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Some Hamiltonian Properties on

Interconnection Networks

Student: Yuan-Hsiang Teng  Advisor: Dr. Jimmy J. M. Tan
Dr. Lih-Hsing Hsu

Department of Computer Science
College of Computer Science
National Chiao Tung University

Abstract

In this thesis, we study some variantof thamiltonian problems, such as mutually
independent hamiltonicity and panpositionable hamiltonicity. We use n to denote the
number of vertices and use e to denote the number of edges in graph G. We use € to
denote the number of edges inthe complement of G. Suppose that G is a graph with
€ <n-4 and n>4. We prove that thére arerat least n-2-€ mutually independent
hamiltonian paths between any pair-of distinct Vertices of G except n=5 and € =1.
Assume that G is a graph with the degree sum of any two non-adjacent vertices being
at least n+2. Let u and v be any two distinct vertices of G. We prove that there are
degs(u) + degs(v) - n mutually independent hamiltonian paths between u and v if
(u,v)eE(G) and there are degg(u) + deggs(v) -n + 2 mutually independent hamiltonian
paths between u and v if otherwise.

The arrangement graph A, is a generalization of the star graph. It is more flexible in
its size than the star graph. There are some results concerning hamiltonicity and
pancyclicity of the arrangement graphs. We propose a new concept called
panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if for any
two different vertices x and y of G and for any integer | satisfying d(x,y)=I=
[V(G)|-d(x,y), there exists a hamiltonian cycle C of G such that the relative distance
between x and y on C is |. A graph G is panconnected if there exists a path of length |
joining any two different vertices x and y with d(x,y) =1=|V(G)|-1. We show that A,
is panpositionable hamiltonian and panconnected if k=1 and n-k=2.



Assume that m and n are positive even integers with n>4. It is known that every
honeycomb rectangular torus HReT(m,n) is a 3-regular bipartite graph. We prove that
in any HReT(m,n), there exist three internally-disjoint spanning paths joining x and y
whenever x and y belong to different partite sets. For any pair of vertices x and y in the
same partite set, there exists a vertex z in the partite set not containing x and y, such
that there exist three internally-disjoint spanning paths of G-{z} joining x and y. For
any three vertices x, y, and z of the same partite set there exist three internally-disjoint
spanning paths of G-{z} joining x and y if and only if n>6 or m=2.

Keywords: hamiltonian, hamiltonian connected, hamiltonian path, panpositionable
hamiltonian, panconnectivity, connectivity, arrangement graph, honeycomb torus.
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Chapter 1

Introduction

The research about interconnection networks is important for parallel and distributed
computer systems. The layouts of processors and links in distributed computer sys-
tems are usually represented by a network. The network topology is a crucial factor
for an interconnection network since it determines the performance of the network and
the distributed system. Many interconnection network topologies have been proposed in
literature for the purpose of connectingla'ldarge number of processing elements and the
designing of a parallel computing systems [1, 11,13, 16, 19, 25, 30, 39, 40, 42].

There are several requirements in designing a good topology for an interconnection
network, such as connectivity and hamiltonicity. The hamiltonian property is one of the
major requirements in designing an interconnection’ network. The hamiltonian property
is fundamental to the deadlock-free'routing algorithms of distributed systems [33, 46]. A
high-reliability network design can be based on constructing a hamiltonian cycle in an
interconnection network. Many related works can be referred in recent research [14, 20,

24, 28, 42, 50].

In practice, the processors or links in a network may be failure. Thus the fault tolerant
hamiltonian property and the fault tolerant hamiltonian connected property become an
important issue on network topologies. Many results about the fault tolerant hamiltonicity
have been proposed in literature [6, 20, 23, 24, 27, 29, 34, 38, 42, 45, 47]. For example,
Hsieh et al. [20] and Hsu et al. [24] studied the fault tolerant hamiltonian property of
the arrangement graph to enhance the reliability of the specific interconnection network.

Further attempts at hamiltonian problems led researches into the study of super-
hamiltonian graphs, such as pancyclic graphs and panconnected graphs. The concept of
pancyclic graphs is proposed by Bondy [5], and the concept of panconnected graphs is



proposed by Alavi and Williamson [3]. There are some studies concerning panconnectivity
and pancyclicity of some interconnection networks [7, 21, 49, 48]. For example, Yang et
al. study the pancyclic problem on faulty Mobius cubes in [48].

In this thesis, we study some hamiltonian problems, such as mutually independent
hamiltonicity, panpositionable hamiltonicity, and globally 3*-connectivity. We say a set
of hamiltonian paths are mutually independent if any two distinct paths in the set are
independent. Similarly, a set of hamiltonian cycles are mutually independent if any two
hamiltonian cycles in the set are independent. Some related studies can be referred in the
literature [32, 41, 43]. We also propose a new concept called panpositionable hamiltonicity.
A hamiltonian graph G is panpositionable if for any two different vertices x and y of G
and for any integer [ satisfying d(z,y) <1 < |V(G)| — d(x,y), there exists a hamiltonian
cycle C of G such that the relative distance between x and y on C is [. One example,
the alternating group graph is proved to be panpositionable hamiltonian [44]. If there
exist three internally-disjoint paths joining x and y such that the three paths span all the
vertices in G, we say that G is globally 3*-connected. In [4], Albert et al. first studied some
cubic 3-connected graphs with this property. Such graphs are called globally 3*-connected
graphs. In the following section, we give some definitions of basic terms used in our thesis.

1.1 Basic Terms

Computer network topologies ate usually répresented by graphs where vertices represent
processors and edges represent links:between—processors. In this thesis, a network is
represented as an undirected graph. For the graph definitions and notation, we follow
[18].

Let G = (V, E) be a graph if V is a finite set and E is a subset of {(u,v) | (u,v) is an
unordered pair of V'}. We say that V is the vertex set and E is the edge set of G. Two
vertices u and v are adjacent if (u,v) € E. A path is a sequence of vertices such that two
consecutive vertices are adjacent. A path is represented by (vg, v1, ve, ..., v,). The length
of a path P is the number of edges in P, denoted by L(P). We sometimes write the path
(vo, V1, V2, ..., V) @S (Vg, P, i, Vi1, ..., U, Po, vy, ..., vg), where Py is the path (vg, vy, ..., v;)
and P, is the path (v;,vj41,...,v). It is possible to write a path (v, vi, P, v, vs, ..., Uk)
if L(P) = 0. We use dg(u,v), or simply d(u,v) if there is no ambiguity, to denote the
distance between v and v in a graph G, i.e., the length of shortest path joining v and v in
G. We use d¢(u,v) and De(u,v) to denote the shorter and the longer distance between u
and v on a cycle C of G respectively. It is possible that Do (u,v) = de(u, v) if the lengths
of the two disjoint paths joining v and v in C' are equal. A cycle is a path of at least three
vertices such that the first vertex is the same as the last one.



A hamiltonian path is a path such that its vertices are distinct and span V. A graph G
is hamiltonian connected if there exists a hamiltonian path joining any two vertices of G.
A hamiltonian cycle is a cycle such that its vertices are distinct except for the first vertex
and the last vertex and span V. A hamiltonian graph is a graph with a hamiltonian cycle.
A graph G = (V, E) is I-edge hamiltonian if G — e is hamiltonian for any e € E, and a
graph G = (V. E) is 1-node hamiltonian if G — v is hamiltonian for any v € V. Obviously,
any l-edge hamiltonian graph is hamiltonian. A graph G = (V| E) is 1-hamiltonian if
G — f is hamiltonian for any f € EUV.

1.2 Organization of the Thesis

In the follows, we describe the organization of this thesis. In Chapter 2, we discuss about
the mutually independent hamiltonian paths on simple graphs under some conditions.
We show that if € < n —4 and n > 4, there are at least n — 2 — € mutually independent
hamiltonian paths between any pair of distinct vertices of G except n = 5 and € = 1; here
n is the number of vertices, e is the number of edges in a graph G, and é is the number
of edges in the complement of G.

In Chapter 3, we study the panpositionable hamiltonicity of the arrangement graph
A, . We show that the arrangement; graph is panpositionable hamiltonian for all £ > 1
and n — k > 2, and we find that it.is closely.related to its panconnected and pancyclic
properties. By applying our résult, we can show that the arrangement graph is pan-
connected and pancyclic. We also derive-seme-relationship between the panpositionable
hamiltonicity and the other usefuk properties for a.interconnection network.

In Chapter 4, we focus on the connectivity problem. Assume that m and n are
positive even integers with n > 4. It is known that every honeycomb rectangular torus
HReT(m,n) is a 3-regular bipartite graph. We prove that in any HReT(m,n), there
exist three internally-disjoint spanning paths joining x and y whenever x and y belong to
different partite sets. Moreover, for any pair of vertices x and y in the same partite set,
there exists a vertex z in the partite set not containing = and y, such that there exist three
internally-disjoint spanning paths of G — {z} joining = and y. Furthermore, for any three
vertices x, y and z of the same partite set there exist three internally-disjoint spanning
paths of G — {z} joining x and y if and only if n > 6 or m = 2. We present our conclusion
in chapter 5.



Chapter 2

Mutually Independent Hamiltonian
Property

As we discussed in the previous chapter, there are many studies on hamiltonian connected
graphs. In this chapter, we are interested in another aspect of hamiltonian connected

graphs. Let P, = (v1,v9,0s,...,v,) and Py = (uy, us, ug, . .., u,) be any two hamiltonian
paths of G. We say that P, and P ate independent if vy = vy, u,, = v,, and u; # v;
for 1 < i < n. We say a set offhamiltonian paths Py, P, ..., Ps of G are mutually

independent if any two distinct paths in the set are independent. In [32], it is proved that
there exist (k—2) mutually indeperident hamiltonian paths between any two vertices from
different bipartite sets of the stat.graph Sgif & > 4. The concept of mutually independent
hamiltonian arises from the following-application. If there are k£ pieces of data needed to
be sent from u to v, and the data needed to be processed at every node (and the process
takes times), then we want mutually independent hamiltonian paths so that there will be
no waiting time at a processor. The existence of mutually independent hamiltonian paths
is useful for communication algorithms. Motivated by this result, we begin the study
on graphs with mutually independent hamiltonian paths between every pair of distinct
vertices.

In this chapter, we use n to denote the number of vertices and use e to denote the
number of edges in graph G. We use € to denote the number of edges in the complement
of G. Suppose that G is a graph with e <n — 4 and n > 4. We will prove that there are
at least n — 2 — e mutually independent hamiltonian paths between any pair of distinct
vertices of G except n =5 and e = 1.

Moreover, assume that G is a graph with the degree sum of any two non-adjacent
vertices being at least n 4 2. Let u and v be any two distinct vertices of G. We will prove
that there are degg(u) + dego(v) — n mutually independent hamiltonian paths between

4
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Figure 2.1: The graph C,, .

uw and v if (u,v) € E(G) and there are degq(u) + degs(v) — n + 2 mutually independent
hamiltonian paths between u and v if otherwise.

2.1 Preliminaries for Mutually Independent Hamil-
tonian Property

Throughout this chapter, we use [i] to denote ¢ mod.(n—2). Let G and H be two graphs.
We use G+ H to denote the disjoint.-union of G.and \H. We use GV H to denote the graph
obtained from G + H by joining-each vertex of G to each vertex of H. For 1 <m < n/2,

let Cy,.n denote the graph (K, 45K, o)V 4ysee Figure 2.1. The following theorem is
proved by Chvétal [10].

Theorem 1. [10] Assume that G is a graph with n > 3 and e < n — 3. Then G is
hamiltonian. Moreover, the only non-hamiltonian graphs with e < n — 2 are Cy, and
Cys.

The following lemma is obvious.

Lemma 1. Let u and v be two distinct vertices of G. Then there are at most min{degg(u),
degq(v)} mutually independent hamiltonian paths between u and v if (u,v) ¢ E(G), and
there are at most min{degs(u),deg,(v)} — 1 mutually independent hamiltonian paths
between u and v if (u,v) € E(G).

Theorem 2. Let n be a positive integer with n > 3. There are n—2 mutually independent
hamiltonian paths between every two distinct vertices of K.

Proof.  Let s and t be two distinct vertices of K,. We relabel the remaining (n — 2)
vertices of K, as 0,1,2,...,n—3. For 0 < i < n — 3, we set P; as (s,[i],[i + 1],[i +

5



2],...,[i + (n — 3)],t). It is easy to see that Fp, Py,..., P,—3 form (n — 2) mutually
independent hamiltonian paths joining s and . O

Here are some theorems about the hamiltonian property.

Theorem 3. [37] Assume that G is a graph with é < n —4 and n > 4. Then G is
hamiltonian connected.

Theorem 4. [37] Assume that G is a graph with the sum of any two distinct non-adjacent
vertices being at least n with n > 3. Then G is hamiltonian.

Theorem 5. [17] Assume that G is a graph with the sum of any two distinct non-adjacent
vertices being at least n + 1 with n > 3. Then G is hamiltonian connected.

2.2 Mutually Independent Hamiltonian Paths

In this section, we will prove that there are deg,(u) 4+ degq(v) — n mutually independent
hamiltonian paths between u and v if (u,v) € F(G) and there are deg(u)+dege(v) —n+2
mutually independent hamiltonian paths between w and v if otherwise. The following
result strengthens that of Theorem 3:

Lemma 2. Assume that G is a=graph with n.> 4-and ¢ = n — 4. Then there are two
independent hamiltonian paths between any two distinct vertices of G except n = 5.

Proof. For n = 4, G is isomorphic to.K,.--By Theorem 2, there are two independent
hamiltonian paths between any twe distinct vertices of G. Assume that n = 5. Then
G is isomorphic to K5 — {f} for some ‘edge 'f. Without loss of generality, we assume
that V(G) = {1,2,3,4,5} and f = (1,2). It is easy to check that P, = (3,2,5,1,4) and
Py = (3,1,5,2,4) are the only two hamiltonian paths between 3 and 4, but P; and P, are
not independent.

Now, we assume that n > 6. Let s and ¢ be any two distinct vertices of G. Let H be
the subgraph of G induced by the remaining (n — 2) vertices of G. We have the following
two cases:

Case 1: Suppose that H is hamiltonian. We can relabel the vertices of H with
{0,1,2,...,n — 3} so that (0,1,2,...,n — 3,0) forms a hamiltonian cycle of H. Let @
denote the set {i | (s,[i +1]) € E(G) and (i,t) € E(G)}. Since € = n — 4, |Q| >
n—2—(n—4) = 2. There are at least two elements in (). Let ¢; and g, be the two
elements in Q). For j = 1,2, we set P; as (s, [¢; +1],[¢; +2],...,[g;],t). Then P, and P,
are two independent hamiltonian paths between s and t.

6



Figure 2.2: (a) The graph Cy5; (b) The graph C ,_o.

Case 2: Suppose that H is non-hamiltonian. There are exactly (n — 2) vertices in H.
By Theorem 1, there are exactly (n=4) edges in the.complement of H, and H is isomorphic
to C} n—2 or Cy5. Since € = n— 4z we know that (s,v) € E(G) and (t,v) € E(G) for every
vertex v in H. We can construct two independent hamiltonian paths between s and t as
following subcases:

Subcase 2.1: Suppose that H is isomerphic to Cy5. We label the vertices of
Cy5 with {0,1,2,3,4} as shown in Figure 2.2(a). Let P, = (s,0,1,2,3,4,¢) and P, =
(s,2,3,4,1,0,t). Then P; and P, form the required independent paths.

Subcase 2.2: Suppose that H is isomorphic to C' ,—2. We label the vertices of C ,,—o
with {0,1,...,n — 3} as shown in Figure 2.2(b). Let P, = (s,0,1,2,...,n — 3,¢) and
Py=(s,2,3,...,n—3,1,0,t). Then P, and P, form the required independent paths. O

We can further strengthen Theorem 3.

Theorem 6. Assume that G is a graph withn > 4 and é < n—4. Then there aren—2—e
mutually independent hamiltonian paths between every two distinct vertices of G except
n=>5ande=1.

Proof. With Lemma 2, the theorem holds for ¢ = n — 4. Now, we need to prove that
the theorem holds for e = n—4 —r with 1 <r < n —4. Let s and ¢ be two distinct

7



vertices of G. Let H be the subgraph of G induced by the remaining (n — 2) vertices of
G. Then there are exactly (n — 2) vertices in H, and there are at most n — 4 — r edges
in the complement of H with 1 < r < n — 4. By Theorem 1, H is hamiltonian. We
can label the vertices of H with {0,1,2,...,n — 3} so that (0,1,2,...,n — 3,0) forms a
hamiltonian cycle of H. Let @ denote the set {i | (s,[i + 1]) € F(G) and (¢,i) € E(G)}.
Since e =n—4—r with 1 <r <n—4, we know that |Q| >n—2—(n—4—r)=n—-2—¢

for 1 <r < n—4. Hence, there are at least n — 2 — é elements in ). Let ¢1, ¢, ..., ¢n_2_z
be the elements in Q. For j =1,2,...,n—2—¢, weset P; = (s,[q;+1],[qg;+2],...,[q], )
It is not difficult to see that Py, Ps, ..., P,_o_; are mutually independent paths between
s and t. O

The following result, in a sense, generalizes that of Theorem 5.

Theorem 7. Assume that G is a graph such that degq(z) + degq(y) > n+ 2 for any two
vertices x and y with (z,y) ¢ E(G). Let uw and v be two distinct vertices of G. Then there
are degq(u) + degg(v) — n mutually independent hamiltonian paths between u and v if
(u,v) € E(G), and there are degq(u) + degq(v) —n+ 2 mutually independent hamiltonian
paths between u and v if (u,v) ¢ E(Q).

Proof. Let s and t be two distinct verticesof: G, and H be the subgraph of GG induced by
the remaining (n — 2) vertices of G+'Liet v’ and @/ be any two distinct vertices in H. We
have degy (v') +degy (v') > n+2454 =n—2 = |V(H)|. By Theorem 4, H is hamiltonian.
We can label the vertices of H with.{0,1,...+n — 3}, so that (0,1,2,...,n — 3,0) forms
a hamiltonian cycle of H. Let Sidenote the set {i | (8, [i + 1]) € F(G)} and T denote the
set {i | (i,t) € E(G)}. Clearly, |§ U Tj<m=—2 We have the following two cases:

Case 1: (s,t) € E(G). Suppose that {{[SOT| < degq(s) + degq(t) —n — 1. We have
degg(s) +degs(t) —2 = |S|+|T| = |SUT|+[SNT| < degg(s) +degg(t) —n—14+n—2.
This is a contradiction. Thus, there are at least w = degy(s) + degq(t) — n elements
in SNT. Let ¢i,q,...,q, be the elements in SNT. For j = 1,2,...,w, we set P; =
(s,[q;+1],[g; +2],...,[g] t). So P, P,..., P, are mutually independent paths between
s and t.

Case 2: (s,t) ¢ F(G). Assume that |SNT| < degq(s)+degy(t) —n+2—1. We obtain
degq(s) +degq(t) = |S|+|T| = |SUT|+|SNT| < degq(s) +dega(t) —n+2—1+n—2.
This is a contradiction. Thus, there are at least w = degy(s) + degs(t) — n + 2 elements
in SNT. Let q1,¢2,...,q be the elements in SNT. For j = 1,2,...,w, we set P; =
(s,[g;+1],[gi+2],...,[g],t), and P, Ps, ..., P, are mutually independent paths between
s and t. O

Example. Let G be the graph (K; U K,,_4 1) V K4 where d is an integer with 4 <



d<n—1.Soe=n—1—d<n—4. Let x be the vertex corresponding to Ki, y be an
arbitrary vertex in Ky, and z be a vertex in K,,_4 1. Then degg(z) = d, deg(y) =n—1,
degs(z) =n—2, (z,y) € E(G), (y,2) € E(G), and (z,z) ¢ E(G). By Theorem 6, there
aren—2—é =n—2—(n—1—d) = d—1 mutually independent hamiltonian paths between
any two distinct vertices of G. By Lemma 1, there are at most d — 1 mutually independent
hamiltonian paths between x and y. Hence, the result in Theorem 6 is optimal.

Consider the same example as above, it is easy to check that any two vertices u and
vin G, degg(u) + degi(v) > n+ 2. Let x and y be the same vertices as described above,
by Theorem 7, there are degq(x) + degn(y) —n =d+ (n —1) —n = d — 1 mutually
independent hamiltonian paths between x and y. By Lemma 1, there are at most d — 1
mutually independent hamiltonian paths between x and y. Hence, the result in Theorem
7 is also optimal.

Combining Theorems 5 and 7, we have the following Corollary.

Corollary 1. Let r be a positive integer. Assume that G is a graph such that degq(z) +
degs(y) > n+r for any two distinct vertices x and y. Then there are at least r mutually
independent hamiltonian paths between any two distinct vertices of G.



Chapter 3

Panpositionable Hamiltonian
Property

In this chapter, we will introduce the new concept called panpositionable hamiltonicity
by using the arrangement graph as an example. We will show that the arrangement
graph is panpositionable hamiltonian and panconnected. Moreover, we will compare the
difference between the three concepts,.panpositionable hamiltonicity, panconnectivity and
pancyclicity.

3.1 Panpositionable Hamiltonicity, Panconnectivity
and Pancyclicity

Further attempts at hamiltonian problems led researches into the study of super-hamiltonian
graphs, such as panconnected graphs and pancyclic graphs. The definition of panconnec-
tivity and pancyclicity is described as follows. A graph G is pancyclic if it contains a
cycle of length [ for each [ satisfying 3 < [ < |V(G)|. The concept of pancyclic graphs
is proposed by Bondy [5]. A graph G is panconnected if there exists a path of length I
joining any two different vertices = and y with d(z,y) <1 < |V(G)| — 1. The concept of
panconnected graphs is proposed by Alavi and Williamson [3]. There are some studies
concerning panconnectivity and pancyclicity of some interconnection network [7, 21, 49].

We propose a new concept called panpositionable hamiltonicity. A hamiltonian graph

G is panpositionable if for any two different vertices z and y of G and for any integer [

satisfying d(z,y) < I < |V(G)| — d(z,y), there exists a hamiltonian cycle C' of G such

that the relative distance between x and y on C' is [; more precisely, do(z,y) = [ if
[V(G)]

I < [=57] or De(z,y) =1if 1 > &f)l Given a hamiltonian cycle C, if do(x,y) = [, we
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< M, there exists a hamiltonian cycle C' of G with

have D¢(z,y) = |V(G)| — do(z,y). Therefore, a graph is panpositionable hamiltonian if
l 2

for any integer [ with d(z,y) <
dC(xa y) =1l

Similar to the importance of hamiltonicity for the communication between processors
in an interconnection network, panpositionable hamiltonicity allows more flexible com-
munication in a hamiltonian network. The panpositionable hamiltonian property inherits
the hamiltonian property and advances it further. We first give an example to show that
a panconnected graph G is not necessarily panpositionable hamiltonian.

Let n, sy, 82,...,5, be integers with 1 < s; < s9 < --- < s,. The circulant graph
C(n; s1, 82, .. .,8,) is a graph with vertex set {0,1,...,n — 1}. Two vertices i and j are
adjacent if and only if i — 7 = £s; (mod n) for some k where 1 < k < r. We can check
that C(n;1,2) is panconnected by brute force for n € {5,6,7,8,9,10}. Now we will prove
that C'(10; 1,2) is not panpositionable hamiltonian.

Theorem 8. The circulant graph C(n; 1, 2) is not panpositionable hamiltonian forn = 10.

Proof. Figure 3.1 shows the structure of C(10; 1,2). Consider vertex 0 and vertex 2, with
d(0,2) = 1. We prove by contradiction that € (,10; 1,2) does not contain a hamiltonian
cycle HC with dyc(0,2) = 5. Suppose tothe.contrary that HC' is a hamiltonian cycle
of C'(10;1,2) with dyc(0,2) = 5. There-are three possible paths, P, = (0,8,9,1,3,2),
Py, =1(0,9,1,3,4,2) and P3 = (0;1,3,5,4,2);of length 5 joining vertex 0 and vertex 2. If
HC contains P, then the edges (0, 1), (0:2),(0:9) can not belong to HC'. If HC' contains
P, or Py, then the edges (2,0), (2,1);(2,3) can not belong to HC. Hence for n = 10,
there does not exist any hamiltonian eycle insC{10; 1,2) such that the distance on the
cycle between vertex 0 and vertex 2 is 5. So'C'(10; 1, 2) is not panpositionable hamiltonian.

O

In fact, the circulant graph C(n;1,2) is panconnected for every n > 5, but it is not
panpositionable hamiltonian for some values of n. Therefore, the panpositionable hamil-
tonian property is a stronger property for an interconnection network. In the following
sections, we will try to find the panpositionable hamiltonicity of the arrangement graphs.

11



Figure 3.1: The circulant graph C(10; 1, 2).

3.2 The Arrangement Graphs

3.2.1 The Basic Properties of the Arrangement Graphs

The arrangement graph [13] was proposed by Day and Tripathi as a generalization of the
star graph. It is more flexible in itsisize than,the star graph. Let n and & be two positive
integers with n > k. And, let (&) and (k) denote the sets {1,2,...,n} and {1,2, ...k},
respectively. Then, the vertex set'of the artangement graph A, x, V(A.x) ={p | p =
pip2-..pr with p; € (n) for 1 <« < k and p; # p;af i # j} and the edge set of A, y,
E(Ank) = {(p,q) | p,q € V(A, k) p-and g differ in exactly one position }. Figure 3.2
illustrates A42. By the definition ‘of the arrangement graph, A, ; is a regular graph of
degree k(n — k) with (n%'k), vertices. The ‘diameter of A, is [2]. The arrangement
graph A, ; is isomorphic to the complete graph K,, and A, ,_; is isomorphic to the
n-dimensional star graph. Moreover, A, ; is vertex symmetric and edge symmetric [13].

Let 7 and 7 be two positive integers with 1 < 4,5 < n. And, let V(Aff,f:)) ={p|p=
p1p2-..pr and p; = i}. It is the set of all vertices with the j-th position being i. For a
fixed position j, {V(Aff,f:)) | 1 <i < n} forms a partition of V(A ). Let Aﬁf,? denote
the subgraph of A, ; induced by V(Ag’ ,z)) It is easy to see that each Ag’ ,z) is isomorphic
to Ap—1,-1. Thus, A, ; can be recursively constructed from n copies of A,,_;;_1. Each
A;j; ,z) represents a subcomponent of A, j, and we say that A, ; is decomposed into sub-
components according to the j-th position. Let I be a subset of {1,2,...,n}. We use Afj}j’
to denote the subgraph of A, ; induced by Ujc; V(Aifkf)) Ag;}? is called an incomplete

arrangement graph if |I| < n. We observe that each Ag’ ,z) can be recursively decomposed

12



420

Figure 3.2: The arrangement graph A, .

into its smaller subcomponents. For simplicity, if there is no ambiguity, we shall concen-
trate on the last position, and we use A7, ; and A/ ; to denote Aflkkf) and Agf}f) respectively,

where k is the last position, and E% to denote the set of edges between Al , and A’ ,.
Let F' be a faulty set which may include faulty edges, faulty vertices, or both. The good
edge set GE“(F) is the set of edges (u,v) € E™ such that {u,v,(u,v)} N F = 0. We
need some basic properties of the arrangement graph. The following proposition follows
directly from the definition of the arrangement graphs.

Proposition 1. Let n, k be twopositive antegers with n,k > 2, and let i and j be two
distinct elements of (n). Suppose that H s one subcamponent of Afuk with the (k — 1)-th
position being h and the k-th pesition béing j-for some h € (n) — {j}. Then |E%| =
%, and the number of edges-between Af%k and H is (Tff;i)ll)!. Moreover, if (u,v) and
(w',v') are distinct edges in E%, themfu,v}Qfa’,v'} = 0, and (u,v') € E(A},) if and

only if (v,v') € E(Afzk)

Let u € V(A} ) for some i € (n). We say that v is a neighbor of u if v is adjacent to w.
Let I be a subset of {1,2,...,n}, and we use N’(u) to denote the set of all neighbors of u
which are in AL . Particularly, we use N*(u) and N'(u) as an abbreviation of N~{ (v)
and N1 (u) respectively. We call vertices in N*(u) the outer neighbors of u. It follows
from the definitions, [N*(u)| = (k—1)(n—Fk) and [N*(u)| = (n—Fk). We say that vertex u

is adjacent to subcomponent A7, , if u has an outer neighbor in A7 ;. Then, we define the

adjacent subcomponent AS(u) of u as {j | u is adjacent to Aik} We have the following
proposition:

Proposition 2. Suppose that k > 2, n—k > 2, and i € (n). Let u and v be two distinct
vertices in Al .

(a) If d(u,v) =1, then |AS(u) N AS(v)| =n —k — 1.
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(b) If d(u,v) < 2, then AS(u) # AS(v).

Proof. Let u = ujus...ux, v = v1vs...0x, and uy, = vy = 1. If d(u,v) = 1, we have u; # v for
some s € (k—1), and u; = v; for all t # s. Then, AS(u) = (n) — {u1, ug, ..., Us, ..., ux } and
AS(v) = (n) — {v1, va, ..., s, ..., v }. Thus AS(u)NAS(v) = (n) —{u1, ug, ..., Us, ..., Ug, Vs }
and |[AS(u)NAS(v)] =n—(k+1) =n—k—1. Since us # v, vs € AS(u) but vs ¢ AS(v).

If d(u,v) = 2, there exists a vertex w € V(A; ;) such that d(u,w) = d(w,v) = 1.
Let w = wyws...wy. And, let s’ and ¢’ be two indices such that wy # uy and vy # wy.
Clearly, s’ # t' or d(u,v) = 1. Hence wy is not in {uy,ug, ..., ux} but in {vy,ve, ..., vx }.
Thus wy € AS(u) but wy ¢ AS(v). Hence, the statement follows.

Day and Tripathi [13] presented a shortest path routing algorithm for the arrangement
graph, and gave some characterizations of the minimum length path between two arbitrary
vertices in A, ;. We can derive the following lemma directly from their routing algorithm.

Lemma 3. Let u = wjug...u, and v = v1v,...0; be two vertices in A, . There exists a
way of decomposing A, i into subcomponents such that one of the following three cases
holds.

(a) If u, = v, = i for somesposition r €+(k) and i € (n), we decompose A,y
into subcomponents according tosthe x=th position:. Then u and v belong to the same

subcomponent and u,v € V(Aﬁsz)) Moreover, a shortest path from w to v in A,y is

completely contained in Aifkl )

(b) If u, # v, for every x €:(ky and {uy, ugs..,ur} # {v1,v9,...,01}, there exists
a position u, ¢ {v1,vs,...,v;} for somey € «k), say the y-th position. We decompose
A, i into subcomponents according to the y-th position, then u and v belong to different
subcomponents, say u € V(A(yZ ) and v € V(A(yj)) for some i # j € (n). Moreover, a
minimum length path connecting u and v has the form (u, P,u’,v), in which u' € V(Aff{}:)),
and P is a path completely contained in A, yz)

(¢) If uy # vy for every x € (k) and {uy, ug, ..., ur} = {v1,va, ..., 08 }, decomposing Ay,
into subcomponents according to any position, say y-th position, y G (k), then u and v

belong to different subcomponents, say u € V(Afly,j ) and v € V( ) for some i # j €
(n). Moreover, a minimum length path connecting v and v has the form (u, P,u’, v, v),

in which u' € V(AS{}:)), S V(AS{Z)), and P is a path completely contained in Afly,j)

Example. Suppose that v and v are two vertices in A75. If w = 12345 and v = 13452,
then u,v € V(A(1 :1) ). A minimum length path connecting u and v is (12345, 12645, 13645,
13642, 13652, 13452) which is completely contained in A3, and case (a) holds. If u =
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12345 and v = 26453, then u € V(A%l)) and v € V(A(%QQ)). A minimum length path
connecting u and v is (12345, 12346, 12356, 12456, 12453, 16453, 26453), and case (b) holds.
If w = 12345 and v = 23451, then u € V(A%gl)) and v € V(A%f)). A minimum length
path connecting u and v is (12345, 12346, 12356, 12456, 13456, 23456, 23451), and case (c)
holds.

3.2.2 The Hamiltonicity of the Arrangement Graphs

Hsu et al. studied the fault hamiltonicity and fault hamiltonian connectivity of the
arrangement graphs in [24]. Some results are listed as follows.

Theorem 9. [24] Let n and k be two positive integers with n — k > 2. Then A,
is k(n — k) — 2 fault tolerant hamiltonian and k(n — k) — 3 fault tolerant hamiltonian
connected.

The above theorem states that with up to k(n — k) — 2 faulty edges and faulty vertices
A, i still has a hamiltonian cycle, and with up to k(n — k) — 3 faulty edges and faulty
vertices A, j is still hamiltonian connected.

Lemma 4. [24] Suppose that
1. k>3 andn—k > 2,
2. t is a fized position with <t < k,
3. I C (n) with |I]| > 2,
4. FCV(A,k) UE(Ang), and
5. AS;,? — Fis hamiltonian connected for each | € I and ]F(Aff,?)] <k(n—k)-3.

Then, for any x € V(AS:,?) and y € V(Ag:,g)) with i # j € I, there is a hamiltonian
path of A;t:,? — F joining x and y.

The following lemma considers the hamiltonian connectivity of the incomplete ar-
rangement graphs A, o. The lemma states that for any two vertices x and y in different
subcomponents of the incomplete arrangement graphs A, o, there exists a hamiltonian
path joining them if n > 5. The result holds even when there is one faulty vertex or one
faulty edge if n > 6.

Lemma 5. Suppose that n > 5, t is a fizved position with 1 <t <2, F' C V(A,), and
I C (n) with |I| > 2.
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a) If n > 5, then for any v € 'V A(m) andy € V A(t:j) with © # j € I, there is a
n,2 n,2
hamiltonian path of AS;QI) joining x and y.

n>6 an <1, then for any = € Y and y € I with i # j € 1,
b) If n>6 and |F| < 1, then f V(AYDY andy € V(ALY with i # j e 1

there is a hamiltonian path of AS;QI) — F joining x and y.

Proof. Because of the symmetric property of A, ., without loss of generality, we may

assume that ¢ = 2. By Proposition 1, |[E"7| = (n(ii)f)! =n—-2>3ifn>5andn—2>4
if n > 6 for every 4,j € I, and {u,v} {u',v'} =0 if (u,v) and («/,v") are distinct edges
in £%7. Hence the number of good edge |GE™| > 3 if n > 5, or n > 6 with |F| < 1. We
then prove this lemma by induction on |I|. Suppose that |I| = 2, and I = {3, j} for some
i,j. Since |GE"| > 3, there exists an edge (u,v) € GE™ such that u # z € V(A ,) and
vFy € V(Afﬂ). By Theorem 9, for each | € I, Af%2 — F' is hamiltonian connected if
|F| < 1. There is a hamiltonian path Py of A, , — F from x to u and a hamiltonian path

Py of Af‘w — F from v to y. Thus (x, Py, u, v, Py, y) forms a hamiltonian path of A{IQ —F
from x to y.

Assume that the statement is true for all I” with 2 < |I'| < |I|. There exists an i’ € [
with i’ # 4, j. Since |GE™| > 3, we cangind an edge (u,v) € GE™ with u € V(A! ,) and
v#y€E V(Afﬂ). Then there is a _hamiltonian path P, of Afl;{j} — F from x to u and a
hamiltonian path P, of Afﬂ — F from v toy. Thus (z, P, u, v, P, y) forms a hamiltonian
path of A] , — F from x to y. Henée the lemtia follows. O

3.2.3 The Disjoint Paths in an Arrangement Graphs

In this subsection, we will show that there exist two vertex disjoint paths spanning all
the vertices in an incomplete arrangement graph with one vertex fault tolerant.

Lemma 6. Suppose that
1L k>3, n—k>2,
2. 1 C(n) with |I| > 2,
3. F CV(A],) with |F| <1, and
4. w1 € V(AL — F and x5 € V(A2,) — F with iy # i3 € I.

Then, for any pair of distinct vertices {yy,y2} in V(AL ) — F, there exist two disjoint
paths, one joining x1 and y; for some i € {1,2}, and the other joining xo and y; with
1 # j, such that these two paths span all the vertices in Aé,k — F.
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Proof. Let iy, 1, ..., be |I| distinct indices of (n). We prove this lemma by finding two
disjoint paths P; and P, in Aﬁk — F such that P, joins z; and y;, and P, joins x5 and
y; with ¢ # 7. Moreover, P, and P, span all the vertices in A{zyk — F. According to the
location of y; and y5, we have the following cases:

Case 1: Suppose that y; and y, are located in different subcomponents.

Subcase 1.1: Suppose that 1, z2, y; and y; are located in four different subcomponents.
yi € V(A7) and y; € V(A;!,) with |[I| > 4. See Figure 3.3(a) for an illustration. By
Lemma 4, we can find a hamiltonian path P; from z; to y; in Aiﬁ}g’m — F. Similarly, we

can find a hamiltonian path P, from x5 to y; in Ai;c{“’ig’} — F. Therefore, P, and P, are
two disjoint paths spanning all the vertices in Al , — F.

Subcase 1.2: Suppose that one of y;, y» and one of z;, x5 are located in the same
subcomponent. Without loss of generality, we may assume that x; and y; are located in the
same subcomponent, and x, and y; are located in different subcomponents. y; € V(Af;k)
and y; € V(Aﬁf’k) with |I] > 3. See Figure 3.3(b) for an illustration. By Theorem 9, since
Afik — F'is hamiltonian connected, we can find a hamiltonian path P, from z; to y; in
Af;k — F. By Lemma 4, we can find a _hamiltonian path P, from x5 to y; in Ai;c{il} — F.
Therefore, P, and P, are two disjoint paths spanning all the vertices in A{Lk — F.

Subcase 1.3: Suppose that z;-and y; are located in the same subcomponent for some
i € {1,2}, and x5 and y; are located in the'same subcomponent with i # j. y; € V/(A}})
and y; € V(Afik) with |I| > 2.%See Figure=3.3(¢)- for an illustration. Without loss of
generality, we may assume that ¢+ =1 and g#="2. By Theorem 9, since Af;k — F is
hamiltonian connected, we can find a hamiltonian path P; from y; to z; in Aﬁjvk —F. If
1| > 3, since [N*(y2)| > 2, we can find an edge (y2,y,) € E™7 such that y, € V(A7)
for some j € I — {iy,i5}. By Lemma 4, we can find a hamiltonian path P, from y, to
T in Ai;c{il} —{y} UF. Let Py = (y3,yy, Py, x2). If |I| = 2, by Theorem 9, there is a
hamiltonian path PQ, from g5 to by in Afik — F. Let Py = (ys, PQ/, xo). Therefore, P; and
P, are two disjoint paths spanning all the vertices in A , — F.

Case 2: Suppose that y; and y; are located in the same subcomponent.

Subcase 2.1: Suppose that y1,y2 € V(A},) or y1,y2 € V(AZ,) with |I| > 2. See Figure
3.3(d) for an illustration. Without loss of generality, we consider the former case and
assume that i = 1 and j = 2. By Theorem 9, A} — ({y2} U F') is hamiltonian connected,

hence we can find a hamiltonian path P; from y; to z; in Afll’k —{y2JUF. If |I]| > 3, since
|N*(y2)| > 2, we can find an edge (y2,y,) € E™7 such that y, € V(AL ,) for some j €
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Figure 3.3: Illustrations for Lemma 6. Notice that |F| < 1 in each A] .
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I—{iy,is}. By Lemma 4, we can find a hamiltonian path P, from y, to z in Afl’_k{il} —F.
If |I| = 2, there exists an edge (yo,y5) € E“ such that y, € V(A2,). By Theorem
9, there is a hamiltonian path P, from y, to @5 in A2, — F. Let Py = (ya, sy, Py, ).
Therefore, P, and P, are two disjoint paths spanning all the vertices in A{zyk — F.

Subcase 2.2: Suppose that y1,ys € V(Afi ). Without loss of generality, we consider two
subcases:

Subcase 2.2.1: Suppose that there exists some i1 € AS(y,) for i € {1,2} with |I| > 3.
Without loss of generality, we may assume that ¢ = 1. See Figure 3.3(e) for an illustration.
Since #; € AS(y1), we can find an edge (y1,y;) € E™% such that y; € V(A},) and
x1 # y,. By Theorem 9, we can find a hamiltonian path P, from y; to 2; in Af;k - F.
Let Py = (y1,yy, P, @1). Let y, # y1 € V(A2,). By Theorem 9, since A, — {y1} U F is
hamiltonian connected, we can find a hamiltonian path P, from ys to y, in Afi r—{y JUF.
If [I| > 4, since [N*(yy)| > 2, we can find an edge (yy,y5) € EJ such that y, € V(A? )
for some j € I — {iy,is,i3}. By Lemma 4, we can find a hamiltonian path P, from
Y, to x5 in Afl’_k{il’ig} — F. If |I| = 3, there exists an edge (y,,y,) € E™%2 such that
Yy, € V(A?,). By Theorem 9, there is a hamiltonian path P, from y, to x5 in A7, — F.
Let Py = (yo, PQN, y;, y;/ , PQI, xg). Therefore,s P ,and P, are two disjoint paths spanning all
the vertices in Af , — F.

Subcase 2.2.2: Suppose that {41,9F N{AS(y1)U AS(y2)} = 0 with |I| > 4. See Figure
3.3(f) for an illustration. Since |N*(yy)| >2; we can fihd an edge (y1,y;) € E"9* such that
Yy, € V(A}},) for some ji € I—{ifyiy, i3} ByLiemma'4, we can find a hamiltonian path P
from g, to x; in Aif,}g’jl} — F. Let Py &Ky, y, £ @1). Let yy € V(A2,) and y, € N (yy).
By Proposition 2, we have AS(y;) # AS(y,). By Theorem 9, since Afik —{y}UF is
hamiltonian connected, we can find a hamiltonian path P, from y, to y, in A%, —{y; }UF.
If |1| > 5, since |N*(y,)| > 2, we can find an edge (y5,y5) € E™2 such that y, € V(A%))
for some jy € I — {iy, 9,13, j1}. By Lemma 4, we can find a hamiltonian path P, from ,
to @y in Ai;c{il’i?”jl} —F. If |I| = 4, since [N*(y,)| > 2, we can find an edge (y,,y,) € 2
such that g, € V(A:fk) Since Aﬁik — F' is hamiltonian connected, there is a hamiltonian
path P, from y, to z, in Afﬁk — F. Let Py = (y2, Py , 4, Y, Py, x3). Therefore, P, and P,
are two disjoint paths spanning all the vertices in A{%k — F.

Thus the lemma follows. U
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3.3 Panpositionable Hamiltonicity of the Arrange-
ment Graphs A,

In this section, we will prove that the arrangement graph A, » is panpositionable hamil-
tonian for all n — k > 2. The basic idea is to study A, ; and A, first, and then to prove
the general case by induction.

Lemma 7. The arrangement graph A, ; is panconnected and panpositionable hamiltonian
for alln > 3.

Proof. Since A,, ; is isomorphic to the complete graph K, the lemma follows trivially. [

Lemma 8. The arrangement graph A, o is panpositionable hamiltonian.

Proof. Let s and t be any two vertices of As9 in Figure 3.2. The arrangement graph
3k

is vertex symmetric and edge symmetric, and the diameter of A, is [5| by Day and
Tripathi [13]. Hence the diameter of A, is 3. We prove this lemma by considering the
distance between s and t. Without loss of generality, we may assume that s = 42 and
t =32 if d(s,t) = 1. Assume that s = 42 and ¢ = 31 if d(s,t) = 2. And, assume that
s =42 and t = 24 if d(s,t) = 3. Obviously, ifidyc(s,t) = x, we also have Dyc(s,t) =
|[V(HC')| —x. Hence, we only need:to provesthat for.each [ € {d(s,t),d(s,t)+1, ..., ‘A‘;’Q‘ 1,
we can construct a hamiltonian 'eycle of Ay such that the distance between s and ¢ on

the cycle is [. The corresponding hamiltonian cycle HC' in A4, are listed below.

d(s, 1)

QU
T
Q
—~
»
=

The cycle HC'

<42 32,31:41,21,24,34,14,12,13,23,43 42)
(42,12,32,31,34,14,13,43,23,24, 21,41 42)
(42,41,31,32,34,14,24,21,23,43,13, 12, 2)
(42,41, 31,34,32,12,13, 14, 24, 21,23, 43 42)
<42 12,14,24,34,32,31,41,21,23,13,43 42)
<42 41,43,23,21,31,32,34,24,14,13,12 42)
<42 32,31,21,41,43,13,23,24,34,14,12 42)
<42 32,34,31,41,21,24,23,43,13,14,12 42)
( )
(42 )
( )
( )
( )
( )
( )

V)
~

42,12,32,34,31,41,21,23,24,14, 13, 43,42
42,32,12,14,34,31,41,21,24,23,13,43,42
42,12,13,14,34,32,31,41, 21,24, 23, 43,42
42,32,34,24,21,31,41,43,23,13,14,12,42
42,32,31,21,24,34,14,12,13,23,43,41,42
42,32,31,41,21,24,34,14,12,13,23,43,42
42,41,21,31,32,34,24,23,43,13,14, 12,42

W W W WP =] =]
O | W O[T | W DN O | W DN
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Thus the lemma holds. U

Lemma 9. The arrangement graph A, 2 is panpositionable hamiltonian for all n > 4.

Proof. By Lemma 8, the result holds for n = 4. Suppose that n > 5, and s and t are two
distinct vertices of A, 5. Then for each [ € {d(s,t),d(s,t) + 1,d(s,t)+ 2, ..., W}, we
shall find a hamiltonian cycle of A, 5 such that the distance between s and ¢ on the cycle

is (.

We would like to make a remark here. Throughout this chapter, the proof idea of the
panpositionable hamiltonian property of the arrangement graph is essentially similar to
Case 1 described below except for some minor adjustments.

Case 1: s and t belong to the same subcomponent Af%?. See Figure 3.4. Suppose that
s,t € V(AL ,) for some i € (n). Since A}, is isomorphic to the complete graph K, _j,
we have d(s,t) = 1. For each Iy € {1,2,3,...,n — 2}, we can construct a hamiltonian
cycle HC; of Al , such that the distance between s and t on the cycle is lo. Node ¢
has two distinct neighbors on cycle HC;. Let w and v be two neighbors of t on HC;.
Let HC; = (s, LP,u,t,v, RP,s) and Py = (s, LP,u,t). Without loss of generality, let
L(Py) = ly. Since [N*(t)| = n—2 > 3 fo#h =5 we can find a subcomponent A}, different
from AY ,, and a vertex t' € V(Aly) suchothat (£,#) € E* for some h, € (n) — {i}. By
Proposition 2, d(t,u) = 1, hence ave have |AS(£)A AS(u)| =n—3 > 2 for n > 5. It means
that we can find a subcomponent “Ay'y which ji € X(n) — {7, h,}, such that there exist
two disjoint edges (u,p;) and (t3q) in E1 By Proposition 1, (p1,q1) € E(AQQ) Since
|N*(v)| = n—2 > 3 for n > 5, we can find a subcomponent A%, and a vertex v’ € V (AL%)
such that (v,v') € E" for some hy € (n).=Hi, h,j1}. By Lemma 5(a), there exists a
hamiltonian path H P of Afﬁ%f{i} joining t" and v". Thus (s, Py, t,t', HP,v',v, RP, s) forms
a hamiltonian cycle, and for each Iy € {1,2,3,...,n — 2}, the distance between s and ¢ on
the cycle is .

Now we present an algorithm to expand the path Py = (s, LP,u,t) between s and t
to various lengths. The idea is to expand the path by inserting the vertices of A}y into
Py. We now describe the details.

If we want to insert p; and ¢; to Py, let Py = (s, LP,u, p1,q1,t). See Figure 3.5(a) for
an illustration. Thus we have L(P;) = lp + 2. We can expand the path P to a longer
path as follows. By Theorem 9, there is a hamiltonian path HP, from p; to ¢; in A7},.
So we can join all the vertices of Aijk to Pp, let P = (s, LP,u,p1, HP\,q,t). Hence
L(Pf) =1lp+n—1. Since 1 <lp <n—2, we have 3 < L(P) <nandn < L(P]) < 2n—3.
Therefore, for each i1 € {1,2,3,...,2n — 3}, we can construct a path PP, € {Fy, P, P/}
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(a)

Figure.3.4: Lemma 9, Case 1.
from s to t such that the distanee between s and'¢ on the path is [;.

Using the same idea, we can .expand .the path HP,. Let u; and t; be two ad-
jacent vertices on HP;. That isj HP, = (p3s P, uq,t1, RP;,q1). By Proposition 1
and 2, there exist two distinct edges (uy, o) ‘and (t1,qz) in E7%92 for some j, € (n) —
{7, h¢, hy, j1} such that (p2, q2) € E(AZEQ) See Figure 3.5(b) for an illustration. Let P, =
(s, LP,u,p1, LPy,uy, pa, q2,t1, RPy, q1,t). Thus we have L(P,) = lp+n—+1. By Theorem 9,
there is a hamiltonian path H P, from py to ¢o in Afi2. Let Py = (s, LP,u,p1, LP;,uq, pa,
HPy, qo,t1, RPy,q1,t). Hence we have L(Py) = lop+2n — 2. Since 1 < Iy < n — 2, we
have n + 2 < L(P) < 2n—1 and 2n — 1 < L(Py) < 3n — 4. Therefore, for each
lo € {1,2,3,...,3n — 4}, we can construct a path PP, € {Py, P, P}, P, Py} from s to t
such that the distance between s and ¢ on the path is Iy if n > 5. The maximal value of

ly is 3n — 4. If n = 5, then we have 3n — 4 > |V(AQ"»2)‘ — ”(”2_1)'

We can use the algorithm repeatly for n > 6. For each 3 < x < L%J, let u,_; and ¢,
be the two adjacent vertices on HP, 1. That is, HP, 1 = (py_1, LPy_1,uz_1,ts1, RP;_1,
¢z—1). By Proposition 1 and Proposition 2, there exist two distinct edges (u,_1,p:)
and (t,_1,q,) in E%*=1J= for some j, € (n) — {4, h, hy, j1, -, jo—1} such that (p.,q.) €

E(A},). Let P, = (s,LP,u,py, LPy, uy, ..., Up—1,Dgs Qx> ta—1, .- t1, RPy, 1, t). Thus we

22



(a)l

(b)a
Figure 3.5: The paths Py, P, P, and Pj.

have L(P;) = lp+(x—1)(n—1)+2. By Theorem 9, there is a hamiltonian path H P, from p,
to ¢, in A“Q Let P* = (s, LP,u, p1, BPS U6, g1, Puy HPy, @y to1, ... 11, RP1, qu, t).
Hence we have L(P*) =1+ (r #1)(n=1) +Fn— 1. Since 1 <y < n — 2, we have
(x—1)(n—-1)+3 < L(P,) < (@—Dm=1)4+nand (xr —1)(n—1)+n < L(P}) <
(x —1)(n — 1) + 2n — 3. Thereforejfor each & € {1,2,3,...,(x — 1)(n — 1) + 2n — 3}, we
can construct a path PP, € { Py, P, P{,«y P, Py} fom s to t such that the distance of
s and ¢ on the path is [, if n > 6. The maximal value of [, is (|5] — 1)(n — 1) 4+ 2n — 3,
and ([5] —1)(n—1)+2n -3 > W(AZ”'Q)‘ = "("2‘1). To construct a hamiltonian cycle, we
consider the two subcases:

Subcase 1.1: Suppose that PP, € {F, Py, ..., P;} for each 1 < z < [§]. See Fig-
ure 3.4(a) for an illustration. By Lemma 5(a), there exists a hamiltonian path HP of
Afﬁ%f{z’]l """ 7} joining ' and v’ which ¢’ € V(Al,) and v’ € V(A%) Thus (s, PPy, t,t', HP,

v',v, RP, s) forms a hamiltonian cycle, and for each [ € {1,2,3, .. |V(A"2 ‘} the distance

between s and ¢ on the cycle is [.

Subcase 1.2: Suppose that PP, € {P, ..., P,} for each 1 <2 < |5]. See Figure 3.4(b)
for an illustration. Assume that Hy, Hy € (n) — {i,j1,...,Jo} and Hy N Hy = 0. Let
hi,hy, € Hy and h,, h, € Hy. Let F C V(A),) and F = {p,,q»}. Let y,z be two
distinct vertices in A, — F. Since |[N*(y)| = [N*(z)| = n —2 > [2] for n > 5, there
exist two distinct edges (y,y') € E'=" and (z,2') € E/=" such that v/ # t' € V(AZ?Q)
and 2/ # v € V(AZTZ), respectively. Aflf2 — F' is isomorphic to K,_3, hence there is a
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hamiltonian path HP from y to z in A’y — F. By Theorem 9 and Lemma 5(a), there
exist a hamiltonian path DP; from t’ to 3 in Anht L and a hamiltonian path D P, from v’ to
Zin AnHQ2 Thus (s, PP,,t,t',DPy,y,y, HP, z,2', DP,,v',v, RP, s) forms a hamiltonian

cycle, and for each [ € {1,2,3, ..., W}, the distance between s and t on the cycle is [.

Case 2: s and t belong to different subcomponents of A, 5. Suppose that s € V(A ,) and
t € V(AD,) for i # hy € (n). Bach subcomponent of 4, is isomorphic to the complete
graph K,,_1, and |E*"| > 0, we have d(s,t) = 1, d(s,t) = 2 or d(s,t) = 3. In the case of
d(s,t) = 1, suppose that s = s189...55_17 and t = tits...t;_1h; are adjacent, and s, = t,
for each 1 <z < k — 1. We may decompose A, 2 into subcomponents according to the
first position such that s and t belong to the same subcomponent. Hence the case for
d(s,t) =1 is the same as Case 1. In the following, we discuss the other two cases.

Subcase 2.1: Suppose that d(s,t) = 2. See Figure 3.6 for an illustration. Without loss of
generality, let (¢, ) be an edge in E*" such that ¢’ € V(AL ,) and ¢’ € N*(t). Since Al , is
isomorphic to complete graph K,,_;, we have d(s,t) = 1. For each [y € {1,2,3,...,n —2},
we can construct a hamiltonian cycle HC; of A}, such that the distance between s
and t' on the cycle is ly. Let u and v be two neighbors of ¢ on HC;, and HC; =
(s, LP,u,t' v, RP,s). Let Py = (s, LP,ust/st).. Without loss of generality, we may assume
that L(Py) = o + 1.

By Proposition 2, d(t',u) = 1, hence we have-|AS(t) N AS(u)] = n—3 > 2 if
n > 5. It means that we can find anindex.j; € «n) — {i, h}, such that there exist
two disjoint edges (u,p;) and (¢'7gq) in BBy Proposition 1, (p1,q) € E(Aﬁb) Since
IN*(v)| =n—2>3ifn > 5, we cah'find a vertex»’ € V(AL) such that (v,v') € E% for
some h, € (n)—{i, hy, j1}. If we want to'join'p, and ¢, to Py, let Py = (s, LP,u,p1,q1,t,t).
Then we have L(P;) = lop + 3. By Theorem 9, there is a hamiltonian path H P, from p;
to ¢; in Aﬁ;{Q. Let Py = (s, LP,u,p1, HPy, q;,t',t). Hence we have L(P;) = Iy + n. Since
1<lp<n—2 wehave 4 < L(P)) <n+1land n+ 1 < L(P;) < 2n — 2. Therefore, for
each [y € {2,3,4,...,2n — 2}, we can construct a path PP, € {Fy, Py, P/} from s to ¢ such
that the distance between s and ¢ on the path is [;.

Recursively, for each 2 < x < L%j, let u,_1 and t,_1 be two adjacent vertices on HP,_;.
That is, HP, 1 = (py—1, LPy_1,Uy_1,ts—1, RPy_1,q:—1). By Proposition 1 and Proposi-
tion 2, there exist two distinct edges (uy—1,ps) and (t,—1, ¢5) in E7»-7= for some j, € (n)—
{i, by, hy 1y oo o - And, (po, @2) € E(A)). Let Py = (s, LP,u,py, LPy, uy, ..., Up_1, Dz,
Qurto—1, .. t1, RPy, qi, t',t). Thus we have L(P,) = lp + (x — 1)(n — 1) + 3. By The-
orem 9, there is a hamiltonian path HP, from p, to ¢, in Affl Let P = (s,LP,
w, p1, LPy, wyy ooy g1, Doy HPyy Quy too1,..sth, RP, g1, U, t). Hence we have L(P})

lo+(x—1)(n—1)4n. Since 1 <lp <n—2, we have (z —1)(n—1)+4 < L(P,) <
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(a) (b)d

Figure 3.6: Lemma 9, Case 2.1.

(x—1)(n—1)4+n+1and (z —D)(n =)+t 1< L(P;) < (z —1)(n—1)+2n — 2.
Therefore, for each I, € {2,3, 45, (. — 1){ns— 1) + 2n — 2}, we can construct a path
PP, € {Py, P, P}, ..., P, P} from s to.t such that the distance between s and ¢ on
the path is I, if n > 5. The maximal-value-of l,;is ([5] — 1)(n — 1) +2n — 2, and
(5] -D(n—=1)+2n—-2 > ‘V(AQ"QN = "("2*1). To construct a hamiltonian cycle, we
consider the two subcases:

Subcase 2.1.1: Suppose that PP, € {F, P, ..., P;} for each 1 < x < |3]. See Fig-
ure 3.6(a) for an illustration. By Lemma 5(a), there exists a hamiltonian path HP of
A@f{ml """ e} joining ¢ and v’. Thus (s, PP,,t',t, HP,v',v, RP,s) forms a hamiltonian

cycle, and for each | € {2,3,4, ..., W}, the distance between s and t on the cycle is [.

Subcase 2.1.2: Suppose that PP, € {Py,..., P} for each 1 < 2 < |3]. See Figure

3.6(b) for an illustration. Assume that Hy, Hy C (n) — {4, j1,....,J.} and H; N Hy = 0.
Let hy, hy € Hy and hy, h, € Hy. Let FF C V(A)Yy) and F = {p,,q,}. Let y and z be two
distinct vertices in A, — F. Since [N*(y)| = [N*(z)| = n —2 > [2] for n > 5, there
exist two distinct edges (y,y') € E’=™ and (z,2') € E’=": such that y/ # t € V(AZ?Q)
and 2/ # v € V(AZfQ), respectively. Afij — F' is isomorphic to K,_3, hence there is a
hamiltonian path HP from y to z in A%y — F. By Theorem 9 and Lemma 5(a), there
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() (b)0
Figure 3.7: Lemma 9, Case 2.2.

exist a hamiltonian path DP; from t to¥'-in Aﬁ{é and a hamiltonian path D P, from v’ to
2 in Aﬁ%. Thus (s, PP,,t',t, DPyswy'sy, HP, 2, 2'DP,, v', v, RP, s) forms a hamiltonian

cycle, and for each [ € {2,3,4, .. W}, the distanice between s and ¢ on the cycle is [.

Subcase 2.2: Suppose that d(s,t) =8:and n.2 6. See Figure 3.7 for an illustration. We
shall discuss the subcase d(s,t) = 3 and n = 5 later in Subcase 2.3. Let (¢',t") be an edge
in E%" such that t' € V(AL ,), t" € V(Aly), t” € N(t), and t” € N*(t). Since A, is
isomorphic to complete graph K,,_;, we have d(s,t) = 1. For each [y € {1,2,3,...,n —2},
we can construct a hamiltonian cycle HC; of A} , such that the distance of s and ¢’ on
the cycle is [y. Suppose that u and v are two distinct vertices in V(A ,), and u and v are
two neighbors of ¢ on HC;. Let HC; = (s, LP,u,t',v, RP, s). Let Py = (s, LP,u,t',t" t).
Hence, without loss of generality, we have L(Fy) = Iy + 2.

By Proposition 2, d(t',u) = 1, we have |AS(t') N AS(u)] =n—-3>2ifn > 6. It
means that we can find an index j; € (n) — {7, hs}, such that there exist two disjoint
edges (u,p1) and (¥,q) in E%'. By Proposition 1, (p1,q1) € E(AJ,). Since |[N*(v)| =
n—2>3ifn > 5, we can find a vertex v’ € V(AL,) such that (v,v') € E™ for some
hy € (n) — {4, hy, 71 }. If we want to join p; and ¢, to Py, let P = (s, LP,u,py, q1,t,t",t).
Thus we have L(P;) = ly + 4. By Theorem 9, there is a hamiltonian path H Py from p;
to ¢ in Asz. Let Pf = (s, LP,u,p1, HPy,q1,t',t",t). Hence we have L(P}) = lo+n + 1.
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Since 1 <lp <n—2, we have 5 < L(P) <n+2and n+2 < L(P]) < 2n—1. Therefore,
for each [ € {3,4,5,...,2n — 1}, we can construct a path PPy, € {Py, Py, Pj'} from s to t
such that the distance between s and t on the path is [;.

Similarly, for each 2 < x < L%J, let u,_; and t,_; be the two adjacent vertices on
HP, 4. Thatis, HP, 1 = (py_1, LPy_1,us_1,tz1, RP;_1,q,—1). By Proposition 1 and
Proposition 2, there exist two distinct edges (uy_1,p,) and (t,_1, q,) in E==1J= for some
o € (n) — {i, hey By Gty ey o1 }- And, (py, q.) € E(AY,). Let P, = (s, LP,u, pi, LPy,uy,
ooy Up—1, Py @y Loty .y t1, RPy, qu, V8" t). Thus we have L(P,) = ly + (xr — 1)(n —
1) + 4. By Lemma 9, there is a hamiltonian path HP, from p, to ¢, in Af'&. Let
P* = (s,LP,u,py, LPy,uy, ...;ugp—1,Dz, HPy, Gz, tu—1, ..., t1, RPy, q1, t',t",t). Hence we
have L(Pf) = lop+ (z—1)(n—1)+n+1. Since 1 <[y <n—2, we have (x—1)(n—1)+5 <
L(P,) <(z—1)(n—1)+n+2and (z—1)(n—1)+n+2 < L(P}) < (r—1)(n—1)+2n—1.
Therefore, for each I, € {3,4,5,...,(z — 1)(n — 1) + 2n — 1}, we can construct a path
PP, € {Py, P\, P{,...,P,, P} from s to t such that the distance between s and ¢ on

the path is I, if n > 5. The maximal value of [, is ([5] — 1)(n — 1) +2n — 1, and

(5] -DHn—-1)+2n—-1> ‘V(é”’g)‘ = ”(”2_1). To construct a hamiltonian cycle, we
consider the two subcases:

Subcase 2.2.1: Suppose that PP, € {Fy, P s, Py} for each 1 <o < [§]. See Figure
3.7(a) for an illustration. Let F, &V (AM5)and./}, &= {t"}. By Lemma 5(b), there exists a
hamiltonian path H P of Aff%_{i’jl’“"j“}——ﬂ joining ¢ and v'. Thus (s, PP,,t',t",t, HP,v', v,
RP, s) forms a hamiltonian cyele, and for each [ € {3,4,5, ...,W}, the distance
between s and ¢ on the cycle is [

Subcase 2.2.2: Suppose that PP, € {P/,..., P} for each 1 < 2 < |5]. See Figure
3.7(b) for an illustration. Assume that Hy, Hy € (n) —{i,j1,..., jo} and H; N Hy = (). Let
hi, hy € Hy and hy, h, € Hy. Let F; C V(A),) and Fj = {ps,¢.}. Let y and z be two
distinct vertices in A’y — Fj. Since [N*(y)| = |N*(z)| = n —2 > [%] for n > 5, there
exist two distinct edges (y,y') € E/+" and (z,2/) € E/="= such that i # t,¢" € V(ALY
and 2/ # v € V(AZTQ), respectively. Aﬁf;Q — F; is isomorphic to K,_3, hence there is a
hamiltonian path HP from y to z in Af‘ij — F;. By Theorem 9 and Lemma 5(b), there
exist a hamiltonian path DP; from ¢ to 3’ in AnH§ — F; and a hamiltonian path DP;
from v’ to 2’ in AnHQ2 Thus (s, PP,,t',t",t, DPy,y,y, HP, z,2', DP5,v' v, RP, s) forms a

‘V(An,Q
2

hamiltonian cycle, and for each [ € {3,4,5, ..., ) }, the distance between s and ¢ on

the cycle is [.

Subcase 2.3: Suppose that d(s,t) = 3 and n = 5. Let s and ¢ be two distinct vertices
of A5, in Figure 3.8. By the vertex and edge symmetric properties, we may assume that
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41 310
450 150 52 120
351 250 42 321
547 140 53 130
34 241 43 230

Ly
-
‘b
-
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Figure 3.8: The arrangement graph As s.

s =12 and t = 21 for d(s,t) = 3. Theseorresponding hamiltonian cycle HC in Aj 5 are
listed below.

L
iy
Q
»

~
~—

The cycle HC

(21,23, 13,12, 15, 25, 35,45, 43,53, 54,14, 24, 34, 32, 42,52, 51, 41, 31, 21)
(21,31,32,42, 12, 52,53, 13, 23, 43,41 51, 54, 14, 24, 34, 35, 45, 15, 25, 21)
(21,31, 32,42, 52, 12, 13,53,23,48, 41, 51, 54, 14, 24, 34, 35, 45, 15, 25, 21)
(21,31, 41,42, 32,52, 12, 13, 23,43, 53, 51, 54, 14, 24, 34, 35, 45, 15, 25, 21)
(21,31,41,51,52,42,32,12,13,23,43, 53,54, 14, 24, 34, 35,45, 15, 25, 21)
( )
( )
( )

21, 31,41, 51, 53, 52,42, 32, 12, 13, 43, 23, 24, 14, 54, 34, 35, 45, 15, 25, 21
21, 31,41, 51, 53, 43,42, 32,52, 12, 13, 23, 24, 14, 54, 34, 35, 45, 15, 25, 21
21,31,41,51, 53, 13, 43,42, 32,52, 12, 15, 45, 35, 34, 54, 14, 24, 23, 25, 21

O 0| || O =] W

—_
S

Hence the lemma follows. O
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3.4 Panpositionable Hamiltonicity and Panconnec-
tivity of the Arrangement Graphs A, ;

3.4.1 Panpositionable Hamiltonicity of the Arrangement Graphs
An,k‘

In this section, we show that the arrangement graph A, ; is panpositionable hamiltonian
for k>1andn—%k > 2.

Theorem 10. The arrangement graph A, i is panpositionable hamiltonian for all k > 1
andn —k > 2.

Proof. We prove this theorem by induction on k. By Lemma 7, A, ; is panpositionable
hamiltonian for all n > 3. By Lemma 9, A, is panpositionable hamiltonian for all
n > 4. Suppose that the result holds for A,, ;_; for some k > 3 and foralln—(k—1) > 2.
We observe that A, ; can be recursively constructed from n copies of A,_; ;_1, and each
A, _1 -1 is panpositionable hamiltonian by inductive hypothesis, for all n — k > 2. Let
s and ¢ be two distinct vertices of A, . Then for each | € {d(s,t),d(s,t) + 1,d(s,t) +
2, . W}, we shall find a hamiltenian‘eyéle of A, j such that the distance between s
and t on the cycle is [. The basic idea of.eur construction is similar to that presented in

Lemma 9.

Case 1: s and t belong to the same subcomponent A? ;. See Figure 3.9 for an illustration.
Suppose that s,t € V(A} ) for seme " € (n). Since A , is isomorphic to A,_1 1, by
inductive hypothesis, for each ly € {dfs;t)sd(8,1) + 1,d(s,t) + 2, ..., [V(A )| — d(s, 1)},
we can construct a hamiltonian cycle HC; of Al , such that the distance between s
and t on the cycle is lp. Let u and v be the two neighbors of ¢t on HC;. Let HC; =
(s, LP,u,t,v, RP,s), and let Py = (s, LP,u,t). Without loss of generality, let L(P) = lo.
By Proposition 2, d(t,u) = 1, we have |[AS(t) NAS(u)|=n—k—1>1ifn—k>2. 1t
means that we can find a subcomponent Aﬁ;k which j; € (n) — {i}, such that there exist
two disjoint edges (u,p) and (¢,¢;) in E*'. By Proposition 1, (pi,¢:) € E(A%,). Since
IN*(t)| = n—Fk > 2, we can find a subcomponent Aztk different from A}, ; and Aﬁf’k, and a
vertex t' € V(Aﬁtk) such that (¢,¢') € E™ for some h; € (n) — {i, j;}. By Proposition 2,
d(t,v) <2 hence AS(t) D {j1, h:} and AS(t) # AS(v), and |[N*(v)| =n — k > 2, we can
find another subcomponent A}, and a vertex v € V(Al) such that (v,v') € E*" for
some h, € (n) — {4, j1, h+}. By Lemma 4, there exists a hamiltonian path H P of Af:,i_{i}
joining ¢ and v'. Thus (s, Py, t,t', HP,v',v, RP, s) forms a hamiltonian cycle, and for
each ly € {d(s,t),d(s,t)+1,d(s,t)+2,....|[V(A, ;)| — d(s,t)}, the distance between s and
t on the cycle is [.
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Figure 3.9: Theorem 10, Case 1.

Now we present an algorithmcalled wst=eapansion to expand the path P, between s
and t to various lengths. We deseribe thedetail as follows.

We can insert one subcomponent of A”l,c to Py as follows. See Figure 3.10(a) for
an illustration. Because p; and gq are adjacent, we may regard them as in the same
subcomponent of Aﬁk, say C. C is isomorphic to A,_s;_2. By Theorem 9, there is a
hamiltonian path H P, of C joining p; and ¢; with L(HP;) = |V (A,—2x-2)] — 1. We can
insert more than one subcomponent of A7! ' to Py as following. See Figure 3.10(b) for an
illustration. We regard p; and ¢; as in different subcomponents of A’',. By Lemma 4,
there is a hamiltonian path H P, joining p; and ¢ with L(HP;) = m\V( n—2k—2)] — 1,
where m is the number of the subcomponents of 4!, we wanted to insert. Thus we can
construct a path HP, between p; and ¢; such that L(HP) = L|V(Ap—24-2)] — 1 for
each integer I} with 1 < I} < n —1. Let P, = (s, LP,u,p;, HP;,q,t). Thus we have
L(P) = lo+ L|IV(An_op2)| = lo+ fl” SF. Since d(s,t) <l < [V(AL )| = d(s,t),
we have IE(" ? +d(s,t) < L(P) < h(” 2R (2—11{))" —d(s,t). Foreach 1 < I <n—

(n—k)! (
1, (ha)_(:)!*?) + EZ ,3: — d(s,t) > Iz(" D44 d(s,t) if n > 5. Therefore, for each I, €
{d(s,t),d(s,t)+1,d(s,t) +2,..., ((: kl)) —d(s,t)}, we can construct a path P; from s to ¢

such that the distance between s and ¢ on the path is [;.
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(c)

Figure 3.10: st-expansion.

Similar as above, we can expand plie path between s and ¢ more. For each 2 <z < [%],
let u,_ and t,_; be two adjacent vertices ot P, "y where H P,_; is a hamiltonian path of
Aﬁlf,gl joining p,_; and ¢,_1. By Pyopqsition 1 and Proposition 2, there exist two distinct
edges (uz—1,pe) and (ty_1, q,) in BI*=1J= for some 7, € (n)—{i, hy, hy, j1, ..., Jo—1} such that

(Pe 4z) € E(A)7,). See Figure 3.10(c)dor an illustration. We can insert one subcomponent
of A}Y, to Py as follows. Because pg and ¢, are adjacent, we may regard them as in the

same subcomponent of Afik, say C. Cligisomorphic to A,,_3 ;2. By Theorem 9, there is
a hamiltonian path H P, of C' joining p, and ¢, with L(HP,) = |V (A,_2—2)| —1. We can
insert more than one subcomponent of Affk to Py as follows. We regard p, and ¢, as in

different subcomponents of Aff w- By Lemma 4, there is a hamiltonian path H P, joining p,
and ¢, with L(HP,) = m|V(An_2x—2)| — 1, where m is the number of the subcomponents

of A’*, we wanted to insert. Thus we can construct a path H P, between p, and g, such

that L(HPI) = [,|V(A,—2x—2)| — 1 for each integer I, with 1 < I, <mn —1. Let P, =
(s, LP,u,p1,...;pz, HPy, @z ..., q1, t). Thus we have L(P,) = lo + (z — 1)|V(Ap—14-1)| +

LIV (A, _ak—2)] = lo+ (x_(rll)f’;)jl)! —i—I”(”T(::j,)' Since d(s,t) < ly < [V(A], ;)| —d(s,t), we have

GOl L2l (s, 1) < L(P,) < B3R+ 20 —d(s, 1), Foreach 1 < [, <n—1,

(11(77111(]3?2)! + x(E’Ln:kl))" —d(s,t) > Ifgjj,)' + (‘”7(711)_(2)7!1)! +d(s,t) if n > 5. Therefore, for each

l. € {d(s,t),d(s,t)+1,d(s,t)+2,..., % —d(s,t)}, we can construct a path P, from

s to t such that the distance between s and ¢ on the path is [, by using st-expansion.

(L3]+) (-1t d
(n—k)!

Notice that the maximal value of [, is (s,t), which is greater than ;

n!
(n—k)!”
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and |V(AQ””“)‘ = s k), Hence for any integer [ with d(s,t) <1 < M , We can construct
a path joining s and ¢t with the length of the path being [. We Wlll use st-expansion for

the remaining cases of the proof.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 1.1: All the vertices of Aff}ﬁ]’“} are on the path P, for some 1 < z <
|5]. See Figure 3.9(a) for an illustration. By Lemma 4, there is a hamiltonian path
HP of Ax,)ﬁ_{i’j“'“’j“} joining ¢ and v’ which ¢ € V(Al,) and v/ € V(Aly). Thus
(s, Py, t,t', HP,v',v, RP,s) forms a hamiltonian cycle, and for each [ € {d(s,t),d(s,t) +

L, d(s,t)+ 2, ..., W}, the distance between s and ¢ on the cycle is [.

Subcase 1.2: Not all the vertices of A{]1 """ 7} are on the path P, for some 1 < z < 5]
See Figure 3.9(b) for an illustration. Then we can find two adjacent vertices y and 2 in Aif &
which are not on the path P,. Let F' C V(FP,). By Proposition 1 and Proposition 2, there
exist two distinct edges (y,y') € E'=" and (z,2') € E/=" such that 3y # t' € V(Ahy)
and 2/ # v € V(Afjk.), respectively. If Aﬁfk — F' is isomorphic to A,,_s 2, by Theorem
9, there is a hamiltonian path HP from y to z in Affk - P It Affk — F' contains more
than one subcomponents of Afj:k, byslemmas 4 if £ — 1 > 2, and by Lemma 5(a) if
k —1 = 2, there is a hamiltoniant path. H.P . from y to z in Aifk — F. By Lemma 6,
there exist two disjoint paths DP; and DB, suchithat DP; joins t' and 3, and DP;
joins v" and z’. Moreover, the two'paths span all ofthe vertices in AS,Z_{Z"]‘ vendel - Thys
(s, Pp,t,t', DPy,y/,y, HP, z, 2/, DP, v/ Jus“RP, s) forms a hamiltonian cycle, and for each
[ € {d(s,t),d(s,t)+ 1,d(s,t) + 25 W}, the distance between s and ¢ on the cycle
is [.

Case 2: s and ¢ belong to different subcomponents of A, . Suppose that s € V(A7 ;)
and t € V(Af'%k) for any i # j € (n). By Lemma 3, there exists a minimum length path
connecting s and ¢ with the form (s, M P, t" t) or (s, MP,t" t' t), where M P is a path in

w t"EV(AL,), and t' € V(Aﬁlk) Moreover, by considering the subcases of n — k > 2
and n — k = 2, we have the following four subcases:

Subcase 2.1: Suppose that n — k > 2, and the minimum length path connecting s
and t has the form (s, M P,t",t). Then d(s,t) = d(s,t"”) + 1. See Figure 3.11(a) for an
illustration. Since A’ , is isomorphic to A, k-1, by inductive hypothesis, for each [y €

{d(s,t"),d(s,t") + 1 d(s ") +2, ..., [V(AL )| — d(s,t")}, we can construct a hamiltonian
cycle HC; of A, such that the dlstance between s and t” on the cycle is ly. Let u
and v be the two neighbors of " on HC;. Let HC; = (s, LP,u,t",v, RP,s), and let
Py = (s, LP,u,t" t). Without loss of generality, let L(PO) = lp + 1. By Proposition 2,
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()0 (byn
Figure 3.11: Theorem 10, Subcase 2.1 and Subcase 2.2.

d(t",u) = 1, we have |AS(t") N AS(u)| =n—k =1 > 1if n — k > 2. It means that we
can find a subcomponent Afjk which j; € (n) {77}, such that there exist two disjoint
edges (u,p;) and (t’,q) in E*% By Proposition 1,(p1, q1) € E(Aﬁllk) By Proposition
2, d(t",v) < 2 hence AS(t") 2 {4, 1piand AS(t") # AS(v), and [N*(v)| =n—k > 2,

we can find a subcomponent Aka, and a vertex v’ € V(AZ”k) such that (v,v') € E¥" for

some h, € (n) — {i,7,j1}. By Lemma 4, there exists a hamiltonian path HP of Af:,i_{i}
joining ¢t and v’. Thus (s, Py,t, HP,v',v, RP,s) forms a hamiltonian cycle, and for each
lo € {d(s,t),d(s,t) + 1,d(s,t) + 2,...,|[V(A] ;)| — d(s,t) 4 1}, the distance between s and
t on the cycle is (.

Similar to Case 1, by using st”-expansion, for any integer I” with d(s,t") < I"” <
W, we can construct a path joining s and t” with the length of the path being [”.
Since d(s,t"”) = d(s,t) — 1, for any integer [ with d(s,t) <1 < Vi)l we can construct

2
a path joining s and ¢ with the length of the path being [.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 2.1.1: All the vertices of Ai],i]’“} are on the path P, for some 1 < 2 < [§].
By Lemma 4, there is a hamiltonian path HP of Aﬁf,);{i’j beende) joining ¢ and v" which

t e V(Ai,k) and v € V(Aﬁvk) Thus (s, P,,t",t, HP,v',v, RP,s) forms a hamiltonian
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cycle, and for each | € {d(s,t),d(s,t)+ 1,d(s,t) +2,..., M} the distance between s
and t on the cycle is [.

Subcase 2.1.2: Not all the vertices of A,{j;“} are on the path P, for some 1 <2 < |3].
See Figure 3.11(a) for an illustration. Then we can find two adjacent vertices y and z in
Aﬁfk which are not on the path P,. Let F' C V(F,). By Proposition 1 and Proposition
2, there exist two distinct edges (y,y') € E¥=™ and (z,2') € E'=h= such that y/ # t' €
V(An %) and 2 # v’ € V(A %), respectively. If Aﬁfk — F is isomorphic to A,_s 2, by
Theorem 9, there is a hamiltonian path H P from y to 2 in Aifk - If Affk — I contains

more than one subcomponents of A’*,. by Lemma 4, there is a hamiltonian path HP

n,k?
from y to z in AW,C — F'. By Lemma 6, there exist two disjoint paths DP; and DP,, such
that DP; joins ¢ and ¢/, and DP; joins v’ and z'. Moreover, the two paths span all the
vertices in Ax,z*{l’jl"“’“}. Thus (s, Py, t",t, DP,y',y, HP, 2,2, DPy,v',v, RP, s) forms a
hamiltonian cycle, and for each [ € {d(s,t),d(s,t)+1,d(s,t)+2,.. |V(A" . ‘} the distance
between s and ¢ on the cycle is [.

Subcase 2.2: Suppose that n — k = 2, and the minimum length path connecting s
and t has the form (s, M P,t",t). Then d(s,t) = d(s,t") + 1. See Figure 3.11(b) for an
illustration. Since A’ , is isomorphic, t0 1455 -1, by inductive hypothesis, for each [y €
{d(s,t"),d(s,t") + 1 d(s t") +2,. 5 IV(AL )| = d(s,t")}, we can construct a hamiltonian
cycle HC; of A, such that the dlstance between*s and t” on the cycle is ly. Let u
and v be the two neighbors of #"ten HC;. - Let HC; = (s, LP,u,t",v, RP,s), and let
Py = (s, LP,u,t" t). Without loss of generality, let L(PO) = lp + 1. By Proposition 2,
d(t",u) = 1, we have |[AS(t") N AS(u)} =n=%k=1=1if n— k = 2. It means that we can
find a subcomponent Aijk which jii€.(n) — {1} If t ¢ V(Aﬁk.), the proof is exactly the
same as Case 2.1. So we consider the case that t € V(Afik), that is, j; = j. Let ¢ = t.
There exist two disjoint edges (u,p;) and (”,q;) in E*'. By Proposition 1, (p1,q) €
E(Aﬁllk) By Proposition 2, d(t",v) < 2 hence AS(t") = {ji}, and AS(t") # AS(v).
Since |[N*(t")| = n — k = 2, we can find a subcomponent AZ’fk, and a vertex t' € V(Aztk)
such that (¢’,t') € E“" for some h; € (n) — {2 J1}. Since |[N*(v)| = n—k = 2 and
AS(t") # AS(v), we can find a subcomponent An“k, and a vertex v’ € V(A}T‘Lk) such that
(v,v") € E¥"™ for some h, € (n)—1{i, j1, hs}. By Lemma 4, there exists a hamiltonian path
HP of Aﬁﬁ_{i} joining t and v’. Thus (s, Py, t, HP,v', v, RP, s) forms a hamiltonian cycle,
and for each ly € {d(s,t),d(s,t) + 1,d(s,t) + 2, .. |V( )| —d(s,t) + 1}, the distance
between s and ¢ on the cycle is .

By using st”-expansion, for any integer " with d(s,t") < 1" < W, we can con-

struct a path joining s and t” with the length of the path being [”. Therefore, for any
integer [ with d(s,t) <1 < W, we can construct a path joining s and ¢ with the
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length of the path being [.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 2.2.1: All the vertices of Ai]}c """ 7} are on the path P, for some 1 < z < 15]

By Lemma 4, there is a hamiltonian path HP of Agf,if{i’j R joining t and v' where

t e V(Aﬁtk) and v’ € V(Aﬁ”k) Thus (s, P, t,t",t', HP,v',v, RP, s) forms a hamiltonian

cycle, and for each | € {d(s,t),d(s,t)+ 1,d(s,t)+2,..., W}, the distance between s
and t on the cycle is [.

Subcase 2.2.2: Not all the vertices of Aff}ﬁ """ 7} are on the path P, for some 1 < z < 15]
See Figure 3.11(b) for an illustration. Then we can find two adjacent vertices y and z in
Affk which are not on the path P,. Let F' C V(F,). By Proposition 1 and Proposition
2, there exist two distinct edges (y,y') € E¥=™ and (z,2') € E’=h= such that y/ # t' €
V(Azyk) and 2/ # v € V(AL%), respectively. If Aifk — F is isomorphic to A,,_3;_2, by
Theorem 9, there is a hamiltonian path H P from y to z in Affk —F.If Aﬁfk — F contains
more than one subcomponents of Afik, by Lemma 4, there is a hamiltonian path HP
from y to z in Aifk — F. By Lemma 6, there exist two disjoint paths DP;, and DP,,
such that DP; joins ' and 3/, and D Pasjoins v’ and z’. Moreover, the two paths span all
of the vertices in A;?,)ﬁ_{i’jl""’j“}. Thas (s, P, t,t"t, DP,,y,y, HP, 2,2/, DP,,v',v, RP, s)
forms a hamiltonian cycle, and for each-{ € {d(s,¢),d(s,t)+1,d(s,t)+2, ..., W}, the
distance between s and ¢ on the=¢ye¢le is L.

Subcase 2.3: Suppose that n =k >"2 and the minimum length path connecting s
and t has the form (s, MP,t" t' t).. Then.d(s,t) = d(s,t") + 2. See Figure 3.12(a)
for an illustration. Since Afz?k is isomorphic to A,_;;—1, by inductive hypothesis, for
cach ly € {d(s,t"),d(s,t") + 1,d(s,t") + 2,...,|[V(A} ;)| — d(s,t")}, we can construct a
hamiltonian cycle HC; of A}, such that the distance between s and t” on the cycle is ly.
Let u and v be the two neighbors of ¢ on HC;. Let HC; = (s, LP,u,t",v, RP, s), and let
Py = (s, LP,u,t",t' t). Without loss of generality, let L(P) = ly + 2. By Proposition 2,
d(t",u) = 1, we have |[AS(t") N AS(u)| =n—k—1>1if n —k > 2. It means that we
can find a subcomponent Aﬁ;k which j; € (n) — {7, 7}, such that there exist two disjoint
edges (u,p;) and (#’,q;) in E**. By Proposition 1, (p1,q1) € E(Aﬁ;k) By Proposition
2, d(t",v) < 2 hence AS(t") D {j,j1}, and AS(t") # AS(v), and [N*(v)| =n —k > 2,
we can find a subcomponent A, and a vertex v’ € V(Al%,) such that (v,v') € E™ for
some h, € (n) —{4,j,71}. Let FF C V(A, ) and F' = {¢'}. By Lemma 4, there exists
a hamiltonian path HP of Af:,i_{i} — F’ joining ¢t and v'. Thus (s, Py,t, HP,v',v, RP, s)
forms a hamiltonian cycle, and for each Iy € {d(s,t),d(s,t) + 1,d(s,t) + 2, ..., |V (A% )| —
d(s,t) + 2}, the distance between s and ¢ on the cycle is lo.
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Figure 3.12: Theorem 10, Subcase 2.3 and Subcase 2.4.

By using st”-expansion, for any intéger " aith d(s,t"”) < 1" < W, we can con-

struct a path joining s and t” with the_length of the path being I”. Since d(s,t") =
d(s,t) — 2, for any integer [ with®d(s,¢) <[ < M, we can construct a path joining s

2
and t with the length of the path being (.

To construct a hamiltonian cyele; we consider‘two subcases:

Subcase 2.3.1: All the vertices of Aij,ij’”} are on the path P, for some 1 < 2 < |5].
By Lemma 4, there is a hamiltonian path H P of Ajf,)q_{i’j v} g joining t and v" which
Fr={t} te V(Afhk) and v’ € V(Aﬁ“k) Thus (s, P,,t",t',t, HP,v',v, RP,s) forms a
hamiltonian cycle, and for each | € {d(s,t),d(s,t)+1,d(s,t)+2, ..., W}, the distance
between s and ¢ on the cycle is [.

Subcase 2.3.2: Not all the vertices of Aff}g“} are on the path P, for some 1 <z < |3].
See Figure 3.12(a) for an illustration. Then we can find two adjacent vertices y and z
in AJ?, which are not on the path P,. Let F' C V(P,). By Proposition 1 and Propo-
sition 2, there exist two distinct edges (y,y’) € E¥=M and (z,2') € B’/ such that
y £t € V(Azyk) and 2 # v € V(Aka), respectively. If Affk — F is isomorphic to
Ap_9—2, by Theorem 9, there is a hamiltonian path HP from y to z in Affk - F.
If Affk — F' contains more than one subcomponents of Afjfk, by Lemma 4, there is a
hamiltonian path HP from y to z in Aﬁfk — F. By Lemma 6, there exist two disjoint
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paths DP; and DP,, such that DP; joins t and Y, and DP, joins v' and z’. More-
over, the two paths span all the vertices in A" )= {0 s} — F’ which F" = {t'}. Thus
(s, Px,t” ' t,DP,y,y, HP, z, 2/, DP,, v, v, RP s> forms a hamiltonian cycle, and for
each [ € {d(s,t),d(s,t) + 1,d(s,t) + 2, ..., M} the distance between s and ¢ on
the cycle is [.

Subcase 2.4: Suppose that n — k = 2, and the minimum length path connecting s
and t has the form (s, MP,t",t' t). Then d(s,t) = d(s,t") + 2. See Figure 3.12(b)
for an illustration. Since Af , is isomorphic to A,_jx_1, by inductive hypothesis, for
each Iy € {d(s,t"),d(s,t") + 1 d(s,t") 4+ 2,. |V(A’n7k)| — d(s,t")}, we can construct a
hamiltonian cycle HC; of A}, ; such that the dlstance between s and ¢” on the cycle is .
Let u and v be the two neighbors of ¢’ on HC;. Let HC; = (s, LP,u,t", v, RP, s), and let
Py = (s, LP,u,t",t' t). Without loss of generality, let L(P) = ly + 2. By Proposition 2,
d(t",u) = 1, we have |[AS(t")NAS(u)| =n—k—1=1if n—k = 2. It means that we can
find a subcomponent Alek which j; € (n) —{i}. If t,¢' ¢ V(Aﬁk), the proof is exactly the
same as Subcase 2.3. So we consider the case that ¢,t" € V(Aﬁk.), that is, j; = j. There
exist two disjoint edges (u, p1) and (¢”,¢') in E**. By Proposition 1, (py, ') € E(A%,). By
Proposition 2, d(t”,v) < 2 hence AS(t") = {jl} and AS(t") # AS(v). Since |[N*(t")| =
n —k = 2, we can find a subcomponent An g and a vertex t* € V(Aztk) such that
(t",t") € EZ ht for some h; € (n ) {i,41}. Since |N*( )] =n—k=2and AS(t”) # AS(v),
we can find a subcomponent Ank, and awvertex v/ € V(Aﬁ“k) such that (v,v') € E*" for
some h, € (n) — {i,j1,h}. Let B C V(A ) and = {t*}. By Lemma 4, there exists a
hamiltonian path HP of Ai:,lf{i} joining ¢ and v'. Thus (s, Py, t, HP,v',v, RP, s) forms a
hamiltonian cycle, and for each lg-€ {d(s;t), d(s;t)+1 d(s,t)+2, ..., [V(AL )| —d(s,t)+1},
the distance between s and t on the cyele 157y

Now we modify st-expansion slightly to expand the path P, between s and t to various
lengths. We describe the detail as follows.

For n = 5, that is, As3, we have d(s,t) = 4 in this subcase. As we describe above,
(s, LP,u,t",t, HP,v',v, RP, s) forms a hamiltonian cycle, and for each [y € {4, 5,6, ..., 12},
the distance between s and t on the cycle is lo. Let I C V(A)',) and F; = {t'}. By
Theorem 9, we can find a hamiltonian path H P; of Aﬁ;k — F} joining p; and ¢. Let P, =
(s, LP,u,p1, HP;,t). We have 11 < L(P;) < 19. Therefore, for each [; € {4,5,6,...,19},
we can construct a path P; from s to ¢ such that the distance between s and ¢t on the
path is [; in As3. Suppose that n > 6. We can insert one subcomponent of Aﬁk, which
is isomorphic to A,,_sx_2, to Py as follows. Because d(p;,t) = 2 which is less than the
diameter of A,_5;_2, and by the symmetric property of the arrangement graph, we may
regard p; and ¢ as in the same subcomponent of Aﬁik, say C. By Lemma 4, there is a
hamiltonian path H P, of C' — F} joining p; and ¢ with L(HP;) = |V (A,—2k-2)| — 2. Let
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C* be the m subcomponents of A ' we wanted to insert to Fy, where m is the number
of the subcomponents of Afjk We regard p; and ¢ as in different subcomponents of

Aﬁ;k By Lemma 4, there is a hamiltonian path H P, of C* — F} joining p; and ¢ with
L(HPy) =m|V(As—2k—2)| —2. Thus we can construct a path H P, between p; and ¢ such
that L(HP)) = 1|V (An—2x—2)| — 2 for each integer I; with 1 < [} <n —1. Let P, =

(s, LP,u,py, HPy,t). Thus we have L(Py) = lp+11|V (Ap—2k—2)|—2 = —i—IET(L”_]j)! —2. Since

d(s,t) =2 < lo < [V(AL )| —d(s,t) +2, we have ZE2E 4 d(s, 1) —4 < L(Py) < B8 28 4

(n k)l k)!
(o —d(s.t). Foreach 1 < Iy < n—1, el g ol —d(s, 1) > BI85 4 d(s,t) 4

(n—k)! (n—Fk)! (s, (n—
if n > 6. Therefore, for each I; € {d(s,t),d(s,t)+1,d(s,t)+2,. 2((" kl) —d(s t)}, we can
construct a path P, from s to ¢ such that the distance between s and t on the path is [;.

Then, similar to st-expansion we described in Case 1, we can expand the path between s
and ¢ such that for each I, € {d(s,t),d(s,t)+1,d(s,t)+2,..., % —d(s,t)}, we can
construct a path P, from s to t such that the distance between s and t on the path is [,.
Hence for any integer [ with d(s,t) <1 < M

t with the length of the path being I.

we can construct a path joining s and

To construct a hamiltonian cycle, the proof is the same as that given in Subcase 2.2.1
and Subcase 2.2.2 by replacing vertex ¢’ in Subcase 2.2 with vertex t* in this subcase.

Hence the theorem is proved. O

3.4.2 Panconnectivity ‘of the Arrangement Graphs A, ;

In this subsection, we will prove thatthe arrangement graph A, ; is panconnected for all
n > 3 and n — k > 2 by applying the above theorem.

Theorem 11. The arrangement graph A, i is panconnected for alln > 3 and n —k > 2.

Proof. For k =1, by Lemma 7, A, ; is panconnected for all n > 3. Chiang and Chen [§]
showed that the A, ,,_, is isomorphic to the n-alternating group graph AG,,, and Chang et
al. [7] proved that AG), is panconnected for all n > 4. Hence the result holds for n > 4 and
k = n —2. Now we prove that A, ; is panconnected for all n > 5 and n — k > 2. Suppose
that u and v are any two distinct vertices in A, ;. By Theorem 10, A, ; is panpositionable
hamiltonian. That is, for each integer [ with d(u,v) < 1 < |[V(A,x)| — d(u,v), we can
construct a path P of length [ joining u and v.

For each integer [ with |V (A, k)| —d(u,v) +1 <1 < |V (A, )| — 1, we can construct a

path P of length [ joining u and v as following. The diameter of A,, ; is L%j, and we have
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d(u,v) < |%]. By Theorem 9, A, is k(n — k) — 3 fault tolerant hamiltonian connected.
For n > 5 and n — k > 2, we have k(n — k) — 3 > | %] — 1. That means that for each
integer | with |V (A, x)| — d(u,v) +1 <1 < |V(A,x)| — 1, we can construct a path P of
length [ joining v and v by regarding the vertices not in P as faulty vertices. Therefore,
for each integer [ with d(u,v) <1 < [V(A,x)| — 1, there is a path of length [ joining u
and v in A, ;. The theorem is proved. ]

Example. There are 60 vertices in A;3, and the diameter of A3 is 4. Let u and v be
two vertices in As 3 with d(u,v) = 4. By the panpositionable hamiltonian property, we
can find a path joining v and v with length [ € {4,5,6,...,56}. Let F' C V(4;3) — {u, v}.
We can find three paths of length 57, 58, and 59 joining v and v with |F| = 2, |F| = 1,
and |F| = 0 respectively.

By choosing two adjacent vertices u and v and applying the above theorem, we can
obtain the following corollary immediately.

Corollary 2. The arrangement graph A, is pancyclic for alln > 3 andn — k > 2.

3.5 The Spanning Diameter,of the Arrangement Graphs

Another important issue in the design of an‘infereonnection network is connectivity. The
connectivity of G, k(@) is the minimum number of nodes whose removal leaves the re-
maining graph disconnected or “rivial:“Let G. = (V, E) be a graph with connectivity
k(G) = k. Tt follows from Menger’s Theorem [36].that there are [ internally node-disjoint
(abbreviated as disjoint) paths joining.any two" vertices u and v when [ < k(G). A
container C(u,v) between two distinct vertices u and v in G is a set of disjoint paths
between u and v. The width of a C(u,v), written as w(C(u,v)), is its cardinality. A
w-container is a container of width w. The length of a C(u,v), written as [(C(u,v)), is
the length of the longest path in C'(u,v). The w-wide distance between u and v, §,,(u,v),
is min{l(C(u,v)) | C(u,v) is w-container}.

In this section, we are interesting in a particular type of containers. A w-container
C(u,v) is a w*-container if every vertex of G is incident with a path in C(u,v). A
graph G is w*-connected if there exists a w*-container between any two distinct vertices
u and v. Obviously, a graph G is 1*-connected if and only if it is hamiltonian connected.
Moreover, a graph G is 2*-connected if it is hamiltonian. The study of w*-connected graph
is motivated by the globally 3*-connected graphs proposed by Albert, Aldred, and Holton
[4]. A globally 3*-connected graph is a 3-regular 3*-connected graph. We also define
w*-distance between any two vertices u and v, d*F(u,v), to be min{l(C(u,v)) | C(u,v) is
w*-container}. The w*t-spanning diameter of G, denoted by DL (G), as the maximum
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number of d*F(u,v). Lin et al. studied the spanning diameter of the star graphs in [31].
It is proved that Dyfg \(Ss) = b4 1 and D3H(S,) =2 4 1.

In this section, we will discuss about the spanning diameter of the arrangement graphs
A, . We will prove that D3*(A,, ;) = ‘V(AQ" w)l s ALk > 2and n—k > 2 by applying
the panpositionable hamiltonian property of the arrangement graphs. Assume that x and
y are any two distinct vertices in the arrangement graph A, , with £ > 2 and n — k > 2.
Now we prove that there exist two internally-disjoint paths P, and P, joining x and y

such that P, U P, spans A, and L(P;) = ‘V(AQ"’]“)' = Q(ﬁk)! fori=1,2.
Theorem 12. Suppose that k > 2 and n — k > 2. Then d3*(z,y) = lV(A" Bl — 2(n”'k),

for any two vertices x and y in the arrangement graph A, . That is, the 2*L -diameter
D3E(Apy) = V(Ank)l _ _ nl

2 2(n—k)! -

Proof. By Theorem 10, for any two different vertices x and y in the arrangement graph
A, and for any integer [ satisfying d(z,y) < | < |[V(A,x)| — d(x,y), there exists a
hamiltonian cycle of A,, ; such that the relative distance of x and y on the cycle is [. Since
the diameter of A, is |2, d(z,y) < [2]. Then [%] < W < |V (Api)| = [2]. Let

2
| = 7|V(AQ””“)‘, we can find a hamiltonian cycle C' = (z, Py, y, P, x) of A, such that the

distance between z and y on C' is W. Obviously, P, and P, forms a 2*-container.
Moreover, L(P;) = ‘V(AQ"”“” = Q(H"_!k)!, and) Py = |V(AQ"”“)‘ = (n" mi- Hence the statement
follows. 0

For a graph G with even vertices, \D5*(Gr)-= @ The arrangement graph A, ; with

k > 2 has even vertices, thus our result' about the 2*7-diameter of A, j is optimal.
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Chapter 4

The Globally Bi-3*-Connected
Property of the Honeycomb
Rectangular Torus

We discuss another property about the connectivity of an interconnection network called
globally 3*-connected property. Suppose that.«x and y are two vertices in a graph G.
If there exist three internally-disjeint paths joining = and y such that these three paths
span all the vertices in G, we sayithat G is globally 3*-connected. In this chapter, we will
show that in any honeycomb rectangular torus HReT'(m, n), there exist three internally-
disjoint spanning paths joining - and_y whenever z and y belong to different partite sets.
Moreover, for any pair of vertices @ and gy in‘the same partite set, there exists a vertex
z in the partite set not containing % and y, such'that there exist three internally-disjoint
spanning paths of G — {z} joining = and . Furthermore, for any three vertices x, y and
z of the same partite set there exist three internally-disjoint spanning paths of G — {z}
joining z and y if and only if n > 6 or m = 2.

4.1 Honeycomb Rectangular Torus

We give a review of the idea of w*-container, and introduce the concept of globally bi-3*-
connected graphs in the following subsection. Then we give the definition of the honey-
comb rectangular torus in subsection 4.1.2.
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4.1.1 Globally Bi-3*-Connected Graphs

As we introduced in section 3.5, a k-container Cy(x,y) in a graph G is a set of k internally
vertex-disjoint paths between = and y. A k*-container Cy:(z,y) in a graph G is a k-
container such that every vertex of G is on some path in Cy(z,y). Let G be a k-connected
graph, it follows from Menger’s Theorem [36] that there exists a k-container between
any two different vertices of G. A graph G is k*-connected if there exists a k*-container
between any two distinct vertices in G. Obviously, a graph G is 1*-connected if and only if
it is hamiltonian connected. Moreover, a graph G is 2*-connected if it is hamiltonian. The
study of k*-connected graph is motivated by the 3*-connected graphs proposed by Albert
et al. [4]. In [4], Albert et al. first studied those cubic 3-connected graphs such that
there exists a 3*-container between any pair of vertices. Such graphs are called globally
3*-connected graphs.

Since every globally 3*-connected graph is cubic, it contains an even number of vertices.
Assume that G = (V; U Va, E) is a cubic 3-connected bipartite graphs with bipartition V;
and V5, such that V1| > |V, > 2. Let z and y be two distinct vertices in V5. Assume that
there exists a 3*-container Cs«(x,y) = { Py, P2, P3} in G. Suppose that there are a; vertices
of Vi in P, for i = 1,2,3. Obviously, there are a; + 1 vertices of V5 in P; for i = 1,2, 3.
Hence, there are a; + as + as verticessof V4 incidence with P; U P, U P3 and there are
(a1 +1)+(as+1)+(a3+1) —4 = aj+as +a3 — 1 vettices of V5 incidence with Py U P, U Ps.
Therefore, any cubic 3-connected:bipartite graph is not globally 3*-connected.

For this reason, we say that a cubi¢ bipartite graph G = (V, U Va, F) is globally bi-3*-
connected if there exists a 3*-container between any.pair of vertices of the different partite
sets. Obviously, |Vi| = |Va| in any glebally bis8*-connected with bipartition V; and V5.
Furthermore, a globally bi-3*-connected graph is hyper if there exists a Cs«(z,y) in G—{z}
for any three vertices x,y, and z of the same partite set of G. A globally bi-3*-connected
graph is strong if for any x and y in the same partite set of G, there exists a vertex z of
the same partite set as the one that contains x and y such that G — {z} has a Cs(z,y).
Obviously, any globally bi-3*-connected is strong if it is hyper. The concept of globally
bi-3*-connected, hyper globally bi-3*-connected, and strong globally bi-3*-connected was
proposed by Kao et al. [26]. It is proved that G — {e} is hamiltonian for any e € E(G)
if G is globally bi-3*-connected. Moreover, G — {z,y} is hamiltonian for any = € V; and
y € Vo if G is hyper globally bi-3*-connected.

4.1.2 Honeycomb Rectangular Torus HReT(m,n)

Assume that m and n are positive even integers with n > 4. The honeycomb rectangular
torus HReT'(m, n), introduced by Stojmenovic [40], is an alternative to existing networks
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Figure 4.1: The honeycomb rectangular torus HReT(6,8).

such as mesh-connected networks in parallel and distributed computing. There are many
studies on the properties of HReT(m,n) [9, 35, 40]. Stojmenovic [40] showed that the
network cost of the honeycomb rectangular torus, which is defined as the product of degree
and the diameter, is better than the other families based on mesh-connected computers
and tori. Megson et al. [35] established the hamiltonian property of honeycomb torus.
In particular, Cho and Hsu [9] provedsthat HReT (m,n) — e is hamiltonian for any edge
e € E(HReT(m,n)). Furthermorey HReT (m,n) =, {z,y} is hamiltonian for any = € Vj
and y € V) if n > 6.

For any two positive integers 7 andis;we use [r]; t6' denote r (mod s). We use the brick
drawing, proposed in [40], to define the honeycomb rectangular torus. The honeycomb
rectangular torus HReT(m, n) is thé‘graph with the vertex set {(,7) |0 <i<m,0<j <
n} such that (i, 7) and (k,[) are adjacent if they satisfy one of the following conditions:

l.i=kand j=[l£1],;

2. j=land k=[i+ 1}, if i + j is odd; and

3. j=land k=i — 1], if i + j is even.

For example, the graph HReT(6,8) is shown in Figure 4.1. It is easy to see that

HReT(m,n) is a bipartite graph with bipartition V5 and V; where Vo = {(i,7) | i +j is
even} and Vi = {(4,7) | i + Jj is odd}. Moreover, |Vy| = |V4].

Based on Menger’s Theorem [36], the 3-connected property of the honeycomb rect-
angular torus HReT(m,n) can be derived. In this chapter, we study the globally bi-3*-
connected property of the honeycomb rectangular torus HReT(m,n). We prove that any
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honeycomb rectangular torus HReT (m, n) is strongly globally bi-3*-connected. Moreover,
HReT(m,n) is hyper globally bi-3*-connected if and only if n > 6 or m = 2.

4.2 A Basic Algorithm

In this section, we present an algorithm. The purpose of this algorithm is to extend a
3*-container Cs:(x,y) = { P, P2, P3} of HReT(m,n) to a 3*-container of HReT(m + 2, n).

Algorithm 1. For 0 <i <m —1, let f; : V(HReT(m,n)) — V(HReT(m + 2,n)) be a
function so assigned

| (kD) ifi>k>0
filk,1) = { (k+2,1) otherwise.

For0 <i<m-1land0 < j,k <n—1,let Q;(j, [j+k].) denote the path ((7, [1].), (¢, [J+
Un), (6, [7 + 2]n), -y (4, [7 + Eln)) in HReL(mmwn). Suppose that Cs(x,y) is a 3-container
of HReT(m,n) containing at leastsdome edge joining vertices of column i to vertices of
column [i + 1],,; i.e., ((4,7), ([i #1]m; 7)) in B(Cs(x, y)) for some 0 < 7 < n — 1. Let
0 <ko<hks <..<k <n—1 bethe indices such. that ((i, k;), (i + 1,k;)) € E(Cs(x,v)).
We construct Cy;(,y) as follows:

Let C5;(z,y) be the image of Ca(w,y) — {((i,k;), (i + 1,k;)) | 0 < k; <n — 1} under
fi- We set j' = [j]@41) and define A; as

<(i7 [kj]n)v ([2 + 1]m+27 [kj]n): Q[i+1}m+2([kj]m [kj/ - 1]n>7 ([Z + 1]er27 [kj’ - 1]n)7
([0 + 22, [k = Un), Qpyops ([Kilns [k = 1), ([ + 2z, [K]n), ([0 + Blms2, [kila))-

Obviously, A; is a path joining (i, [k;],) and (i + 3, [k;],) for 0 < j < t. It is easy
to see that edges of Cs;(x,y) together with edges of A;, with 0 < j < t form a 3-
container Cj;(z,y) of HReT(m + 2,n). For example, a 3*-container C3-((0,0), (2,2)) of
HReT(4,12) — {(1,7)} is shown in Figure 4.2(a). The corresponding Cj,((0,0), (2,2)) is
shown in Figure 4.2(b). We have the following lemma.

Lemma 10. Suppose that Cs(x,y) is a 3-container of HReT(m,n) containing at least one
edge joining vertices of column i to vertices of column [i + 1],,. Then C’é’i(x,y) forms a
3-container of HReT(m~+2,n) containing at least one edge joining the vertices of column |
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Figure 4.2: Illustrations for Algorithm 1.

to the vertices of column [l+1],, for anyl € {i,[i+ 1]y, [i+2],}. Moreover, Cy. ;(x,y) is a
3*-container of HReT(m+2,n) if Cs«(x,y) is a 3*-container of HReT(m,n). Furthermore,
Cs. i(w,y) is a 3*-container of HReT(m + 2,n) — { fi(2)} if Cs-(x,y) is a 3*-container of
HReT(m,n) — {z}.

Lemma 11. Suppose that Cs(z,y) isia 3-contdiner of HReT(2,n) containing at least one
edge in {((0,7),(1,7)) | 7 is odd}and atyleast one edge in {((0,7),(1,7)) | j is even}.
Then Cs;(x,y) with i € {0,1} forms a 3-containeriof HReT(4,n) containing at least one
edge joining the vertices of columm I'to the vertices of column [+ 1 for anyl € {0, 1,2, 3}.
Moreover, C’é”(aj, y) is a 3*-contaner of HReT(m +2,n) if Cs-(x,y) is a 3*-container of
HReT(m,n). Furthermore, Cy. (@yy) s a-3*<container of HReT(m + 2,n) — {fi(2)} if
Cs(z,y) is a 3*-container of HReT(myn) — {z}.

With Lemma 10 and Lemma 11, we say a 3-container Cs3(z,y) of HReT(2,n) is regular
if Cs(x,y) contains at least one edge in {((0,7),(1,7)) | j is odd} and at least one edge
in {((0,4),(1,7)) | j is even}. Assume that m > 4. We say a 3-container Cs3(x,y) of
HReT(m,n) is regular if Cs(z,y) contains at least one edge joining vertices in column i
to vertices in column [i + 1], for 0 < i < m — 1. We have the following lemma.

Lemma 12. Suppose that Cs(x,y) is a regular 3*-container for HReT(m,n). Then
Cs. ;(w,y) is a regular 3*-container for HReT(m + 2,n) for every 0 <i < m. Moreover,
suppose that Cs-(x,y) is a reqular 3*-container for HReT(m,n) —{z}. Then Cy. ;(z,y) is
a reqular 3*-container for HReT(m + 2,n) — {fi(2)} for every 0 <i < m.
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4.3 The Globally Bi-3"-Connected Property of Hon-
eycomb Rectangular Torus HReT(2,n)

We first discuss the globally bi-3*-connected property of the honeycomb rectangular
torus HReT(m,n) for m = 2. Then we show the globally bi-3*-connected properties
of HReT(m, n) for m = 2 and general m in sections 4.4 and 4.5, respectively.

For h = {0,1} and 0 < j, k < n—1, let R(J, [j+k|,) denote the path ((h, [j].), (h, [j+

11, ([ T [+ 1), 00+ L [+ 20a), (11 20 o (1 o, [+ & — 1), s [+
k—1l,), (h,[j + kl,)) in HReT(2,n).

Lemma 13. Let x and y be any two vertices of HReT(2,n) = (Vo U V4, E) with © € Vj
and y € V1. Then there ezists a regular 3*-container Cs«(x,y) of HReT(2,n). Hence
HReT(2,n) is globally bi-3*-connected.

Proof. Without loss of generality, we may assume that x = (0,0) and y = (¢, 7). In order
to prove this lemma, we will construct a regular 3*-container Cs:(z,y) = { Py, P, Ps} in
HReT(2,n). We have the following cases:

Case 1: © = 0 and j is odd. The corresponding'paths are:

Pl = <(070)7Q0(0>3)7(07])>:
P2 <(07]>7R0(]70)5(070)>7
P3 = <(0a0)7(17O)an(Oaj)’(1:j>>(Oaj»'

Case 2: © =1 and j is even.

Case 2.1: j = 0. The corresponding paths are:

Pl = <(0,O),Q0(O,n—2),(0,n—2),(1,n—2),@1_1(0,71—2),(1,0»;
Py = ((0,0),(1,0));
Py = ((0,0),(0,n—1),(1,n—1),(1,0)).

Case 2.2: j > 0. The corresponding paths are:

Pl = <(070)7Q0(07j)’(Ovj)v(l’j»;
P2 = <(17j)7(1’j+1)7(0’j+1)’R0(j+170)7(070)>;
Py = <(0a0)7(170):Q1(0aj)a(1:j>>'

Hence HReT(2,n) is globally bi-3*-connected. See Figure 4.3 for illustrations. O
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Figure 4.3: Hlustrations for Lemma 13.

Lemma 14. Let x,y, and z be any three different vertices of HReT(2,n) = (Vo UV, E)
in Vo. Then there ezists a regular 3*-container Cs«(x,y) of HReT(2,n) — {z}. Hence
HReT(2,n) is hyper globally bi-3*-connected.

Proof. Without loss of generality, weé fhay éésﬂme that z = (0,0), y = (¢,7), and z =
(k,1). In order to prove this lemma, we will.construct a regular 3*-container Cs(z,y) =
{1, Py, Ps} in HReT(2,n) — {z}: We haveithe following cases:

Case 1: © = 0. Then 7 is even.

Case 1.1: k= 0. Then [ is even. By'the symmetric property of HReT(2,n), we may
assume that [ < j. The corresponding paths are:

P = <(07j)7Q0(.7)0)7(0)0)>’

P, = ((0,0),Ro(0,1—1),(0,1—1),(1,0—1),(1,0),(1,l+1),(0,1+ 1),
RO(Z + 17j)7 (O,])>,

Py = <(07j)7(1’j)7Q1(j70)7(1)0)7(0)0»‘

Case 1.2: k = 1. Then [ is odd. By the symmetric property of HReT(2,n), we may
assume that [ < j. The corresponding paths are:

Pl = <(Oaj)aQ0(j>O)a(070)>;
P = <(070)7R0(07l))(Ovl))RO(lvj)v(())j»;
Py = <(Oaj)a(17j>?Q1(j70)’(170)a(070)>'
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Figure 4.4: Illustrations for Lemma 14.

Case 2: © = 1. Then j is odd. k = 0. Then [ is even. By the symmetric property of
HReT(2,n), we may assume that [ < j. The corresponding paths are:
Po= <(17j)7 (O’j)7Q0(j) 0)7 (O)O»u
P, = ((0,0),Ro(0,1—1),(0,1—1),(1,0l—1),(1,0),(1,l+1),(0,1+ 1),
Py = <(17j)7 Ql(j) 0)7 (17 0)> (07 0)>

Hence HReT(2,n) is hyper globally bi=3*-connected. See Figure 4.4 for illustrations.

O

4.4 The Globally Bi-3"-Connected Property of Hon-
eycomb Rectangular Torus HReT(4,n)

In this section, we need the following path patterns. For0 <i <m—1land0 < 75,k < n—1,
we set

SZL(j) = <([Z]ma []]n)) ([l - 1]m7 []]n)v ([Z - 1]ma [] + 1]?%)7 ([Z - Q]ma [] + 1]?%)7
([6 = 2, [3 4 2Jn), ([d = 3l [5 4 2]n), ([§ = Bl [+ 3n),
([i = 4, [7 + 3J)s ([ = 4, [7 + 210));

Si0) = iy ) ([ 4 L, [10), ([ + L, 17+ L), ([ 4+ 2 [5+ 1),
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Figure 4.5: The path patterns Qo(4,2), Ro(4,1), SE(3), S(0,4), S¥(2), and S5(1,5).

4 2, [7 4 20), ([0 + 3l (7 + 210), ([0 + 3ms [7+ 3]0),
A [+ 3Jn)s ([ 4 4], [T+ 210));

([ilm> [31n)+ S, () (Giidlin, 1+ 20), Sty (7 + 21n),
[ 8, [+ dla)s=-- ([0 — 20k J — 2)]ms [k — 20),
i—2(6—j—2)m (B —2LDA[ = 2(R= 7)lm, [K]n)); and

([l [7]n), S G (A 7 +21n), Sivay,, (7 + 20n),
([i + 8], [J + 4]n)= i 20k = — 2)|m, [k — 2]n),
Stvate—j—m ([ 28n), ([0 4 20— 5)]m, [K]n))-

CQ

See Figure 4.5 for illustrations.

Lemma 15. Let x and y be any two vertices of HReT(4,n) = (Vo U Vi, E) with x € Vj
and y € Vi. Then there exists a reqular 3*-container Cs«(z,y) of HReT(4,n). Hence
HReT(4,n) is globally bi-3*-connected.

Proof. Without loss of generality, we may assume that = = (0,0) and y = (¢, 7). In order
to prove this lemma, we will construct a regular 3*-container Cs:(z,y) = { P, P, P3} in
HReT(4,n). By the symmetric property of HReT(4, n), we may assume that ¢ € {0, 1, 2}.
Hence we have the following cases:

Case 1: Suppose that i € {0,1}. By Lemma 13, there exists a regular 3*-container
C3((0,0), (i,75)) of HReT(2,n). By Lemma 12, C3. 1((0,0), (7, j)) forms a 3*-container of
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Figure 4.6: Hlustrations for Lemma 15.
HReT(4, n).
Case 2: i = 2. Then j is odd. &

Case 2.1: Suppose that j = . The corresponding paths are:

Pio= {(0,0),(0,n— 1), (in £0:@p 0 n/=1), (1,0), (2,0), (2. 1));
P2 = <(O,0),Q0(0,TL—2),:(0,71'—2),(3,717‘——2),@:;1(1,71—2),(3,1),(2,1)>;
Py = {(0,0),(3,0),(3,n—1),(2/n=1),Q5" (1,n —1),(2,1)).

Case 2.2: Suppose that j # 1. The corresponding paths are:

Pl = <(O>O)7 QO(()?j - 1)7 (Oaj - 1)7 (37j - 1)7 (373)7 (27])>a

P2 = <(O>0)7(3)0)7Q3(0>]_2)7(3)]_2)7(2>]_2)7Q2_1(O).]_2)7(270))(170)>
Ql(())j - 1)) (Lj - 1)7 (2>.] - 1)7 (2>.7)>7

P3 = <(O7 0)7 (O,TL - 1)7 Sfl(] + 37” - 1)7 (Oaj + 3)7 (O>j + 2)7 (Lj + 2)7 (Lj + 1)7
(1,5),(0,5), (0,5 + 1), (3,7 + 1), (3,7 +2),(2,5 +2), (2,5 + 1),(2,5))-

Hence HReT(4,n) is globally bi-3*-connected. See Figure 4.6 for illustrations. O
Lemma 16. Let z,y, and z be any three different vertices of HReT(4,6) = (Vo U Vi, E)
in Vo. Then there exists a regular 3*-container Cs-(z,y) of HReT(4,6) — {z}. Hence
HReT(4,6) is hyper globally bi-3*-connected.
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Proof. Without loss of generality, we may assume that x = (0,0), y = (¢, 7), and z = (k, ).
The corresponding regular 3*-container Cs«(z,y) = {P1, P2, P3} in HReT(4,6) — {z} are
listed below.

y z Cg+ (@, y)
0,2) [ (2,2) | ((0,0),(0,1),(0,2))
((0,0), (0,5), (1,5), (1, 0), Q1(0, 4), (1,4), (2,4), (2,3), (3, 3), (3, 2), (0, 2))
((0,0),(3,0), (3,1, (2, 1), (2,0),(2,5), (3,5), (3,4, (0, 4, (0, 3), (0, 2))
0,2) [ (2,4) | ((0,0),(0,1),(0,2))
((0,2), (0, 3), (0,4), (3,4), (3, 5), (2,5), (2,0), (1,0), Q1 (0, 5), (1, 5), (0, 5), (0, 0))
((0,0),(3,0), (3, 1), (2, 1), (2,2), (2, 3), (3, 3), (3, 2), (0, 2))
(0,4) 1 (0,2) | ((0,0),(0,5),(0,4))
((0,0),(3,0),Q3(0,3), (3, 3),(2,3),(2,4), (2,5), (3,5), (3,4), (0,4))
((0 0), (0, 1), (1, 1), (1, 2), (2,2), (2, 1), (2, 0), (1, 0), (1, 5), (1, 4), (1, 3), (0, 3), (0, 4))
0, (0, 5), (0,4))
0), (0,1),(0,2), (3,2), (3,3),(2,3), (2,2), (1,2), (1, 3), (0, 3), (0, 4))
0 0) (3,0),(3,1),(2,1),(2,0), (1,0), (1,5), (1,4), (2,4), (2,5), (3,5), (3,4), (0,4))
0), (0, 5), (0,4), (0, 3), (1, 3))
0), (0,1), (1,1), (1,2), (1, 3))
0 0), (3,0), Q3(0,5), (3,5), (2,5), Q5 " (0,5), (2,0), (1,0), (1,5), (1,4), (1,3))
0,

(0,4) (1,1)

1,5) | (0,2) 0, (0,5), (1,5))

0), (0,1), (1,1), (1,2), (1,3), (0,3), (0, 4), (3, 4), (3, 5), (2, 5), (2,4), (1,4), (1, 5))

((0
((0
(
((0
((0
(
(©
((0,0), (3,0), Q3(0,3), (3,3), (2,3), Q5 " (0,3), (2,0, (1,0), (1,5))
(1, 1) | (2,0) | €(0,0),(0,1), (L, 1))
((0,0), (3,0), (3,1), (2, 1), (2,2), (1,2), (1, 1))
((0,0), (0,5), (0,4), (3,4), (3,5),(2,5), (2,4), (2,3), (3,3), (3,2), (0,2, (0,3), (1, 3), (1, 4), (1, 5), (1, 0), (1, 1))
1,1 | (2,2) | ((1,1),Q1(1,4),(1,4),(2,4), (2, 3), (3,3), (3,2), (0, 2), (0, 3), (0, 4), (3, 4), (3,5), (2, 5), (2, 0), (2, 1), (3, 1), (3, 0), (0, 0))
((0,0), (0,1), (1, 1))
((0,0),(0,5), (1,5), (1,0), (1, 1))
1,1 | (2,4) | ((1,1),(1,0),(2,0),(2,5), (3,5), (3,4), (0,4), (0, 3), (0, 2), (3, 2), (3, 3), (2, 3), (2, 2), (2, 1), (3, 1), (3, 0), (0, 0))
((0,0), (0,1), (1, 1)) L
((0,0), (0,5), (1,5), Q; " (1,5), (1, 1))
(1,3) | (2,0) | ((0,0),(0,1),(1,1),(1,0), (1,5), (1,4), (1, 3))
((0,0), (3,0), (3, 1), (2, 1), (2, 2), (1, 2), (1, 3)
((0,0),(0,5),(0,4), (3,4), (3,5), (2,5), (2,4), (2,3), (3, 3), (3, 2), (0, 2), (0, 3), (1, 3))
(1,3) | (2,2) | ((0,0),(0,5),(1,5),(1,4), (1,3))
((0,0),(3,0), (3,5), (2,5), (2,4), (2, 3),(3,3), (3,4), (0;4)5 (0, 3), (1, 3))
E( 0, (0,1). (0,2), (3.2). (3,1). (2u1):(2.0). (1,0). Q1 (08, (1.3))

@3 [ @4 | {(0,0),(0,5),(L5), (1,4), (1,3))

((0,0), (3,0), (3,5, (2, 5, (2, 0)5i(2, 0)} Q1 (0, B (L, 3))

(0,0, (0,1), (0,2), (3,2). (3, 1)5.(2. 1)1 (2,2) (213), (3:8)5(3, ) (0,4), (0,3), (1, 3))

200 [ 0,2 [ {(0,0),(3,0), Q5(0,3), (3, 3), (% B4 (2 4), (1, 4), (1,3), (0, 8), (0,4, (3, D), (3, 5), (2,5, (2, 0))
((0,0), (0, 5), (1,5, (1,0), (2, )

(0,0, (0,1), (1,1, (1,2). (2, 2),(2, 1), (2,0))

@2 [ 0,2 [ ((0,0),(0,1), (L, 1), (L 0), (2,002 1) ((2,2))

(0,0, (3,0), Q3(0, 3), (3, 3), (248)..(2,2)}

(0.0, (0:5), (1,5). (1, 4), (2. 4) A245) "(35). (8:4Y (0.4, (0.3). (1.3). (1,2). (2, 2))

2,2) | (0,4 | ((0,0),(0,5), (L,5), (1,0), (2, 0), (2 5)5(3, 5), Q5 1(2,5),(352), (0,2), (0,3), (1,3), (1, 4), (2, 4), (2, 3), (2, 2))
(0,0, (0,1), (1,1), (1,2), (2,2))

(0,0, (3,0), (3.1, (2,1). (2.2))

@2 [ LD [ {(0,0),(0,5),(L5), (1,0, (2,0), (2 1), (2 2))

((0,0), (8,0), Q5(0,3), (3,3), (2, 3), (2, 2))

((0,0), Q0 (0.4), (0,4). (3.4), (3.5, (2,5). (2.4), (1.4), (1, 3), (1,2), (2,2))

Hence HReT'(4,6) is hyper globally bi-3*-connected. O

Lemma 17. Assume that n > 8. Let x,y, and z be any three different vertices of
HReT(4,n) = (Vo U VL, E) in V. Then there exists a reqular 3*-container Cs«(x,y) of
HReT(4,n) — {z}. Hence HReT(4,n) is hyper globally bi-3*-connected.

Proof. Without loss of generality, we may assume that x = (0,0), y = (4,7), and z =
(k,1). In order to prove this lemma, we will construct a regular 3*-container Cs«(z,y) =
{Py, P, P;} in HReT(4,n) — {z}. By the symmetric property of HReT(4,n), we may
assume that i € {0,1,2}. We have the following cases:
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Case 1: Suppose that ¢ € {0,1} and z € {0,1}. By Lemma 14, there exists a regular
3*-container Cs-((0,0), (4,7)) of HReT(2,n) — {(k,1)}. By Lemma 12, Cs. ,((0,0), (4, j))
forms a 3*-container of HReT(4,n) — {(k,1)}.

Case 2: i =0 and k = 2. Then j and [ are even. By the symmetric property, we have
the following subcases.

Case 2.1: Suppose that j =4 and [ = 2. The corresponding paths are:

= ((0,0),Q0(0,4), (0,4));

= ((0,0),(0,n —1),(0,n—2),(3,n = 2),Q5" (4,n = 2),(3,4), (0, 4));

= ((0,4),Qo(4,n = 3),(0,n — 3) ( —3), Q1 ( =3),(1,0),(L,n—1),
(Ln—2),(2,n-2),0Q;" (3, )@3%@3)( 2),(3,1),(2,1),(2,0),
(2,n=1),(3, —DJ&®JQ®)

Case 2.2: Suppose that n —4 > j > 2 and | = j + 2. The corresponding paths are:

Py = ((0,0),Q0(0,7),(0,5));

((0,0),(3,0),Q3(0,4), (3,7), (0,7));

Pyo= ((0,5),Q0(j,5 +4),(0,j+ 45,7 +45(3,7 +5), (2,5 +5),(2,7+4),(2,7 + 3),
(3,7 +3),(3,7+2),(3,41),(2, +1),052 (0,7 + 1), (2,0), (1,0), Q1(0, 5 + 5),
(1,7 +5),(0,7+5), (0, f+6),(3,7+6), (3, 5+7),(2,; +7),(2,5 +6),
SE(G+6,n —2),(2,n —2), (LiIn=2),(1,n =1), (0,n — 1), (0,0)).

.
I

Case 2.3: Suppose that n—6 >9.> 2 and n=4 > [ > j 4+ 2. The corresponding paths
are:

Pro= ((0,0),Q0(0,7), (0,));
Pyo= ((0,0),(3,0),Q3(0,7), (3,7), (0, 5));
Pyo= ((1,7),(Lj+1),(L,5+2),(3,+2),(3,j+1),(2,7+1),05(0,j +1),(2,0),
,%Q(Qj+®4Lj+mﬂlj+%(2J+@K32+@K&j+®KQj+®,
(

1,1-2),(2,1-2),(2,1-1),
3J—1%@JL@J+1L@J+1)@l+2%@l+3)@l+3)@J+2)
0,04+2),Q; (1l —1,1+2),(0,1—1),(1,1 —1),Q,(I — 1,1+ 3), (1,1 + 3),
0,0+3),(0,1+4),(3,1+4),S¥(1+4,n-2),(2,n—2),(1,n—2),(1,n—1),

(

(

(

(1,0),Q

(0,5 +3),55(j +3,1—3),(0,1 = 3),(1,1 = 3),
(

(

( ,

(0,n —1),(0,0)).

Case 2.4: Suppose that n > 8 and j = [ > 2. The corresponding paths are:
P = <(O> 0)7 Q0(07j)’ (Ovj)>a
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PQ = <(070)7 (370)7Q3(O:j - 1)7 (37] - 1)7 (27j - 1)7@51(07j - 1)7 (270)7 (170):
Q10,5 +1),(1,5+1),(0,5 4+ 1),(0,5));

Pyo= ((0,7),(3,5), (3,7 +1), (2,7 + 1), (2,7 +2),(1,j+2), (1,7 +3), (1,7 +4),(2,j +4),

(2,5 +3),3,5+3),3,7+2),(0,5+2),(0,j+3),(0,j +4),(3,7 +4), (3,5 +5),

(2,j+5),(2,j+6),(1,j+6),(1,j+5),SIL(j+5,n—5),(1,n—5),(0,n—5),

(0,n—4),3,n—4),(3,n—3),(2,n—3),(2,n—2),(2,n—1),(3,n—1),(3,n —2),

(0,n—2),(0,n—3),(1,n—3),(1,n—2),(1,n—1),(0,n—1),(0,0)).

)

Case 2.5: Suppose that n =8, j = 2, and [ = 2. The corresponding paths are:

Pl = <(O>0)7(O71)7(072)>;

Py = ((0,2),(0,3),(0,4),(3,4),Q3(4,7),(3,7),(2,7),(2,0),(2,1),(3,1),(3,0),(0,0));

Py = ((0,2),(3,2),(3,3),(2,3),Q2(3,6),(2,6),(1,6), (1,7), (1,0), Q:1(0, 5),
(1,5),(0,5),(0,6),(0,7),(0,0))

Pro= ((0,0),Q0(0,4),(0,4));

Py = ((0,0),(0,7),(1,7), (1, 0);€1(0,6), (1,6)..(2,6), (2,5), (3,5), (3,4), (0,4))

Py = ((0,0),(3,0),Q5(0,3) 43, 3} (281.95(0,3), (2,0), (2, 7). (3,7), (3,6), (0,6)
(0,5),(0,4))

Case 3: i =1 and k = 2. Then+j is odd and I'is even. By the symmetric property, we
have the following subcases.

Case 3.1: Suppose that n—5 > j > 1and n—4 > [ > j+ 2. The corresponding paths
are:

Py ((0,0),Q0(0,4),(0,4), (1,4));

Py <(070) ( O) Q3(O ) ( )a(2 ]) Q;l( :j>:(2’0)7(1’O>:Q1(O:j>7(1aj)>;

Py = (1) (1L7+ 1>,( J+1>,(2,J+2) (3,5 +2),(3,j+1),S5( + 1,1 - 2), (3,1 - 2),
(0,0 —2),(0,1 —1), (1,0 —1),(1,0), (1,1 +1),(1,14+2),(2,14+2),(2,1+ 1), (3,1 + 1),
(3,1),(0,1), (O [+1), ( [+2),(3,1+2),(3,1+3),(2,l+3),(2,l+4), (1,1 + 4),
(1,1+3),SF(1+3,n — )( n—>5),(0,n—5),(0,n—4),(3,n—4),(3,n—3),
(2,n—3),(2,n—2),(2,n—1),(3,n—1),(3,n —2),(0,n —2),(0,n — 3),(1,n — 3),
(1= 2), (1, — 1), (0,1~ 1), (0,0))
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Case 3.2: Suppose that n —5 > j > 1 and [ = j + 1. The corresponding paths are:

= ((0,0),Q0(0,7), (0, 7), (1,5));
Py = ((0,0),(3,0),Q3(0,5), (3,5 (2,5), Q3(0, ), (2,0), (1,0), Q1(0, 5), (1,));
= ((1,4), Q10,7 +3), (1,7 +3),(2,5+3),(2,+2), 3,7 +2), (3,7 +1),(0,j + 1),
(0,7 +2),(0,j+3),(3,5+3), (3,7 +4),(2,7 +4),(2,7 +5),(1,5 +5),(1,5 +4),
SE(j+4,n — 5) (I,n—15),(0,n—>5),(0,n—4),(3,n—4),(3,n—3),(2,n — 3),
(2,n—2),2,n—1),(3,n—1),(3,n—2),(0,n—2),(0,n—3),(1,n—3),(1,n—2),
(Ln—=1),(0,n—1),(0,0)).

Y

Case 3.3: Suppose that n —5 > j > 1 and | = n — 4. The corresponding paths are:

((0,0), Qo(O 7),(0,3), (1,9));

((0,0), (0,n = 1), (1,7 = 1), (1,0), Q1(0, ), (1, 5));

Py = ({1, ) (1, J+1) (2,7 +1),(2,5+2),, J+2) (3,5 +1),85(j + 1,n = 6), (0,1 — 6),
(0,n=5),(1,n=5),@Q1(n = 5,n=2),(L,n=2),(2,n-2),(2,n-3),(3,n-3),
(3,n—4),(

(2 1),

Pl -

0,n—4),(0,n—3),(0,n — 2), (3,n -2),3,n—1),(2,n—1),(2,0),

, ) (3,1),(3,0),(0,0)).

Case 3.4: Suppose that j = n =5 andsdy=.n — 4., The corresponding paths are:

Po= ((0, )Qo(O n—5), (0, =)L, n—>5));

Py = ((0,0),(0,n —1),(1,n —4), (1L0)7Q:(0,n —5), (1,n — 5));

Py = (( —5), Ql(n—5 n —2), (L =2)(2,n— 2),(2,n —3),(3,n —3),(3,n — 4),
(0,n—4),(0,n = 3),(0,n —2)3(3,0.=2),(3,n — 1),(2,n — 1), (2,0), Q2(0,n = 5),
(2,n—5),(3,n—5),Q5"(0,n—5),(3,0),(0,0)).

Case 3.5: Suppose that n —5 > j > 1 and [ = n — 2. The corresponding paths are:

= ((0,0),Q0(0,7), (0, 7), (1,7));
P = <( ) ( ) (3 n_1)7(27n_ 1)7(270)7(170)7Q1(07j)’(17j)>§

= (1), (L7 +1),(1,j+2),(0,j+2),(0,5+1),(3,j + 1), Q3 (1,5 + 1), (3,1), (2, 1),
QQ(L] + 2)? (27] + 2)a (B:j + 2)7 (3aj + 3)? (O:j + 3)7 (Oaj +4)7 (Lj "‘4)7 (Lj + 3)7
SE(Gj+3,n—6),(1,n—6),(2,n—6),(2,n—5),(3,n—5),(3,n —4),(0,n —4),
(0,n—3),(0,n—2),(3,n—2),(3,n—3),(2,n—3),(2,n—4),(1,n —4),
Qi(n—4,n—1),(1,n—1),(0,n—1),(0,0)).

Case 4: i =2 and k£ = 0. Then 5 and [ are even. By the symmetric property, we have
the following subcases.
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Case 4.1: Suppose that j = 0 are [ > 0. The corresponding paths are:

Po= ((0,0),(0,n—1),(1,n—1),(1,0),(2,0));

Py = ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(2,0));

Py = ((0,0),(3,0),(3,1),(3,2),(0,2),(0,3),(1,3),(1,4),(2,4), (2,3),
S3(3,7 = 1),(2,5 = 1),(3,7 = 1),(3,5), (3,5 + 1), (2,5 + 1), (2,5 +2), (1,5 +2),
(1,7 +1),SEG +1,n—3),(1,n—3),(0,n —3),(0,n—2),(3,n—2),(3,n — 1),
(2,n—1),(2,0))

Py <(070)7(071)?(171)7Q1(17j)a(1:j)7(2aj)>3

P = <(070)a( ) ( )a(2:1)7Q2(1:j>7(2aj)>3

Py o= ((2,),(2,5+1),(2,+2),(1,j+2),(L,j+1),00,j +1),Q5" (2,5 + 1),
@ﬂ%@,)Qﬂ2j+®(3j+m(&j+®(0J+$&1J+$(1j+®,
(2,7 +4),(2,5+3), S8 +3,1—-1),(2,1—1),(3,1—1),(3, )(3l+1)
(2,14 1), (2,1 +2), (1,l+2),(1,l+1),8f(l+1,n 1),(1,n —1),(0,n — 1), (0,0)).

Case 4.3: Suppose that j =1 >40. The correspending paths are:

P = <(O:O)aQO(O:j - 1)7 (Oaj = 1)’ (Lj > 1)}Qfl(07j - 1)7 (170)7 (270)aQ2(O:j>7 (Qaj»;
P = <(070)7(370)7Q3(O:j+1)7(37j+1)?(27j+1)’(27j)>§
P = ((Q,j),SQL(j,n—1),(2,n—2),(1,n—2),(1,n—1),(0,n—1),(0,0)).

Case 5: i =2 and k = 1. Then j is even and [ is odd. By the symmetric property, we
have the following subcases.

Case 5.1: Suppose that j =0 and [ = 1. The corresponding paths are:

o= ((0,0),(0,n = 1), (1,n—1),(1,0),(2,0));

B = «QWXQUX,)J,@( 1),(2,1),(2,0));

Py = ((0,0),(3,0),(3,n = 1),(3,n = 2),(0,n — 2),Qy" (3,n — 2),(0,3), (1,3),
ﬂﬁ%@ﬁ%@ﬁ%@ﬁ)@&3n 3),(3,n—3),(2,n = 3),Q;" (4,n = 3),
(2,4),(1,4),Q1(4,n—2),(1,n —2),(2,n—2),(2,n — 1),(2,0)).

Case 5.2: Suppose that j =0 and n —1 > [ > 1. The corresponding paths are:
P = ((0,0),(0,n—=1),(1,n—1),(1,0),(2,0));
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P = <( ) )a( ) ) (371)7(271)7(270»3

P3 - <( ) )7( ’ ) (171)7(172)7(272)7(273)7(373)7(372)7S§(27j_3)7(37j _3)7(07j _3)7
(0,7 =2),(Lj—=2),(1,7-1),2,5-1),(2,7),2,5+1),1,5+1),1,7+2),
(1,7 +3),(2,543),(2,7+2),3,7+2),Q5 (G — 1,7 +2),(3,5 = 1), (0,5 — 1),
Qo(j —1,7+3),(0,7+3),(3,7+3),(3,7 +4), (2,7 +4),(2,j +5),(1,7 +5),

J+4),SEG+4,n-3),(1,n—3),(0,n—3),(0,n—2),(3,n—2),(3,n—1),
n—1),(2,0)).

Case 5.3: Suppose that n —1 >1> 54 2 and j > 0. The corresponding paths are:

Pyo= {(0,0),(0,1),(1,1),Q:(1, ), (1,5), (2,5));

Py = ((0,0),(3,0),(3,1),(2,1),Q2(1,7), (2,));

Pyo= ((2,0),(2,5+1),(3,5 +1),(3,7), S5(j, 1 = 3), (3,1 = 3), (0,1 = 3), (0,1 = 2), (1,1 = 2),
(1,0—1),(2,1—1),(2,0), (2, z+1),(1 z+1) (1,142),(1,1+3),(2,1+3),(2,1+2),
(3,142),(3,1+1),(3,0),(3,1 = 1), (0,1 — 1), Qo(l — 1,1+ 3), (0,1 + 3), (3,1 + 3),
(3,1+4),(2,1+4), (2,l+5),(1,l+5),(1,l+4),5f(l+4,n—1),(1,n—1),

(0,n —1),(0,0)).

Py ((0,0), Q00,5 + 1), (0, j D)5, A1) (1, 7+ 2), (2,5 +2), (2,7 + 1), (2,4));

Py <(O>0)7 (3 0) (3 n-— 1)7 (2,71— 1)7(270)7(1a0)7Q1(07j)’ (17j)v (2’j)>;

Py <(2 j):QQ ( ) (2 1): (3a 1))Q3(1:j +2)7(3:j +2)7 (O:j "‘2)7 (Oaj +3)7 (Lj "‘3):
(1,5 +4),(2,74+4), (2,7 +3), SBGH8,n—3),(2,n—3),(3,n—3),(3,n—2),
(0,n—2),(0,n — 1), (0,0)).

Case 5.5: Suppose that j =n — 2 and [ =n — 1. The corresponding paths are:

P = ((0,0),(0,n—1),(0,n—2),(0,n—3),(1,n—3),(1,n—2),(2,n—2));

Py = ((0,0),Q0(0,n —4),(3,n—4),Qs(n —4,n—1),(2,n—1),(2,n = 2));

Py ((0,0),(3,0), @s(0,n = 5), (3,n = 5),(2,n = 5), Q5" (0,n = 5), ( ,0),Q1(0,n — 4),
(I,n—4),(2,n—4),(2,n—3),(2,n — 2)).

Hence HReT(4,n) is hyper globally bi-3*-connected for n > 8. See Figure 4.7 for
illustrations. O
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Figure 4.7: Hlustrations for Lemma 17.
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4.5 The Globally Bi-3"-Connected Property of Hon-
eycomb Rectangular Torus HReT (m,n)

Lemma 18. Assume that m and n are positive even integers with m,n > 4. Let x and
y be any two vertices of HReT(m,n) = (Vo U Vi, E) with x € Vi and y € Vi. Then there
exists a regular 3*-container Cs«(x,y) of HReT(m,n).

Proof. Without loss of generality, we may assume that z = (0,0) and y = (4, ). In order
to prove this lemma, we will construct a regular 3*-container Cs:(z,y) = { Py, P, Ps} in
HReT(m,n). We prove the lemma by induction on m. With Lemma 15, our theorem
holds for m = 4. Now, we consider the case that m > 6.

Suppose that i < m — 2. By induction, there exists a regular 3*-container Cy«(x,y) =
{P1, P, P3} in HReT(m — 2,n). By Lemma 12, C3. ,,, 5((0,0), (4, 7)) forms a 3*-container
of HReT(m, n). Suppose that i > m — 2. By induction, there exists a regular Cs«(x, (i —
2,7)) = {P1, P2, Ps} in HReT(m — 2,n). By Lemma 12, C3. 1((0,0), (4, j)) forms a 3*-
container of HReT(m, n). O

Lemma 19. Assume that m and n are,positive even integers with m > 4 and n > 6. Let
x,y, and z be any three different vertices of HReT(m,n) = (VoUW E) in Vy. Then there
exists a reqular 3*-container Cs-(#,y) of HReT(m.m) — {z}.

Proof. Without loss of generality, we may assume that x = (0,0), y = (4,7), and z =
(k,1). In order to prove this lemma, we Willléonstruct a regular 3*-container Cs«(z,y) =
{Py, Py, P} in HReT(m,n) —{z}. 'We prove the lemma by induction on m. With Lemmas
16 and 17, our theorem holds for m =4, New, ‘we consider the case that m > 6.

Suppose that © < m—2 and k < m—2. By induction, there exists a regular 3*-container
Cse(z,y) = {P1, P2, P} in HReT(m — 2,n) — {z}. By Lemma 12, Ci. . 5((0,0), (4, 7))
forms a 3*-container of HReT(m,n) — {z}. Suppose that i < m — 2 and k > m — 2. By
induction, there exists a regular 3*-container Cs«(z,y) = { P, P», P3} in HReT(m—2,n)—
(k —2,1). By Lemma 12, C3. ;((0,0), (4,7)) forms a 3*-container of HReT(m,n) — {z}.
Suppose that ¢ > m — 2 and £k < m — 2. By induction, there exists a regular 3*-
container Cy«(x, (i — 2,j)) = {P1, Py, Ps} in HReT(m — 2,n) — {z}. By Lemma 12,
C3 1((0,0), (4, j)) forms a 3*-container of HReT (m, n) —{2}. Suppose that i > m —2 and
k > m—2. By induction, there exists a regular 3*-container Cs«(z, (i—2,j)) = { P, P, P3}
in HReT(m — 2,n) — (k — 2,1). By Lemma 12, C3. ,((0,0), (i, 7)) forms a 3*-container of
HReT(m,n) — {z}. O

Theorem 13. Assume that m and n are positive even integers with n > 4. Then
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Figure 4.8: Illustration for Theorem 13.

HReT(m,n) is strongly globally bi-3*-connected. Moreover, HReT(m,n) is hyper glob-
ally bi-3*-connected if and only if n > 6 or m = 2.

Proof. With Lemmas 13 and 18, HReT(m, n) is globally bi-3*-connected if m, n are even
integers with n > 4.

By Lemmas 14 and 19, HReT(m, n)dsthyper globally bi-3*-connected if m, n are even
integers with n > 6 or m = 2.

Now we consider the case HReT'(m, 4) with m is an even integer and m > 4. We first
prove that such HReT(m, 4) is not hyper-globally bhi=3*-connected.

To prove this fact, let x = (1,1), ¥y =(1s8)and z = (0,2). Suppose that there exists a
3*-container Cs-(z,y) = {P1, P, P3} of HReT(m, 4)—{z}. Since degu ger(m,a)—-(v) = 2 for
v € {(0,1),(0,3), (3,2)}, (1. 1), (1,2), (1,3)) and ((1,1), (0, 1), (0,0), (0,3). (1, 3)) axe two
paths in Cs- (.r,y) Without loss of generality, we assmue that P, = ((1,1), (1,2),(1,3))
and P, = ((1,1),(0,1),(0,0),(0,3),(1,3)). Since degnrer(ma)-((1,1)) = degurerm,a)-=
((1,3)) = 3, ((1 3), (1, 0)) and ((1,0),(1,1)) are edges in P;. Thus Py = ((1,1),(1,0),
(1,3)). Obviously, {P; U P, U Ps} does not span HReT(m, 4) — {z}. See Figure 4.8 for an
illustration. Hence HReT(m,4) is not hyper globally bi-3*-connected.

Although any HReT(m,4) with m is an even integer and m > 4 is not hyper globally
bi-3*-connected, we will prove that such HReT(m, 4) is strongly globally bi-3*-connected
by induction.

We first prove that HReT(4,4) is strongly bi-3*-connected. Let x and y be any two
different vertices in the same partite set of HReT(4,4). Without loss of generality, we may
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assume that x and y are vertices in Vj and x = (0,0). We need to find a vertex z in Vj —
{z,y} such that there exists a 3*-container Cs-(x,y) = {Py, P», P3} of HReT(4,4)—{z}.
The corresponding vertex z and 3*-container Cs-(z,y) are listed below.

0,0),(0,1),(1,1),(1,2),(2,2),(2,3),(2,0))

0,0), (3,0), Q3(0, 3), (3,3), (2,3), (2,2))

0,0), (0,3), (1, 3), (1,0), (2,0), (2, 1), (2, 2))
0,0),(0,1),(1,1),(1,2),(2,2))

3,1 [ (0,2) | ((0,0),(3,0),(3,1))

((0,0), (0, 3), (1,3), (1, 0), (2, 0), (2, 1), (3, 1))

((0,0), (0,1), (1,1), (1,2), (2,2),(2,3),(3,3), (3,2), (3, 1))
(3,3) [ (0,2) | ((0,0),(3,0),(3,3))

((0,0), (0, 3), (1,3), (1, 0), (2, 0), (2, 1), (3, 1), (3, 2), (3, 3))
((0,0), (0, 1), (1,1), (1,2), (2,2),(2,3), (3, 3))

(2,2) | (0,2)

y z Cyx (z,y)
0,2) | (1,3) | ((0,0),(0,1),(0,2))
((0,0), (0,3), (0,2))
((0,0),(3,0),(3,1),(2,1),(2,0),(1,0), (1, 1), (1,2),(2,2), (2,3), (3, 3), (3, 2), (0, 2))
1,1) | (1,3) | (0,0),(0,1), (1, 1))
((0,0), (3,0), (3, 1), (2, 1), (2,0), (1, 0), (1, 1), )
((0,0), (0,3, (0,2), (3,2),(3,3),(2,3),(2,2),(1,2), 1, 1))
(1,3) | (0,2) | ((0,0),(0,3),(1,3))
((0,0), (0, 1), (1,1), (1,2), (1, 3))
((0,0), (3,0), Q3(0,3), (3,3), (2,3), Q5 ' (0,3), (2,0), (1,0), (1,3))
(2,0) | (0,2) | ((0,0),(0,3),(1,3),(1,0), (2,0))
250,0),(3,0) (3,3),(3,2), (3, 1), (2,1), (2,0))
((
((
(

Obviously, all these 3*-containers of HReT(4,4)—{z} are regular.

Now we consider the case HReT (nay4) with. m > 4. Without loss of generality, we
may assmue that x = (0,0), y =4(¢,7),.and 2z =.(k,[). Suppose that i < m — 2 and
k < m — 2. By induction, there exists al regular 3*-container Cs«(x,y) = { P, P, P3}
in HReT(m — 2,4) — {z}. By Eemma 12, €%, " 5((0,0), (i,7)) forms a 3*-container of
HReT(m,4) — {z}. Suppose that ¢ £ =2 and'k > m — 2. By induction, there
exists a regular 3*-container Cs-(zyy ) = { P, P2, B3} in HReT(m — 2,4) — (k — 2,1). By
Lemma 12, C3. ;((0,0), (i,7)) forms a:3"-container of HReT(m,4) — {z}. Suppose that
i > m —2 and k < m — 2. By induction} there exists a regular Cs«(x, (i — 2,7)) =
{P1, Py, P3} in HReT(m — 2,4) — {z}. By Lemma 12, C3. ;((0,0), (4, j)) forms a 3*-
container of HReT(m, 4)— {z} Suppose that i > m—2 and k > m—2. By induction, there
exists a regular 3*-container Cs«(x, (i —2, 7)) = {P1, Py, P3} in HReT(m —2,4) — (k—2,1).
By Lemma 12, C3. 1((0,0), (4, 7)) forms a 3*-container of HReT(m,4) — {z}.

Thus the theorem is proved. O
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Chapter 5

Conclusion

There are a lot of studies on hamiltonian graphs. In this thesis, we are interested in some
specific types of hamiltonian graphs. We introduce the concept of mutually independent
hamiltonicity first. The concept of mutually independent hamiltonian arises from the
following applications. If there are k pieces of data needed to be sent from wu to v,
and the data needed to be processed at every vertex, then we want mutually independent
hamiltonian paths so that there will beyno'waliting time at a processor. Thus the mutually
independent hamiltonian property s useful for communication algorithms. In chapter 2,
we are interested in two families of graphs.-The first family of graphs are those graphs with
¢ <n—4andn >4. It was proved [37] that such graphs are hamiltonian connected. In
Theorem 6, we strengthen this classical result by proving that there are at least n —2 —¢
mutually independent hamiltonian. paths between every pair of distinct vertices of G.
The second family of graphs are these graphs with the sum of the degree of any two
non-adjacent vertices being at least n41. Assume that G is a graph with the sum of any
two non-adjacent vertices being at least n + 2. Let u and v be any two distinct vertices
of G. In Theorem 7, we show that there are deg.(u) + degq(v) — n mutually independent
hamiltonian paths between u and v if (u, v) € E(G), and there are deg(u)+degq(v)—n+2
mutually independent hamiltonian paths between u and v if otherwise.

In chapter 3, we proposed a new concept called panpositionable hamiltonicity. We
showed that the arrangement graph A, ; is panpositionable hamiltonian if £ > 1 and
n—k > 2 in Theorem 10. By applying this result, we can prove that A, ; is panconnected
and pancyclic if £ > 1 and n — k > 2. We also explained some relationship between
the panpositionable hamiltonian property and the panconnected property by giving an
example to show that a panconnected graph G is not necessarily panpositionable hamil-
tonian. Therefore, the panpositionable hamiltonian property is a stronger property for
an interconnection network.
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The honeycomb networks have been proposed as attractive alternatives to mesh and
torus interconnection networks for computer architectures, interconnection topologies,
parallel processes and distributed systems. In particular, the honeycomb rectangular
torus HReT(m, n) is a well-structured 3-connected cubic network. In chapter 4, we study
the globally bi-3*-connected property of the honeycomb rectangular torus HReT(m,n).
We have proved that any HReT (m, n) is strongly globally bi-3*-connected. We also proved
that HReT(m,n) is hyper globally bi-3*-connected if and only if n > 6 or m = 2.

Future work will be directed to explore the mutually independent hamiltonicity and
the panpositionable hamiltonicity of other interconnection networks. Moreover, we will
try to find the globally 3*-connected property of other cubic interconnection networks. It
would be interesting to study some relationship between these specific properties, such
as panpositionable hamiltonicity, panconnectivity and pancyclicity, and the other criteria
for measuring the performance of a network.
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