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摘要 

 
有關多處理機系統錯誤診斷問題已經在相當多的文獻被廣泛的討論，並且很多著名連結

網路的診斷能力也已經被提出來了。在這篇論文當中，我們針對多處理機系統研究了一

些不同的診斷問題。首先，我們介紹了一種新的診斷能力量測方法稱為局部診斷能力量

測，並且提出了一些架構用來決定系統中一個處理機在PMC診斷模式下是否為局部t-可

診斷的。針對超立方體網路(hypercube)和星狀網路(star graph)，我們證明了網路中每一

個點的局部診斷能力等於它們自己的分支度。接著，我們針對系統診斷問題提出了一個

新的觀念稱為強局部可診斷特性。一個系統我們說他具有強局部可診斷特性即表示此系

統中每一個處理機的局部診斷能力等於它們自己的分支度。所以我們可以推得n維度超

立方體網路Qn和星狀網路Sn都有此很強的特性，當n ≥ 3。下一步我們接著研究當多處理

機系統具有一些壞掉的邊時，每一個點它們的局部診斷能力。對於具有一些壞掉的邊的

n維度超立方體網路Qn和星狀網Sn，我們證明了Qn在壞n - 2條邊以內其仍然保有此很強的

特性，而Sn在壞n - 3條邊以內也仍然保有此特性。假設網路在壞掉邊時每一個點具有至

少兩條好的邊時，在這樣的條件下，我們證明了Qn壞掉的邊數可以增加到3(n – 2) – 1條

仍然保有這種強特性，而Sn在此條件下無論壞多少條邊仍然可保有此特性。更進一步

地，我們考慮網路在壞掉邊時每一個點具有至少三條好的邊時，在這樣的條件下，我們

證明了Qn無論壞多少條邊仍可保有此很強的特性，並且我們所提出的這些壞邊數都是最

佳值。除此之外，我們針對一般系統也提出了一個新的診斷演算法。此演算法的時間複

雜度為O(N log N)，此處N代表系統中處理機的總數。 

 

條件式診斷能力量測是由賴等人所提出的，此量測方法在多處理機系統是另外一個有趣

的議題。此量測方法在量測一個系統的診斷能力時給予一個條件，此條件為，在系統中



任一個錯誤點集合不能包含任一個點的所有鄰居。本篇論文當中，我們根據這個條件去

計算一個n維度超立方體網路Qn在比較式診斷模式下它的條件式診斷能力，並且得到的

答案為3(n - 2) + 1，當n ≥ 5。此條件式診斷能力約是傳統診斷能力的三倍之多。最後，

我們延伸這個結果到BC(bijective connection)網路上，一個n維度BC網路記作Xn，此網路

是一個n-正規圖具有2n個點和n2n-1條邊。一般常見的超立方體網路(hypercube)、交錯超

立方體網路(crossed cube)、雙扭超立方體網路(twisted cube)和梅式超立方體網路(Mőbius 

cube)都是BC網路的一種。在這篇論文當中，我們也證明了一個n維度BC網路Xn在比較

式診斷模式下它的條件式診斷能力為3(n - 2) + 1，當n ≥ 5。根據這個結果，我們可以推

得所有立方體網路的條件式診斷能力。 

 
關鍵字：PMC 診斷模式、比較式診斷模式、t-可診斷的、診斷能力、局部診斷能力、強

局部可診斷特性、條件式錯誤集合、條件式診斷能力、超立方體網路、星狀網路、BC

網路、診斷演算法。 
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Abstract 

 
The problem of fault diagnosis has been discussed widely and the diagnosability of many 

well-known networks has been explored. In this thesis, we study some variants of diagnosis 

problems on multiprocessor systems. First of all, we introduce a new measure of 

diagnosability, called local diagnosability, and derive some structures for determining 

whether a vertex of a system is locally t-diagnosable under the PMC model. For hypercube 

network and star graph, we prove that the local diagnosability of each vertex is equal to its 

degree. Then, we propose a concept for system diagnosis, called strongly local-diagnosable 

property. A system G(V,E) is said to have a strongly local-diagnosable property, if the local 

diagnosability of each vertex is equal to its degree. We show that both Qn and Sn have this 

strong property for n ≥ 3, where the two notations Qn and Sn represent an n-dimensional 

hypercube and an n-dimensional star graph, respectively. Next, we study the local 

diagnosability of a faulty multiprocessor system. For a faulty hypercube Qn and a faulty star 

graph Sn, we prove that both Qn and Sn keep this strong property even if they have up to n – 2 

faulty edges and n – 3 faulty edges, respectively. Assume that each vertex of a faulty 

hypercube Qn and a faulty star graph Sn is incident with at least two fault-free edges, we prove 

that Qn keeps this strong property even if it has up to 3(n – 2) – 1 faulty edges and Sn will also 

keep this strong property no matter how many edges are faulty. Furthermore, we prove Qn 

keeps this strong property no matter how many edges are faulty, provided that each vertex of 

a faulty hypercube Qn is incident with at least three fault-free edges. Our bounds on the 



number of faulty edges are all tight. Besides, we propose a new diagnosis algorithm for 

general systems. The time complexity of our algorithm to diagnose all the faulty processors is 

bounded by O(N log N), where N is the total number of processors. 

 
The conditional diagnosability measure, introduced by Lai et al., is another interesting issue 

for multiprocessor systems. They proposed this novel measure of diagnosability by adding an 

additional condition that any faulty set cannot contain all the neighbors of any vertex in a 

system. In this thesis, We make a contribution to the evaluation of diagnosability for 

hypercube networks under the comparison model and prove that the conditional 

diagnosability of n-dimensional hypercube Qn is 3(n – 2) + 1 for n ≥ 5. The conditional 

diagnosability of Qn is about three times larger than the classical diagnosability of Qn. 

Furthermore, we extend the result to bijective connection network (in brief, BC network). An 

n-dimensional BC network, denoted by Xn, is an n-regular graph with 2n vertices and n2n-1 

edges. The n-dimensional hypercube, crossed cube, twisted cube, and Mőbius cube are some 

examples of the n-dimensional BC networks. In this thesis, we also prove that the conditional 

diagnosability of Xn is 3(n – 2) + 1 under the comparison model, n ≥ 5. As a corollary of this 

result, we obtain the conditional diagnosability of the cube family. 

 
Keywords: PMC model, comparison model, t-diagnosable, diagnosability, local 

diagnosability, strongly local-diagnosable property, conditional faulty set, conditional 

diagnosability, hypercube network, star graph, BC network, diagnosis algorithm. 
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Chapter 1

Introduction

With the continuous increase in the size of a multiprocessor system, the complexity of

the system can adversely affect its reliability. In order to maintain reliability, the system

should be able to identify faulty processors and replace them with fault-free ones. The

process of identifying faulty processors is called the diagnosis of the system, and the

diagnosability of the system refers to the maximum number of faulty processors that can

be identified by the system. The problem of identifying faulty processors in a multipro-

cessor system has been widely studied in literatures [1, 3, 7, 9, 11, 12, 13, 14, 15, 16,

17, 18, 25, 28, 29, 30, 31, 32, 33, 38, 45, 48, 49, 53, 54, 55, 58]. There are two funda-

mental approaches to system-level diagnosis: tested-based diagnosis (PMC model) and

comparison-based diagnosis (comparison model). In 1967, the Preparata, Metze, and

Chien (PMC) model was proposed for system-level diagnosis in multiprocessor systems

[45]. The PMC model uses tested-based diagnosis approach, under which a processor

performs the diagnosis by testing on neighboring processors via the communication links

between them. By analyzing the collection of all testing results, all of the faulty proces-

sors are identified. The PMC model was also used [4, 5, 6, 8, 26, 27, 34, 35, 36, 45]. In

[26], Hakimi and Amin proved that a system is t-diagnosable if it is t-connected with at

least 2t + 1 vertices. They also gave a necessary and sufficient condition for verifying if a

system is t-diagnosable under the PMC model.

The hypercube structure [46] and star graph [2] are two popular topologies for multi-
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processor systems. An n-dimensional hypercube is denoted by Qn, and the diagnosability

of Qn is shown to be n [35] under the PMC model, n ≥ 3. An n-dimensional star graph

is denoted by Sn, and the diagnosability of Sn is shown to be n − 1 under the PMC

model, n ≥ 3 [37]. In [40], Lai et al. introduced a novel measure of diagnosability

called conditional diagnosability by restricting that a faulty set cannot contain all the

neighbors of any vertex. Based on this restriction, the conditional diagnosability of the

n-dimensional hypercube is shown to be 4(n − 2) + 1. Besides, Lai et al. introduced a

concept called a strongly t-diagnosable systems and proved that the n-dimensional hy-

percube is strongly n-diagnosable. Essentially, it means that an n-dimensional hypercube

is almost (n + 1)-diagnosable except for the case where all the neighbors of some vertex

are faulty simultaneously. In [50], Wang proved that the diagnosability of an incomplete

hypercube under some conditions can be determined by simply checking the degree of

each vertex under the PMC model. An incomplete hypercube is a hypercube with some

missing edges. It is also called a faulty hypercube. There are some results concerning the

diagnosability of several variations of the hypercube [4, 10, 21, 22, 26, 35, 50]. In clas-

sical measures of system-level diagnosability for multiprocessor systems, it has generally

been assumed that any subset of processors can potentially fail at the same time. As a

consequence, the diagnosability of a system is upper bounded by its minimum degree.

We observe that the diagnosability of a system discussed in previous literatures are

all in a global sense, but ignored some local information. A system is t-diagnosable if,

all the faulty processors can be uniquely identified, provided that the number of faulty

processors does not exceed t. However, it is possible to correctly indicate all the faulty

processors in a t-diagnosable system when the number of faulty processors is greater than

t. For example, consider a multiprocessor system generated by integrating two arbitrary

subsystems with a few communication links in some way, where the two subsystems are

m-diagnosable and n-diagnosable, respectively, and m >> n. The diagnosability of this

system is limited by n, but it is possible to correctly point out all the faulty processors

even if the number of the faulty ones is between m and n. Therefore, if only considering

the global faulty/fault-free status, we lose some local systematic details.

In this thesis, we propose a new measure of diagnosability, called local diagnosability,

2



and study the local diagnosability of each processor of a system. We can identify the

diagnosability of a system by computing the local diagnosability of each processor. This

measure of the local diagnosability leads us to study the local diagnosability of each

processor instead of the whole system. We propose a necessary and sufficient condition,

Theorem 6, to determine the local diagnosability of a processor. We also provide two

useful structures, called Type I structure and Type II structure, to determine the local

diagnosability of a processor under the PMC model. Based on these structures, the local

diagnosability of each vertex of hypercube and star graph is shown to be equal to its

own degree. Then, we propose a concept for system diagnosis, called strongly local-

diagnosable property. A system G(V, E) is said to have a strongly local-diagnosable

property, if the local diagnosability of each vertex is equal to its degree. We show that

an n-dimensional hypercube Qn and an n-dimensional star graph Sn all have this strong

property. Then, we study the local diagnosability of an incomplete hypercube and an

incomplete star graph. Firstly, we show that both Qn and Sn keep this strong property

even if it has up to n − 2 faulty edges and n − 3 faulty edges, respectively. Secondly,

assume that each vertex of an incomplete hypercube Qn and an incomplete star graph Sn

is incident with at least two fault-free edges, we show Qn keeps this strong property even

if it has up to 3(n−2)−1 faulty edges and Sn will also keep this strong property no matter

how many edges are faulty. Furthermore, we show that Qn keeps this strong property no

matter how many edges are faulty, provided that each vertex of an incomplete hypercube

Qn is incident with at least three fault-free edges. Our bounds on the number of faulty

edges are all tight. Besides, we propose a new diagnosis algorithm for general systems.

The time complexity of our algorithm to diagnose all the faulty processors is bounded by

O(N log N), where N is the total number of processors.

In 1980, Malek and Maeng introduced the comparison model using Comparison-based

diagnosis approach, also known as the MM model [42, 43]. In this model, the number

of faulty processors is limited and all faults are permanent. The MM model deals with

the faulty diagnosis by sending the same input (or task) from a processor w to each pair

of distinct neighbors, u and v, and then comparing their responses. The processor w is

called the comparator of processors u and v. Different comparators may examine the

same pair of processors. The result of the comparison is either the two responses agreed

3



or two responses disagreed. Based on the results of all the comparisons, one need to

decide the faulty or fault-free status of the processors in the system. Using a comparison

diagnosis model, Sengupta and Dahbura described a diagnosable system and presented a

polynomial algorithm to determine the set of all faulty processors [47].

Reviewing some previous literatures [4, 10, 21, 22, 23, 26, 35, 39, 41, 46, 51], Qn, CQn,

TQn and MQn, all have diagnosability n under the comparison model or the PMC model.

The diagnosability of the Star Sn is shown to be n − 1 under the comparison model [56].

In classical measures of system-level diagnosability for multiprocessor systems, if all the

neighbors of some processor v are faulty simultaneously, it is not possible to determine

whether processor v is fault-free or faulty. As a consequence, the diagnosability of a

system is limited by its minimum degree. Hence, Lai et al. introduced a restricted

diagnosability of multiprocessor systems called conditional diagnosability in [40]. Lai et

al. considered a measure by restricting that, for each processor v in a system, all the

processors which are directly connected to v do not fail at the same time. In this thesis,

We make a contribution to the evaluation of diagnosability for hypercube networks under

the comparison model and prove that the conditional diagnosability of n-dimensional

hypercube Qn is 3(n − 2) + 1 for n ≥ 5. The conditional diagnosability of Qn is about

three times larger than the classical diagnosability of Qn. Furthermore, we extend the

result to bijective connection network (in brief, BC network). An n-dimensional BC

network, denoted by Xn, is an n-regular graph with 2n vertices and n2n−1 edges. The n-

dimensional hypercube, crossed cube, twisted cube, and Möbius cube are some examples

of the n-dimensional BC networks. In this thesis, we also prove that the conditional

diagnosability of Xn is 3(n − 2) + 1 under the comparison model, n ≥ 5. As a corollary

of this result, we obtain the conditional diagnosability of the cube family.

1.1 Basic Terms and Notations

A multiprocessor system can be represented by a graph G(V, E), where the set of vertices

V (G) represents processors and the set of edges E(G) represents communication links

between processors. Throughout this thesis, we focus on undirected graph without loops

4



and follow [52] for graph theoretical definitions and notations.

Let G(V, E) be a graph and v ∈ V (G) be a vertex. We use the notation EG(v) to

denote the set of edges incident with v. The cardinality |EG(v)| is called the degree of

v, denoted by degG(v) or simply deg(v). The maximum degree is denoted by ∆(G), the

minimum degree is δ(G), and G is regular if ∆(G) = δ(G). G is d-regular if deg(v) = d

for every v ∈ V (G). The neighborhood N(v) of a vertex v in G is the set of all vertices

that are adjacent to v in G. For a subset of vertices V ′ ⊂ V (G), the neighborhood set of

the vertex set V ′ is defined as N(V ′) =
⋃

v∈V ′

N(v) − V ′. For a set of edges(respectively,

vertices) F , we use the notation G−F to denote the graph obtained from G by removing

all the edges(respectively, vertices) in F . The components of a graph G are its maximal

connected subgraphs. A component is trivial if it has no edges; otherwise, it is nontrivial.

The connectivity κ(G) of a graph G(V, E) is the minimum number of vertices whose

removal results in a disconnected or a trivial graph. Let G1 be a subgraph of G, we

shall write the vertex set of G1 as V (G1). The neighborhood set of V (G1) is defined as

N(V (G1)) = {u ∈ V (G) − V (G1) | there exists a vertex v ∈ V (G1) such that (u, v) ∈

E(G)}. The following is an useful characterization for the distinguishability of two sets

of vertices under the PMC model and the comparison model. Let F1, F2 ⊆ V (G) be two

distinct sets. The symmetric difference of the two sets F1 and F2 is defined as the set

F1∆F2 = (F1 − F2)
⋃

(F2 − F1).

For studying the conditional diagnosability of a system, we also need some definitions

for further discussion. Let G(V, E) be a graph. For any set of vertices U ⊆ V (G), G[U ]

denotes the subgraph of G induced by the vertex subset U . Let H be a subgraph of G

and v be a vertex in H . We use V (H ; 3) = {v ∈ V (H) | degH(v) ≥ 3} to represent the

set of vertices which has degree 3 or more in H . Let F1, F2 ⊆ V (G) be two distinct sets

and S = F1

⋂

F2. We use CF1∆F2,S to denote the subgraph induced by the vertex subset

(F1∆F2)
⋃

{u | there exists a vertex v ∈ F1∆F2 such that u and v are connected in G−S}.
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1.2 Organization of the Thesis

The rest of this thesis is organized as follows. The details for the PMC model and the

comparison model are described in Chapter 2, and the previous results for diagnosing a

system are also provided in this chapter as well.

In Chapter 3, we introduce the concept of local diagnosability and propose a necessary

and sufficient condition for verifying if it is locally t-diagnosable at a given processor in

a system. Then, we define a strongly local-diagnosable property for a system and study

the strong property in a faulty hypercube and a faulty star graph respectively. Next, we

study the strong property in a conditional faulty hypercube and star graph. A diagnosis

algorithm is proposed at the end of this chapter.

In Chapter 4, we focus on the measure of conditional diagnosability we study the

conditional diagnosability of the hypercube Qn under the comparison model. Finally, our

conclusions and future works are given in Chapter 5.
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Chapter 2

Diagnosis Model

The process of identifying faulty processors in a system is known as the system-level

diagnosis. Several different approaches have been developed to diagnose faulty processors,

among which there are two fundamental approaches on system-level diagnosis. One major

approach is called PMC model established by Preparata, Metze and Chien [45]. Another

major approach is the comparison model, proposed by Malek and Maeng [42, 43]. In the

following, we describe the details of the two major models and give some previous results

for diagnosing a system.

2.1 The PMC Model and Some Previous Results

The PMC diagnosis model is presented by Preparata, Metze and Chien [45]. In this model,

a self-diagnosable system is often represented by a directed graph T (V, E) in which an

edge directed from vertex u to vertex v means that u can test v. In this situation, u

is called the tester and v is called the tested vertex. The outcome of a test (u, v) is

1(respectively, 0) if u evaluates v as faulty (respectively, fault-free). We assume that

the testing results of fault-free vertices are always reliable and the testing results of faulty

vertices are unreliable. The collection of all testing results is called a syndrome. Formally,

a syndrome is a function σ : E → {0, 1}. The set of all faulty processors in the system is

called a faulty set. This can be any subset of V (T ). For a given syndrome σ, a subset
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of vertices F ⊂ V (T ) is compatible with σ if the syndrome σ can be produced from the

situation that all vertices in F are faulty and all vertices in V − F are fault-free. Since

faulty testers can give arbitrary testing results, any syndrome compatible with a faulty set

F can occur when faulty processors in the system are exactly those in F . Let σF be the set

of all syndromes which could be produced if F is the set of faulty vertices. Two distinct

sets F1, F2 ⊆ V (G) are said to be distinguishable if σF1

⋂

σF2
= φ; otherwise, F1, F2 are

said to be indistinguishable. We say (F1, F2) is a distinguishable pair if σF1

⋂

σF2
= φ;

otherwise, (F1, F2) is an indistinguishable pair. For PMC model, some known results

about the definition of t-diagnosable system and related concepts are listed as follows.

Some of these previous results are on directed graphs and others are on undirected.

Definition 1 [45] A system G is called t-diagnosable if, given the test outcomes obtained

by the testing link, all the faulty vertices can be uniquely identified without replacement,

provided that the number of faulty vertices does not exceed t.

Definition 2 [45] The maximum number of faulty vertices that a system G can guarantee

to identify is called the diagnosability of G, written as t(G).

Dahbura and Masson [19] proposed a polynomial time algorithm to check whether a

system is t-diagnosable.

Lemma 1 [19] A system G(V, E) is t-diagnosable under the PMC model if and only if

for each pair F1, F2 ⊂ V with |F1|, |F2| ≤ t and F1 6= F2, there is at least one test from

V − (F1

⋃

F2) to F1∆F2.

The following two lemmas related to t-diagnosable systems are proposed by Preparata

et al. [45] and Hakimi et al. [26], respectively.

Lemma 2 [45] Let G(V, E) be a graph and |V | = N . The following two conditions are

necessary for G to be t-diagnosable;

1. N ≥ 2t + 1, and
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2. each processor in G is tested by at least t other processors.

Lemma 3 [26] Let G(V, E) be a graph and |V | = N . G is t-diagnosable if

1. N ≥ 2t + 1, and

2. κ(G) ≥ t.

For a directed graph G(V, E) and vertex v ∈ V , let Γ(v) = {vi|(v, vi) ∈ E} and

Γ(X) =
⋃

v∈X Γ(v) − X, X ⊂ V. Hakimi and Amin presented a necessary and sufficient

condition for a system G to be t-diagnosable as follows:

Theorem 1 [26] Let G(V, E) be the directed graph of a system G and |V | = N . Then

G is t-diagnosable under the PMC model if and only if: (i) N ≥ 2t + 1, (ii) din(v) ≥ t

for all v ∈ V , and (iii) for each integer p with 0 ≤ p ≤ t − 1, and each X ⊂ V with

|X| = N − 2t + p, |Γ(X)| > p.

In this thesis, we propose some new concepts on diagnosis, and we focus on undirected

graph. The following lemma follows directly from Lemma 1.

Lemma 4 [19] Let G(V, E) be a graph. For any two distinct sets F1, F2 ⊂ V , (F1, F2)

is a distinguishable pair under the PMC model if and only if there exists a vertex u ∈

V − (F1

⋃

F2) and a vertex v ∈ F1∆F2 such that (u, v) ∈ E (see Figure 2.1).

b

b

b

b

u

v

u

v
F1 F2 F1 F2F1

(i) (ii)

Figure 2.1: Illustration for a distinguishable pair (F1, F2)

It follows from Definition 1 that the following lemma holds.
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Lemma 5 [19] A system G(V, E) is t-diagnosable under the PMC model if and only if,

for any two distinct sets F1, F2 ⊂ V with |F1| ≤ t and |F2| ≤ t, (F1, F2) is a distinguishable

pair.

The following Lemma 6 is equivalent to Lemma 5.

Lemma 6 [19] A system G(V, E) is t-diagnosable if and only if, for each indistinguishable

pair F1, F2 ⊂ V , it implies that |F1| > t or |F2| > t.

By Lemma 2, a similar result for undirected graph is stated as follows.

Corollary 1 [45] Let G(V, E) be an undirected graph and |V | = N . The following two

conditions are necessary for G to be t-diagnosable under the PMC model:

1. N ≥ 2t + 1, and

2. δ(G) ≥ t.

For our discussion later, a useful result presented by Lai [40] is stated below.

Theorem 2 [40] Let G(V, E) be a graph. G is t-diagnosable if and only if, for each set

of vertices F ⊂ V with |F | = p, 0 ≤ p ≤ t − 1, each connected component of G − F has

at least 2(t − p) + 1 vertices.

2.2 The Comparison Model and Some Previous Re-

sults

The comparison diagnosis model is proposed by Malek and Maeng [42, 43]. In this model,

a self-diagnosable system is often represented by a multigraph M(V, C), where V is the

same vertex set defined in G and C is the labeled edge set. Let (u, v)w be a labeled
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edge. If (u, v) is an edge labeled by w, then (u, v)w is said to belong to C, which implies

that the vertex u and v are being compared by vertex w. The same pair of vertices may

be compared by different comparators, so M is a multigraph. For (u, v)w ∈ C, we use

r((u, v)w) to denote the result of comparing vertices u and v by w such that r((u, v)w) = 0

if the outputs of u and v agree, and r((u, v)w) = 1 if the outputs disagree. In this model,

if r((u, v)w) = 0 and w is fault-free, then both u and v are fault-free. If r((u, v)w) = 1,

then at least one of the three vertices u, v, w must be faulty. If the comparator w is

faulty, then the result of the comparison is unreliable that means both r((u, v)w) = 0 and

r((u, v)w) = 1 are possible outputs, and it outputs only one of these two possibilities. In

this thesis, we consider a complete diagnosis that means each vertex diagnoses all pairs

of distinct neighbors. For an n-dimensional hypercube Qn, each vertex has degree n, and

therefore, there are
(

n

2

)

comparisons for each vertex acting as a comparator. Furthermore,

there are 2n vertices in Qn so the total number of comparisons is
(

n

2

)

2n = O(n22n).

As the description for the PMC model, the collection of all comparison results defined

as a function σ: C → {0, 1}, is called the syndrome of the diagnosis. A subset F ⊂ V

is said to be compatible with a syndrome σ if σ can arise from the circumstance that all

vertices in F are faulty and all vertices in V − F are fault-free. A system is said to be

diagnosable if, for every syndrome σ, there is a unique F ⊂ V that is compatible with σ.

In [47], a system is called a t-diagnosable system if the system is diagnosable as long as

the number of faulty vertices does not exceed t. The maximum number of faulty vertices

that the system G can guarantee to identify is called the diagnosability of G, written as

t(G). A faulty comparator can lead to unreliable results. So, a set of faulty vertices may

produce different syndromes. Let σF = {σ | σ is compatible with F}. Two distinct sets

F1, F2 ⊂ V are said to be indistinguishable if and only if σF1

⋂

σF2
6= ∅; otherwise, F1, F2

are said to be distinguishable. There are several different ways to verify a system to be

t-diagnosable under the comparison approach. The following theorem given by Sengupta

and Dahbura [47] is a necessary and sufficient condition for ensuring distinguishability.

Theorem 3 [47] Let G(V, E) be a graph. For any two distinct sets F1, F2 ⊂ V , (F1, F2)

is a distinguishable pair under the comparison model if and only if at least one of the

following conditions is satisfied (see Figure 2.2):
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1. ∃u, w ∈ V − {F1

⋃

F2} and ∃v ∈ F1△F2 such that (u, v)w ∈ C,

2. ∃u, v ∈ F1 − F2 and ∃w ∈ V − {F1

⋃

F2} such that (u, v)w ∈ C, or

3. ∃u, v ∈ F2 − F1 and ∃w ∈ V − {F1

⋃

F2} such that (u, v)w ∈ C.

b

b b

b

b b

b b

b

bb

bF1 F2

V

(2) (3)

(1) (1)

Figure 2.2: Description of distinguishability for Theorem 3.

The following result is a useful sufficient condition for checking whether (F1, F2) is a

distinguishable pair.

Theorem 4 Let G(V, E) be a graph. For any two distinct sets F1, F2 ⊂ V with |Fi| ≤ t,

i = 1, 2, and S = F1

⋂

F2. (F1, F2) is distinguishable under the comparison model if, the

subgraph CF1∆F2,S of G − S contains at least 2(t − |S|) + 1 vertices having degree 3 or

more.

Proof.

Given any pair of distinct sets of vertices F1, F2 ⊂ V with |Fi| ≤ t, i = 1, 2. Let

S = F1

⋂

F2, then 0 ≤ |S| ≤ t − 1, and |F1∆F2| ≤ 2(t − |S|). Consider the subgraph

CF1∆F2,S, the number of vertices having degree 3 or more is at least 2(t − |S|) + 1 in

CF1∆F2,S, the subgraph CF1∆F2,S contains at least 2(t− |S|) + 1 vertices. There is at least

one vertex with degree 3 or more lying in CF1∆F2,S −F1∆F2. Let u be one of such vertices

with degree 3 or more. Let i, j, and k be three distinct vertices linked to u. If one of i,

j, and k lies in CF1∆F2,S −F1∆F2, condition 1 of Theorem 3 holds obviously. Suppose all

these three vertices belong to F1∆F2. Without loss of generality, assume i lies in F1 −F2,

one of the two cases will happen: 1) if j lies in F1 − F2, condition 2 of Theorem 3 holds;
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or, 2) if j lies in F2−F1, wherever k lies in F1−F2 or F2−F1, condition 2 or 3 of Theorem

3 holds. So (F1, F2) is a distinguishable pair and the proof is complete. 2

By Theorem 4, we now propose a sufficient condition to verify whether a system is

t-diagnosable under the comparison diagnosis model.

Corollary 2 Let G(V, E) be a graph. G is t-diagnosable under the comparison model if,

for each set of vertices S ⊂ V with |S| = p, 0 ≤ p ≤ t − 1, every connected component C

of G−S contains at least 2(t−p)+1 vertices having degree at least three. More precisely,

|V (C; 3)| ≥ 2(t − p) + 1.
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Chapter 3

Local Diagnosability

We first review some related results on system diagnosability of some well-known networks

under the PMC model. In[35], Kavianpour et al. proved that the diagnosability of an n-

dimensional hypercube Qn is n. In [21] and [22], Fan proved that an n-dimensional Crossed

cube and an n-dimensional Möbius cube have diagnosability n under the PMC model.

In [50], Wang proved that the diagnosability of a faulty hypercube can be determined by

checking the degree of each vertex under the PMC model, provided that the minimum

degree of the faulty hypercube is at least three.

We observe that the traditional diagnosability discussed in most literatures describes

the global status of a system. In this thesis, we study the local status of each processor

instead of the global status of a system. For example, for any two positive integers m

and n with m >> n ≥ 3, the diagnosability of two hypercube systems Qm and Qn is m

and n, respectively. Combining Qm and Qn with a few edges in some way may cause the

diagnosability of the new system to become n. In this situation, the strong diagnosability

of Qm is disregarded. For this reason, we are motivated to study the local status of each

processor. Given a single vertex, we require only identifying the status of this particular

processor correctly. We now propose the following concept.

Definition 3 Let G(V, E) be a graph and v ∈ V be a vertex. G is locally t-diagnosable

at vertex v if, given a syndrome σF produced by a set of faulty vertices F ⊆ V containing

vertex v with |F | ≤ t, every set of faulty vertices F ′ compatible with σF and |F ′| ≤ t, must
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also contain vertex v.

Definition 4 Let G(V, E) be a graph and v ∈ V be a vertex. The local diagnosability of

vertex v, written as tl(v), is defined to be the maximum value of t such that G is locally

t-diagnosable at vertex v.

The following result is another point of view for checking whether a vertex is locally

t-diagnosable.

Lemma 7 Let G(V, E) be a graph and v ∈ V be a vertex. G is locally t-diagnosable at

vertex v if and only if, for any two distinct sets of vertices F1, F2 ⊂ V , |F1| ≤ t, |F2| ≤ t

and v ∈ F1∆F2, (F1, F2) is a distinguishable pair.

In the following, we study some properties of a system being locally t-diagnosable at

a given vertex, and its relationship between a system being t-diagnosable.

Proposition 1 Let G(V, E) be a graph and v ∈ V (G) be a vertex. G is locally t-

diagnosable at vertex v under the PMC model, then |V (G)| ≥ 2t + 1.

Proof.

We show this by contradiction. Assume that |V (G)| ≤ 2t. We partition V (G) into

two disjoint subsets F1, F2 with |F1| ≤ t, |F2| ≤ t. The vertex v is either in F1 or in F2.

Since V − (F1

⋃

F2) = ∅, there is no edge between V − (F1

⋃

F2) and F1∆F2. By Lemma

4, (F1, F2) is an indistinguishable pair, this contradicts the assumption that G is locally

t-diagnosable at vertex v. So the result follows. 2

Proposition 2 Let G(V, E) be a graph and v ∈ V be a vertex with deg(v) = n. The local

diagnosability of vertex v is at most n under the PMC model.

Proof.
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Let F1 be the set of vertices adjacent to vertex v, F1 = NG(v) and |F1| = n. Let

F2 = F1

⋃

{v} with |F2| = n + 1. It is a simple matter to check that there is no edge

between V − (F1

⋃

F2) and F1∆F2. By Lemma 4, (F1, F2) is an indistinguishable pair.

Thus, G is not locally (n + 1)-diagnosable at vertex v, so tl(v) ≤ n = deg(v). We have

the stated result. 2

Proposition 3 Let G(V, E) be a graph. Under the PMC model, G is t-diagnosable if and

only if G is locally t-diagnosable at every vertex.

Proof.

To prove the necessity, we assume that G is t-diagnosable. If the result is not true,

there exists a vertex v ∈ V such that G is not locally t-diagnosable at vertex v. By

Lemma 7, there exists a distinct pair of sets F1, F2 ⊂ V with |F1| ≤ t, |F2| ≤ t and

v ∈ F1∆F2, (F1, F2) is an indistinguishable pair. By Lemma 5, G is not t-diagnosable.

This contradicts the assumption, hence the necessary condition follows.

To prove the sufficiency, suppose on the contrary that G is not t-diagnosable, there

exists a distinct pair of sets F1, F2 ⊂ V with |F1| ≤ t, |F2| ≤ t, (F1, F2) is an indistinguish-

able pair. Being distinct, the set F1∆F2 6= ∅, we can find a vertex v ∈ F1∆F2. By Lemma

7, G is not locally t-diagnosable at vertex v, which is a contradiction. This completes the

proof. 2

By Definition 4 and Proposition 3, we know that the diagnosability of a multiprocessor

system is equal to the minimum local diagnosability of all vertices of the system. Thus,

we have the following theorem.

Theorem 5 Let G(V, E) be a multiprocessor system. Under the PMC model, the diag-

nosability of G is t if and only if

min{tl(v) | for every v ∈ V } = t.

From Theorem 5, we can identify the diagnosability of a system by computing the local
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diagnosability of each vertex. Because many well-known systems are vertex-symmetric,

the diagnosability of these system can be easily identified by this effective method.

Before studying the local diagnosability of a vertex, we need some definitions for

further discussion. Let F be a set of vertices and v be a vertex not in F . After deleting

the vertices in F from G, we use Cv to denote the connected component which vertex v

belongs to. Now, we propose a necessary and sufficient condition for verifying if a system

is locally t-diagnosable at a given vertex v.

Theorem 6 Let G(V, E) be a graph and v ∈ V be a vertex. G is locally t-diagnosable at

vertex v under the PMC model if and only if, for each set of vertices F ⊂ V with |F | = p,

0 ≤ p ≤ t − 1 and v /∈ F , the connected component, which v belongs to in G − F , has at

least 2(t − p) + 1 vertices.

Proof.

To prove the necessity, we assume that G is locally t-diagnosable at vertex v. If the

result does not hold, there exists a set of vertices F ⊂ V with |F | = p, 0 ≤ p ≤ t − 1,

v /∈ F such that the connected component Cv has strictly less than 2(t − p) + 1 vertices,

|V (Cv)| ≤ 2(t−p). We then arbitrarily partition V (Cv) into two disjoint subsets, V (Cv) =

F1

⋃

F2 with |F1| ≤ t − p, |F2| ≤ t − p. Let A1 = F1

⋃

F and A2 = F2

⋃

F . It is clear

that |A1| ≤ (t − p) + p = t, |A2| ≤ (t − p) + p = t, the vertex v ∈ A1∆A2 and there is no

edge between V − (A1

⋃

A2) and A1∆A2. By Lemma 7, (A1, A2) is an indistinguishable

pair. This contradicts the assumption that G is locally t-diagnosable at vertex v.

We now prove the sufficiency by contradiction. Suppose G is not locally t-diagnosable

at vertex v, then, there exists an indistinguishable pair (F1, F2) with |F1| ≤ t, |F2| ≤ t

and v ∈ F1∆F2. By Lemma 4, there is no edge between V − (F1

⋃

F2) and F1∆F2. Let

F = F1

⋂

F2 with |F | = p, 0 ≤ p ≤ t − 1 and v /∈ F . F1∆F2 is disconnected from other

parts after removing all the vertices in F from G. We observe that |F1∆F2| ≤ 2(t − p).

Thus, the connected component Cv has at most 2(t− p) vertices and |V (Cv)| ≤ 2(t − p).

This contradicts the assumption that the connected component Cv has to satisfy |V (Cv)| ≥

2(t − p) + 1. Hence, the theorem holds. 2
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We now propose two special subgraphs called Type I structure and Type II structure.

They provide us with an efficient and simple method to identify the local diagnosability

of each vertex of a system under the PMC diagnosis model.

Definition 5 Let G(V, E) be a graph, v ∈ V be a vertex and k be an integer, k ≥ 1, a

Type I structure T1(v; k) of order k at vertex v is defined to be the following graph,

T1(v; k) = [V (v; k), E(v; k)]

which is composed of 2k + 1 vertices and of 2k edges as illustrated in Figure 3.1, where

• V (v; k) = {v} ∪ {xi, yi | 1 ≤ i ≤ k},

• E(v; k) = {(v, xi), (xi, yi)|1 ≤ i ≤ k}.

b

b b b

b b b
...

v

x1

y1

x2

y2

xk

yk

Figure 3.1: A Type I structure T1(v; k) consists of 2k + 1 vertices and 2k edges.

Following Theorem 6 and Definition 5, we propose a sufficient condition for verifying

if it is locally t-diagnosable at a given processor in a system.

Theorem 7 Let G(V, E) be a graph and v ∈ V be a vertex. G is locally t-diagnosable

at vertex v under the PMC model if G contains a Type I structure T1(v; t) of order t at

vertex v as a subgraph.

Proof.

We use Theorem 6 to prove this result. Assume that G contains a subgraph T1(v; t) at

vertex v. Let ei = (xi, yi) be the edge for each i, 1 ≤ i ≤ t, with respect to T1(v; t). The
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number of vertices of the connected component including vertex v is at least 2t + 1. Let

F ⊂ V (G) be a set of vertices with |F | = p, 0 ≤ p ≤ t − 1 and v /∈ F . After deleting F

from V (G), there are at least (t − p) complete ei’s still remain in T1(v; t). Therefore, the

number of vertices of the connected component Cv is at least 2(t − p) + 1. By Theorem

6, G is locally t-diagnosable at vertex v. The proof is complete. 2

A Type II structure T2(v; k, 2) at a vertex v is defined as follows:

Definition 6 Let G(V, E) be a graph, v ∈ V be a vertex and k be an integer, k ≥ 1, a

Type II structure T2(v; k, 2) of order k + 2 at vertex v is defined to be the following graph,

T2(v; k, 2) = [V (v; k, 2), E(v; k, 2)]

which is composed of 2k + 5 vertices and of 2k + 5 edges as illustrated in Figure 3.2,

where

• V (v; k, 2) = {v} ∪ {xi, yi | 1 ≤ i ≤ k} ∪ {z1, z2, z3, z4},

• E(v; k, 2) = {(v, xi), (xi, yi)|1 ≤ i ≤ k} ∪ {(v, z1),

(v, z2), (z1, z3), (z2, z3), (z3, z4)}.

b

b b b
bb

b

b

b bb
...

v

x1

y1

x2

y2

xk

yk

z1z2
z3

z4

Figure 3.2: A Type II structure T2(v; k, 2) consists of 2k + 5 vertices and 2k + 5 edges.

In the following, we propose another sufficient condition for verifying if it is locally

t-diagnosable at a given processor in a system.

Theorem 8 Let G(V, E) be a graph and v ∈ V be a vertex. G is locally t-diagnosable at

vertex v under the PMC model if G contains a Type II structure T2(v; k, 2) of order k + 2

at vertex v as a subgraph, where t = k + 2.
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Proof.

We use Theorem 6 to prove this result. Assume that G contains a subgraph T2(v; k, 2)

of order t = k + 2 at vertex v. The number of vertices of the connected component

including vertex v is at least 2k + 5 = 2t + 1. Let F ⊂ V be a set of vertices with

|F | = p, 0 ≤ p ≤ t− 1 and v /∈ F , the number of vertices of Cv is at least (2k + 5)− 2 ∗ 1

after removing one vertex in F , the number of vertices of Cv is at least (2k + 5) − 2 ∗ 2

after removing two vertices in F , and so on. Thus, the connected component Cv satisfies

|V (Cv)| ≥ (2k+5)−2p = 2(t−p)+1. By Theorem 6, G is locally t-diagnosable at vertex

v. This proves the theorem. 2

In the following, we give some examples.

Example 1 Let us consider a cycle of length four as shown in Figure 3.3(a). We can

find a Type I structure T1(v; 1) of order 1 at vertex v as shown in Figure 3.3(b), hence

vertex v is locally 1-diagnosable.

b

b b

b b

b

bv v

(a) (b)

Figure 3.3: A cycle of length four and a Type I structure T1(v; 1) of order 1 at v.

Example 2 Consider examples as shown in Figure 3.4(a), 3.4(b) and 3.4(c). It is a rou-

tine work to check that there is a subgraph T1(v1; 2), T1(v2; 2) and T2(v3; 1, 2) at vertex v1,

v2 and v3, respectively. Hence it is locally 2-diagnosable, 2-diagnosable and 3-diagnosable

at vertex v1, v2 and v3, respectively.

By Theorem 7, Theorem 8 and Proposition 2, we have the following result.
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Figure 3.4: Some examples of local diagnosability.

Theorem 9 Let G(V, E) be a graph and v ∈ V be a vertex with deg(v) = n. The local

diagnosability of vertex v is n under the PMC model if G contains a subgraph, which is

either a Type I structure T1(v; n) of order n or a Type II structure T2(v; n− 2, 2) of order

n, at vertex v.

3.1 The Local Diagnosability of Hypercube under

the PMC Model

In this section, we study the local diagnosability of hypercube under the PMC model. An

n-dimensional hypercube can be modeled as a graph Qn, with the vertex set V (Qn) and

the edge set E(Qn). There are 2n vertices in Qn, and each vertex has degree n. Each

vertex v of Qn can be distinctly labeled by a binary n-bit string, v = vn−1vn−2...v1v0.

There is an edge between two vertices if and only if their binary labels differ in exactly

one bit position. Let u and v be two adjacent vertices. If the binary labels of u and v differ

in ith position, then the edge between them is said to be in ith dimension and the edge

(u, v) is called an ith dimensional edge. Let i be a fixed position, we use Q0
n−1 to denote

the subgraph of Qn induced by {v ∈ V (Qn) | vi = 0} and Q1
n−1 to denote the subgraph

of Qn induced by {v ∈ V (Qn) | vi = 1}. Consequently, Qn is decomposed to Q0
n−1 and

Q1
n−1 by dimension i, and Q0

n−1 and Q1
n−1 are (n− 1)-dimensional subcube of Qn induced

by the vertices with the ith bit position being 0 and 1 respectively. Q0
n−1 and Q1

n−1 are
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isomorphic to Qn−1. For each vertex v ∈ V (Q0
n−1), there is exactly one vertex in Q1

n−1,

denoted by v(1), such that (v, v(1)) ∈ E(Qn). Conversely, for each vertex v ∈ V (Q1
n−1),

there is exactly one vertex in Q0
n−1, denoted by v(0), such that (v, v(0)) ∈ E(Qn). Let Di

be the set of all edges with one end in Q0
n−1 and the other in Q1

n−1. These edges are called

crossing edges in the ith dimension between Q0
n−1 and Q1

n−1. We also call Di the set of

all ith dimensional edges.

Based on Theorem 9, we prove that the local diagnosability of each vertex in Qn is

equal to its degree.

Theorem 10 Let Qn be an n-dimensional hypercube. The local diagnosability of each

vertex in Qn is n under the PMC model, for n ≥ 3.

Proof.

We use Theorem 9 to prove this result, and we shall construct a Type I structure

of order n at each vertex, for n ≥ 3. We prove this by induction on n. Since an n-

dimensional hypercube Qn is vertex-symmetric, we can concentrate on the construction

of Type I structure at a given vertex v. For n = 3, deg(v) = 3 and it is clear that

Q3 contains a Type I structure T1(v; 3) of order 3 at vertex v (see Figure 3.5). As the

inductive hypothesis, we assume that Qn−1 contains a Type I structure T1(v; n − 1) of

order n − 1 at each vertex, for some n ≥ 4. Now we consider Qn, Qn can be decomposed

into two subcubes Q0
n−1 and Q1

n−1 by some dimension. Without loss of generality, we may

assume that the vertex v ∈ Q0
n−1. By the inductive hypothesis, Q0

n−1 contains a Type I

structure T1(v; n− 1) of order n− 1 at vertex v. Consider the vertex v(1) in Q1
n−1. Vertex

v(1) has an adjacent neighbor that is in Q1
n−1 due to deg(v(1)) = n, where n ≥ 3. Thus,

Qn contains a Type I structure T1(v; n) of order n at vertex v. By Theorem 9, the local

diagnosability of each vertex in Qn is n, for n ≥ 3. 2
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Figure 3.5: A Q3 and a Type I structure T1(v; 3) of order 3 at vertex v.

3.2 The Local Diagnosability of Star Graph under

the PMC Model

In this section, we study the local diagnosability of star graph under the PMC model.

An n-dimensional star graph Sn is an (n − 1)-regular graph consisting of n! vertices and

(n− 1)n!/2 edges. The set of vertices V (Sn) = {u1u2...un|ui ∈ 〈n〉 and ui 6= uj for i 6= j},

where 〈n〉 is the set {1, 2, ..., n}. The adjacency is defined as follows: u1u2...ui...un is

adjacent to v1v2...vi...vn through an edge of dimension i, if v1 = ui, vi = u1, and vj = uj

for j /∈ {1, i}, where 2 ≤ i ≤ n. Let u = u1u2...ui...un be any vertex in Sn. We use (u)i

to denote the ith coordinate ui of u and S
{i}
n to denote the ith subgraph of Sn induced by

those vertices u with (u)n = i. Obviously, Sn can be decomposed into n vertex disjoint

subgraphs S
{i}
n for 1 ≤ i ≤ n, such that each S

{i}
n is isomorphic to Sn−1. Thus, the

star graph can be constructed recursively. By the definition of Sn, there is exactly one

neighbor v of u such that u and v are adjacent through an edge of dimension i, for each

2 ≤ i ≤ n. For example, S4 contains 4! vertices in which two vertices u1u2u3u4 and

u4u2u3u1 are neighbors and joined through an edge of dimensional 4. Let (u)i denote the

unique i-neighbor of u. We have ((u)i)i = u and (u)n ∈ S
{(u)1}
n . For 1 ≤ i, j ≤ n and

i 6= j, we use Ei,j to denote the set of edges between S
{i}
n and S

{j}
n . The star graph S2,

S3 and S4 are shown in Figure 3.6.

Based on Theorem 9, we prove that the local diagnosability of each vertex in Sn is

equal to its degree.

23



bc

bc

bc bc

bc

bc bc

bc

bc bc

bc bc

bc

bc bc

bc

b

b b

b

b

b

b

b b

b

b

b b

b

b b

S2

12 21

S3

123

213

312

132

231

321

S4

1234 4231

3214 2134 3241 2431

2314 3124 2341 3421

1324 4321
3412 2413

4312 1432 4213 1423

1342 4132 1243 4123

3142 2143

a

f

b

e

d

b

c

f

a

c

d

e

Figure 3.6: The star graph S2, S3 and S4.

Theorem 11 Let Sn be an n-dimensional star graph. The local diagnosability of each

vertex in Sn is n − 1 under the PMC model, for n ≥ 3.

Proof.

We shall construct a Type I structure of order n − 1 at each vertex, for n ≥ 3. We

prove this by induction on n. Since an n-dimensional star graph Sn is vertex-symmetric,

we can concentrate on an arbitrary vertex v = v1v2...vn. For n = 3, deg(v) = 2 and it is

clear that S3 contains a Type I structure T1(v; 2) of order 2 at vertex v. As the inductive

hypothesis, we assume that Sn−1 contains a Type I structure T1(v; n − 2) of order n − 2

at each vertex, for some n ≥ 4. Now we consider Sn. By the definition of star graphs,

Sn can be decomposed into n subgraphs S
{v1}
n , S

{v2}
n , ..., and S

{vn}
n . So v ∈ S

{vn}
n . By

the inductive hypothesis, S
{vn}
n contains a Type I structure T1(v; n − 2) of order n − 2

at vertex v. Consider the vertex (v)n in S
{v1}
n . Vertex (v)n has at least one adjacent

neighbor in S
{v1}
n due to deg((v)n) = n − 1, where n ≥ 3. Thus, Sn contains a Type I

structure T1(v; n − 1) of order n − 1 at vertex v. By Theorem 9, the local diagnosability

of each vertex in Sn is n − 1, for n ≥ 3. 2
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3.3 Strongly Local-diagnosable Property

In this section, we use hypercube as an example to introduce our concept of the strongly

local-diagnosable property. In previous section, we presented two sufficient conditions,

Theorem 7 and Theorem 8, for identifying the local diagnosability of a vertex. It seems

that identifying the local diagnosability of a vertex is the same as counting its degree.

We give an example to show that this is not true in general. As shown in Figure 3.7, we

take a vertex v in two-dimensional hypercube Q2, let F1 = {v, 1} and F2 = {2, 3} with

|F1| = 2 and |F2| = 2. It is a simple matter to check that (F1, F2) is an indistinguishable

pair. Hence tl(v) 6= deg(v) = 2. We then propose the following two concepts.

b

b

b

b

F1 F2

v

1 2

3

Figure 3.7: An indistinguishable pair (F1, F2) in Q2.

Definition 7 Let G(V, E) be a graph and v ∈ V be a vertex. Vertex v has the strongly

local-diagnosable property if the local diagnosability of vertex v is equal to its degree.

Definition 8 Let G(V, E) be a graph. G has the strongly local-diagnosable property if,

every vertex in the graph G has the strongly local- diagnosable property.

Following Definition 7, Definition 8, Theorem 10 and Theorem 11 imply the following

two propositions.

Proposition 4 Let Qn be an n-dimensional hypercube, n ≥ 3. Qn has the strongly local-

diagnosable property under the PMC model.

Proposition 5 Let Sn be an n-dimensional star graph, n ≥ 3. Sn has the strongly local-

diagnosable property under the PMC model.
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We now consider a system which is not vertex-symmetric. Let G(V, E) be a graph

and F ⊂ E(G) be a set of edges. Removing the edges in F from G, the degree of each

vertex in the resulting graph G−F is called the remaining degree of v, and is denoted by

degG−F (v). We consider a faulty hypercube Qn with a faulty set F ⊂ E(Qn), n ≥ 3. We

shall prove that Qn has the strongly local-diagnosable property even if it has up to (n−2)

faulty edges. The number n−2 is optimal in the sense that a faulty hypercube Qn cannot

be guaranteed to have this strong property if there are n − 1 faulty edges. As shown in

Figure 3.8, we take a vertex v ∈ V (Qn) and a vertex x which is an adjacent neighbor of v.

Let F = {(y, x) ∈ E(Qn) | vertex y is directly adjacent to x}−{(v, x)}, then |F | = n − 1

and the remaining degree of v in Qn − F is n. Let F1 = (NQn−F (v) − {x})
⋃

{v} and

F2 = NQn−F (v), then |F1| = |F2| = n and v ∈ F1∆F2. It is clear that there is no edge

between V − (F1

⋃

F2) and F1∆F2. By Lemma 4, (F1, F2) is an indistinguishable pair,

hence tl(v) 6= degQn−F (v) = n. Therefore, Qn − F may not have this strong property, if

|F | ≥ n − 1.

b b

b
b

b

b

b
b

b

b

(a) (b)

:: :
x v xv

|F |=n−1

F1 F2
faulty edges

Figure 3.8: An indistinguishable pair (F1, F2), where |F1| = |F2| = n.

Theorem 12 Let Qn be an n-dimensional hypercube with n ≥ 3, and F ⊂ E(Qn) be a set

of edges, 0 ≤ |F | ≤ n − 2. Removing all the edges in F from Qn, the local diagnosability

of each vertex is still equal to its remaining degree under the PMC model.

Proof.

We use Theorem 9 to prove this result, and we shall construct a Type I structure at

each vertex. We prove this by induction on n. For n = 3, 0 ≤ |F | ≤ 1, if |F | = 0,
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it is clear that Q3 contains a Type I structure T1(v; 3) of order 3 at every vertex. If

|F | = 1, a three-dimensional hypercube Q3 with one missing edge is shown in Figure 3.9.

It is a routine work to see that every vertex has a Type I structure T1(v; k) of order k

at it, where k is the remaining degree of the vertex. As the inductive hypothesis, we

assume that the result is true for Qn−1, 0 ≤ |F | ≤ (n − 1) − 2, for some n ≥ 4. Now

we consider Qn, 0 ≤ |F | ≤ n − 2. If |F | = 0, refer to the proof of Theorem 10, Qn

contains a Type I structure T1(v; n) of order n at every vertex. If 1 ≤ |F | ≤ n − 2, we

choose an edge in F , the edge is in some dimension, decomposing Qn into two subcubes

Q0
n−1 and Q1

n−1 by this dimension, such that the edge is a crossing edge. Consider a

vertex v ∈ V (Qn). Let F0 = F
⋂

E(Q0
n−1), 0 ≤ |F0| ≤ (n − 3) and F1 = F

⋂

E(Q1
n−1),

0 ≤ |F1| ≤ (n − 3). Without loss of generality, we may assume that the vertex v is in

Q0
n−1 and degQ0

n−1
−F0

(v) = k. By the inductive hypothesis, Q0
n−1 − F0 contains a Type

I structure T1(v; k) at v. Consider the crossing edge (v, v(1)). If (v, v(1)) ∈ F , Qn − F

contains a Type I structure T1(v; k) of order k at vertex v. If (v, v(1)) /∈ F , the remaining

degree of v in Qn−F is k+1 and the vertex v(1) has at least an adjacent neighbor in Q1
n−1

due to 0 ≤ |F1| ≤ (n− 1)− 2. Therefore, Qn −F contains a Type I structure T1(v; k + 1)

of order k + 1 at vertex v. By Theorem 9, removing all the edges in F from Qn, the local

diagnosability of each vertex is still equal to its remaining degree. 2

bc bc

bc bc

bc bc

bc bc

3

2

3

2

3

3 3

3

Figure 3.9: Q3 with one missing edge. The number labeled on each vertex represents its
local diagnosability.

We have the following corollary.

Corollary 3 Let Qn be an n-dimensional hypercube with n ≥ 3, and F ⊂ E(Qn) be a

set of edges, 0 ≤ |F | ≤ n − 2. Then, Qn − F has the strongly local-diagnosable property

under the PMC model.
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We now consider a faulty star graph Sn with a faulty set F ⊂ E(Sn), n ≥ 3. Similarly,

we shall prove that Sn has the strongly local-diagnosable property even if it has up to

(n − 3) faulty edges and the number (n − 3) is also optimal.

Theorem 13 Let Sn be an n-dimensional star graph with n ≥ 3, and F ⊂ E(Sn) be a set

of edges, 0 ≤ |F | ≤ n − 3. Removing all the edges in F from Sn, the local diagnosability

of each vertex is still equal to its remaining degree under the PMC model.

Proof.

We prove this result by constructing a Type I structure T1 at each vertex. We prove

this by induction on n. For n = 3, |F | = 0, it is clear that S3 contains a Type I structure

T1(v; 2) of order 2 at every vertex. As the inductive hypothesis, we assume that the

result is true for Sn−1, 0 ≤ |F | ≤ (n − 1) − 3, for some n ≥ 4. Now we consider Sn,

0 ≤ |F | ≤ n − 3. If |F | = 0, refer to the proof of Theorem 11, Sn contains a Type I

structure T1(v; n − 1) of order n − 1 at every vertex. If 1 ≤ |F | ≤ n − 3, we choose an

edge e ∈ F in some dimension. The star graph can be decomposed into n subgraphs

S
{1}
n , S

{2}
n , ..., and S

{n}
n . By the symmetric property of Sn, we may assume that e is a

crossing edge between S
{1}
n and S

{2}
n . Consider a vertex v ∈ V (Sn). Let Fi = F

⋂

E(S
{i}
n ),

0 ≤ |Fi| ≤ (n − 4) for all 1 ≤ i ≤ n. Without loss of generality, we may assume that

vertex v is in S
{1}
n and deg

S
{1}
n −F1

(v) = k. By the inductive hypothesis, S
{1}
n −F1 contains

a Type I structure T1(v; k) at v. Consider the crossing edge (v, (v)n). If (v, (v)n) ∈ F ,

Sn − F contains a Type I structure T1(v; k) of order k at vertex v. If (v, (v)n) /∈ F , the

remaining degree of v in Sn − F is k + 1 and the vertex (v)n has at least one adjacent

neighbor in S
{(v)1}
n due to 0 ≤ |F{(v)1}| ≤ (n− 1)− 3. Therefore, Sn −F contains a Type

I structure T1(v; k + 1) of order k + 1 at vertex v. By Theorem 9, removing all the edges

in F from Sn, the local diagnosability of each vertex is still equal to its remaining degree.

2

With Theorem 13, we have the following corollary.

Corollary 4 Let Sn be an n-dimensional star graph with n ≥ 3, and F ⊂ E(Sn) be a set

of edges, 0 ≤ |F | ≤ n−3. Then, Sn −F has the strongly local-diagnosable property under
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the PMC model.

We now give an example to show that an n-regular graph G(V, E) has the strong local

diagnosability property, but it may not keep this strong property after removing n − 2

edges from G. For example, a 3-regular graph is shown in Figure 3.10(a). The degree of

each vertex is 3 and there exists a Type I structure T1(v; 3) of order 3 at each vertex. By

Theorem 9, Definition 7 and Definition 8, this graph has the strong local diagnosability

property. Let F = {(2, 3)} be a set of one single edge, G − F is shown in Figure 3.10

(b). The vertex u does not have the strong local diagnosability property. The reason is

as follows. Let F1 = {u, 1, 4} and F2 = {1, 2, 4} with |F1| ≤ 3, |F2| ≤ 3. Since there is no

edge between V (G)− (F1

⋃

F2) and F1∆F2, by Lemma 4, (F1, F2) is an indistinguishable

pair. Therefore, the local diagnosability of vertex u is at most 2 which is smaller than its

degree.

b
b

b

b

b

b

b
b b

b

b

b

b

b

b
b

(a) (b)

1
2 3

u 4

1
2 3

u 4

Figure 3.10: A 3-regular graph without the strong local diagnosability property after
removing one edge.

3.4 Conditional Fault Local Diagnosability

In previous section, we know that Qn does not have the strongly local-diagnosable prop-

erty, if there are n−1 faulty edges, all these faulty edges are incident with a single vertex

and this vertex is incident with only one fault-free edge. Therefore, we are led to the

following question: How many edges can be removed from Qn such that Qn keeps the

strongly local-diagnosable property under the condition that each vertex of the faulty
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hypercube Qn is incident with at least two fault-free edges? Firstly, we give an exam-

ple to show that a faulty hypercube Qn with 3(n − 2) faulty edges may not have the

strongly local-diagnosable property, even if each vertex of the faulty hypercube Qn is

incident with at least two fault-free edges. As shown in Figure 3.11(a), we take a cy-

cle of length four in Qn, n ≥ 3. Let {v, a, b, c} be the four consecutive vertices on this

cycle, and F ⊂ E(Qn) be a set of edges, F = F1

⋃

F2

⋃

F3, where F1 is the set of all

edges incident with a except (v, a) and (b, a), F2 is the set of all edges incident with b

except (a, b) and (c, b), and F3 is the set of all edges incident with c except (v, c) and

(b, c), then |F1| = |F2| = |F3| = n − 2. The remaining degree of vertex v in Qn − F is

n, degQn−F (v) = n. As shown in Figure 3.11(b), let A1 = (NQn−F (v) − {c})
⋃

{v} and

A2 = (NQn−F (v) − {a})
⋃

{b}, then |A1| = |A2| = n and v ∈ A1∆A2. It is clear that

there is no edge between V (Qn) − (A1

⋃

A2) and A1∆A2. By Lemma 4, (A1, A2) is an

indistinguishable pair, hence tl(v) 6= degQn−F (v) = n. So some vertex of Qn −F may not

have this strong property, if |F | ≥ 3(n − 2). Then, we shall show that Qn − F has the

strongly local-diagnosable property, if each vertex of Qn −F is incident with at least two

fault-free edges and |F | ≤ 3(n−2)−1. We need the following results to construct a Type

I structure or a Type II structure at a vertex of a faulty hypercube.

b b

b b
b
b
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b

b

b
b

b

:
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:

:
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2
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a

1
2

n-2

c

b

A1 A2

(a) (b)

|F1|=n-2

|F2|=n-2
|F3|=n-2

Figure 3.11: An indistinguishable pair (A1, A2), where |A1| = |A2| = n.

Theorem 14 [52] Let G(V, E) be a bipartite graph with bipartition (X, Y ). Then G has

a matching that saturates every vertex in X if and only if

|N(S)| ≥ |S|, for all S ⊆ X.
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Theorem 15 [52] Let G(V, E) be a bipartite graph. The maximum size of a matching in

G equals the minimum size of a vertex cover of G.

Lemma 8 An n-dimensional hypercube Qn has no cycle of length three and any two

vertices have at most two common neighbors.

For our discussion later, we need some definitions. Let Qn be an n-dimensional hyper-

cube and F ⊆ E(Qn) be a set of edges. Removing the edges in F from Qn, for a vertex v

in the resulting graph Qn − F , we define BG(v) = (L1(v)
⋃

L2(v), E) to be the bipartite

graph under v with bipartition (L1(v), L2(v)), where L1(v) = {x ∈ V (Qn) | vertex x is

adjacent to vertex v in Qn − F}, L2(v) = {y ∈ V (Qn) | there exists a vertex x ∈ L1(v)

such that (x, y) ∈ E(Qn) in Qn − F} − {v} and E(BG(v)) = {(x, y) ∈ E(Qn) | vertex

x ∈ L1(v) and vertex y ∈ L2(v)}. L1(v) (L2(v), respectively) is called the level one (level

two, respectively) vertex under v (see Figure 3.12).

b

b b b

b b b b

v

x1 x2
...

y1 y2 y3
...

.. .. ..
.. .. .. ..

L1(v)

L2(v)

Figure 3.12: The bipartite graph BG(v).

Theorem 16 Let Qn be an n-dimensional hypercube with n ≥ 3, and F ⊂ E(Qn) be a

set of edges, 0 ≤ |F | ≤ 3(n − 2) − 1. Assume that each vertex of Qn − F is incident with

at least two fault-free edges. Removing all the edges in F from Qn, the local diagnosability

of each vertex is still equal to its remaining degree under the PMC model.

Proof.

According to Theorem 9, we can concentrate on the construction of Type I structure

or Type II structure at each vertex. Consider a vertex v in Qn −F with degQn−F (v) = k.
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As shown in Figure 3.12, let BG(v) = (L1(v)
⋃

L2(v), E) be the bipartite graph under v.

Then, |L1(v)| = k. Let M ⊂ E(BG(v)) be a maximum matching from L1(v) to L2(v). In

the following proof, we consider three cases by the size of M : 1) |M | = k, 2) |M | = k − 1

and 3) |M | ≤ k − 2.

Case 1: |M | = k

Since |M | = k and |L1(v)| = k, there exists a Type I structure T1(v; k) of order k at

vertex v. By Theorem 9, the local diagnosability of vertex v is equal to k.

Case 2: |M | = k − 1

We shall show that there is a Type II structure of order k at vertex v. As shown in

Figure 3.13, let L1(v) = {x1, x2, ..., xk} and let ML2(v) ⊂ L2(v) be the set of vertices

matched under M , ML2(v) = {y ∈ L2(v) | there exists a vertex x ∈ L1(v) such that

(x, y) ∈ M}. So |ML2(v)| = k − 1. Let ML2(v) = {y1, y2, ..., yk−1} and assume vertex

xi is matched with vertex yi for each i, 1 ≤ i ≤ k − 1. Then there exists a vertex

xk ∈ L1(v), xk is unmatched by M . Since each vertex of Qn − F is incident with at

least two fault-free edges, there exists a vertex yi ∈ ML2(v), i ∈ {1, 2, ..., k − 1}, such

that (xk, yi) ∈ E(BG(v)). Without loss of generality, let (xk, y1) ∈ E(BG(v)). If the

remaining degree of y1 is at least three, as shown in Figure 3.14, there exists a Type II

structure T2(v; k − 2, 2) of order k at vertex v. By Theorem 9, the local diagnosability

of vertex v is equal to k and the result follows. If the remaining degree of y1 is two,

the number of faulty edges incident with y1 is n − 2. Next, we divide the case into two

subcases: 2.1), both xk and x1 have remaining degree two and 2.2), one of xk and x1 has

remaining degree at least three and the other has at least two.

Subcase 2.1: Both xk and x1 have remaining degree two.

This is an impossible case. Since the number of faulty edges incident with xk and x1

is 2(n − 2), the total number of faulty edges is at least 3(n − 2) which is greater than

3(n − 2) − 1, a contradiction.

Subcase 2.2: One of xk and x1 has remaining degree at least three and the

other has at least two.
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Figure 3.13: Illustration for the case 2 of Theorem 16 and Theorem 18.
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Figure 3.14: A Type II structure T2(v; k − 2, 2) of order k at vertex v.

Without loss of generality, assume xk has remaining degree at least three and x1 has

remaining degree at least two. Since degQn−F (xk) ≥ 3, there exist at least two vertices in

ML2(v) that are the neighbors of vertex xk. Then, we can find a vertex yi ∈ ML2(v) and

yi 6= y1, i ∈ {2, 3, ..., k−1}, such that (xk, yi) ∈ E(BG(v)). Without loss of generality, let

(xk, y2) ∈ E(BG(v)). If the remaining degree of y2 is at least three, there exists a Type

II structure T2(v; k − 2, 2) of order k at vertex v. By Theorem 9, the local diagnosability

of vertex v is equal to k and the result follows. If the remaining degree of y2 is two, the

number of faulty edges incident with y2 is n − 2. We then consider two further cases:

Subcase 2.2.1: Vertex x1 has remaining degree two.

This is an impossible case. Since the number of faulty edges incident with x1 is n− 2,

the total number of faulty edges is at least 3(n− 2) which is greater than 3(n− 2)− 1, a
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contradiction.

Subcase 2.2.2: Vertex x1 has remaining degree at least three.

Since degQn−F (x1) ≥ 3, there exist at least two vertices in ML2(v) that are the

neighbors of vertex x1. By Lemma 8, any two vertices of Qn have at most two common

neighbors. We can find a vertex yi ∈ ML2(v), yi 6= y1 and yi 6= y2, i ∈ {3, 4, ..., k − 1},

such that (x1, yi) ∈ E(BG(v)). Without loss of generality, let (x1, y3) ∈ E(BG(v)). If the

remaining degree of y3 is at least three, there exists a Type II structure T2(v; k − 2, 2) of

order k at vertex v. By Theorem 9, the local diagnosability of vertex v is equal to k and

the result follows. If the remaining degree of y3 is two, then the number of faulty edges

incident with y3 is n − 2, and the total number of faulty edges is at least 3(n − 2) which

is greater than 3(n − 2) − 1, a contradiction.

Case 3: |M | ≤ k − 2

We shall see that this is an impossible case. By Theorem 15, the minimum size

of a vertex cover of the bipartite graph BG(v) is no greater than k − 2. We take a

vertex cover with the minimum size, and let V CL1(v) ⊂ L1(v), V CL2(v) ⊂ L2(v) and

V CL1(v)
⋃

V CL2(v) be the vertex cover as shown in Figure 3.15. V CL1(v) and V CL2(v)

can cover all the edges of BG(v). Let NV CL1(v) = L1(v) − V CL1(v). We claim that

the total number of faulty edges is at least (n − 1)|NV CL1(v)| − 2|V CL2(v)|, and this

number is greater than 3(n − 2) which is a contradiction. With this claim, the case is

impossible.

Now we prove the claim. First, for each vertex x ∈ NV CL1(v), the edges connecting x

except (x, v) must be incident with the vertices in V CL2(v). For each vertex y ∈ V CL2(v),

by Lemma 8, at most 2 edges connecting y are incident with the vertices in NV CL1(v).

Then, the total number of faulty edges is at least (n − 1)|NV CL1(v)| − 2|V CL2(v)|.

Since V CL1(v)
⋃

V CL2(v) is a minimum vertex cover, |V CL1(v)| + |V CL2(v)| ≤ k − 2.

Since |L1(v)| = k and each vertex of Qn − F is incident with at least two fault-free

edges, there exists a vertex in L1(v) − V CL1(v) such that the vertex has at least one

neighbor in V CL2(v). Thus, |V CL2(v)| ≥ 1. Now, we show that the number (n −

1)|NV CL1(v)|−2|V CL2(v)| is greater than 3(n−2). With |V CL1(v)|+|V CL2(v)| ≤ k−2

34



and |V CL2(v)| ≥ 1, we have the following

[(n − 1)|NV CL1(v)| − 2|V CL2(v)|] − [3(n − 2)]

= [(n − 1)(k − |V CL1(v)|) − 2|V CL2(v)|] − [3(n − 2)]

≥ [(n − 1)(|V CL2(v)| + 2) − 2|V CL2(v)|] − [3(n − 2)]

= (|V CL2(v)| − 1)(n − 3) + 1

> 0, for all n ≥ 3.

Thus, our claim holds.

In summary, aside from those impossible cases, we showed that Qn−F contains either

a Type I structure T1(v; k) or a Type II structure T2(v; k−2, 2) of order k at vertex v. By

Theorem 9, removing all the edges in F from Qn, the local diagnosability of each vertex

is still equal to its remaining degree. 2

b

b b b b

b b b b b

v

... ...

... ...

.. .. .. ..

.. .. .. .. ..

L1(v)

L2(v)

V CL1(v) NV CL1(v)

V CL2(v)

BG(v)

Figure 3.15: Illustration for the case 3 of Theorem 16 and Theorem 18.

By Theorem 16, we have the following corollary.

Corollary 5 Let Qn be an n-dimensional hypercube with n ≥ 3, and F ⊂ E(Qn) be a

set of edges, 0 ≤ |F | ≤ 3(n − 2) − 1. Qn − F has the strong local diagnosability property

under the PMC model, provided that each vertex of Qn − F is incident with at least two

fault-free edges.
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Based on the same requirement, we shall show that Sn keeps the strongly local-

diagnosable property no matter how many edges are faulty.

Theorem 17 Let Sn be an n-dimensional star graph with n ≥ 3, and F ⊂ E(Sn) be a

set of edges. Assume that each vertex of Sn − F is incident with at least two fault-free

edges. Removing all the edges in F from Sn, the local diagnosability of each vertex is still

equal to its remaining degree under the PMC model.

Proof.

According to Theorem 9, we can concentrate on the construction of the Type I struc-

ture T1 at each vertex. Consider a vertex v in Sn − F with degSn−F (v) = k. Let

NSn−F (v) = {x1, x2, ..., xk} be the neighborhood of v. Let L2(v) = {y ∈ V (Sn) | there

exists a vertex x ∈ NSn−F (v) such that (x, y) ∈ E(Sn)}−{v}. Since each vertex of Sn−F

is incident with at least two fault-free edges and Sn has no cycle of length less than six,

the maximum size of a matching from NSn−F (v) to L2(v) is equal to k. As a result, there

must exist a Type I structure T1(v; k) of order k at vertex v. By Theorem 9, removing

all the edges in F from Sn, the local diagnosability of each vertex is still equal to its

remaining degree. 2

By Theorem 17, the following corollary holds.

Corollary 6 Let Sn be an n-dimensional star graph with n ≥ 3, and F ⊂ E(Sn) be a

set of edges. Sn keeps the strongly local- diagnosable property under the PMC model no

matter how many edges are faulty, provided that each vertex of Sn −F is incident with at

least two fault-free edges.

In the end of this section, we consider another condition: each vertex of a faulty

hypercube Qn is incident with at least three fault-free edges. Based on this condition, we

prove that Qn keeps the strong local diagnosability property no matter how many edges

are faulty.
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Theorem 18 Let Qn be an n-dimensional hypercube with n ≥ 3, and F ⊂ E(Qn) be a

set of edges. Assume that each vertex of Qn − F is incident with at least three fault-free

edges. Removing all the edges in F from Qn, the local diagnosability of each vertex is still

equal to its remaining degree under the PMC model.

Proof.

According to Theorem 9, we can concentrate on the construction of Type I structure

or Type II structure at each vertex. Consider a vertex v in Qn −F with degQn−F (v) = k.

Let BG(v) = (L1(v)
⋃

L2(v), E) be the bipartite graph under v. Then, |L1(v)| = k. Let

M ⊂ E(BG(v)) be a maximum matching from L1(v) to L2(v). In the following proof, we

consider three cases by the size of M : 1) |M | = k, 2) |M | = k − 1 and 3) |M | ≤ k − 2.

Case 1: |M | = k

Since |M | = k and |L1(v)| = k, there exists a Type I structure T1(v; k) of order k at

vertex v. By Theorem 9, the local diagnosability of vertex v is equal to k.

Case 2: |M | = k − 1

We will show that there is a Type II structure of order k at vertex v. As shown in

Figure 3.13, let L1(v) = {x1, x2, ..., xk} and let ML2(v) ⊂ L2(v) be the set of vertices

matched under M , ML2(v) = {y ∈ L2(v) | there exists a vertex x ∈ L1(v) such that

(x, y) ∈ M}. So |ML2(v)| = k − 1. Let ML2(v) = {y1, y2, ..., yk−1} and assume vertex

xi is matched with vertex yi for each i, 1 ≤ i ≤ k − 1. Then there exists a vertex

xk ∈ L1(v), xk is unmatched by M . Since each vertex of Qn − F is incident with at

least three fault-free edges, there exists a vertex yi ∈ ML2(v), i ∈ {1, 2, ..., k − 1}, such

that (xk, yi) ∈ E(BG(v)). Without loss of generality, let (xk, y1) ∈ E(BG(v)). Since the

remaining degree of y1 is at least three, as shown in Figure 3.14, there exists a Type II

structure T2(v; k − 2, 2) of order k at vertex v. By Theorem 9, the local diagnosability of

vertex v is equal to k and the result follows.

Case 3: |M | ≤ k − 2
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We will see that this is an impossible case. By Theorem 15, the minimum size of a

vertex cover of the bipartite graph BG(v) is no greater than k − 2. However, we claim

that any k − 2 vertices of BG(v) can not cover all the edges of BG(v). With this claim,

the case is impossible.

Now we prove this claim. Suppose not, we take a vertex cover with the minimum size,

and let V CL1(v) ⊂ L1(v), V CL2(v) ⊂ L2(v) and V CL1(v)
⋃

V CL2(v) be the vertex cover

as shown in Figure 3.15. V CL1(v) and V CL2(v) can cover all the edges of BG(v). Since

|V CL1(v)| + |V CL2(v)| ≤ k − 2, we rewrite this inequality into the following equivalent

form: 2(k − |V CL1(v)|) ≥ 2(|V CL2(v)| + 2). Let NV CL1(v) = L1(v) − V CL1(v). Since

each vertex of Qn − F is incident with at least three fault-free edges, for each vertex

x ∈ NV CL1(v), aside from the edge (x, v), at least 2 edges connecting x must be incident

with the vertices in V CL2(v). So the total number of edges incident with the vertices in

V CL2(v) is at least 2|NV CL1(v)|. For each vertex y ∈ V CL2(v), by Lemma 8, at most

2 edges connecting y are incident with the vertices in NV CL1(v). So the total number of

edges incident with the vertices in NV CL1(v) is at most 2|V CL2(v)|. Compare the lower

bound 2|NV CL1(v)| and the upper bound 2|V CL2(v)|. We have the following inequality

2|NV CL1(v)| = 2(k − |V CL1(v)|)

≥ 2(|V CL2(v)| + 2) > 2|V CL2(v)|.

The lower bound 2|NV CL1(v)| is greater than the upper bound 2|V CL2(v)|. It means

that some edges are not covered by V CL1(v) or V CL2(v) in BG(v). Thus, our claim

follows.

In Case 1, Qn −F contains a Type I structure T1(v; k) of order k at vertex v. In Case

2, Qn − F contains a Type II structure T2(v; k − 2, 2) of order k at vertex v. We also

proved that Case 3 is impossible. By Theorem 9, removing all the edges in F from Qn,

the local diagnosability of each vertex is still equal to its remaining degree. 2

By Theorem 18, the following corollary holds.

Corollary 7 Let Qn be an n-dimensional hypercube with n ≥ 3, and F ⊂ E(Qn) be a

set of edges. Qn keeps the strong local diagnosability property under the PMC model no
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matter how many edges are faulty, provided that each vertex of Qn − F is incident with

at least three fault-free edges.

3.5 A Diagnosis Algorithm

We now introduce a diagnosis algorithm to determine if a vertex is faulty or not for a

given syndrome under the PMC model. Given a Type I structure T1(v; n) of order n at

vertex v, there are communication links between v and xi, xi and yi, for all 1 ≤ i ≤ n, xi

and yi can be the tester of the PMC model. After the test, each tester has a testing result

denoted by 0 (1, respectively) representing the approval (disapproval, respectively). We

define ri = (r1, r2), where r1 is the result of xi testing v and r2 is the result of yi testing

xi. Then, ri can be in one of the four different states which are r(0) = (0, 0), r(1) = (0, 1),

r(2) = (1, 0) and r(3) = (1, 1) (as illustrated in Figure 3.16). Let R(k) be the collection

of all r(k), for all 0 ≤ k ≤ 3. Obviously,
∑3

k=0 |R(k)| = n.

b

bb b b

bb b b

v
0 0 1 1

0 1 0 1

R(0) R(1) R(2) R(3)

Figure 3.16: four different output states.

Suppose that there is a Type I structure T1(v; n) of order n at vertex v, where v has

degree n. By Theorem 9, the local diagnosability of v is limited to n. Therefore, we may

not be able to identify all the faulty vertices, if the number of faulty vertices in T1(v; n)

is n + 1 or more. Hence, we assume that the number of faulty vertices is at most n.

Under this assumption, we propose the following algorithm to determine whether vertex

v is faulty or not.

Theorem 19 Let v be a vertex with degree n in G(V, E). Suppose that there is a Type I

structure T1(v; n) of order n at vertex v and the number of faulty vertices is at most n.

The following two conditions are satisfied:
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1. the vertex v is fault-free if |R(0)| ≥ |R(2)|, and

2. the vertex v is faulty if |R(0)| < |R(2)|.

Proof.

Let li = (xi, yi) be an ordered double, 1 ≤ i ≤ n, with respect to T1(v; n). First, we

prove the condition 1 by contradiction. Assume that v is faulty, then the counting of all

the other faulty vertices is as follows:

For those li with result r(0), there are at least two faulty vertices which are

xi, yi.

For those li with result r(1), there is at least one faulty vertex which is xi.

For those li with result r(2), the number of faulty vertices is uncertain.

For those li with result r(3), there is at least one faulty vertex which is either

xi or yi.

Thus, the number of faulty vertices is at least 1+2|R(0)|+|R(1)|+|R(3)| =
∑3

k=0 |R(k)|+

(1+|R(0)|−|R(2)|). By the assumption that |R(0)| ≥ |R(2)|, the number of faulty vertices

is strictly more than n. This contradicts to the assumption that the number of faulty

vertices is at most n. Therefore, the vertex v is fault-free.

Next, we prove the condition 2 by contradiction again. Assume that v is fault-free,

then the counting of all the other faulty vertices is as follows:

For those li with result r(0), the number of faulty vertices is uncertain.

For those li with result r(1), there is at least one faulty vertex which is either

xi or yi.
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For those li with result r(2), there are at least two faulty vertices which are

xi and yi.

For those li with result r(3), there is at least one faulty vertex which is xi.

Thus, the number of faulty vertices is at least |R(1)|+ 2|R(2)|+ |R(3)| =
∑3

k=0 |R(k)| +

(|R(2)| − |R(0)|). By the assumption that |R(0)| < |R(2)|, the number of faulty vertices

is larger than n. This contradicts to the assumption that the number of faulty vertices is

at most n. Therefore, the vertex v is faulty.

This completes the proof. 2

We now measure the time complexity of our algorithm to diagnose all the faulty

vertices in a system. For many well-know general systems with N vertices, the degree

of each vertex is in the order of log N . For example, the n-dimensional Hypercube Qn

has N = 2n vertices and the degree of each vertex is n, n = log N ; the n-dimensional

star graph Sn has N = n! vertices and the degree of each vertex is n − 1 = O(n) =

O(log N/ log n) = O(logN/ log log N). We assume that a testing result of each tester is

directly stored in a syndrome table. Given a Type I structure T1(v; n) of order n at vertex

v, assume the time for looking up the testing result of a tester in the syndrome table is

constant c. Then, the time needed for determining the faulty or fault-free status of a

vertexv is 2c log N = O(log N). Consequently, the total time to diagnose all the faulty

vertices is bounded by O(N log N).
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Chapter 4

Conditionally Diagnosable Systems

In this section, we study the conditional diagnosis problem under the comparison model.

In classical measures of diagnosability for multiprocessor systems, if all the neighbors

of some processor v are faulty simultaneously, it is not possible to determine whether

processor v is fault-free or faulty. For example, consider an n-dimensional hypercube

Qn and two faulty sets F1, F2 ⊂ V (Qn) as shown in Figure 4.1. As we observe the all

neighbors of vertex v are included in F1 and F2. Let F1 = N(v)
⋃

{v} and F2 = N(v),

then |F1| = n+1 and |F2| = n. By Theorem 3, F1 and F2 are indistinguishable under the

comparison model. So the diagnosability of a system is limited by its minimum vertex

degree.

b

b
b

b
v :

1
2

n

F1

F2

Figure 4.1: An indistinguishable pair (F1, F2).

In an n-dimensional hypercube Qn, Qn has
(

2n

n

)

vertex subsets of size n, among which

there are only 2n vertex subsets which contains all the neighbors of some vertex. Since

the ratio 2n/
(

2n

n

)

is very small for large n, the probability of a faulty set containing all the
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neighbors of any vertex is very low. For this reason, Lai et al. introduced a new restricted

diagnosability of multiprocessor systems called conditional diagnosability in [40]. They

consider the situation that any faulty set cannot contain all the neighbors of any vertex

in a system. In the following, we need some terms to define the conditional diagnosability

formally. A faulty set F ⊂ V is called a conditional faulty set if N(v) * F for every

vertex v ∈ V . A system G(V, E) is said to be conditionally t-diagnosable if F1 and F2

are distinguishable, for each pair of conditional faulty sets F1, F2 ⊂ V , and F1 6= F2,

with |F1| ≤ t and |F2| ≤ t. The maximum value of t such that G is conditionally t-

diagnosable is called the conditional diagnosability of G, written as tc(G). It is trivial

that tc(G) ≥ t(G).

Lemma 9 Let G be a multiprocessor system. Then, tc(G) ≥ t(G).

Let G(V, E) be a graph and F1, F2 ⊂ V , F1 6= F2. We say (F1, F2) is a distin-

guishable conditional-pair (an indistinguishable conditional-pair, respectively) if F1 and

F2 are conditional faulty sets and are distinguishable (indistinguishable, respectively).

Before discussing the conditional diagnosability, we have some observations as follows:

Let F1, F2 ⊂ V be an indistinguishable conditional-pair. Let X = V − (F1

⋃

F2).

Since F1 and F2 are an indistinguishable conditional-pair, none of the three conditions

of Theorem 3 holds and every vertex has at least one fault-free neighbor. Let vertex

u ∈ X. If N(u)
⋂

X 6= ∅, then N(u)
⋂

(F1∆F2) = ∅ (see Figure 4.2 (a)); otherwise

|N(u)
⋂

(F1 − F2)| = 1 and |N(u)
⋂

(F2 − F1)| = 1(see Figure 4.2 (b)). Let vertex

v ∈ F1∆F2. If N(v)
⋂

X = ∅, then |N(v)
⋂

(F1 −F2)| ≥ 1 and |N(v)
⋂

(F2 −F1)| ≥ 1(see

Figure 4.2 (c)). We state this fact in the following lemma.

Lemma 10 Let G(V, E) be a graph and F1, F2 ⊂ V be an indistinguishable conditional-

pair under the comparison model. Let X = V − (F1

⋃

F2). The following three conditions

holds:

1. |N(u)
⋂

(F1∆F2)| = 0 for u ∈ X and N(u)
⋂

X 6= ∅,

2. |N(u)
⋂

(F1 − F2)| = 1 and |N(u)
⋂

(F2 − F1)| = 1 for u ∈ X and N(u)
⋂

X = ∅,

and
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3. |N(v)
⋂

(F1−F2)| ≥ 1 and |N(v)
⋂

(F2−F1)| ≥ 1 for v ∈ F1∆F2 and N(v)
⋂

X = ∅.

b b

b

b b b

b

b

u

u

v

(a) (b) (c)

F1 F2 F1 F2 F1 F2

X X X

Figure 4.2: An indistinguishable conditional-pair (F1, F2).

In the following sections, we will first evaluate the conditional diagnosability for hyper-

cube networks under the comparison model. Then, we extend the result to BC network.

4.1 Conditional Diagnosability of Hypercube under

the Comparison Model

In this section, we study the conditional diagnosability of hypercube under the comparison

model. First, we give an example to show that the conditional diagnosability of the

hypercube Qn is no greater than 3(n − 2) + 2, n ≥ 5. As shown in Figure 4.3, we

take a cycle of length four in Qn. Let {v1, v2, v3, v4} be the four consecutive vertices

on this cycle, and let F1 = N({v1, v3, v4})
⋃

{v1} and F2 = N({v1, v3, v4})
⋃

{v3}, then

|F1| = |F2| = 3(n−2)+2. It is straightforward to check that F1 and F2 are two conditional

faulty sets, and F1 and F2 are indistinguishable by Theorem 3. Note that the hypercube

Qn has no cycle of length three and any two vertices have at most two common neighbors.

As we can see, |F1 − F2| = |F2 − F1| = 1 and |F1

⋂

F2| = 3(n − 2) + 1. Therefore, Qn is

not conditionally (3(n − 2) + 2)-diagnosable and tc(Qn) ≤ 3(n − 2) + 1, n ≥ 3. Then, we

shall show that Qn is conditionally t-diagnosable, where t = 3(n − 2) + 1.

Lemma 11 tc(Qn) ≤ 3(n − 2) + 1 under the comparison model, for n ≥ 3.
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n-2 n-2
n-2

n-2

S

Figure 4.3: An indistinguishable conditional-pair (F1, F2), where |F1| = |F2| = 3(n−2)+2.

Let F be a set of vertices F ⊂ V (Qn) and C be a connected component of Qn−F . We

need some results on the cardinalities of F and V (C) under some restricted conditions.

The results are listed in Lemma 12 and 16. In Lemma 12, Lai et al. proved that deleting

at most 2(n − 1) − 1 vertices from Qn, the incomplete hypercube Qn has one connected

component containing at least 2n − |F | − 1 vertices. We expand this result further.

In Lemma 16, we show that deleting at most 3n − 6 vertices from Qn, the incomplete

hypercube Qn has one connected component containing at least 2n − |F | − 2 vertices.

Lemma 12 [40] Let Qn be an n-dimensional hypercube, n ≥ 3, and let F be a set of

vertices F ⊂ V (Qn) with n ≤ |F | ≤ 2(n − 1) − 1. Suppose that Qn − F is disconnected.

Then Qn − F has exactly two components, one is trivial and the other is nontrivial. The

nontrivial component of Qn − F contains 2n − |F | − 1 vertices.

In order to prove Lemma 16, we need some preliminary results as follows.

Lemma 13 [46] Let Qn be an n-dimensional hypercube. The connectivity of Qn is κ(Qn) =

n.

Lemma 14 For any three vertices x, y, z in Q4, |N({x, y, z})| ≥ 7.

Proof.
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A four-dimensional hypercube Q4 can be divided into two Q3’s, denoted by QL
3 and QR

3 .

Any two vertices in the Qn have at most two common neighbors. If these three vertices x,

y, z all fall in QL
3 , then x, y, z have at least four neighboring vertices, all in QL

3 . Besides,

x, y, z have three more neighboring vertices in QR
3 . Therefore, |N({x, y, z})| ≥ 4 + 3 = 7.

Suppose now x, y fall in QL
3 , z falls in QR

3 . Vertex x and y have at least four neighboring

vertices, all in QL
3 . Vertex z will bring in at least three neighboring vertices in QR

3 .

Therefore, |N({x, y, z})| ≥ 4 + 3 = 7. 2

We are going to prove Lemma 16 by induction on n, and we need a base case to start

with. As we observed, for n = 4, we found a counter example that the result of Lemma

16 does not hold. So we have to start with n = 5.

Lemma 15 Let Q5 be a five-dimensional hypercube, and let F be a set of vertices F ⊂

V (Q5) with |F | ≤ 3n − 6 = 9. Then Q5 − F has a connected component containing at

least 2n − |F | − 2 = 30 − |F | vertices.

Proof.

A five-dimensional hypercube Q5 can be divided into two Q4’s, denoted by QL
4 and

QR
4 . Let FL = F

⋂

V (QL
4 ), 0 ≤ |FL| ≤ 9 and FR = F

⋂

V (QR
4 ), 0 ≤ |FR| ≤ 9. Then

|F | = |FL| + |FR|. Without loss of generality, we may assume that |FL| ≥ |FR|. In the

following proof, we consider three cases by the size of FR: 1) 0 ≤ |FR| ≤ 2, 2) |FR| = 3,

and 3) |FR| = 4.

Case 1: 0 ≤ |FR| ≤ 2.

Since κ(Q4) = 4, QR
4 − FR is connected and |V (QR

4 − FR)| = 24 − |FR|. Let F
(L)
R ⊂

V (QL
4 ) be the set of vertices which has neighboring vertices in FR. For each vertex

v ∈ QL
4 −FL−F

(L)
R , there is exactly one vertex v(R) in QR

4 −FR, such that (v, v(R)) ∈ E(Q5).

Besides, |V (QL
4 −FL−F

(L)
R )| ≥ 24−|FL|−|FR|. Hence Q5−F has a connected component

that contains at least [24 −|FR|] + [24 −|FL| − |FR|] = 32−|F | − |FR| ≥ 30−|F | vertices.

Case 2: |FR| = 3.
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Since κ(Q4) = 4, QR
4 −FR is connected and |V (QR

4 −FR)| = 24−|FR|. Let FR = {x, y, z}

and F
(L)
R = {x(L), y(L), z(L)} ⊂ V (QL

4 ), where (x, x(L)), (y, y(L)), (z, z(L)) ∈ E(Q5). For

each vertex v ∈ QL
4 − FL − F

(L)
R , there is exactly one vertex v(R) in QR

4 − FR, such that

(v, v(R)) ∈ E(Q5). If at least one of the three vertices x(L), y(L), z(L) belongs to FL, then

|V (QL
4 −FL−F

(L)
R )| ≥ 24−|FL|−2. Hence Q5−F has a connected component that contains

at least [24 − |FR|] + [24 − |FL| − 2] = 30− |F | vertices; otherwise, |V (QL
4 −FL −F

(L)
R )| ≥

24 − |FL| − 3. Since |FL| ≤ 6, by Lemma 14, x(L), y(L), z(L) have at least one neighboring

vertex in QL
4 − FL − F

(L)
R . Hence Q5 − F has a connected component that contains at

least [24 − |FR|] + [24 − |FL| − 3] + 1 = 30 − |F | vertices.

Case 3: |FR| = 4.

Since |FR| = 4 and |FL| ≤ 5, by Lemma 12, QL
4 − FL (QR

4 − FR, respectively) has a

connected component CL (CR, respectively) that contains at least 24−|FL|−1 (24−|FR|−1,

respectively) vertices. Since |V (CL)| ≥ |FR|+1, there exists a vertex u ∈ CL and a vertex

v ∈ CR such that (u, v) ∈ E(Q5). Hence Q5−F has a connected component that contains

at least [24 − |FL| − 1] + [24 − |FR| − 1] = 30 − |F | vertices.

Consequently, the lemma holds. 2

We now prove Lemma 16.

Lemma 16 Let Qn be an n-dimensional hypercube, n ≥ 5, and let F be a set of vertices

F ⊂ V (Qn) with |F | ≤ 3n − 6. Then Qn − F has a connected component containing at

least 2n − |F | − 2 vertices.

Proof.

We prove the lemma by induction on n. By Lemma 15, the lemma holds for n = 5. As

the inductive hypothesis, we assume that the result is true for Qn−1, for |F | ≤ 3(n−1)−6,

and for some n ≥ 6. Now we consider Qn, |F | ≤ 3n− 6. An n-dimensional hypercube Qn

can be divided into two Qn−1’s, denoted by QL
n−1 and QR

n−1. Let FL = F
⋂

V (QL
n−1), 0 ≤

|FL| ≤ 3n − 6 and FR = F
⋂

V (QR
n−1), 0 ≤ |FR| ≤ 3n − 6. Then |F | = |FL| + |FR|.
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Without loss of generality, we may assume that |FL| ≥ |FR|. In the following proof, we

consider two cases by the size of FR: 1) 0 ≤ |FR| ≤ 2 and 2) |FR| ≥ 3.

Case 1: 0 ≤ |FR| ≤ 2.

Since 0 ≤ |FR| ≤ 2, QR
n−1 − FR is connected and |V (QR

n−1 − FR)| = 2n−1 − |FR|. Let

F
(L)
R ⊂ V (QL

n−1) be the set of vertices which has neighboring vertices in FR. For each

vertex v ∈ QL
n−1 − FL − F

(L)
R , there is exactly one vertex v(R) in QR

n−1 − FR, such that

(v, v(R)) ∈ E(Qn). Besides, |V (QL
n−1 − FL − F

(L)
R )| ≥ 2n−1 − |FL| − |FR|. Hence Qn − F

has a connected component that contains at least [2n−1 − |FR|] + [2n−1 − |FL| − |FR|] =

2n − |F | − |FR| ≥ 2n − |F | − 2 vertices.

Case 2: |FR| ≥ 3.

Since |FR| ≥ 3, 3 ≤ |FL| ≤ 3(n − 1) − 6 and 3 ≤ |FR| ≤ 3(n − 1) − 6. By the

inductive hypothesis, QL
n−1 − FL (QR

n−1 − FR, respectively) has a connected component

CL (CR, respectively) that contains at least 2n−1 −|FL|−2 (2n−1 −|FR|−2, respectively)

vertices. Next, we divide the case into three subcases: 2.1) |V (CL)| = 2n−1 −|FL|−2 and

QR
n−1 − FR is disconnected, 2.2) |V (CL)| = 2n−1 − |FL| − 2 and QR

n−1 − FR is connected,

and 2.3) |V (CL)| ≥ 2n−1 − |FL| − 1 and |V (CR)| ≥ 2n−1 − |FR| − 1.

Case 2.1: |V (CL)| = 2n−1 − |FL| − 2 and QR
n−1 − FR is disconnected.

This is an impossible case. Since κ(Qn−1) = n − 1, |FR| ≥ n − 1. By Lemma 12,

|FL| ≥ 2((n−1)−1). Then the total number of faulty vertices is at least (n−1)+2((n−

1) − 1) = 3n − 5 which is greater than 3n − 6, a contradiction.

Case 2.2: |V (CL)| = 2n−1 − |FL| − 2 and QR
n−1 − FR is connected.

Since QR
n−1−FR is connected, |V (QR

n−1−FR)| = 2n−1−|FR|. Since |V (CL)| ≥ |FR|+1,

there exists a vertex u ∈ CL and a vertex v ∈ CR such that (u, v) ∈ E(Qn). Hence Qn−F

has a connected component that contains at least [2n−1 − |FR|] + [2n−1 − |FL| − 2] =

2n − |F | − 2 vertices.

Case 2.3: |V (CL)| ≥ 2n−1 − |FL| − 1 and |V (CR)| ≥ 2n−1 − |FR| − 1.
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Since |V (CL)| ≥ |FR| + 1, there exists a vertex u ∈ CL and a vertex v ∈ CR such

that (u, v) ∈ E(Qn). Hence Qn − F has a connected component that contains at least

[2n−1 − |FL| − 1] + [2n−1 − |FR| − 1] = 2n − |F | − 2 vertices.

This completes the proof of the lemma. 2

By Lemma 16, we have the following corollary.

Corollary 8 Let Qn be an n-dimensional hypercube, n ≥ 5, and let F be a set of vertices

F ⊂ V (Qn) with |F | ≤ 3n − 6. Then Qn − F satisfies one of the following conditions:

1. Qn − F is connected.

2. Qn −F has two components, one of which is K1, and the other one has 2n −|F |−1

vertices.

3. Qn −F has two components, one of which is K2, and the other one has 2n −|F |−2

vertices.

4. Qn−F has three components, two of which are K1, and the third one has 2n−|F |−2

vertices

Let G(V, E) be a graph. A subset M of E(G) is called a matching in G if its elements

are links and no two are adjacent in G; the two ends of an edge in M are said to be

matched under M . A vertex cover of G is a subset K of V (G) such that every edge of G

has at least one end in K. A subset I of V (G) is called an independent set of G if no two

vertices of I are adjacent in G. As the description for Theorem 15, the maximum size of

a matching in a bipartite graph is equal to the minimum size of a vertex cover. To prove

the conditional diagnosability of the hypercube, we need the following classical result.

Proposition 6 [52] Let G(V, E) be a bipartite graph. The set I ⊂ V (G) is a maximum

independent set of G if and only if V − I is a minimum vertex cover of G.

The hypercube can be described as follows: Let Qn denote an n-dimensional hyper-

cube. Q1 is a complete graph with two vertices labeled with 0 and 1, respectively. For
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n ≥ 2, each Qn consists of two Qn−1’s, denoted by Q0
n−1 and Q1

n−1, with a perfect match-

ing M between them. That is, M is a set of edges connecting the vertices of Q0
n−1 and

the vertices of Q1
n−1 in a one-to-one manner. It is easy to see that there are 2n−1 edges

between Q0
n−1 and Q1

n−1. The hypercube is a bipartite graph with 2n vertices. Hence, we

have the following Lemma.

Lemma 17 Let Qn be an n-dimensional hypercube. In hypercube Qn, the maximum size

of a matching, the minimum size of a vertex cover and the maximum size of an independent

set are all 2n−1.

We are now ready to show that the conditional diagnosability of Qn is 3(n − 2) + 1

for n ≥ 5. Let F1, F2 ⊂ V (Qn) be two conditional faulty sets with F1 ≤ 3(n − 2) + 1

and F2 ≤ 3(n − 2) + 1, n ≥ 5. We shall show our result by proving that (F1, F2) is a

distinguishable conditional-pair under the comparison diagnosis model.

Lemma 18 Let Qn be an n-dimensional hypercube with n ≥ 5. For any two conditional

faulty sets F1, F2 ⊂ V (Qn), and F1 6= F2, with F1 ≤ 3(n − 2) + 1 and F2 ≤ 3(n − 2) + 1.

Then (F1, F2) is a distinguishable conditional-pair under the comparison diagnosis model.

Proof.

We use Theorem 4 to prove this result. Let S = F1

⋂

F2, then 0 ≤ |S| ≤ 3(n − 2).

We will show that, deleting S from Qn, the subgraph CF1∆F2,S containing F1∆F2 has

”many” vertices having degree three or more. More precisely, we are going to prove that,

in the subgraph CF1∆F2,S the number of vertices having degree three or more is at least

2[3(n − 2) + 1 − |S|] + 1 = 6n − 2|S| − 9. In the following proof, we consider three cases

by the size of S: 1) 0 ≤ |S| ≤ n − 1, 2) |S| = n, and 3) n + 1 ≤ |S| ≤ 3(n − 2).

Case 1: 0 ≤ |S| ≤ n − 1.

Since the connectivity of Qn is n, Qn − S is connected, the subgraph CF1∆F2,S is the

only component in Qn − S. Since the hypercube Qn has no cycle of length three and any

two vertices have at most two common neighbors, it is straightforward, though tedious, to
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check that the number of vertices which has degree two or one is at most two in CF1∆F2,S.

Hence, the number of vertices having degree three or more is at least 2n − |S| − 2 which

is greater than 6n − 2|S| − 9, for n ≥ 5. By Theorem 4, (F1, F2) is a distinguishable

conditional-pair under the comparison diagnosis model.

Case 2: |S| = n.

If Qn − S is disconnected, by Lemma 12, Qn − S has one trivial component {v} such

that N(v) ⊂ F1 and N(v) ⊂ F2. Since F1 and F2 are two conditional faulty sets, this

is an impossible case. So Qn − S is connected, and the subgraph CF1∆F2,S is the only

component in Qn − S. Let U = Qn − (F1

⋃

F2). If there exist two vertices u and v in

V (U) such that u is adjacent to v, then the condition 1 of Theorem 3 holds and therefore

(F1, F2) is a distinguishable conditional-pair; otherwise V (U) is an independent set. Since

|S| = n and |F1∆F2| ≤ 2(2n − 5), |V (U)| ≥ 2n − 2(2n − 5) − n = 2n − 5n + 10. By

Lemma 17, the maximum size of a independent set is 2n−1 in Qn. Comparing the lower

bound 2n − 5n + 10 and the upper bound 2n−1, we have 2n − 5n + 10 > 2n−1 for n ≥ 5, a

contradiction.

Case 3: n + 1 ≤ |S| ≤ 3(n − 2).

By Corollary 8, there are four cases in Qn − S we need to consider. For case 1 of

Corollary 8, Qn − S is connected, the proof is exactly the same as that of Case 2, and

hence the detail is omitted. For case 2 and 4 of Corollary 8, Qn − S has at least one

trivial component {v} such that N(v) ⊂ F1 and N(v) ⊂ F2. Since F1 and F2 are two

conditional faulty sets, the two cases are disregarded. Therefore, we only need to consider

that Qn − S has two components, one of which is K2 and the other one has 2n − |S| − 2

vertices. Let (x, y) be the component with only one edge. Since N({x, y}) ⊆ S and F1

and F2 do not contain all the neighbors of any vertex, vertex x and y cannot belong to

F1∆F2. So the subgraph CF1∆F2,S is the other large connected component of Qn − S.

Let U = Qn − (F1

⋃

F2) − {x, y}. If no two vertices of V (U) are adjacent, then V (U)

is an independent set and |V (U)| ≥ 2n − 6n + |S| + 8. By Lemma 17, the maximum

size of a matching is 2n−1 − 1 in Qn − {x, y}. By Theorem 15 and Proposition 6, the

maximum size of a independent set is 2n−1−1 in Qn−{x, y}. Comparing the lower bound

2n − 6n + |S| + 8 and the upper bound 2n−1 − 1, we have 2n − 6n + |S| + 8 > 2n−1 − 1
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for n ≥ 5, n + 1 ≤ |S| ≤ 3(n − 2), a contradiction. Hence, there exist two vertices u and

v in V (U) such that u is adjacent to v, then condition 1 of Theorem 3 is satisfied and

therefore (F1, F2) is a distinguishable conditional-pair.

In Case 1, we prove that at least one of the conditions of Theorem 3 is satisfied in

subgraph CF1∆F2,S. In Case 2 and 3, the condition 1 of Theorem 3 holds in subgraph

CF1∆F2,S. Therefore, (F1, F2) is a distinguishable conditional-pair under the comparison

diagnosis model. 2

By Lemma 11, tc(Qn) ≤ 3(n − 2) + 1, and by Lemma 18, Qn is conditionally (3(n −

2) + 1)−diagnosable for n ≥ 5. Hence, tc(Qn) = 3(n − 2) + 1 for n ≥ 5. For Q3 and

Q4, we observe that Q3 is not conditionally four-diagnosable and Q4 is not conditionally

six-diagnosable, as shown in Figure 4.4. So, tc(Q3) ≤ 3 and tc(Q4) ≤ 5. Hence, the

conditional diagnosabilities of Q3 and Q4 are both strictly less than 3(n − 2) + 1.

b

b

b

b

b

b

b

b
b b b b b b b b

b b b b b b

b b

(a) (b)

F1 F2

000 010

001 011

100110

101111

1000 1110

0000 1111 0101 0011 1100 1010 1001 0110

0100 0010 0001 0111 1101 1011

F1 F2

Figure 4.4: Two indistinguishable conditional-pairs for Q3 and Q4.

For the three-dimensional hypercube Q3, Q3 is three-diagnosable and it is not condi-

tionally 4-diagnosable. It follows from Lemma 9 that tc(Q3) = 3. For the four-dimensional

hypercube Q4, we can use the similar technique used in proving Lemma 18 to prove that

for any two conditional faulty sets F1, F2 ⊂ V (Q4), and F1 6= F2, with |F1| ≤ 5 and

|F2| ≤ 5, then (F1, F2) is a distinguishable conditional-pair under the comparison diagno-

sis model. Hence, the conditional diagnosability of Q4 is 5. In summary, the conditional
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diagnosability of Qn is stated as follows:

Theorem 20 Under the comparison model, the conditional diagnosability of Qn is 3(n−

2) + 1 for n ≥ 5, tc(Q3) = 3 and tc(Q4) = 5.

4.2 Conditional Diagnosability of BC Networks un-

der the Comparison Model

An n-dimensional bijective connection network (BC network), denoted by Xn, is an n-

regular graph with 2n vertices and n2n−1 edges. The set of all the n-dimensional BC

networks is called the family of the n-dimensional BC networks, denoted by Ln. Xn and

Ln may be recursively defined as below [24].

Definition 9 The one-dimensional BC graph X1 is a complete graph with two vertices.

The family of the one-dimensional BC graph is defined as L1 = {X1}. Let G be a graph.

G is an n-dimensional BC graph, denoted by Xn, if there exist V0, V1 ⊂ V (G) such that

the following two conditions hold:

1. V (G) = V0

⋃

V1, V0 6= ∅, V1 6= ∅, V0

⋂

V1 = ∅; and

2. There exists an edge set M ⊂ E(G) such that M is a perfect matching between V0

and V1, G(V0) ∈ Ln−1 and G(V1) ∈ Ln−1.

Now, we use again Figure 4.3 to show that the conditional diagnosability of BC graph

Xn is no greater than 3(n − 2) + 2, n ≥ 5. As shown in Figure 4.3, we take a cycle of

length four in Xn and it is easy to check the two conditional faulty sets F1 and F2 are

indistinguishable, where |F1| = |F2| = 3(n − 2) + 2. Therefore, Xn is not conditionally

(3(n − 2) + 2)-diagnosable and tc(Xn) ≤ 3(n − 2) + 1, n ≥ 3. Next, we shall show that

Xn is conditionally t-diagnosable, where t = 3(n − 2) + 1.

Lemma 19 tc(Xn) ≤ 3(n − 2) + 1 under the comparison model, for n ≥ 3.
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Let F be a set of vertices F ⊂ V (Xn) and C be a connected component of Xn−F . We

need some results on the cardinalities of F and V (C) under some restricted conditions.

The results are listed in Lemma 20 and 21. In Lemma 20, Zhu proved that deleting at

most 2(n − 1) − 1 vertices from Xn, the incomplete BC graph Xn has one connected

component containing at least 2n − |F | − 1 vertices. We expand this result further. In

Lemma 20, we show that deleting at most 3n − 6 vertices from Xn, the incomplete BC

graph Xn has one connected component containing at least 2n − |F | − 2 vertices.

Lemma 20 [57] ∀Xn ∈ Ln(n ≥ 3), let F be a set of vertices F ⊂ V (Xn) with n ≤

|F | ≤ 2(n − 1) − 1. Suppose that Xn − F is disconnected. Then Xn − F has exactly

two components, one is trivial and the other is nontrivial. The nontrivial component of

Xn − F contains 2n − |F | − 1 vertices.

The BC graph can be described as follows: Let Xn denote an n-dimensional BC graph.

X1 is a complete graph with two vertices labeled with 0 and 1, respectively. For n ≥ 2,

each Xn consists of two Xn−1’s, denoted by XL
n−1 and XR

n−1, with a perfect matching M

between them. That is, M is a set of edges connecting the vertices of XL
n−1 and the vertices

of XR
n−1 in a one-to-one manner. It is easy to see that there are 2n−1 edges between XL

n−1

and XR
n−1. By using a simple induction, we can prove the following lemma.

Lemma 21 ∀Xn ∈ Ln(n ≥ 5), let F be a set of vertices F ⊂ V (Xn) with |F | ≤ 3n − 6.

Then Xn − F has a connected component containing at least 2n − |F | − 2 vertices.

Proof.

We prove the lemma by induction on n. For n = 5, it is straightforward to verify that

the lemma holds. As the inductive hypothesis, we assume that the result is true for Xn−1,

for |F | ≤ 3(n − 1) − 6, and for some n ≥ 6. Now we consider Xn, |F | ≤ 3n − 6. An

n-dimensional BC graph Xn can be divided into two Xn−1’s, denoted by XL
n−1 and XR

n−1.

Let FL = F
⋂

V (XL
n−1), 0 ≤ |FL| ≤ 3n − 6 and FR = F

⋂

V (XR
n−1), 0 ≤ |FR| ≤ 3n − 6.

Then |F | = |FL| + |FR|. Without loss of generality, we may assume that |FL| ≥ |FR|.
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In the following proof, we consider two cases by the size of FR: 1) 0 ≤ |FR| ≤ 2 and 2)

|FR| ≥ 3.

Case 1: 0 ≤ |FR| ≤ 2.

Since 0 ≤ |FR| ≤ 2, XR
n−1 − FR is connected and |V (XR

n−1 − FR)| = 2n−1 − |FR|. Let

F
(L)
R ⊂ V (XL

n−1) be the set of vertices which has neighboring vertices in FR. For each

vertex v ∈ XL
n−1 − FL − F

(L)
R , there is exactly one vertex v(R) in XR

n−1 − FR, such that

(v, v(R)) ∈ E(Xn). Besides, |V (XL
n−1 − FL − F

(L)
R )| ≥ 2n−1 − |FL| − |FR|. Hence Xn − F

has a connected component that contains at least [2n−1 − |FR|] + [2n−1 − |FL| − |FR|] =

2n − |F | − |FR| ≥ 2n − |F | − 2 vertices.

Case 2: |FR| ≥ 3.

Since |FR| ≥ 3, 3 ≤ |FL| ≤ 3(n − 1) − 6 and 3 ≤ |FR| ≤ 3(n − 1) − 6. By the

inductive hypothesis, XL
n−1 − FL (XR

n−1 − FR, respectively) has a connected component

CL (CR, respectively) that contains at least 2n−1 −|FL|−2 (2n−1 −|FR|−2, respectively)

vertices. Next, we divide the case into three subcases: 2.1) |V (CL)| = 2n−1 −|FL|−2 and

XR
n−1 − FR is disconnected, 2.2) |V (CL)| = 2n−1 − |FL| − 2 and XR

n−1 − FR is connected,

and 2.3) |V (CL)| ≥ 2n−1 − |FL| − 1 and |V (CR)| ≥ 2n−1 − |FR| − 1.

Case 2.1: |V (CL)| = 2n−1 − |FL| − 2 and XR
n−1 − FR is disconnected.

This is an impossible case. Since κ(Xn−1) = n − 1, |FR| ≥ n − 1. By Lemma 20,

|FL| ≥ 2((n−1)−1). Then the total number of faulty vertices is at least (n−1)+2((n−

1) − 1) = 3n − 5 which is greater than 3n − 6, a contradiction.

Case 2.2: |V (CL)| = 2n−1 − |FL| − 2 and XR
n−1 − FR is connected.

Since XR
n−1−FR is connected, |V (XR

n−1−FR)| = 2n−1−|FR|. Since |V (CL)| ≥ |FR|+1,

there exists a vertex u ∈ CL and a vertex v ∈ CR such that (u, v) ∈ E(Xn). Hence Xn−F

has a connected component that contains at least [2n−1 − |FR|] + [2n−1 − |FL| − 2] =

2n − |F | − 2 vertices.

Case 2.3: |V (CL)| ≥ 2n−1 − |FL| − 1 and |V (CR)| ≥ 2n−1 − |FR| − 1.
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Since |V (CL)| ≥ |FR| + 1, there exists a vertex u ∈ CL and a vertex v ∈ CR such

that (u, v) ∈ E(Xn). Hence Xn − F has a connected component that contains at least

[2n−1 − |FL| − 1] + [2n−1 − |FR| − 1] = 2n − |F | − 2 vertices.

This completes the proof of the lemma. 2

By Lemma 21, we have the following corollary.

Corollary 9 ∀Xn ∈ Ln(n ≥ 5), let F be a set of vertices F ⊂ V (Xn) with |F | ≤ 3n − 6.

Then Xn − F satisfies one of the following conditions:

1. Xn − F is connected.

2. Xn −F has two components, one of which is K1, and the other one has 2n −|F |−1

vertices.

3. Xn −F has two components, one of which is K2, and the other one has 2n −|F |−2

vertices.

4. Xn−F has three components, two of which are K1, and the third one has 2n−|F |−2

vertices

We are now ready to show that the conditional diagnosability of Xn is 3(n − 2) + 1

for n ≥ 5. Let F1, F2 ⊂ V (Xn) be two conditional faulty sets with |F1| ≤ 3(n − 2) + 1

and |F2| ≤ 3(n − 2) + 1, n ≥ 5. We shall show our result by proving that (F1, F2) is a

distinguishable conditional-pair under the comparison model.

Lemma 22 Let Xn be an n-dimensional BC graph with n ≥ 5. For any two conditional

faulty sets F1, F2 ⊂ V (Xn), and F1 6= F2, with |F1| ≤ 3(n−2)+1 and |F2| ≤ 3(n−2)+1.

Then (F1, F2) is a distinguishable conditional-pair under the comparison model.

Proof.

We use Theorem 4 to prove this result. Let S = F1

⋂

F2, then 0 ≤ |S| ≤ 3(n − 2).

We will show that, deleting S from Xn, the subgraph CF1∆F2,S containing F1∆F2 has
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”many” vertices having degree three or more. More precisely, we are going to prove that,

in the subgraph CF1∆F2,S the number of vertices having degree three or more is at least

2[3(n − 2) + 1 − |S|] + 1 = 6n − 2|S| − 9. In the following proof, we consider three cases

by the size of S: 1) 0 ≤ |S| ≤ n − 1, 2) |S| = n, and 3) n + 1 ≤ |S| ≤ 3(n − 2).

Case 1: 0 ≤ |S| ≤ n − 1.

Since the connectivity of Xn is n [24], Xn − S is connected, the subgraph CF1∆F2,S

is the only component in Xn − S. Since the BC graph Xn has no cycle of length three

and any two vertices have at most two common neighbors, it is straightforward, though

tedious, to check that the number of vertices which has degree two or one is at most 2 in

CF1∆F2,S. Hence, the number of vertices having degree three or more is at least 2n−|S|−2

which is greater than 6n−2|S|−9, for n ≥ 5. By Theorem 4, (F1, F2) is a distinguishable

conditional-pair under the comparison diagnosis model.

Case 2: |S| = n.

If Xn − S is disconnected, by Lemma 20, Xn − S has one trivial component {v}

such that N(v) ⊂ F1 and N(v) ⊂ F2. Since F1 and F2 are two conditional faulty sets,

this is an impossible case. So Xn − S is connected, and the subgraph CF1∆F2,S is the

only component in Xn − S. Let U = Xn − (F1

⋃

F2). If there exist two vertices u and

v in V (U) such that u is adjacent to v, then the condition 1 of Theorem 3 holds and

therefore (F1, F2) is a distinguishable conditional-pair; otherwise V (U) is an independent

set. Hence, NXn−S(v) ⊂ F1∆F2, ∀v ∈ U , and we have the following inequality

∑

v∈U |degXn−S(v)| ≤
∑

v∈F1∆F2
|degXn−S(v)|.

To check the inequality, we have

∑

v∈U |degXn−S(v)| ≥ [2n − 2(3(n − 2) + 1) + |S|]n − |S|n = n2n − 6n2 + 10n

and

∑

v∈F1∆F2
|degXn−S(v)| ≤ 2[3(n − 2) + 1 − |S|]n = 4n2 − 10n.

n2n − 6n2 + 10n > 4n2 − 10n for n ≥ 5, a contradiction.
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Case 3: n + 1 ≤ |S| ≤ 3(n − 2).

By Corollary 9, there are four cases in Xn − S we need to consider. For case 1 of

Corollary 9, Xn − S is connected, the proof is exactly the same as that of Case 2, and

hence the detail is omitted. For case 2 and 4 of Corollary 9, Xn − S has at least one

trivial component {v} such that N(v) ⊂ F1 and N(v) ⊂ F2. Since F1 and F2 are two

conditional faulty sets, the two cases are disregarded. Therefore, we only need to consider

that Xn − S has two components, one of which is K2 and the other one has 2n − |S| − 2

vertices. Let (x, y) be the component with only one edge. Since N({x, y}) ⊆ S and F1 and

F2 do not contain all the neighbors of any vertex, vertex x and y cannot belong to F1∆F2.

So the subgraph CF1∆F2,S is the other large connected component of Xn − S. Let U =

Xn−(F1

⋃

F2)−{x, y}. If there exist two vertices u and v in V (U) such that u is adjacent

to v, then the condition 1 of Theorem 3 holds and therefore (F1, F2) is a distinguishable

conditional-pair; otherwise V (U) is an independent set. Hence, NXn−S(v) ⊂ F1∆F2,

∀v ∈ U , and we have the following inequality

∑

v∈U |degXn−S(v)| ≤
∑

v∈F1∆F2
|degXn−S(v)|.

To check the inequality, we have

∑

v∈U |degXn−S(v)| ≥ [2n − 2(3(n − 2) + 1) + |S| − 2]n − |S|n = n2n − 6n2 + 8n

and

∑

v∈F1∆F2
|degXn−S(v)| ≤ 2[3(n − 2) + 1 − |S|]n ≤ 4n2 − 12n.

n2n − 6n2 + 8n > 4n2 − 12n for n ≥ 5, a contradiction.

In Case 1, we prove that at least one of the conditions of Theorem 3 is satisfied in

subgraph CF1∆F2,S. In Case 2 and 3, the condition 1 of Theorem 3 holds in subgraph

CF1∆F2,S. Therefore, (F1, F2) is a distinguishable conditional-pair under the comparison

diagnosis model. 2

By Lemma 19, tc(Xn) ≤ 3(n − 2) + 1, and by Lemma 22, Xn is conditionally (3(n −

2) + 1)-diagnosable for n ≥ 5. We now have the following theorem.

Theorem 21 Under the comparison model, the conditional diagnosability of Xn is 3(n−
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2) + 1 for n ≥ 5.

Since Qn, CQn, TQn, MQn ∈ Ln, the following corollary holds.

Corollary 10 tc(Qn) = tc(CQn) = tc(TQn) = tc(MQn) = 3(n − 2) + 1 under the com-

parison model, for n ≥ 5.
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Chapter 5

Conclusion, discussion, and future

work

In this thesis, we propose a new concept called local diagnosability for a system and

derive some structures for determining whether a system is locally t-diagnosable at a

given vertex. Through this concept, the diagnosability of a system can be determined by

computing the local diagnosability of each vertex. We also introduce a concept for system

diagnosis, called strongly local-diagnosable property. A system has this strong property

if the local diagnosability of every vertex is equal to its degree. We prove that both the

hypercube network and the star graph have this strong property. Next, we study the local

diagnosability of a faulty multiprocessor systems. For a faulty hypercube Qn and a faulty

star graph Sn, we prove that both Qn and Sn keep this strong property even if they have

up to n − 2 faulty edges and n − 3 faulty edges, respectively. According to Theorem 5,

the global diagnosability of Qn − F is equal to the minimum local diagnosability of all

vertices. A conditional local diagnosability measure for systems is also introduced in this

thesis. Assume that each vertex of a faulty hypercube Qn and a faulty star graph Sn is

incident with at least two fault-free edges, we prove that Qn keeps this strong property

even if it has up to 3(n− 2)− 1 faulty edges and Sn will also keep this strong property no

matter how many edges are faulty. Furthermore, we prove Qn keeps this strong property

no matter how many edges are faulty, provided that each vertex of a faulty hypercube Qn

is incident with at least three fault-free edges. Our bounds on the number of faulty edges
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are all tight.

We use the hypercube and the star graph as two examples to introduce the concepts of

the local diagnosability, the local structures and the strongly local-diagnosable property.

In fact, many well-known systems also have these local structures and this strong prop-

erty. Furthermore, there is a close relationship between its local structure and its local

syndrome. So we propose a new diagnosis algorithm for general systems. The time com-

plexity of our algorithm to diagnose all the faulty processors is bounded by O(N log N),

where N is the total number of processors.

There are several different fault diagnosis models in the area of diagnosability. It

is worth investigating, under various models, whether a system has this strongly local-

diagnosable property after removing some edges. It is also an attractive work to develop

more different measures of diagnosability based on network reliability, network topology,

application environment and statistics related to fault patterns.

In the real world, processors fail independently and with different probabilities. The

probability that any faulty set contains all the neighbors of some processor is very small

[20, 44] so we are interested in the study of conditional diagnosability. A new diagnosis

measure proposed by Lai et al. [40], it restricts that each processor of a system is incident

with at least one fault-free processor. In this thesis, we first use the hypercube as an

example and show that the conditional diagnosability of Qn is 3(n − 2) + 1 under the

comparison model. This number 3(n−2)+1 is about three times as large as the classical

diagnosability. Furthermore, we extend the result to bijective connection network. Since

the hypercube, crossed cube, twisted cube, and Möbius cube are some examples of BC

networks, we can obtain the conditional diagnosability of the cube family.

In this thesis, we study the conditional diagnosability of Qn under the comparison

model. Under the PMC model, however, the conditional diagnosability of Qn is shown to

be 4(n−2)+1 by Lai et al. [40]. In order to understand why the increase in diagnosability

under the comparison model is lower than that under the PMC model, we take a look

at Figure 4.3. As shown in Figure 4.3, there are two conditional faulty sets F1 and

F2 with |F1| = |F2| = 3(n − 2) + 2. As shown, F1 and F2 are indistinguishable, and

therefore the conditional diagnosability of Qn is no greater than 3(n − 2) + 2 under the
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comparison model. We now consider the same conditional faulty sets under the PMC

model in Figure 4.3, either the edge (v4, v1) or the edge (v4, v3) provides “effective” test

to distinguish the syndrome of F1 and F2 under the PMC model, namely v4 tests v1

or v4 tests v3. Therefore F1 and F2 are distinguishable. However, v4 compares v1 and

v3 is not an effective comparison to distinguish the syndrome of F1 and F2 under the

comparison model. On the other hand, see Figure 2.2, every effective comparison under

the comparison model provides effective test under the PMC model. So the conditional

diagnosability of Qn under the comparison model is intuitively lower than that under the

PMC model. In this thesis, we give a complete proof to support our intuition and finally

obtain the main result.
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