Lemma 3.4. [70] Let n ≥ 3. Then BF (n) has a totally scheduled hamiltonian cycle.

By stretching operation, we have the following two corollaries.
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Corollary 3.1. Assume that n ≥ 3 and i, j, k ∈ Z2. Then there exists a totally scheduled
hamiltonian cycle of BF i,j,k

0,1,2(n) including all straight edges of level 0, level 1, and level 2.

Corollary 3.2. Assume that n ≥ 4 and i, j, p, q ∈ Z2. Then there exists a totally scheduled
hamiltonian cycle of BF i,j,p,q

0,1,2,3(n) including all straight edges of level 0, level 1, level 2, and

level 3 in BF i,j,p,q
0,1,2,3(n).

Suppose that e1 = (u1, v1) and e2 = (u2, v2) are either any two cross edges of BF (n) or any
two straight edges of BF (n). Since BF (n) is vertex-transitive, there exists an isomorphism
µ over V (BF (n)) such that u2 = µ(u1) and v2 = µ(v1). Clearly, every hamiltonian cycle of
BF (n) includes at least one cross edge and at least one straight edge.

Lemma 3.5. For any edge e of BF (n) with n ≥ 3, there exists a totally scheduled hamilto-
nian cycle of BF (n) including e.

Lemma 3.6. Assume that i, j, k ∈ Z2. Let e be any edge of BF i,j,k
0,1,2(4) such that e /∈ {

(〈3, ijk0〉, 〈0, ijk0〉), (〈3, ijk1〉, 〈0, ijk1〉)}. Then there exists a totally scheduled hamiltonian
cycle C of BF i,j,k

0,1,2(4) such that e ∈ E(C).

Proof. Obviously, 〈 〈0, ijk0〉, 〈1, ijk0〉, 〈2, ijk0〉, 〈3, ijk0〉, 〈0, ijk1〉, 〈1, ijk1〉, 〈2, ijk1〉,
〈3, ijk1〉, 〈0, ijk0〉 〉 is the unique hamiltonian cycle of BF i,j,k

0,1,2(4). Thus, this lemma is
proved.

By stretching operation and Corollary 3.1, we have the following corollary.

Corollary 3.3. Suppose that n ≥ 5. Let e be any edge of BF i,j,k
0,1,2(n) with i, j, k ∈ Z2. Then

there exists a totally scheduled hamiltonian cycle of BF i,j,k
0,1,2(n) including e.

A path P of BF (n) is weakly ℓ-scheduled if there is at least one non-terminal level-ℓ
vertex v of P such that v is incident to a level-(ℓ − 1)mod n edge and a level-ℓ edge on P .
Figure 3.3 illustrates two weakly 2-scheduled hamiltonian paths P1 and P2 of BF i,j

0,1(4) and

their images γ0
3 ◦ γ0

2(P1) and γ0
3 ◦ γ0

2(P2) on γ0
3 ◦ γ0

2(BF i,j
0,1(4)) = BF i,j,0,0

0,1,2,3(6), respectively.

Lemma 3.7. Let n ≥ 4 and i, j ∈ Z2. Suppose that s is any level-1 vertex of BF i,j
0,1(n) and

d is any level-2 vertex of BF i,j
0,1(n). Then there exists a weakly 2-scheduled hamiltonian path

of BF i,j
0,1(n), joining s to d.

Proof. Without loss of generality, we assume that s = 〈1, ij0n−2〉 and d = 〈2, ijpqx〉 with
p, q ∈ Z2 and x ∈ Z

n−4
2 . We prove this lemma by induction on n. The induction bases are

listed in Table 3.1 and Table 3.2.

As the inductive hypothesis, we assume that the statement holds for BF i,j
0,1(n−2) with n ≥

6. Now we partition BF i,j
0,1(n) into {BF i,j,h,k

0,1,2,3(n) | h, k ∈ Z2}. By the inductive hypothesis,
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Figure 3.3: (a) A weakly 2-scheduled hamiltonian path P1 of BF i,j
0,1(4) joins 〈1, ij00〉 to

〈2, ij10〉; (b) γ0
3 ◦ γ0

2(P1) in BF i,j,0,0
0,1,2,3(6) = γ0

3 ◦ γ0
2(BF i,j

0,1(4)); (c) a weakly 2-scheduled hamil-

tonian path P2 of BF i,j
0,1(4) joins 〈1, ij00〉 to 〈2, ij00〉; (d) γ0

3 ◦ γ0
2(P2) in BF i,j,0,0

0,1,2,3(6).

there exists a weakly 2-scheduled hamiltonian path P 00 of BF i,j
0,1(n−2) joining 〈1, ij0n−4〉 to

〈2, ijx〉. Hence, there is at least one non-terminal level-2 vertex of P 00, say v = 〈2, ijy〉 with
y 6= x, such that v is incident to a level-1 edge and a level-2 edge on P 00. By Lemma 3.2,
we have BF i,j,0,0

0,1,2,3(n) = γ0
3 ◦ γ0

2 ◦ γj
1(BF i

0(n − 3)) = γ0
3 ◦ γ0

2(BF i,j
0,1(n − 2)). Thus, γ0

3 ◦ γ0
2(P

00)

is a path on BF i,j,0,0
0,1,2,3(n) joining s to 〈2, ij00x〉 or joining s to 〈4, ij00x〉. By Corollary 3.2,

there is a totally scheduled hamiltonian cycle Chk of BF i,j,h,k
0,1,2,3(n) including all straight edges

of level 2 and level 3 for any h, k ∈ Z2.

Let Fk = {〈2, ijw〉 ∈ V (P 00) | 〈2, ijw〉 is not incident to any level-(k + 1) edge on P 00}
with k ∈ {0, 1}. Obviously, P 00 is a connected spanning subgraph of BF i,j

0,1(n − 2). By

Lemma 3.3, we have V (γ0
3 ◦ γ0

2(P
00)) = V (BF i,j,0,0

0,1,2,3(n))− (F0 ∪F1), where F0 = {〈2, ij00w〉 |

〈2, ijw〉 ∈ F0} ∪ {〈3, ij00w〉 | 〈2, ijw〉 ∈ F0} and F1 = {〈3, ij00w〉 | 〈2, ijw〉 ∈ F1} ∪
{〈4, ij00w〉 | 〈2, ijw〉 ∈ F1}. In addition, we have F0 ∩ F1 = ∅. If γ0

3 ◦ γ0
2(P

00) joins

s to 〈2, ij00x〉, let P 00 = γ0
3 ◦ γ0

2(P
00) and F̃0 = F0. Otherwise, let P 00 = 〈s, γ0

3 ◦

γ0
2(P

00), 〈4, ij00x〉, 〈3, ij00x〉, 〈2, ij00x〉〉 and F̃0 = F0 − {〈2, ij00x〉, 〈3, ij00x〉}. For any
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h, k ∈ Z2, let

Xhk
0 = {(〈2, ijhkw〉, 〈3, ijhkw〉) | 〈2, ij00w〉 and 〈3, ij00w〉 are in F̃0},

Y hk
0 = {(〈2, ijhkw〉, 〈3, ijh̄kw〉) | 〈2, ij00w〉 and 〈3, ij00w〉 are in F̃0},

Xhk
1 = {(〈3, ijhkw〉, 〈4, ijhkw〉) | 〈3, ij00w〉 and 〈4, ij00w〉 are in F1}, and

Y hk
1 = {(〈3, ijhkw〉, 〈4, ijhk̄w〉) | 〈3, ij00w〉 and 〈4, ij00w〉 are in F1}.

Then we consider the following four cases.

Case 1: If pq = 00, then d = 〈2, ij00x〉. It is noticed that v /∈ F0 ∪ F1. Let

A = {(〈2, ij10y〉, 〈3, ij00y〉), (〈2, ij00y〉, 〈3, ij10y〉), (〈2, ij11y〉, 〈3, ij01y〉),

(〈2, ij01y〉, 〈3, ij11y〉), (〈3, ij11y〉, 〈4, ij10y〉), (〈3, ij10y〉, 〈4, ij11y〉)} and

B = {(〈2, ij00y〉, 〈3, ij00y〉), (〈2, ij10y〉, 〈3, ij10y〉), (〈2, ij01y〉, 〈3, ij01y〉),

(〈2, ij11y〉, 〈3, ij11y〉), (〈3, ij10y〉, 〈4, ij10y〉), (〈3, ij11y〉, 〈4, ij11y〉)}.

It follows from Lemma 3.3 that (〈2, ij00y〉, 〈3, ij00y〉) ∈ E(P 00). By Corollary 3.2, we have
(〈2, ij10y〉, 〈3, ij10y〉) ∈ E(C10), (〈2, ij01y〉, 〈3, ij01y〉) ∈ E(C01), (〈2, ij11y〉, 〈3, ij11y〉) ∈
E(C11), (〈3, ij10y〉, 〈4, ij10y〉) ∈ E(C10), and (〈3, ij11y〉, 〈4, ij11y〉) ∈ E(C11). Then the
subgraph P of BF i,j

0,1(n), generated by (E(P 00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A) − B,

forms a weakly 2-scheduled path of BF i,j
0,1(n) between s and d. Clearly, we have V (P ) =

V (BF i,j
0,1(n)) − (F0 ∪ F̃1). Since Chk includes all straight edges of level 2 and level 3 in

BF i,j,h,k
0,1,2,3(n), we have X10

0 ⊂ E(C10) and X01
1 ⊂ E(C01). Moreover, we have (X10

0 ∪X01
1 )∩B =

∅. Therefore, it follows that (X10
0 ∪ X01

1 ) ⊂ E(P ). Let P ′ be the subgraph generated by
(E(P ) ∪ (X00

0 ∪ Y 00
0 ∪ Y 10

0 ) ∪ (X00
1 ∪ Y 00

1 ∪ Y 01
1 )) − (X10

0 ∪ X01
1 ). Then P ′ is a weakly 2-

scheduled hamiltonian path of BF i,j
0,1(n) joining s to d. See Figure 3.4 for illustration, in

which γ0
3 ◦ γ0

2(P
00) is supposed to join s and 〈2, ij00x〉.

Case 2: If pq = 10, then d = 〈2, ij10x〉. Let

A = {(〈2, ij00x〉, 〈3, ij10x〉), (〈2, ij11y〉, 〈3, ij01y〉), (〈2, ij01y〉, 〈3, ij11y〉),

(〈3, ij11y〉, 〈4, ij10y〉), (〈3, ij10y〉, 〈4, ij11y〉)} and

B = {(〈2, ij10x〉, 〈3, ij10x〉), (〈2, ij01y〉, 〈3, ij01y〉), (〈2, ij11y〉, 〈3, ij11y〉),

(〈3, ij10y〉, 〈4, ij10y〉), (〈3, ij11y〉, 〈4, ij11y〉)}.

Obviously, the subgraph P , generated by (E(P 00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A) − B,
forms a weakly 2-scheduled path of BF i,j

0,1(n) between s and d. Moreover, the subgraph P ′,
generated by (E(P ) ∪ (X00

0 ∪ Y 00
0 ∪ Y 10

0 ) ∪ (X00
1 ∪ Y 00

1 ∪ Y 01
1 )) − (X10

0 ∪ X01
1 ), is a weakly

2-scheduled hamiltonian path of BF i,j
0,1(n) joining s to d.
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Case 3: If pq = 01, then d = 〈2, ij01x〉. Let

A = {(〈2, ij00x〉, 〈3, ij10x〉), (〈2, ij11x〉, 〈3, ij01x〉), (〈3, ij11x〉, 〈4, ij10x〉)} and

B = {(〈2, ij01x〉, 〈3, ij01x〉), (〈2, ij11x〉, 〈3, ij11x〉), (〈3, ij10x〉, 〈4, ij10x〉)}.

Obviously, the subgraph P , generated by (E(P 00) ∪ E(C10) ∪ E(C01) ∪ E(C11) ∪ A) − B,
forms a weakly 2-scheduled path of BF i,j

0,1(n), between s and d. Moreover, the subgraph P ′,
generated by (E(P ) ∪ (X00

0 ∪ Y 00
0 ∪ Y 10

0 ) ∪ (X00
1 ∪ Y 00

1 ∪ Y 01
1 )) − (X10

0 ∪ X01
1 ), is a weakly

2-scheduled hamiltonian path of BF i,j
0,1(n) joining s to d.

Case 4: If pq = 11, then d = 〈2, ij11x〉. Let

A = {(〈2, ij00x〉, 〈3, ij10x〉), (〈3, ij11x〉, 〈4, ij10x〉), (〈3, ij01y〉, 〈4, ij00y〉),

(〈3, ij00y〉, 〈4, ij01y〉)} and

B = {(〈3, ij10x〉, 〈4, ij10x〉), (〈3, ij00y〉, 〈4, ij00y〉), (〈3, ij01y〉, 〈4, ij01y〉),

(〈2, ij11x〉, 〈3, ij11x〉)}.

The subgraph P , generated by (E(P 00)∪E(C10)∪E(C01)∪E(C11)∪A)−B, forms a weakly
2-scheduled path of BF i,j

0,1(n) between s and d. Moreover, the subgraph P ′, generated by
(E(P ) ∪ (X00

0 ∪ Y 00
0 ∪ Y 10

0 ) ∪ (X00
1 ∪ Y 00

1 ∪ Y 01
1 )) − (X10

0 ∪ X01
1 ), is a weakly 2-scheduled

hamiltonian path of BF i,j
0,1(n) joining s to d.

Table 3.1: Hamiltonian paths of BF i,j
0,1(4) between 〈1, ij00〉 and 〈2, ijpq〉 for any p, q ∈ Z2.

〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij01〉, 〈2, ij11〉, 〈1, ij11〉, 〈0, ij11〉, 〈3, ij11〉, 〈2, ij01〉, 〈1, ij01〉, 〈0, ij01〉, 〈3, ij00〉, 〈2, ij10〉, 〈1, ij10〉, 〈0, ij10〉, 〈3, ij10〉, 〈2, ij00〉〉
〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij00〉, 〈2, ij00〉, 〈3, ij10〉, 〈0, ij11〉, 〈1, ij11〉, 〈2, ij11〉, 〈3, ij01〉, 〈0, ij01〉, 〈1, ij01〉, 〈2, ij01〉, 〈3, ij11〉, 〈0, ij10〉, 〈1, ij10〉, 〈2, ij10〉〉
〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij00〉, 〈2, ij00〉, 〈3, ij10〉, 〈2, ij10〉, 〈1, ij10〉, 〈0, ij10〉, 〈3, ij11〉, 〈0, ij11〉, 〈1, ij11〉, 〈2, ij11〉, 〈3, ij01〉, 〈0, ij01〉, 〈1, ij01〉, 〈2, ij01〉〉
〈〈1, ij00〉, 〈0, ij00〉, 〈3, ij01〉, 〈2, ij01〉, 〈1, ij01〉, 〈0, ij01〉, 〈3, ij00〉, 〈2, ij00〉, 〈3, ij10〉, 〈2, ij10〉, 〈1, ij10〉, 〈0, ij10〉, 〈3, ij11〉, 〈0, ij11〉, 〈1, ij11〉, 〈2, ij11〉〉

By symmetry, the next corollary can be proved in the way similar to Lemma 3.7.

Corollary 3.4. Assume that n ≥ 4 and i, j ∈ Z2. Let s be any level-1 vertex of BF i,j
0,1(n)

and d be any level-0 vertex of BF i,j
0,1(n). Then there exists a weakly 0-scheduled hamiltonian

path of BF i,j
0,1(n) joining s to d.

Lemma 3.8. Assume that n ≥ 4. Let s = 〈1, 0n〉, d1 = 〈2, 0210n−3〉, and d2 = 〈0, 0n〉. Then
there exist two hamiltonian paths H1 and H2 of BF 0,0

0,1 (n) such that the following conditions
are all satisfied: (i) H1 joins s to d1, (ii) H2 joins s to d2, and (iii) H1(1) = H2(1) = s and
H1(t) 6= H2(t) for each 2 ≤ t ≤

∣∣V
(
BF 0,0

0,1 (n)
)∣∣ = n2n−2.

Proof. Let u1 = g(s) = 〈2, 0n〉, u2 = f(u1) = g(d1) = 〈3, 0210n−3〉, u3 = g−1(d1) =
〈1, 0210n−3〉, u4 = f(u2), and u5 = g(u1) = f(d1) = 〈3, 0n〉. Note that u4 = 〈0, 0011〉 if
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Figure 3.4: (a) P 00 = γ0
3 ◦γ0

2(P
00), C10, C01, and C11; (b) the path P generated by (E(P 00)∪

E(C10) ∪ E(C01) ∪ E(C11) ∪ A) − B; (c) the path P ′ generated by (E(P ) ∪ (X00
0 ∪ Y 00

0 ∪

Y 10
0 ) ∪ (X00

1 ∪ Y 00
1 ∪ Y 01

1 )) − (X10
0 ∪ X01

1 ) to cover all vertices of F̃0 ∪ F1.
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Table 3.2: Hamiltonian paths of BF i,j
0,1(5) between 〈1, ij000〉 and 〈2, ijpqx〉 for any p, q, x ∈

Z2.
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉, 〈3, ij110〉, 〈2, ij010〉,
〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉, 〈3, ij100〉, 〈2, ij000〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉, 〈3, ij110〉, 〈2, ij010〉,
〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈4, ij100〉, 〈0, ij100〉, 〈1, ij100〉, 〈2, ij100〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈4, ij110〉, 〈0, ij110〉, 〈1, ij110〉, 〈2, ij110〉, 〈3, ij010〉, 〈4, ij010〉, 〈0, ij010〉, 〈1, ij010〉, 〈2, ij010〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij001〉, 〈3, ij011〉, 〈2, ij111〉, 〈1, ij111〉, 〈0, ij111〉, 〈4, ij111〉, 〈3, ij111〉, 〈2, ij011〉,
〈1, ij011〉, 〈0, ij011〉, 〈4, ij011〉, 〈3, ij001〉, 〈2, ij101〉, 〈1, ij101〉, 〈0, ij101〉, 〈4, ij101〉, 〈3, ij101〉, 〈2, ij001〉,
〈1, ij001〉, 〈0, ij001〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij000〉,
〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉, 〈3, ij110〉, 〈4, ij110〉, 〈0, ij110〉, 〈1, ij110〉, 〈2, ij110〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉,
〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉, 〈3, ij011〉, 〈4, ij011〉, 〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉, 〈3, ij111〉, 〈4, ij111〉,
〈3, ij101〉, 〈4, ij101〉, 〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉, 〈3, ij001〉, 〈4, ij001〉, 〈0, ij001〉, 〈1, ij001〉, 〈2, ij001〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉,
〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉, 〈3, ij011〉, 〈4, ij001〉, 〈0, ij001〉, 〈1, ij001〉, 〈2, ij001〉, 〈3, ij001〉, 〈4, ij011〉,
〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉, 〈3, ij111〉, 〈4, ij111〉, 〈3, ij101〉, 〈4, ij101〉, 〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈3, ij110〉, 〈2, ij010〉, 〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉,
〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉, 〈3, ij111〉, 〈4, ij111〉, 〈3, ij101〉, 〈4, ij101〉, 〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉,
〈3, ij001〉, 〈2, ij001〉, 〈1, ij001〉, 〈0, ij001〉, 〈4, ij001〉, 〈3, ij011〉, 〈4, ij011〉, 〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉〉
〈〈1, ij000〉, 〈0, ij000〉, 〈4, ij000〉, 〈3, ij010〉, 〈2, ij110〉, 〈1, ij110〉, 〈0, ij110〉, 〈4, ij110〉, 〈3, ij110〉, 〈2, ij010〉,
〈1, ij010〉, 〈0, ij010〉, 〈4, ij010〉, 〈3, ij000〉, 〈2, ij000〉, 〈3, ij100〉, 〈2, ij100〉, 〈1, ij100〉, 〈0, ij100〉, 〈4, ij100〉,
〈0, ij101〉, 〈1, ij101〉, 〈2, ij101〉, 〈3, ij001〉, 〈4, ij011〉, 〈0, ij011〉, 〈1, ij011〉, 〈2, ij011〉, 〈3, ij011〉, 〈4, ij001〉,
〈0, ij001〉, 〈1, ij001〉, 〈2, ij001〉, 〈3, ij101〉, 〈4, ij101〉, 〈3, ij111〉, 〈4, ij111〉, 〈0, ij111〉, 〈1, ij111〉, 〈2, ij111〉〉

n = 4 and u4 = 〈4, 02120n−4〉 if n ≥ 5. We partition BF 0,0
0,1 (n) into {BF 0,0,0

0,1,2 (n), BF 0,0,1
0,1,2 (n)}.

By Corollary 3.1, there is a hamiltonian cycle C0 of BF 0,0,0
0,1,2 (n) including all straight edges

of level 2. Thus, we have (u1, u5) ∈ E(C0). By Lemma 3.6 and Corollary 3.3, there is a
hamiltonian cycle C1 of BF 0,0,1

0,1,2 (n) such that (u2, u4) ∈ E(C1). It is noticed that s and

d1 are vertices of degree two in BF 0,0,0
0,1,2 (n) and BF 0,0,1

0,1,2 (n), respectively. Therefore, we can
write C0 = 〈s, u1, u5, P0, d2, s〉 and C1 = 〈d1, u2, u4, P1, u3, d1〉. As an illustrative example,
Figure 3.5(a) depicts C0 and C1 on BF 0,0

0,1 (4). Figure 3.5(b) illustrates the abstraction of C0

and C1 for general n. Since {(u1, u2), (d1, u5)} ⊂ E(BF 0,0
0,1 (n)), we set

H1 = 〈s, d2, P
−1
0 , u5, u1, u2, u4, P1, u3, d1〉 and

H2 = 〈s, u1, u2, u4, P1, u3, d1, u5, P0, d2〉.

Then it can be verified, as shown on Figure 3.5(c), that H1 and H2 satisfy the conditions.

Lemma 3.9. Given any k ∈ {0, 1} and n ≥ 4, let (b1, w1) be a level-1 straight edge of
BF 1,1,k

0,1,n−1(n) and (b2, w2) be a level-0 straight edge of BF 1,1,k
0,1,n−1(n) such that w1 and w2 are

two distinct level-1 vertices. Then there exist two hamiltonian paths H1 and H2 of BF 1,1
0,1 (n)

such that the following conditions are all satisfied:

(i) H1(1) = b1 and H1(n2n−2) = w1,

(ii) H2(1) = b2 and H2(n2n−2) = w2, and

(iii) H1(t) 6= H2(t) for each 1 ≤ t ≤ n2n−2.
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Figure 3.5: Illustration for Lemma 3.8.

Proof. Without loss of generality, we assume that k = 0. Let u1 = gn−3(b1), u2 = f(u1),
u3 = g(u2), u4 = g(u3), u5 = gn−3(u4) = g−1(u2), u6 = f(u5) = g−1(w1), v1 = f−1(b2),
v2 = g−n+3(v1), v3 = g−1(v2), v4 = g−1(v3) = g(v1), v5 = f−1(v4) = g−1(b2), and v6 =
g−n+3(v5) = g(w2). By Corollary 3.1, BF 1,1,0

0,1,2 (n) has a totally scheduled hamiltonian cycle.

By Lemma 3.1, BF 1,1,0
0,1,n−1(n) is isomorphic with BF 1,1,0

0,1,2 (n). Hence, there also exists a totally

scheduled hamiltonian cycle C0 of BF 1,1,0
0,1,n−1(n). It is noticed that w1 is adjacent to u6.

Moreover, w1, u6, b2, and w2 are all vertices of degree two in BF 1,1,0
0,1,n−1(n). Accordingly, C0

can be written as C0 = 〈w1, b1, P0, u1, u6, w1〉, where P0 = 〈b1, P01, v5, b2, w2, v6, P02, u1〉.

By Lemma 3.6, BF 1,1,1
0,1,2 (4) has a totally scheduled hamiltonian cycle C such that e ∈

E(C) if e ∈ E(BF 1,1,1
0,1,2 (4)) − {(〈3, 1110〉, 〈0, 1110〉), (〈3, 1111〉, 〈0, 1111〉)}. By Lemma 3.1,

BF 1,1,1
0,1,3 (4) is isomorphic with BF 1,1,1

0,1,2 (4). Hence, BF 1,1,1
0,1,3 (4) has a totally scheduled hamil-

tonian cycle C such that e ∈ E(C) if e ∈ E(BF 1,1,1
0,1,3 (4)) − {(〈2, 1101〉, 〈3, 1101〉), (〈2, 1111〉,

〈3, 1111〉)}. Obviously, (u5, u2) is a level-(n−3) for any n ≥ 4. Therefore, we have (u5, u2) ∈
E(BF 1,1,1

0,1,3 (4)) − { (〈2, 1101〉, 〈3, 1101〉), (〈2, 1111〉, 〈3, 1111〉)}. It follows that BF 1,1,1
0,1,3 (4)

has a totally scheduled hamiltonian cycle C1 such that (u5, u2) ∈ E(C1). By Corollary 3.3,
BF 1,1,1

0,1,2 (n), n ≥ 5, has a totally scheduled hamiltonian cycle including any required edge.

Since BF 1,1,1
0,1,n−1(n) is isomorphic with BF 1,1,1

0,1,2 (n), it has a totally scheduled hamiltonian cycle
C1 such that (u5, u2) ∈ E(C1) if n ≥ 5. In short, by Lemma 3.6 and Corollary 3.3, there is a
totally scheduled hamiltonian cycle C1 of BF 1,1,1

0,1,n−1(n) such that (u5, u2) ∈ E(C1). Since u2,

u3, v3, and v4 are vertices of degree two in BF 1,1,1
0,1,n−1(n), we write C1 = 〈u3, u4, P1, u5, u2, u3〉,
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Figure 3.6: Illustration for Lemma 3.9. In (a), (b1, w1) = (〈2, 1100〉, 〈1, 1100〉) and (b2, w2) =
(〈0, 1110〉, 〈1, 1110〉) are assumed. In (c), we let R1 = 〈v1, P−1

11 , u4, u3, u2, u5, P−1
12 , v2〉 and

R0 = 〈 v5, P−1
01 , b1, w1, u6, u1, P−1

02 , v6〉.

where P1 = 〈u4, P11, v1, v4, v3, v2, P12, u5〉. Figure 3.6(a) depicts C0 and C1 on BF 1,1
0,1 (4).

Figure 3.6(b) illustrates the abstraction of C0 and C1 for general n. Then we set

H1 = 〈b1, P01, v5, b2, w2, v6, P02, u1, u2, u3, u4, P11, v1, v4, v3, v2, P12, u5, u6, w1〉 and

H2 = 〈b2, v1, P
−1
11 , u4, u3, u2, u5, P

−1
12 , v2, v3, v4, v5, P

−1
01 , b1, w1, u6, u1, P

−1
02 , v6, w2〉.

Since w1 6= w2, u2 6= v2, u3 6= v3, u4 6= v4, and u6 6= v6, it can be checked that H1 and H2

satisfy the conditions. See Figure 3.6(c) for illustration.

3.3 Cycle embedding

Theorem 3.1. For all n ≥ 3, IHC(BF (n)) = 4.

Proof. It is trivial that IHC(BF (n)) ≤ δ(BF (n)) = 4. Suppose that n = 3. Since BF (3)
is vertex-transitive, we only find 4-mutually independent hamiltonian cycles starting from
vertex 〈0, 000〉. A set {C1, C2, C3, C4} of four hamiltonian cycles is listed in Table 3.3. It is
easy to check that they are mutually independent.
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For n ≥ 4, we partition BF (n) into {BF i,j
0,1(n) | i, j ∈ Z2}. Since BF (n) is vertex-

transitive, we assume that the beginning vertex is s = 〈1, 0n〉. Let u1 = 〈2, 0210n−3〉,
u2 = f−1(u1) = 〈1, 0120n−3〉, u3 = g−1(u2) = 〈0, 0120n−3〉, u4 = f(u3) = 〈1, 130n−3〉, u5 =
g(u4) = 〈2, 130n−3〉, u6 = f−1(u5) = 〈1, 1010n−3〉, u7 = f−1(s) = 〈0, 10n−1〉, v1 = g−1(s) =
〈0, 0n〉, v2 = f(v1) = 〈1, 10n−1〉, v3 = g(v2) = 〈2, 10n−1〉, v4 = f−1(v3) = 〈1, 120n−2〉,
v5 = g−1(v4) = 〈0, 120n−2〉, v6 = f(v5) = 〈1, 010n−2〉, and v7 = g(v6) = f(s) = 〈2, 010n−2〉.
Obviously, {u1, u2, u3, u4, u5, u6, u7, v1, v2, v3, v4, v5, v6, v7} consists of 14 different vertices of
BF (n) such that all (u1, u2), (u3, u4), (u5, u6), (u7, s), (v1, v2), (v3, v4), (v5, v6), and (v7, s) are
in E(BF (n)). By Lemma 3.8, there exist two hamiltonian paths P1 and P2 of BF 0,0

0,1 (n) such
that (1) P1 joins s to u1, (2) P2 joins s to v1, and (3) P1(1) = P2(1) = s and P1(t) 6= P2(t) for
each 2 ≤ t ≤ n2n−2. By Corollary 3.4, there is a hamiltonian path Q1 of BF 0,1

0,1 (n) joining u2

to u3. Similarly, there is a hamiltonian path R1 of BF 1,0
0,1 (n) joining u6 to u7. By Lemma 3.7,

there is a hamiltonian path Q2 of BF 1,0
0,1 (n) joining v2 to v3. Again, there is a hamiltonian

path R2 of BF 0,1
0,1 (n) joining v6 to v7. Applying Lemma 3.9, we can find two hamiltonian paths

S1 and S2 of BF 1,1
0,1 (n) such that (1) S1 joins u4 to u5, (2) S2 joins v4 to v5, and (3) S1(t) 6=

S2(t) for each 1 ≤ t ≤ n2n−2. We set C1 = 〈s, P1, u1, u2, Q1, u3, u4, S1, u5, u6, R1, u7, s〉 and
C2 = 〈s, P2, v1, v2, Q2, v3, v4, S2, v5, v6, R2, v7, s〉. Figure 3.7(a) and Figure 3.7(b) illustrate
C1 and C2, respectively. Obviously, C1 and C2 are both hamiltonian cycles of BF (n).

In what follows, we claim that C1 and C2 are independent: firstly, Lemma 3.8 guarantees
that C1(t) 6= C2(t) for all 2 ≤ t ≤ n2n−2. Next, we have C1(t) 6= C2(t) for n2n−2 + 1 ≤ t ≤
n2n−1 because C1 and C2 pass through the vertices of BF 0,1

0,1 (n) and BF 1,0
0,1 (n), respectively.

Moreover, Lemma 3.9 guarantees that C1(t) 6= C2(t) for all n2n−1+1 ≤ t ≤ 3×n2n−2. Finally,
we have C1(t) 6= C2(t) for 3×n2n−2 +1 ≤ t ≤ n2n since C1 and C2 pass through the vertices
of BF 1,0

0,1 (n) and BF 0,1
0,1 (n), respectively. As a consequence, C1 and C2 are independent.

Let u′
3 = 〈0, 0120n−41〉, u′

4 = f(u′
3) = 〈1, 130n−41〉, u′

5 = g(u′
4) = 〈2, 130n−41〉, u′

6 =
f−1(u′

5) = 〈1, 1010n−41〉, v′
3 = 〈2, 10n−21〉, v′

4 = f−1(v′
3) = 〈1, 120n−31〉, v′

5 = g−1(v′
4) =

〈0, 120n−31〉, and v′
6 = f(v′

5) = 〈1, 010n−31〉. Obviously, u′
i 6= ui and v′

i 6= vi for 3 ≤ i ≤ 6. By
Corollary 3.4, there is a hamiltonian path Q3 of BF 0,1

0,1 (n) joining u2 to u′
3. Similarly, there is

a hamiltonian path R3 of BF 1,0
0,1 (n) joining u′

6 to u7. By Lemma 3.7, there is a hamiltonian

path Q4 of BF 1,0
0,1 (n) joining v2 to v′

3. Similarly, there is a hamiltonian path R4 of BF 0,1
0,1 (n)

joining v′
6 to v7. We apply Lemma 3.9 to construct two hamiltonian paths S3 and S4 of

BF 1,1
0,1 (n) such that (1) S3 joins u′

4 to u′
5, (2) S4 joins v′

4 to v′
5, and (3) S3(t) 6= S4(t) for

all 1 ≤ t ≤ n2n−2. Then we set O1 = 〈s, P1, u1, u2, Q3, u
′
3, u

′
4, S3, u

′
5, u

′
6, R3, u7, s〉 and O2 =

〈s, P2, v1, v2, Q4, v
′
3, v

′
4, S4, v

′
5, v

′
6, R4, v7, s〉. Similar to C1 and C2, O1 and O2 are independent.

Let C3 = O−1
1 and C4 = O−1

2 . For clarity, we list C1, C2, C3, and C4 as follows.

C1 = 〈s, P1, u1, u2, Q1, u3, u4, S1, u5, u6, R1, u7, s〉,

C2 = 〈s, P2, v1, v2, Q2, v3, v4, S2, v5, v6, R2, v7, s〉,

C3 = 〈s, u7, R
−1
3 , u′

6, u
′
5, S

−1
3 , u′

4, u
′
3, Q

−1
3 , u2, u1, P

−1
1 , s〉, and

C4 = 〈s, v7, R
−1
4 , v′

6, v
′
5, S

−1
4 , v′

4, v
′
3, Q

−1
4 , v2, v1, P

−1
2 , s〉.
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Figure 3.7: Illustration for Theorem 3.1. (a) C1; (b) C2; (c) C3; (d) C4.

Then it is easy to check that C1, C2, C3, and C4 are 4-mutually independent hamiltonian
cycles of BF (n) starting from vertex s. See Figures 3.7 for illustration.

Table 3.3: 4-mutually independent hamiltonian cycles C1, C2, C3, C4 of BF (3) starting from
vertex 〈0, 000〉.

C1 〈〈0, 000〉, 〈2, 001〉, 〈0, 001〉, 〈1, 001〉, 〈2, 011〉, 〈0, 011〉, 〈1, 011〉, 〈0, 111〉, 〈2, 111〉, 〈1, 111〉, 〈2, 101〉, 〈1, 101〉,
〈0, 101〉, 〈2, 100〉, 〈0, 100〉, 〈1, 100〉, 〈2, 110〉, 〈0, 110〉, 〈1, 110〉, 〈0, 010〉, 〈2, 010〉, 〈1, 010〉, 〈2, 000〉, 〈1, 000〉, 〈0, 000〉〉

C2 〈〈0, 000〉, 〈1, 000〉, 〈2, 000〉, 〈0, 001〉, 〈1, 001〉, 〈2, 011〉, 〈0, 011〉, 〈1, 111〉, 〈2, 101〉, 〈0, 101〉, 〈1, 101〉, 〈2, 111〉,
〈0, 110〉, 〈1, 010〉, 〈2, 010〉, 〈0, 010〉, 〈1, 110〉, 〈2, 100〉, 〈0, 100〉, 〈1, 100〉, 〈2, 110〉, 〈0, 111〉, 〈1, 011〉, 〈2, 001〉, 〈0, 000〉〉

C3 〈〈0, 000〉, 〈1, 100〉, 〈2, 100〉, 〈0, 100〉, 〈1, 000〉, 〈2, 010〉, 〈0, 010〉, 〈1, 110〉, 〈2, 110〉, 〈0, 111〉, 〈1, 111〉, 〈0, 011〉,
〈2, 011〉, 〈1, 011〉, 〈2, 001〉, 〈0, 001〉, 〈1, 001〉, 〈0, 101〉, 〈2, 101〉, 〈1, 101〉, 〈2, 111〉, 〈0, 110〉, 〈1, 010〉, 〈2, 000〉, 〈0, 000〉〉

C4 〈〈0, 000〉, 〈2, 000〉, 〈1, 000〉, 〈2, 010〉, 〈0, 010〉, 〈1, 010〉, 〈0, 110〉, 〈2, 110〉, 〈1, 110〉, 〈2, 100〉, 〈0, 101〉, 〈1, 001〉,
〈2, 001〉, 〈0, 001〉, 〈1, 101〉, 〈2, 111〉, 〈0, 111〉, 〈1, 011〉, 〈2, 011〉, 〈0, 011〉, 〈1, 111〉, 〈2, 101〉, 〈0, 100〉, 〈1, 100〉, 〈0, 000〉〉
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Chapter 4

Mutually Independent Hamiltonian

Cycles in Faulty Networks

As we have introduced in the preceding chapter, many popular interconnection networks
have the maximum numbers of mutually independent hamiltonian cycles. In this chapter,
we will show that such a promising property can be preserved even if there are some faulty
edges in networks. In particular, we concern both faulty hypercubes and faulty star networks.
To simplify our discussion, we permit faulty edges to take place everywhere.

4.1 Faulty hypercubes

As Latifi et al. [39] showed, an n-cube has a hamiltonian cycle even if it has n − 2 faulty
edges. As usual let Qn denote an n-cube. By definition, we know that Qn is n-regular. It
is also known that Qn has a recursive construction; that is, it can be decomposed into two
(n − 1)-dimensional subcubes [55]. Let Qj

n be the subgraph of Qn induced by {u ∈ V (Qn) |
(u)n−1 = j} for j ∈ {0, 1}. Obviously, Qj

n is isomorphic to Qn−1. Then an (n − 1)-partition
of Qn divides the Qn along dimension n into Q0

n and Q1
n. The set of crossing edges between

Q0
n and Q1

n, denoted by Ec = {(u,v) ∈ E(Qn) | u ∈ V (Q0
n),v ∈ V (Q1

n)}, consists of all
(n−1)-dimensional edges of Qn. Besides the recursive structure, Qn is both vertex-transitive
and edge-transitive [55]. For convenience, we use e to denote the identity vertex 0n of Qn.

Sun et al. [59] proved that IHC(Qn) = n− 1 if n ∈ {1, 2, 3}, and IHC(Qn) = n if n ≥ 4.
In this section, we would like to show that Qn contains (n − 1 − f)-mutually independent
hamiltonian cycles even if f ≤ n − 2 faulty edges occur accidentally.

Theorem 4.1. [59] IHC(Qn) = n − 1 if n ∈ {1, 2, 3} and IHC(Qn) = n if n ≥ 4.

The following results are fault-tolerant properties of hypercubes.

Theorem 4.2. [64] Let n ≥ 3. Suppose that F ⊆ E(Qn) is a set of at most n − 2 faulty
links. Then Qn − F is both hamiltonian laceable and strongly hamiltonian laceable.
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Theorem 4.3. [64] Let n ≥ 3. Suppose that F ⊆ E(Qn) is a set of at most n − 3 faulty
edges. Then Qn − F is hyper-hamiltonian laceable.

Lemma 4.1. [59] Let n ≥ 4. Suppose that x and y are any two vertices from different
partite sets of Qn. Then Qn − {x,v} is hamiltonian laceable.

4.1.1 Mutually fully-independent hamiltonian paths in faulty hy-

percubes

To embed mutually independent hamiltonian cycles into faulty hypercubes, we need the
following lemmas.

Lemma 4.2. [59] Let Qn be an n-cube for n ≥ 2. Suppose that {(wi,bi) ∈ E(Qn) |
wi ∈ V0(Qn),bi ∈ V1(Qn), 1 ≤ i ≤ n − 1} consists of n − 1 distinct edges with no
shared endpoints. Then Qn contains (n − 1)-mutually fully independent hamiltonian paths
P1[w1,b1], . . . , Pn−1[wn−1,bn−1].

Let F be a set of faulty edges of Qn. Suppose that Qn is partitioned along dimension n
into Q0

n and Q1
n, and Ec is the set of crossing edges between Q0

n and Q1
n. Then we define

F0 = F ∩E(Q0
n), F1 = F ∩E(Q1

n), and Fc = F ∩Ec. Moreover, we set δ = n−1−|F | in the
remainder of this chapter. To tolerate faulty edges in hypercubes, we have the next lemma.

Lemma 4.3. Let F ⊆ E(Qn) be a set of at most n− 2 faulty edges for n ≥ 3. Suppose that
A = {(wi,bi) ∈ E(Qn) | wi ∈ V0(Qn),bi ∈ V1(Qn), 1 ≤ i ≤ δ} consists of δ distinct edges
with no shared endpoints. Then Qn − F contains δ-mutually fully independent hamiltonian
paths P1[w1,b1], . . . , Pδ[wδ,bδ].

Proof. This proof proceeds by induction on n. First suppose |F | = 0. Then this case
follows from Lemma 4.2. Suppose |F | = n − 2. Then we have δ = n − 1 − (n − 2) = 1. By
Theorem 4.2, Qn−F has a hamiltonian path between any two vertices from different partite
sets. Obviously, the statement holds for Q3, as the induction basis. In what follows we only
consider 1 ≤ |F | ≤ n − 3 and n ≥ 4. As the inductive hypothesis, suppose that the result is
true for Qn−1.

Since δ + |F | = n − 1 < n, there must exist a dimension d of {0, 1, . . . , n − 1} such
that A ∪ F contains no d-dimensional edges. Since Qn is edge-transitive, we can assume
d = n − 1. Then we partition Qn into Q0

n and Q1
n along dimension n − 1. Thus each

edge of A ∪ F is in either Q0
n or Q1

n. Let r0 = |{(wi,bi) ∈ E(Q0
n) | 1 ≤ i ≤ δ}| and

r1 = |{(wi,bi) ∈ E(Q1
n) | 1 ≤ i ≤ δ}|. Clearly, r0 + r1 = δ. Without loss of generality,

we assume {(w1,b1), . . . , (wr0,br0)} ⊂ E(Q0
n) and {(wr0+1,br0+1), . . . , (wδ,bδ)} ⊂ E(Q1

n).
Since n − 1 = δ + |F | = r0 + r1 + |F0| + |F1|, we have ri + |Fj| ≤ n − 1 for any i, j ∈ {0, 1}.
Then we have to take the following cases into account.

Case 1: Suppose ri + |Fj | ≤ n − 2 for any i, j ∈ {0, 1}. Since r0 + |F0| ≤ n − 2,
r0 ≤ n− 2−|F0| = (n− 1)− 1−|F0|. By the inductive hypothesis, Q0

n −F0 has r0-mutually
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fully independent hamiltonian paths Hi[wi,bi], 1 ≤ i ≤ r0. Obviously, Hi[wi,bi] can be
represented as 〈wi, H

′
i,ui,bi〉, where ui is some vertex adjacent to bi. Similarly, Q1

n−F1 has
r1-mutually fully independent hamiltonian paths Hi[wi,bi] = 〈wi, H

′
i,ui,bi〉, r0 +1 ≤ i ≤ δ.

Next, we construct r0 paths in Q1
n − F1 to incorporate the previously established r0

paths of Q0
n − F0. Since r0 + |F1| ≤ n − 2, we have r0 ≤ n − 2 − |F1|. By the induc-

tive hypothesis, Q1
n − F1 also contains r0-mutually fully independent hamiltonian paths

R1[(u1)
n−1, (b1)

n−1], . . . , Rr0[(ur0)
n−1, (br0)

n−1]. Similarly, Q0
n−F0 also contains r1-mutually

fully independent hamiltonian paths Rr0+1[(ur0+1)
n−1, (br0+1)

n−1], . . ., Rδ[(uδ)
n−1, (bδ)

n−1].
Accordingly, we set Pi[wi,bi] = 〈wi, H

′
i,ui, (ui)

n−1, Ri, (bi)
n−1,bi〉 for every 1 ≤ i ≤ δ.

Thus, {P1, . . . , Pδ} forms a set of δ-mutually fully independent hamiltonian paths in Qn−F .
See Figure 4.1(a) for illustration.

Case 2: Suppose ri + |Fi| = n − 1 for some i ∈ {0, 1}. Without loss of generality, we
assume r0 + |F0| = n − 1. Since r0 = n − 1 − |F0| ≥ n − 1 − |F | = δ, we have r0 = δ and
|F0| = |F | ≤ n − 3. Note that r0 − 1 = δ − 1 = n − 2 − |F | = (n − 1) − 1 − |F0|. By the
inductive hypothesis, Q0

n − F0 has (r0 − 1)-mutually fully independent hamiltonian paths
Hi[wi,bi], 2 ≤ i ≤ r0. Again, Hi[wi,bi] can be represented as 〈wi, H

′
i,ui,bi〉, where ui is

some vertex adjacent to bi.

Subcase 2.1: Suppose n = 4. Thus we have r0 = 2. By Theorem 4.3, Q0
4 − F0 has a

hamiltonian path H1[w1,b1] = 〈w1,u1, H
′
1, (b1)

j ,b1〉, where u1 is a vertex adjacent to w1,
and j is some integer of {0, 1, 2, 3}. Let X = {((u1)

3, (u2)
3)}. Similarly, there are two hamil-

tonian paths R1[(w1)
3, (u1)

3] and R2[(u2)
3, (b2)

3] in Q1
4−X. Obviously, we see that R1(7) 6=

R2(1) and R1(8) 6= R2(2). Then we set P1[w1,b1] = 〈w1, (w1)
3, R1, (u1)

3,u1, H
′
1, (b1)

j,b1〉
and P2[w2,b2] = 〈w2, H

′
2,u2, (u2)

3, R2, (b2)
3,b2〉. Consequently, {P1, P2} forms a set of 2-

mutually fully independent hamiltonian paths in Q4 − F . See Figure 4.1(b) for illustration.

Subcase 2.2: Suppose n ≥ 5. We first consider |F0| ≤ n − 4. By the inductive hy-
pothesis, Q1

n has (r0 − 1)-mutually fully independent hamiltonian paths Ri[(ui)
n−1, (bi)

n−1],
2 ≤ i ≤ r0. Then we can choose an integer j of {0, 1, . . . , n − 2} such that both (b1)

j 6= w1

and ((b1)
j)n−1 /∈ {Ri(2

n−1−1) | 2 ≤ i ≤ r0} are satisfied. Since r0 = n−1−|F | ≤ n−2, such
an integer exists. By Theorem 4.3, Q0

n − (F0 ∪{b1}) has a hamiltonian path H1[w1, (b1)
j] =

〈w1,u1, H
′
1, (b1)

j〉, where u1 is some vertex adjacent to w1. By Lemma 4.1, there ex-
ists a hamiltonian path R1[(w1)

n−1, (u1)
n−1] in Q1

n − {(b1)
n−1, ((b1)

j)n−1}. Then we set
P1[w1,b1] = 〈w1, (w1)

n−1, R1, (u1)
n−1,u1, H

′
1, (b1)

j, ((b1)
j)n−1, (b1)

n−1,b1〉 and Pi[wi,bi] =
〈wi, H

′
i,ui, (ui)

n−1, Ri, (bi)
n−1,bi〉 for 2 ≤ i ≤ r0. As a result, {P1, . . . , Pr0} forms a set of

r0-mutually fully independent hamiltonian paths in Qn−F . See Figure 4.1(c) for illustration.

Next, we consider |F0| = n − 3. Thus, we have r0 = 2. By Theorem 4.2, Q0
n − F0 has

a hamiltonian path H1[w1,b1] = 〈w1,u1, H
′
1, (b1)

j,b1〉, where u1 is a vertex adjacent to
w1, and j is some integer of {0, 1, . . . , n − 2}. By Lemma 4.1, there exists a hamiltonian
path R1[(w1)

n−1, (u1)
n−1] in Q1

n − {(b1)
n−1, ((b1)

j)n−1}. By the inductive hypothesis, Q1
n −

{((b2)
n−1, ((b1)

j)n−1)} has a hamiltonian path R2[(u2)
n−1, (b2)

n−1]. Obviously, we have
R2(2

n−1 − 1) 6= ((b1)
j)n−1. Again, we set P1[w1,b1] = 〈w1, (w1)

n−1, R1, (u1)
n−1,u1, H

′
1,
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(b1)
j, ((b1)

j)n−1, (b1)
n−1,b1〉 and P2[w2,b2] = 〈w2, H ′

2,u2, (u2)
n−1, R2, (b2)

n−1,b2〉. Hence
{P1, P2} forms a set of 2-mutually fully independent hamiltonian paths in Qn − F . See
Figure 4.1(c).

Case 3: Suppose that ri + |F1−i| = n− 1 for some i ∈ {0, 1}. Without loss of generality,
we assume r1 + |F0| = n − 1. Since r1 = n − 1 − |F0| ≥ n − 1 − |F | = δ, we have r1 = δ
and F0 = F . By the inductive hypothesis, Q1

n has (r1 − 1)-mutually fully independent
hamiltonian paths Hi[wi,bi] = 〈wi, H

′
i,ui,bi〉, where ui is some vertex adjacent to bi with

1 ≤ i ≤ r1 − 1. Since r1 − 1 = δ − 1 = n − 2 − |F | = (n − 1) − 1 − |F0|, Q0
n − F0 has

(r1 − 1)-mutually fully independent hamiltonian paths Ri[(ui)
n−1, (bi)

n−1], 1 ≤ i ≤ r1 − 1.
Then we set Pi[wi,bi] = 〈wi, H

′
i,ui, (ui)

n−1, Ri, (bi)
n−1,bi〉 with 1 ≤ i ≤ r1 − 1. Next, we

have to choose a vertex v of V0(Q
0
n), and construct a hamiltonian path Rr1 [(wr1)

n−1,v] in
Q0

n − F0 such that v 6= Ri(2) and Rr1(2
n−1 − 1) 6= (ui)

n−1 for every 1 ≤ i ≤ r1 − 1. We
distinguish the following subcases.

Subcase 3.1: Suppose n 6= 5 or |F | > 1. One can see that (u1)
n−1, . . . , (ur1−1)

n−1

have at most (r1 − 1)(n − 1) neighbors in Q0
n. Since |V0(Q

0
n)| = 2n−2 > (r1 − 1)(n −

1) = (n − 2 − |F |)(n − 1) in this subcase, we can choose v other than all neighbors of
(u1)

n−1, . . . , (ur1−1)
n−1. Obviously, we have v 6= Ri(2) for 1 ≤ i ≤ r1 − 1. By Theorem 4.2,

there exists a hamiltonian path Rr1[(wr1)
n−1,v] in Q0

n − F0. Since v is not adjacent to any
node of {(u1)

n−1, . . . , (ur1−1)
n−1}, we have Rr1(2

n−1 − 1) 6= (ui)
n−1 for every 1 ≤ i ≤ r1 − 1.

By Theorem 4.3, there exists a hamiltonian path Hr1[(v)n−1,br1] in Q1
n − {wr1}. Then we

set Pr1 = 〈wr1, (wr1)
n−1, Rr1 ,v, (v)n−1, Hr1,br1〉. Consequently, {P1, . . . , Pr1} forms a set of

r1-mutually fully independent hamiltonian paths in Qn−F . See Figure 4.1(d) for illustration.

In the following, we consider n = 5 and |F | = 1; that is, r1 = 3.

Subcase 3.2: Suppose that n = 5, |F | = 1, and (u1)
n−1 and (u2)

n−1 have at least
one common neighbor. Since |V0(Q

0
n)| = 2n−2 = 8 > 7 = (r1 − 1)(n − 1) − 1, we still can

choose a vertex v from V0(Q
0
n) other than all neighbors of (u1)

n−1 and (u2)
n−1. Obviously,

we have v 6= Ri(2) for 1 ≤ i ≤ r1 − 1. By Theorem 4.2, there exists a hamiltonian path
Rr1 [(wr1)

n−1,v] in Q0
n − F0 such that Rr1(2

n−1 − 1) 6= (ui)
n−1 for every 1 ≤ i ≤ r1 − 1. By

Theorem 4.3, there exists a hamiltonian path Hr1[(v)n−1,br1] in Q1
n−{wr1}. Similarly, we set

Pr1 = 〈wr1, (wr1)
n−1, Rr1 ,v, (v)n−1, Hr1,br1〉. Then {P1, . . . , Pr1} forms a set of r1-mutually

fully independent hamiltonian paths in Qn − F . See Figure 4.1(d).

Subcase 3.3: Suppose that n = 5, |F | = 1, and (u1)
n−1 and (u2)

n−1 have no common
neighbors. Then we assign the vertex v as the one that is adjacent to (u1)

n−1 but not
identical to R1(2). Obviously, we have v 6= Ri(2) for 1 ≤ i ≤ r1 − 1. By Theorem 4.2,
Q0

n−(F0∪{(v, (u1)
n−1)}) remains hamiltonian laceable. Thus there exists a hamiltonian path

Rr1 [(wr1)
n−1,v] of Q0

n−(F0∪{(v, (u1)
n−1)}) such that Rr1(2

n−1−1) 6= (ui)
n−1 for every 1 ≤

i ≤ r1 − 1. By Theorem 4.3, there exists a hamiltonian path Hr1[(v)n−1,br1 ] in Q1
n −{wr1}.

Similarly, we set Pr1 = 〈wr1, (wr1)
n−1, Rr1,v, (v)n−1, Hr1,br1〉. Then {P1, . . . , Pr1} forms a

set of r1-mutually fully independent hamiltonian paths in Qn − F . See Figure 4.1(d).
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Figure 4.1: Illustration for the proof of Lemma 4.3.

42



4.1.2 The main theorem

With Lemma 4.3, we can construct the maximum number of mutually independent hamil-
tonian cycles on faulty hypercubes.

Theorem 4.4. Let n ≥ 3. Suppose that F ⊆ E(Qn) consists of at most n − 2 faulty edges.
Then Qn −F contains (n−1−|F |)-mutually independent hamiltonian cycles beginning from
any vertex.

Proof. Since Qn is vertex-transitive, we only need to construct δ-mutually independent
hamiltonian cycles beginning from e = 0n. Suppose |F | = 0. Then the statement follows
from Theorem 4.1. Thus, we only consider the situation that F is nonempty. Furthermore,
since Qn is edge-transitive, we assume that at least one faulty edge is an n-dimensional edge.

The proof idea is based on the partition of Qn. As discussed previously, Qn can be
partitioned into {Q0

n, Q1
n}. Obviously, e is located in Q0

n. Recall that F0 and F1 denote the
sets of faulty edges in Q0

n and Q1
n, respectively. Then the proof idea is outlined as follows:

(1) We first build δ-mutually independent hamiltonian cycles C1, C2, . . . , Cδ beginning from
e in Q0

n − F0.

(2) Next, we have to claim that there must exist an integer t, 1 ≤ t ≤ 2n−2, so that the
crossing edges (Ci(2t − 1), (Ci(2t − 1))n−1) and (Ci(2t), (Ci(2t))

n−1) are fault-free for
all 1 ≤ i ≤ δ. For convenience, let xi = Ci(2t − 1) and yi = Ci(2t).

(3) By Lemma 4.3, Q1
n − F1 contains δ-mutually fully independent hamiltonian paths

R1[(x1)
n−1, (y1)

n−1], . . . , Rδ[(xδ)
n−1, (yδ)

n−1].

(4) Finally, we obtain the desired hamiltonian cycles from combining Ci and Ri, 1 ≤ i ≤ δ.
See Figure 4.2 for illustration.

More precisely, the proof is by induction on n. It is trivial that the statement holds for
Q3, as the induction basis. When n ≥ 4, we assume that the statement holds for Qn−1.
Now we consider how to build δ-mutually independent hamiltonian cycles in Qn − F . Since
we assume there is at least one n-dimensional faulty edge, we partition Qn into {Q0

n, Q1
n}

along dimension n. Accordingly, we have |F0| ≤ |F | − 1 ≤ n − 3, |F1| ≤ |F | − 1 ≤ n − 3,
and (n − 1) − 1 − |F0| ≥ (n − 1) − 1 − (|F | − 1) = n − 1 − |F | = δ. Thus, by the induc-
tive hypothesis, Q0

n − F0 contains δ-mutually independent hamiltonian cycles C1, C2, . . . , Cδ

beginning from e. For convenience, we assume that the vertices on each cycle are in-
dexed sequentially from 1 to 2n−1; that is, the beginning vertex e has index 1. Next,
we claim that there must exist an integer t, 1 ≤ t ≤ 2n−2, so that the crossing edges
(Ci(2t − 1), (Ci(2t − 1))n−1) and (Ci(2t), (Ci(2t))

n−1) are fault-free for all 1 ≤ i ≤ δ. If
such edges do not exist, then we have |F | ≥ |Fc| ≥ 2n−2/δ > |F | for n ≥ 3, leading
to an immediate contradiction. Let xi = Ci(2t − 1) and yi = Ci(2t). Accordingly, Ci

can be represented as 〈e, Pi,xi,yi, Hi, e〉, 1 ≤ i ≤ δ. By the definition of hypercubes,
(xi)

n−1 and (yi)
n−1 are adjacent in Q1

n. By Lemma 4.3, Q1
n − F1 contains δ-mutually
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Figure 4.2: Illustration for the proof of Theorem 4.4. Without loss of generality, we assume
xi ∈ V0(Qn) for 1 ≤ i ≤ δ.

fully independent hamiltonian paths R1[(x1)
n−1, (y1)

n−1], . . . , Rδ[(xδ)
n−1, (yδ)

n−1]. There-
fore, {〈e, Pi,xi, (xi)

n−1, Ri, (yi)
n−1,yi, Hi, e〉 | 1 ≤ i ≤ δ} forms a set of δ-mutually indepen-

dent hamiltonian cycles beginning from e.

4.2 Faulty star networks

Tseng et al. [68] addressed fault-tolerant ring embedding in an injured star network, and
showed that an injured n-dimensional star network is still hamiltonian when no more than
n − 3 edge faults occur. As Lin et al. [49] showed, IHC(Sn) = n − 2 if n ∈ {3, 4}, and
IHC(Sn) = n−1 if n ≥ 5. Let F ⊆ E(Sn) with |F | ≤ n−3. In this section, we aim to prove
that there exist (n− 2− |F |)-mutually independent hamiltonian cycles of Sn −F beginning
from any vertex of Sn if n ∈ {3, 4}, and there exist (n − 1 − |F |)-mutually independent
hamiltonian cycles of Sn − F beginning from any vertex of Sn if n ≥ 5. Before proceeding,
we recite the definition of an n-dimensional star network and introduce its basic properties.

4.2.1 Definition and basic properties of star networks

For the sake of clarity, we recall the definition of star networks in advance. Let n be a
positive integer. We use 〈n〉 to denote the set of integers from 1 to n. A permutation on 〈n〉,
namely u1u2 . . . un, is a sequence of all elements of 〈n〉. An inversion of u1u2 . . . un is a pair
of integers (i1, i2) such that ui1 < ui2 and i1 > i2. An even permutation is a permutation
with an even number of inversions, and an odd permutation is a permutation with an odd
number of inversions. The n-dimensional star network, denoted by Sn, is a graph with vertex
set V (Sn) = {u1 . . . un | ui ∈ 〈n〉 and ui 6= uj for i 6= j}. Its adjacency is defined as follows:
u1 . . . ui . . . un is adjacent to v1 . . . vi . . . vn through an edge of dimension i with 2 ≤ i ≤ n if
u1 = vi, v1 = ui, and uj = vj for j ∈ 〈n〉 − {1, i}. Obviously, Sn is both vertex-transitive
and edge-transitive [1]. Three star networks S2, S3, and S4 are illustrated in Figure 1.1.
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We use a boldface letter to denote any vertex of Sn. Moreover, we use e to denote
the vertex 12 . . . n. It is known that Sn is a bipartite graph with one partite set V0(Sn)
consisting of those vertices corresponding to even permutations and the other partite set
V1(Sn) consisting of those vertices corresponding to odd permutations. Let u = u1u2 . . . un

be a vertex of Sn. Then ui is the i-th coordinate of u, denoted by (u)i, for 1 ≤ i ≤ n.
According to the definition of Sn, there is exactly one neighbor v of u such that u and v

are adjacent through an edge in the i-th dimension for 2 ≤ i ≤ n. Therefore, we use (u)i

to denote the unique i-neighbor of u. Obviously, ((u)i)i = u. For every 1 ≤ i ≤ n, let S
{i}
n

be a subgraph of Sn induced by those vertices u with (u)n = i. Then Sn can be partitioned

into n vertex-disjoint subgraphs S
{1}
n , . . . , S

{n}
n , and each of these subgraphs is isomorphic to

Sn−1. For this reason, star networks can be constructed recursively. Let I ⊆ 〈n〉. We use SI
n

or ∪i∈IS
{i}
n to denote a subgraph of Sn induced by ∪i∈IV (S

{i}
n ). For 1 ≤ i 6= j ≤ n, we use

Ei,j to denote the set of edges between S
{i}
n and S

{j}
n .

Theorem 4.5. [68] Let F ⊂ E(Sn) with |F | ≤ n−3 for n ≥ 3. Then Sn−F is hamiltonian.

Li et al. [47] introduced the edge-fault-tolerant hamiltonian laceability of a graph G, which
is the integer f such that, for any F ⊆ E(G) with |F | ≤ f , G−F is still hamiltonian laceable
and there exists a subset F ′ of E(G) with |F ′| = f + 1 such that G − F ′ is not hamiltonian
laceable. Moreover, the edge-fault-tolerant hyper-hamiltonian laceability of G is defined as
the integer f such that, for any F ⊆ E(G) with |F | ≤ f , G−F is hyper-hamiltonian laceable
and there exists a subset F ′ of E(G) with |F ′| = f + 1 such that G − F ′ is no longer-hyper
hamiltonian laceable.

Theorem 4.6. [47] The Sn is (n− 3)-edge fault tolerant hamiltonian laceable and (n− 4)-
edge fault tolerant hyper-hamiltonian laceable for n ≥ 4.

Lemma 4.4. [53] Assume that n ≥ 3. Then |Ei,j| = (n − 2)! for any 1 ≤ i 6= j ≤ n.

Moreover, there are (n − 2)!/2 edges joining vertices of V0(S
{i}
n ) to vertices of V1(S

{j}
n ).

Lemma 4.5. For n ≥ 3, let u and v be two distinct vertices of Sn with d(u,v) ≤ 2. Then
(u)1 6= (v)1.

Lemma 4.6. Let n ≥ 5. Assume that F ⊂ E(Sn) with |F | ≤ n − 4, and assume that

I = {a1, . . . , ar} is a subset of r elements of 〈n〉 for some r ∈ 〈n〉. Suppose that u ∈ V0(S
{a1}
n )

and v ∈ V1(S
{ar}
n ). Then there exists a hamiltonian path H = 〈u = x1, P1,y1,x2, P2,y2, . . . ,

xr, Pr,yr = v〉 of SI
n − F joining u to v such that x1 = u, yr = v, and Pi is a hamiltonian

path of S
{ai}
n − F joining xi to yi for every 1 ≤ i ≤ r.

Proof. By Theorem 4.6, this statement holds on r = 1. Suppose that r ≥ 2 and we
set x1 = u and yr = v. By Lemma 4.4, there are (n − 2)!/2 > n − 4 edges joining

vertices of V1(S
{ai}
n ) to vertices of V0(S

{ai+1}
n ) for every i ∈ 〈r − 1〉. Therefore, we choose
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(yi,xi+1) ∈ Eai,ai+1 − F with yi ∈ V1(S
{ai}
n ) and xi+1 ∈ V0(S

{ai+1}
n ) for i ∈ 〈r − 1〉. By

Theorem 4.6, there exists a hamiltonian path Pi of S
{ai}
n −F joining xi to yi for every i ∈ 〈r〉.

As a result, 〈u = x1, P1,y1,x2, P2,y2, . . . ,xr, Pr,yr = v〉 forms a desired hamiltonian path
of SI

n − F joining u to v.

Lemma 4.7. Let n ≥ 5. Assume that F ⊂ E(Sn) with |F | ≤ n − 4 and |F ∩ S
{i}
n | ≤ n − 5

for every i ∈ 〈n〉. Moreover, assume that I = {a1, . . . , ar} is a subset of r elements of 〈n〉

for some 2 ≤ r ≤ n. Suppose that u ∈ V0(S
{a1}
n ), w ∈ V1(S

{a1}
n ), and v ∈ V0(S

{ar}
n ). Then

there exists a hamiltonian path H of SI
n − (F ∪ {w}) joining u to v.

Proof. By Lemma 4.4, there are (n − 2)!/2 > n − 3 edges joining vertices of V0(S
{a1}
n ) to

vertices of V1(S
{a2}
n ). Thus, we choose a vertex x of V0(S

{a1}
n ) − {u} with (x)1 = a2 and

(x, (x)n) /∈ F . By Theorem 4.6, there exists a hamiltonian path P of S
{a1}
n − (F ∪ {w})

joining u to x. By Lemma 4.6, there exists a hamiltonian path Q of S
I−{a1}
n −F joining (x)n

to v. As a result, 〈u, P,x, (x)n, Q,v〉 forms a desired hamiltonian path.

Lemma 4.8. [48] Assume that w and b are two adjacent vertices of Sn with n ≥ 4. For
any vertex u in V0(Sn) − {w,b} and for any i ∈ 〈n〉, there exists a hamiltonian path P of
Sn − {w,b} joining u to some vertex v of V1(Sn) − {w,b} with (v)1 = i.

Lemma 4.9. Let i ∈ 〈n〉 and F ⊂ E(Sn) with |F | ≤ n − 4 for n ≥ 4. Suppose that w and
b are two adjacent vertices of Sn and u ∈ V0(Sn)−{w,b}. Then there exists a hamiltonian
path of Sn − (F ∪ {w,b}) joining u to some vertex v of V1(Sn) − {w,b} with (v)1 = i.

Proof. Since Sn is vertex-transitive and edge-transitive, we assume that w = e and b = (e)j

with some j ∈ 〈n〉 − {1}. We set Fk = F ∩ E(S
{k}
n ) for every k ∈ 〈n〉. Then we prove this

lemma by induction on n. The induction bases depend upon Lemma 4.8. Suppose that
this statement holds on Sn−1 with n ≥ 5. We consider the dimensions of all edges of
F ∪ {(e, (e)j)}. If there exists an edge of F whose dimension, say j′, is different from j, we
can partition Sn over dimension j′. Otherwise, every edge of F has the same dimension as
j.

Case 1: There exists an edge of F whose dimension, say j′, is different from j. Since Sn

is edge-transitive, we assume j′ = n. Thus, (e, (e)j) ∈ E(S
{n}
n ) and |Fk| ≤ n − 5 for every

k ∈ 〈n〉.

Subcase 1.1: Suppose that u ∈ V0(S
{n}
n ). Since |F | ≤ n − 4, we can choose an integer

r ∈ 〈n − 1〉 such that |F ∩ Er,n| = 0. By induction hypothesis, there exists a hamiltonian

path P of S
{n}
n −(Fn∪{e, (e)j}) joining u to a vertex x ∈ V1(S

{n}
n ) with (x)1 = r. We choose

a vertex v in V1(S
〈n−1〉−{r}
n ) with (v)1 = i. By Lemma 4.6, there exists a hamiltonian path

Q of S
〈n−1〉
n − F joining (x)n to v. Then 〈u, P,x, (x)n, Q,v〉 is a desired path.
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Subcase 1.2: Suppose that u ∈ V0(S
{k}
n ) for some k ∈ 〈n − 1〉. By Lemma 4.4, there

are (n − 2)!/2 > n − 3 edges joining vertices of V1(S
{k}
n ) to vertices of V0(S

{n}
n ). We choose

a vertex y of V1(S
{k}
n ) such that (y)n ∈ V0(S

{n}
n ) − {e} and (y, (y)n) /∈ F . By Theorem 4.6,

there exists a hamiltonian path H of S
{k}
n − Fk joining u to y. We choose an integer r of

〈n− 1〉 − {k} such that |F ∩Er,n| = 0. By induction hypothesis, there exists a hamiltonian

path P of S
{n}
n −(Fn∪{e, (e)j}) joining (y)n to a vertex x of V1(S

{n}
n )−{(e)j} with (x)1 = r.

Besides, we choose a vertex v of V1(S
〈n−1〉−{k,r}
n ) with (v)1 = i. By Lemma 4.6, there exists a

hamiltonian path Q of S
〈n−1〉−{k}
n −F joining (x)n to v. Then 〈u, H,y, (y)n, P,x, (x)n, Q,v〉

forms a desired path.

Case 2: Every edge of F has the same dimension j. Without loss of generality, we may
assume j = n. Thus, |Ft| = 0 for every t ∈ 〈n〉.

Subcase 2.1: Suppose that u ∈ V0(S
{k}
n ) for some k ∈ 〈n − 1〉 − {1}. By Lemma 4.4,

there are (n− 2)!/2 > n − 4 edges joining vertices of V1(S
{k}
n ) to vertices of V0(S

{1}
n ). Thus,

we can choose a vertex x of V1(S
{k}
n ) with (x)1 = 1 and (x, (x)n) /∈ F . By Theorem 4.6,

there exists a hamiltonian path H of S
{k}
n joining u to x. Similarly, we can choose a vertex

y of V0(S
{1}
n ) with (y)1 = n and (y, (y)n) /∈ F . By Theorem 4.6, there exists a hamiltonian

path P of S
{1}
n −{(e)n} joining (x)n to y. Let v be a vertex in V1(S

〈n−1〉−{1,k}
n ) with (v)1 = i.

By Lemma 4.7, there exists a hamiltonian path Q of S
〈n〉−{1,k}
n − (F ∪ {e}) joining (y)n to

v. Then 〈u, H,x, (x)n, P,y, (y)n, Q,v〉 forms a desired path.

Subcase 2.2: Suppose that u ∈ V0(S
{1}
n ). By Lemma 4.4, there are (n − 2)!/2 > n − 4

edges joining vertices of V0(S
{1}
n ) to vertices of V1(S

{n}
n ). Thus, we can choose a vertex x of

V0(S
{1}
n )−{u} with (x)1 = n and (x, (x)n) /∈ F . By Theorem 4.6, there exists a hamiltonian

path H of S
{1}
n −{(e)n} joining u to x. We choose a vertex v of V1(S

〈n−1〉−{1}
n ) with (v)1 = i.

By Lemma 4.7, there exists a hamiltonian path Q of S
〈n〉−{1}
n − (F ∪ {e}) joining (x)n to v.

Then 〈u, H,x, (x)n, Q,v〉 forms a desired path.

Subcase 2.3: Suppose that u ∈ V0(S
{n}
n ). Since |F | ≤ n−4, we can choose two integers

k1 and k2 in 〈n − 1〉 − {1} such that ((e)k1 , ((e)k1)n) /∈ F and ((e)k2, ((e)k2)n) /∈ F . Let
X = {(e, (e)t) | t ∈ 〈n − 1〉 − {1, k1, k2}}. Obviously, |X| = n− 4. Moreover, we can choose

a vertex x ∈ V1(S
{n}
n ) such that (x)1 ∈ 〈n−1〉−{1, k1, k2} and (x, (x)n) /∈ F . Since (x)1 6= k1

and (x)1 6= k2, we have x 6= (e)k1 and x 6= (e)k2 . By Theorem 4.6, there exists a hamiltonian

path H = 〈u, H1, (e)k1, e, (e)k2, H2,x〉 of S
{n}
n − X joining u to x. Let y = (e)k2 . Since

(y)1 6= (x)1, we have i 6= (x)1 or i 6= (y)1.

Subcase 2.3.1: Suppose that i 6= (x)1. Let k3 = (x)1. We choose a vertex v of V1(S
{k3}
n )

with (v)1 = i. By Lemma 4.4, there are (n−2)!/2 > n−4 edges joining vertices of V1(S
{k1}
n )

to vertices of V0(S
{1}
n ). Thus, we can choose a vertex z of V1(S

{k1}
n ) with (z)1 = 1 and

(z, (z)n) /∈ F . By Theorem 4.6, there exists a hamiltonian path T of S
{k3}
n joining (x)n to

v. Similarly, there is a hamiltonian path P of S
{k1}
n joining ((e)k1)n to z. By Lemma 4.7,
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there exists a hamiltonian path Q of S
〈n−1〉−{k1,k3}
n − (F ∪{(e)n}) joining (z)n to (y)n. Then

〈u, H1, (e)k1, ((e)k1)n, P, z, (z)n, Q, (y)n,y, H2,x, (x)n, T,v〉 a the desired path.

Subcase 2.3.2: Suppose that i 6= (y)1. Let k3 = (y)1. Then the proof of this case is
similar to that of Subcase 2.3.1.

Lemma 4.10. Let {a, b} ⊂ 〈n〉 with a < b and let F ⊂ E(Sn) with |F | ≤ n − 4 for n ≥ 4.
Suppose that x ∈ V0(Sn), and assume that x1 and x2 are two distinct neighbors of x. Then
Sn − (F ∪ {x,x1,x2}) has a hamiltonian path between two vertices u and v in V0(Sn)− {x}
such that (u)1 = a and (v)1 = b.

Proof. Since Sn is vertex-transitive and edge-transitive, we assume that x = e, x1 = (e)i1 ,
and x2 = (e)i2 with some {i1, i2} ⊂ {2, 3, . . . , n}. We prove this lemma by induction on n.

Suppose that n = 4. Thus, we have |F | = 0. Since S4 is edge-transitive, we assume that
x1 = (e)2 = 2134 and x2 = (e)3 = 3214. The required paths of S4 − {1234, 2134, 3214} are
listed in Table 4.1.

a = 1 and b = 2 〈1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431〉
a = 1 and b = 3 〈1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241〉
a = 1 and b = 4 〈1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 2431, 4231, 3241, 2341, 4321〉
a = 2 and b = 3 〈2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 4132, 3142, 1342, 4312, 3412〉
a = 2 and b = 4 〈2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4 〈3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213〉

Table 4.1: The required hamiltonian path of S4 − {1234, 2134, 3214}.

Suppose that the statement holds on Sn−1 with n ≥ 5. Let Fk = F ∩ E(S
{k}
n ) for every

k ∈ 〈n〉. Without loss of generality, suppose that there is at least one edge of F in dimension
n. Thus, |Fk| ≤ n − 5 for every k ∈ 〈n〉. Because a < b, we have a 6= n and b 6= 1. Since
|F | ≤ n−4, we can choose an integer c in 〈n−1〉−{1, a} such that |F ∩Ec,n| = 0. Moreover,

we choose a vertex v of V0(S
{1}
n ) with (v)1 = b.

Case 1: Suppose that i1 6= n and i2 6= n. By induction hypothesis, there is a hamiltonian
path H of S

{n}
n − (Fn ∪ {e, (e)i1, (e)i2}) joining a vertex u of V0(S

{n}
n ) with (u)1 = a to a

vertex y of V0(S
{n}
n ) with (y)1 = c. By Lemma 4.6, there exists a hamiltonian path R of

S
〈n−1〉
n − F joining (y)n to v. As a result, 〈u, H,y, (y)n, R,v〉 forms the desired path in

Sn − (F ∪ {e, (e)i1, (e)i2}).

Case 2: Either i1 = n or i2 = n. Without loss of generality, we assume i2 = n. We
choose a vertex u ∈ V0(S

{n}
n ) with (u)1 = a. By Lemma 4.9, there exists a hamiltonian path

H of S
{n}
n − (Fn ∪ {e, (e)i1}) joining a vertex u to some vertex y of V1(S

{n}
n ) with (y)1 = c.

By Lemma 4.7, there exists a hamiltonian path Q of S
〈n−1〉
n − (F ∪ {(e)n}) joining (y)n to

v. As a result, 〈u, H,y, (y)n, Q,v〉 forms a desired path.
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4.2.2 The main results

Theorem 4.7. [49] IHC(Sn) = n − 2 if n ∈ {3, 4}; IHC(Sn) = n − 1 if n ≥ 5.

Lemma 4.11. Let f ∈ E(S4). Then IHC(S4 − {f}) = 1.

Proof. Since S4 is vertex-transitive, we only consider the mutually independent hamilto-
nian cycles of S4 − {f} beginning from 1234. Suppose that f = (1234, 4231). We list all
hamiltonian cycles of S4 − {(1234, 4231)}, beginning from 1234, in Table 4.2. By brute
force, there do not exist 2-mutually independent hamiltonian cycles of S4 − {(1234, 4231)}
beginning from 1234. Thus, IHC(S4 − {(1234, 4231)}) ≤ 1. By Theorem 4.5, there exists a
hamiltonian cycle in S4 − {(1234, 4231)}. Hence, IHC(S4 − {f}) = 1.

〈1234, 2134, 3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213, 3214, 1234〉
〈1234, 2134, 3124, 1324, 4321, 2341, 3241, 4231, 2431, 3421, 1423, 4123, 2143, 1243, 4213, 2413, 3412, 1432, 4132, 3142, 1342, 4312, 2314, 3214, 1234〉
〈1234, 2134, 3124, 4123, 1423, 2413, 4213, 1243, 2143, 3142, 4132, 1432, 3412, 4312, 1342, 2341, 3241, 4231, 2431, 3421, 4321, 1324, 2314, 3214, 1234〉
〈1234, 2134, 4132, 1432, 2431, 4231, 3241, 1243, 2143, 3142, 1342, 2341, 4321, 3421, 1423, 4123, 3124, 1324, 2314, 4312, 3412, 2413, 4213, 3214, 1234〉
〈1234, 2134, 4132, 3142, 1342, 4312, 3412, 1432, 2431, 4231, 3241, 2341, 4321, 3421, 1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 3214, 1234〉
〈1234, 2134, 4132, 3142, 2143, 4123, 3124, 1324, 2314, 4312, 1342, 2341, 4321, 3421, 1423, 2413, 3412, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 1234〉
〈1234, 3214, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132, 2134, 1234〉
〈1234, 3214, 2314, 1324, 4321, 3421, 2431, 4231, 3241, 2341, 1342, 4312, 3412, 1432, 4132, 3142, 2143, 1243, 4213, 2413, 1423, 4123, 3124, 2134, 1234〉
〈1234, 3214, 2314, 4312, 1342, 3142, 4132, 1432, 3412, 2413, 4213, 1243, 2143, 4123, 1423, 3421, 2431, 4231, 3241, 2341, 4321, 1324, 3124, 2134, 1234〉
〈1234, 3214, 4213, 2413, 1423, 4123, 2143, 1243, 3241, 4231, 2431, 3421, 4321, 2341, 1342, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 2134, 1234〉
〈1234, 3214, 4213, 2413, 3412, 4312, 2314, 1324, 3124, 4123, 1423, 3421, 4321, 2341, 1342, 3142, 2143, 1243, 3241, 4231, 2431, 1432, 4132, 2134, 1234〉
〈1234, 3214, 4213, 1243, 3241, 4231, 2431, 1432, 3412, 2413, 1423, 3421, 4321, 2341, 1342, 4312, 2314, 1324, 3124, 4123, 2143, 3142, 4132, 2134, 1234〉

Table 4.2: All hamiltonian cycles of S4 − {(1234, 4231)}, beginning from 1234.

Lemma 4.12. Suppose that n ≥ 5 and F ⊂ E(Sn) with |F | = n − 3. Let u ∈ V (Sn). Then
there exist 2-mutually independent hamiltonian cycles of Sn − F beginning from u.

Proof. Since Sn is vertex-transitive and edge-transitive, we assume that u = e and also
that F contains at least one edge in dimension n. Let Fk = F ∩ E(S

{k}
n ) for every k ∈ 〈n〉.

As a result, |Fk| ≤ n − 4 for every k ∈ 〈n〉.

Case 1: Suppose that (e, (e)n) /∈ F . Let B = (bi,j) be the 2 × n matrix with

bi,j =





j if i = 1,
n if i = 2 and j = 1,
j + 1 if i = 2 and 2 ≤ j ≤ n − 2,
2 if i = 2 and j = n − 1,
1 if i = 2 and j = n.

By Lemma 4.6, there exists a hamiltonian path P of (∪n
j=1S

{b1,j}
n ) − F joining (e)n to e.

Similarly, there exists a hamiltonian path H of (∪n
j=1S

{b2,j}
n ) − F joining e to (e)n. Then

we set C1 = 〈e, (e)n, P, e〉 and C2 = 〈e, H, (e)n, e〉. Obviously, {C1, C2} forms a set of 2-
mutually independent hamiltonian cycles of Sn − F beginning from e. See Figure 4.3(a) for
illustration.

Case 2: Suppose that (e, (e)n) ∈ F and |Fn| = n − 4. Obviously, |Fk| = 0 for every
k ∈ 〈n − 1〉. By Theorem 4.5, there exists a hamiltonian cycle H = 〈e, R,q,p, e〉 of

49



S
{n}
n − Fn. Accordingly, we have that (p, (p)n) /∈ F and (q, (q)n) /∈ F . By Lemma 4.5,

(p)1 6= (q)1. We set (p)1 = in−1 and (q)1 = i1. Let i2i3 . . . in−2 be an arbitrary permutation
of 〈n − 1〉 − {i1, in−1}.

For 1 ≤ k ≤ n−2, let xk be a vertex of V0(S
{ik}
n ) such that (xk)1 = ik+1 and (xk, (xk)

n) /∈

F . By Theorem 4.6, there exists a hamiltonian path P1 of S
{i1}
n joining (q)n to x1. Similarly,

there exists a hamiltonian path Pk of S
{ik}
n joining (xk−1)

n to xk for 2 ≤ k ≤ n − 2 and

there exists a hamiltonian path Pn−1 of S
{in−1}
n joining (xn−2)

n to (p)n. Then we set C1 =
〈e, R,q, (q)n, P1,x1, (x1)

n, P2,x2, (x2)
n, . . . ,xn−2, (xn−2)

n, Pn−1, (p)n, p, e〉.

Obviously, we can choose a vertex yn−1 of V1(S
{in−1}
n ) such that (yn−1)1 = i2 and

(yn−1, (yn−1)
n) /∈ F . For 2 ≤ k ≤ n − 3, |{u ∈ V1(S

{ik}
n ) | (u)1 = ik+1 and d(u, (xk−1)

n) =

2}| = n − 3 < (n − 2)!/2 if n ≥ 5. Thus, we choose a vertex yk of V1(S
{ik}
n ) such

that d(yk, (xk−1)
n) > 2, (yk)1 = ik+1, and (yk, (yk)

n) /∈ F for 2 ≤ k ≤ n − 3. Since

|{u ∈ V1(S
{in−2}
n ) | (u)1 = i1 and d(u, (xn−3)

n) = 2}| = n − 3 < (n − 2)!/2 if n ≥ 5,

we choose a vertex yn−2 of V1(S
{in−2}
n ) such that d(yn−2, (xn−3)

n) > 2, (yn−2)1 = i1,

and (yn−2, (yn−2)
n) /∈ F . By Theorem 4.6, there exists a hamiltonian path Q1 of S

{i1}
n

joining (yn−2)
n to (q)n. Again, there is a hamiltonian path Q2 of S

{i2}
n joining (yn−1)

n

to y2, there is a hamiltonian path Qn−1 of S
{in−1}
n joining (p)n to yn−1, and there ex-

ists a hamiltonian path Qk of S
{ik}
n joining (yk−1)

n to yk for 3 ≤ k ≤ n − 2. Then we
set C2 = 〈e,p, (p)n, Qn−1,yn−1, (yn−1)

n, Q2,y2, (y2)
n, Q3,y3, (y3)

n, . . . , (yn−2)
n, Q1, (q)n,q,

R−1, e〉.

In summary, {C1, C2} forms a set of 2-mutually independent hamiltonian cycles of Sn−F
beginning from e. Figure 4.3(b) illustrates C1 and C2 in S5.

Case 3: Suppose that (e, (e)n) ∈ F and |Fn| ≤ n − 5. Since |F | = n − 3, there must
exist an integer in−1 of 〈n− 1〉 − {1} such that |F ∩Ein−1,n| = 0. Assume that i1 and i2 are
two integers of 〈n − 1〉 − {in−1} such that |F ∩ Ei1,i2| = max{|F ∩ Es,t| | s, t ∈ 〈n − 1〉 −
{in−1}}. Moreover, let i3i4 . . . in−2 be an arbitrary permutation of 〈n−1〉−{i1, i2, in−1}. Since
(e, (e)n) ∈ F , we have |F∩Ei1,i2 | ≤ n−4. Thus, |F∩Ein−2,i1| ≤ n−5 and |F∩Eik ,ik+1| ≤ n−5
for 2 ≤ k ≤ n − 3.

By Lemma 4.4, there are (n − 2)!/2 > n − 3 edges joining vertices of V0(S
{n}
n ) to ver-

tices of V1(S
{i1}
n ). Thus, we can choose a vertex w ∈ V0(S

{n}
n ) − {e} such that (w)1 = i1

and (w, (w)n) /∈ F . By Theorem 4.6, there exists a hamiltonian path R of S
{n}
n − (Fn ∪

{(e)in−1}) joining e to w. For 1 ≤ k ≤ n − 2, let xk be a vertex of V0(S
{ik}
n ) such

that (xk)1 = ik+1 and (xk, (xk)
n) /∈ F . By Theorem 4.6, there exists a hamiltonian

path P1 of S
{i1}
n − Fi1 joining (w)n to x1. Similarly, there exists a hamiltonian path

Pk of S
{ik}
n − Fik joining (xk−1)

n to xk for 2 ≤ k ≤ n − 2, and there exists a hamil-

tonian path Pn−1 of S
{in−1}
n − Fin−1 joining (xn−2)

n to ((e)in−1)n. Then we set C1 =
〈e, R,w, (w)n, P1,x1, (x1)

n, P2,x2, (x2)
n, . . . , (xn−2)

n, Pn−1, ((e)in−1)n, (e)in−1 , e〉.
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Obviously, we can choose a vertex yn−1 of V1(S
{in−1}
n ) such that (yn−1)1 = i2 and

(yn−1, (yn−1)
n) /∈ F . For 2 ≤ k ≤ n − 3, |{u ∈ V1(S

{ik}
n ) | (u)1 = ik+1 and d(u, (xk−1)

n) =

2}| = n − 3. By Lemma 4.4, there are (n − 2)!/2 edges joining vertices of V1(S
{ik}
n ) to

vertices of V0(S
{ik+1}
n ). We emphasize that (n − 2)!/2 > (n − 3) + (n − 5) = 2n − 8 if

n ≥ 5. Thus, we choose a vertex yk of V1(S
{ik}
n ) such that d(yk, (xk−1)

n) > 2, (yk)1 = ik+1,

and (yk, (yk)
n) /∈ F for 2 ≤ k ≤ n − 3. Since (n − 2)!/2 > |{u ∈ V1(S

{in−2}
n ) | (u)1 =

i1 and d(u, (xn−3)
n) = 2}|+(n−5) = (n−3)+(n−5) = 2n−8 if n ≥ 5, we choose a vertex

yn−2 of V1(S
{in−2}
n ) such that d(yn−2, (xn−3)

n) > 2, (yn−2)1 = i1, and (yn−2, (yn−2)
n) /∈ F .

By Theorem 4.6, there exists a hamiltonian path Q1 of S
{i1}
n − Fi1 joining (yn−2)

n to (w)n.

Again, there exists a hamiltonian path Q2 of S
{i2}
n − Fi2 joining (yn−1)

n to y2, there exists

a hamiltonian path Qn−1 of S
{in−1}
n − Fin−1 joining ((e)in−1)n to yn−1, and there exists a

hamiltonian path Qk of S
{ik}
n −Fik joining (yk−1)

n to yk for 3 ≤ k ≤ n− 2. We set C2 = 〈e,
(e)in−1 , ((e)in−1)n, Qn−1, yn−1, (yn−1)

n, Q2, y2, (y2)
n, Q3, y3, (y3)

n, . . . , (yn−2)
n, Q1, (w)n,

w, R−1, e〉.

As a result, {C1, C2} forms a set of 2-mutually independent hamiltonian cycles of Sn −F
beginning from e. Figure 4.3(c) illustrates C1 and C2 in S5.

Lemma 4.13. Let f be any integer of 〈n − 4〉 with n ≥ 5. Suppose that F ⊂ E(Sn) with
|F | = f . Let u ∈ V (Sn). Then there exist (n − 1 − f)-mutually independent hamiltonian
cycles of Sn − F beginning from u.

Proof. Since Sn is vertex-transitive and edge-transitive, we assume that u = e and F
contains at least one edge in dimension n. Let Fk = F ∩ E(S

{k}
n ) for every k ∈ 〈n〉.

Thus, |Fk| ≤ n − 5 for every k ∈ 〈n〉. Moreover, let A1 = E1,n − {(e, (e)n)} and let
Ai = Ei,n ∪ {(e, (e)i)} for 2 ≤ i ≤ n − 1.

Case 1: Suppose that (e, (e)n) ∈ F . We emphasize that there are at least n − 1 − f
elements of {|F ∩ A2|, |F ∩ A3|, . . . , |F ∩ An−1|} equal to 0. Without loss of generality, we
assume that |F ∩ (∪n−1

i=f+1Ai)| = 0. Thus, at least one of {|F ∩A1|, . . . , |F ∩Af |} equals to 0.

Subcase 1.1: Suppose that |F ∩ A1| = 0. Let B = (bi,j) be the (n − 1 − f) × n matrix
with

bi,j =

{
f + i + j if f + i + j ≤ n,
f + i + j − n otherwise.

Note that bi,n−f−i = n for every 1 ≤ i ≤ n− 1− f . Then we construct (n− 1− f)-mutually
independent hamiltonian cycles {C1, C2, . . . , Cn−1−f} of Sn −F beginning from e as follows.

Let i ∈ 〈n−2−f〉. We set ti = n−f−i. By Lemma 4.10, there exists a hamiltonian path

Qi of S
{bi,ti

}
n −(Fbi,ti

∪{e, (e)bi,1 , (e)bi,n}) joining two vertices xi and yi in V0(S
{bi,ti

}
n )−{e} such

that (xi)1 = bi,ti−1 and (yi)1 = bi,ti+1. By Lemma 4.6, there exists a hamiltonian path Pi of

(∪ti−1
j=1 S

{bi,j}
n ) − F joining ((e)bi,1)n to (xi)

n. Similarly, there exists a hamiltonian path Ri of

(∪n
j=ti+1S

{bi,j}
n )−F joining (yi)

n to ((e)bi,n)n. Then we set Ci = 〈e, (e)bi,1, ((e)bi,1)n, Pi, (xi)
n,

xi, Qi,yi, (yi)
n, Ri, ((e)bi,n)n, (e)bi,n , e〉.

51



(b)
(p) 5pe

q
(q) 5

P
1

P
2

{p}

-1

e) i4
(

(a)
e

1

e
(e) 5

(e) 5

C
1

P


S {}
1

5 -F
1

2
25

26
49

50
73

74
97

98
1

H


1
24

e

25
48

49
72

73
96

97
120

e 1

C
2

R


S {
}

5

5 -F
5

1
23

e
C

1
(

U


)
24

47
48

71
72

95
96

119
49

50
73

74
120

1

( p) 5
Q

4

S {
}

i4
5

3
26

e
R


99

1

q
(y3 ) 5

Q
1

75
98

(y2 ) 5
y3

Q
3

51
74

72
73

(q) 5
y2

Q
2

27
50

48
49

1

e

2

p
C

2

(c)
(

) 5
e

w


(w
) 5

{
}

R


S {
}

5

5 -F
5

1
23

e
C

1

(
U


)

24
47

48
71

72
95

96
119

49
50

73
74

120
1

Q
4

3
26

e
R


99

1

w


Q
1

75
98

Q
3

51
74

72
73

(w) 5
Q

2

27
50

48
49

1

e

2
C

2

e) i4
(

e) i4
(

(
) 5

e) i4
(

e ) i4
(

-1

P
3

P
4

-F
i4

S {}
2

5 -F
2

S {}
3

5 -F
3

S {}
4

5 -F
4

S {}
5

5 -F
5

S {}
5

5 -F
5

S {}
3

5 -F
3

S {}
4

5 -F
4

S {}
2

5 -F
2

S {}
1

5 -F
1

S {
}

i4
5

S {
}

i1
5

S {
}

i2
5

S {
}

i3
5

S {
}

i4
5

S {
}

i1
5

S {
}

i3
5

S {
}

i2
5

-F
i1

S {
}

i1
5

-F
i2

S {
}

i2
5

-F
i3

S {
}

i3
5

-F
i4

S {
}

i4
5

-F
i1

S {
}

i1
5

-F
i3

S {
}

i3
5

-F
i2

S {
}

i2
5

e) i4
(

{
}

S {
}

5

5 -F
5

(
U



(y4 ) 5
y4

(x1 ) 5
x1

(x2 ) 5
x2

(x3 ) 5
x3

{p}
S {

}
5

5 -F
5

(
U


)

(x1 ) 5
x1

(x2 ) 5
x2

(x3 ) 5
x3

(y3 ) 5
y3

(y2 ) 5
y2

(y4 ) 5
y4

)

P
1

P
2

P
3

P
4

Figure 4.3: The 2-mutually independent hamiltonian cycles in S5 − F for Lemma 4.12.
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By Lemma 4.9, there exists a hamiltonian path T of S
{bn−1−f,1}
n −(Fbn−1−f,n

∪{e, (e)bn−1−f,n})

joining (e)b1,n to a vertex z of V0(S
{bn−1−f,1}
n )−{e} with (z)1 = bn−1−f,2. By Lemma 4.6, there

exists a hamiltonian path W of (∪n
j=2S

{bn−1−f,j}
n )− F joining (z)n to ((e)bn−1−f,n)n. Then we

set Cn−1−f = 〈e, (e)b1,n, T, z, (z)n, W, ((e)bn−1−f,n)n, (e)bn−1−f,n , e〉.

As a result, {C1, . . . , Cn−2−f , Cn−1−f} forms a set of (n − 1 − f)-mutually independent
hamiltonian cycles of Sn − F beginning from e. Figure 4.4 illustrates {C1, C2, C3, C4} in
S6 − F with |F | = f = 1.

Subcase 1.2: Suppose that |F ∩ A1| > 0. We emphasize that f ≥ 2 in this subcase.
Thus, at least one of {|F ∩ A2|, . . . , |F ∩ Af |} equals to 0. Without loss of generality, we
assume that |F ∩ A2| = 0. Let B = (bi,j) be the (n − 1 − f) × n matrix with

bi,j =





f + i + j if f + i + j ≤ n,
2 if f + i + j = n + 1,
1 if f + i + j = n + 2,
f + i + j − n otherwise.

Then we build (n− 1− f)-mutually independent hamiltonian cycles {C1, C2, . . . , Cn−1−f} of
Sn − F beginning from e in the same manner as that of Subcase 1.1.

Case 2: Suppose that (e, (e)n) /∈ F . We emphasize that there are at least n − 2 − f
elements of {|F ∩A2|, |F ∩A3| . . . , |F ∩An−1|} equaling to 0. Without loss of generality, we
assume that |F ∩ (∪n−1

i=f+2Ai)| = 0. Thus, at least one of {|F ∩ A1|, . . . , |F ∩ Af+1|} is 0.

Subcase 2.1: Suppose that |F ∩A1| = 0. Let Bn = (bi,j) be the (n− 1− f)× n matrix
with

B5 =




1 2 3 4 5
4 5 1 2 3
5 4 2 3 1


 ,

and for n ≥ 6,

bi,j =





j if i = 1,
f + i + j if 2 ≤ i ≤ n − 2 − f and f + i + j ≤ n,
f + i + j − n if 2 ≤ i ≤ n − 2 − f and f + i + j > n,
n if i = n − 1 − f and j = 1,
3 if i = n − 1 − f and j = 2,
2 if i = n − 1 − f and j = 3,
n − 1 if i = n − 1 − f and j = 4,
j − 1 if i = n − 1 − f and 5 ≤ j ≤ n − 1,
1 if i = n − 1 − f and j = n.

Then we build (n− 1− f)-mutually independent hamiltonian cycles {C1, C2, . . . , Cn−1−f} of
Sn − F beginning from e as follows.
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of Lemma 4.13.
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We choose a vertex v of V1(S
{b1,n}
n ) − {(e)bn−2−f,1} with (v)1 = b1,n−1. By Theorem 4.6,

there exists a hamiltonian path W of S
{b1,n}
n − (Fb1,n

∪ {e}) joining v to (e)bn−2−f,1 . By

Lemma 4.6, there exists a hamiltonian path D of (∪n−1
j=1S

{b1,j}
n )−F joining (e)n to (v)n. We

set C1 = 〈e, (e)n, D, (v)n,v, W, (e)bn−2−f,1 , e〉.

Let i ∈ 〈n − 2 − f〉 − {1}. We set ti = n − f − i. By Lemma 4.10, there exists a

hamiltonian path Qi of S
{bi,ti

}
n − (Fbi,ti

∪ {e, (e)bi,1 , (e)bi,n}) joining two vertices xi and yi

in V0(S
{bi,ti

}
n ) − {e} such that (xi)1 = bi,ti−1 and (yi)1 = bi,ti+1. By Lemma 4.6, there

exists a hamiltonian path Pi of (∪ti−1
j=1 S

{bi,j}
n ) − F joining ((e)bi,1)n to (xi)

n. Similarly, there

exists a hamiltonian path Ri of (∪n
j=ti+1S

{bi,j}
n ) − F joining (yi)

n to ((e)bi,n)n. Then we set
Ci = 〈e, (e)bi,1 , ((e)bi,1)n, Pi, (xi)

n,xi, Qi,yi, (yi)
n, Ri, ((e)bi,n)n, (e)bi,n, e〉.

By Lemma 4.4, there are (n − 2)!/2 > n − 3 edges joining vertices of V0(S
{bn−1−f,k}
n ) to

vertices of V1(S
{bn−1−f,k−1}
n ) for 3 ≤ k ≤ n− 1. Thus, we choose a vertex zk of V0(S

{bn−1−f,k}
n )

such that (zk)1 = bn−1−f,k−1, (zk, (zk)
n) /∈ F , and zk 6= C1((k−1)(n−1)!+1). By Lemma 4.7,

there exists a hamiltonian path T of (∪2
j=1S

{bn−1−f,j}
n )− (F ∪{e}) joining (e)b2,n to (z3)

n. By

Theorem 4.6, there is a hamiltonian path Hk of S
{bn−1−f,k}
n −Fbn−1−f,k

joining zk to (zk+1)
n for

3 ≤ k ≤ n−2. By Lemma 4.6, there exists a hamiltonian path Hn−1 of (∪n
j=n−1S

{bn−1−f,j}
n )−

F joining zn−1 to (e)n. Then we set Cn−1−f = 〈e, (e)b2,n , T, (z3)
n, z3, H3, (z4)

n, . . . , zn−2,
Hn−2, (zn−1)

n, zn−1, Hn−1, (e)n, e〉.

Consequently, {C1, C2, . . . , Cn−2−f , Cn−1−f} forms a set of (n− 1− f)-mutually indepen-
dent hamiltonian cycles of Sn−F beginning from e. Figure 4.5(a) illustrates {C1, C2, C3, C4}
in S6 − F with |F | = f = 1.

Subcase 2.2: Suppose that |F ∩A1| > 0. Thus, at least one of {|F ∩A2|, . . . , |F ∩Af+1|}
equals to 0. Without loss of generality, we assume that |F ∩A2| = 0. Let Bn = (bi,j) be the
(n − 1 − f) × n matrix with

bi,j =





n if i = 1 and j = 1,
j + 1 if i = 1 and 2 ≤ j ≤ n − 2,
2 if i = 1 and j = n − 1,
1 if i = 1 and j = n,
f + i + j if 2 ≤ i ≤ n − 2 − f and f + i + j ≤ n,
2 if 2 ≤ i ≤ n − 2 − f and f + i + j = n + 1,
1 if 2 ≤ i ≤ n − 2 − f and f + i + j = n + 2,
f + i + j − n if 2 ≤ i ≤ n − 2 − f and f + i + j ≥ n + 3,
j if i = n − 1 − f .

By Lemma 4.4, there are (n−2)!/2 > n−3 edges joining vertices of V0(S
{b1,2}
n ) to vertices

of V1(S
{b1,1}
n ). Thus, we choose a vertex z of V0(S

{b1,2}
n ) such that (z)1 = b1,1, (z, (z)n) /∈ F ,
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and (z)n 6= (e)b2,n . By Theorem 4.6, there exists a hamiltonian path T of S
{b1,1}
n −(Fb1,1∪{e})

joining (e)b2,n to (z)n. By Lemma 4.6, there exists a hamiltonian path H of (∪n
j=2S

{b1,j}
n )−F

joining z to (e)n. Then we set C1 = 〈e, (e)b2,n, T, (z)n, z, H, (e)n, e〉.

Let i ∈ 〈n − 2 − f〉 − {1}. We set ti = n − f − i. By Lemma 4.10, there exists a

hamiltonian path Qi of S
{bi,ti

}
n − (Fbi,ti

∪ {e, (e)bi,1 , (e)bi,n}) joining two vertices xi and yi

in V0(S
{bi,ti

}
n ) − {e} such that (xi)1 = bi,ti−1 and (yi)1 = bi,ti+1. By Lemma 4.6, there

exists a hamiltonian path Pi of (∪ti−1
j=1 S

{bi,j}
n ) − F joining ((e)bi,1)n to (xi)

n. Similarly, there

exists a hamiltonian path Ri of (∪n
j=ti+1S

{bi,j}
n ) − F joining (yi)

n to ((e)bi,n)n. Then we set
Ci = 〈e, (e)bi,1 , ((e)bi,1)n, Pi, (xi)

n,xi, Qi,yi, (yi)
n, Ri, ((e)bi,n)n, (e)bi,n, e〉.

By Lemma 4.4, there are (n − 2)!/2 > n − 3 edges joining vertices of V0(S
{bn−1−f,2}
n ) to

vertices of V1(S
{bn−1−f,3}
n ). Thus, we choose a vertex w of V0(S

{bn−1−f,2}
n ) such that (w)1 =

bn−1−f,3, (w, (w)n) /∈ F , and d(w, (yn−2−f)
n) > 1. Moreover, we choose a vertex v of

V1(S
{bn−1−f,n}
n ) such that (v)1 = bn−1−f,n−1 and (v, (v)n) /∈ F . By Lemma 4.6, there exists

a hamiltonian path D1 of (∪2
j=1S

{bn−1−f,j}
n ) − F joining (e)n to w. Similarly, there exists a

hamiltonian path D2 of (∪n−1
j=3S

{bn−1−f,j}
n ) − F joining (w)n to (v)n. By Theorem 4.6, there

exists a hamiltonian path W of S
{bn−1−f,n}
n − (Fbn−1−f,n

∪ {e}) joining v to (e)bn−2−f,1 . Then
we set Cn−1−f = 〈e, (e)n, D1,w, (w)n, D2, (v)n,v, W, (e)bn−2−f,1 , e〉.

Hence, {C1, C2, . . . , Cn−2−f , Cn−1−f} forms a set of (n − 1 − f)-mutually independent
hamiltonian cycles of Sn − F beginning from e. Figure 4.5(b) illustrates {C1, C2, C3, C4} in
S6 − F with |F | = f = 1.

According to Lemma 4.11, Lemma 4.12, and Lemma 4.13, coupled with the result of
Lin et al. [49], we summarize the embedding of mutually independent hamiltonian cycles in
star networks as follows:

Theorem 4.8. Let F ⊂ E(Sn) with |F | ≤ n − 3 for n ≥ 3, and let u ∈ V (Sn). Then there
exist (n − 2 − |F |)-mutually independent hamiltonian cycles of Sn − F beginning from u if
n ∈ {3, 4}, and there exist (n− 1− |F |)-mutually independent hamiltonian cycles of Sn − F
beginning from u if n ≥ 5.
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Figure 4.5: Mutually independent hamiltonian cycles in S6 − F with |F | = 1 for Case 2 of
Lemma 4.13.
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Chapter 5

Fault Diameter of Hypercubes

A variety of graph parameters, such as connectivity [50], wide diameter [29], fault diame-
ter [37], etc. can be used to measure fault tolerance of networks: The connectivity of a graph
G, written by κ(G), is the minimum size of a vertex set S such that G − S is disconnected
or has only one vertex; a graph G is said to have fault diameter of Df(G) if its diameter
increases from D(G) to Df (G) as a consequence of f hybrid node and/or link faults.

Esfahanian [20] observed that the likelihood of having a disconnected n-cube due to n
faulty processors is negligible and asymptotically zero. Motivated by this observation, he
introduced the concept of forbidden faulty sets. The components of any forbidden faulty set
cannot be faulty at the same time. For the n-cube, each forbidden faulty set is defined to
consist of all n neighbors of one processor; thus, there are 2n forbidden faulty sets in an
n-cube, each containing n processors. Later the conditional node-faults [42] were defined in
such a way that every node is required to have at least g fault-free neighbors. It is also
intuitive to extend this concept by defining conditional link-faults, which require that every
node will be incident to at least g fault-free links. In this chapter, we allow node-faults and
link-faults can take place simultaneously. Moreover, we concentrate only on g = 1. Suppose
that u is an arbitrary node of a graph G, and v is a neighbor of u in G. We say v is a
reachable neighbor of u if both v and (u, v) are fault-free; otherwise, v is an unreachable
neighbor of u. We will compute the fault diameter of an n-cube, in which every node is
required to have at least one reachable neighbor.

5.1 Basic properties of hypercubes

Before we proceed to obtain the main results, we introduce some basic properties of hy-
percubes. Again, we use a boldface letter to denote any node of hypercube. Let Qi,j

n be
a subgraph of Qn induced by {u ∈ V (Qn) | (u)i = j} for 0 ≤ i ≤ n − 1 and j ∈ {0, 1}.
Obviously, Qi,j

n is isomorphic to Qn−1. Then the node partition of Qn into subgraphs Qj,0
n

and Qj,1
n is called j-partition. The set of crossing links between Qi,0

n and Qi,1
n , denoted by

Ei
c = {(u,v) ∈ E(Qn) | u ∈ V (Qi,0

n ),v ∈ V (Qi,1
n )}, consists of all i-dimensional links of Qn.

In order to clearly indicate the faulty elements in network G, we use F (G) to denote the set
of all faulty elements in G.

58



The following lemma characterizes a collection of n disjoint paths in Qn.

Lemma 5.1. [55] For any two nodes, u and v, of Qn, there exist n internally node-disjoint
paths joining u and v, h(u,v) of which are of length h(u,v), and the other n − h(u,v) of
which are of length h(u,v) + 2.

The next corollary follows directly from Lemma 5.1.

Corollary 5.1. Let F be a set of n − 1 node-faults and/or link-faults in Qn. For any pair
u,v of distinct nodes in Qn − F , then dQn−F (u,v) ≤ h(u,v) + 2.

By computing the upper bound of distance between any pair of distinct nodes, Latifi [41]
investigated the fault diameter of Qn under the assumption that every node has at least one
fault-free neighbor. It is noticed that only node-faults were addressed in [41].

Theorem 5.1. [41] Let F be a set of 2n − 3 faulty nodes in Qn such that every node of
Qn has at least one fault-free neighbor. For any pair u,v of distinct nodes in Qn − F , then
dQn−F (u,v) ≤ h(u,v) + 4.

Theorem 5.2. [41] Let F be a set of faulty nodes in Qn such that every node of Qn has at
least one fault-free neighbor. Then the diameter of Qn − F is computed as follows:

D(Qn − F ) =





n if |F | ≤ n − 2,
n + 1 if |F | = n − 1,
n + 2 if |F | = 2n − 3.

5.2 Shortest paths in faulty hypercubes

We can improve Theorem 5.1, mentioned earlier, by proving the next three propositions.

Proposition 5.1. Suppose that u and v are any two distinct nodes of Qn with h(u,v) = n.
Let F be a set of 2n − 3 hybrid node-faults and/or link-faults in Qn such that both u and v

are fault-free with at least one reachable neighbor. Then dQn−F (u,v) = n.

Proof. It is not difficult to verify that this proposition holds for n = 2. Hence we concern
only the case that n ≥ 3. Let Iu = {i1, . . . , ip} be a set of p distinct integers of {0, 1, . . . , n−1}
such that (u)i1 , . . . , (u)ip are reachable neighbors of u. Similarly, let Iv = {i′1, . . . , i

′
q} ⊆

{0, 1, . . . , n−1} be a set of q distinct integers such that (v)i′1 , . . . , (v)i′q are reachable neighbors
of v. We distinguish the following two cases.

Case 1: Suppose that Iu ∩ Iv 6= ∅. Let j ∈ Iu ∩ Iv. Then we partition Qn into Qj,0
n

and Qj,1
n . For convenience, let F0 = F (Qj,0

n ) and F1 = F (Qj,1
n ). Since h(u,v) = n, nodes

u and v are located in different subcubes. Moreover, we have h(u, (v)j) = n − 1. By the
pigeonhole principle, we have |F0| ≤ n − 2 or |F1| ≤ n − 2. Without loss of generality, we
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assume that |F0| ≤ n − 2. Moreover, we assume u ∈ V (Qj,0
n ). By Lemma 5.1, Qj,0

n has at
least one fault-free path L of length n − 1 between u and (v)j. Hence 〈u, L, (v)j,v〉 forms
a fault-free path of length n between u and v.

Case 2: Suppose that Iu∩Iv = ∅. Since |F | = 2n−3, we can conclude that 3 ≤ p+q ≤ n.
Without loss of generality, we assume that p ≥ q. Thus we have p ≥ 2.

Suppose first that n = 3. We have p = 2 and q = 1. Let j ∈ Iv. Without loss of
generality, we assume that u ∈ V (Qj,0

n ). Obviously, Qj,0
n is fault-free, and it has a fault-free

path L of length two between u and (v)j. Then 〈u, L, (v)j,v〉 is a fault-free path of length
3. See Figure 5.1(a).

Suppose that n ≥ 4. Let j ∈ Iu. Since Iu ∩ Iv = ∅, (u)j is a reachable neighbor of
u, whereas (v)j is an unreachable neighbor of v. Again, we assume u ∈ V (Qj,0

n ). Let
F0 = F (Qj,0

n ) and F1 = F (Qj,1
n ). If |F1| ≤ n−2, Lemma 5.1 ensures that Qj,1

n has a fault-free
path R of length n−1 between (u)j and v. Hence 〈u, (u)j , R,v〉 is a fault-free path of length
n between u and v. See Figure 5.1(b).

Suppose that |F1| ≥ n−1. Thus we have |F0|+ |Ej
c | ≤ n−2. Let Ĩv = {k ∈ Iv | ((v)k)j ∈

NQn−F ((v)k)}, where NQn−F ((v)k) is the set of all reachable neighbors of (v)k.

Subcase 2.1: Suppose that Îv 6= ∅. Let k ∈ Ĩv and Θ be a subgraph of Qn induced by
{x ∈ V (Qn) | (x)j = (u)j , (x)k = (u)k}. Then Θ is an (n−2)-cube inside Qj,0

n . Because (v)j

is an unreachable neighbor of v and it is outside Θ, there are utmost n − 3 faulty elements
in Θ. By Lemma 5.1, Θ has a fault-free path L of length n − 2 between u and ((v)k)j. So
〈u, L, ((v)k)j, (v)k,v〉 is a fault-free path of length n. See Figure 5.1(c).

Subcase 2.2: Suppose that Îv = ∅. Let k1 ∈ Iv. Since |F | ≤ 2n−3 and p+ q ≤ n, there
exists an integer k2 ∈ {0, 1, . . . , n − 1} − {j, k1} such that ((v)k1)k2 is a reachable neighbor
of (v)k1 and (((v)k1)k2)j is a reachable neighbor of ((v)k1)k2. Let w = ((v)k1)k2 and Ω be a
subgraph of Qn induced by {x ∈ V (Qn) | (x)j = (u)j, (x)k1 = (u)k1, (x)k2 = (u)k2}. Then Ω
is an (n−3)-cube inside Qj,0

n . Obviously, (u)k1, (v)j, and ((v)k1)j are unreachable neighbors
of u, v, and (v)k1, respectively. Since (u)k1 , (v)j, and ((v)k1)j are outside Ω, there are
utmost n−4 faulty elements in Ω. It follows from Lemma 5.1 that Ω has a fault-free path L
of length n − 3 between u and (w)j. So 〈u, L, (w)j,w, (w)k2 = (v)k1,v〉 is a fault-free path
of length n between u and v. See Figure 5.1(d).

In summary, we conclude that dQn−F (u,v) = n, and the proof is completed.

Proposition 5.2. Suppose that u and v are any two distinct nodes of Qn, n ≥ 3. Let F be
a set of utmost 2n − 4 hybrid node-faults and/or link-faults in Qn such that both u and v
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Figure 5.1: Illustration for Proposition 5.1.

are fault-free with at least one reachable neighbor. Then

dQn−F (u,v) ≤





n + 1 if h(u,v) = n − 1 and n ≥ 3,
n if h(u,v) = n − 2 and n 6= 4,
n + 2 if h(u,v) = n − 2 and n = 4,
h(u,v) + 4 if h(u,v) ≤ n − 3 and n ≥ 4.

Proposition 5.3. Suppose that u and v are any two distinct nodes of Qn, n ≥ 2. Let F be
a set of utmost 2n − 3 hybrid node-faults and/or link-faults in Qn such that both u and v

are fault-free with at least one reachable neighbor. Then

dQn−F (u,v) ≤

{
n + 1 if h(u,v) = n − 1 and n ≥ 2,
h(u,v) + 4 if h(u,v) ≤ n − 2 and n ≥ 3.

Proof. For the sake of clarity, we prove Proposition 5.2 and Proposition 5.3 simultaneously.
The proof is by induction on n. Obviously, the result is true for n = 2. As our inductive
hypothesis, we assume that the result holds for Qn−1 with n ≥ 3. Since h(u,v) ≤ n − 1,
we can partition Qn along some dimension j such that both u and v are in the same
subcube. By transitivity, we assume that j = 0. Without loss of generality, we assume that
u,v ∈ V (Q0,0

n ). For convenience, let F0 = F (Q0,0
n ) and F1 = F (Q0,1

n ). Then we distinguish
two cases.
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Case 1: Suppose that |F1| ≤ 2n − 5 = 2(n − 1) − 3. First, we consider the case
that both u and v have at least one reachable neighbor in Q0,1

n . Then it follows from
the inductive hypothesis that dQn−F (u,v) = dQ0,1

n −F1
(u,v) = n − 1 if h(u,v) = n − 1 for

n ≥ 3, dQn−F (u,v) ≤ dQ0,1
n −F1

(u,v) ≤ n if h(u,v) = n − 2 for n ≥ 3, and dQn−F (u,v) ≤
dQ0,1

n −F1
(u,v) ≤ h(u,v) + 4 if h(u,v) ≤ n − 3 for n ≥ 4. See Figure 5.2(a).

Now we consider the case that either u or v has no reachable neighbors in Q0,1
n . Thus,

we have |F1| ≥ n − 1 and |F0| + |E0
c | ≤ n − 2. Since n − 1 ≤ |F1| ≤ 2n − 5, we have

n ≥ 4. Without loss of generality, we assume that u has no reachable neighbors in Q0,1
n .

Accordingly, (u)0 is the unique reachable neighbor of u.

Suppose first that h(u,v) = n − 1. Since h((u)0,v) = n, it follows from Proposition 5.1
that dQn−F ((u)0,v) = n. Let P be a fault-free path of length n between (u)0 and v.
Obviously, we have u /∈ V (P ). Hence 〈u, (u)0, P,v〉 turns out to be a fault-free path of
length n + 1. See Figure 5.2(b).

Suppose that h(u,v) ≤ n − 2. If (v)0 is a reachable neighbor of v, then it follows from
Corollary 5.1 that dQ0,0

n −F0
((u)0, (v)0) ≤ h((u)0, (v)0) + 2 = h(u,v) + 2 since |F0| ≤ n − 2.

Let R be a shortest path between (u)0 and (v)0 in Q0,0
n −F0. Then 〈u, (u)0, R, (v)0,v〉 forms

a fault-free path of length at most h(u,v) + 4. See Figure 5.2(b). In particular, we have
|F0| ≤ n− 3 if |F | = 2n− 4. Therefore, Q0,0

n −F0 has a path R of length n− 2 between (u)0

and (v)0 if h(u,v) = n − 2 and |F | = 2n − 4. As a result, 〈u, (u)0, R, (v)0,v〉 is a fault-free
path of length n. On the other hand, if (v)0 is an unreachable neighbor of v, then we have
(v)0 ∈ F or (v, (v)0) ∈ F . By Lemma 5.1, Q0,0

n has n − 1 internally node-disjoint paths
L1, . . . , Ln−1 between (u)0 and (v)0. For clarity, Li can be written as 〈(u)0, L′

i, ((v)0)i, (v)0〉
for 1 ≤ i ≤ n−1. Let Ti = 〈(u)0, L′

i, ((v)0)i, (v)i,v〉 with 1 ≤ i ≤ n−1. Then {T1, . . . , Tn−1}
is a set of n − 1 internally node-disjoint paths between (u)0 and v. We distinguish two
subcases.

Subcase 1.1: One of {T1, . . . , Tn−1}, say Ti, is fault-free. Hence 〈u, (u)0, Ti,v〉 is a path
of length at most h(u,v)+4 between u and v. See Figure 5.2(d). In particular, we consider
the case that h(u,v) = n − 2. Clearly, n − 2 paths of {T1, . . . , Tn−1} are of length n − 1.
When n ≥ 5, u and v have no common neighbors. Since

(
{(v)0, (v, (v)0)} ∪

n−1⋃

i=1

{(u)i, (u, (u)i)}

)
∩

(
n−1⋃

i=1

V (Ti) ∪ E(Ti)

)
= ∅,

at most n−3 faults may appear on T1, . . . , Tn−1. Hence there still exists a fault-free path Tk

of {T1, . . . , Tn−1} such that ℓ(Tk) = n − 1 if n ≥ 5. Then 〈u, (u)0, Tk,v〉 is a fault-free path
of length n.

Subcase 1.2: None of {T1, . . . , Tn−1} is fault-free. We claim first that h(u,v) = 2.
Moreover, it is noticed that |F | = 2n−3 in this subcase. Because T1, . . . , Tn−1 are internally
node-disjoint and u has n − 1 unreachable neighbors in Q0,1

n , we conclude that Ti, 1 ≤
i ≤ n − 1, contains exactly one faulty element. Since V (Ti) ∩ V (Q0,1

n ) = {v, (v)i} for

62



1 ≤ i ≤ n − 1, there exist two distinct integers t1 and t2, 1 ≤ t1, t2 ≤ n − 1, such that
F (Tt1) = {(v)t1} = {(u)t2} and F (Tt2) = {(v)t2} = {(u)t1}. By transitivity, we assume
that t1 = n − 1 and t2 = n − 2. Again, Lemma 5.1 ensures that Q0,1

n has n − 1 internally
node-disjoint paths R1, . . . , Rn−1 of length at most 4 between u and v. For clarity, we can
write Ri as 〈u, R′

i, (v)i,v〉 for 1 ≤ i ≤ n − 1. Thus we have ℓ(Rn−2) = ℓ(Rn−1) = 2 and
ℓ(Ri) = 4 for 1 ≤ i ≤ n − 3. Because (v)0 is an unreachable neighbor of v, thus v has
a reachable neighbor in Q0,1

n , say (v)k with some k ∈ {1, . . . , n − 3}. To be precise, we
write Rk = 〈u,xk,yk, (v)k,v〉 and Lk = 〈(u)0, (xk)

0, (yk)
0, ((v)k)0, (v)0〉, where xk is some

neighbor of u, and yk is a common neighbor of xk and (v)k.

Subcase 1.2.1: Suppose that ((v)k)0 is an unreachable neighbor of (v)k. Let S
(1)
k =

〈(u)0, (xk)
0, (yk)

0〉 and S
(2)
k = 〈(yk)

0,yk, (v)k〉 be two paths. Because Tk has only one faulty

element, path S
(1)
k is fault-free. Since

(
V (S

(2)
k ) ∪ E(S

(2)
k )
)
∩
(⋃

i6=k V (Ti) ∪ E(Ti)
)

= ∅, path

S
(2)
k is also fault-free. Then 〈u, (u)0, S

(1)
k , (yk)

0, S
(2)
k , (v)k,v〉 turns out to be a fault-free path

of length 6. See Figure 5.2(e).

Subcase 1.2.2: Suppose that ((v)k)0 is a reachable neighbor of (v)k. Let Θ be a
subgraph of Q0,0

n induced by {x ∈ V (Q0,0
n ) | (x)p = (u)p, p ∈ {1, . . . , n−3}−{k}}. Obviously,

Θ is isomorphic to Q3. Then we claim that |F (Θ)| ≤ 2. Since |F0| ≤ n− 2, this claim holds
for n = 4 trivially. In what follows, we concern that n ≥ 5. It is easy to see that Lk, Ln−2,
and Ln−1 are inside Θ. Moreover, we have (V (Ti) ∪ E(Ti)) ∩ (V (Θ) ∪ E(Θ)) = {(u)0} for
i ∈ {1, . . . , n−3}−{k}. Since Ti contains one faulty element for each 1 ≤ i ≤ n−1, at least
n − 4 faulty elements are outside Θ; i.e., |F (Θ)| ≤ 2. Since h((u)0, ((v)k)0) = 3, it follows
from Lemma 5.1 that Θ has a fault-free path S of length 3 between (u)0 and ((v)k)0. As a
result, 〈u, (u)0, S, ((v)k)0, (v)k,v〉 is a fault-free path of length 6. See Figure 5.2(f).

Case 2: Suppose that |F0| ≥ 2n − 4. Thus, we have |F1| + |E0
c | ≤ 1.

Subcase 2.1: Suppose that (u)0 and (v)0 are reachable neighbors of u and v, respec-
tively. Since |F1| ≤ 1, it follows from Lemma 5.1 that Q0,1

n has a fault-free path R of length
at most h(u,v) + 2 between (u)0 and (v)0. Then 〈u, (u)0, R, (v)0,v〉 is a fault-free path
of length at most h(u,v) + 4 between u and v. See Figure 5.2(g). Obviously, we have
ℓ(R) = h(u,v) if |F | ≤ 2n − 4. Therefore, 〈u, (u)0, R, (v)0,v〉 turns out to be a fault-free
path of length h(u,v) + 2.

Subcase 2.2: Suppose that (u)0 or (v)0 is an unreachable neighbor of u or v, re-
spectively. If |F | ≤ 2n − 4, then |F1| + |E0

c | = 0. Thus we have |F | = 2n − 3 in
this case. Since |F1| + |E0

c | ≤ 1, we assume that (u)0 is an unreachable neighbor of u

and (v)0 is a reachable neighbor of v. Let (u)k be a reachable neighbor of u with some
k ∈ {1, . . . , n − 1}. If (u)k = v, then we have dQn−F (u,v) = h(u,v) = 1. In what
follows we assume (u)k 6= v. Since |F1| + |E0

c | ≤ 1, node ((u)k)j is a reachable neigh-
bor of (u)k. If (u)k 6= (v)k, then h((u)k,v) = h(u,v) − 1. By Lemma 5.1, Q0,1

n has
a fault-free path R of length at most h((u)k,v) + 2 = h(u,v) + 1 between ((u)k)0 and
(v)0. Then 〈u, (u)k, ((u)k)0, R, (v)0,v〉 is a fault-free path of length at most h(u,v) + 4.
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Figure 5.2: Illustration for Proposition 5.3.

Otherwise, if (u)k = (v)k, then h((u)k,v) = h(u,v) + 1. Since |F1| ≤ 1, Lemma 5.1
ensures that Q0,1

n has a fault-free path R of length h(u,v) + 1 between ((u)k)0 and (v)0.
Then 〈u, (u)k, ((u)k)0, R, (v)0,v〉 is a fault-free path of length at most h(u,v) + 4. See
Figure 5.2(h).

The proof is completed.

According to Lemma 5.1 and Propositions 5.1−5.3, we can compute the fault diameter
of hypercubes as follows.

Theorem 5.3. Let F be a set of hybrid node-faults and/or link-faults in Qn, n ≥ 3, such
that every node of Qn has at least one reachable neighbor. Then the diameter of Qn − F is
computed as follows:

D(Qn − F ) =





n if |F | ≤ n − 2 and n ≥ 3,
n + 1 if n − 1 ≤ |F | ≤ 2n − 4 and n 6= 4,
n + 1 if |F | = 3 and n = 4,
n + 2 if |F | = 4 and n = 4,
n + 2 if |F | = 2n − 3 and n ≥ 3.

Proof. Suppose first that n 6= 4. The results are direct consequences from Lemma 5.1 and
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Figure 5.3: The distance between 0100 and 0111 in the faulty 4-cube is 6.

Propositions 5.1−5.3.

Suppose that n = 4. Applying Lemma 5.1 and Propositions 5.1−5.3, we have D(Q4 −
F ) = 4 if |F | ≤ 2, D(Q4 −F ) = 5 if |F | = 3, D(Q4 −F ) ≤ 6 if |F | = 4, and D(Q4 −F ) = 6
if |F | = 5. Let F = {0000, 0101, 0110, (0111, 1111)}. Then dQ4−F (0100, 0111) = 6. See
Figure 5.3. Therefore, D(Q4 − F ) = 6 if |F | = 4.

The proof is completed.
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Chapter 6

Paths of Variable Lengths in

Hypercubes with Conditional

Link-faults

The minimum degree of a graph G, denoted by δ(G), is defined to be min{degG(v) | v ∈
V (G)}. Again we use F (G) to denote the set of all faulty elements in graph G. Clearly, a
graph G will have no hamiltonian cycles if δ(G−F (G)) < 2. Moreover, a graph G will have
no hamiltonian paths between some pair of distinct nodes if δ(G−F (G)) = 2. To understand
more about networks’ fault-tolerant capabilities in the perspective on path embedding, we
concern the model of conditional faults as introduced in the preceding chapter. Throughout
out this chapter, a graph G is said to be conditionally faulty if and only if δ(G−F (G)) ≥ 2.
In order to simplify our discussion, only link-faults are addressed in this chapter. Thus a
network is conditionally faulty if its every node is incident to at least two fault-free links.

We focus only on hypercubes. As before we denote by Qi,j
n a subgraph of Qn induced by

{u ∈ V (Qn) | (u)i = j}, for 0 ≤ i ≤ n − 1 and j ∈ {0, 1}. Let u be any node of Qn, and let
v = ((u)0)1. Suppose that F = {(u, (u)i) | 2 ≤ i ≤ n − 1} ∪ {(v, (v)i) | 2 ≤ i ≤ n − 1} is
a set of 2n − 4 faulty links in Qn. Obviously, Qn − F has no hamiltonian paths between u

and (u)1. For this reason, we concern 2n − 5 faulty links only.

The condition of requiring every node to be incident to at least two fault-free links is
meaningful. Suppose that the probabilities of link-failures are independent and identical.
Let PL(n) denote the probability that every node of an n-cube, containing 2n − 5 faulty
links, is incident to at least two fault-free links. As discussed in Section 1.3 of Chapter 1,

we have PL(3) = 1, PL(4) = 1 −
24×(4

3)
(4×23

3 )
, and

PL(n) = 1 −
2n ×

(
n×2n−1−n

n−5

)
+ 2n ×

(
n

n−1

)(
n×2n−1−n

n−4

)
(

n×2n−1

2n−5

)

for n ≥ 5. Apparently PL(n) approaches to 1 as n increases. See Table 6.1.
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Table 6.1: Values of PL(n).

n PL(n)
5 > 0.999
6 > 0.99999
7 > 1 − 8 × 10−9

8 > 1 − 4 × 10−12

9 > 1 − 4 × 10−16

10 > 1 − 9 × 10−21

11 > 1 − 6 × 10−26

12 > 1 − 9 × 10−32

13 > 1 − 4 × 10−38

14 > 1 − 3 × 10−45

15 > 1 − 7 × 10−53

Under the consideration of 2n − 5 conditional link-faults, Chan and Lee [8] discussed
the existence of hamiltonian cycles in an n-cube with 2n − 5 conditional link-faults. In
addition, Tsai [66] showed that an injured n-cube contains a fault-free cycle of every even
length from 4 to 2n inclusive even if it has up to 2n − 5 conditional link-faults. It was also
proved in [66] that an n-cube with 2n− 5 conditional link-faults is hamiltonian laceable and
strongly hamiltonian laceable. As Shih [56] showed, any fault-free link of a faulty n-cube lies
on a cycle of even length in the range from 6 to 2n when up to 2n− 5 conditional link-faults
may occur. In other words, there exists a path of odd length from 1 to 2n − 1, excluding 3,
between any two adjacent nodes in a faulty n-cube with 2n − 5 conditional link-faults. We
are curious whether paths of variable lengths still can be constructed to join two arbitrary
nodes of distance greater than 1. Later we will show that a conditionally faulty n-cube, with
2n − 5 faulty links, actually contains a path of length l between any pair u,v of distinct
nodes, with distance d∗ > 1, for each integer l satisfying both d∗ ≤ l ≤ 2n − 1 and 2|(l− d∗).

6.1 Partition of a faulty n-cube

Suppose that Qn, n ≥ 4, is conditionally faulty with 2n − 5 faulty links. For convenience,
let F = F (Qn) and Fi denote the set of faulty i-dimensional links. Since |F | = 2n− 5, there
are utmost two nodes of Qn incident to n−2 faulty links. For any two distinct nodes, u and
v, of Qn, the procedure Partition(Qn, F , u, v) determines a dimension j according to the
following rules:

(1) Suppose that there are exactly two nodes incident to n− 2 faulty links. Then the two
nodes must be connected by a faulty link (w, (w)j) with some j ∈ {0, 1, . . . , n − 1}.
Obviously, both Qj,0

n and Qj,1
n are conditionally faulty with n − 3 faulty links.

(2) Suppose that there is only one node, namely z, incident to n − 2 faulty links. Let
S = {0 ≤ i ≤ n− 1 | (z, (z)i) ∈ F} = {k3, . . . , kn} and {0, 1, . . . , n− 1}−S = {k1, k2}.
Then both Qi,0

n and Qi,1
n are conditionally faulty for each i ∈ S.
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(2.1) If there exists a dimension j of S such that |Fj| > 1, then we partition Qn along
dimension j. Otherwise, if there exists a dimension j of S such that |F (Qj,0

n )| ·
|F (Qj,1

n )| > 0, then we partition Qn along dimension j. Obviously, both Qj,0
n and

Qj,1
n contain 2n − 7 or less faulty links.

(2.2) Suppose that |Fi| = 1 and |F (Qi,0
n )| · |F (Qi,1

n )| = 0 for every i ∈ S. That is, for
any i ∈ S, either |F (Qi,0

n )| or |F (Qi,1
n )| remains 2n − 6. Hence, for any (x,y) ∈

F − {(z, (z)i) | i ∈ S}, we have (x)i = (y)i = (z)i for every i ∈ S. That is, for
(x,y) ∈ F − {(z, (z)i) | i ∈ S}, we have x,y ∈ {z, (z)k1, (z)k2, ((z)k1)k2}. Because
both (z, (z)k1) and (z, (z)k2) are fault-free, it follows that F −{(z, (z)i) | i ∈ S} ⊆
{((z)k1, ((z)k1)k2), ((z)k2, ((z)k1)k2)}. Since |F − {(z, (z)i) | i ∈ S}| = n − 3 ≤ 2,
we obtain n ∈ {4, 5}. The faulty links are distributed as illustrated in Figure 6.1.

(2.2.1) If there exists a dimension j of S such that (z)j is neither u nor v, then we
partition Qn along dimension j.

(2.2.2) Otherwise, we have {u,v} = {(z)i | i ∈ S}; thus, we have n = 4. In this
case, we partition Q4 along any dimension j ∈ S. Clearly, u and v belong to
the same partite set of Q4.

(3) Suppose that every node is incident to utmost n − 3 faulty links. Obviously, every
(n − 1)-cube in Qn is conditionally faulty. Let S = {0 ≤ i ≤ n − 1 | Fi 6= ∅}.

(3.1) Suppose that |Fj| ≥ 2 with some j ∈ S. Then both Qj,0
n and Qj,1

n contain 2n − 7
or less faulty links.

(3.2) Suppose that |Fi| ≤ 1 for each i ∈ S. Clearly we have 2n− 5 = |F | =
∣∣⋃

i∈S Fi

∣∣ =∑
i∈S |Fi| ≤ n; i.e., n ≤ 5. Then a dimension j of S can be chosen so that both

Qj,0
n and Qj,1

n contain 2n − 7 or less faulty links.

(3.2.1) When n = 5, we claim that |F (Qj,0
n )| · |F (Qj,1

n )| > 0 for some j ∈ S. Let
ei = (bi4 . . . bii . . . bi0, bi4 . . . b̄ii . . . bi0) be an i-dimensional link of Q5 for i ∈
{0, 1, 2, 3, 4}. Suppose that F = {e0, e1, e2, e3, e4} is a faulty set of Q5 such
that |F (Qi,0

5 )| · |F (Qi,1
5 )| = 0 for each i ∈ {0, 1, 2, 3, 4}. Then we have b0i =

b1i = b2i = b3i = b4i for each i ∈ {0, 1, 2, 3, 4}; i.e., all faulty links are incident
with an identical node. This contradicts the assumption that every node is
incident to utmost n − 3 faulty links.

(3.2.2) Similarly, there exists an integer j ∈ S such that |F (Qj,0
4 )| · |F (Qj,1

4 )| > 0.

In summary, the proposed procedure determines a j-partition of Qn such that both Qj,0
n

and Qj,1
n are conditionally faulty with |F (Qj,0

n )| + |F (Qj,1
n )| ≤ 2n − 6.

6.2 Path embedding in faulty hypercubes

The following theorem characterizes a property of some shortest paths in a faulty n-cube.
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Figure 6.1: The distributions of faulty links indicated in (2.2).

Theorem 6.1. Let F be a set of 2n − 5 faulty links in Qn such that every node of Qn − F
has at least two neighbors. Moreover, let j be an integer of {0, 1, . . . , n − 1} such that both
Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less faulty links. Suppose that u is a

node of Qj,0
n , and v is a node of Qj,1

n . Then there exists a shortest path P ∗ between u and v

in Qn − F such that P ∗ crosses the dimension j exactly once.

Proof. Since |F (Qj,0
n )| + |F (Qj,1

n )| ≤ |F | = 2n − 5, we assume that |F (Qj,1
n )| ≤ n − 3.

Since (u)j 6= (v)j, every shortest path between u and v crosses the dimension j an odd
number of times. If there exists a shortest path between u and v crossing the dimension
j exactly once, the proof is done. Thus, we assume that one shortest path between u

and v, namely P , crosses the dimension j more than once. Accordingly, the shortest path P
can be represented as 〈u, P0,x1, (x1)

j, P1, (x2)
j ,x2, P2,x3, (x3)

j, . . . ,xr, (xr)
j, Pr,v〉 with odd

integer r ≥ 3. For convenience, let H = 〈(x1)
j, P1, (x2)

j ,x2, P2,x3, (x3)
j, . . . ,xr, (xr)

j , Pr,v〉.
By Corollary 5.1, we have dQj,1

n −F (Qj,1
n )((x1)

j,v) ≤ h((x1)
j,v) + 2. Suppose that R is a

shortest path between (x1)
j and v in Qj,1

n − F (Qj,1
n ). Then we have ℓ(H) ≤ ℓ(R). Since

r ≥ 3, we have ℓ(H) ≥ h((x1)
j ,v) + 2 ≥ ℓ(R). As a result, P ∗ = 〈u, P0,x1, (x1)

j , R,v〉
happens to be a shortest path between u and v and it crosses the dimension j exactly
once.

Theorem 6.2 is proved in [71].

Theorem 6.2. [71] Let F be a set of n− 2 faulty links in Qn (n ≥ 2). Suppose that u and
v are any two different nodes of Qn − F . Then Qn − F contains a path of length l between
u and v for every l satisfying dQn−F (u,v) ≤ l ≤ 2n − 1 and 2|(l − dQn−F (u,v)).

As Tsai [66] showed, an n-cube with 2n − 5 conditional link-faults is both hamiltonian
laceable and strongly hamiltonian laceable.

Theorem 6.3. [66] Let F be a set of faulty links in Qn (n ≥ 3) such that every node of
Qn − F has at least two neighbors. Then Qn − F is both hamiltonian laceable and strongly
hamiltonian laceable if |F | ≤ 2n − 5.
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The next two lemmas will be applied to prove Theorem 7.3.

Lemma 6.1. [66] Assume that n ≥ 2. Let x and u be two distinct nodes of V0(Qn); let y

and v be two distinct nodes of V1(Qn). Then there exist two node-disjoint paths P1 and P2

such that the following conditions are satisfied: (1) P1 joins x to y, (2) P2 joins u to v, and
(3) V (P1) ∪ V (P2) = V (Qn).

Lemma 6.2. Let v be any node of Qn (n ≥ 3), and let (w,b) be any link of Qn −{v}. For
every odd integer l in the range from 1 to 2n − 3, Qn −{v} has a path of length l between w

and b.

Proof. Since Qn is node-transitive, we assume that v = 0n. We prove this lemma by the
induction on n. The induction base depends on Q3. With the link-transitivity, the required
paths are listed in Table 6.2.

Table 6.2: The paths of variable lengths between w and b in Q3 − {000}.
(w, b) = (011, 001) 〈011, 111, 101, 001〉, 〈011, 111, 110, 100, 101, 001〉
(w, b) = (011, 111) 〈011, 001, 101, 111〉, 〈011, 001, 101, 100, 110, 111〉
(w, b) = (101, 001) 〈101, 111, 011, 001〉, 〈101, 100, 110, 111, 011, 001〉
(w, b) = (101, 100) 〈101, 111, 110, 100〉, 〈101, 111, 011, 010, 110, 100〉
(w, b) = (101, 111) 〈101, 100, 110, 111〉, 〈101, 100, 110, 010, 011, 111〉

When n ≥ 4, we assume that the result is true for Qn−1. Then we partition Qn along
some dimension p other than dim((w,b)). Obviously, v is located in Qp,0

n .

Case 1: Suppose that (w,b) is in Qp,0
n . By the inductive hypothesis, Qp,0

n − {v} has a
path of odd length l0 between w and b for any odd integer l0 from 1 to 2n−1−3. Let H be a
path of length 2n−1−3 between w and b in Qp,0

n −{v}. Since 2n−1−3 > 1, we can represent
H as 〈w,u, H0,b〉. By Theorem 6.2, Qp,1

n has a path H1 of odd length l1 between (w)p and
(b)p for any odd integer l1 from 1 to 2n−1 − 1. As a result, 〈w, (w)p, H1, (u)p,u, H0,b〉 is a
path of odd length 2n−1 − 2 + l1, in the range from 2n−1 − 1 to 2n − 3.

Case 2: Suppose that (w,b) is in Qp,1
n . By Theorem 6.2, Qp,1

n has a path of odd length l1
between w and b for any odd integer l1 from 1 to 2n−1−1. Let H be a path of length 2n−1−1
between w and b in Qp,1

n . Then we can choose a link (x,y) on H such that v /∈ {(x)p, (y)p}.
Hence, we can represent H as 〈w, H ′

1,x,y, H ′′
1 ,b〉. By the inductive hypothesis, Qp,0

n − {v}
has a path H0 of odd length l0 between (x)p and (y)p for any odd integer l0 from 1 to 2n−1−3.
As a result, 〈w, H ′

1,x, (x)p, H0, (y)p,y, H ′′
1 ,b〉 is a path of odd length 2n−1 + l0, in the range

from 2n−1 + 1 to 2n − 3.

As Shih [56] showed, any fault-free link of Qn lies on a cycle of even length from 6 to 2n

when up to 2n − 5 conditional link-faults may occur.
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Theorem 6.4. [56] Let F be a set of 2n − 5 faulty links in Qn such that every node of
Qn − F has at least two neighbors. Suppose that u and v are any two adjacent nodes of
Qn − F . Then Qn − F contains a path of odd length l between u and v if l is in the range
from 1 to 2n − 1 excluding 3.

In the following discussion, we devote to constructing paths between any two nodes with
distance greater than 1.

Theorem 6.5. Let F be a set of 2n − 5 faulty links in Qn (n ≥ 3) such that every node of
Qn −F has at least two neighbors. Suppose that u and v are two arbitrary nodes of Qn −F
with distance d∗ = dQn−F (u,v) ≥ 2. Then Qn −F contains a path of length l between u and
v for every integer l satisfying both d∗ ≤ l ≤ 2n − 1 and 2|(l − d∗).

Proof. Applying procedure Partition(Qn, F , u, v), we can determine a j-partition of Qn

such that both Qj,0
n and Qj,1

n are conditionally faulty with |F (Qj,0
n )|+ |F (Qj,1

n )| ≤ 2n− 6. As
a result, the proof can proceed by the induction on n. The induction base, depending upon
Q3, follows from Theorem 6.2. As our inductive hypothesis, we assume that the result holds
for Qn−1 when n ≥ 4.

Case I: Suppose that u and v are in the different partite sets of Qn. Without loss of
generality, we assume that u ∈ V0(Qn) and v ∈ V1(Qn). By Theorem 6.3, Qn − F is
hamiltonian laceable. Moreover, a shortest path between u and v can be easily obtained by
a simple breadth-first search. Therefore, we mainly concentrate on the paths of odd lengths
in the range from d∗ + 2 to 2n − 3.

Subcase I.1: Suppose that |F (Qj,0
n )| ≤ 2n − 7 and |F (Qj,1

n )| ≤ 2n − 7. Without loss of
generality, we assume that |F (Qj,0

n )| ≥ |F (Qj,1
n )|; thus, |F (Qj,1

n )| ≤ n − 3.

Subcase I.1.1: Suppose that both u and v are in Qj,0
n . By the inductive hypoth-

esis, Qj,0
n − F (Qj,0

n ) contains a path H0 of length 2n−1 − 1 between u and v. Let A =
{(H0(i), H0(i + 1)) | 1 ≤ i ≤ 2n−1, i ≡ 1 (mod 2)} be a set of disjoint links on H0. Since
|A| = ⌈2n−1−1

2
⌉ > 2n − 5 for any n ≥ 4, there exists a link (w,b) of A such that (w, (w)j),

(b, (b)j), and ((w)j, (b)j) are all fault-free. Hence, H0 can be written as 〈u, H ′
0,w,b, H ′′

0 ,v〉.
Since |F (Qj,1

n )| ≤ n − 3, it follows from Theorem 6.2 that Qj,1
n − F (Qj,1

n ) contains a path
H1 of odd length l1 between (w)j and (b)j for any odd integer l1 from 1 to 2n−1 − 1. As a
result, 〈u, H ′

0,w, (w)j, H1, (b)j ,b, H ′′
0 ,v〉 is a path of odd length 2n−1 + l1, in the range from

2n−1 + 1 to 2n − 1. See Figure 6.2(a) for illustration.

The paths of lengths less than 2n−1+1 can be obtained as follows. By Proposition 5.3, we
have d∗ = dQn−F (u,v) ≤ h(u,v) + 4 and dQj,0

n −F (Qj,0
n )(u,v) ≤ h(u,v) + 4. By the inductive

hypothesis, Qj,0
n − F (Qj,0

n ) has a path T0 of length l0 between u and v for any odd integer
l0 in the range from dQj,0

n −F (Qj,0
n )(u,v) to 2n−1 − 1. If d∗ = h(u,v) or d∗ = h(u,v) + 4, then

dQj,0
n −F (Qj,0

n )(u,v) = d∗. Otherwise, if d∗ = h(u,v) + 2, then dQj,0
n −F (Qj,0

n )(u,v) ≤ d∗ + 2.

Subcase I.1.2: Suppose that both u and v are in Qj,1
n . Since |F (Qj,1

n )| ≤ n − 3, it
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Figure 6.2: Illustration for Subcase I.1.

follows from Corollary 5.1 that d∗ ≤ dQj,1
n −F (Qj,1

n )(u,v) ≤ h(u,v) + 2. Thus, there exists a
shortest path between u and v in Qn −F that does not cross the dimension j. By inductive
hypothesis, Qj,1

n − F (Qj,1
n ) contains a path T1 of odd length l1 between u and v for each

odd integer l1 from d∗ to 2n−1 − 1. Let T 1 be a path of length 2n−1 − 1 between u and v

in Qj,1
n − F (Qj,1

n ). Moreover, let A = {(T 1(i), T 1(i + 1)) | 1 ≤ i ≤ 2n−1, i ≡ 1 (mod 2)} be
a set of disjoint links on T 1. Since |A| = ⌈2n−1−1

2
⌉ > 2n − 5 for n ≥ 4, there exists a link

(w,b) of A such that (w, (w)j), (b, (b)j), and ((w)j, (b)j) are all fault-free. Hence, T 1 can
be written as 〈u, T ′

1,w,b, T ′′
1 ,v〉. Since |F (Qj,0

n )| ≤ 2n− 7, it follows from Theorem 6.4 that
Qj,0

n −F (Qj,0
n ) contains a path T0 of odd length l0 between (w)j and (b)j for any odd integer

l0 in the range from 1 to 2n−1 − 1 excluding 3. As a result, 〈u, T ′
1,w, (w)j, T0, (b)j ,b, T ′′

1 ,v〉
is a path of odd length 2n−1 + l0, in the range from 2n−1 + 1 to 2n − 1 excluding 2n−1 + 3.
See Figure 6.2(b) for illustration.

The path of length 2n−1 + 3 is discussed as follows. When n = 4, we have |F (Qj,0
n )| ≤ 1.

Thus, there exists an integer k of {0, 1, 2, 3} − {j, dim((w,b))} such that ((w)j, ((w)j)k),
((b)j , ((b)j)k), and (((w)j)k, ((b)j)k) are all fault-free. Hence, 〈u, T ′

1,w, (w)j, ((w)j)k, ((b)j)k,
(b)j ,b, T ′′

1 ,v〉 is a path of length 11. See Figure 6.2(c) for illustration. When n ≥ 5, we
have |A| − |F | = |A| − (2n − 5) = ⌈2n−1−1

2
⌉ − (2n − 5) ≥ 2. Thus, there is a link (x,y) of

A, other than (w,b), such that (x,y) and (w,b) have no shared endpoints and (x, (x)j),
(y, (y)j), and ((x)j , (y)j) are all fault-free. Without loss of generality, T 1 can be written as
〈u, R′

1,w,b, R′′
1,x,y, R′′′

1 ,v〉. Hence, 〈u, R′
1,w, (w)j, (b)j,b, R′′

1,x, (x)j, (y)j,y, R′′′
1 ,v〉 is a

path of length 2n−1 + 3. See Figure 6.2(d).

Subcase I.1.3: Suppose that u is in Qj,0
n , and v is in Qj,1

n . By Theorem 6.1, we have a
shortest path P ∗ between u and v in Qn − F such that P ∗ crosses the dimension j exactly
once. Thus, P ∗ can be represented as 〈u, P0,x, (x)j, P1,v〉, where P0 is a shortest path
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joining u to some node x in Qj,0
n − F (Qj,0

n ), and P1 is a shortest path joining (x)j to v in
Qj,1

n − F (Qj,1
n ). See Figure 6.2(e,f) for illustration.

Subcase I.1.3.1: Suppose that ℓ(P0) > 0 and ℓ(P1) > 0. By Theorem 6.2, Qj,1
n −F (Qj,1

n )
contains a path T1 of length l1 between (x)j and v for each l1 satisfying ℓ(P1) ≤ l1 ≤ 2n−1−1
and 2|(l1 − ℓ(P1)). Suppose that ℓ(P0) = 1. It follows from Theorem 6.4 that Qj,0

n −F (Qj,0
n )

contains a path T0 of odd length l0 between u and x for any odd integer l0 in the range from 1
to 2n−1−1 excluding 3. Suppose that ℓ(P0) > 1. By the inductive hypothesis, Qj,0

n −F (Qj,0
n )

contains a path T0 of length l0 between u and x for each l0 satisfying ℓ(P0) ≤ l0 ≤ 2n−1 − 1
and 2|(l0 − ℓ(P0)). As a result, 〈u, T0,x, (x)j, T1,v〉 is a path of odd length l0 + l1 + 1, in the
range from d∗ to 2n − 3.

Subcase I.1.3.2: Suppose that ℓ(P0) = 0 or ℓ(P1) = 0. Since d∗ = dQn−F (u,u) > 1,
we have u 6= x or v 6= (x)j. With symmetry, we assume that ℓ(P0) = 0. By the inductive
hypothesis, Qj,1

n − F (Qj,1
n ) contains a path T1 of even length l1 between (x)j and v for each

even integer l1 from ℓ(P1) to 2n−1−2. As a result, 〈u = x, (x)j, T1,v〉 is a path of odd length
l1 + 1 in the range from ℓ(P1) + 1 = d∗ to 2n−1 − 1.

The paths of odd lengths in the range from 2n−1 + 1 to 2n − 1 are constructed as follows.
Since |V1(Q

j,0
n )| = 2n−2 > 2n − 5 for n ≥ 4, we can choose a node y from V1(Q

j,0
n ) such that

(y, (y)j) is fault-free. Let R0 be a path joining u to y in Qj,0
n − F (Qj,0

n ), and R1 be a path
joining (y)j to v in Qj,1

n −F (Qj,1
n ). Similar to Subcase I.1.3.1, H = 〈u, R0,y, (y)j, R1,v〉 is

a path of any odd length in the range from d′ = dQj,0
n −F (Qj,0

n )(u,y) + dQj,1
n −F (Qj,1

n )((y)j,v) + 1

to 2n − 1. By Theorem 5.3, we have d′ ≤ (n + 1) + (n − 1) + 1 ≤ 2n−1 + 1 for n ≥ 4. That
is, H can be a path of any odd length in the range from 2n−1 + 1 to 2n − 1.

Subcase I.2: Suppose that |F (Qj,0
n )| = 2n − 6 or |F (Qj,1

n )| = 2n − 6. Without loss
of generality, we assume that |F (Qj,0

n )| = 2n − 6. Thus, Qj,1
n is fault-free. By procedure

Partition(Qn, F , u, v), the faulty links are distributed as shown in Figure 6.1.

Subcase I.2.1: Suppose that both u and v are in Qj,0
n . Let (w,b) be a faulty link

of Qj,0
n such that both (w, (w)j) and (b, (b)j) are fault-free. For convenience, let F0 =

F (Qj,0
n ) − {(w,b)}. By the inductive hypothesis, Qj,0

n − F0 has a path Pl of odd length l
between u and v for any odd integer l in the range from dQj,0

n −F0
(u,v) to 2n−1 − 1. If (w,b)

is on Pl, we write Pl as 〈u, P ′
l ,w,b, P ′′

l ,v〉 and define P̃l = 〈u, P ′
l ,w, (w)j, (b)j ,b, P ′′

l ,v〉.
Otherwise, Pl can be written as 〈u, P ′

l ,x,y, P ′′
l ,v〉, where (x,y) is a link on Pl such that both

(x, (x)j) and (y, (y)j) are fault-free. Similarly, we define P̃l = 〈u, P ′
l ,x, (x)j, (y)j,y, P ′′

l ,v〉.

Then P̃l is a path of length l+2. By Proposition 5.3, we have d∗ = dQn−F (u,v) ≤ h(u,v)+4
and dQj,0

n −F0
(u,v) ≤ h(u,v)+4. First, if d∗ = h(u,v) or d∗ = h(u,v)+4, then we have d∗ =

dQj,0
n −F0

(u,v), and thus l ranges from d∗ to 2n−1−1. Next, if d∗ = h(u,v)+2 = dQj,0
n −F0

(u,v),

then l ranges from d∗ to 2n−1−1. Finally, if d∗ = h(u,v)+2 and dQj,0
n −F0

(u,v) = h(u,v)+4,

then l ranges from d∗ + 2 to 2n−1 − 1. For the final case, a shortest path between u and v in
Qn − F can be constructed by a breadth-first search. In summary, the paths of odd lengths
from d∗ + 2 to 2n−1 + 1 are constructed.
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By Theorem 6.2, Qj,1
n contains a path T1 of length l1 between (w)j and (b)j for each odd

integer l1 from 1 to 2n−1−1. Similarly, Qj,1
n contains a path R1 of length l1 between (x)j and

(y)j for each odd integer l1 from 1 to 2n−1−1. Thus, 〈u, P ′
2n−1−1,w, (w)j, T1, (b)j,b, P ′′

2n−1−1,
v〉 (or 〈u, P ′

2n−1−1,x, (x)j, R1, (y)j,y, P ′′
2n−1−1,v〉) is a path of length 2n−1 + l1, in the range

from 2n−1 + 1 to 2n − 1.

Subcase I.2.2: Suppose that both u and v are in Qj,1
n . Let (w, (w)i) be a faulty link in

Qj,0
n such that both (w, (w)j) and ((w)i, ((w)i)j) are fault-free. Since d∗ = dQn−F (u,v) > 1,

we assume that (w)j is different from u and v. Moreover, since n ≥ 4, we assume that
t ∈ {0, 1, . . . , n−1}−{j, i}. Let X = {((w)j, ((w)j)k) | k /∈ {i, j, t}}. Since |X| = n−3, our
inductive hypothesis ensures that Qj,1

n −X contains a path T1 of odd length l1 between u and
v for any odd integer l1 satisfying d∗ ≤ l1 ≤ 2n−1−1. Let T 1 denote a path of length 2n−1−1
between u and v in Qj,1

n − X. It is noted that ((w)j, ((w)j)i) is on T 1. Hence, T 1 can be
represented as 〈u, T ′

1, (w)j, ((w)j)i, T ′′
1 , v〉. By Theorem 6.4, Qj,0

n − (F (Qj,0
n ) − {(w, (w)i)})

contains a path T0 of odd length l0 between w and (w)i for 5 ≤ l0 ≤ 2n−1 − 1. As a result,
〈u, T ′

1, (w)j,w, T0, (w)i, ((w)j)i, T ′′
1 ,v〉 is a path of odd length 2n−1 + l0, in the range from

2n−1 + 5 to 2n − 1. See Figure 6.3(a) for illustration.

Let T 0 denote the longest path between w and (w)i in Qj,0
n − (F (Qj,0

n ) − {(w, (w)i)}).
Moreover, let A = {(T 0(k), T 0(k + 1)) | 1 ≤ k ≤ 2n−1, k ≡ 1 (mod 2)} be a set of disjoint
links on T 0. The paths of lengths 2n−1 + 1 and 2n−1 + 3 can be obtained as follows:

(a) Since |A| = ⌈2n−1−1
2

⌉ > 3 for n ≥ 4, there exists a link (x,y) of A such that both
F ∩ {(x, (x)j), (y, (y)j)} = ∅ and {(x)j, (y)j} ∩ {u,v} = ∅ are satisfied. Without loss
of generality, we assume that x ∈ V0(Qn). By Lemma 6.1, there exist two node-disjoint
paths P1 and P2 in Qj,1

n such that (i) P1 joins u to (x)j , (ii) P2 joins (y)j to v, and (iii)
V (P1) ∪ V (P2) = V (Qj,1

n ). As a result, 〈u, P1, (x)j,x,y, (y)j, P2,v〉 is a path of length
2n−1 + 1. See Figure 6.3(b) for illustration.

(b) We write T 0 as 〈w = x0,x1, . . . ,x2n−1−1 = (w)i〉. Then we can choose a pair of nodes
from {{x0,x3}, {x1,x4}, {x2,x5}}, namely {xk,xk+3}, such that both F ∩ {(xk, (xk)

j),
(xk+3, (xk+3)

j)} = ∅ and |{(xk)
j, (xk+3)

j} ∩ {u,v}| ≤ 1 are satisfied.

(b.1) Suppose that xk ∈ V0(Qn). If |{(xk)
j , (xk+3)

j} ∩ {u,v}| = 0, Lemma 6.1 en-
sures that Qj,1

n has two node-disjoint paths P1 and P2 such that (i) P1 joins u

to (xk)
j, (ii) P2 joins (xk+3)

j to v, and (iii) V (P1) ∪ V (P2) = V (Qj,1
n ). Hence,

〈u, P1, (xk)
j,xk,xk+1,xk+2,xk+3, (xk+3)

j, P2,v〉 is a path of length 2n−1 + 3. If
|{(xk)

j, (xk+3)
j}∩{u,v}| = 1, we assume that (xk)

j = v. By Theorem 4.3, Qj,1
n −

{v} has a hamiltonian path H1 joining u to (xk+3)
j. Then 〈u, H1, (xk+3)

j ,xk+3,
xk+2,xk+1,xk, (xk)

j = v〉 is a path of length 2n−1 + 3. See Figure 6.3(c).

(b.2) Suppose that xk ∈ V1(Qn). The required paths can be obtained similarly.

Subcase I.2.3: Suppose that u is in Qj,0
n , and v is in Qj,1

n . If (u, (u)j) is fault-free, the
shortest path between u and v can be of the form 〈u, (u)j, P1,v〉, where P1 is a shortest path
joining (u)j to v in Qj,1

n . By the inductive hypothesis, Qj,1
n contains a path T1 of even length
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Figure 6.3: Illustration for Subcase I.2.

l1 between (u)j and v for any even integer l1 from dQj,1
n

((u)j,v) = d∗ − 1 to 2n−1 − 2. Then

〈u, (u)j, T1,v〉 is a path of odd length l1 + 1 in the range from d∗ to 2n−1 − 1. On the other
hand, if (u, (u)j) is faulty, we choose a neighbor of u, namely x, in Qj,0

n −F (Qj,0
n ). Obviously,

we have either h((x)j ,v) = h(u,v) − 2 or h((x)j ,v) = h(u,v). Let R1 be a shortest path
joining (x)j to v in Qj,1

n . Then 〈u,x, (x)j, R1,v〉 is a path of length h(u,v) or h(u,v) + 2.
Thus, we have d∗ ≤ h(u,v) + 2. By Theorem 6.2, Qj,1

n has a path T1 of length l1 between
(x)j and v for any odd integer l1 from h((x)j ,v) to 2n−1 − 1. Then 〈u,x, (x)j, T1,v〉 is a
path of odd length l1 + 2 in the range from d∗ + 2 to 2n−1 + 1.

The paths of lengths greater than 2n−1 − 1 can be obtained as follows. Since |F (Qj,0
n )| =

2n − 6, the j-partition determined by Partition(Qn, F , u, v) guarantees that link (v, (v)j)
is fault-free if h(u,v) is odd. (See (2.2) in Section 6.1). Let (w,b) be a faulty link in
Qj,0

n such that both (w, (w)j) and (b, (b)j) are fault-free. By the inductive hypothesis,
Qj,0

n − (F (Qj,0
n )− {(w,b)}) contains a path H0 of length 2n−1 − 2 between u to (v)j. Three

subcases are distinguished.

Subcase I.2.3.1: Suppose that (w,b) is not located on H0. See Figure 6.3(d). We
choose a link (x,y) on H0 such that (x, (x)j) and (y, (y)j) are fault-free, and ((x)j, (y)j) is
not incident with v. Thus, H0 can be represented as 〈u, H ′

0,x,y, H ′′
0 , (v)j〉. By Lemma 6.2,

Qj,1
n − {v} contains a path T1 of odd length l1 between (x)j and (y)j for any odd integer

l1 from 1 to 2n−1 − 3. Consequently, 〈u, H ′
0,x, (x)j, T1, (y)j,y, H ′′

0 , (v)j,v〉 is a path of odd
length 2n−1 + l1, in the range from 2n−1 + 1 to 2n − 3.

Subcase I.2.3.2: Suppose that (w,b) is located on H0, and (w,b) is not incident
with (v)j. See Figure 6.3(e). Thus, H0 can be represented as 〈u, H ′

0,w,b, H ′′
0 , (v)j〉. By

Lemma 6.2, Qj,1
n − {v} contains a path T1 of odd length l1 between (w)j and (b)j for
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1 ≤ l1 ≤ 2n−1 − 3. Hence, 〈u, H ′
0,w, (w)j, T1, (b)j,b, H ′′

0 , (v)j,v〉 is a path of odd length
2n−1 + l1, in the range 2n−1 + 1 to 2n − 3.

Subcase I.2.3.3: Suppose that (w,b) is located on H0, and (w,b) is incident with (v)j .
See Figure 6.3(f). Let w = (v)j. Thus, H0 can be represented as 〈u, H ′

0,b,w = (v)j〉.
By Theorem 6.2, Qj,1

n contains a path T1 of odd length l1 between (b)j and v for any odd
integer l1 satisfying 1 ≤ l1 ≤ 2n−1 − 1. Then 〈u, H ′

0,b, (b)j, T1,v〉 is a path of odd length
2n−1 + l1 − 2, in the range from 2n−1 − 1 to 2n − 3.

Case II: Suppose that u and v belong to the same partite set of Qn−F . Thus, the distance
d∗ between u and v is even. Without loss of generality, we assume that u,v ∈ V0(Qn). By
Theorem 6.3, Qn − F is strongly hamiltonian laceable. Moreover, a shortest path between
u and v can be obtained by a breadth-first search. Hence, we concentrate on the paths of
even lengths in the range from d∗ + 2 to 2n − 4.

Subcase II.1: Suppose that |F (Qj,0
n )| ≤ 2n− 7 and |F (Qj,1

n )| ≤ 2n− 7. Without loss of
generality, we assume that |F (Qj,0

n )| ≥ |F (Qj,1
n )|. Thus, |F (Qj,1

n )| ≤ n − 3.

Subcase II.1.1: Suppose that both u and v are in Qj,0
n . By the inductive hypothesis,

Qj,0
n −F (Qj,0

n ) has a path H0 of length 2n−1−2 between u and v. Let A = {(H0(i), H0(i+1)) |
1 ≤ i ≤ 2n−1 − 1, i ≡ 1 (mod 2)} be a set of disjoint links on H0. First, suppose that
|F (Qj,0

n )| > 0. Since |A| = ⌈2n−1−2
2

⌉ > 2n− 5− |F (Qj,0
n )| for n ≥ 4, there exists a link (w,b)

of A such that (w, (w)j), (b, (b)j), and ((w)j, (b)j) are all fault-free. Next, suppose that
|F (Qj,0

n )| = 0 and n ≥ 5. Since |A| = ⌈2n−1−2
2

⌉ > 2n − 5, there still exists a link (w,b)
of A such that (w, (w)j), (b, (b)j), and ((w)j, (b)j) are all fault-free. Finally, suppose that
|F (Qj,0

n )| = 0 and n = 4. If there does not exist any node z of V1(Q
j,0
4 ) such that (z, (z)j) is

faulty, there must exist a link (w,b) on H0 such that (w, (w)j), (b, (b)j), and ((w)j, (b)j)
are all fault-free. If there exists a node z of V1(Q

j,0
4 ) such that (z, (z)j) is faulty, then it

follows from Theorem 4.3 that Qj,0
4 − {z} has a hamiltonian path, still namely H0, between

u and v. Obviously, there also exists a link (w,b) on H0 such that (w, (w)j), (b, (b)j), and
((w)j, (b)j) are all fault-free. In summary, H0 can be written as 〈u, H ′

0,w,b, H ′′
0 ,v〉. Since

|F (Qj,1
n )| ≤ n−3, it follows from Theorem 6.2 that Qj,1

n −F (Qj,1
n ) contains a path H1 of odd

length l1 between (w)j and (b)j for any odd integer l1 satisfying 1 ≤ l1 ≤ 2n−1 − 1. As a
result, 〈u, H ′

0,w, (w)j, H1, (b)j ,b, H ′′
0 ,v〉 is a path of even length in the range from 2n−1 to

2n − 2.

The paths of lengths less than 2n−1 are obtained as follows. By Proposition 5.3, we
have d∗ = dQn−F (u,v) ≤ h(u,v) + 4 and dQj,0

n −F (Qj,0
n )(u,v) ≤ h(u,v) + 4. By inductive

hypothesis, Qj,0
n −F (Qj,0

n ) has a path T0 of length l0 between u and v for any even length from
dQj,0

n −F (Qj,0
n )(u,v) to 2n−1−2. If d∗ = h(u,v) or d∗ = h(u,v)+4, then dQj,0

n −F (Qj,0
n )(u,v) = d∗.

If d∗ = h(u,v) + 2, then dQj,0
n −F (Qj,0

n )(u,v) ≤ d∗ + 2.

Subcase II.1.2: Suppose that both u and v are in Qj,1
n . Since |F (Qj,1

n )| ≤ n−3, it follows
from Lemma 5.1 that d∗ ≤ h(u,u) + 2. Thus, Qn − F has a shortest path between u and v

that does not cross the dimension j. By the inductive hypothesis, Qj,1
n − F (Qj,1

n ) contains a
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path T1 of length l1 between u and v for any even integer l1 satisfying d∗ ≤ l1 ≤ 2n−1 − 2.
Let T 1 be a path of length 2n−1 − 2 between u and v in Qj,1

n − F (Qj,1
n ). Moreover, let

A = {(T 1(i), T 1(i + 1)) | 1 ≤ i ≤ 2n−1 − 1, i ≡ 1 (mod 2)} be a set of disjoint links on T 1.
First, suppose that |F (Qj,1

n )| > 0. Since |A| = ⌈2n−1−2
2

⌉ > 2n− 5− |F (Qj,1
n )| for n ≥ 4, there

exists a link (w,b) ∈ A such that (w, (w)j), (b, (b)j), and ((w)j, (b)j) are all fault-free.
Next, suppose that |F (Qj,1

n )| = 0 and n ≥ 5. Since |A| = ⌈2n−1−2
2

⌉ > 2n−5, there still exists
a link (w,b) ∈ A such that (w, (w)j), (b, (b)j) and ((w)j, (b)j) are all fault-free. Finally,
suppose that |F (Qj,1

n )| = 0 and n = 4. If there does not exist any node z of V1(Q
j,1
4 ) such

that (z, (z)j) is faulty, there exists a link (w,b) on T 1 such that (w, (w)j), (b, (b)j) and
((w)j, (b)j) are all fault-free. If there exists a node z of V1(Q

j,1
4 ) such that (z, (z)j) is faulty,

Theorem 4.3 ensures that Qj,1
4 − {z} has a hamiltonian path, still namely T 1, between u

and v. Obviously, there also exists a link (w,b) on T 1 such that (w, (w)j), (b, (b)j) and
((w)j, (b)j) are all fault-free. In summary, T 1 can be written as 〈u, T ′

1,w,b, T ′′
1 ,v〉. Since

|F (Qj,0
n )| ≤ 2n − 7, it follows from Theorem 6.4 that Qj,0

n − F (Qj,0
n ) contains a path T0 of

length l0 between (w)j and (b)j for any odd integer l0 from 1 to 2n−1 − 1 excluding 3. As a
result, 〈u, T ′

1,w, (w)j, T0, (b)j,b, T ′′
1 ,v〉 is a path of any even length in the range from 2n−1

to 2n − 2, excluding 2n−1 + 2.

The path of length 2n−1 + 2 is discussed as follows. When n = 4, |F (Qj,0
n )| ≤ 1.

Thus, there exists an integer k of {0, 1, 2, 3} − {j, dim((w,b))} such that ((w)j, ((w)j)k),
((b)j , ((b)j)k), and (((w)j)k, ((b)j)k) are all fault-free. Hence, 〈u, T ′

1,w, (w)j, ((w)j)k, ((b)j)k,
(b)j ,b, T ′′

1 ,v〉 is a path of length 10. When n ≥ 5, we have |A| − |F | = ⌈2n−1−2
2

⌉ − (2n −
5) ≥ 2. Thus, there is another link (x,y) of A, other than (w,b), such that (x, (x)j),
(y, (y)j), and ((x)j , (y)j) are all fault-free. Without loss of generality, T 1 can be written as
〈u, R′

1,w,b, R′′
1,x,y, R′′′

1 ,v〉. Hence, 〈u, R′
1,w, (w)j, (b)j,b, R′′

1,x, (x)j, (y)j,y, R′′′
1 ,v〉 is a

path of length 2n−1 + 2.

Subcase II.1.3: Suppose that u is in Qj,0
n and v is in Qj,1

n . By Theorem 6.1, there exists
a shortest path P ∗ between u and v in Qn −F such that P ∗ crosses the dimension j exactly
once. Thus, P ∗ can be written as 〈u, P0,x, (x)j, P1,v〉, where P0 is a shortest path joining u

to some node x in Qj,0
n −F (Qj,0

n ) and P1 is a shortest path joining (x)j to v in Qj,1
n −F (Qj,1

n ).

Subcase II.1.3.1: Suppose that ℓ(P0) > 0 and ℓ(P1) > 0. By Theorem 6.2, Qj,1
n −F (Qj,1

n )
has a path T1 of length l1 between (x)j and v for each l1 satisfying ℓ(P1) ≤ l1 ≤ 2n−1 − 1
and 2|(l1 − ℓ(P1)). Suppose that ℓ(P0) = 1. By Theorem 6.4, Qj,0

n − F (Qj,0
n ) has a path

T0 of length l0 between u and x for any odd integer l0 from 1 to 2n−1 − 1 excluding 3.
Suppose that ℓ(P0) > 1. By the inductive hypothesis, Qj,0

n −F (Qj,0
n ) has a path T0 of length

l0 between u and x for each l0 satisfying ℓ(P0) ≤ l0 ≤ 2n−1 − 1 and 2|(l0 − ℓ(P0)). Hence,
〈u, T0,x, (x)j, T1,v〉 is a path of even length l0 + l1 + 1 in the range from d∗ to 2n − 2.

Subcase II.1.3.2: Suppose that ℓ(P0) = 0 or ℓ(P1) = 0. With symmetry, we assume
u = x. By the inductive hypothesis, Qj,1

n − F (Qj,1
n ) contains a path T1 of length l1 between

(u)j and v for any odd integer l1 form ℓ(P1) to 2n−1 − 1. Then 〈u, (u)j, T1,v〉 is a path of
even length l1 + 1 in the range from ℓ(P1) + 1 = d∗ to 2n−1.
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The paths of lengths greater than 2n−1 are constructed as follows. Since |V (Qj,0
n )−{u}|−

(2n − 5) > 1 for n ≥ 4, we can choose a node y from V (Qj,0
n ) − {u} such that (y, (y)j) is

fault-free and (y)j is not v. Let R0 be a path joining u to y in Qj,0
n −F (Qj,0

n ) and R1 be a path
joining (y)j to v in Qj,1

n − F (Qj,1
n ). Similar to Subcase II.1.3.1, H = 〈u, R0,y, (y)j, R1,v〉

is a path of even length in the range from d′ = dQj,0
n −F (Qj,0

n )(u,y)+dQj,1
n −F (Qj,1

n )((y)j,v)+1 to

2n − 2. By Theorem 5.3, we have d′ ≤ (n + 1) + (n− 1) + 1 ≤ 2n−1 + 2 for n ≥ 4. Therefore,
H is a path of even length in the range from 2n−1 + 2 to 2n − 2.

Subcase II.2: Suppose that |F (Qj,0
n )| ≤ 2n − 6 or |F (Qj,1

n )| ≤ 2n − 6. Without loss of
generality, we assume that |F (Qj,0

n )| = 2n− 6. Thus, Qj,1
n is fault-free. It is noticed that the

faulty links are distributed as shown in Figure 6.1.

Subcase II.2.1: Suppose that both u and v are in Qj,0
n . Let (w,b) be a faulty link of Qj,0

n

such that both (w, (w)j) and (b, (b)j) are fault-free. Let F0 = F (Qj,0
n ) − {(w,b)}. By the

inductive hypothesis, Qj,0
n −F0 has a path Pl of length l between u and v for any even integer l

from dQj,0
n −F0

(u,v) to 2n−1−2. If (w,b) is on Pl, we write Pl as 〈u, P ′
l ,w,b, P ′′

l ,v〉 and define

P̃l = 〈u, P ′
l ,w, (w)j, (b)j ,b, P ′′

l ,v〉. Otherwise, Pl can be written as 〈u, P ′
l ,x,y, P ′′

l ,v〉,
where (x,y) is a link on Pl such that both (x, (x)j) and (y, (y)j) are fault-free. Similarly, we

define P̃l = 〈u, P ′
l ,x, (x)j, (y)j,y, P ′′

l ,v〉. Then P̃l is a path of length l+2. By Proposition 5.3,
we have d∗ = dQn−F (u,v) ≤ h(u,v) + 4 and dQj,0

n −F0
(u,v) ≤ h(u,v) + 4. If dQj,0

n −F0
(u,v) =

d∗, then path P̃l is the desired path. Otherwise, if dQj,0
n −F0

(u,v) = d∗ + 2, then P̃l is a path

of even length in the range from d∗ + 4 to 2n−1. It is noticed that a shortest path between
u and v in Qn − F can be constructed based on a breadth-first search.

By Theorem 6.2, Qj,1
n contains a path T1 of length l1 between (w)j and (b)j or a path

R1 of odd length l1 between (x)j and (y)j for any odd integer l1 from 1 to 2n−1 − 1. Thus,
〈u, P ′

2n−1−2,w, (w)j, T1, (b)j ,b, P ′′
2n−1−2,v〉 (or 〈u, P ′

2n−1−2,x, (x)j, R1, (y)j,y, P ′′
2n−1−2,v〉) is

a path of even length in the range from 2n−1 to 2n − 2.

Subcase II.2.2: Suppose that both u and v are in Qj,1
n . Let (w, (w)i) be a faulty

link of Qj,0
n such that both (w, (w)j) and ((w)i, ((w)i)j) are fault-free. Since n ≥ 4, we

assume that t ∈ {0, 1, . . . , n − 1} − {j, i}. Moreover, we assume that w ∈ V0(Q
j,0
n ). Let

X = {((x)j, ((x)j)k) | k /∈ {i, j, t}}. Since |X| = n−3, our inductive hypothesis ensures that
Qj,1

n − X contains a path T1 of even length l1 between u and v for d∗ ≤ l1 ≤ 2n−1 − 2. Let
T 1 denote the longest path between u and v in Qj,1

n − X. It is noted that ((w)j, ((w)j)i)
is on T 1. Hence, T 1 can be represented as 〈u, T ′

1, (w)j, ((w)j)i, T ′′
1 ,v〉. By the inductive

hypothesis, Qj,0
n − (F (Qj,0

n )−{(w, (w)i)}) contains a path T0 of odd length l0 between w to
(w)i for 5 ≤ l0 ≤ 2n−1 − 1. As a result, 〈u, T ′

1, (w)j,w, T0, (w)i, ((w)j)i, T ′′
1 ,v〉 is a path of

even length 2n−1 + l0 − 1, in the range from 2n−1 + 4 to 2n − 2.

Let A = {(T 1(k), T 1(k + 1)) | 1 ≤ k ≤ 2n−1 − 1, k ≡ 1 (mod 2)} be a set of disjoint
links on T 1. Then the paths of lengths 2n−1 and 2n−1 + 2 can be obtained as follows. When
n = 4, we suppose that {p, q, j, i} = {0, 1, 2, 3}. Since (w, (w)i) is faulty, we have either
{(w, (w)p), ((w)p, ((w)p)i), ((w)p)i, (w)i)} ∩ F = ∅ or {(w, (w)q), ((w)q, ((w)q)i), ((w)q)i,
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(w)i, (w)q)i)} ∩ F = ∅. Without loss of generality, we assume {(w, (w)p), ((w)p, ((w)p)i),
((w)i, (w)p)i)} ∩ F = ∅. Obviously, 〈u, T ′

1, (w)j,w, (w)p, ((w)p)i, (w)i, ((w)j)i, T ′′
1 ,v〉 is a

path of length 2n−1 + 2. Moreover, since |A| − |F | = ⌈2n−1−1
2

⌉ − (2n − 5) = 1 for n = 4,
there exists one link (x,y) ∈ A such that (x, (x)j), (y, (y)j), and ((x)j, (y)j) is fault-free.
Hence, T 1 can be represented as 〈u, R1,x,y, R2,v〉. Obviously, 〈u, R1,x, (x)j, (y)j,y, R2,v〉
is a path of length 2n−1. When n ≥ 5, we have |A| − |F | = ⌈2n−1−2

2
⌉ − (2n − 5) ≥ 2. Thus,

there are two links (x1,y1), (x2,y2) ∈ A such that {(xk, (xk)
j), (yk, (yk)

j), ((xk)
j , (yk)

j) |
k = 1, 2} ∩ F = ∅. Hence, T 1 can be represented as 〈u, R1,x1,y1, R2,x2, y2, R3, v〉. Ob-
viously, 〈u, R1,x1, (x1)

j , (y1)
j,y1, R2,x2,y2, R3,v〉 and 〈u, R1, x1, (x1)

j , (y1)
j, y1, R2, x2,

(x2)
j, (y2)

j , y2, R3, v〉 are paths of length 2n−1 and of length 2n−1 + 2, respectively.

Subcase II.2.3: Suppose that u is in Qj,0
n and v is in Qj,1

n . If (u, (u)j) is fault-free, the
shortest path between u and v can be of the form 〈u, (u)j , P1,v〉, where P1 is a shortest
path joining (u)j to v in Qj,1

n . By the inductive hypothesis, Qj,1
n contains a path T1 of

odd length l1 between (u)j and v for d∗ − 1 ≤ l1 ≤ 2n−1 − 1. Then 〈u, (u)j, T1,v〉 is
a path of even length in the range from d∗ to 2n−1. If (u, (u)j) is faulty, we choose a
neighbor of u in Qj,0

n − F (Qj,0
n ), namely x, such that (x)j 6= v. Obviously, we have either

h((x)j ,v) = h(u,v) − 2 or h((x)j ,v) = h(u,v). Let R1 be a shortest path joining (x)j to v

in Qj,1
n . Then 〈u,x, (x)j, R1,v〉 is a path of length h(u,v) or h(u,v) + 2. By Theorem 6.2,

Qj,1
n contains a path T1 of even length l1 between (x)j and v for any even integer l1 from

h((x)j ,v) to 2n−1 − 2. Then 〈u,x, (x)j, T1,v〉 is a path of even length in the range from
d∗ + 2 to 2n−1.

The paths of lengths greater than 2n−1 are obtained as follows. Let (w,b) be a faulty
link in Qj,0

n such that both (w, (w)j) and (b, (b)j) are fault-free. Depending on whether
(v, (v)j) is faulty, we distinguish two subcases.

Subcase II.2.3.1: Suppose that (v, (v)j) is fault-free. By the inductive hypothesis,
Qj,0

n − (F (Qj,0
n ) − {(w,b)}) contains a path H0 of length 2n−1 − 1 between u to (v)j.

Subcase II.2.3.1.a: Suppose that (w,b) is not located on H0. We choose a link (x,y)
on H0 such that (x, (x)j) and (y, (y)j) are fault-free and ((x)j, (y)j) is not incident with v.
Thus, H0 can be represented as 〈u, H ′

0,x,y, H ′′
0 , (v)j〉. By Lemma 6.2, Qj,1

n − {v} contains
a path T1 of odd length l1 between (x)j and (y)j for any odd integer l1 from 1 to 2n−1 − 3.
Consequently, 〈u, H ′

0,x, (x)j, T1, (y)j,y, H ′′
0 , (v)j,v〉 is a path of even length 2n−1 + l1 + 1,

in the range from 2n−1 + 2 to 2n − 2.

Subcase II.2.3.1.b: Suppose that (w,b) is located on H0 and (w,b) is not incident
with (v)j. Thus, H0 can be represented as 〈u, H ′

0,w,b, H ′′
0 , (v)j〉. By Lemma 6.2, Qj,1

n −{v}
contains a path T1 of odd length l1 between (w)j and (b)j for any odd integer l1 from 1 to
2n−1 − 3. Then 〈u, H ′

0,w, (w)j, T1, (b)j ,b, H ′′
0 , (v)j,v〉 is a path of even length 2n−1 + l1 + 1,

in the range from 2n−1 + 2 to 2n − 2.

Subcase II.2.3.1.c: Suppose that (w,b) is on H0 and (w,b) is incident with (v)j. Let
b = (v)j . Thus, H0 can be written as 〈u, H ′

0,w,b = (v)j〉. By Theorem 6.2, Qj,1
n has a path
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T1 of odd length l1 between (w)j and v for 1 ≤ l1 ≤ 2n−1 − 1. Thus, 〈u, H ′
0,w, (w)j, T1,v〉

is a path of even length 2n−1 + l1 − 1, in the range from 2n−1 to 2n − 2.

Subcase II.2.3.2: Suppose that (v, (v)j) is faulty. According to procedure Partition(Qn,
F , u, v), this subcase occurs only when n = 4 and there is a unique node z of V1(Q4) such
that both (z,u) and (z,v) are faulty links. In addition, each faulty link corresponds to a
unique dimension. By transitivity, we assume that z = 0001, u = 0101, and v = 1001. Then
the paths obtained by brute force are listed in Table 6.3.

Table 6.3: The paths of lengths 10, 12, and 14 between u = 0101 and v = 1001 in Q4 −
{ef , (0001, 0101), (0001, 1001)}.

ef ∈ {(0000, 0010), (0010, 0011)} 〈u = 0101, 0100, 0110, 0111, 0011, 0001, 0000, 1000, 1100, 1101, 1001 = v〉
〈u = 0101, 0100, 0110, 0111, 0011, 0001, 0000, 1000, 1100, 1110, 1111, 1101, 1001 = v〉
〈u = 0101, 0100, 0110, 0111, 0011, 0001, 0000, 1000, 1100, 1110, 1010, 1011, 1111, 1101, 1001 = v〉

ef = (0100, 0110) 〈u = 0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1100, 1101, 1001 = v〉
〈u = 0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1100, 1110, 1111, 1101, 1001 = v〉
〈u = 0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1100, 1110, 1010, 1011, 1111, 1101, 1001 = v〉

ef = (0110, 0111) 〈u = 0101, 0111, 0011, 0010, 0110, 0100, 0000, 1000, 1100, 1101, 1001 = v〉
〈u = 0101, 0111, 0011, 0010, 0110, 0100, 0000, 1000, 1100, 1110, 1111, 1101, 1001 = v〉
〈u = 0101, 0111, 0011, 0010, 0110, 0100, 0000, 1000, 1100, 1110, 1010, 1011, 1111, 1101, 1001 = v〉
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Chapter 7

Long Paths in Faulty Hypercubes

with Conditional Node-faults

In contrast to the preceding chapter in which only link-faults are taken into account, we
address only node-faults in this chapter. Hence, a network will be called conditionally faulty
if and only if its every node has at least two fault-free neighbors.

This chapter is aimed to show that a conditionally faulty n-cube, with f ≤ 2n− 5 faulty
nodes, contains a fault-free path of length at least 2n − 2f − 1 (respectively, 2n − 2f − 2)
between any two fault-free nodes of odd (respectively, even) distance. Why do we concern
only 2n − 5 faulty nodes? Consider a 4-cube with four faulty nodes, 0000, 0011, 1100, and
1111, as shown in Figure 7.1, in which every node has at least two fault-free neighbors. We
can see that the length of the longest path between nodes 0110 and 1001 is 4 < 24−2 ·4−2.
This is the reason why we concentrate only on f ≤ 2n − 5 faulty nodes.

It is sufficient to assume that every node should have at least two fault-free neighbors
while a long path is constructed between every pair of fault-free nodes. Consider the scenario
that u is a fault-free node with only one fault-free neighbor, namely v. Then the longest
path between u and v happens to be of length 1. To avoid such a degenerate situation, it
is necessary that, for any pair u,v of adjacent nodes, u has some fault-free neighbor other
than v, and vice versa. On the other hand, it is also statistically reasonable to require
that every node needs to have at least two fault-free neighbors. Suppose, with a random
fault model, the probabilities of node failures are identical and independent. Let PN (n)
denote the probability that every node of the n-cube Qn, containing 2n − 5 faulty nodes, is
adjacent to at least two fault-free neighbors. As discussed in Section 1.3, we have PN(3) = 1,

PN(4) = 1 −
24×(4

3)
(24

3 )
= 31

35
, and PN(n) = 1 −

2n×(2n−n

n−5 )+2n×( n

n−1)(
2n−n

n−4 )
( 2n

2n−5)
for each n ≥ 5. Clearly

PN(n) approaches to 1 as n increases.
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Figure 7.1: A conditionally faulty Q4 with four faulty nodes. Every faulty node is marked
by an “X” symbol. The length of the longest path between nodes 0110 and 1001 is 4.

7.1 Partition of an n-cube with conditional node-faults

Here we will show that a conditionally faulty n-cube can be partitioned into two conditionally
faulty subcubes if it has 2n− 5 or less faulty nodes. Recall that F (G) denotes the set of all
faulty elements in a network G. Let u be a node of G. For convenience, we use NF

G (u) to
denote the set of all faulty neighbors of u; i.e., NF

G (u) = NG(u) ∩ F (G).

Suppose Qn, n ≥ 4, is conditionally faulty with f ≤ 2n − 5 faulty nodes. Moreover,
suppose u, v, and w are three nodes of this faulty n-cube, and each of them has only two
fault-free neighbors. Then we discuss how the faulty nodes will be distributed conditionally.
For simplification, let U = NF

Qn
(u), V = NF

Qn
(v), and W = NF

Qn
(w).

If |V ∩ W | = 0, then we have f ≥ |V ∪ W | = |V | + |W | = 2n − 4, contradicting the
requirement that f ≤ 2n − 5. Therefore, |V ∩ W | ≥ 1 needs to be satisfied. Similarly, we
also have |U ∩ V | ≥ 1 and |U ∩W | ≥ 1. Since any two nodes of an n-cube can have utmost
two common neighbors, we obtain that |V ∩W |, |U ∩V |, |U ∩W | ∈ {1, 2}. We first consider
the case that at least one of |V ∩ W |, |U ∩ V |, and |U ∩ W | is equal to 1. Without loss of
generality, we suppose |V ∩ W | = 1.

I. Firstly, we concern the case that |V ∩W | = |U ∩V | = |U ∩W | = 1. If |U ∩V ∩W | ≥ 1,
we have 2n − 5 ≥ f ≥ |U ∪ V ∪ W | = 3(n − 2) − (1 + 1 + 1) + 1 = 3n − 8; i.e.,
n ≤ 3. Since n ≥ 4, we only concern |U ∩ V ∩ W | = 0. Then we have 2n − 5 ≥ f ≥
|U ∪V ∪W | ≥ 3(n−2)− (1+1+1) = 3n−9; i.e., n ≤ 4. Figure 7.2(a) depicts a faulty
4-cube with |V ∩W | = |U ∩V | = |U ∩W | = 1 and |U ∩V ∩W | = 0. Figure 7.2(b) is a
cube-styled layout isomorphic to Figure 7.2(a). We can examine Figure 7.2(a) in a top-
down viewpoint. Since hypercube is node-transitive, we can assume that u = t1. By
link-transitivity, we assume that t4 and t5 are faulty neighbors of u. Since |U ∩V | = 1,
we obtain v ∈ {t7, t8, t9, t10}. Without loss of generality, we assume that v = t10. Since

82



u

vw z

(b)

Q4

v

w

u

z

(a)

Q4

v w

(c)

Q4

(d)

Q4 v

w
u

zz

t1

t10

=

t2
t3 t4 t5

t6 t7 t8
t9 t11

t12 t13 t14 t15

t16

t10

t2
t3 t4 t5

t6 t7 t8 t9 t11

t12 t13 t14 t15

t16

ut1=

Figure 7.2: Every faulty node is marked by an “X” symbol. (a) The Q4 with |NF
Q4

(u) ∩
NF

Q4
(v)| = |NF

Q4
(v) ∩NF

Q4
(w)| = |NF

Q4
(u) ∩NF

Q4
(w)| = 1; (b) a layout isomorphic to (a); (c)

the Q4 with |NF
Q4

(u)∩NF
Q4

(v)| = |NF
Q4

(v)∩NF
Q4

(w)| = 1 and |NF
Q4

(u) ∩NF
Q4

(w)| = 2; (d) a
layout isomorphic to (c).

|U ∩W | = |V ∩W | = 1 and |U ∩ V ∩W | = 0, we see that w = t9 and V ∩W = {t15}.
As a consequence, this happens to be the only possibility. However, node t11 has only
one fault-free neighbor. Thus it is not conditionally faulty.

II. Secondly, we consider the case that |V ∩ W | = |U ∩ V | = 1 and |U ∩ W | = 2. By
the definition of hypercube, we see that |NQn

(u) ∩NQn
(v) ∩NQn

(w)| ≤ 1. Obviously,
we have |U ∩ V ∩ W | ≤ |NQn

(u) ∩ NQn
(v) ∩ NQn

(w)|. In particular, we claim that
|U ∩ V ∩ W | = 1. Suppose, by contradiction, that |U ∩ V ∩ W | = 0. Then we have
U∩V ∩W = (U∩V )∩(U∩W ) = ∅. Since U∩V 6= ∅ and U∩W 6= ∅, we conclude that
V ∩W = ∅. That is, the assumption of |U∩V ∩W | = 0 leads to a contradiction between
|V ∩ W | = 1 and V ∩ W = ∅. As a result, |U ∩ V ∩ W | is equal to 1. Accordingly, we
have 2n − 5 ≥ f ≥ |U ∪ V ∪ W | = 3(n − 2) − (1 + 1 + 2) + 1 = 3n − 9; i.e., n ≤ 4.
See Figure 7.2(c) for illustration. For clarity, Figure 7.2(d) is an isomorphic layout
of Figure 7.2(c). Similarly, we can examine Figure 7.2(c) in a top-down viewpoint.
By node-transitivity, we assume that u = t1. By link-transitivity, we assume that
t4 and t5 are faulty neighbors of u. Since |U ∩ W | = 2, we have w = t11. Since
|V ∩ W | = |U ∩ V | = 1 and |U ∩ V ∩ W | = 1, we obtain v ∈ {t7, t8, t9, t10}. Without
loss of generality, we assume that v = t10. Then this turns out to be the only possibility.
It is noticed that node t8 has only two fault-free neighbors.

III. Next, we concern the case that |V ∩W | = 1 and |U ∩ V | = |U ∩W | = 2. Similarly, we
have |U∩V ∩W | = 1. Since (U∩V )∪(U∩W ) ⊆ U , we have |(U∩V )∪(U∩W )| ≤ |U |.
However, we have a contradiction that |(U∩V )∪(U∩W )| = |U∩V |+|U∩W |−|U∩V ∩
W | = 2+2−1 = 3 > n−2 = |U | if n ≤ 4. In what follows, we suppose that n ≥ 5. As a
consequence, we have 2n−5 ≥ f ≥ |U∪V ∪W | = 3(n−2)−(1+2+2)+1 = 3n−10; i.e.,
n = 5. See Figure 7.3(a). Again, we examine Figure 7.3(a) in a top-down viewpoint.
By node-transitivity, we assume that u = t1. By link-transitivity, we assume that
t4, t5, and t6 are faulty neighbors of u. Since |U ∩ V | = |U ∩ W | = 2, we have
{v,w} ⊂ {t14, t15, t16}. Without loss of generality, we assume that v = t14 and w = t16.
Since |V ∩W | = 1, we have t26 /∈ V ∪W . Moreover, we have 2n− 5 ≥ f ≥ |V ∪W | =
|V | + |W | − |V ∩ W | = (n − 2) + (n − 2) − 1 = 2n − 5; that is, f = 2n − 5 and
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Figure 7.3: Every faulty node is marked by an “X” symbol. Each of u, v, w, and z has only
two fault-free neighbors. (a) The Q5 with |NF

Q5
(v) ∩ NF

Q5
(w)| = 1 and |NF

Q5
(u) ∩NF

Q5
(v)| =

|NF
Q5

(u)∩NF
Q5

(w)| = 2; (b) the Q5 with |NF
Q5

(u)∩NF
Q5

(v)| = |NF
Q5

(v)∩NF
Q5

(w)| = |NF
Q5

(u)∩
NF

Q5
(w)| = 2.

U ⊆ V ∪ W . Then we have either t20 ∈ V or t23 ∈ V . Without loss of generality,
we assume that t23 ∈ V . Similarly, we can assume that t25 ∈ W . As a result, this
is the only possibility. It is noted that node t12 = z has three faulty neighbors, and
|NF

Q5
(x)| ≤ 2 for each x ∈ V (Q5) − {u,v,w, z}.

Now we consider the case that |V ∩ W | = |U ∩ V | = |U ∩ W | = 2. Again, we have
|U ∩ V ∩ W | = 1. Since |(U ∩ V ) ∪ (U ∩ W )| ≤ |U |, we still have a contradiction that
|(U ∩ V ) ∪ (U ∩ W )| = |U ∩ V | + |U ∩ W | − |U ∩ V ∩ W | = 2 + 2 − 1 = 3 > n − 2 = |U |
if n ≤ 4. In what follows, we suppose n ≥ 5. Then we have 2n − 5 ≥ f ≥ |U ∪ V ∪ W | =
3(n − 2) − (2 + 2 + 2) + 1 = 3n − 11; i.e., n ∈ {5, 6}. Note that |U ∪ V ∪ W | = 4 if n = 5
and |U ∪ V ∪ W | = 7 if n = 6. See Figure 7.3(b) and Figure 7.4(a,b). In Figure 7.3(b),
it is not difficult to see that |NF

Q5
(x)| ≤ 2 for each x ∈ V (Q5) − {u,v,w, z}. We explain

Figure 7.4 as follows. By node-transitivity, we assume that u = t1. By link-transitivity, we
assume that t4, t5, t6, and t7 are faulty neighbors of u. Since |U ∩ V | = |U ∩ W | = 2, we
deduce that {v,w} ⊂ {ti | 17 ≤ i ≤ 22}. Since |U ∩V ∩W | = 1, we can assume that v = t20
and w = t22. Then we have |V ∩{t30, t36, t39, t42}| = 2 and |W ∩{t32, t38, t41, t42}| = 2. Since
|V ∩ W | = 2, we have V ∩ W = {t6, t42}. If t39 ∈ V and t41 ∈ W , then node t18 happens to
have only two fault-free neighbors (see Figure 7.4(a)); otherwise, we have |NF

Q6
(x)| ≤ 3 for

each x ∈ V (Q6) − {u,v,w} (see Figure 7.4(b), in which nodes t36 and t41, for example, are
faulty). Hence these figures cover all possibilities.

According to the analysis presented earlier, a conditionally faulty n-cube with f ≤ 2n−5
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faulty nodes is likely to contain three or four nodes, every of which has only two fault-free
neighbors. Since 2n − 5 ≤ n − 2 for n ≤ 3, we concentrate only on the case that n ≥ 4. To
summarize, we have the following two lemmas.

Lemma 7.1. Suppose that an n-cube Qn (n ≥ 4) is conditionally faulty with f ≤ 2n−5 faulty
nodes. Let u,v,w, z ∈ V (Qn) such that |NF

Qn
(u)| = |NF

Qn
(v)| = |NF

Qn
(w)| = |NF

Qn
(z)| = n−2

and |NF
Qn

(x)| ≤ n−3 for every x ∈ V (Qn)−{u,v,w, z}. Then the faulty nodes are distributed
as illustrated in Figure 7.2(c), Figure 7.3(a,b), and Figure 7.4(a). In Figure 7.2(c) and
Figure 7.3(a), no dimensions can be used to partition Qn in such a way that both resulting
subcubes are conditionally faulty. In Figure 7.3(b) and Figure 7.4(a), there exists some
dimension j of {0, 1, . . . , n − 1} such that both Qj,0

n and Qj,1
n are conditionally faulty with

2n − 7 or less faulty nodes.

Proof. In Figure 7.2(c) and Figure 7.3(a), we check, by brute force, that either Qk,0
n or Qk,1

n

contains a node with only one fault-free neighbor for each k ∈ {0, 1, . . . , n−1}; that is, there
does not exist any dimension to partition Qn such that both (n− 1)-cubes are conditionally
faulty. In Figure 7.3(b) and Figure 7.4(a), let j be any integer of {0, 1, . . . , n− 1} such that
(u)j is faulty. Then both Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less faulty

nodes.

Lemma 7.2. Suppose that an n-cube Qn (n ≥ 4) is conditionally faulty with f ≤ 2n − 5
faulty nodes. Let u,v,w ∈ V (Qn) such that |NF

Qn
(u)| = |NF

Qn
(v)| = |NF

Qn
(w)| = n − 2 and

|NF
Qn

(x)| ≤ n − 3 for every x ∈ V (Qn) − {u,v,w}. Then the faulty nodes are distributed
as illustrated in Figure 7.4(b). Moreover, there exists some dimension j of {0, 1, . . . , n − 1}
such that both Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less faulty nodes.

Proof. Let j ∈ {0, 1, . . . , n − 1} such that (u)j ∈ NF
Qn

(u) ∩ NF
Qn

(v) ∩ NF
Qn

(w). Then both
Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less faulty nodes.

Lemma 7.3. Suppose that an n-cube Qn (n ≥ 4) is conditionally faulty with f ≤ 2n − 5
faulty nodes. Let u and v be two nodes of Qn such that |NF

Qn
(u)| = |NF

Qn
(v)| = n − 2 and

|NF
Qn

(x)| ≤ n − 3 for every x ∈ V (Qn) − {u,v}. Then there exists some dimension k of
{0, 1, . . . , n − 1} such that both Qk,0

n and Qk,1
n are conditionally faulty. When n ≥ 5, both

Qk,0
n and Qk,1

n contain 2n − 7 or less faulty nodes.

Proof. Since |NF
Qn

(u)| = |NF
Qn

(v)| = n−2 and f ≤ 2n−5, we have |NF
Qn

(u)∩NF
Qn

(v)| ≥ 1.
Since any two nodes of Qn can have utmost two common neighbors, we consider the following
two cases.

Case 1: Suppose that |NF
Qn

(u) ∩ NF
Qn

(v)| = 2. Let i and j be two integers such that
{(u)i, (u)j} = NF

Qn
(u) ∩ NF

Qn
(v). Obviously, we have (u)i = (v)j and (u)j = (v)i. Then we

can partition Qn along dimension k ∈ {i, j}. As a result, both Qk,0
n and Qk,1

n contain at least
n − 3 faulty nodes. See Figure 7.5(a).

Case 2: Suppose that |NF
Qn

(u) ∩ NF
Qn

(v)| = 1. We claim first that this case holds only
for n ≥ 5. By contradiction, we suppose n = 4. Let p and q be two integers such that both
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Figure 7.5: Every faulty node is marked by an “X” symbol. (a,b) |NF
Qn

(u)| = |NF
Qn

(v)| =
n − 2 and |NF

Qn
(x)| ≤ n − 3 for x ∈ V (Qn) − {u,v}; (c) a faulty node distribution on Q5;

(d) a conditionally faulty 4-cube with four faulty nodes.

(u)p and (u)q are faulty. Since |NF
Qn

(u) ∩ NF
Qn

(v)| = 1, we have v 6= ((u)p)q. Thus node
((u)p)q happens to have only two fault-free neighbors, which contradicts the assumption that
|NF

Qn
(x)| ≤ n − 3 for every x ∈ V (Qn) − {u,v}.

Let i and j be two integers such that {(u)i} = {(v)j} = NF
Qn

(u) ∩ NF
Qn

(v). Since
|NF

Qn
(u) − {(u)i}| + |NF

Qn
(v) − {(v)j}| = 2(n − 3) > n − 2 = |{0, 1, . . . , n − 1} − {i, j}|

for n ≥ 5, there exists some dimension k of {0, 1, . . . , n − 1} − {i, j} such that both (u)k

and (v)k are faulty. As a result, either Qk,0
n or Qk,1

n contains exactly two faulty nodes. See
Figure 7.5(b).

In either case, both Qk,0
n and Qk,1

n are conditionally faulty.

Lemma 7.4. Suppose that an n-cube Qn (n ≥ 4) is conditionally faulty with f ≤ 2n − 5
faulty nodes. Let z be a unique node with exactly n − 2 faulty neighbors. Then there exists
some dimension j of {0, 1, . . . , n − 1} such that both Qj,0

n and Qj,1
n are conditionally faulty.

Except for the case depicted in Figure 7.5(c), both Qj,0
n and Qj,1

n contain 2n−7 or less faulty
nodes if n ≥ 5.

Proof. Since Qn is node-transitive, we assume z = 0n. Since Qn is also link-transitive, we
assume that (z)0 and (z)1 are fault-free. Because z is a unique node with exactly n−2 faulty
neighbors, we have |NF

Qn
(x)| ≤ n − 3 for x ∈ V (Qn) − {z}. For every k ∈ {2, 3, . . . , n − 1},

we have NF
Qk,0

n

(x) ⊆ NF
Qn

(x) and NF
Qk,1

n

(y) ⊆ NF
Qn

(y) for x ∈ V (Qk,0
n )−{z} and y ∈ V (Qk,1

n ).

Thus we obtain |NF

Qk,0
n

(x)| ≤ |NF
Qn

(x)| ≤ n − 3 and |NF

Qk,1
n

(y)| ≤ |NF
Qn

(y)| ≤ n − 3 for

x ∈ V (Qk,0
n ) − {z} and y ∈ V (Qk,1

n ). In addition, we have |NF
Qk,0

n

(z)| = (n − 2) − 1 = n − 3

for every k ∈ {2, 3, . . . , n − 1}. Let j be an integer of {2, 3, . . . , n − 1}. Then both Qj,0
n and

Qj,1
n are conditionally faulty.

Suppose f ≤ 2n−6. We see that, for any j ∈ {2, 3, . . . , n−1}, both Qj,0
n and Qj,1

n contain
2n − 7 or less faulty nodes.

Suppose f = 2n−5. We assume, by contraposition, that either Qj,0
n or Qj,1

n contains 2n−6
faulty nodes for any j ∈ {2, 3, . . . , n−1}. Then, for any x of F (Qn)−{(z)k | 2 ≤ k ≤ n−1},
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we have (x)j = (z)j for every j ∈ {2, 3, . . . , n − 1}. Hence we have F (Qn) − {(z)k | 2 ≤ k ≤
n − 1} ⊆ {z, ((z)0)1}. Since |F (Qn) − {(z)k | 2 ≤ k ≤ n − 1}| = f − (n − 2) = n − 3 ≤
2 = |{z, ((z)0)1}|, we derive that n ≤ 5. That is, if n ≥ 6, there exists some dimension j
of {2, 3, . . . , n − 1} such that both Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less

faulty nodes. Since |F (Qn) − {(z)k | 2 ≤ k ≤ n − 1}| = 2 for n = 5, nodes z and ((z)0)1 are
faulty; that is, F (Q5) = {z, (z)2, (z)3, (z)4, ((z)0)1}, as shown in Figure 7.5(c). Therefore,
Figure 7.5(c) happens to be the only possibility that either Qj,0

n or Qj,1
n contains 2n−6 faulty

nodes for every j ∈ {2, 3, . . . , n − 1}.

Lemma 7.5. Suppose that an n-cube Qn (n ≥ 4) contains f ≤ 2n − 5 faulty nodes such
that every node has at least three fault-free neighbors. Then there exists some dimension j
of {0, 1, . . . , n−1} such that both Qj,0

n and Qj,1
n are conditionally faulty. For n ≥ 5, both Qj,0

n

and Qj,1
n contain 2n − 7 or less faulty nodes.

Proof. Since every node has at least three fault-free neighbors, every (n − 1)-dimensional
subcube of Qn is conditionally faulty. First, we consider the case that f ≤ 2n − 6. Let u

and v be two distinct faulty nodes, and let j ∈ {0, 1, . . . , n−1} such that (u)j 6= (v)j. Then
both Qj,0

n and Qj,1
n contain 2n − 7 or less faulty nodes.

Now we consider the case that f = 2n − 5. For n ≥ 5, we claim that there exists some
dimension j of {0, 1, . . . , n − 1} such that |F (Qj,0

n )| ≤ 2n − 7 and |F (Qj,1
n )| ≤ 2n − 7. For

0 ≤ k ≤ n − 1, we define that qk = 1 if (u)k = (v)k for every two distinct faulty nodes
u,v ∈ F (Qn), and qk = 0 otherwise. Let q =

∑n
k=1 qk. Clearly, all faulty nodes are located

in either Qk,0
n or Qk,1

n if qk = 1. For convenience, let {0 ≤ k ≤ n−1 | qk = 0} = {i1, . . . , in−q}.
Then both Qj,0

n and Qj,1
n contain at least one faulty node for j ∈ {i1, . . . , in−q}.

Suppose, by contradiction, either Qj,0
n or Qj,1

n contains only one faulty node for every
j ∈ {i1, . . . , in−q}. For v ∈ F (Qn), let A(v) = {0 ≤ k ≤ n− 1 | F (Qk,0

n ) = {v} or F (Qk,1
n ) =

{v}}. Since Qn is node-transitive, we assume that e = 0n is a faulty node such that |A(e)|
achieves the maximum of set {|A(v)| | v ∈ F (Qn)}. For convenience, let p = |A(e)|. Obvi-
ously, we have 1 ≤ p ≤ n − q. Moreover, let A(e) = {i1, . . . , ip}. For v ∈ F (Qn) − {e}, we
see that (v)k = 1 for each k ∈ {i1, . . . , ip}. Let B(k) = {v ∈ F (Qn) − {e} | (v)k 6= (e)k} for
k ∈ {ip+1, . . . , in−q}. Since we assumed, by contradiction, that either Qj,0

n or Qj,1
n has only

one faulty node for each j ∈ {i1, . . . , in−q}, we have |B(j)| = 1 for each j ∈ {ip+1, . . . , in−q}.
Since Qn is link-transitive, we assume that {i1, . . . , ip} = {0, . . . , p−1} and {ip+1, . . . , in−q} =
{p, . . . , n − q − 1}. Then we have (F (Qn) − {e}) −

⋃
k∈{ip+1,...,in−q}

B(k) ⊆ {0n−p1p}. Ac-

cordingly, we derive that 1 = |{0n−p1p}| ≥ |(F (Qn) − {e}) −
⋃

k∈{ip+1,...,in−q}
B(k)| ≥

|F (Qn)| − |{e}| −
∑

k∈{ip+1,...,in−q}
|B(k)| = (2n− 5)− 1− (n− q − p); that is, p + q ≤ 7− n.

Recall that p ≥ 1 and q ≥ 0. Thus, we have n ∈ {5, 6}. Now we can identify all faulty
nodes according to the values of p, q, and n.

Case 1: Suppose (n, q, p) = (5, 0, 1). Since p = 1, we have (v)0 = 1 for each v ∈
F (Q5) − {e} and |B(j)| = 1 for each j ∈ {1, 2, 3, 4}. Thus we have F (Q5) = {00000, 00011,
00101, 01001, 10001}. Clearly, node 00001 has five faulty neighbors.
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Case 2: Suppose (n, q, p) = (5, 0, 2). Similarly, we have F (Q5) = {00000, 00111, 01011,
10011, 00011}. Then node 00011 has three faulty neighbors.

Case 3: Suppose (n, q, p) = (5, 1, 1). We have F (Q5) = {00000, 00011, 00101, 01001,
00001}. Again, node 00001 has four faulty neighbors.

Case 4: Suppose (n, q, p) = (6, 0, 1). We have F (Q6) = {000000, 000011, 000101, 001001,
010001, 100001, 000001}. Thus, node 000001 has six faulty neighbors.

In short, node 0n−p1p has at least n−2 faulty neighbors, which contradicts the requirement
that every node has at least three fault-free neighbors. Hence there exists some dimension j
of {0, 1, . . . , n − 1} such that both Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less

faulty nodes.

Suppose that Qn is conditionally faulty with utmost 2n−5 faulty nodes. Let F = F (Qn).
For n ≥ 5, we propose a procedure PARTITION(Qn, F ) to determine j-partition of Qn

according to the following rules:

(1) Suppose that at least three nodes of Qn have exactly n − 2 faulty neighbors, respec-
tively. If Qn has its faulty nodes distributed as shown in Figure 7.3(a), it will be
partitioned along dimension j = dim((t1, t5)). Then one resulting subcube has its
faulty nodes distributed as in Figure 7.2(b). Otherwise, Lemma 7.1 and Lemma 7.2
ensure that Qn can be partitioned along some dimension j such that both Qj,0

n and
Qj,1

n are conditionally faulty with 2n − 7 or less faulty nodes.

(2) Suppose that there exist exactly two nodes of Qn with n − 2 faulty neighbors, respec-
tively. By Lemma 7.3, there exists some dimension j of {0, 1, . . . , n−1} such that both
Qj,0

n and Qj,1
n are conditionally faulty with 2n − 7 or less faulty nodes.

(3) Suppose that there is only one node of Qn with exactly n−2 faulty neighbors. Denote it
by z. If the faulty nodes are distributed as in Figure 7.5(c), we partition Qn along any
dimension j ∈ {i | (z)i is faulty}. Then one resulting subcube turns out to have 2n−6
faulty nodes, distributed as in Figure 7.5(d). Otherwise, we can apply Lemma 7.4 to
choose a dimension j of {0, 1, . . . , n−1} such that both Qj,0

n and Qj,1
n are conditionally

faulty with 2n − 7 or less faulty nodes.

(4) Suppose that every node of Qn has at least three fault-free neighbors. Obviously, every
(n − 1)-cube is conditionally faulty. By Lemma 7.5, there exists some dimension j of
{0, 1, . . . , n − 1} such that both Qj,0

n and Qj,1
n contain 2n − 7 or less faulty nodes.

The following corollary summarizes what is obtained by procedure PARTITION(Qn, F ).
Also, it is a summary of Lemmas 7.1−7.5.
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Corollary 7.1. Suppose that an n-cube Qn (n ≥ 5) is conditionally faulty with f ≤ 2n − 5
faulty nodes. Except for the cases illustrated in Figure 7.2(c), Figure 7.3(a), and Fig-
ure 7.5(c), there exists some dimension j of {0, 1, . . . , n − 1} such that both Qj,0

n and Qj,1
n

are conditionally faulty with 2n − 7 or less faulty nodes.

7.2 Long path embedding in faulty hypercubes

The following theorem was proved by Fu [23].

Theorem 7.1. [23] Suppose that n ≥ 3. Let u and v denote two arbitrary fault-free nodes
of an n-cube with f ≤ n − 2 faulty nodes. If h(u,v) is odd (or even), then there exists a
fault-free path of length at least 2n − 2f − 1 (or 2n − 2f − 2) between u and v.

To improve the above result, we need the following lemma.

Lemma 7.6. Let z ∈ V (Q4), {i, j, p, q} = {0, 1, 2, 3}, and F = {(z)i, (z)j, (z)p}. Suppose
that s and t are any two nodes of Q4 − F such that {s, t} 6= {z, (z)q}. Then Q4 − F has a
path of length at least 9 or 8 between s and t if h(s, t) is odd or even, respectively.

Proof. By symmetry, let z = 0000, i = 0, j = 1, p = 2, and q = 3. We partition Q4 into
Q3,0

4 and Q3,1
4 . Then Q3,1

4 is fault-free and z ∈ V0(Q
3,0
4 ).

Case 1: Both s and t are in Q3,0
4 −F . Since Q3,1

4 is fault-free, Theorem 4.2 ensures that
Q3,1

4 contains a path P of length 7 (respectively, 6) between (s)3 and (t)3 if h(s, t) is odd
(respectively, even). Thus, 〈s, (s)3, P, (t)3, t〉 is a fault-free path of length 9 (respectively, 8)
between s and t if h(s, t) is odd (respectively, even).

Case 2: Both s and t are in Q3,1
4 . If h(s, t) is odd, Theorem 4.2 ensures that Q3,1

4 −
{(1101, 1111)} contains a path P of length 7 between s and t. Clearly, path P does not
pass through (1101, 1111). Since it spans Q3,1

4 , we have 1111 ∈ V (P ). Accordingly, link
(1110, 1111) or (1011, 1111) is on P . Thus P can be written as 〈s, R1, 1110, 1111, R2, t〉
or 〈s, T1, 1011, 1111, T2, t〉. As a result, 〈s, R1, 1110, 0110, 0111, 1111, R2, t〉 or 〈s, T1, 1011,
0011, 0111, 1111, T2, t〉 is a path of length 9 between s and t. On the other hand, if h(s, t)
is even, then we consider two cases as follows. Suppose first that s, t ∈ V0(Q

3,1
4 ). By

Theorem 4.2, Q3,1
4 − {(1101, 1111)} contains a path P of length 6 between s and t. Again,

link (1110, 1111) or (1011, 1111) is on P , and thus the desired path can be constructed as
above. Suppose that s, t ∈ V1(Q

3,1
4 ). By Theorem 4.3, Q3,1

4 − {1001} contains a path P of
length 6 between s and t. Obviously, link (1110, 1111), (1101, 1111), or (1011, 1111) is on P .
Hence the desired path can be constructed similarly.

Case 3: Suppose that s is in Q3,0
4 − F and t is in Q3,1

4 . First, we consider the case that
s 6= z. If s ∈ V0(Q4), then s is adjacent to node 0111. Clearly, there exists some node v of
{0110, 0101, 0011}− {s} such that (v)3 6= t. By Theorem 4.2, Q3,1

4 has a path P of length 6
or 7 between (v)3 and t if h(s, t) is odd or even, respectively. Then 〈s, 0111,v, (v)3, P, t〉 is a
fault-free path of length 9 or 10 if h(s, t) is odd or even, respectively. If s ∈ V1(Q4), then we
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have s = 0111. Obviously, there exists some node u of {0110, 0101, 0011} such that (u)3 6= t.
Similarly, Q3,1

4 has a path T of length 7 (respectively, 6) between (u)3 and t if h(s, t) is odd
(respectively, even). Then 〈s,u, (u)3, T, t〉 is a fault-free path of length 9 (respectively, 8) if
h(s, t) is odd (respectively, even).

Next, we consider the case that s = z. If h(s, t) is even, it follows from Theorem 4.2
that Q3,1

4 has a path H of length 7 between (s)3 = (z)3 and t. Then 〈s = z, (z)3, H, t〉 is
a fault-free path of length 8. If h(s, t) is odd, Theorem 4.3 ensures that Q3,1

4 − {1100} has
a path R of length 6 between (z)3 and t. Clearly, node 1111 is on R. Accordingly, link
(1111, 1110), (1111, 1101), or (1111, 1011) is on R. For example, path R can be written as
〈(z)3, R1, 1111, 1110, R2, t〉 if (1111, 1110) ∈ E(R). Then 〈s = z, (z)3, R1, 1111, 0111, 0110,
1110, R2, t〉 is a fault-free path of length 9 between s and t.

Lemma 7.7. Suppose that Q3 is conditionally faulty with f ≤ 2 faulty nodes. Let s and t

denote any two fault-free nodes of Q3. Then Q3 contains a fault-free path of length at least
7 − 2f (respectively, 6 − 2f) between s and t if h(s, t) is odd (respectively, even).

Proof. If f < 2, this result follows from Theorem 7.1. Thus we only consider the case that
f = 2. For convenience, let F = F (Q3). Since Q3 is node-transitive, we assume that node
000 is faulty. To require that every node of Q3 has at least two fault-free neighbors, the
other faulty node must be one of {001, 010, 100, 111}.

Case 1: One of {001, 010, 100} is faulty. Obviously, each of {001, 010, 100} is adjacent
to 000. Since Q3 is link-transitive, we assume that 001 ∈ F ; that is, F = {000, 001}. Then
we partition Q3 into Q1,0

3 and Q1,1
3 . Hence we have F ⊆ V (Q1,0

3 ). See Figure 7.6(a).

Subcase 1.1: Both s and t are in Q1,0
3 − F . Without loss of generality, we assume that

s = 101 and t = 100. Obviously, 〈s = 101, 111, 110, 100 = t〉 is a fault-free path of length
3 = 7 − 2 · 2.

Subcase 1.2: Both s and t are in Q1,1
3 . If h(s, t) is odd, then Q1,1

3 contains a path of
length 3 between s and t. Otherwise, Q1,1

3 contains a path of length 2 between s and t.

Subcase 1.3: Suppose that s is in Q1,0
3 − F and t is in Q1,1

3 . Without loss of generality,
we assume s = 101 and list the required path in Table 7.1.

Case 2: Node 111 is faulty. See Figure 7.6(b) for illustration.

Subcase 2.1: Both s and t are in Q1,0
3 −{000}. For every possible combination of s and

t, we list the required paths in Table 7.1.

Subcase 2.2: Both s and t are in Q1,1
3 − {111}. This subcase is symmetric to Subcase

2.1.
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Table 7.1: The required paths for Lemma 7.7 and Lemma 7.8.

Subcase 1.3 of Lemma 7.7
s = 101 t = 010 〈s = 101, 100, 110, 010 = t〉

t = 011 〈s = 101, 111, 011 = t〉
t = 110 〈s = 101, 100, 110 = t〉
t = 111 〈s = 101, 100, 110, 111 = t〉

Subcase 2.1 of Lemma 7.7
s = 101 t = 001 〈s = 101, 100, 110, 010, 011, 001 = t〉

t = 100 〈s = 101, 001, 011, 010, 110, 100 = t〉
s = 001 t = 100 〈s = 001, 011, 010, 110, 100 = t〉

Subcase 2.3 of Lemma 7.7
s = 001 t = 010 〈s = 001, 011, 010 = t〉

t = 011 〈s = 001, 101, 100, 110, 010, 011 = t〉
t = 110 〈s = 001, 011, 010, 110 = t〉

s = 100 t = 010 〈s = 100, 110, 010 = t〉
t = 011 〈s = 100, 110, 010, 011 = t〉
t = 110 〈s = 100, 101, 001, 011, 010, 110 = t〉

s = 101 t = 010 〈s = 101, 100, 110, 010 = t〉
t = 011 〈s = 101, 001, 011 = t〉
t = 110 〈s = 101, 100, 110 = t〉

Lemma 7.8
b1 = 001 b2 = 010 〈b1 = 001, 101, 100, 110, 010 = b2〉

b2 = 100 〈b1 = 001, 101, 111, 110, 100 = b2〉
b2 = 111 〈b1 = 001, 101, 100, 110, 111 = b2〉

b1 = 010 b2 = 100 〈b1 = 010, 110, 111, 101, 100 = b2〉
b2 = 111 〈b1 = 010, 110, 100, 101, 111 = b2〉
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Figure 7.6: (a,b) Illustrations for Lemma 7.7; (c) the distribution of faulty nodes indicated
in Lemma 7.8.
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Subcase 2.3: Suppose that s is in Q1,0
3 − {000} and t is in Q1,1

3 − {111}. For every
possible combination of s and t, we list the required paths in Table 7.1.

In summary, Q3 − F contains a path of length at least 7 − 2f (respectively, 6 − 2f)
between s and t if h(s, t) is odd (respectively, even).

Lemma 7.8. Let w ∈ V0(Q3) and {i, j, k} = {0, 1, 2}. Suppose that b1 and b2 are two
arbitrary nodes of V1(Q3). Then Q3 − {w, ((w)i)j} contains a path of length 4 between b1

and b2 if and only if {b1,b2} 6= {(w)k, (((w)i)j)k}.

Proof. Since Q3 is node-transitive and link-transitive, we assume that w = 000, i = 0,
j = 1, and k = 2. See Figure 7.6(c). Then we list all the required paths in Table 7.1.

Theorem 7.2. Let F be a set of f ≤ 3 faulty nodes in Q4 such that every node of Q4 has at
least two fault-free neighbors. Suppose that s and t are two arbitrary nodes of Q4 −F . Then
Q4 − F contains a path of length at least 15 − 2f (respectively, 14 − 2f) between s and t if
h(s, t) is odd (respectively, even).

Proof. If f < 3, this result follows from Theorem 7.1. Thus we concentrate only on the
case that f = 3. By Lemmas 7.1−7.5, Figure 7.2(c) happens to be a unique case that a
conditionally faulty Q4 with three faulty nodes cannot be partitioned along any dimension
in such a way that both subcubes are conditionally faulty. On this occasion, we partition
Q4 along an arbitrary dimension j; otherwise, there exists some dimension j such that both
Qj,0

4 and Qj,1
4 are conditionally faulty.

Case 1: Both Qj,0
4 and Qj,1

4 are conditionally faulty. For convenience, let F0 = F (Qj,0
4 )

and F1 = F (Qj,1
4 ). Without loss of generality, we assume that f0 = |F0| = 2 and f1 = |F1| =

1. Moreover, we assume s ∈ V0(Q4 − F ).

Subcase 1.1: Both s and t are in Qj,0
4 . By Lemma 7.7, Qj,0

4 − F0 contains a path
H0 of length at least 3 = 7 − 2f0 (respectively, 2 = 6 − 2f0) between s and t if h(s, t) is
odd (respectively, even). Obviously, H0 can be written as 〈s = x0,x1,x2, H

′
0, t〉. If (x1)

j

is faulty, then (x0)
j and (x2)

j are fault-free. By Theorem 4.3, Qj,1
4 is hyper-hamiltonian

laceable. Thus Qj,1
4 − {(x1)

j} has a hamiltonian path H1 between (x0)
j and (x2)

j. As
a result, 〈s = x0, (x0)

j , H1, (x2)
j,x2, H

′
0, t〉 is a fault-free path of length at least 15 − 2f

(respectively, 14 − 2f) when h(s, t) is odd (respectively, even). If (x1)
j is fault-free, then

(x0)
j or (x2)

j is fault-free. Suppose, for example, that (x0)
j is fault-free. By Lemma 7.7,

Qj,1
4 − F1 has a fault-free path H1 of length at least 7 − 2f1 between (x0)

j and (x1)
j . As

a result, 〈s = x0, (x0)
j, H1, (x1)

j ,x1,x2, H
′
0, t〉 is a fault-free path of length at least 15 − 2f

(respectively, 14 − 2f) when h(s, t) is odd (respectively, even).

Subcase 1.2: Both s and t are in Qj,1
4 . First, we consider the case that h(s, t) is odd.

By Lemma 7.7, Qj,1
4 − F1 contains a path T1 of length at least 5 = 7 − 2f1 between s and

t. Let A = {(T1(i), T1(i + 1)) | 1 ≤ i ≤ 5 and i ≡ 1 (mod 2)} be a set of disjoint links on
T1. Since |A| = 3 > f0, there exists an odd integer ı̂, 1 ≤ ı̂ ≤ 5, such that both (T1(̂ı))

j and
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(T1(̂ı+1))j are fault-free. Let w = T1(̂ı) and b = T1(̂ı+1). Accordingly, T1 can be written as
〈s, T ′

1,w,b, T ′′
1 , t〉. By Lemma 7.7, Qj,0

4 −F0 has a path T0 of length at least 7−2f0 between
(w)j and (b)j . As a result, 〈s, T ′

1,w, (w)j, T0, (b)j,b, T ′′
1 , t〉 is a fault-free path of length at

least 15 − 2f between s and t.

Next, we consider the case that h(s, t) is even. Hence we have t ∈ V0(Q4 − F ). Let u

denote the faulty node in Qj,1
4 . Then we distinguish the following two subcases.

Subcase 1.2.1: Suppose that u ∈ V1(Q
j,1
4 ). By Theorem 4.3, Qj,1

4 is hyper-hamiltonian
laceable. Thus Qj,1

4 − {u} has a hamiltonian path H1 from s to t. Obviously, the length
of H1 is equal to 6. Let B = {(H1(i), H1(i + 1)) | 1 ≤ i ≤ 6 and i ≡ 1 (mod 2)} be a set
of disjoint links on T1. Since |B| = 3 > f0, there exists an odd integer ı̂, 1 ≤ ı̂ ≤ 6, such
that both (H1(̂ı))

j and (H1(̂ı + 1))j are fault-free. Let w = H1(̂ı) and b = H1(̂ı + 1). Thus
H1 can be written as 〈s, H ′

1,w,b, H ′′
1 , t〉. By Lemma 7.7, Qj,0

4 − F0 has a path H0 of length
at least 7 − 2f0 between (w)j and (b)j. As a result, 〈s, H ′

1,w, (w)j, H0, (b)j,b, H ′′
1 , t〉 is a

fault-free path of length at least 14 − 2f0 > 14 − 2f between s and t.

Subcase 1.2.2: Suppose that u ∈ V0(Q
j,1
4 ). Since h(s, t) is even, it follows from

Lemma 7.7 that Qj,1
4 − F1 has a path T1 of length at least 6 − 2f1 = 4 between s and

t. If there exists a link (w,b) on T1 such that both (w)j and (b)j are fault-free, then
a path of length at least 14 − 2f can be constructed in a way similar to that described
in Subcase 1.2.1. Otherwise, we have F0 ∩ {(T1(i))

j , (T1(i + 1))j} 6= ∅ for every i. Then
we claim that both (T1(2))j and (T1(4))j are faulty. Since f0 = 2, we see that |F0 ∩
{(T1(1))j, (T1(2))j, (T1(3))j}| = 1 and |F0 ∩ {(T1(3))j, (T1(4))j, (T1(5))j}| = 1. Then we have
F0 ∩{(T1(1))j , (T1(2))j, (T1(3))j} = (F0 ∩{(T1(1))j, (T1(2))j})∩ (F0 ∩{(T1(2))j, (T1(3))j}) =
{(T1(2))j}. Similarly, we have F0 ∩ {(T1(3))j, (T1(4))j, (T1(5))j} = {(T1(4))j}. That is, F0 =
{(T1(2))j, (T1(4))j}. By Lemma 7.8, Qj,0

4 − F0 contains either a path T0 of length 4 between
(T1(1))j and (T1(3))j or a path R0 of length 4 between (T1(3))j and (T1(5))j. As a result, 〈s =
T1(1), (T1(1))j, T0, (T1(3))j, T1(3), T1(4), T1(5) = t〉 or 〈s = T1(1), T1(2), T1(3), (T1(3))j, R0,
(T1(5))j, T1(5) = t〉 is a fault-free path of length 8 = 14 − 2f .

Subcase 1.3: Suppose that s is in Qj,0
4 and t is in Qj,1

4 . Since f0 = 2, we have |V1(Q
j,0
4 )−

F0| ≥ 2 = |F1 ∪ {t}| and |V (Qj,0
4 ) − (F0 ∪ {s})| = 5 > |F1 ∪ {t}|. If h(s, t) is odd, we

choose a node x of V1(Q
j,0
4 ) − F0 such that (x)j is fault-free; otherwise, we choose a node

x of V (Qj,0
4 ) − (F0 ∪ {s}) such that (x)j /∈ F1 ∪ {t}. By Lemma 7.7, Qj,0

4 − F0 contains a
path H0 of length at least 7 − 2f0 (respectively, 6 − 2f0) between s and x when h(s,x) is
odd (respectively, even). Similarly, Qj,1

4 − F1 contains a path H1 of length at least 7 − 2f1

(respectively, 6 − 2f1) between (x)j and t when h((x)j , t) is odd (respectively, even). As
a result, 〈s, H0,x, (x)j, H1, t〉 is a fault-free path of length at least 15 − 2f (respectively,
14 − 2f) if h(s, t) is odd (respectively, even).

Case 2: Suppose Q4 has its faulty nodes distributed as in Figure 7.2(c). To be precise,
we assume F = {0000, 0011, 1100}. Then we partition Q4 into Q3,0

4 and Q3,1
4 . It is noticed

that Q3,0
4 is not conditionally faulty.
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Subcase 2.1: Both s and t are in Q3,0
4 −{0000, 0011}. By Theorem 7.1, Q3,0

4 −{0000} has
a path T0 of length at least 5 (respectively, 4) between s and t if h(s, t) is odd (respectively,
even).

We consider first that h(s, t) is odd. Thus the length of path T0 is greater than or equal
to 5. Then T0 passes through every node of V0(Q

3,0
4 )−{0000}. In particular, the faulty node

0011 is on T0. Hence T0 can be written as 〈s, T ′
0,x, 0011,y, T ′′

0 , t〉. Since h(0011, 1100) = 4,
both (x)3 and (y)3 are fault-free. Since h((x)3, (y)3) is even, Theorem 7.1 ensures that
Q3,1

4 − {1100} has a path T1 of length at least 4 between (x)3 and (y)3. As a result,
〈s, T ′

0,x, (x)3, T1, (y)3,y, T ′′
0 , t〉 is a fault-free path of length at least 9 = 15 − 2f .

Next, we consider the case that h(s, t) is even. We distinguish whether the faulty node
0011 is on T0. If node 0011 is on T0, then a path of length at least 8 can be constructed to join
s and t in a way similar to that described earlier. Otherwise, there exists a link (w,b) on T0

such that both (w)3 and (b)3 are fault-free. Hence T0 can be written as 〈s, R′
0,w,b, R′′

0, t〉.
By Theorem 7.1, Q3,1

4 − {1100} has a path T1 of length at least 5 between (w)3 and (b)3.
Then 〈s, R′

0,w, (w)3, T1, (b)3,b, R′′
0, t〉 turns out to be a fault-free path of length at least

10 > 14 − 2f .

Subcase 2.2: Suppose that s is in Q3,0
4 − {0000, 0011} and t is in Q3,1

4 − {1100}. By
Theorem 7.1, Q3,0

4 − {0000} has a path T0 of length at least 5 (respectively, 4) between
nodes s and 0011 if h(s, 0011) is odd (respectively, even). Accordingly, we write T0 as
〈s, T ′

0,x,y, 0011〉. Since h(0011, 1100) = 4, both (x)3 and (y)3 is fault-free. On the one
hand, we assume (y)3 6= t. By Theorem 7.1, Q3,1

4 − {1100} has a path T1 of length at
least 5 (respectively, 4) between (y)3 and t if h((y)3, t) is odd (respectively, even). As a
result, 〈s, T ′

0,x,y, (y)3, T1, t〉 is a fault-free path of length at least 9 = 15− 2f (respectively,
8 = 14 − 2f) if h(s, t) is odd (respectively, even). On the other hand, if (y)3 = t, then
Theorem 7.1 ensures that Q3,1

4 −{1100} has a path R1 of length at least 5 between (x)3 and
(y)3. Then 〈s, T ′

0,x, (x)3, R1, (y)3 = t〉 turns out to be a fault-free path of length at least
9 = 15 − 2f (respectively, 8 = 14 − 2f) if h(s, t) is odd (respectively, even).

Subcase 2.3: Both s and t are in Q3,1
4 − {1100}. We list the required paths obtained

by brute force in Table 7.2.

Therefore the proof is completed.

With Theorem 7.2 and Lemma 7.6, we will be able to prove the next theorem.

Theorem 7.3. Let F be a set of f faulty nodes in Qn (n ≥ 1) such that every node of Qn

has at least two fault-free neighbors. Suppose f = 0 if n ∈ {1, 2}, and f ≤ 2n − 5 if n ≥ 3.
Let s and t be two arbitrary nodes of Qn−F . Then Qn−F contains a path of length at least
2n − 2f − 1 (respectively, 2n − 2f − 2) between s and t if h(s, t) is odd (respectively, even).

Proof. The result is trivial for n ∈ {1, 2}. When n ∈ {3, 4}, the result follows from Theo-
rem 7.1 or Theorem 7.2, respectively. In what follows we consider the case that n ≥ 5. Except
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Table 7.2: The required paths in Subcase 2.3 of Theorem 7.2.
s = 1101 t = 1110 〈s = 1101, 1001, 0001, 0101, 0100, 0110, 0010, 1010, 1110 = t〉

t = 1111 〈s = 1101, 1001, 0001, 0101, 0100, 0110, 0010, 1010, 1110, 1111 = t〉
t = 1000 〈s = 1101, 0101, 0001, 1001, 1011, 1111, 1110, 1010, 1000 = t〉
t = 1001 〈s = 1101, 0101, 0100, 0110, 1110, 1111, 1011, 1010, 1000, 1001 = t〉
t = 1010 〈s = 1101, 0101, 0100, 0110, 1110, 1111, 1011, 1001, 1000, 1010 = t〉
t = 1011 〈s = 1101, 0101, 0001, 1001, 1000, 1010, 1110, 1111, 1011 = t〉

s = 1110 t = 1111 〈s = 1110, 1010, 1000, 1001, 1101, 0101, 0100, 0110, 0111, 1111 = t〉
t = 1000 〈s = 1110, 0110, 0100, 0101, 0001, 1001, 1011, 1010, 1000 = t〉
t = 1001 〈s = 1110, 0110, 0100, 0101, 1101, 1111, 1011, 1010, 1000, 1001 = t〉
t = 1010 〈s = 1110, 0110, 0100, 0101, 0001, 1001, 1101, 1111, 1011, 1010 = t〉
t = 1011 〈s = 1110, 0110, 0100, 0101, 0001, 1001, 1101, 1111, 1011 = t〉

s = 1111 t = 1000 〈s = 1111, 0111, 0110, 0100, 0101, 0001, 1001, 1011, 1010, 1000 = t〉
t = 1001 〈s = 1111, 0111, 0101, 0100, 0110, 0010, 1010, 1000, 1001 = t〉
t = 1010 〈s = 1111, 0111, 0110, 0100, 0101, 1101, 1001, 1000, 1010 = t〉
t = 1011 〈s = 1111, 0111, 0101, 0100, 0110, 0010, 1010, 1000, 1001, 1011 = t〉

s = 1000 t = 1001 〈s = 1000, 1010, 1110, 0110, 0100, 0101, 1101, 1111, 1011, 1001 = t〉
t = 1010 〈s = 1000, 1001, 1101, 0101, 0100, 0110, 1110, 1111, 1011, 1010 = t〉
t = 1011 〈s = 1000, 1001, 1101, 0101, 0100, 0110, 1110, 1111, 1011 = t〉

s = 1001 t = 1010 〈s = 1001, 1011, 1111, 0111, 0101, 0100, 0110, 1110, 1010 = t〉
t = 1011 〈s = 1001, 1000, 1010, 1110, 0110, 0100, 0101, 1101, 1111, 1011 = t〉

s = 1010 t = 1011 〈s = 1010, 1000, 1001, 1101, 0101, 0100, 0110, 0111, 1111, 1011 = t〉

for the faulty node distribution illustrated in Figure 7.3(a), procedure PARTITION(Qn, F )
returns j-partition of Qn such that both Qj,0

n and Qj,1
n are conditionally faulty. If Q5 has its

faulty nodes distributed as in Figure 7.3(a), then PARTITION(Q5, F ) returns j-partition of
Q5 such that one subcube has its faulty nodes distributed as in Figure 7.2(b). Accordingly,
the proof can be justified by the induction on n. Our inductive hypothesis is that the result
holds for Qn−1. For convenience, let F0 = F (Qj,0

n ) and F1 = F (Qj,1
n ). Moreover, let f0 = |F0|

and f1 = |F1|. Without loss of generality, we assume that s ∈ V0(Qn − F ).

Case 1: Suppose f0 ≤ 2n − 7 and f1 ≤ 2n − 7. Without loss of generality, we assume
that f0 ≤ f1. In particular, for the case illustrated in Figure 7.3(a), Qj,0

5 is conditionally
faulty with f0 = 2 faulty nodes, and Qj,1

5 is not conditionally faulty with f1 = 3 faulty nodes
distributed as in Figure 7.2(b).

Subcase 1.1: Both s and t are in Qj,0
n . By inductive hypothesis, Qj,0

n − F0 contains a
path H0 of length L at least 2n−1 − 2f0 − 1 (respectively, 2n−1 − 2f0 − 2) between s and t if
h(s, t) is odd (respectively, even). Clearly, we have |{v ∈ V (Qj,1

n ) | |NF
Qj,1

n
(v)| ≥ n− 2}| ≤ 1.

Let A = {(H0(i), H0(i + 1)) | 1 ≤ i ≤ L and i ≡ 1 (mod 2)} be a set of disjoint links on
H0. Since |A| = ⌈L

2
⌉ > f1 + 1 ≥ |F1 ∪ {v ∈ V (Qj,1

n ) | |NF
Qj,1

n
(v)| ≥ n − 2}| for n ≥ 5,

there exists an odd integer ı̂, 1 ≤ ı̂ ≤ L, such that |F1 ∩ {(H0(̂ı))
j, (H0(̂ı + 1))j}| = 0,

|NF
Qj,1

n
((H0(̂ı))

j)| ≤ n − 3, and |NF
Qj,1

n
((H0(̂ı + 1))j)| ≤ n − 3 are satisfied. Let x = H0(̂ı) and

y = H0(̂ı + 1). Hence path H0 can be written as 〈s, H ′
0,x,y, H ′′

0 , t〉.

If Qj,1
n is conditionally faulty, our inductive hypothesis asserts that Qj,1

n − F1 has a path
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H1 of length at least 2n−1 − 2f1 − 1 between (x)j and (y)j. Otherwise, the faulty nodes of
Qj,1

n are distributed as in Figure 7.2(b). Since both (x)j and (y)j have two or more fault-free
neighbors in Qj,1

n , Lemma 7.6 ensures that Qj,1
n has a fault-free path H1 of length at least

2n−1 − 2f1 − 1 between (x)j and (y)j. Then 〈s, H ′
0,x, (x)j , H1, (y)j,y, H ′′

0 , t〉 is a fault-free
path of length at least 2n − 2f − 1 (respectively, 2n − 2f − 2) between s and t if h(s, t) is
odd (respectively, even). See Figure 7.7(a).

Subcase 1.2: Both s and t are in Qj,1
n . We consider first that the faulty nodes of Qj,1

5

are distributed as depicted in Figure 7.2(b). Let z denote the node with only one fault-free
neighbor r in Qj,1

5 . Note that f0 = 2 and f1 = 3.

Suppose {s, t} = {z, r}. Then a long path between s and t is constructed as follows. On
the one hand, we assume that s = z and t = r. Since |V0(Q

j,0
5 ) − F0| ≥ |V0(Q

j,0
5 )| − |F0| =

24−2 > 4 = |F1∪{t}|, there exists some fault-free node x of V0(Q
j,0
5 ) such that (x)j /∈ F1∪{t}.

By inductive hypothesis, Qj,0
5 − F0 has a path H0 of length at least 24 − 2f0 − 1 between

(s)j and x. By Lemma 7.6, Qj,1
5 − F1 has a path H1 of length at least 24 − 2f1 − 2 between

(x)j and t. As a result, 〈s, (s)j , H0,x, (x)j, H1, t〉 is a fault-free path of length at least
25 − 2f − 1 (see Figure 7.7(b)). On the other hand, we assume that t = z and s = r. Since
|V1(Q

j,0
5 )−F0| ≥ |V1(Q

j,0
5 )|− |F0| = 24 −2 > 4 = |F1∪{s}|, there exists some fault-free node

x of V1(Q
j,0
5 ) such that (x)j /∈ F1∪{s}. Again, the inductive hypothesis asserts that Qj,0

5 has
a fault-free path H0 of length at least 24 − 2f0 − 1 between x and (t)j; Lemma 7.6 asserts
that Qj,1 has a fault-free path H1 of length at least 24 − 2f1 − 2 between s and (x)j . Then
〈s, H1, (x)j,x, H0, (t)

j, t〉 is a fault-free path of length at least 25−2f −1 (see Figure 7.7(c)).

Suppose {s, t} 6= {z, r}. Then Lemma 7.6 asserts that Qj,1
5 − F1 contains a path H1 of

length L at least 24 − 2f1 − 1 (respectively, 24 − 2f1 − 2) between s and t if h(s, t) is odd
(respectively, even). Let A = {(H1(i), H1(i + 1)) | 1 ≤ i ≤ L and i ≡ 1 (mod 2)} be a set
of disjoint links. Since |A| = ⌈L

2
⌉ > 2 = f0, there exists an odd integer ı̂, 1 ≤ ı̂ ≤ L, such

that F0 ∩ {(H1(̂ı))
j, (H1(̂ı + 1))j} = ∅. Let x = H1(̂ı) and y = H1(̂ı + 1). Accordingly,

path H1 can be written as 〈s, H ′
1,x,y, H ′′

1 , t〉. Again, the inductive hypothesis asserts that
Qj,0

5 − F0 has a path H0 of length at least 24 − 2f0 − 1 between (x)j and (y)j. Then
〈s, H ′

1,x, (x)j, H0, (y)j,y, H ′′
1 , t〉 is a fault-free path of length at least 25−2f−1 or 25−2f−2

if h(s, t) is odd or even, respectively. See Figure 7.7(d).

Now we consider the case that faulty nodes of Qj,1
5 are not distributed as depicted in

Figure 7.2(b), or n ≥ 6. Then Qj,1
n is conditionally faulty. By inductive hypothesis, Qj,1

n −F1

has a path H1 of length L at least 2n−1−2f1−1 (respectively, 2n−1−2f1−2) between s and t if
h(s, t) is odd (respectively, even). Similarly, let A = {(H1(i), H1(i+1)) | 1 ≤ i ≤ L and i ≡ 1
(mod 2)} be a set of disjoint links. Since |A| = ⌈L

2
⌉ > f0 for n ≥ 5, there is a link (x,y) of A

such that F0 ∩ {(x)j, (y)j} = ∅. Accordingly, path H1 can be written as 〈s, H ′
1,x,y, H ′′

1 , t〉.
By inductive hypothesis, Qj,0

n − F0 has a path H0 of length at least 2n−1 − 2f0 − 1 between
(x)j and (y)j. Again, 〈s, H ′

1,x, (x)j, H0, (y)j,y, H ′′
1 , t〉 is a fault-free path of length at least

2n − 2f − 1 or 2n − 2f − 2 if h(s, t) is odd or even, respectively. See Figure 7.7(d).

Subcase 1.3: Suppose that s is in Qj,0
n and t is in Qj,1

n . Note that |{x ∈ V (Qj,1
n ) |
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|NF
Qj,1

n
(x)| ≥ n − 2}| ≤ 1. On the one hand, we consider the case that node t has only

one fault-free neighbor, denoted by r, in Qj,1
n . On this occasion, n is equal to 5. Since

|V1(Q
j,0
n ) − F0| ≥ 2n−2 − f0 > f1 + 2 = |F1 ∪ {t, r}| for n = 5, there exists a fault-free node

b of V1(Q
j,0
n ) − F0 such that (b)j /∈ F1 ∪ {t, r}. On the other hand, we consider the case

that node t has at least two fault-free neighbors in Qj,1
n . Since |V1(Q

j,0
n )−F0| ≥ 2n−2 − f0 >

f1 + 2 ≥ |F1| + |{t}| + |{x ∈ V (Qj,1
n ) | |NF

Qj,1
n

(x)| ≥ n − 2}| ≥ |F1 ∪ {t} ∪ {x ∈ V (Qj,1
n ) |

|NF
Qj,1

n
(x)| ≥ n − 2}| for n ≥ 5, there exists a fault-free node b of V1(Q

j,0
n ) − F0 such that

(b)j /∈ F1 ∪ {t} ∪ {x ∈ V (Qj,1
n ) | |NF

Qj,1
n

(x)| ≥ n − 2}.

By inductive hypothesis, Qj,0
n − F0 has a path H0 of length at least 2n−1 − 2f0 − 1

between s and b. If the faulty nodes of Qj,1
n are distributed as illustrated in Figure 7.2(b),

Lemma 7.6 asserts that Qj,1
n −F1 has a path H1 of length at least 2n−1−2f1−1 (respectively,

2n−1 − 2f1 − 2) between (b)j and t if h((b)j, t) is odd (respectively, even); otherwise, the
inductive hypothesis asserts that Qj,1

n − F1 has a path H1 of length at least 2n−1 − 2f1 − 1
(respectively, 2n−1 − 2f1 − 2) between (b)j and t if h((b)j , t) is odd (respectively, even).
Then 〈s, H0,b, (b)j, H1, t〉 is a fault-free path of length at least 2n − 2f − 1 (respectively,
2n − 2f − 2) between s and t if h(s, t) is odd (respectively, even). See Figure 7.7(e).

Case 2: Suppose either f0 = 2n− 6 or f1 = 2n− 6. By Lemmas 7.1−7.5, we know that
this case may occur while n = 5. More precisely, the faulty nodes happen to be distributed
as illustrated in Figure 7.5(c) where z is itself a faulty node with three faulty neighbors.
Without loss of generality, we assume that f0 = 4; thus, (z)j is a unique faulty node in Qj,1

5 .

Subcase 2.1: Both s and t are in Qj,0
5 . By inductive hypothesis, Qj,0

5 − (F0 − {z})
contains a path H0 of length L at least 9 = 24 − 2 · 3 − 1 (respectively, 8 = 24 − 2 · 3 − 2)
between s and t if h(s, t) is odd (respectively, even).

First, we consider the case that node z is not on H0. Let A = {(H0(i), H0(i + 1)) | 1 ≤
i ≤ L and i ≡ 1 (mod 2)} be a set of disjoint links on H0. Since |A| = ⌈L

2
⌉ > 1 = f1, there

exists an odd integer ı̂, 1 ≤ ı̂ ≤ L, such that both (H0(̂ı))
j and (H0(̂ı+1))j are fault-free. Let

x = H0(̂ı) and y = H0(̂ı+1). Hence path H0 can be written as 〈s, H ′
0,x,y, H ′′

0 , t〉. It follows
from inductive hypothesis that Qj,1

5 −{(z)j} has a path H1 of length at least 13 = 24−2·1−1
between (x)j and (y)j. Then 〈s, H ′

0,x, (x)j, H1, (y)j,y, H ′′
0 , t〉 is a fault-free path of length

at least 23 > 25 − 2 · 5− 1 (respectively, 22 > 25 − 2 · 5− 2) between s and t if h(s, t) is odd
(respectively, even).

Now we consider the case that node z is on H0. Since the length of H0 is at least 9, we
can write H0 as 〈s, H ′

0,x, z,y, H ′′
0 , t〉. Clearly, (x)j and (y)j are fault-free nodes in the same

partite set of Qj,1
5 . By Theorem 4.3, Qj,1

5 is hyper-hamiltonian laceable; thus Qj,1
5 − {(z)j}

has a path H1 of length 14 between (x)j and (y)j. Then 〈s, H ′
0,x, (x)j, H1, (y)j,y, H ′′

0 , t〉
is a fault-free path of length at least 23 > 25 − 2 · 5 − 1 (respectively, 22 > 25 − 2 · 5 − 2)
between s and t if h(s, t) is odd (respectively, even).

Subcase 2.2: Both s and t are in Qj,1
5 . For the sake of clarity, we distinguish whether
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Figure 7.7: Illustration for Theorem 7.3.
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h(s, t) is odd or even.

Suppose that h(s, t) is odd. By inductive hypothesis, Qj,1
5 − {(z)j} contains a path

H1 of length L at least 13 between s and t. Obviously, we have (z)j /∈ V (H1). Conse-
quently, (v)j 6= z for any v ∈ V (H1). Let A = {(H1(i), H1(i + 1)) | 1 ≤ i ≤ L and i ≡ 1
(mod 2)} be a set of disjoint links on H1. Since |A| − |F0 − {z}| = ⌈L

2
⌉ − (f0 − 1) ≥

7 − (4 − 1) = 4, there exist four links of A, namely (x1,y1), (x2,y2), (x3,y3), and (x4,y4),
such that (xi)

j and (yi)
j are fault-free for all i ∈ {1, 2, 3, 4}. Thus path H1 can be written

as 〈s, P1,x1,y1, P2,x2,y2, P3,x3,y3, P4,x4,y4, P5, t〉. Then 〈s, P1,x1, (x1)
j, (y1)

j ,y1, P2,x2,
(x2)

j, (y2)
j ,y2, P3,x3, (x3)

j , (y3)
j ,y3, P4,x4, (x4)

j , (y4)
j ,y4, P5, t〉 is a fault-free path of length

at least 21 = 25 − 2 · 5 − 1 between s and t. See Figure 7.7(f).

Suppose that h(s, t) is even. If s and (z)j belong to the different partite sets of Qj,1
5 ,

Theorem 4.3 asserts that Qj,1
5 − {(z)j} has a path H1 of length 14 between s and t. Similar

to the case that h(s, t) is odd, there exist four disjoint links on H1, namely (x1,y1), (x2,y2),
(x3,y3), and (x4,y4), such that (xi)

j and (yi)
j are fault-free for all i ∈ {1, 2, 3, 4}. Accord-

ingly, we can write H1 = 〈s, P1,x1,y1, P2,x2,y2, P3,x3,y3, P4,x4,y4, P5, t〉. Then 〈s, P1,x1,
(x1)

j, (y1)
j ,y1, P2,x2, (x2)

j, (y2)
j ,y2, P3,x3, (x3)

j, (y3)
j , y3, P4, x4, (x4)

j , (y4)
j, y4, P5, t〉 is

a fault-free path of length at least 22 > 25 − 2 · 5 − 2 between s and t. If nodes s and (z)j

belong to the same partite set of Qj,1
5 , then we construct a fault-free path as follows. Since

Qj,0
5 is conditionally faulty, we denote by x any fault-free neighbor of z in Qj,0

5 . By inductive
hypothesis, Qj,0

5 −(F0−{z}) has a path H0 of length at least 9 = 24−2·3−1 between x and z.
We can write path H0 as 〈x, H ′

0,y, z〉, where y is also a fault-free neighbor of z. Without loss
of generality, let j = 4, {x,y} = {(z)0, (z)1}, and X = {((z)j, ((z)j)2), ((z)j, ((z)j)3)}. Since
|X| = 2, Theorem 4.2 ensures that Qj,1

5 −X is strongly hamiltonian laceable; hence it has a
path H1 of length 14 between s and t. Obviously, both ((z)j, (x)j) and ((z)j, (y)j) are on H1,
and we can write H1 as 〈s, H ′

1, (x)j, (z)j, (y)j, H ′′
1 , t〉. Then 〈s, H ′

1, (x)j,x, H ′
0,y, (y)j, H ′′

1 , t〉
is a fault-free path of length at least 22 > 25 − 2 · 5 − 2 between s and t.

Subcase 2.3: Suppose that s is in Qj,0
5 and t is in Qj,1

5 . By inductive hypothesis,
Qj,0

5 − (F0 − {z}) has a path H0 of length at least 9 (respectively, 8) between s and z if
h(s, z) is odd (respectively, even). Accordingly, path H0 can be written as 〈s, H ′

0,x,y, z〉.
Since (z)j is a unique faulty node in Qj,1

5 , both (x)j and (y)j are fault-free.

If (y)j 6= t, it follows from inductive hypothesis that Qj,1
5 −{(z)j} has a path H1 of length

at least 13 (respectively, 12) between (y)j and t if h((y)j, t) is odd (respectively, even).
Then 〈s, H ′

0,x,y, (y)j, H1, t〉 is a path of length at least 21 = 25 − 2 · 5 − 1 (respectively,
20 = 25 − 2 · 5 − 2) between s and t if h(s, t) is odd (respectively, even). See Figure 7.7(g).
Otherwise, if (y)j = t, then our inductive hypothesis asserts that Qj,1

5 − {(z)j} has a path
H1 of length at least 13 between (x)j and (y)j. Then 〈s, H ′

0,x, (x)j, H1, (y)j = t〉 is a path
of length at least 21 = 25 − 2 · 5 − 1 (respectively, 20 = 25 − 2 · 5 − 2) between s and t if
h(s, t) is odd (respectively, even). See Figure 7.7(h).

Therefore the proof is completed.

100



Chapter 8

Conclusion and Future Works

Paths and cycles are two network structures extensively used in distributed systems and
parallel computation. In this thesis, we introduce some research issues on embedding paths
and cycles into interconnection networks.

Firstly, we devote to investigating fault-tolerant hamiltonian connectedness of cycle com-
position networks. In Chapter 2, we improve the result of Chen et al. [12] by showing that
the cycle composition network G〈0,1,...,n−1,0〉 is super fault-tolerant hamiltonian even if it is
composed of n 4-regular super fault-tolerant hamiltonian networks G0, . . . , Gn−1, provided
that n ≥ 3. However, we conjecture that this result may not be true if the cycle composition
network is constructed on the basis of cubic networks. Therefore such an improvement is of
significance because only the remaining case for 3-regular graphs needs to be checked with
brute force or by computer.

Secondly, we restrict our attention to the applicability of hamiltonian cycles on intercon-
nection networks. Both Chapter 3 and Chapter 4 are dedicated to exploring how to embed
mutually independent hamiltonian cycles onto interconnection networks. In Chapter 3 we
show that the binary wrapped butterfly graph BF (n) has 4-mutually independent hamilto-
nian cycles, beginning from any vertex, for n ≥ 3. In Chapter 4, we first prove that a faulty
n-cube contains (n − 1 − f)-mutually independent hamiltonian cycles, beginning from any
vertex, when not more than f ≤ n − 2 faulty edges may occur accidentally. However, we
conjecture this result can be further refined; that is, we believe that a faulty n-cube really
can be embedded with up to (n − f)-mutually independent hamiltonian cycles, beginning
from any vertex, when f ≤ n − 2 faulty edges occur. Next, we also prove that a faulty star
network Sn has (n − 1 − f)-mutually independent hamiltonian cycles, beginning from any
vertex, if only f ≤ n − 2 faulty edges occur accidentally, provided that n ≥ 4.

Finally, we concern the problem of embedding various paths into conditionally faulty
hypercubes. In advance, the fault diameter of the n-cube is computed in Chapter 5. In
Chapter 6 we investigate the method for embedding paths of variable lengths into hypercubes,
whose every node is assumed to be incident to at least two fault-free links. In Chapter 7 we
show that a long path between any two nodes can be embedded into a conditionally faulty
hypercube, whose every node is assumed to have at least two fault-free neighbors.
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For the purpose of efficient data transmission, one of our future work is directed to explore
the feasibility of finding as many mutually independent edge-disjoint hamiltonian cycles as
possible. Another future research issue will be dedicated to generalizing the conditional-fault
tolerance in the perspective on path embedding. Besides path and cycle embedding, tree
embedding is also an important research topic widely addressed in the area of interconnec-
tion networks. By definition, a tree is a connected graph without cycles. In practice, tree
structures are very useful for network communication too. Hence, in our future work, we
also plan to design efficient communication algorithms on the basis of tree embedding.
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