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摘要 

 
 
在這篇論文當中，我們研究了一些漢彌爾頓問題，像是相互獨立漢彌

爾頓以及泛可放置漢彌爾頓。在圖G中，我們用n來標記頂點的數目並

用e來標記邊的數目。我們用 e 來標記G的補圖中邊的數目。假設G為

一圖並 e ≤n-4且n≥4。我們證明除了n=5且 e =1的情形之外，在G中任一

對不同的頂點之間有至少n-2- e 條相互獨立漢彌爾頓路徑。假設G任兩

不相鄰點的分支度和至少n+2。令u和v為G的任兩相異點。我們證明若

(u,v)∈E(G)，則u和v之間有至少degG(u) + degG(v) - n條相互獨立漢彌爾

頓路徑且其他情形下，u和v之間有至少degG(u) + degG(v)–n+2條相互獨

立漢彌爾頓路徑。 

 
 
排列圖An,k為星狀圖的一般化。它比星狀圖在大小上更為彈性。已有

些研究著重在排列圖的漢彌爾頓性與泛圈性。我們提出新的概念稱為

泛可放置漢彌爾頓。一漢彌爾頓圖G為泛可放置若對G中任兩相異點x

和y，以及對任意整數l滿足d(x,y)≦l≦|V(G)|-d(x,y)，G存在一漢彌爾頓

圈C使得x和y在C上的距離為l。一圖G為泛連通圖若存在一條長為l之

路徑連接兩相異點x和y且d(x,y)≦l≦|V(G)|-1。我們證明An,k 為泛可放

置漢彌爾頓且泛連通若k≧1且n-k≧2。 

 
 
假設 m 和 n 為正偶數且 n≥4。已知每個蜂巢矩形圓環面 HReT(m,n)為

三正則二分圖。我們證明在任何 HReT(m,n)中，存在三條內部不相交

衍生路徑連接 x 和 y，當 x 和 y 分屬不同的分割集合。對任意一對 x

和 y 屬於同一分割集合，存在一頂點 z 在沒有 x 和 y 的分割集合中，



使得 G-{z}中存在有三條內部不相交衍生路徑連接 x 和 y。對任三點

x，y 和 z 屬於同一分割集合，G-{z}中存在有三條內部不相交衍生路

徑連接 x 和 y，若且唯若 n≥6 或 m=2。 
 
 
關鍵字: 漢彌爾頓、漢彌爾頓連結、漢彌爾頓路徑、泛可放置漢彌爾

頓、泛連通性、連通性、排列圖、蜂巢圓環面 
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Abstract 
 
In this thesis, we study some variant of hamiltonian problems, such as mutually 
independent hamiltonicity and panpositionable hamiltonicity. We use n to denote the 
number of vertices and use e to denote the number of edges in graph G. We use e  to 
denote the number of edges in the complement of G. Suppose that G is a graph with 
e ≤n-4 and n≥4. We prove that there are at least n-2- e  mutually independent 
hamiltonian paths between any pair of distinct vertices of G except n=5 and e =1. 
Assume that G is a graph with the degree sum of any two non-adjacent vertices being 
at least n+2. Let u and v be any two distinct vertices of G. We prove that there are 
degG(u) + degG(v) - n mutually independent hamiltonian paths between u and v if 
(u,v)∈E(G) and there are degG(u) + degG(v) -n + 2 mutually independent hamiltonian 
paths between u and v if otherwise. 
 
The arrangement graph An,k is a generalization of the star graph. It is more flexible in 
its size than the star graph. There are some results concerning hamiltonicity and 
pancyclicity of the arrangement graphs. We propose a new concept called 
panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if for any 
two different vertices x and y of G and for any integer l satisfying d(x,y)≦l≦
|V(G)|-d(x,y), there exists a hamiltonian cycle C of G such that the relative distance 
between x and y on C is l. A graph G is panconnected if there exists a path of length l 
joining any two different vertices x and y with d(x,y)≦l≦|V(G)|-1. We show that An,k 
is panpositionable hamiltonian and panconnected if k≧1 and n-k≧2. 
 



Assume that m and n are positive even integers with n≥4. It is known that every 
honeycomb rectangular torus HReT(m,n) is a 3-regular bipartite graph. We prove that 
in any HReT(m,n), there exist three internally-disjoint spanning paths joining x and y 
whenever x and y belong to different partite sets. For any pair of vertices x and y in the 
same partite set, there exists a vertex z in the partite set not containing x and y, such 
that there exist three internally-disjoint spanning paths of G-{z} joining x and y. For 
any three vertices x, y, and z of the same partite set there exist three internally-disjoint 
spanning paths of G-{z} joining x and y if and only if n≥6 or m=2. 
 
Keywords: hamiltonian, hamiltonian connected, hamiltonian path, panpositionable 
hamiltonian, panconnectivity, connectivity, arrangement graph, honeycomb torus. 
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Chapter 1

Introduction

The research about interconnection networks is important for parallel and distributed
computer systems. The layouts of processors and links in distributed computer sys-
tems are usually represented by a network. The network topology is a crucial factor
for an interconnection network since it determines the performance of the network and
the distributed system. Many interconnection network topologies have been proposed in
literature for the purpose of connecting a large number of processing elements and the
designing of a parallel computing systems [1, 11, 13, 16, 19, 25, 30, 39, 40, 42].

There are several requirements in designing a good topology for an interconnection
network, such as connectivity and hamiltonicity. The hamiltonian property is one of the
major requirements in designing an interconnection network. The hamiltonian property
is fundamental to the deadlock-free routing algorithms of distributed systems [33, 46]. A
high-reliability network design can be based on constructing a hamiltonian cycle in an
interconnection network. Many related works can be referred in recent research [14, 20,
24, 28, 42, 50].

In practice, the processors or links in a network may be failure. Thus the fault tolerant
hamiltonian property and the fault tolerant hamiltonian connected property become an
important issue on network topologies. Many results about the fault tolerant hamiltonicity
have been proposed in literature [6, 20, 23, 24, 27, 29, 34, 38, 42, 45, 47]. For example,
Hsieh et al. [20] and Hsu et al. [24] studied the fault tolerant hamiltonian property of
the arrangement graph to enhance the reliability of the specific interconnection network.

Further attempts at hamiltonian problems led researches into the study of super-
hamiltonian graphs, such as pancyclic graphs and panconnected graphs. The concept of
pancyclic graphs is proposed by Bondy [5], and the concept of panconnected graphs is
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proposed by Alavi and Williamson [3]. There are some studies concerning panconnectivity
and pancyclicity of some interconnection networks [7, 21, 49, 48]. For example, Yang et
al. study the pancyclic problem on faulty Möbius cubes in [48].

In this thesis, we study some hamiltonian problems, such as mutually independent
hamiltonicity, panpositionable hamiltonicity, and globally 3∗-connectivity. We say a set
of hamiltonian paths are mutually independent if any two distinct paths in the set are
independent. Similarly, a set of hamiltonian cycles are mutually independent if any two
hamiltonian cycles in the set are independent. Some related studies can be referred in the
literature [32, 41, 43]. We also propose a new concept called panpositionable hamiltonicity.
A hamiltonian graph G is panpositionable if for any two different vertices x and y of G
and for any integer l satisfying d(x, y) ≤ l ≤ |V (G)| − d(x, y), there exists a hamiltonian
cycle C of G such that the relative distance between x and y on C is l. One example,
the alternating group graph is proved to be panpositionable hamiltonian [44]. If there
exist three internally-disjoint paths joining x and y such that the three paths span all the
vertices in G, we say that G is globally 3∗-connected. In [4], Albert et al. first studied some
cubic 3-connected graphs with this property. Such graphs are called globally 3∗-connected
graphs. In the following section, we give some definitions of basic terms used in our thesis.

1.1 Basic Terms

Computer network topologies are usually represented by graphs where vertices represent
processors and edges represent links between processors. In this thesis, a network is
represented as an undirected graph. For the graph definitions and notation, we follow
[18].

Let G = (V, E) be a graph if V is a finite set and E is a subset of {(u, v) | (u, v) is an
unordered pair of V }. We say that V is the vertex set and E is the edge set of G. Two
vertices u and v are adjacent if (u, v) ∈ E. A path is a sequence of vertices such that two
consecutive vertices are adjacent. A path is represented by 〈v0, v1, v2, ..., vn〉. The length
of a path P is the number of edges in P , denoted by L(P ). We sometimes write the path
〈v0, v1, v2, ..., vk〉 as 〈v0, P1, vi, vi+1, ..., vj, P2, vt, ..., vk〉, where P1 is the path 〈v0, v1, ..., vi〉
and P2 is the path 〈vj , vj+1, ..., vt〉. It is possible to write a path 〈v0, v1, P, v1, v2, ..., vk〉
if L(P ) = 0. We use dG(u, v), or simply d(u, v) if there is no ambiguity, to denote the
distance between u and v in a graph G, i.e., the length of shortest path joining u and v in
G. We use dC(u, v) and DC(u, v) to denote the shorter and the longer distance between u
and v on a cycle C of G respectively. It is possible that DC(u, v) = dC(u, v) if the lengths
of the two disjoint paths joining u and v in C are equal. A cycle is a path of at least three
vertices such that the first vertex is the same as the last one.
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A hamiltonian path is a path such that its vertices are distinct and span V . A graph G
is hamiltonian connected if there exists a hamiltonian path joining any two vertices of G.
A hamiltonian cycle is a cycle such that its vertices are distinct except for the first vertex
and the last vertex and span V . A hamiltonian graph is a graph with a hamiltonian cycle.
A graph G = (V, E) is 1-edge hamiltonian if G − e is hamiltonian for any e ∈ E, and a
graph G = (V, E) is 1-node hamiltonian if G−v is hamiltonian for any v ∈ V . Obviously,
any 1-edge hamiltonian graph is hamiltonian. A graph G = (V, E) is 1-hamiltonian if
G − f is hamiltonian for any f ∈ E ∪ V .

1.2 Organization of the Thesis

In the follows, we describe the organization of this thesis. In Chapter 2, we discuss about
the mutually independent hamiltonian paths on simple graphs under some conditions.
We show that if ē ≤ n − 4 and n ≥ 4, there are at least n − 2 − ē mutually independent
hamiltonian paths between any pair of distinct vertices of G except n = 5 and ē = 1; here
n is the number of vertices, e is the number of edges in a graph G, and ē is the number
of edges in the complement of G.

In Chapter 3, we study the panpositionable hamiltonicity of the arrangement graph
An,k. We show that the arrangement graph is panpositionable hamiltonian for all k ≥ 1
and n − k ≥ 2, and we find that it is closely related to its panconnected and pancyclic
properties. By applying our result, we can show that the arrangement graph is pan-
connected and pancyclic. We also derive some relationship between the panpositionable
hamiltonicity and the other useful properties for a interconnection network.

In Chapter 4, we focus on the connectivity problem. Assume that m and n are
positive even integers with n ≥ 4. It is known that every honeycomb rectangular torus
HReT(m, n) is a 3-regular bipartite graph. We prove that in any HReT(m, n), there
exist three internally-disjoint spanning paths joining x and y whenever x and y belong to
different partite sets. Moreover, for any pair of vertices x and y in the same partite set,
there exists a vertex z in the partite set not containing x and y, such that there exist three
internally-disjoint spanning paths of G−{z} joining x and y. Furthermore, for any three
vertices x, y and z of the same partite set there exist three internally-disjoint spanning
paths of G−{z} joining x and y if and only if n ≥ 6 or m = 2. We present our conclusion
in chapter 5.

3



Chapter 2

Mutually Independent Hamiltonian
Property

As we discussed in the previous chapter, there are many studies on hamiltonian connected
graphs. In this chapter, we are interested in another aspect of hamiltonian connected
graphs. Let P1 = 〈v1, v2, v3, . . . , vn〉 and P2 = 〈u1, u2, u3, . . . , un〉 be any two hamiltonian
paths of G. We say that P1 and P2 are independent if u1 = v1, un = vn, and ui �= vi

for 1 < i < n. We say a set of hamiltonian paths P1, P2, . . . , Ps of G are mutually
independent if any two distinct paths in the set are independent. In [32], it is proved that
there exist (k−2) mutually independent hamiltonian paths between any two vertices from
different bipartite sets of the star graph Sk if k ≥ 4. The concept of mutually independent
hamiltonian arises from the following application. If there are k pieces of data needed to
be sent from u to v, and the data needed to be processed at every node (and the process
takes times), then we want mutually independent hamiltonian paths so that there will be
no waiting time at a processor. The existence of mutually independent hamiltonian paths
is useful for communication algorithms. Motivated by this result, we begin the study
on graphs with mutually independent hamiltonian paths between every pair of distinct
vertices.

In this chapter, we use n to denote the number of vertices and use e to denote the
number of edges in graph G. We use ē to denote the number of edges in the complement
of G. Suppose that G is a graph with ē ≤ n − 4 and n ≥ 4. We will prove that there are
at least n − 2 − ē mutually independent hamiltonian paths between any pair of distinct
vertices of G except n = 5 and ē = 1.

Moreover, assume that G is a graph with the degree sum of any two non-adjacent
vertices being at least n+2. Let u and v be any two distinct vertices of G. We will prove
that there are degG(u) + degG(v) − n mutually independent hamiltonian paths between

4



K�m� K� n-2m�K�m�

Figure 2.1: The graph Cm,n.

u and v if (u, v) ∈ E(G) and there are degG(u) + degG(v) − n + 2 mutually independent
hamiltonian paths between u and v if otherwise.

2.1 Preliminaries for Mutually Independent Hamil-

tonian Property

Throughout this chapter, we use [i] to denote i mod (n−2). Let G and H be two graphs.
We use G+H to denote the disjoint union of G and H . We use G∨H to denote the graph
obtained from G + H by joining each vertex of G to each vertex of H . For 1 ≤ m < n/2,
let Cm,n denote the graph (K̄m + Kn−2m) ∨Km, see Figure 2.1. The following theorem is
proved by Chvátal [10].

Theorem 1. [10] Assume that G is a graph with n ≥ 3 and ē ≤ n − 3. Then G is
hamiltonian. Moreover, the only non-hamiltonian graphs with ē ≤ n − 2 are C1,n and
C2,5.

The following lemma is obvious.

Lemma 1. Let u and v be two distinct vertices of G. Then there are at most min{degG(u),
degG(v)} mutually independent hamiltonian paths between u and v if (u, v) /∈ E(G), and
there are at most min{degG(u), degG(v)} − 1 mutually independent hamiltonian paths
between u and v if (u, v) ∈ E(G).

Theorem 2. Let n be a positive integer with n ≥ 3. There are n−2 mutually independent
hamiltonian paths between every two distinct vertices of Kn.

Proof. Let s and t be two distinct vertices of Kn. We relabel the remaining (n − 2)
vertices of Kn as 0, 1, 2, . . . , n − 3. For 0 ≤ i ≤ n − 3, we set Pi as 〈s, [i], [i + 1], [i +
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2], . . . , [i + (n − 3)], t〉. It is easy to see that P0, P1, . . . , Pn−3 form (n − 2) mutually
independent hamiltonian paths joining s and t.

Here are some theorems about the hamiltonian property.

Theorem 3. [37] Assume that G is a graph with ē ≤ n − 4 and n ≥ 4. Then G is
hamiltonian connected.

Theorem 4. [37] Assume that G is a graph with the sum of any two distinct non-adjacent
vertices being at least n with n ≥ 3. Then G is hamiltonian.

Theorem 5. [17] Assume that G is a graph with the sum of any two distinct non-adjacent
vertices being at least n + 1 with n ≥ 3. Then G is hamiltonian connected.

2.2 Mutually Independent Hamiltonian Paths

In this section, we will prove that there are degG(u) + degG(v)− n mutually independent
hamiltonian paths between u and v if (u, v) ∈ E(G) and there are degG(u)+degG(v)−n+2
mutually independent hamiltonian paths between u and v if otherwise. The following
result strengthens that of Theorem 3.

Lemma 2. Assume that G is a graph with n ≥ 4 and ē = n − 4. Then there are two
independent hamiltonian paths between any two distinct vertices of G except n = 5.

Proof. For n = 4, G is isomorphic to K4. By Theorem 2, there are two independent
hamiltonian paths between any two distinct vertices of G. Assume that n = 5. Then
G is isomorphic to K5 − {f} for some edge f . Without loss of generality, we assume
that V (G) = {1, 2, 3, 4, 5} and f = (1, 2). It is easy to check that P1 = 〈3, 2, 5, 1, 4〉 and
P2 = 〈3, 1, 5, 2, 4〉 are the only two hamiltonian paths between 3 and 4, but P1 and P2 are
not independent.

Now, we assume that n ≥ 6. Let s and t be any two distinct vertices of G. Let H be
the subgraph of G induced by the remaining (n− 2) vertices of G. We have the following
two cases:

Case 1: Suppose that H is hamiltonian. We can relabel the vertices of H with
{0, 1, 2, . . . , n − 3} so that 〈0, 1, 2, . . . , n − 3, 0〉 forms a hamiltonian cycle of H . Let Q
denote the set {i | (s, [i + 1]) ∈ E(G) and (i, t) ∈ E(G)}. Since ē = n − 4, |Q| ≥
n − 2 − (n − 4) = 2. There are at least two elements in Q. Let q1 and q2 be the two
elements in Q. For j = 1, 2, we set Pj as 〈s, [qj + 1], [qj + 2], . . . , [qj], t〉. Then P1 and P2

are two independent hamiltonian paths between s and t.
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Figure 2.2: (a) The graph C2,5; (b) The graph C1,n−2.

Case 2: Suppose that H is non-hamiltonian. There are exactly (n− 2) vertices in H .
By Theorem 1, there are exactly (n−4) edges in the complement of H , and H is isomorphic
to C1,n−2 or C2,5. Since ē = n−4, we know that (s, v) ∈ E(G) and (t, v) ∈ E(G) for every
vertex v in H . We can construct two independent hamiltonian paths between s and t as
following subcases:

Subcase 2.1: Suppose that H is isomorphic to C2,5. We label the vertices of
C2,5 with {0, 1, 2, 3, 4} as shown in Figure 2.2(a). Let P1 = 〈s, 0, 1, 2, 3, 4, t〉 and P2 =
〈s, 2, 3, 4, 1, 0, t〉. Then P1 and P2 form the required independent paths.

Subcase 2.2: Suppose that H is isomorphic to C1,n−2. We label the vertices of C1,n−2

with {0, 1, . . . , n − 3} as shown in Figure 2.2(b). Let P1 = 〈s, 0, 1, 2, . . . , n − 3, t〉 and
P2 = 〈s, 2, 3, . . . , n− 3, 1, 0, t〉. Then P1 and P2 form the required independent paths.

We can further strengthen Theorem 3.

Theorem 6. Assume that G is a graph with n ≥ 4 and ē ≤ n−4. Then there are n−2− ē
mutually independent hamiltonian paths between every two distinct vertices of G except
n = 5 and ē = 1.

Proof. With Lemma 2, the theorem holds for ē = n − 4. Now, we need to prove that
the theorem holds for ē = n − 4 − r with 1 ≤ r ≤ n − 4. Let s and t be two distinct
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vertices of G. Let H be the subgraph of G induced by the remaining (n − 2) vertices of
G. Then there are exactly (n − 2) vertices in H , and there are at most n − 4 − r edges
in the complement of H with 1 ≤ r ≤ n − 4. By Theorem 1, H is hamiltonian. We
can label the vertices of H with {0, 1, 2, . . . , n − 3} so that 〈0, 1, 2, . . . , n − 3, 0〉 forms a
hamiltonian cycle of H . Let Q denote the set {i | (s, [i + 1]) ∈ E(G) and (t, i) ∈ E(G)}.
Since ē = n−4− r with 1 ≤ r ≤ n−4, we know that |Q| ≥ n−2− (n−4− r) = n−2− ē
for 1 ≤ r ≤ n− 4. Hence, there are at least n− 2− ē elements in Q. Let q1, q2, . . . , qn−2−ē

be the elements in Q. For j = 1, 2, . . . , n−2− ē, we set Pj = 〈s, [qj +1], [qj +2], . . . , [qj ], t〉.
It is not difficult to see that P1, P2, . . . , Pn−2−ē are mutually independent paths between
s and t.

The following result, in a sense, generalizes that of Theorem 5.

Theorem 7. Assume that G is a graph such that degG(x) + degG(y) ≥ n + 2 for any two
vertices x and y with (x, y) /∈ E(G). Let u and v be two distinct vertices of G. Then there
are degG(u) + degG(v) − n mutually independent hamiltonian paths between u and v if
(u, v) ∈ E(G), and there are degG(u)+degG(v)−n+2 mutually independent hamiltonian
paths between u and v if (u, v) /∈ E(G).

Proof. Let s and t be two distinct vertices of G, and H be the subgraph of G induced by
the remaining (n − 2) vertices of G. Let u′ and v′ be any two distinct vertices in H . We
have degH(u′)+degH(v′) ≥ n+2−4 = n−2 = |V (H)|. By Theorem 4, H is hamiltonian.
We can label the vertices of H with {0, 1, . . . , n − 3}, so that 〈0, 1, 2, . . . , n − 3, 0〉 forms
a hamiltonian cycle of H . Let S denote the set {i | (s, [i + 1]) ∈ E(G)} and T denote the
set {i | (i, t) ∈ E(G)}. Clearly, |S ∪ T | ≤ n − 2. We have the following two cases:

Case 1: (s, t) ∈ E(G). Suppose that |S ∩ T | ≤ degG(s) + degG(t) − n − 1. We have
degG(s)+degG(t)− 2 = |S|+ |T | = |S ∪T |+ |S ∩T | ≤ degG(s)+degG(t)−n− 1 +n− 2.
This is a contradiction. Thus, there are at least w = degG(s) + degG(t) − n elements
in S ∩ T . Let q1, q2, . . . , qw be the elements in S ∩ T . For j = 1, 2, . . . , w, we set Pj =
〈s, [qj + 1], [qj + 2], . . . , [qj ], t〉. So P1, P2, . . . , Pw are mutually independent paths between
s and t.

Case 2: (s, t) /∈ E(G). Assume that |S∩T | ≤ degG(s)+degG(t)−n+2−1. We obtain
degG(s)+degG(t) = |S|+ |T | = |S ∪T |+ |S ∩T | ≤ degG(s)+degG(t)−n+2− 1 +n− 2.
This is a contradiction. Thus, there are at least w = degG(s) + degG(t) − n + 2 elements
in S ∩ T . Let q1, q2, . . . , qw be the elements in S ∩ T . For j = 1, 2, . . . , w, we set Pj =
〈s, [qj +1], [qj +2], . . . , [qj ], t〉, and P1, P2, . . . , Pw are mutually independent paths between
s and t.

Example. Let G be the graph (K1 ∪ Kn−d−1) ∨ Kd where d is an integer with 4 ≤
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d < n − 1. So ē = n − 1 − d ≤ n − 4. Let x be the vertex corresponding to K1, y be an
arbitrary vertex in Kd, and z be a vertex in Kn−d−1. Then degG(x) = d, degG(y) = n−1,
degG(z) = n − 2, (x, y) ∈ E(G), (y, z) ∈ E(G), and (x, z) /∈ E(G). By Theorem 6, there
are n−2− ē = n−2−(n−1−d) = d−1 mutually independent hamiltonian paths between
any two distinct vertices of G. By Lemma 1, there are at most d−1 mutually independent
hamiltonian paths between x and y. Hence, the result in Theorem 6 is optimal.

Consider the same example as above, it is easy to check that any two vertices u and
v in G, degG(u) + degG(v) ≥ n + 2. Let x and y be the same vertices as described above,
by Theorem 7, there are degG(x) + degG(y) − n = d + (n − 1) − n = d − 1 mutually
independent hamiltonian paths between x and y. By Lemma 1, there are at most d − 1
mutually independent hamiltonian paths between x and y. Hence, the result in Theorem
7 is also optimal.

Combining Theorems 5 and 7, we have the following Corollary.

Corollary 1. Let r be a positive integer. Assume that G is a graph such that degG(x) +
degG(y) ≥ n + r for any two distinct vertices x and y. Then there are at least r mutually
independent hamiltonian paths between any two distinct vertices of G.
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Chapter 3

Panpositionable Hamiltonian
Property

In this chapter, we will introduce the new concept called panpositionable hamiltonicity
by using the arrangement graph as an example. We will show that the arrangement
graph is panpositionable hamiltonian and panconnected. Moreover, we will compare the
difference between the three concepts, panpositionable hamiltonicity, panconnectivity and
pancyclicity.

3.1 Panpositionable Hamiltonicity, Panconnectivity

and Pancyclicity

Further attempts at hamiltonian problems led researches into the study of super-hamiltonian
graphs, such as panconnected graphs and pancyclic graphs. The definition of panconnec-
tivity and pancyclicity is described as follows. A graph G is pancyclic if it contains a
cycle of length l for each l satisfying 3 ≤ l ≤ |V (G)|. The concept of pancyclic graphs
is proposed by Bondy [5]. A graph G is panconnected if there exists a path of length l
joining any two different vertices x and y with d(x, y) ≤ l ≤ |V (G)| − 1. The concept of
panconnected graphs is proposed by Alavi and Williamson [3]. There are some studies
concerning panconnectivity and pancyclicity of some interconnection network [7, 21, 49].

We propose a new concept called panpositionable hamiltonicity. A hamiltonian graph
G is panpositionable if for any two different vertices x and y of G and for any integer l
satisfying d(x, y) ≤ l ≤ |V (G)| − d(x, y), there exists a hamiltonian cycle C of G such
that the relative distance between x and y on C is l; more precisely, dC(x, y) = l if

l ≤ � |V (G)|
2

� or DC(x, y) = l if l > |V (G)|
2

. Given a hamiltonian cycle C, if dC(x, y) = l, we
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have DC(x, y) = |V (G)| − dC(x, y). Therefore, a graph is panpositionable hamiltonian if

for any integer l with d(x, y) ≤ l ≤ |V (G)|
2

, there exists a hamiltonian cycle C of G with
dC(x, y) = l.

Similar to the importance of hamiltonicity for the communication between processors
in an interconnection network, panpositionable hamiltonicity allows more flexible com-
munication in a hamiltonian network. The panpositionable hamiltonian property inherits
the hamiltonian property and advances it further. We first give an example to show that
a panconnected graph G is not necessarily panpositionable hamiltonian.

Let n, s1, s2, . . . , sr be integers with 1 ≤ s1 < s2 < · · · < sr. The circulant graph
C(n; s1, s2, . . . , sr) is a graph with vertex set {0, 1, . . . , n − 1}. Two vertices i and j are
adjacent if and only if i − j = ±sk (mod n) for some k where 1 ≤ k ≤ r. We can check
that C(n; 1, 2) is panconnected by brute force for n ∈ {5, 6, 7, 8, 9, 10}. Now we will prove
that C(10; 1, 2) is not panpositionable hamiltonian.

Theorem 8. The circulant graph C(n; 1, 2) is not panpositionable hamiltonian for n = 10.

Proof. Figure 3.1 shows the structure of C(10; 1, 2). Consider vertex 0 and vertex 2, with
d(0, 2) = 1. We prove by contradiction that C(10; 1, 2) does not contain a hamiltonian
cycle HC with dHC(0, 2) = 5. Suppose to the contrary that HC is a hamiltonian cycle
of C(10; 1, 2) with dHC(0, 2) = 5. There are three possible paths, P1 = 〈0, 8, 9, 1, 3, 2〉,
P2 = 〈0, 9, 1, 3, 4, 2〉 and P3 = 〈0, 1, 3, 5, 4, 2〉, of length 5 joining vertex 0 and vertex 2. If
HC contains P1, then the edges (0, 1), (0, 2), (0, 9) can not belong to HC. If HC contains
P2 or P3, then the edges (2, 0), (2, 1), (2, 3) can not belong to HC. Hence for n = 10,
there does not exist any hamiltonian cycle in C(10; 1, 2) such that the distance on the
cycle between vertex 0 and vertex 2 is 5. So C(10; 1, 2) is not panpositionable hamiltonian.

In fact, the circulant graph C(n; 1, 2) is panconnected for every n ≥ 5, but it is not
panpositionable hamiltonian for some values of n. Therefore, the panpositionable hamil-
tonian property is a stronger property for an interconnection network. In the following
sections, we will try to find the panpositionable hamiltonicity of the arrangement graphs.
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Figure 3.1: The circulant graph C(10; 1, 2).

3.2 The Arrangement Graphs

3.2.1 The Basic Properties of the Arrangement Graphs

The arrangement graph [13] was proposed by Day and Tripathi as a generalization of the
star graph. It is more flexible in its size than the star graph. Let n and k be two positive
integers with n > k. And, let 〈n〉 and 〈k〉 denote the sets {1, 2, ..., n} and {1, 2, ..., k},
respectively. Then, the vertex set of the arrangement graph An,k, V (An,k) = {p | p =
p1p2...pk with pi ∈ 〈n〉 for 1 ≤ i ≤ k and pi �= pj if i �= j} and the edge set of An,k,
E(An,k) = {(p, q) | p, q ∈ V (An,k), p and q differ in exactly one position }. Figure 3.2
illustrates A4,2. By the definition of the arrangement graph, An,k is a regular graph of
degree k(n − k) with n!

(n−k)!
vertices. The diameter of An,k is �3k

2
�. The arrangement

graph An,1 is isomorphic to the complete graph Kn, and An,n−1 is isomorphic to the
n-dimensional star graph. Moreover, An,k is vertex symmetric and edge symmetric [13].

Let i and j be two positive integers with 1 ≤ i, j ≤ n. And, let V (A
(j:i)
n,k ) = {p | p =

p1p2...pk and pj = i}. It is the set of all vertices with the j-th position being i. For a

fixed position j, {V (A
(j:i)
n,k ) | 1 ≤ i ≤ n} forms a partition of V (An,k). Let A

(j:i)
n,k denote

the subgraph of An,k induced by V (A
(j:i)
n,k ). It is easy to see that each A

(j:i)
n,k is isomorphic

to An−1,k−1. Thus, An,k can be recursively constructed from n copies of An−1,k−1. Each

A
(j:i)
n,k represents a subcomponent of An,k, and we say that An,k is decomposed into sub-

components according to the j-th position. Let I be a subset of {1, 2, ..., n}. We use A
(j:I)
n,k

to denote the subgraph of An,k induced by
⋃

i∈I V (A
(j:i)
n,k ). A

(j:I)
n,k is called an incomplete

arrangement graph if |I| < n. We observe that each A
(j:i)
n,k can be recursively decomposed
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Figure 3.2: The arrangement graph A4,2.

into its smaller subcomponents. For simplicity, if there is no ambiguity, we shall concen-
trate on the last position, and we use Ai

n,k and AI
n,k to denote A

(k:i)
n,k and A

(k:I)
n,k respectively,

where k is the last position, and Ei,j to denote the set of edges between Ai
n,k and Aj

n,k.
Let F be a faulty set which may include faulty edges, faulty vertices, or both. The good
edge set GEi,j(F ) is the set of edges (u, v) ∈ Ei,j such that {u, v, (u, v)} ∩ F = ∅. We
need some basic properties of the arrangement graph. The following proposition follows
directly from the definition of the arrangement graphs.

Proposition 1. Let n, k be two positive integers with n, k ≥ 2, and let i and j be two
distinct elements of 〈n〉. Suppose that H is one subcomponent of Aj

n,k with the (k − 1)-th
position being h and the k-th position being j for some h ∈ 〈n〉 − {j}. Then |Ei,j| =

(n−2)!
(n−k−1)!

, and the number of edges between Ai
n,k and H is (n−3)!

(n−k−1)!
. Moreover, if (u, v) and

(u′, v′) are distinct edges in Ei,j, then {u, v}⋂{u′, v′} = ∅, and (u, u′) ∈ E(Ai
n,k) if and

only if (v, v′) ∈ E(Aj
n,k).

Let u ∈ V (Ai
n,k) for some i ∈ 〈n〉. We say that v is a neighbor of u if v is adjacent to u.

Let I be a subset of {1, 2, ..., n}, and we use N I(u) to denote the set of all neighbors of u
which are in AI

n,k. Particularly, we use N∗(u) and N i(u) as an abbreviation of N 〈n〉−{i}(u)

and N{i}(u) respectively. We call vertices in N∗(u) the outer neighbors of u. It follows
from the definitions, |N i(u)| = (k−1)(n−k) and |N∗(u)| = (n−k). We say that vertex u
is adjacent to subcomponent Aj

n,k if u has an outer neighbor in Aj
n,k. Then, we define the

adjacent subcomponent AS(u) of u as {j | u is adjacent to Aj
n,k}. We have the following

proposition:

Proposition 2. Suppose that k ≥ 2, n − k ≥ 2, and i ∈ 〈n〉. Let u and v be two distinct
vertices in Ai

n,k.

(a) If d(u, v) = 1, then |AS(u) ∩ AS(v)| = n − k − 1.
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(b) If d(u, v) ≤ 2, then AS(u) �= AS(v).

Proof. Let u = u1u2...uk, v = v1v2...vk, and uk = vk = i. If d(u, v) = 1, we have us �= vs for
some s ∈ 〈k−1〉, and ut = vt for all t �= s. Then, AS(u) = 〈n〉−{u1, u2, ..., us, ..., uk} and
AS(v) = 〈n〉−{v1, v2, ..., vs, ..., vk}. Thus AS(u)∩AS(v) = 〈n〉−{u1, u2, ..., us, ..., uk, vs}
and |AS(u)∩AS(v)| = n−(k+1) = n−k−1. Since us �= vs, vs ∈ AS(u) but vs /∈ AS(v).

If d(u, v) = 2, there exists a vertex w ∈ V (Ai
n,k) such that d(u, w) = d(w, v) = 1.

Let w = w1w2...wk. And, let s′ and t′ be two indices such that ws′ �= us′ and vt′ �= wt′ .
Clearly, s′ �= t′ or d(u, v) = 1. Hence ws′ is not in {u1, u2, ..., uk} but in {v1, v2, ..., vk}.
Thus ws′ ∈ AS(u) but ws′ /∈ AS(v). Hence, the statement follows.

Day and Tripathi [13] presented a shortest path routing algorithm for the arrangement
graph, and gave some characterizations of the minimum length path between two arbitrary
vertices in An,k. We can derive the following lemma directly from their routing algorithm.

Lemma 3. Let u = u1u2...uk and v = v1v2...vk be two vertices in An,k. There exists a
way of decomposing An,k into subcomponents such that one of the following three cases
holds.

(a) If ux = vx = i for some position x ∈ 〈k〉 and i ∈ 〈n〉, we decompose An,k

into subcomponents according to the x-th position. Then u and v belong to the same
subcomponent and u, v ∈ V (A

(x:i)
n,k ). Moreover, a shortest path from u to v in An,k is

completely contained in A
(x:i)
n,k

(b) If ux �= vx for every x ∈ 〈k〉 and {u1, u2, ..., uk} �= {v1, v2, ..., vk}, there exists
a position uy /∈ {v1, v2, ..., vk} for some y ∈ 〈k〉, say the y-th position. We decompose
An,k into subcomponents according to the y-th position, then u and v belong to different

subcomponents, say u ∈ V (A
(y:i)
n,k ) and v ∈ V (A

(y:j)
n,k ) for some i �= j ∈ 〈n〉. Moreover, a

minimum length path connecting u and v has the form 〈u, P, u′, v〉, in which u′ ∈ V (A
(y:i)
n,k ),

and P is a path completely contained in A
(y:i)
n,k .

(c) If ux �= vx for every x ∈ 〈k〉 and {u1, u2, ..., uk} = {v1, v2, ..., vk}, decomposing An,k

into subcomponents according to any position, say y-th position, y ∈ 〈k〉, then u and v

belong to different subcomponents, say u ∈ V (A
(y:i)
n,k ) and v ∈ V (A

(y:j)
n,k ) for some i �= j ∈

〈n〉. Moreover, a minimum length path connecting u and v has the form 〈u, P, u′, v′, v〉,
in which u′ ∈ V (A

(y:i)
n,k ), v′ ∈ V (A

(y:j)
n,k ), and P is a path completely contained in A

(y:i)
n,k .

Example. Suppose that u and v are two vertices in A7,5. If u = 12345 and v = 13452,

then u, v ∈ V (A
(1:1)
7,5 ). A minimum length path connecting u and v is 〈12345, 12645, 13645,

13642, 13652, 13452〉 which is completely contained in A
(1:1)
7,5 , and case (a) holds. If u =
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12345 and v = 26453, then u ∈ V (A
(1:1)
7,5 ) and v ∈ V (A

(1:2)
7,5 ). A minimum length path

connecting u and v is 〈12345, 12346, 12356, 12456, 12453, 16453, 26453〉, and case (b) holds.

If u = 12345 and v = 23451, then u ∈ V (A
(1:1)
7,5 ) and v ∈ V (A

(1:2)
7,5 ). A minimum length

path connecting u and v is 〈12345, 12346, 12356, 12456, 13456, 23456, 23451〉, and case (c)
holds.

3.2.2 The Hamiltonicity of the Arrangement Graphs

Hsu et al. studied the fault hamiltonicity and fault hamiltonian connectivity of the
arrangement graphs in [24]. Some results are listed as follows.

Theorem 9. [24] Let n and k be two positive integers with n − k ≥ 2. Then An,k

is k(n − k) − 2 fault tolerant hamiltonian and k(n − k) − 3 fault tolerant hamiltonian
connected.

The above theorem states that with up to k(n−k)−2 faulty edges and faulty vertices
An,k still has a hamiltonian cycle, and with up to k(n − k) − 3 faulty edges and faulty
vertices An,k is still hamiltonian connected.

Lemma 4. [24] Suppose that

1. k ≥ 3 and n − k ≥ 2,

2. t is a fixed position with 1 ≤ t ≤ k,

3. I ⊆ 〈n〉 with |I| ≥ 2,

4. F ⊆ V (An,k) ∪ E(An,k), and

5. A
(t:l)
n,k − F is hamiltonian connected for each l ∈ I and |F (A

(t:I)
n,k )| ≤ k(n − k) − 3.

Then, for any x ∈ V (A
(t:i)
n,k ) and y ∈ V (A

(t:j)
n,k ) with i �= j ∈ I, there is a hamiltonian

path of A
(t:I)
n,k − F joining x and y.

The following lemma considers the hamiltonian connectivity of the incomplete ar-
rangement graphs An,2. The lemma states that for any two vertices x and y in different
subcomponents of the incomplete arrangement graphs An,2, there exists a hamiltonian
path joining them if n ≥ 5. The result holds even when there is one faulty vertex or one
faulty edge if n ≥ 6.

Lemma 5. Suppose that n ≥ 5, t is a fixed position with 1 ≤ t ≤ 2, F ⊆ V (An,2), and
I ⊆ 〈n〉 with |I| ≥ 2.
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(a) If n ≥ 5, then for any x ∈ V (A
(t:i)
n,2 ) and y ∈ V (A

(t:j)
n,2 ) with i �= j ∈ I, there is a

hamiltonian path of A
(t:I)
n,2 joining x and y.

(b) If n ≥ 6 and |F | ≤ 1, then for any x ∈ V (A
(t:i)
n,2 ) and y ∈ V (A

(t:j)
n,2 ) with i �= j ∈ I,

there is a hamiltonian path of A
(t:I)
n,2 − F joining x and y.

Proof. Because of the symmetric property of An,2, without loss of generality, we may

assume that t = 2. By Proposition 1, |Ei,j| = (n−2)!
(n−2−1)!

= n−2 ≥ 3 if n ≥ 5, and n−2 ≥ 4

if n ≥ 6 for every i, j ∈ I, and {u, v}⋂{u′, v′} = ∅ if (u, v) and (u′, v′) are distinct edges
in Ei,j. Hence the number of good edge |GEi,j| ≥ 3 if n ≥ 5, or n ≥ 6 with |F | ≤ 1. We
then prove this lemma by induction on |I|. Suppose that |I| = 2, and I = {i, j} for some
i, j. Since |GEi,j| ≥ 3, there exists an edge (u, v) ∈ GEi,j such that u �= x ∈ V (Ai

n,2) and

v �= y ∈ V (Aj
n,2). By Theorem 9, for each l ∈ I, Al

n,2 − F is hamiltonian connected if
|F | ≤ 1. There is a hamiltonian path P1 of Ai

n,2 − F from x to u and a hamiltonian path

P2 of Aj
n,2 − F from v to y. Thus 〈x, P1, u, v, P2, y〉 forms a hamiltonian path of AI

n,2 − F
from x to y.

Assume that the statement is true for all I ′ with 2 ≤ |I ′| < |I|. There exists an i′ ∈ I
with i′ �= i, j. Since |GEi′,j| ≥ 3, we can find an edge (u, v) ∈ GEi′,j with u ∈ V (Ai′

n,2) and

v �= y ∈ V (Aj
n,2). Then there is a hamiltonian path P1 of A

I−{j}
n,2 − F from x to u and a

hamiltonian path P2 of Aj
n,2 −F from v to y. Thus 〈x, P1, u, v, P2, y〉 forms a hamiltonian

path of AI
n,2 − F from x to y. Hence the lemma follows.

3.2.3 The Disjoint Paths in an Arrangement Graphs

In this subsection, we will show that there exist two vertex disjoint paths spanning all
the vertices in an incomplete arrangement graph with one vertex fault tolerant.

Lemma 6. Suppose that

1. k ≥ 3, n − k ≥ 2,

2. I ⊆ 〈n〉 with |I| ≥ 2,

3. F ⊆ V (AI
n,k) with |F | ≤ 1, and

4. x1 ∈ V (Ai1
n,k) − F and x2 ∈ V (Ai2

n,k) − F with i1 �= i2 ∈ I.

Then, for any pair of distinct vertices {y1, y2} in V (AI
n,k)−F , there exist two disjoint

paths, one joining x1 and yi for some i ∈ {1, 2}, and the other joining x2 and yj with
i �= j, such that these two paths span all the vertices in AI

n,k − F .
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Proof. Let i1, i2, ..., i|I| be |I| distinct indices of 〈n〉. We prove this lemma by finding two
disjoint paths P1 and P2 in AI

n,k − F such that P1 joins x1 and yi, and P2 joins x2 and
yj with i �= j. Moreover, P1 and P2 span all the vertices in AI

n,k − F . According to the
location of y1 and y2, we have the following cases:

Case 1: Suppose that y1 and y2 are located in different subcomponents.

Subcase 1.1: Suppose that x1, x2, yi and yj are located in four different subcomponents.
yi ∈ V (Ai3

n,k) and yj ∈ V (Ai4
n,k) with |I| ≥ 4. See Figure 3.3(a) for an illustration. By

Lemma 4, we can find a hamiltonian path P1 from x1 to yi in A
{i1,i3}
n,k − F . Similarly, we

can find a hamiltonian path P2 from x2 to yj in A
I−{i1,i3}
n,k − F . Therefore, P1 and P2 are

two disjoint paths spanning all the vertices in AI
n,k − F .

Subcase 1.2: Suppose that one of y1, y2 and one of x1, x2 are located in the same
subcomponent. Without loss of generality, we may assume that x1 and yi are located in the
same subcomponent, and x2 and yj are located in different subcomponents. yi ∈ V (Ai1

n,k)

and yj ∈ V (Ai3
n,k) with |I| ≥ 3. See Figure 3.3(b) for an illustration. By Theorem 9, since

Ai1
n,k − F is hamiltonian connected, we can find a hamiltonian path P1 from x1 to yi in

Ai1
n,k − F . By Lemma 4, we can find a hamiltonian path P2 from x2 to yj in A

I−{i1}
n,k − F .

Therefore, P1 and P2 are two disjoint paths spanning all the vertices in AI
n,k − F .

Subcase 1.3: Suppose that x1 and yi are located in the same subcomponent for some
i ∈ {1, 2}, and x2 and yj are located in the same subcomponent with i �= j. yi ∈ V (Ai1

n,k)

and yj ∈ V (Ai2
n,k) with |I| ≥ 2. See Figure 3.3(c) for an illustration. Without loss of

generality, we may assume that i = 1 and j = 2. By Theorem 9, since Ai1
n,k − F is

hamiltonian connected, we can find a hamiltonian path P1 from y1 to x1 in Ai1
n,k − F . If

|I| ≥ 3, since |N∗(y2)| > 2, we can find an edge (y2, y
′
2) ∈ Ei2,j such that y

′
2 ∈ V (Aj

n,k)

for some j ∈ I − {i1, i2}. By Lemma 4, we can find a hamiltonian path P
′
2 from y

′
2 to

x2 in A
I−{i1}
n,k − {y2} ∪ F . Let P2 = 〈y2, y

′
2, P

′
2, x2〉. If |I| = 2, by Theorem 9, there is a

hamiltonian path P
′
2 from y2 to b2 in Ai2

n,k − F . Let P2 = 〈y2, P
′
2, x2〉. Therefore, P1 and

P2 are two disjoint paths spanning all the vertices in AI
n,k − F .

Case 2: Suppose that yi and yj are located in the same subcomponent.

Subcase 2.1: Suppose that y1, y2 ∈ V (Ai1
n,k) or y1, y2 ∈ V (Ai2

n,k) with |I| ≥ 2. See Figure
3.3(d) for an illustration. Without loss of generality, we consider the former case and
assume that i = 1 and j = 2. By Theorem 9, Ai1

n,k − ({y2}∪F ) is hamiltonian connected,

hence we can find a hamiltonian path P1 from y1 to x1 in Ai1
n,k −{y2}∪F . If |I| ≥ 3, since

|N∗(y2)| > 2, we can find an edge (y2, y
′
2) ∈ Ei1,j such that y

′
2 ∈ V (Aj

n,k) for some j ∈
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I −{i1, i2}. By Lemma 4, we can find a hamiltonian path P
′
2 from y

′
2 to x2 in A

I−{i1}
n,k −F .

If |I| = 2, there exists an edge (y2, y
′
2) ∈ Ei1,i2 such that y

′
2 ∈ V (Ai2

n,k). By Theorem

9, there is a hamiltonian path P
′
2 from y

′
2 to x2 in Ai2

n,k − F . Let P2 = 〈y2, y
′
2, P

′
2, x2〉.

Therefore, P1 and P2 are two disjoint paths spanning all the vertices in AI
n,k − F .

Subcase 2.2: Suppose that y1, y2 ∈ V (Ai3
n,k). Without loss of generality, we consider two

subcases:

Subcase 2.2.1: Suppose that there exists some i1 ∈ AS(y1) for i ∈ {1, 2} with |I| ≥ 3.
Without loss of generality, we may assume that i = 1. See Figure 3.3(e) for an illustration.
Since x1 ∈ AS(y1), we can find an edge (y1, y

′
1) ∈ Ei1,i3 such that y

′
1 ∈ V (Ai1

n,k) and

x1 �= y
′
1. By Theorem 9, we can find a hamiltonian path P

′
1 from y

′
1 to x1 in Ai1

n,k − F .

Let P1 = 〈y1, y
′
1, P

′
1, x1〉. Let y

′
2 �= y1 ∈ V (Ai3

n,k). By Theorem 9, since Ai3
n,k − {y1} ∪ F is

hamiltonian connected, we can find a hamiltonian path P
′′
2 from y2 to y

′
2 in Ai3

n,k−{y1}∪F .

If |I| ≥ 4, since |N∗(y
′
2)| > 2, we can find an edge (y

′
2, y

′′
2 ) ∈ Ei3,j such that y

′′
2 ∈ V (Aj

n,k)

for some j ∈ I − {i1, i2, i3}. By Lemma 4, we can find a hamiltonian path P
′
2 from

y
′′
2 to x2 in A

I−{i1,i3}
n,k − F . If |I| = 3, there exists an edge (y

′
2, y

′′
2 ) ∈ Ei3,i2 such that

y
′′
2 ∈ V (Ai2

n,k). By Theorem 9, there is a hamiltonian path P
′
2 from y

′′
2 to x2 in Ai2

n,k − F .

Let P2 = 〈y2, P
′′
2 , y

′
2, y

′′
2 , P

′
2, x2〉. Therefore, P1 and P2 are two disjoint paths spanning all

the vertices in AI
n,k − F .

Subcase 2.2.2: Suppose that {i1, i2}⋂{AS(y1) ∪ AS(y2)} = ∅ with |I| ≥ 4. See Figure
3.3(f) for an illustration. Since |N∗(y1)| > 2, we can find an edge (y1, y

′
1) ∈ Ei1,j1 such that

y
′
1 ∈ V (Aj1

n,k) for some j1 ∈ I−{i1, i2, i3}. By Lemma 4, we can find a hamiltonian path P
′
1

from y
′
1 to x1 in A

{i1,j1}
n,k −F . Let P1 = 〈y1, y

′
1, P

′
1, x1〉. Let y

′
2 ∈ V (Ai3

n,k) and y
′
2 ∈ N i3(y1).

By Proposition 2, we have AS(y1) �= AS(y
′
2). By Theorem 9, since Ai3

n,k − {y1} ∪ F is

hamiltonian connected, we can find a hamiltonian path P
′′
2 from y2 to y

′
2 in Ai3

n,k−{y1}∪F .

If |I| ≥ 5, since |N∗(y
′
2)| > 2, we can find an edge (y

′
2, y

′′
2 ) ∈ Ei3,j2 such that y

′′
2 ∈ V (Aj2

n,k)

for some j2 ∈ I −{i1, i2, i3, j1}. By Lemma 4, we can find a hamiltonian path P
′
2 from y

′′
2

to x2 in A
I−{i1,i3,j1}
n,k −F . If |I| = 4, since |N∗(y

′
2)| > 2, we can find an edge (y

′
2, y

′′
2 ) ∈ Ei3,i2

such that y
′′
2 ∈ V (Ai2

n,k). Since Ai2
n,k − F is hamiltonian connected, there is a hamiltonian

path P
′
2 from y

′′
2 to x2 in Ai2

n,k − F . Let P2 = 〈y2, P
′′
2 , y

′
2, y

′′
2 , P

′
2, x2〉. Therefore, P1 and P2

are two disjoint paths spanning all the vertices in AI
n,k − F .

Thus the lemma follows.
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3.3 Panpositionable Hamiltonicity of the Arrange-

ment Graphs An,2

In this section, we will prove that the arrangement graph An,2 is panpositionable hamil-
tonian for all n − k ≥ 2. The basic idea is to study An,1 and A4,2 first, and then to prove
the general case by induction.

Lemma 7. The arrangement graph An,1 is panconnected and panpositionable hamiltonian
for all n ≥ 3.

Proof. Since An,1 is isomorphic to the complete graph Kn, the lemma follows trivially.

Lemma 8. The arrangement graph A4,2 is panpositionable hamiltonian.

Proof. Let s and t be any two vertices of A4,2 in Figure 3.2. The arrangement graph
is vertex symmetric and edge symmetric, and the diameter of An,k is �3k

2
� by Day and

Tripathi [13]. Hence the diameter of A4,2 is 3. We prove this lemma by considering the
distance between s and t. Without loss of generality, we may assume that s = 42 and
t = 32 if d(s, t) = 1. Assume that s = 42 and t = 31 if d(s, t) = 2. And, assume that
s = 42 and t = 24 if d(s, t) = 3. Obviously, if dHC(s, t) = x, we also have DHC(s, t) =

|V (HC)|−x. Hence, we only need to prove that for each l ∈ {d(s, t), d(s, t)+1, ..., |A4,2|
2

},
we can construct a hamiltonian cycle of A4,2 such that the distance between s and t on
the cycle is l. The corresponding hamiltonian cycle HC in A4,2 are listed below.

d(s, t) dHC(s, t) The cycle HC
1 1 〈42, 32, 31, 41, 21, 24, 34, 14, 12, 13, 23, 43, 42〉
1 2 〈42, 12, 32, 31, 34, 14, 13, 43, 23, 24, 21, 41, 42〉
1 3 〈42, 41, 31, 32, 34, 14, 24, 21, 23, 43, 13, 12, 42〉
1 4 〈42, 41, 31, 34, 32, 12, 13, 14, 24, 21, 23, 43, 42〉
1 5 〈42, 12, 14, 24, 34, 32, 31, 41, 21, 23, 13, 43, 42〉
1 6 〈42, 41, 43, 23, 21, 31, 32, 34, 24, 14, 13, 12, 42〉
2 2 〈42, 32, 31, 21, 41, 43, 13, 23, 24, 34, 14, 12, 42〉
2 3 〈42, 32, 34, 31, 41, 21, 24, 23, 43, 13, 14, 12, 42〉
2 4 〈42, 12, 32, 34, 31, 41, 21, 23, 24, 14, 13, 43, 42〉
2 5 〈42, 32, 12, 14, 34, 31, 41, 21, 24, 23, 13, 43, 42〉
2 6 〈42, 12, 13, 14, 34, 32, 31, 41, 21, 24, 23, 43, 42〉
3 3 〈42, 32, 34, 24, 21, 31, 41, 43, 23, 13, 14, 12, 42〉
3 4 〈42, 32, 31, 21, 24, 34, 14, 12, 13, 23, 43, 41, 42〉
3 5 〈42, 32, 31, 41, 21, 24, 34, 14, 12, 13, 23, 43, 42〉
3 6 〈42, 41, 21, 31, 32, 34, 24, 23, 43, 13, 14, 12, 42〉
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Thus the lemma holds.

Lemma 9. The arrangement graph An,2 is panpositionable hamiltonian for all n ≥ 4.

Proof. By Lemma 8, the result holds for n = 4. Suppose that n ≥ 5, and s and t are two
distinct vertices of An,2. Then for each l ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ..., |V (An,2)|

2
}, we

shall find a hamiltonian cycle of An,2 such that the distance between s and t on the cycle
is l.

We would like to make a remark here. Throughout this chapter, the proof idea of the
panpositionable hamiltonian property of the arrangement graph is essentially similar to
Case 1 described below except for some minor adjustments.

Case 1: s and t belong to the same subcomponent Ai
n,2. See Figure 3.4. Suppose that

s, t ∈ V (Ai
n,2) for some i ∈ 〈n〉. Since Ai

n,2 is isomorphic to the complete graph Kn−1,
we have d(s, t) = 1. For each l0 ∈ {1, 2, 3, ..., n − 2}, we can construct a hamiltonian
cycle HCi of Ai

n,2 such that the distance between s and t on the cycle is l0. Node t
has two distinct neighbors on cycle HCi. Let u and v be two neighbors of t on HCi.
Let HCi = 〈s, LP, u, t, v, RP, s〉 and P0 = 〈s, LP, u, t〉. Without loss of generality, let
L(P0) = l0. Since |N∗(t)| = n−2 ≥ 3 for n ≥ 5, we can find a subcomponent Aht

n,2 different

from Ai
n,2, and a vertex t′ ∈ V (Aht

n,2) such that (t, t′) ∈ Ei,ht for some ht ∈ 〈n〉 − {i}. By
Proposition 2, d(t, u) = 1, hence we have |AS(t)∩AS(u)| = n−3 ≥ 2 for n ≥ 5. It means
that we can find a subcomponent Aj1

n,2 which j1 ∈ 〈n〉 − {i, ht}, such that there exist

two disjoint edges (u, p1) and (t, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈ E(Aj1
n,2). Since

|N∗(v)| = n−2 ≥ 3 for n ≥ 5, we can find a subcomponent Ahv
n,2, and a vertex v′ ∈ V (Ahv

n,2)
such that (v, v′) ∈ Ei,hv for some hv ∈ 〈n〉 − {i, ht, j1}. By Lemma 5(a), there exists a

hamiltonian path HP of A
〈n〉−{i}
n,2 joining t′ and v′. Thus 〈s, P0, t, t

′, HP, v′, v, RP, s〉 forms
a hamiltonian cycle, and for each l0 ∈ {1, 2, 3, ..., n− 2}, the distance between s and t on
the cycle is l0.

Now we present an algorithm to expand the path P0 = 〈s, LP, u, t〉 between s and t
to various lengths. The idea is to expand the path by inserting the vertices of Aj1

n,2 into
P0. We now describe the details.

If we want to insert p1 and q1 to P0, let P1 = 〈s, LP, u, p1, q1, t〉. See Figure 3.5(a) for
an illustration. Thus we have L(P1) = l0 + 2. We can expand the path P1 to a longer
path as follows. By Theorem 9, there is a hamiltonian path HP1 from p1 to q1 in Aj1

n,2.

So we can join all the vertices of Aj1
n,k to P1, let P ∗

1 = 〈s, LP, u, p1, HP1, q1, t〉. Hence
L(P ∗

1 ) = l0 +n−1. Since 1 ≤ l0 ≤ n−2, we have 3 ≤ L(P1) ≤ n and n ≤ L(P ∗
1 ) ≤ 2n−3.

Therefore, for each l1 ∈ {1, 2, 3, ..., 2n − 3}, we can construct a path PP1 ∈ {P0, P1, P
∗
1 }
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Figure 3.4: Lemma 9, Case 1.

from s to t such that the distance between s and t on the path is l1.

Using the same idea, we can expand the path HP1. Let u1 and t1 be two ad-
jacent vertices on HP1. That is, HP1 = 〈p1, LP1, u1, t1, RP1, q1〉. By Proposition 1
and 2, there exist two distinct edges (u1, p2) and (t1, q2) in Ej1,j2 for some j2 ∈ 〈n〉 −
{i, ht, hv, j1} such that (p2, q2) ∈ E(Aj2

n,2). See Figure 3.5(b) for an illustration. Let P2 =
〈s, LP, u, p1, LP1, u1, p2, q2, t1, RP1, q1, t〉. Thus we have L(P2) = l0+n+1. By Theorem 9,
there is a hamiltonian path HP2 from p2 to q2 in Aj2

n,2. Let P ∗
2 = 〈s, LP, u, p1, LP1, u1, p2,

HP2, q2, t1, RP1, q1, t〉. Hence we have L(P ∗
2 ) = l0 + 2n − 2. Since 1 ≤ l0 ≤ n − 2, we

have n + 2 ≤ L(P2) ≤ 2n − 1 and 2n − 1 ≤ L(P ∗
2 ) ≤ 3n − 4. Therefore, for each

l2 ∈ {1, 2, 3, ..., 3n − 4}, we can construct a path PP2 ∈ {P0, P1, P
∗
1 , P2, P

∗
2 } from s to t

such that the distance between s and t on the path is l2 if n ≥ 5. The maximal value of
l2 is 3n − 4. If n = 5, then we have 3n − 4 ≥ |V (An,2)|

2
= n(n−1)

2
.

We can use the algorithm repeatly for n ≥ 6. For each 3 ≤ x ≤ �n
2
�, let ux−1 and tx−1

be the two adjacent vertices on HPx−1. That is, HPx−1 = 〈px−1, LPx−1, ux−1, tx−1, RPx−1,
qx−1〉. By Proposition 1 and Proposition 2, there exist two distinct edges (ux−1, px)
and (tx−1, qx) in Ejx−1,jx for some jx ∈ 〈n〉 − {i, ht, hv, j1, ..., jx−1} such that (px, qx) ∈
E(Ajx

n,2). Let Px = 〈s, LP, u, p1, LP1, u1, ..., ux−1, px, qx, tx−1, ..., t1, RP1, q1, t〉. Thus we
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2 .

have L(Px) = l0+(x−1)(n−1)+2. By Theorem 9, there is a hamiltonian path HPx from px

to qx in Ajx
n,2. Let P ∗

x = 〈s, LP, u, p1, LP1, u1, ..., ux−1, px, HPx, qx, tx−1, ..., t1, RP1, q1, t〉.
Hence we have L(P ∗

x ) = l0 + (x − 1)(n − 1) + n − 1. Since 1 ≤ l0 ≤ n − 2, we have
(x − 1)(n − 1) + 3 ≤ L(Px) ≤ (x − 1)(n − 1) + n and (x − 1)(n − 1) + n ≤ L(P ∗

x ) ≤
(x − 1)(n − 1) + 2n − 3. Therefore, for each lx ∈ {1, 2, 3, ..., (x− 1)(n − 1) + 2n − 3}, we
can construct a path PPx ∈ {P0, P1, P

∗
1 , ..., Px, P

∗
x} from s to t such that the distance of

s and t on the path is lx if n ≥ 6. The maximal value of lx is (�n
2
� − 1)(n − 1) + 2n − 3,

and (�n
2
� − 1)(n − 1) + 2n − 3 ≥ |V (An,2)|

2
= n(n−1)

2
. To construct a hamiltonian cycle, we

consider the two subcases:

Subcase 1.1: Suppose that PPx ∈ {P0, P
∗
1 , ..., P ∗

x} for each 1 ≤ x ≤ �n
2
�. See Fig-

ure 3.4(a) for an illustration. By Lemma 5(a), there exists a hamiltonian path HP of

A
〈n〉−{i,j1,...,jx}
n,2 joining t′ and v′ which t′ ∈ V (Aht

n,2) and v′ ∈ V (Ahv
n,2). Thus 〈s, PPx, t, t

′, HP,

v′, v, RP, s〉 forms a hamiltonian cycle, and for each l ∈ {1, 2, 3, ..., |V (An,2)|
2

}, the distance
between s and t on the cycle is l.

Subcase 1.2: Suppose that PPx ∈ {P1, ..., Px} for each 1 ≤ x ≤ �n
2
�. See Figure 3.4(b)

for an illustration. Assume that H1, H2 ∈ 〈n〉 − {i, j1, ..., jx} and H1 ∩ H2 = ∅. Let
ht, hy ∈ H1 and hv, hz ∈ H2. Let F ⊆ V (Ajx

n,2) and F = {px, qx}. Let y, z be two

distinct vertices in Ajx
n,2 − F . Since |N∗(y)| = |N∗(z)| = n − 2 ≥ �n

2
� for n ≥ 5, there

exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that y′ �= t′ ∈ V (A
hy

n,2)

and z′ �= v′ ∈ V (Ahz
n,2), respectively. Ajx

n,2 − F is isomorphic to Kn−3, hence there is a
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hamiltonian path HP from y to z in Ajx
n,2 − F . By Theorem 9 and Lemma 5(a), there

exist a hamiltonian path DP1 from t′ to y′ in AH1
n,2 and a hamiltonian path DP2 from v′ to

z′ in AH2
n,2. Thus 〈s, PPx, t, t

′, DP1, y
′, y, HP, z, z′, DP2, v

′, v, RP, s〉 forms a hamiltonian

cycle, and for each l ∈ {1, 2, 3, ..., |V (An,2)|
2

}, the distance between s and t on the cycle is l.

Case 2: s and t belong to different subcomponents of An,2. Suppose that s ∈ V (Ai
n,2) and

t ∈ V (Aht
n,2) for i �= ht ∈ 〈n〉. Each subcomponent of An,2 is isomorphic to the complete

graph Kn−1, and |Ei,ht| > 0, we have d(s, t) = 1, d(s, t) = 2 or d(s, t) = 3. In the case of
d(s, t) = 1, suppose that s = s1s2...sk−1i and t = t1t2...tk−1ht are adjacent, and sx = tx
for each 1 ≤ x ≤ k − 1. We may decompose An,2 into subcomponents according to the
first position such that s and t belong to the same subcomponent. Hence the case for
d(s, t) = 1 is the same as Case 1. In the following, we discuss the other two cases.

Subcase 2.1: Suppose that d(s, t) = 2. See Figure 3.6 for an illustration. Without loss of
generality, let (t′, t) be an edge in Ei,ht such that t′ ∈ V (Ai

n,2) and t′ ∈ N∗(t). Since Ai
n,2 is

isomorphic to complete graph Kn−1, we have d(s, t′) = 1. For each l0 ∈ {1, 2, 3, ..., n− 2},
we can construct a hamiltonian cycle HCi of Ai

n,2 such that the distance between s
and t′ on the cycle is l0. Let u and v be two neighbors of t′ on HCi, and HCi =
〈s, LP, u, t′, v, RP, s〉. Let P0 = 〈s, LP, u, t′, t〉. Without loss of generality, we may assume
that L(P0) = l0 + 1.

By Proposition 2, d(t′, u) = 1, hence we have |AS(t′) ∩ AS(u)| = n − 3 ≥ 2 if
n ≥ 5. It means that we can find an index j1 ∈ 〈n〉 − {i, ht}, such that there exist
two disjoint edges (u, p1) and (t′, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈ E(Aj1

n,2). Since

|N∗(v)| = n−2 ≥ 3 if n ≥ 5, we can find a vertex v′ ∈ V (Ahv
n,2) such that (v, v′) ∈ Ei,hv for

some hv ∈ 〈n〉−{i, ht, j1}. If we want to join p1 and q1 to P0, let P1 = 〈s, LP, u, p1, q1, t
′, t〉.

Then we have L(P1) = l0 + 3. By Theorem 9, there is a hamiltonian path HP1 from p1

to q1 in Aj1
n,2. Let P ∗

1 = 〈s, LP, u, p1, HP1, q1, t
′, t〉. Hence we have L(P ∗

1 ) = l0 + n. Since
1 ≤ l0 ≤ n − 2, we have 4 ≤ L(P1) ≤ n + 1 and n + 1 ≤ L(P ∗

1 ) ≤ 2n − 2. Therefore, for
each l1 ∈ {2, 3, 4, ..., 2n−2}, we can construct a path PP1 ∈ {P0, P1, P

∗
1 } from s to t such

that the distance between s and t on the path is l1.

Recursively, for each 2 ≤ x ≤ �n
2
�, let ux−1 and tx−1 be two adjacent vertices on HPx−1.

That is, HPx−1 = 〈px−1, LPx−1, ux−1, tx−1, RPx−1, qx−1〉. By Proposition 1 and Proposi-
tion 2, there exist two distinct edges (ux−1, px) and (tx−1, qx) in Ejx−1,jx for some jx ∈ 〈n〉−
{i, ht, hv, j1, ..., jx−1}. And, (px, qx) ∈ E(Ajx

n,2). Let Px = 〈s, LP, u, p1, LP1, u1, ..., ux−1, px,
qx, tx−1, ..., t1, RP1, q1, t′, t〉. Thus we have L(Px) = l0 + (x − 1)(n − 1) + 3. By The-
orem 9, there is a hamiltonian path HPx from px to qx in Ajx

n,2. Let P ∗
x = 〈s, LP,

u, p1, LP1, u1, ..., ux−1, px, HPx, qx, tx−1, ..., t1, RP1, q1, t′, t〉. Hence we have L(P ∗
x ) =

l0 + (x − 1)(n − 1) + n. Since 1 ≤ l0 ≤ n − 2, we have (x − 1)(n − 1) + 4 ≤ L(Px) ≤
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Figure 3.6: Lemma 9, Case 2.1.

(x − 1)(n − 1) + n + 1 and (x − 1)(n − 1) + n + 1 ≤ L(P ∗
x ) ≤ (x − 1)(n − 1) + 2n − 2.

Therefore, for each lx ∈ {2, 3, 4, ..., (x − 1)(n − 1) + 2n − 2}, we can construct a path
PPx ∈ {P0, P1, P

∗
1 , ..., Px, P

∗
x} from s to t such that the distance between s and t on

the path is lx if n ≥ 5. The maximal value of lx is (�n
2
� − 1)(n − 1) + 2n − 2, and

(�n
2
� − 1)(n − 1) + 2n − 2 ≥ |V (An,2)|

2
= n(n−1)

2
. To construct a hamiltonian cycle, we

consider the two subcases:

Subcase 2.1.1: Suppose that PPx ∈ {P0, P
∗
1 , ..., P ∗

x} for each 1 ≤ x ≤ �n
2
�. See Fig-

ure 3.6(a) for an illustration. By Lemma 5(a), there exists a hamiltonian path HP of

A
〈n〉−{i,j1,...,jx}
n,2 joining t and v′. Thus 〈s, PPx, t

′, t, HP, v′, v, RP, s〉 forms a hamiltonian

cycle, and for each l ∈ {2, 3, 4, ..., |V (An,2)|
2

}, the distance between s and t on the cycle is l.

Subcase 2.1.2: Suppose that PPx ∈ {P1, ..., Px} for each 1 ≤ x ≤ �n
2
�. See Figure

3.6(b) for an illustration. Assume that H1, H2 ⊆ 〈n〉 − {i, j1, ..., jx} and H1 ∩ H2 = ∅.
Let ht, hy ∈ H1 and hv, hz ∈ H2. Let F ⊆ V (Ajx

n,2) and F = {px, qx}. Let y and z be two

distinct vertices in Ajx
n,2 − F . Since |N∗(y)| = |N∗(z)| = n − 2 ≥ �n

2
� for n ≥ 5, there

exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that y′ �= t ∈ V (A
hy

n,2)

and z′ �= v′ ∈ V (Ahz
n,2), respectively. Ajx

n,2 − F is isomorphic to Kn−3, hence there is a

hamiltonian path HP from y to z in Ajx
n,2 − F . By Theorem 9 and Lemma 5(a), there
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Figure 3.7: Lemma 9, Case 2.2.

exist a hamiltonian path DP1 from t to y′ in AH1
n,2 and a hamiltonian path DP2 from v′ to

z′ in AH2
n,2. Thus 〈s, PPx, t

′, t, DP1, y
′, y, HP, z, z′, DP2, v

′, v, RP, s〉 forms a hamiltonian

cycle, and for each l ∈ {2, 3, 4, ..., |V (An,2)|
2

}, the distance between s and t on the cycle is l.

Subcase 2.2: Suppose that d(s, t) = 3 and n ≥ 6. See Figure 3.7 for an illustration. We
shall discuss the subcase d(s, t) = 3 and n = 5 later in Subcase 2.3. Let (t′, t′′) be an edge
in Ei,ht such that t′ ∈ V (Ai

n,2), t′′ ∈ V (Aht
n,2), t′′ ∈ N(t), and t′′ ∈ N∗(t′). Since Ai

n,2 is
isomorphic to complete graph Kn−1, we have d(s, t′) = 1. For each l0 ∈ {1, 2, 3, ..., n− 2},
we can construct a hamiltonian cycle HCi of Ai

n,2 such that the distance of s and t′ on
the cycle is l0. Suppose that u and v are two distinct vertices in V (Ai

n,2), and u and v are
two neighbors of t′ on HCi. Let HCi = 〈s, LP, u, t′, v, RP, s〉. Let P0 = 〈s, LP, u, t′, t′′, t〉.
Hence, without loss of generality, we have L(P0) = l0 + 2.

By Proposition 2, d(t′, u) = 1, we have |AS(t′) ∩ AS(u)| = n − 3 ≥ 2 if n ≥ 6. It
means that we can find an index j1 ∈ 〈n〉 − {i, ht}, such that there exist two disjoint
edges (u, p1) and (t′, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈ E(Aj1

n,2). Since |N∗(v)| =

n − 2 ≥ 3 if n ≥ 5, we can find a vertex v′ ∈ V (Ahv
n,2) such that (v, v′) ∈ Ei,hv for some

hv ∈ 〈n〉 − {i, ht, j1}. If we want to join p1 and q1 to P0, let P1 = 〈s, LP, u, p1, q1, t
′, t′′, t〉.

Thus we have L(P1) = l0 + 4. By Theorem 9, there is a hamiltonian path HP1 from p1

to q1 in Aj1
n,2. Let P ∗

1 = 〈s, LP, u, p1, HP1, q1, t
′, t′′, t〉. Hence we have L(P ∗

1 ) = l0 + n + 1.
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Since 1 ≤ l0 ≤ n− 2, we have 5 ≤ L(P1) ≤ n + 2 and n +2 ≤ L(P ∗
1 ) ≤ 2n− 1. Therefore,

for each l1 ∈ {3, 4, 5, ..., 2n − 1}, we can construct a path PP1 ∈ {P0, P1, P
∗
1 } from s to t

such that the distance between s and t on the path is l1.

Similarly, for each 2 ≤ x ≤ �n
2
�, let ux−1 and tx−1 be the two adjacent vertices on

HPx−1. That is, HPx−1 = 〈px−1, LPx−1, ux−1, tx−1, RPx−1, qx−1〉. By Proposition 1 and
Proposition 2, there exist two distinct edges (ux−1, px) and (tx−1, qx) in Ejx−1,jx for some
jx ∈ 〈n〉 − {i, ht, hv, j1, ..., jx−1}. And, (px, qx) ∈ E(Ajx

n,2). Let Px = 〈s, LP, u, p1, LP1, u1,
..., ux−1, px, qx, tx−1, ..., t1, RP1, q1, t′, t′′, t〉. Thus we have L(Px) = l0 + (x − 1)(n −
1) + 4. By Lemma 9, there is a hamiltonian path HPx from px to qx in Ajx

n,2. Let
P ∗

x = 〈s, LP, u, p1, LP1, u1, ..., ux−1, px, HPx, qx, tx−1, ..., t1, RP1, q1, t′, t′′, t〉. Hence we
have L(P ∗

x ) = l0 +(x−1)(n−1)+n+1. Since 1 ≤ l0 ≤ n−2, we have (x−1)(n−1)+5 ≤
L(Px) ≤ (x−1)(n−1)+n+2 and (x−1)(n−1)+n+2 ≤ L(P ∗

x ) ≤ (x−1)(n−1)+2n−1.
Therefore, for each lx ∈ {3, 4, 5, ..., (x − 1)(n − 1) + 2n − 1}, we can construct a path
PPx ∈ {P0, P1, P

∗
1 , ..., Px, P

∗
x} from s to t such that the distance between s and t on

the path is lx if n ≥ 5. The maximal value of lx is (�n
2
� − 1)(n − 1) + 2n − 1, and

(�n
2
� − 1)(n − 1) + 2n − 1 ≥ |V (An,2)|

2
= n(n−1)

2
. To construct a hamiltonian cycle, we

consider the two subcases:

Subcase 2.2.1: Suppose that PPx ∈ {P0, P
∗
1 , ..., P ∗

x} for each 1 ≤ x ≤ �n
2
�. See Figure

3.7(a) for an illustration. Let Ft ⊆ V (Aht
n,2) and Ft = {t′′}. By Lemma 5(b), there exists a

hamiltonian path HP of A
〈n〉−{i,j1,...,jx}
n,2 −Ft joining t and v′. Thus 〈s, PPx, t

′, t′′, t, HP, v′, v,

RP, s〉 forms a hamiltonian cycle, and for each l ∈ {3, 4, 5, ..., |V (An,2)|
2

}, the distance
between s and t on the cycle is l.

Subcase 2.2.2: Suppose that PPx ∈ {P1, ..., Px} for each 1 ≤ x ≤ �n
2
�. See Figure

3.7(b) for an illustration. Assume that H1, H2 ∈ 〈n〉− {i, j1, ..., jx} and H1 ∩H2 = ∅. Let
ht, hy ∈ H1 and hv, hz ∈ H2. Let Fj ⊆ V (Ajx

n,2) and Fj = {px, qx}. Let y and z be two

distinct vertices in Ajx
n,2 − Fj . Since |N∗(y)| = |N∗(z)| = n − 2 ≥ �n

2
� for n ≥ 5, there

exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that y′ �= t, t′′ ∈ V (A
hy

n,2)

and z′ �= v′ ∈ V (Ahz
n,2), respectively. Ajx

n,2 − Fj is isomorphic to Kn−3, hence there is a

hamiltonian path HP from y to z in Ajx
n,2 − Fj . By Theorem 9 and Lemma 5(b), there

exist a hamiltonian path DP1 from t to y′ in AH1
n,2 − Ft and a hamiltonian path DP2

from v′ to z′ in AH2
n,2. Thus 〈s, PPx, t

′, t′′, t, DP1, y
′, y, HP, z, z′, DP2, v

′, v, RP, s〉 forms a

hamiltonian cycle, and for each l ∈ {3, 4, 5, ..., |V (An,2)|
2

}, the distance between s and t on
the cycle is l.

Subcase 2.3: Suppose that d(s, t) = 3 and n = 5. Let s and t be two distinct vertices
of A5,2 in Figure 3.8. By the vertex and edge symmetric properties, we may assume that
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Figure 3.8: The arrangement graph A5,2.

s = 12 and t = 21 for d(s, t) = 3. The corresponding hamiltonian cycle HC in A5,2 are
listed below.

dHC(s, t) The cycle HC
3 〈21, 23, 13, 12, 15, 25, 35, 45, 43, 53, 54, 14, 24, 34, 32, 42, 52, 51, 41, 31, 21〉
4 〈21, 31, 32, 42, 12, 52, 53, 13, 23, 43, 41, 51, 54, 14, 24, 34, 35, 45, 15, 25, 21〉
5 〈21, 31, 32, 42, 52, 12, 13, 53, 23, 43, 41, 51, 54, 14, 24, 34, 35, 45, 15, 25, 21〉
6 〈21, 31, 41, 42, 32, 52, 12, 13, 23, 43, 53, 51, 54, 14, 24, 34, 35, 45, 15, 25, 21〉
7 〈21, 31, 41, 51, 52, 42, 32, 12, 13, 23, 43, 53, 54, 14, 24, 34, 35, 45, 15, 25, 21〉
8 〈21, 31, 41, 51, 53, 52, 42, 32, 12, 13, 43, 23, 24, 14, 54, 34, 35, 45, 15, 25, 21〉
9 〈21, 31, 41, 51, 53, 43, 42, 32, 52, 12, 13, 23, 24, 14, 54, 34, 35, 45, 15, 25, 21〉
10 〈21, 31, 41, 51, 53, 13, 43, 42, 32, 52, 12, 15, 45, 35, 34, 54, 14, 24, 23, 25, 21〉

Hence the lemma follows.
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3.4 Panpositionable Hamiltonicity and Panconnec-

tivity of the Arrangement Graphs An,k

3.4.1 Panpositionable Hamiltonicity of the Arrangement Graphs
An,k

In this section, we show that the arrangement graph An,k is panpositionable hamiltonian
for k ≥ 1 and n − k ≥ 2.

Theorem 10. The arrangement graph An,k is panpositionable hamiltonian for all k ≥ 1
and n − k ≥ 2.

Proof. We prove this theorem by induction on k. By Lemma 7, An,1 is panpositionable
hamiltonian for all n ≥ 3. By Lemma 9, An,2 is panpositionable hamiltonian for all
n ≥ 4. Suppose that the result holds for An,k−1 for some k ≥ 3 and for all n− (k−1) ≥ 2.
We observe that An,k can be recursively constructed from n copies of An−1,k−1, and each
An−1,k−1 is panpositionable hamiltonian by inductive hypothesis, for all n − k ≥ 2. Let
s and t be two distinct vertices of An,k. Then for each l ∈ {d(s, t), d(s, t) + 1, d(s, t) +

2, ...,
|V (An,k)|

2
}, we shall find a hamiltonian cycle of An,k such that the distance between s

and t on the cycle is l. The basic idea of our construction is similar to that presented in
Lemma 9.

Case 1: s and t belong to the same subcomponent Ai
n,k. See Figure 3.9 for an illustration.

Suppose that s, t ∈ V (Ai
n,k) for some i ∈ 〈n〉. Since Ai

n,k is isomorphic to An−1,k−1, by
inductive hypothesis, for each l0 ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ..., |V (Ai

n,k)| − d(s, t)},
we can construct a hamiltonian cycle HCi of Ai

n,k such that the distance between s
and t on the cycle is l0. Let u and v be the two neighbors of t on HCi. Let HCi =
〈s, LP, u, t, v, RP, s〉, and let P0 = 〈s, LP, u, t〉. Without loss of generality, let L(P0) = l0.
By Proposition 2, d(t, u) = 1, we have |AS(t) ∩ AS(u)| = n − k − 1 ≥ 1 if n − k ≥ 2. It
means that we can find a subcomponent Aj1

n,k which j1 ∈ 〈n〉 − {i}, such that there exist

two disjoint edges (u, p1) and (t, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈ E(Aj1
n,k). Since

|N∗(t)| = n−k ≥ 2, we can find a subcomponent Aht
n,k different from Ai

n,k and Aj1
n,k, and a

vertex t′ ∈ V (Aht
n,k) such that (t, t′) ∈ Ei,ht for some ht ∈ 〈n〉 − {i, j1}. By Proposition 2,

d(t, v) ≤ 2 hence AS(t) ⊇ {j1, ht} and AS(t) �= AS(v), and |N∗(v)| = n − k ≥ 2, we can
find another subcomponent Ahv

n,k, and a vertex v′ ∈ V (Ahv
n,k) such that (v, v′) ∈ Ei,hv for

some hv ∈ 〈n〉 − {i, j1, ht}. By Lemma 4, there exists a hamiltonian path HP of A
〈n〉−{i}
n,k

joining t′ and v′. Thus 〈s, P0, t, t
′, HP, v′, v, RP, s〉 forms a hamiltonian cycle, and for

each l0 ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ..., |V (Ai
n,k)|−d(s, t)}, the distance between s and

t on the cycle is l0.
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Figure 3.9: Theorem 10, Case 1.

Now we present an algorithm called st-expansion to expand the path P0 between s
and t to various lengths. We describe the detail as follows.

We can insert one subcomponent of Aj1
n,k to P0 as follows. See Figure 3.10(a) for

an illustration. Because p1 and q1 are adjacent, we may regard them as in the same
subcomponent of Aj1

n,k, say C. C is isomorphic to An−2,k−2. By Theorem 9, there is a
hamiltonian path HP1 of C joining p1 and q1 with L(HP1) = |V (An−2,k−2)| − 1. We can
insert more than one subcomponent of Aj1

n,k to P0 as following. See Figure 3.10(b) for an

illustration. We regard p1 and q1 as in different subcomponents of Aj1
n,k. By Lemma 4,

there is a hamiltonian path HP1 joining p1 and q1 with L(HP1) = m|V (An−2,k−2)| − 1,
where m is the number of the subcomponents of Aj1

n,k we wanted to insert. Thus we can
construct a path HP1 between p1 and q1 such that L(HP1) = I1|V (An−2,k−2)| − 1 for
each integer I1 with 1 ≤ I1 ≤ n − 1. Let P1 = 〈s, LP, u, p1, HP1, q1, t〉. Thus we have

L(P1) = l0 + I1|V (An−2,k−2)| = l0 + I1(n−2)!
(n−k)!

. Since d(s, t) ≤ l0 ≤ |V (Ai
n,k)| − d(s, t),

we have I1(n−2)!
(n−k)!

+ d(s, t) ≤ L(P1) ≤ I1(n−2)!
(n−k)!

+ (n−1)!
(n−k)!

− d(s, t). For each 1 ≤ I1 ≤ n −
1, (I1−1)(n−2)!

(n−k)!
+ (n−1)!

(n−k)!
− d(s, t) ≥ I1(n−2)!

(n−k)!
+ d(s, t) if n ≥ 5. Therefore, for each l1 ∈

{d(s, t), d(s, t) + 1, d(s, t) + 2, ..., 2(n−1)!
(n−k)!

− d(s, t)}, we can construct a path P1 from s to t
such that the distance between s and t on the path is l1.

30



i�
k�n�A�,�

q�1�

p�1�

1�
,�
j�
k�n�A�

(a)�

s�

u�

t�

v�

LP�

RP�

P�1�

i�
k�n�A�,�

q�1�

p�1�

1�
,�
j�
k�n�A�

s�

u�

t�

v�

LP�

RP�

HP�1�

P�1�

(b)�

HP�1�

q�x�

p�x�

x�j�
k�n�A�,�

P�x�

(c)�

HP�x�

i�
k�n�A�,�

s�

u�

t�

LP�

RP�

u�x-�1�

t�x-�1�
p�x-�1�

q�x-�1�
v�

1�

,�
 �x�j�
k�n�A�

Figure 3.10: st-expansion.

Similar as above, we can expand the path between s and t more. For each 2 ≤ x ≤ �n
2
�,

let ux−1 and tx−1 be two adjacent vertices on HPx−1, where HPx−1 is a hamiltonian path of
A

jx−1

n,k joining px−1 and qx−1. By Proposition 1 and Proposition 2, there exist two distinct
edges (ux−1, px) and (tx−1, qx) in Ejx−1,jx for some jx ∈ 〈n〉−{i, ht, hv, j1, ..., jx−1} such that
(px, qx) ∈ E(Ajx

n,k). See Figure 3.10(c) for an illustration. We can insert one subcomponent

of Ajx

n,k to P0 as follows. Because px and qx are adjacent, we may regard them as in the

same subcomponent of Ajx

n,k, say C. C is isomorphic to An−2,k−2. By Theorem 9, there is
a hamiltonian path HPx of C joining px and qx with L(HPx) = |V (An−2,k−2)|−1. We can
insert more than one subcomponent of Ajx

n,k to P0 as follows. We regard px and qx as in

different subcomponents of Ajx

n,k. By Lemma 4, there is a hamiltonian path HPx joining px

and qx with L(HPx) = m|V (An−2,k−2)|−1, where m is the number of the subcomponents
of Ajx

n,k we wanted to insert. Thus we can construct a path HPx between px and qx such
that L(HPx) = Ix|V (An−2,k−2)| − 1 for each integer Ix with 1 ≤ Ix ≤ n − 1. Let Px =
〈s, LP, u, p1, ..., px, HPx, qx, ..., q1, t〉. Thus we have L(Px) = l0 + (x − 1)|V (An−1,k−1)| +

Ix|V (An−2,k−2)| = l0+ (x−1)(n−1)!
(n−k)!

+ Ix(n−2)!
(n−k)!

. Since d(s, t) ≤ l0 ≤ |V (Ai
n,k)|−d(s, t), we have

(x−1)(n−1)!
(n−k)!

+ Ix(n−2)!
(n−k)!

+d(s, t) ≤ L(Px) ≤ Ix(n−2)!
(n−k)!

+ x(n−1)!
(n−k)!

−d(s, t). For each 1 ≤ Ix ≤ n−1,
(Ix−1)(n−2)!

(n−k)!
+ x(n−1)!

(n−k)!
− d(s, t) ≥ Ix(n−2)!

(n−k)!
+ (x−1)(n−1)!

(n−k)!
+ d(s, t) if n ≥ 5. Therefore, for each

lx ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ..., (x+1)(n−1)!
(n−k)!

−d(s, t)}, we can construct a path Px from
s to t such that the distance between s and t on the path is lx by using st-expansion.

Notice that the maximal value of lx is
(�n

2
�+1)(n−1)!

(n−k)!
− d(s, t), which is greater than n!

2(n−k)!
,
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and
|V (An,k)|

2
= n!

2(n−k)!
. Hence for any integer l with d(s, t) ≤ l ≤ |V (An,k)|

2
, we can construct

a path joining s and t with the length of the path being l. We will use st-expansion for
the remaining cases of the proof.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 1.1: All the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤

�n
2
�. See Figure 3.9(a) for an illustration. By Lemma 4, there is a hamiltonian path

HP of A
〈n〉−{i,j1,...,jx}
n,k joining t′ and v′ which t′ ∈ V (Aht

n,k) and v′ ∈ V (Ahv
n,k). Thus

〈s, Px, t, t
′, HP, v′, v, RP, s〉 forms a hamiltonian cycle, and for each l ∈ {d(s, t), d(s, t) +

1, d(s, t) + 2, ...,
|V (An,k)|

2
}, the distance between s and t on the cycle is l.

Subcase 1.2: Not all the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

See Figure 3.9(b) for an illustration. Then we can find two adjacent vertices y and z in Ajx

n,k

which are not on the path Px. Let F ⊆ V (Px). By Proposition 1 and Proposition 2, there

exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that y′ �= t′ ∈ V (A
hy

n,k)

and z′ �= v′ ∈ V (Ahz
n,k), respectively. If Ajx

n,k − F is isomorphic to An−2,k−2, by Theorem

9, there is a hamiltonian path HP from y to z in Ajx

n,k − F . If Ajx

n,k − F contains more

than one subcomponents of Ajx

n,k, by Lemma 4 if k − 1 > 2, and by Lemma 5(a) if

k − 1 = 2, there is a hamiltonian path HP from y to z in Ajx

n,k − F . By Lemma 6,
there exist two disjoint paths DP1 and DP2, such that DP1 joins t′ and y′, and DP2

joins v′ and z′. Moreover, the two paths span all of the vertices in A
〈n〉−{i,j1,...,jx}
n,k . Thus

〈s, Px, t, t
′, DP1, y

′, y, HP, z, z′, DP2, v
′, v, RP, s〉 forms a hamiltonian cycle, and for each

l ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ...,
|V (An,k)|

2
}, the distance between s and t on the cycle

is l.

Case 2: s and t belong to different subcomponents of An,k. Suppose that s ∈ V (Ai
n,k)

and t ∈ V (Aj
n,k) for any i �= j ∈ 〈n〉. By Lemma 3, there exists a minimum length path

connecting s and t with the form 〈s, MP, t′′, t〉 or 〈s, MP, t′′, t′, t〉, where MP is a path in
Ai

n,k, t′′ ∈ V (Ai
n,k), and t′ ∈ V (Aj

n,k). Moreover, by considering the subcases of n − k > 2
and n − k = 2, we have the following four subcases:

Subcase 2.1: Suppose that n − k > 2, and the minimum length path connecting s
and t has the form 〈s, MP, t′′, t〉. Then d(s, t) = d(s, t′′) + 1. See Figure 3.11(a) for an
illustration. Since Ai

n,k is isomorphic to An−1,k−1, by inductive hypothesis, for each l0 ∈
{d(s, t′′), d(s, t′′) + 1, d(s, t′′) + 2, ..., |V (Ai

n,k)| − d(s, t′′)}, we can construct a hamiltonian
cycle HCi of Ai

n,k such that the distance between s and t′′ on the cycle is l0. Let u
and v be the two neighbors of t′′ on HCi. Let HCi = 〈s, LP, u, t′′, v, RP, s〉, and let
P0 = 〈s, LP, u, t′′, t〉. Without loss of generality, let L(P0) = l0 + 1. By Proposition 2,
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Figure 3.11: Theorem 10, Subcase 2.1 and Subcase 2.2.

d(t′′, u) = 1, we have |AS(t′′) ∩ AS(u)| = n − k − 1 > 1 if n − k > 2. It means that we
can find a subcomponent Aj1

n,k which j1 ∈ 〈n〉 − {i, j}, such that there exist two disjoint

edges (u, p1) and (t′′, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈ E(Aj1
n,k). By Proposition

2, d(t′′, v) ≤ 2 hence AS(t′′) ⊇ {j, j1}, and AS(t′′) �= AS(v), and |N∗(v)| = n − k > 2,
we can find a subcomponent Ahv

n,k, and a vertex v′ ∈ V (Ahv
n,k) such that (v, v′) ∈ Ei,hv for

some hv ∈ 〈n〉 − {i, j, j1}. By Lemma 4, there exists a hamiltonian path HP of A
〈n〉−{i}
n,k

joining t and v′. Thus 〈s, P0, t, HP, v′, v, RP, s〉 forms a hamiltonian cycle, and for each
l0 ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ..., |V (Ai

n,k)| − d(s, t) + 1}, the distance between s and
t on the cycle is l0.

Similar to Case 1, by using st′′-expansion, for any integer l′′ with d(s, t′′) ≤ l′′ ≤
|V (An,k)|

2
, we can construct a path joining s and t′′ with the length of the path being l′′.

Since d(s, t′′) = d(s, t) − 1, for any integer l with d(s, t) ≤ l ≤ |V (An,k)|
2

, we can construct
a path joining s and t with the length of the path being l.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 2.1.1: All the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

By Lemma 4, there is a hamiltonian path HP of A
〈n〉−{i,j1,...,jx}
n,k joining t and v′ which

t ∈ V (Aj
n,k) and v′ ∈ V (Ahv

n,k). Thus 〈s, Px, t
′′, t, HP, v′, v, RP, s〉 forms a hamiltonian
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cycle, and for each l ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ...,
|V (An,k)|

2
}, the distance between s

and t on the cycle is l.

Subcase 2.1.2: Not all the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

See Figure 3.11(a) for an illustration. Then we can find two adjacent vertices y and z in
Ajx

n,k which are not on the path Px. Let F ⊆ V (Px). By Proposition 1 and Proposition
2, there exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that y′ �= t′ ∈
V (A

hy

n,k) and z′ �= v′ ∈ V (Ahz
n,k), respectively. If Ajx

n,k − F is isomorphic to An−2,k−2, by

Theorem 9, there is a hamiltonian path HP from y to z in Ajx

n,k −F . If Ajx

n,k −F contains

more than one subcomponents of Ajx

n,k, by Lemma 4, there is a hamiltonian path HP

from y to z in Ajx

n,k − F . By Lemma 6, there exist two disjoint paths DP1 and DP2, such
that DP1 joins t and y′, and DP2 joins v′ and z′. Moreover, the two paths span all the
vertices in A

〈n〉−{i,j1,...,jx}
n,k . Thus 〈s, Px, t

′′, t, DP1, y
′, y, HP, z, z′, DP2, v

′, v, RP, s〉 forms a

hamiltonian cycle, and for each l ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ...,
|V (An,k)|

2
}, the distance

between s and t on the cycle is l.

Subcase 2.2: Suppose that n − k = 2, and the minimum length path connecting s
and t has the form 〈s, MP, t′′, t〉. Then d(s, t) = d(s, t′′) + 1. See Figure 3.11(b) for an
illustration. Since Ai

n,k is isomorphic to An−1,k−1, by inductive hypothesis, for each l0 ∈
{d(s, t′′), d(s, t′′) + 1, d(s, t′′) + 2, ..., |V (Ai

n,k)| − d(s, t′′)}, we can construct a hamiltonian
cycle HCi of Ai

n,k such that the distance between s and t′′ on the cycle is l0. Let u
and v be the two neighbors of t′′ on HCi. Let HCi = 〈s, LP, u, t′′, v, RP, s〉, and let
P0 = 〈s, LP, u, t′′, t〉. Without loss of generality, let L(P0) = l0 + 1. By Proposition 2,
d(t′′, u) = 1, we have |AS(t′′)∩AS(u)| = n−k−1 = 1 if n−k = 2. It means that we can
find a subcomponent Aj1

n,k which j1 ∈ 〈n〉 − {i}. If t /∈ V (Aj1
n,k), the proof is exactly the

same as Case 2.1. So we consider the case that t ∈ V (Aj1
n,k), that is, j1 = j. Let q1 = t.

There exist two disjoint edges (u, p1) and (t′′, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈
E(Aj1

n,k). By Proposition 2, d(t′′, v) ≤ 2 hence AS(t′′) = {j1}, and AS(t′′) �= AS(v).

Since |N∗(t′′)| = n − k = 2, we can find a subcomponent Aht
n,k, and a vertex t′ ∈ V (Aht

n,k)
such that (t′′, t′) ∈ Ei,ht for some ht ∈ 〈n〉 − {i, j1}. Since |N∗(v)| = n − k = 2 and
AS(t′′) �= AS(v), we can find a subcomponent Ahv

n,k, and a vertex v′ ∈ V (Ahv
n,k) such that

(v, v′) ∈ Ei,hv for some hv ∈ 〈n〉−{i, j1, ht}. By Lemma 4, there exists a hamiltonian path

HP of A
〈n〉−{i}
n,k joining t and v′. Thus 〈s, P0, t, HP, v′, v, RP, s〉 forms a hamiltonian cycle,

and for each l0 ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ..., |V (Ai
n,k)| − d(s, t) + 1}, the distance

between s and t on the cycle is l0.

By using st′′-expansion, for any integer l′′ with d(s, t′′) ≤ l′′ ≤ |V (An,k)|
2

, we can con-
struct a path joining s and t′′ with the length of the path being l′′. Therefore, for any

integer l with d(s, t) ≤ l ≤ |V (An,k)|
2

, we can construct a path joining s and t with the

34



length of the path being l.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 2.2.1: All the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

By Lemma 4, there is a hamiltonian path HP of A
〈n〉−{i,j1,...,jx}
n,k joining t′ and v′ where

t′ ∈ V (Aht
n,k) and v′ ∈ V (Ahv

n,k). Thus 〈s, Px, t, t
′′, t′, HP, v′, v, RP, s〉 forms a hamiltonian

cycle, and for each l ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ...,
|V (An,k)|

2
}, the distance between s

and t on the cycle is l.

Subcase 2.2.2: Not all the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

See Figure 3.11(b) for an illustration. Then we can find two adjacent vertices y and z in
Ajx

n,k which are not on the path Px. Let F ⊆ V (Px). By Proposition 1 and Proposition
2, there exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that y′ �= t′ ∈
V (A

hy

n,k) and z′ �= v′ ∈ V (Ahz
n,k), respectively. If Ajx

n,k − F is isomorphic to An−2,k−2, by

Theorem 9, there is a hamiltonian path HP from y to z in Ajx

n,k −F . If Ajx

n,k −F contains

more than one subcomponents of Ajx

n,k, by Lemma 4, there is a hamiltonian path HP

from y to z in Ajx

n,k − F . By Lemma 6, there exist two disjoint paths DP1 and DP2,
such that DP1 joins t′ and y′, and DP2 joins v′ and z′. Moreover, the two paths span all
of the vertices in A

〈n〉−{i,j1,...,jx}
n,k . Thus 〈s, Px, t, t

′′, t′, DP1, y
′, y, HP, z, z′, DP2, v

′, v, RP, s〉
forms a hamiltonian cycle, and for each l ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ...,

|V (An,k)|
2

}, the
distance between s and t on the cycle is l.

Subcase 2.3: Suppose that n − k > 2, and the minimum length path connecting s
and t has the form 〈s, MP, t′′, t′, t〉. Then d(s, t) = d(s, t′′) + 2. See Figure 3.12(a)
for an illustration. Since Ai

n,k is isomorphic to An−1,k−1, by inductive hypothesis, for
each l0 ∈ {d(s, t′′), d(s, t′′) + 1, d(s, t′′) + 2, ..., |V (Ai

n,k)| − d(s, t′′)}, we can construct a
hamiltonian cycle HCi of Ai

n,k such that the distance between s and t′′ on the cycle is l0.
Let u and v be the two neighbors of t′′ on HCi. Let HCi = 〈s, LP, u, t′′, v, RP, s〉, and let
P0 = 〈s, LP, u, t′′, t′, t〉. Without loss of generality, let L(P0) = l0 + 2. By Proposition 2,
d(t′′, u) = 1, we have |AS(t′′) ∩ AS(u)| = n − k − 1 > 1 if n − k > 2. It means that we
can find a subcomponent Aj1

n,k which j1 ∈ 〈n〉 − {i, j}, such that there exist two disjoint

edges (u, p1) and (t′′, q1) in Ei,j1. By Proposition 1, (p1, q1) ∈ E(Aj1
n,k). By Proposition

2, d(t′′, v) ≤ 2 hence AS(t′′) ⊇ {j, j1}, and AS(t′′) �= AS(v), and |N∗(v)| = n − k > 2,
we can find a subcomponent Ahv

n,k, and a vertex v′ ∈ V (Ahv
n,k) such that (v, v′) ∈ Ei,hv for

some hv ∈ 〈n〉 − {i, j, j1}. Let F ⊆ V (An,k) and F ′ = {t′}. By Lemma 4, there exists

a hamiltonian path HP of A
〈n〉−{i}
n,k − F ′ joining t and v′. Thus 〈s, P0, t, HP, v′, v, RP, s〉

forms a hamiltonian cycle, and for each l0 ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ..., |V (Ai
n,k)| −

d(s, t) + 2}, the distance between s and t on the cycle is l0.
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Figure 3.12: Theorem 10, Subcase 2.3 and Subcase 2.4.

By using st′′-expansion, for any integer l′′ with d(s, t′′) ≤ l′′ ≤ |V (An,k)|
2

, we can con-
struct a path joining s and t′′ with the length of the path being l′′. Since d(s, t′′) =

d(s, t) − 2, for any integer l with d(s, t) ≤ l ≤ |V (An,k)|
2

, we can construct a path joining s
and t with the length of the path being l.

To construct a hamiltonian cycle, we consider two subcases:

Subcase 2.3.1: All the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

By Lemma 4, there is a hamiltonian path HP of A
〈n〉−{i,j1,...,jx}
n,k −F ′ joining t and v′ which

F ′ = {t′}, t ∈ V (Aj
n,k) and v′ ∈ V (Ahv

n,k). Thus 〈s, Px, t
′′, t′, t, HP, v′, v, RP, s〉 forms a

hamiltonian cycle, and for each l ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ...,
|V (An,k)|

2
}, the distance

between s and t on the cycle is l.

Subcase 2.3.2: Not all the vertices of A
{j1,...,jx}
n,k are on the path Px for some 1 ≤ x ≤ �n

2
�.

See Figure 3.12(a) for an illustration. Then we can find two adjacent vertices y and z
in Ajx

n,k which are not on the path Px. Let F ⊆ V (Px). By Proposition 1 and Propo-
sition 2, there exist two distinct edges (y, y′) ∈ Ejx,hy and (z, z′) ∈ Ejx,hz such that

y′ �= t′ ∈ V (A
hy

n,k) and z′ �= v′ ∈ V (Ahz
n,k), respectively. If Ajx

n,k − F is isomorphic to

An−2,k−2, by Theorem 9, there is a hamiltonian path HP from y to z in Ajx

n,k − F .

If Ajx

n,k − F contains more than one subcomponents of Ajx

n,k, by Lemma 4, there is a

hamiltonian path HP from y to z in Ajx

n,k − F . By Lemma 6, there exist two disjoint
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paths DP1 and DP2, such that DP1 joins t and y′, and DP2 joins v′ and z′. More-
over, the two paths span all the vertices in A

〈n〉−{i,j1,...,jx}
n,k − F ′ which F ′ = {t′}. Thus

〈s, Px, t
′′, t′, t, DP1, y

′, y, HP, z, z′, DP2, v
′, v, RP, s〉 forms a hamiltonian cycle, and for

each l ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ...,
|V (An,k)|

2
}, the distance between s and t on

the cycle is l.

Subcase 2.4: Suppose that n − k = 2, and the minimum length path connecting s
and t has the form 〈s, MP, t′′, t′, t〉. Then d(s, t) = d(s, t′′) + 2. See Figure 3.12(b)
for an illustration. Since Ai

n,k is isomorphic to An−1,k−1, by inductive hypothesis, for
each l0 ∈ {d(s, t′′), d(s, t′′) + 1, d(s, t′′) + 2, ..., |V (Ai

n,k)| − d(s, t′′)}, we can construct a
hamiltonian cycle HCi of Ai

n,k such that the distance between s and t′′ on the cycle is l0.
Let u and v be the two neighbors of t′′ on HCi. Let HCi = 〈s, LP, u, t′′, v, RP, s〉, and let
P0 = 〈s, LP, u, t′′, t′, t〉. Without loss of generality, let L(P0) = l0 + 2. By Proposition 2,
d(t′′, u) = 1, we have |AS(t′′)∩AS(u)| = n−k−1 = 1 if n−k = 2. It means that we can
find a subcomponent Aj1

n,k which j1 ∈ 〈n〉− {i}. If t, t′ /∈ V (Aj1
n,k), the proof is exactly the

same as Subcase 2.3. So we consider the case that t, t′ ∈ V (Aj1
n,k), that is, j1 = j. There

exist two disjoint edges (u, p1) and (t′′, t′) in Ei,j1. By Proposition 1, (p1, t
′) ∈ E(Aj1

n,k). By
Proposition 2, d(t′′, v) ≤ 2 hence AS(t′′) = {j1}, and AS(t′′) �= AS(v). Since |N∗(t′′)| =
n − k = 2, we can find a subcomponent Aht

n,k, and a vertex t∗ ∈ V (Aht
n,k) such that

(t′′, t∗) ∈ Ei,ht for some ht ∈ 〈n〉−{i, j1}. Since |N∗(v)| = n−k = 2 and AS(t′′) �= AS(v),
we can find a subcomponent Ahv

n,k, and a vertex v′ ∈ V (Ahv
n,k) such that (v, v′) ∈ Ei,hv for

some hv ∈ 〈n〉 − {i, j1, ht}. Let F ⊆ V (An,k) and F ′ = {t∗}. By Lemma 4, there exists a

hamiltonian path HP of A
〈n〉−{i}
n,k joining t and v′. Thus 〈s, P0, t, HP, v′, v, RP, s〉 forms a

hamiltonian cycle, and for each l0 ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ..., |V (Ai
n,k)|−d(s, t)+1},

the distance between s and t on the cycle is l0.

Now we modify st-expansion slightly to expand the path P0 between s and t to various
lengths. We describe the detail as follows.

For n = 5, that is, A5,3, we have d(s, t) = 4 in this subcase. As we describe above,
〈s, LP, u, t′′, t, HP, v′, v, RP, s〉 forms a hamiltonian cycle, and for each l0 ∈ {4, 5, 6, ..., 12},
the distance between s and t on the cycle is l0. Let Fj ⊆ V (Aj1

n,k) and Fj = {t′}. By

Theorem 9, we can find a hamiltonian path HP1 of Aj1
n,k − Fj joining p1 and t. Let P1 =

〈s, LP, u, p1, HP1, t〉. We have 11 ≤ L(P1) ≤ 19. Therefore, for each l1 ∈ {4, 5, 6, ..., 19},
we can construct a path P1 from s to t such that the distance between s and t on the
path is l1 in A5,3. Suppose that n ≥ 6. We can insert one subcomponent of Aj1

n,k, which
is isomorphic to An−2,k−2, to P0 as follows. Because d(p1, t) = 2 which is less than the
diameter of An−2,k−2, and by the symmetric property of the arrangement graph, we may
regard p1 and t as in the same subcomponent of Aj1

n,k, say C. By Lemma 4, there is a
hamiltonian path HP1 of C − Fj joining p1 and t with L(HP1) = |V (An−2,k−2)| − 2. Let
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C∗ be the m subcomponents of Aj1
n,k we wanted to insert to P0, where m is the number

of the subcomponents of Aj1
n,k. We regard p1 and t as in different subcomponents of

Aj1
n,k. By Lemma 4, there is a hamiltonian path HP1 of C∗ − Fj joining p1 and t with

L(HP1) = m|V (An−2,k−2)|−2. Thus we can construct a path HP1 between p1 and t such
that L(HP1) = I1|V (An−2,k−2)| − 2 for each integer I1 with 1 ≤ I1 ≤ n − 1. Let P1 =

〈s, LP, u, p1, HP1, t〉. Thus we have L(P1) = l0+I1|V (An−2,k−2)|−2 = l0+
I1(n−2)!
(n−k)!

−2. Since

d(s, t)− 2 ≤ l0 ≤ |V (Ai
n,k)| − d(s, t)+ 2, we have I1(n−2)!

(n−k)!
+ d(s, t)− 4 ≤ L(P1) ≤ I1(n−2)!

(n−k)!
+

(n−1)!
(n−k)!

−d(s, t). For each 1 ≤ I1 ≤ n−1, (I1−1)(n−2)!
(n−k)!

+ (n−1)!
(n−k)!

−d(s, t) ≥ I1(n−2)!
(n−k)!

+d(s, t)−4

if n ≥ 6. Therefore, for each l1 ∈ {d(s, t), d(s, t)+1, d(s, t)+2, ..., 2(n−1)!
(n−k)!

−d(s, t)}, we can
construct a path P1 from s to t such that the distance between s and t on the path is l1.
Then, similar to st-expansion we described in Case 1, we can expand the path between s
and t such that for each lx ∈ {d(s, t), d(s, t) + 1, d(s, t) + 2, ..., (x+1)(n−1)!

(n−k)!
− d(s, t)}, we can

construct a path Px from s to t such that the distance between s and t on the path is lx.

Hence for any integer l with d(s, t) ≤ l ≤ |V (An,k)|
2

, we can construct a path joining s and
t with the length of the path being l.

To construct a hamiltonian cycle, the proof is the same as that given in Subcase 2.2.1
and Subcase 2.2.2 by replacing vertex t′ in Subcase 2.2 with vertex t∗ in this subcase.

Hence the theorem is proved.

3.4.2 Panconnectivity of the Arrangement Graphs An,k

In this subsection, we will prove that the arrangement graph An,k is panconnected for all
n ≥ 3 and n − k ≥ 2 by applying the above theorem.

Theorem 11. The arrangement graph An,k is panconnected for all n ≥ 3 and n− k ≥ 2.

Proof. For k = 1, by Lemma 7, An,1 is panconnected for all n ≥ 3. Chiang and Chen [8]
showed that the An,n−2 is isomorphic to the n-alternating group graph AGn, and Chang et
al. [7] proved that AGn is panconnected for all n ≥ 4. Hence the result holds for n ≥ 4 and
k = n− 2. Now we prove that An,k is panconnected for all n ≥ 5 and n− k > 2. Suppose
that u and v are any two distinct vertices in An,k. By Theorem 10, An,k is panpositionable
hamiltonian. That is, for each integer l with d(u, v) ≤ l ≤ |V (An,k)| − d(u, v), we can
construct a path P of length l joining u and v.

For each integer l with |V (An,k)| − d(u, v) + 1 ≤ l ≤ |V (An,k)| − 1, we can construct a
path P of length l joining u and v as following. The diameter of An,k is �3k

2
�, and we have
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d(u, v) ≤ �3k
2
�. By Theorem 9, An,k is k(n− k)− 3 fault tolerant hamiltonian connected.

For n ≥ 5 and n − k > 2, we have k(n − k) − 3 ≥ �3k
2
� − 1. That means that for each

integer l with |V (An,k)| − d(u, v) + 1 ≤ l ≤ |V (An,k)| − 1, we can construct a path P of
length l joining u and v by regarding the vertices not in P as faulty vertices. Therefore,
for each integer l with d(u, v) ≤ l ≤ |V (An,k)| − 1, there is a path of length l joining u
and v in An,k. The theorem is proved.

Example. There are 60 vertices in A5,3, and the diameter of A5,3 is 4. Let u and v be
two vertices in A5,3 with d(u, v) = 4. By the panpositionable hamiltonian property, we
can find a path joining u and v with length l ∈ {4, 5, 6, ..., 56}. Let F ⊆ V (A5,3)−{u, v}.
We can find three paths of length 57, 58, and 59 joining u and v with |F | = 2, |F | = 1,
and |F | = 0 respectively.

By choosing two adjacent vertices u and v and applying the above theorem, we can
obtain the following corollary immediately.

Corollary 2. The arrangement graph An,k is pancyclic for all n ≥ 3 and n − k ≥ 2.

3.5 The Spanning Diameter of the Arrangement Graphs

Another important issue in the design of an interconnection network is connectivity. The
connectivity of G, κ(G) is the minimum number of nodes whose removal leaves the re-
maining graph disconnected or trivial. Let G = (V, E) be a graph with connectivity
κ(G) = κ. It follows from Menger’s Theorem [36] that there are l internally node-disjoint
(abbreviated as disjoint) paths joining any two vertices u and v when l ≤ κ(G). A
container C(u, v) between two distinct vertices u and v in G is a set of disjoint paths
between u and v. The width of a C(u, v), written as w(C(u, v)), is its cardinality. A
w-container is a container of width w. The length of a C(u, v), written as l(C(u, v)), is
the length of the longest path in C(u, v). The w-wide distance between u and v, δw(u, v),
is min{l(C(u, v)) | C(u, v) is w-container}.

In this section, we are interesting in a particular type of containers. A w-container
C(u, v) is a w∗-container if every vertex of G is incident with a path in C(u, v). A
graph G is w∗-connected if there exists a w∗-container between any two distinct vertices
u and v. Obviously, a graph G is 1∗-connected if and only if it is hamiltonian connected.
Moreover, a graph G is 2∗-connected if it is hamiltonian. The study of w∗-connected graph
is motivated by the globally 3∗-connected graphs proposed by Albert, Aldred, and Holton
[4]. A globally 3∗-connected graph is a 3-regular 3∗-connected graph. We also define
w∗-distance between any two vertices u and v, dsL

w (u, v), to be min{l(C(u, v)) | C(u, v) is
w∗-container}. The w∗L-spanning diameter of G, denoted by DsL

w (G), as the maximum
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number of dsL
w (u, v). Lin et al. studied the spanning diameter of the star graphs in [31].

It is proved that DsL

κ(Sn)(Sn) = n!
n−2

+ 1 and DsL
2 (Sn) = n!

2
+ 1.

In this section, we will discuss about the spanning diameter of the arrangement graphs

An,k. We will prove that DsL
2 (An,k) =

|V (An,k)|
2

= n!
2(n−k)!

if k ≥ 2 and n−k ≥ 2 by applying
the panpositionable hamiltonian property of the arrangement graphs. Assume that x and
y are any two distinct vertices in the arrangement graph An,k with k ≥ 2 and n − k ≥ 2.
Now we prove that there exist two internally-disjoint paths P1 and P2 joining x and y

such that P1 ∪ P2 spans An,k and L(Pi) =
|V (An,k)|

2
= n!

2(n−k)!
for i = 1, 2.

Theorem 12. Suppose that k ≥ 2 and n − k ≥ 2. Then dsL
2 (x, y) =

|V (An,k)|
2

= n!
2(n−k)!

for any two vertices x and y in the arrangement graph An,k. That is, the 2∗L-diameter

DsL
2 (An,k) =

|V (An,k)|
2

= n!
2(n−k)!

.

Proof. By Theorem 10, for any two different vertices x and y in the arrangement graph
An,k and for any integer l satisfying d(x, y) ≤ l ≤ |V (An,k)| − d(x, y), there exists a
hamiltonian cycle of An,k such that the relative distance of x and y on the cycle is l. Since

the diameter of An,k is �3k
2
�, d(x, y) ≤ �3k

2
�. Then �3k

2
� ≤ |V (An,k)|

2
≤ |V (An,k)|−�3k

2
�. Let

l =
|V (An,k)|

2
, we can find a hamiltonian cycle C = 〈x, P1, y, P2, x〉 of An,k such that the

distance between x and y on C is
|V (An,k)|

2
. Obviously, P1 and P2 forms a 2∗-container.

Moreover, L(P1) =
|V (An,k)|

2
= n!

2(n−k)!
, and P2 =

|V (An,k)|
2

= n!
2(n−k)!

. Hence the statement
follows.

For a graph G with even vertices, DsL
2 (G) ≥ |V (G)|

2
. The arrangement graph An,k with

k ≥ 2 has even vertices, thus our result about the 2∗L-diameter of An,k is optimal.
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Chapter 4

The Globally Bi-3∗-Connected
Property of the Honeycomb
Rectangular Torus

We discuss another property about the connectivity of an interconnection network called
globally 3∗-connected property. Suppose that x and y are two vertices in a graph G.
If there exist three internally-disjoint paths joining x and y such that these three paths
span all the vertices in G, we say that G is globally 3∗-connected. In this chapter, we will
show that in any honeycomb rectangular torus HReT(m, n), there exist three internally-
disjoint spanning paths joining x and y whenever x and y belong to different partite sets.
Moreover, for any pair of vertices x and y in the same partite set, there exists a vertex
z in the partite set not containing x and y, such that there exist three internally-disjoint
spanning paths of G − {z} joining x and y. Furthermore, for any three vertices x, y and
z of the same partite set there exist three internally-disjoint spanning paths of G − {z}
joining x and y if and only if n ≥ 6 or m = 2.

4.1 Honeycomb Rectangular Torus

We give a review of the idea of w∗-container, and introduce the concept of globally bi-3∗-
connected graphs in the following subsection. Then we give the definition of the honey-
comb rectangular torus in subsection 4.1.2.
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4.1.1 Globally Bi-3∗-Connected Graphs

As we introduced in section 3.5, a k-container Ck(x, y) in a graph G is a set of k internally
vertex-disjoint paths between x and y. A k∗-container Ck∗(x, y) in a graph G is a k-
container such that every vertex of G is on some path in Ck(x, y). Let G be a k-connected
graph, it follows from Menger’s Theorem [36] that there exists a k-container between
any two different vertices of G. A graph G is k∗-connected if there exists a k∗-container
between any two distinct vertices in G. Obviously, a graph G is 1∗-connected if and only if
it is hamiltonian connected. Moreover, a graph G is 2∗-connected if it is hamiltonian. The
study of k∗-connected graph is motivated by the 3∗-connected graphs proposed by Albert
et al. [4]. In [4], Albert et al. first studied those cubic 3-connected graphs such that
there exists a 3∗-container between any pair of vertices. Such graphs are called globally
3∗-connected graphs.

Since every globally 3∗-connected graph is cubic, it contains an even number of vertices.
Assume that G = (V1 ∪ V2, E) is a cubic 3-connected bipartite graphs with bipartition V1

and V2 such that |V1| ≥ |V2| ≥ 2. Let x and y be two distinct vertices in V2. Assume that
there exists a 3∗-container C3∗(x, y) = {P1, P2, P3} in G. Suppose that there are ai vertices
of V1 in Pi for i = 1, 2, 3. Obviously, there are ai + 1 vertices of V2 in Pi for i = 1, 2, 3.
Hence, there are a1 + a2 + a3 vertices of V1 incidence with P1 ∪ P2 ∪ P3 and there are
(a1 +1)+(a2 +1)+(a3 +1)−4 = a1 +a2 +a3−1 vertices of V2 incidence with P1∪P2∪P3.
Therefore, any cubic 3-connected bipartite graph is not globally 3∗-connected.

For this reason, we say that a cubic bipartite graph G = (V1 ∪ V2, E) is globally bi-3∗-
connected if there exists a 3∗-container between any pair of vertices of the different partite
sets. Obviously, |V1| = |V2| in any globally bi-3∗-connected with bipartition V1 and V2.
Furthermore, a globally bi-3∗-connected graph is hyper if there exists a C3∗(x, y) in G−{z}
for any three vertices x,y, and z of the same partite set of G. A globally bi-3∗-connected
graph is strong if for any x and y in the same partite set of G, there exists a vertex z of
the same partite set as the one that contains x and y such that G − {z} has a C3∗(x, y).
Obviously, any globally bi-3∗-connected is strong if it is hyper. The concept of globally
bi-3∗-connected, hyper globally bi-3∗-connected, and strong globally bi-3∗-connected was
proposed by Kao et al. [26]. It is proved that G − {e} is hamiltonian for any e ∈ E(G)
if G is globally bi-3∗-connected. Moreover, G − {x, y} is hamiltonian for any x ∈ V1 and
y ∈ V2 if G is hyper globally bi-3∗-connected.

4.1.2 Honeycomb Rectangular Torus HReT(m, n)

Assume that m and n are positive even integers with n ≥ 4. The honeycomb rectangular
torus HReT(m, n), introduced by Stojmenovic [40], is an alternative to existing networks
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Figure 4.1: The honeycomb rectangular torus HReT(6,8).

such as mesh-connected networks in parallel and distributed computing. There are many
studies on the properties of HReT(m, n) [9, 35, 40]. Stojmenovic [40] showed that the
network cost of the honeycomb rectangular torus, which is defined as the product of degree
and the diameter, is better than the other families based on mesh-connected computers
and tori. Megson et al. [35] established the hamiltonian property of honeycomb torus.
In particular, Cho and Hsu [9] proved that HReT(m, n) − e is hamiltonian for any edge
e ∈ E(HReT(m, n)). Furthermore, HReT(m, n) − {x, y} is hamiltonian for any x ∈ V0

and y ∈ V1 if n ≥ 6.

For any two positive integers r and s, we use [r]s to denote r (mod s). We use the brick
drawing, proposed in [40], to define the honeycomb rectangular torus. The honeycomb
rectangular torus HReT(m, n) is the graph with the vertex set {(i, j) | 0 ≤ i < m, 0 ≤ j <
n} such that (i, j) and (k, l) are adjacent if they satisfy one of the following conditions:

1. i = k and j = [l ± 1]n;

2. j = l and k = [i + 1]m if i + j is odd; and

3. j = l and k = [i − 1]m if i + j is even.

For example, the graph HReT(6, 8) is shown in Figure 4.1. It is easy to see that
HReT(m, n) is a bipartite graph with bipartition V0 and V1 where V0 = {(i, j) | i + j is
even} and V1 = {(i, j) | i + j is odd}. Moreover, |V0| = |V1|.

Based on Menger’s Theorem [36], the 3-connected property of the honeycomb rect-
angular torus HReT(m, n) can be derived. In this chapter, we study the globally bi-3∗-
connected property of the honeycomb rectangular torus HReT(m, n). We prove that any
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honeycomb rectangular torus HReT(m, n) is strongly globally bi-3∗-connected. Moreover,
HReT(m, n) is hyper globally bi-3∗-connected if and only if n ≥ 6 or m = 2.

4.2 A Basic Algorithm

In this section, we present an algorithm. The purpose of this algorithm is to extend a
3∗-container C3∗(x, y) = {P1, P2, P3} of HReT(m, n) to a 3∗-container of HReT(m+2, n).

Algorithm 1. For 0 ≤ i ≤ m − 1, let fi : V (HReT(m, n)) → V (HReT(m + 2, n)) be a
function so assigned

fi(k, l) =

{
(k, l) if i ≥ k ≥ 0
(k + 2, l) otherwise.

For 0 ≤ i ≤ m−1 and 0 ≤ j, k ≤ n−1, let Qi(j, [j+k]n) denote the path 〈(i, [j]n), (i, [j+
1]n), (i, [j + 2]n), ..., (i, [j + k]n)〉 in HReT(m, n). Suppose that C3(x, y) is a 3-container
of HReT(m, n) containing at least one edge joining vertices of column i to vertices of
column [i + 1]m; i.e., ((i, j), ([i + 1]m, j)) in E(C3(x, y)) for some 0 ≤ j ≤ n − 1. Let
0 ≤ k0 < k1 < ... < kt ≤ n − 1 be the indices such that ((i, kj), (i + 1, kj)) ∈ E(C3(x, y)).
We construct C

′
3,i(x, y) as follows:

Let C3,i(x, y) be the image of C3(x, y) − {((i, kj), (i + 1, kj)) | 0 ≤ kj ≤ n − 1} under
fi. We set j′ = [j](t+1) and define Aj as

〈(i, [kj]n), ([i + 1]m+2, [kj]n), Q[i+1]m+2([kj ]n, [kj′ − 1]n), ([i + 1]m+2, [kj′ − 1]n),

([i + 2]m+2, [kj′ − 1]n), Q
−1
[i+2]m+2

([kj]n, [kj′ − 1]n), ([i + 2]m+2, [kj]n), ([i + 3]m+2, [kj]n)〉.

Obviously, Aj is a path joining (i, [kj]n) and (i + 3, [kj]n) for 0 ≤ j < t. It is easy
to see that edges of C3,i(x, y) together with edges of Aj , with 0 ≤ j ≤ t form a 3-
container C

′
3,i(x, y) of HReT(m + 2, n). For example, a 3∗-container C3∗((0, 0), (2, 2)) of

HReT(4, 12) − {(1, 7)} is shown in Figure 4.2(a). The corresponding C
′
3,1((0, 0), (2, 2)) is

shown in Figure 4.2(b). We have the following lemma.

Lemma 10. Suppose that C3(x, y) is a 3-container of HReT(m, n) containing at least one
edge joining vertices of column i to vertices of column [i + 1]m. Then C

′
3,i(x, y) forms a

3-container of HReT(m+2, n) containing at least one edge joining the vertices of column l
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(a)� (b)�

Figure 4.2: Illustrations for Algorithm 1.

to the vertices of column [l+1]m for any l ∈ {i, [i+1]m, [i+2]m}. Moreover, C
′
3∗,i(x, y) is a

3∗-container of HReT(m+2, n) if C3∗(x, y) is a 3∗-container of HReT(m, n). Furthermore,
C ′

3∗,i(x, y) is a 3∗-container of HReT(m + 2, n) − {fi(z)} if C3∗(x, y) is a 3∗-container of
HReT(m, n) − {z}.
Lemma 11. Suppose that C3(x, y) is a 3-container of HReT(2, n) containing at least one
edge in {((0, j), (1, j)) | j is odd} and at least one edge in {((0, j), (1, j)) | j is even}.
Then C ′

3,i(x, y) with i ∈ {0, 1} forms a 3-container of HReT(4, n) containing at least one
edge joining the vertices of column l to the vertices of column l +1 for any l ∈ {0, 1, 2, 3}.
Moreover, C

′
3∗,i(x, y) is a 3∗-container of HReT(m + 2, n) if C3∗(x, y) is a 3∗-container of

HReT(m, n). Furthermore, C ′
3∗,i(x, y) is a 3∗-container of HReT(m + 2, n) − {fi(z)} if

C3∗(x, y) is a 3∗-container of HReT(m, n) − {z}.

With Lemma 10 and Lemma 11, we say a 3-container C3(x, y) of HReT(2, n) is regular
if C3(x, y) contains at least one edge in {((0, j), (1, j)) | j is odd} and at least one edge
in {((0, j), (1, j)) | j is even}. Assume that m ≥ 4. We say a 3-container C3(x, y) of
HReT(m, n) is regular if C3(x, y) contains at least one edge joining vertices in column i
to vertices in column [i + 1]m for 0 ≤ i ≤ m − 1. We have the following lemma.

Lemma 12. Suppose that C3∗(x, y) is a regular 3∗-container for HReT(m, n). Then
C ′

3∗,i(x, y) is a regular 3∗-container for HReT(m + 2, n) for every 0 ≤ i < m. Moreover,
suppose that C3∗(x, y) is a regular 3∗-container for HReT(m, n)−{z}. Then C ′

3∗,i(x, y) is
a regular 3∗-container for HReT(m + 2, n) − {fi(z)} for every 0 ≤ i < m.
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4.3 The Globally Bi-3∗-Connected Property of Hon-

eycomb Rectangular Torus HReT(2,n)

We first discuss the globally bi-3∗-connected property of the honeycomb rectangular
torus HReT(m, n) for m = 2. Then we show the globally bi-3∗-connected properties
of HReT(m, n) for m = 2 and general m in sections 4.4 and 4.5, respectively.

For h = {0, 1} and 0 ≤ j, k ≤ n−1, let Rh(j, [j+k]n) denote the path 〈(h, [j]n), (h, [j+
1]n), ([h + 1]m, [j + 1]n), ([h + 1]m, [j + 2]n), (h, [j + 2]n), ..., ([h + 1]m, [j + k − 1]n), (h, [j +
k − 1]n), (h, [j + k]n)〉 in HReT(2, n).

Lemma 13. Let x and y be any two vertices of HReT(2, n) = (V0 ∪ V1, E) with x ∈ V0

and y ∈ V1. Then there exists a regular 3∗-container C3∗(x, y) of HReT(2, n). Hence
HReT(2, n) is globally bi-3∗-connected.

Proof. Without loss of generality, we may assume that x = (0, 0) and y = (i, j). In order
to prove this lemma, we will construct a regular 3∗-container C3∗(x, y) = {P1, P2, P3} in
HReT(2, n). We have the following cases:

Case 1: i = 0 and j is odd. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j)〉;
P2 = 〈(0, j), R0(j, 0), (0, 0)〉;
P3 = 〈(0, 0), (1, 0), Q1(0, j), (1, j), (0, j)〉.

Case 2: i = 1 and j is even.

Case 2.1: j = 0. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, n − 2), (0, n − 2), (1, n − 2), Q−1
1 (0, n − 2), (1, 0)〉;

P2 = 〈(0, 0), (1, 0)〉;
P3 = 〈(0, 0), (0, n− 1), (1, n − 1), (1, 0)〉.

Case 2.2: j > 0. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j), (1, j)〉;
P2 = 〈(1, j), (1, j + 1), (0, j + 1), R0(j + 1, 0), (0, 0)〉;
P3 = 〈(0, 0), (1, 0), Q1(0, j), (1, j)〉.

Hence HReT(2, n) is globally bi-3∗-connected. See Figure 4.3 for illustrations.
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Figure 4.3: Illustrations for Lemma 13.

Lemma 14. Let x, y, and z be any three different vertices of HReT(2, n) = (V0 ∪ V1, E)
in V0. Then there exists a regular 3∗-container C3∗(x, y) of HReT(2, n) − {z}. Hence
HReT(2, n) is hyper globally bi-3∗-connected.

Proof. Without loss of generality, we may assume that x = (0, 0), y = (i, j), and z =
(k, l). In order to prove this lemma, we will construct a regular 3∗-container C3∗(x, y) =
{P1, P2, P3} in HReT(2, n) − {z}. We have the following cases:

Case 1: i = 0. Then j is even.

Case 1.1: k = 0. Then l is even. By the symmetric property of HReT(2, n), we may
assume that l < j. The corresponding paths are:

P1 = 〈(0, j), Q0(j, 0), (0, 0)〉;
P2 = 〈(0, 0), R0(0, l − 1), (0, l − 1), (1, l − 1), (1, l), (1, l + 1), (0, l + 1),

R0(l + 1, j), (0, j)〉;
P3 = 〈(0, j), (1, j), Q1(j, 0), (1, 0), (0, 0)〉.

Case 1.2: k = 1. Then l is odd. By the symmetric property of HReT(2, n), we may
assume that l < j. The corresponding paths are:

P1 = 〈(0, j), Q0(j, 0), (0, 0)〉;
P2 = 〈(0, 0), R0(0, l), (0, l), R0(l, j), (0, j)〉;
P3 = 〈(0, j), (1, j), Q1(j, 0), (1, 0), (0, 0)〉.
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Figure 4.4: Illustrations for Lemma 14.

Case 2: i = 1. Then j is odd. k = 0. Then l is even. By the symmetric property of
HReT(2, n), we may assume that l < j. The corresponding paths are:

P1 = 〈(1, j), (0, j), Q0(j, 0), (0, 0)〉;
P2 = 〈(0, 0), R0(0, l − 1), (0, l − 1), (1, l − 1), (1, l), (1, l + 1), (0, l + 1),

R0(l + 1, j − 1), (0, j − 1), (1, j − 1), (1, j)〉;
P3 = 〈(1, j), Q1(j, 0), (1, 0), (0, 0)〉.

Hence HReT(2, n) is hyper globally bi-3∗-connected. See Figure 4.4 for illustrations.

4.4 The Globally Bi-3∗-Connected Property of Hon-

eycomb Rectangular Torus HReT(4,n)

In this section, we need the following path patterns. For 0 ≤ i ≤ m−1 and 0 ≤ j, k ≤ n−1,
we set

SL
i (j) = 〈([i]m, [j]n), ([i − 1]m, [j]n), ([i − 1]m, [j + 1]n), ([i − 2]m, [j + 1]n),

([i − 2]m, [j + 2]n), ([i − 3]m, [j + 2]n), ([i − 3]m, [j + 3]n),

([i − 4]m, [j + 3]n), ([i − 4]m, [j + 2]n)〉;
SR

i (j) = 〈([i]m, [j]n), ([i + 1]m, [j]n), ([i + 1]m, [j + 1]n), ([i + 2]m, [j + 1]n),
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Figure 4.5: The path patterns Q0(4, 2), R0(4, 1), SL
1 (3), SL

2 (0, 4), SR
3 (2), and SR

2 (1, 5).

([i + 2]m, [j + 2]n), ([i + 3]m, [j + 2]n), ([i + 3]m, [j + 3]n),

([i + 4]m, [j + 3]n), ([i + 4]m, [j + 2]n)〉;
SL

i (j, k) = 〈([i]m, [j]n), SL
[i]m(j), ([i − 4]m, [j + 2]n), SL

[i−4]m([j + 2]n),

([i − 8]m, [j + 4]n), ..., ([i − 2(k − j − 2)]m, [k − 2]n),

SL
[i−2(k−j−2)]m([k − 2]n), ([i − 2(k − j)]m, [k]n)〉; and

SR
i (j, k) = 〈([i]m, [j]n), SR

[i]m(j), ([i + 4]m, [j + 2]n), SR
[i+4]m([j + 2]n),

([i + 8]m, [j + 4]n), ..., ([i + 2(k − j − 2)]m, [k − 2]n),

SR
[i+2(k−j−2)]m([k − 2]n), ([i + 2(k − j)]m, [k]n)〉.

See Figure 4.5 for illustrations.

Lemma 15. Let x and y be any two vertices of HReT(4, n) = (V0 ∪ V1, E) with x ∈ V0

and y ∈ V1. Then there exists a regular 3∗-container C3∗(x, y) of HReT(4, n). Hence
HReT(4, n) is globally bi-3∗-connected.

Proof. Without loss of generality, we may assume that x = (0, 0) and y = (i, j). In order
to prove this lemma, we will construct a regular 3∗-container C3∗(x, y) = {P1, P2, P3} in
HReT(4, n). By the symmetric property of HReT(4, n), we may assume that i ∈ {0, 1, 2}.
Hence we have the following cases:

Case 1: Suppose that i ∈ {0, 1}. By Lemma 13, there exists a regular 3∗-container
C3∗((0, 0), (i, j)) of HReT(2, n). By Lemma 12, C ′

3∗,1((0, 0), (i, j)) forms a 3∗-container of
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Figure 4.6: Illustrations for Lemma 15.

HReT(4, n).

Case 2: i = 2. Then j is odd.

Case 2.1: Suppose that j = 1. The corresponding paths are:

P1 = 〈(0, 0), (0, n − 1), (1, n − 1), Q−1
1 (0, n − 1), (1, 0), (2, 0), (2, 1)〉;

P2 = 〈(0, 0), Q0(0, n − 2), (0, n − 2), (3, n − 2), Q−1
3 (1, n − 2), (3, 1), (2, 1)〉;

P3 = 〈(0, 0), (3, 0), (3, n− 1), (2, n − 1), Q−1
2 (1, n − 1), (2, 1)〉.

Case 2.2: Suppose that j �= 1. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j − 1), (0, j − 1), (3, j − 1), (3, j), (2, j)〉;
P2 = 〈(0, 0), (3, 0), Q3(0, j − 2), (3, j − 2), (2, j − 2), Q−1

2 (0, j − 2), (2, 0), (1, 0),

Q1(0, j − 1), (1, j − 1), (2, j − 1), (2, j)〉;
P3 = 〈(0, 0), (0, n − 1), S−1

L (j + 3, n − 1), (0, j + 3), (0, j + 2), (1, j + 2), (1, j + 1),

(1, j), (0, j), (0, j + 1), (3, j + 1), (3, j + 2), (2, j + 2), (2, j + 1), (2, j)〉.

Hence HReT(4, n) is globally bi-3∗-connected. See Figure 4.6 for illustrations.

Lemma 16. Let x, y, and z be any three different vertices of HReT(4, 6) = (V0 ∪ V1, E)
in V0. Then there exists a regular 3∗-container C3∗(x, y) of HReT(4, 6) − {z}. Hence
HReT(4, 6) is hyper globally bi-3∗-connected.
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Proof. Without loss of generality, we may assume that x = (0, 0), y = (i, j), and z = (k, l).
The corresponding regular 3∗-container C3∗(x, y) = {P1, P2, P3} in HReT(4, 6) − {z} are
listed below.

y z C3∗ (x, y)
(0, 2) (2, 2) 〈(0, 0), (0, 1), (0, 2)〉

〈(0, 0), (0, 5), (1, 5), (1, 0), Q1(0, 4), (1, 4), (2, 4), (2, 3), (3, 3), (3, 2), (0, 2)〉
〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 0), (2, 5), (3, 5), (3, 4), (0, 4), (0, 3), (0, 2)〉

(0, 2) (2, 4) 〈(0, 0), (0, 1), (0, 2)〉
〈(0, 2), (0, 3), (0, 4), (3, 4), (3, 5), (2, 5), (2, 0), (1, 0), Q1(0, 5), (1, 5), (0, 5), (0, 0)〉
〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 2), (2, 3), (3, 3), (3, 2), (0, 2)〉

(0, 4) (0, 2) 〈(0, 0), (0, 5), (0, 4)〉
〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 4), (0, 4)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0), (1, 5), (1, 4), (1, 3), (0, 3), (0, 4)〉

(0, 4) (1, 1) 〈(0, 0), (0, 5), (0, 4)〉
〈(0, 0), (0, 1), (0, 2), (3, 2), (3, 3), (2, 3), (2, 2), (1, 2), (1, 3), (0, 3), (0, 4)〉
〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 0), (1, 0), (1, 5), (1, 4), (2, 4), (2, 5), (3, 5), (3, 4), (0, 4)〉

(1, 3) (0, 2) 〈(0, 0), (0, 5), (0, 4), (0, 3), (1, 3)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (1, 3)〉
〈(0, 0), (3, 0), Q3(0, 5), (3, 5), (2, 5), Q−1

2 (0, 5), (2, 0), (1, 0), (1, 5), (1, 4), (1, 3)〉
(1, 5) (0, 2) 〈(0, 0), (0, 5), (1, 5)〉

〈(0, 0), (0, 1), (1, 1), (1, 2), (1, 3), (0, 3), (0, 4), (3, 4), (3, 5), (2, 5), (2, 4), (1, 4), (1, 5)〉
〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), Q−1

2 (0, 3), (2, 0), (1, 0), (1, 5)〉
(1, 1) (2, 0) 〈(0, 0), (0, 1), (1, 1)〉

〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 2), (1, 2), (1, 1)〉
〈(0, 0), (0, 5), (0, 4), (3, 4), (3, 5), (2, 5), (2, 4), (2, 3), (3, 3), (3, 2), (0, 2), (0, 3), (1, 3), (1, 4), (1, 5), (1, 0), (1, 1)〉

(1, 1) (2, 2) 〈(1, 1), Q1(1, 4), (1, 4), (2, 4), (2, 3), (3, 3), (3, 2), (0, 2), (0, 3), (0, 4), (3, 4), (3, 5), (2, 5), (2, 0), (2, 1), (3, 1), (3, 0), (0, 0)〉
〈(0, 0), (0, 1), (1, 1)〉
〈(0, 0), (0, 5), (1, 5), (1, 0), (1, 1)〉

(1, 1) (2, 4) 〈(1, 1), (1, 0), (2, 0), (2, 5), (3, 5), (3, 4), (0, 4), (0, 3), (0, 2), (3, 2), (3, 3), (2, 3), (2, 2), (2, 1), (3, 1), (3, 0), (0, 0)〉
〈(0, 0), (0, 1), (1, 1)〉
〈(0, 0), (0, 5), (1, 5), Q−1

1 (1, 5), (1, 1)〉
(1, 3) (2, 0) 〈(0, 0), (0, 1), (1, 1), (1, 0), (1, 5), (1, 4), (1, 3)〉

〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 2), (1, 2), (1, 3)〉
〈(0, 0), (0, 5), (0, 4), (3, 4), (3, 5), (2, 5), (2, 4), (2, 3), (3, 3), (3, 2), (0, 2), (0, 3), (1, 3)〉

(1, 3) (2, 2) 〈(0, 0), (0, 5), (1, 5), (1, 4), (1, 3)〉
〈(0, 0), (3, 0), (3, 5), (2, 5), (2, 4), (2, 3), (3, 3), (3, 4), (0, 4), (0, 3), (1, 3)〉
〈(0, 0), (0, 1), (0, 2), (3, 2), (3, 1), (2, 1), (2, 0), (1, 0), Q1(0, 3), (1, 3)〉

(1, 3) (2, 4) 〈(0, 0), (0, 5), (1, 5), (1, 4), (1, 3)〉
〈(0, 0), (3, 0), (3, 5), (2, 5), (2, 0), (1, 0), Q1(0, 3), (1, 3)〉
〈(0, 0), (0, 1), (0, 2), (3, 2), (3, 1), (2, 1), (2, 2), (2, 3), (3, 3), (3, 4), (0, 4), (0, 3), (1, 3)〉

(2, 0) (0, 2) 〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), (2, 4), (1, 4), (1, 3), (0, 3), (0, 4), (3, 4), (3, 5), (2, 5), (2, 0)〉
〈(0, 0), (0, 5), (1, 5), (1, 0), (2, 0)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (2, 0)〉

(2, 2) (0, 2) 〈(0, 0), (0, 1), (1, 1), (1, 0), (2, 0), (2, 1), (2, 2)〉
〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), (2, 2)〉
〈(0, 0), (0, 5), (1, 5), (1, 4), (2, 4), (2, 5), (3, 5), (3, 4), (0, 4), (0, 3), (1, 3), (1, 2), (2, 2)〉

(2, 2) (0, 4) 〈(0, 0), (0, 5), (1, 5), (1, 0), (2, 0), (2, 5), (3, 5), Q−1
3 (2, 5), (3, 2), (0, 2), (0, 3), (1, 3), (1, 4), (2, 4), (2, 3), (2, 2)〉

〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)〉
〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 2)〉

(2, 2) (1, 1) 〈(0, 0), (0, 5), (1, 5), (1, 0), (2, 0), (2, 1), (2, 2)〉
〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), (2, 2)〉
〈(0, 0), Q0(0, 4), (0, 4), (3, 4), (3, 5), (2, 5), (2, 4), (1, 4), (1, 3), (1, 2), (2, 2)〉

Hence HReT(4, 6) is hyper globally bi-3∗-connected.

Lemma 17. Assume that n ≥ 8. Let x, y, and z be any three different vertices of
HReT(4, n) = (V0 ∪ V1, E) in V0. Then there exists a regular 3∗-container C3∗(x, y) of
HReT(4, n) − {z}. Hence HReT(4, n) is hyper globally bi-3∗-connected.

Proof. Without loss of generality, we may assume that x = (0, 0), y = (i, j), and z =
(k, l). In order to prove this lemma, we will construct a regular 3∗-container C3∗(x, y) =
{P1, P2, P3} in HReT(4, n) − {z}. By the symmetric property of HReT(4, n), we may
assume that i ∈ {0, 1, 2}. We have the following cases:
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Case 1: Suppose that i ∈ {0, 1} and z ∈ {0, 1}. By Lemma 14, there exists a regular
3∗-container C3∗((0, 0), (i, j)) of HReT(2, n) − {(k, l)}. By Lemma 12, C ′

3∗,1((0, 0), (i, j))
forms a 3∗-container of HReT(4, n) − {(k, l)}.

Case 2: i = 0 and k = 2. Then j and l are even. By the symmetric property, we have
the following subcases.

Case 2.1: Suppose that j = 4 and l = 2. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, 4), (0, 4)〉;
P2 = 〈(0, 0), (0, n − 1), (0, n − 2), (3, n − 2), Q−1

3 (4, n − 2), (3, 4), (0, 4)〉;
P3 = 〈(0, 4), Q0(4, n − 3), (0, n − 3), (1, n − 3), Q−1

1 (0, n − 3), (1, 0), (1, n− 1),

(1, n − 2), (2, n − 2), Q−1
2 (3, n − 2), (2, 3), (3, 3), (3, 2), (3, 1), (2, 1), (2, 0),

(2, n − 1), (3, n − 1), (3, 0), (0, 0)〉.

Case 2.2: Suppose that n − 4 > j ≥ 2 and l = j + 2. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j)〉;
P2 = 〈(0, 0), (3, 0), Q3(0, j), (3, j), (0, j)〉;
P3 = 〈(0, j), Q0(j, j + 4), (0, j + 4), (3, j + 4), (3, j + 5), (2, j + 5), (2, j + 4), (2, j + 3),

(3, j + 3), (3, j + 2), (3, j + 1), (2, j + 1), Q−1
2 (0, j + 1), (2, 0), (1, 0), Q1(0, j + 5),

(1, j + 5), (0, j + 5), (0, j + 6), (3, j + 6), (3, j + 7), (2, j + 7), (2, j + 6),

SL
2 (j + 6, n − 2), (2, n − 2), (1, n − 2), (1, n − 1), (0, n − 1), (0, 0)〉.

Case 2.3: Suppose that n−6 > j ≥ 2 and n−4 > l > j +2. The corresponding paths
are:

P1 = 〈(0, 0), Q0(0, j), (0, j)〉;
P2 = 〈(0, 0), (3, 0), Q3(0, j), (3, j), (0, j)〉;
P3 = 〈(1, j), (1, j + 1), (1, j + 2), (3, j + 2), (3, j + 1), (2, j + 1), Q−1

2 (0, j + 1), (2, 0),

(1, 0), Q1(0, j + 2), (1, j + 2), (2, j + 2), (2, j + 3), (3, j + 3), (3, j + 4), (0, j + 4),

(0, j + 3), SR
0 (j + 3, l − 3), (0, l − 3), (1, l − 3), (1, l − 2), (2, l − 2), (2, l − 1),

(3, l − 1), (3, l), (3, l + 1), (2, l + 1), (2, l + 2), (2, l + 3), (3, l + 3), (3, l + 2),

(0, l + 2), Q−1
0 (l − 1, l + 2), (0, l − 1), (1, l − 1), Q1(l − 1, l + 3), (1, l + 3),

(0, l + 3), (0, l + 4), (3, l + 4), SL
2 (l + 4, n − 2), (2, n − 2), (1, n − 2), (1, n − 1),

(0, n − 1), (0, 0)〉.

Case 2.4: Suppose that n > 8 and j = l ≥ 2. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j)〉;
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P2 = 〈(0, 0), (3, 0), Q3(0, j − 1), (3, j − 1), (2, j − 1), Q−1
2 (0, j − 1), (2, 0), (1, 0),

Q1(0, j + 1), (1, j + 1), (0, j + 1), (0, j)〉;
P3 = 〈(0, j), (3, j), (3, j + 1), (2, j + 1), (2, j + 2), (1, j + 2), (1, j + 3), (1, j + 4), (2, j + 4),

(2, j + 3), (3, j + 3), (3, j + 2), (0, j + 2), (0, j + 3), (0, j + 4), (3, j + 4), (3, j + 5),

(2, j + 5), (2, j + 6), (1, j + 6), (1, j + 5), SL
1 (j + 5, n − 5), (1, n − 5), (0, n − 5),

(0, n − 4), (3, n − 4), (3, n − 3), (2, n − 3), (2, n − 2), (2, n − 1), (3, n − 1), (3, n − 2),

(0, n − 2), (0, n − 3), (1, n − 3), (1, n − 2), (1, n − 1), (0, n − 1), (0, 0)〉.

Case 2.5: Suppose that n = 8, j = 2, and l = 2. The corresponding paths are:

P1 = 〈(0, 0), (0, 1), (0, 2)〉;
P2 = 〈(0, 2), (0, 3), (0, 4), (3, 4), Q3(4, 7), (3, 7), (2, 7), (2, 0), (2, 1), (3, 1), (3, 0), (0, 0)〉;
P3 = 〈(0, 2), (3, 2), (3, 3), (2, 3), Q2(3, 6), (2, 6), (1, 6), (1, 7), (1, 0), Q1(0, 5),

(1, 5), (0, 5), (0, 6), (0, 7), (0, 0)〉.

Case 2.6: Suppose that n = 8, j = 4, and l = 4. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, 4), (0, 4)〉;
P2 = 〈(0, 0), (0, 7), (1, 7), (1, 0), Q1(0, 6), (1, 6), (2, 6), (2, 5), (3, 5), (3, 4), (0, 4)〉;
P3 = 〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), Q−1

2 (0, 3), (2, 0), (2, 7), (3, 7), (3, 6), (0, 6),

(0, 5), (0, 4)〉.

Case 3: i = 1 and k = 2. Then j is odd and l is even. By the symmetric property, we
have the following subcases.

Case 3.1: Suppose that n−5 > j ≥ 1 and n−4 > l > j +2. The corresponding paths
are:

P1 = 〈(0, 0), Q0(0, j), (0, j), (1, j)〉;
P2 = 〈(0, 0), (3, 0), Q3(0, j), (3, j), (2, j), Q

−1
2 (0, j), (2, 0), (1, 0), Q1(0, j), (1, j)〉;

P3 = 〈(1, j), (1, j + 1), (2, j + 1), (2, j + 2), (3, j + 2), (3, j + 1), SL
3 (j + 1, l − 2), (3, l − 2),

(0, l − 2), (0, l − 1), (1, l − 1), (1, l), (1, l + 1), (1, l + 2), (2, l + 2), (2, l + 1), (3, l + 1),

(3, l), (0, l), (0, l + 1), (0, l + 2), (3, l + 2), (3, l + 3), (2, l + 3), (2, l + 4), (1, l + 4),

(1, l + 3), SL
1 (l + 3, n − 5), (1, n − 5), (0, n − 5), (0, n − 4), (3, n − 4), (3, n − 3),

(2, n − 3), (2, n − 2), (2, n − 1), (3, n − 1), (3, n − 2), (0, n − 2), (0, n − 3), (1, n − 3),

(1, n − 2), (1, n − 1), (0, n − 1), (0, 0)〉.
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Case 3.2: Suppose that n − 5 > j ≥ 1 and l = j + 1. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j), (1, j)〉;
P2 = 〈(0, 0), (3, 0), Q3(0, j), (3, j), (2, j), Q

−1
2 (0, j), (2, 0), (1, 0), Q1(0, j), (1, j)〉;

P3 = 〈(1, j), Q1(j, j + 3), (1, j + 3), (2, j + 3), (2, j + 2), (3, j + 2), (3, j + 1), (0, j + 1),

(0, j + 2), (0, j + 3), (3, j + 3), (3, j + 4), (2, j + 4), (2, j + 5), (1, j + 5), (1, j + 4),

SL
1 (j + 4, n − 5), (1, n − 5), (0, n − 5), (0, n − 4), (3, n − 4), (3, n − 3), (2, n − 3),

(2, n − 2), (2, n − 1), (3, n − 1), (3, n − 2), (0, n − 2), (0, n − 3), (1, n − 3), (1, n − 2),

(1, n − 1), (0, n − 1), (0, 0)〉.

Case 3.3: Suppose that n − 5 > j ≥ 1 and l = n − 4. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j), (1, j)〉;
P2 = 〈(0, 0), (0, n − 1), (1, n − 1), (1, 0), Q1(0, j), (1, j)〉;
P3 = 〈(1, j), (1, j + 1), (2, j + 1), (2, j + 2), (3, j + 2), (3, j + 1), SL

3 (j + 1, n − 6), (0, n − 6),

(0, n − 5), (1, n − 5), Q1(n − 5, n − 2), (1, n − 2), (2, n − 2), (2, n − 3), (3, n − 3),

(3, n − 4), (0, n − 4), (0, n − 3), (0, n − 2), (3, n − 2), (3, n − 1), (2, n − 1), (2, 0),

(2, 1), (3, 1), (3, 0), (0, 0)〉.

Case 3.4: Suppose that j = n − 5 and l = n − 4. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, n − 5), (0, n − 5), (1, n − 5)〉;
P2 = 〈(0, 0), (0, n − 1), (1, n − 1), (1, 0), Q1(0, n − 5), (1, n − 5)〉;
P3 = 〈(1, n − 5), Q1(n − 5, n − 2), (1, n − 2), (2, n − 2), (2, n − 3), (3, n − 3), (3, n − 4),

(0, n − 4), (0, n − 3), (0, n − 2), (3, n − 2), (3, n − 1), (2, n − 1), (2, 0), Q2(0, n − 5),

(2, n − 5), (3, n − 5), Q−1
3 (0, n − 5), (3, 0), (0, 0)〉.

Case 3.5: Suppose that n − 5 > j ≥ 1 and l = n − 2. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j), (0, j), (1, j)〉;
P2 = 〈(0, 0), (3, 0), (3, n− 1), (2, n − 1), (2, 0), (1, 0), Q1(0, j), (1, j)〉;
P3 = 〈(1, j), (1, j + 1), (1, j + 2), (0, j + 2), (0, j + 1), (3, j + 1), Q−1

3 (1, j + 1), (3, 1), (2, 1),

Q2(1, j + 2), (2, j + 2), (3, j + 2), (3, j + 3), (0, j + 3), (0, j + 4), (1, j + 4), (1, j + 3),

SR
1 (j + 3, n − 6), (1, n − 6), (2, n − 6), (2, n − 5), (3, n − 5), (3, n − 4), (0, n − 4),

(0, n − 3), (0, n − 2), (3, n − 2), (3, n − 3), (2, n − 3), (2, n − 4), (1, n − 4),

Q1(n − 4, n − 1), (1, n − 1), (0, n − 1), (0, 0)〉.

Case 4: i = 2 and k = 0. Then j and l are even. By the symmetric property, we have
the following subcases.
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Case 4.1: Suppose that j = 0 are l > 0. The corresponding paths are:

P1 = 〈(0, 0), (0, n− 1), (1, n − 1), (1, 0), (2, 0)〉;
P2 = 〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (2, 0)〉;
P3 = 〈(0, 0), (3, 0), (3, 1), (3, 2), (0, 2), (0, 3), (1, 3), (1, 4), (2, 4), (2, 3),

SR
2 (3, j − 1), (2, j − 1), (3, j − 1), (3, j), (3, j + 1), (2, j + 1), (2, j + 2), (1, j + 2),

(1, j + 1), SL
1 (j + 1, n − 3), (1, n − 3), (0, n − 3), (0, n − 2), (3, n − 2), (3, n − 1),

(2, n − 1), (2, 0)〉.

Case 4.2: Suppose that l > j > 0. The corresponding paths are:

P1 = 〈(0, 0), (0, 1), (1, 1), Q1(1, j), (1, j), (2, j)〉;
P2 = 〈(0, 0), (3, 0), (3, 1), (2, 1), Q2(1, j), (2, j)〉;
P3 = 〈(2, j), (2, j + 1), (2, j + 2), (1, j + 2), (1, j + 1), (0, j + 1), Q−1

0 (2, j + 1),

(0, 2), (3, 2), Q3(2, j + 2), (3, j + 2), (0, j + 2), (0, j + 3), (1, j + 3), (1, j + 4),

(2, j + 4), (2, j + 3), SR
2 (j + 3, l − 1), (2, l − 1), (3, l − 1), (3, l), (3, l + 1),

(2, l + 1), (2, l + 2), (1, l + 2), (1, l + 1), SL
1 (l + 1, n − 1), (1, n − 1), (0, n − 1), (0, 0)〉.

Case 4.3: Suppose that j = l > 0. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j − 1), (0, j − 1), (1, j − 1), Q−1
1 (0, j − 1), (1, 0), (2, 0), Q2(0, j), (2, j)〉;

P2 = 〈(0, 0), (3, 0), Q3(0, j + 1), (3, j + 1), (2, j + 1), (2, j)〉;
P3 = 〈(2, j), SL

2 (j, n − 1), (2, n − 2), (1, n − 2), (1, n − 1), (0, n − 1), (0, 0)〉.

Case 5: i = 2 and k = 1. Then j is even and l is odd. By the symmetric property, we
have the following subcases.

Case 5.1: Suppose that j = 0 and l = 1. The corresponding paths are:

P1 = 〈(0, 0), (0, n− 1), (1, n − 1), (1, 0), (2, 0)〉;
P2 = 〈(0, 0), (0, 1), (0, 2), (3, 2), (3, 1), (2, 1), (2, 0)〉;
P3 = 〈(0, 0), (3, 0), (3, n− 1), (3, n − 2), (0, n − 2), Q−1

0 (3, n − 2), (0, 3), (1, 3),

(1, 2), (2, 2), (2, 3), (3, 3), Q3(3, n − 3), (3, n − 3), (2, n − 3), Q−1
2 (4, n − 3),

(2, 4), (1, 4), Q1(4, n − 2), (1, n − 2), (2, n − 2), (2, n − 1), (2, 0)〉.

Case 5.2: Suppose that j = 0 and n − 1 > l > 1. The corresponding paths are:

P1 = 〈(0, 0), (0, n − 1), (1, n − 1), (1, 0), (2, 0)〉;
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P2 = 〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 0)〉;
P3 = 〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 2), SL

3 (2, j − 3), (3, j − 3), (0, j − 3),

(0, j − 2), (1, j − 2), (1, j − 1), (2, j − 1), (2, j), (2, j + 1), (1, j + 1), (1, j + 2),

(1, j + 3), (2, j + 3), (2, j + 2), (3, j + 2), Q−1
3 (j − 1, j + 2), (3, j − 1), (0, j − 1),

Q0(j − 1, j + 3), (0, j + 3), (3, j + 3), (3, j + 4), (2, j + 4), (2, j + 5), (1, j + 5),

(1, j + 4), SL
1 (j + 4, n − 3), (1, n − 3), (0, n − 3), (0, n − 2), (3, n − 2), (3, n − 1),

(2, n − 1), (2, 0)〉.

Case 5.3: Suppose that n − 1 > l > j + 2 and j > 0. The corresponding paths are:

P1 = 〈(0, 0), (0, 1), (1, 1), Q1(1, j), (1, j), (2, j)〉;
P2 = 〈(0, 0), (3, 0), (3, 1), (2, 1), Q2(1, j), (2, j)〉;
P3 = 〈(2, j), (2, j + 1), (3, j + 1), (3, j), SL

3 (j, l − 3), (3, l − 3), (0, l − 3), (0, l − 2), (1, l − 2),

(1, l − 1), (2, l − 1), (2, l), (2, l + 1), (1, l + 1), (1, l + 2), (1, l + 3), (2, l + 3), (2, l + 2),

(3, l + 2), (3, l + 1), (3, l), (3, l − 1), (0, l − 1), Q0(l − 1, l + 3), (0, l + 3), (3, l + 3),

(3, l + 4), (2, l + 4), (2, l + 5), (1, l + 5), (1, l + 4), SL
1 (l + 4, n − 1), (1, n − 1),

(0, n − 1), (0, 0)〉.

Case 5.4: Suppose that n − 2 > j and l = n − 1. The corresponding paths are:

P1 = 〈(0, 0), Q0(0, j + 1), (0, j + 1), (1, j + 1), (1, j + 2), (2, j + 2), (2, j + 1), (2, j)〉;
P2 = 〈(0, 0), (3, 0), (3, n− 1), (2, n − 1), (2, 0), (1, 0), Q1(0, j), (1, j), (2, j)〉;
P3 = 〈(2, j), Q−1

2 (1, j), (2, 1), (3, 1), Q3(1, j + 2), (3, j + 2), (0, j + 2), (0, j + 3), (1, j + 3),

(1, j + 4), (2, j + 4), (2, j + 3), SR
2 (j + 3, n − 3), (2, n − 3), (3, n − 3), (3, n − 2),

(0, n − 2), (0, n − 1), (0, 0)〉.

Case 5.5: Suppose that j = n − 2 and l = n − 1. The corresponding paths are:

P1 = 〈(0, 0), (0, n− 1), (0, n − 2), (0, n − 3), (1, n − 3), (1, n − 2), (2, n − 2)〉;
P2 = 〈(0, 0), Q0(0, n − 4), (3, n − 4), Q3(n − 4, n − 1), (2, n − 1), (2, n − 2)〉;
P3 = 〈(0, 0), (3, 0), Q3(0, n − 5), (3, n − 5), (2, n − 5), Q−1

2 (0, n − 5), (2, 0), Q1(0, n − 4),

(1, n − 4), (2, n − 4), (2, n − 3), (2, n − 2)〉.

Hence HReT(4, n) is hyper globally bi-3∗-connected for n ≥ 8. See Figure 4.7 for
illustrations.
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Figure 4.7: Illustrations for Lemma 17.
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4.5 The Globally Bi-3∗-Connected Property of Hon-

eycomb Rectangular Torus HReT(m,n)

Lemma 18. Assume that m and n are positive even integers with m, n ≥ 4. Let x and
y be any two vertices of HReT(m, n) = (V0 ∪ V1, E) with x ∈ V0 and y ∈ V1. Then there
exists a regular 3∗-container C3∗(x, y) of HReT(m, n).

Proof. Without loss of generality, we may assume that x = (0, 0) and y = (i, j). In order
to prove this lemma, we will construct a regular 3∗-container C3∗(x, y) = {P1, P2, P3} in
HReT(m, n). We prove the lemma by induction on m. With Lemma 15, our theorem
holds for m = 4. Now, we consider the case that m ≥ 6.

Suppose that i < m− 2. By induction, there exists a regular 3∗-container C3∗(x, y) =
{P1, P2, P3} in HReT(m− 2, n). By Lemma 12, C ′

3∗,m−3((0, 0), (i, j)) forms a 3∗-container
of HReT(m, n). Suppose that i ≥ m− 2. By induction, there exists a regular C3∗(x, (i−
2, j)) = {P1, P2, P3} in HReT(m − 2, n). By Lemma 12, C ′

3∗,1((0, 0), (i, j)) forms a 3∗-
container of HReT(m, n).

Lemma 19. Assume that m and n are positive even integers with m ≥ 4 and n ≥ 6. Let
x, y, and z be any three different vertices of HReT(m, n) = (V0 ∪V1, E) in V0. Then there
exists a regular 3∗-container C3∗(x, y) of HReT(m, n) − {z}.

Proof. Without loss of generality, we may assume that x = (0, 0), y = (i, j), and z =
(k, l). In order to prove this lemma, we will construct a regular 3∗-container C3∗(x, y) =
{P1, P2, P3} in HReT(m, n)−{z}. We prove the lemma by induction on m. With Lemmas
16 and 17, our theorem holds for m = 4. Now, we consider the case that m ≥ 6.

Suppose that i < m−2 and k < m−2. By induction, there exists a regular 3∗-container
C3∗(x, y) = {P1, P2, P3} in HReT(m − 2, n) − {z}. By Lemma 12, C ′

3∗,m−3((0, 0), (i, j))
forms a 3∗-container of HReT(m, n) − {z}. Suppose that i < m − 2 and k ≥ m − 2. By
induction, there exists a regular 3∗-container C3∗(x, y) = {P1, P2, P3} in HReT(m−2, n)−
(k − 2, l). By Lemma 12, C ′

3∗,i((0, 0), (i, j)) forms a 3∗-container of HReT(m, n) − {z}.
Suppose that i ≥ m − 2 and k < m − 2. By induction, there exists a regular 3∗-
container C3∗(x, (i − 2, j)) = {P1, P2, P3} in HReT(m − 2, n) − {z}. By Lemma 12,
C ′

3∗,k((0, 0), (i, j)) forms a 3∗-container of HReT(m, n)−{z}. Suppose that i ≥ m−2 and
k ≥ m−2. By induction, there exists a regular 3∗-container C3∗(x, (i−2, j)) = {P1, P2, P3}
in HReT(m − 2, n) − (k − 2, l). By Lemma 12, C ′

3∗,1((0, 0), (i, j)) forms a 3∗-container of
HReT(m, n) − {z}.
Theorem 13. Assume that m and n are positive even integers with n ≥ 4. Then
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Figure 4.8: Illustration for Theorem 13.

HReT(m, n) is strongly globally bi-3∗-connected. Moreover, HReT(m, n) is hyper glob-
ally bi-3∗-connected if and only if n ≥ 6 or m = 2.

Proof. With Lemmas 13 and 18, HReT(m, n) is globally bi-3∗-connected if m, n are even
integers with n ≥ 4.

By Lemmas 14 and 19, HReT(m, n) is hyper globally bi-3∗-connected if m, n are even
integers with n ≥ 6 or m = 2.

Now we consider the case HReT(m, 4) with m is an even integer and m ≥ 4. We first
prove that such HReT(m, 4) is not hyper globally bi-3∗-connected.

To prove this fact, let x = (1, 1), y = (1, 3) and z = (0, 2). Suppose that there exists a
3∗-container C3∗(x, y) = {P1, P2, P3} of HReT(m, 4)−{z}. Since degHReT (m,4)−z(v) = 2 for
v ∈ {(0, 1), (0, 3), (3, 2)}, 〈(1, 1), (1, 2), (1, 3)〉 and 〈(1, 1), (0, 1), (0, 0), (0, 3), (1, 3)〉 are two
paths in C3∗(x, y). Without loss of generality, we assmue that P1 = 〈(1, 1), (1, 2), (1, 3)〉
and P2 = 〈(1, 1), (0, 1), (0, 0), (0, 3), (1, 3)〉. Since degHReT (m,4)−z((1, 1)) = degHReT (m,4)−z

((1, 3)) = 3, ((1, 3), (1, 0)) and ((1, 0), (1, 1)) are edges in P3. Thus P3 = 〈(1, 1), (1, 0),
(1, 3)〉. Obviously, {P1 ∪P2 ∪P3} does not span HReT(m, 4)−{z}. See Figure 4.8 for an
illustration. Hence HReT(m, 4) is not hyper globally bi-3∗-connected.

Although any HReT(m, 4) with m is an even integer and m ≥ 4 is not hyper globally
bi-3∗-connected, we will prove that such HReT(m, 4) is strongly globally bi-3∗-connected
by induction.

We first prove that HReT(4,4) is strongly bi-3∗-connected. Let x and y be any two
different vertices in the same partite set of HReT(4,4). Without loss of generality, we may
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assume that x and y are vertices in V0 and x = (0, 0). We need to find a vertex z in V0 −
{x, y} such that there exists a 3∗-container C3∗(x, y) = {P1, P2, P3} of HReT(4,4)−{z}.
The corresponding vertex z and 3∗-container C3∗(x, y) are listed below.

y z C3∗ (x, y)
(0, 2) (1, 3) 〈(0, 0), (0, 1), (0, 2)〉

〈(0, 0), (0, 3), (0, 2)〉
〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 2), (0, 2)〉

(1, 1) (1, 3) 〈(0, 0), (0, 1), (1, 1)〉
〈(0, 0), (3, 0), (3, 1), (2, 1), (2, 0), (1, 0), (1, 1), 〉
〈(0, 0), (0, 3), (0, 2), (3, 2), (3, 3), (2, 3), (2, 2), (1, 2), (1, 1)〉

(1, 3) (0, 2) 〈(0, 0), (0, 3), (1, 3)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (1, 3)〉
〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), Q−1

2 (0, 3), (2, 0), (1, 0), (1, 3)〉
(2, 0) (0, 2) 〈(0, 0), (0, 3), (1, 3), (1, 0), (2, 0)〉

〈(0, 0), (3, 0), (3, 3), (3, 2), (3, 1), (2, 1), (2, 0)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (2, 0)〉

(2, 2) (0, 2) 〈(0, 0), (3, 0), Q3(0, 3), (3, 3), (2, 3), (2, 2)〉
〈(0, 0), (0, 3), (1, 3), (1, 0), (2, 0), (2, 1), (2, 2)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)〉

(3, 1) (0, 2) 〈(0, 0), (3, 0), (3, 1)〉
〈(0, 0), (0, 3), (1, 3), (1, 0), (2, 0), (2, 1), (3, 1)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 2), (3, 1)〉

(3, 3) (0, 2) 〈(0, 0), (3, 0), (3, 3)〉
〈(0, 0), (0, 3), (1, 3), (1, 0), (2, 0), (2, 1), (3, 1), (3, 2), (3, 3)〉
〈(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3)〉

Obviously, all these 3∗-containers of HReT(4,4)−{z} are regular.

Now we consider the case HReT(m, 4) with m > 4. Without loss of generality, we
may assmue that x = (0, 0), y = (i, j), and z = (k, l). Suppose that i < m − 2 and
k < m − 2. By induction, there exists a regular 3∗-container C3∗(x, y) = {P1, P2, P3}
in HReT(m − 2, 4) − {z}. By Lemma 12, C ′

3∗,m−3((0, 0), (i, j)) forms a 3∗-container of
HReT(m, 4) − {z}. Suppose that i < m − 2 and k ≥ m − 2. By induction, there
exists a regular 3∗-container C3∗(x, y) = {P1, P2, P3} in HReT(m − 2, 4) − (k − 2, l). By
Lemma 12, C ′

3∗,i((0, 0), (i, j)) forms a 3∗-container of HReT(m, 4) − {z}. Suppose that
i ≥ m − 2 and k < m − 2. By induction, there exists a regular C3∗(x, (i − 2, j)) =
{P1, P2, P3} in HReT(m − 2, 4) − {z}. By Lemma 12, C ′

3∗,k((0, 0), (i, j)) forms a 3∗-
container of HReT(m, 4)−{z}. Suppose that i ≥ m−2 and k ≥ m−2. By induction, there
exists a regular 3∗-container C3∗(x, (i−2, j)) = {P1, P2, P3} in HReT(m−2, 4)− (k−2, l).
By Lemma 12, C ′

3∗,1((0, 0), (i, j)) forms a 3∗-container of HReT(m, 4) − {z}.

Thus the theorem is proved.
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Chapter 5

Conclusion

There are a lot of studies on hamiltonian graphs. In this thesis, we are interested in some
specific types of hamiltonian graphs. We introduce the concept of mutually independent
hamiltonicity first. The concept of mutually independent hamiltonian arises from the
following applications. If there are k pieces of data needed to be sent from u to v,
and the data needed to be processed at every vertex, then we want mutually independent
hamiltonian paths so that there will be no waiting time at a processor. Thus the mutually
independent hamiltonian property is useful for communication algorithms. In chapter 2,
we are interested in two families of graphs. The first family of graphs are those graphs with
ē ≤ n − 4 and n ≥ 4. It was proved [37] that such graphs are hamiltonian connected. In
Theorem 6, we strengthen this classical result by proving that there are at least n− 2− ē
mutually independent hamiltonian paths between every pair of distinct vertices of G.
The second family of graphs are those graphs with the sum of the degree of any two
non-adjacent vertices being at least n+1. Assume that G is a graph with the sum of any
two non-adjacent vertices being at least n + 2. Let u and v be any two distinct vertices
of G. In Theorem 7, we show that there are degG(u)+degG(v)−n mutually independent
hamiltonian paths between u and v if (u, v) ∈ E(G), and there are degG(u)+degG(v)−n+2
mutually independent hamiltonian paths between u and v if otherwise.

In chapter 3, we proposed a new concept called panpositionable hamiltonicity. We
showed that the arrangement graph An,k is panpositionable hamiltonian if k ≥ 1 and
n−k ≥ 2 in Theorem 10. By applying this result, we can prove that An,k is panconnected
and pancyclic if k ≥ 1 and n − k ≥ 2. We also explained some relationship between
the panpositionable hamiltonian property and the panconnected property by giving an
example to show that a panconnected graph G is not necessarily panpositionable hamil-
tonian. Therefore, the panpositionable hamiltonian property is a stronger property for
an interconnection network.
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The honeycomb networks have been proposed as attractive alternatives to mesh and
torus interconnection networks for computer architectures, interconnection topologies,
parallel processes and distributed systems. In particular, the honeycomb rectangular
torus HReT(m, n) is a well-structured 3-connected cubic network. In chapter 4, we study
the globally bi-3∗-connected property of the honeycomb rectangular torus HReT(m, n).
We have proved that any HReT(m, n) is strongly globally bi-3∗-connected. We also proved
that HReT(m, n) is hyper globally bi-3∗-connected if and only if n ≥ 6 or m = 2.

Future work will be directed to explore the mutually independent hamiltonicity and
the panpositionable hamiltonicity of other interconnection networks. Moreover, we will
try to find the globally 3∗-connected property of other cubic interconnection networks. It
would be interesting to study some relationship between these specific properties, such
as panpositionable hamiltonicity, panconnectivity and pancyclicity, and the other criteria
for measuring the performance of a network.
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[10] V. Chvátal, “On Hamilton’s ideal,” J. Comb. Th. (B), 12, pp. 163-168, 1972.
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