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Abstract

The problem of fault diagnosis has been discussed widely and the diagnosability of many
well-known networks has been explored. In this thesis, we study some variants of diagnosis
problems on multiprocessor systems. First of all, we introduce a new measure of
diagnosability, called local diagnosability, and derive some structures for determining
whether a vertex of a system is locally t-diagnosable under the PMC model. For hypercube
network and star graph, we prove that the local diagnosability of each vertex is equal to its
degree. Then, we propose a concept for system diagnosis, called strongly local-diagnosable
property. A system G(V,E) is said to have a strongly local-diagnosable property, if the local
diagnosability of each vertex is equal to its degree. We show that both Q, and S, have this
strong property for n > 3, where the two notations Qn and S, represent an n-dimensional
hypercube and an n-dimensional star graph, respectively. Next, we study the local
diagnosability of a faulty multiprocessor system. For a faulty hypercube Q, and a faulty star
graph Sp, we prove that both Q, and S, keep this strong property even if they have up ton — 2
faulty edges and n — 3 faulty edges, respectively. Assume that each vertex of a faulty
hypercube Q, and a faulty star graph Sy is incident with at least two fault-free edges, we prove
that Q, keeps this strong property even if it has up to 3(n —2) — 1 faulty edges and S, will also
keep this strong property no matter how many edges are faulty. Furthermore, we prove Q,
keeps this strong property no matter how many edges are faulty, provided that each vertex of

a faulty hypercube Q, is incident with at least three fault-free edges. Our bounds on the



number of faulty edges are all tight. Besides, we propose a new diagnosis algorithm for
general systems. The time complexity of our algorithm to diagnose all the faulty processors is

bounded by O(N log N), where N is the total number of processors.

The conditional diagnosability measure, introduced by Lai et al., is another interesting issue
for multiprocessor systems. They proposed this novel measure of diagnosability by adding an
additional condition that any faulty set cannot contain all the neighbors of any vertex in a
system. In this thesis, We make a contribution to the evaluation of diagnosability for
hypercube networks under the comparison model and prove that the conditional
diagnosability of n-dimensional hypercube Q, is 3(n — 2) + 1 for n > 5. The conditional
diagnosability of Qn is about three times larger than the classical diagnosability of Qp.
Furthermore, we extend the result to bijective connection network (in brief, BC network). An
n-dimensional BC network, denoted by X, is an n-regular graph with 2" vertices and n2"'
edges. The n-dimensional hypercube, crossed cube, twisted cube, and Mdbius cube are some
examples of the n-dimensional BC networks. In this thesis, we also prove that the conditional
diagnosability of Xp is 3(n — 2) + 1 under the comparison model, n > 5. As a corollary of this

result, we obtain the conditional diagnosability of the cube family.

Keywords: PMC model, comparison model, t-diagnosable, diagnosability, local
diagnosability, strongly local-diagnosable property, conditional faulty set, conditional

diagnosability, hypercube network, star graph, BC network, diagnosis algorithm.
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Chapter 1

Introduction

With the continuous increase in the size of a multiprocessor system, the complexity of
the system can adversely affect its reliability. In order to maintain reliability, the system
should be able to identify faulty processors and replace them with fault-free ones. The
process of identifying faulty processors is called the diagnosis of the system, and the
diagnosability of the system refers to the maximum number of faulty processors that can
be identified by the system. The problem of identifying faulty processors in a multipro-
cessor system has been widely studied in literatures [1, 3, 7, 9, 11, 12, 13, 14, 15, 16,
17, 18, 25, 28, 29, 30, 31, 32, 33, 38, 45, 48, 49, 53, 54, 55, 58]. There are two funda-
mental approaches to system-level diagnosis: tested-based diagnosis (PMC model) and
comparison-based diagnosis (comparison model). In 1967, the Preparata, Metze, and
Chien (PMC) model was proposed for system-level diagnosis in multiprocessor systems
[45]. The PMC model uses tested-based diagnosis approach, under which a processor
performs the diagnosis by testing on neighboring processors via the communication links
between them. By analyzing the collection of all testing results, all of the faulty proces-
sors are identified. The PMC model was also used [4, 5, 6, 8, 26, 27, 34, 35, 36, 45]. In
[26], Hakimi and Amin proved that a system is ¢-diagnosable if it is t-connected with at
least 2t + 1 vertices. They also gave a necessary and sufficient condition for verifying if a

system is t-diagnosable under the PMC model.

The hypercube structure [46] and star graph [2] are two popular topologies for multi-



processor systems. An n-dimensional hypercube is denoted by @,,, and the diagnosability
of @, is shown to be n [35] under the PMC model, n > 3. An n-dimensional star graph
is denoted by S, and the diagnosability of S, is shown to be n — 1 under the PMC
model, n > 3 [37]. In [40], Lai et al. introduced a novel measure of diagnosability
called conditional diagnosability by restricting that a faulty set cannot contain all the
neighbors of any vertex. Based on this restriction, the conditional diagnosability of the
n-dimensional hypercube is shown to be 4(n — 2) + 1. Besides, Lai et al. introduced a
concept called a strongly t-diagnosable systems and proved that the n-dimensional hy-
percube is strongly n-diagnosable. Essentially, it means that an n-dimensional hypercube
is almost (n + 1)-diagnosable except for the case where all the neighbors of some vertex
are faulty simultaneously. In [50], Wang proved that the diagnosability of an incomplete
hypercube under some conditions can be determined by simply checking the degree of
each vertex under the PMC model. An incomplete hypercube is a hypercube with some
missing edges. It is also called a faulty hypercube. There are some results concerning the
diagnosability of several variations of the hypercube [4, 10, 21, 22, 26, 35, 50]. In clas-
sical measures of system-level diagnosability for multiprocessor systems, it has generally
been assumed that any subset of processors can potentially fail at the same time. As a

consequence, the diagnosability of a system is upper bounded by its minimum degree.

We observe that the diagnosability of a system discussed in previous literatures are
all in a global sense, but ignored some local information. A system is ¢-diagnosable if,
all the faulty processors can be uniquely identified, provided that the number of faulty
processors does not exceed t. However, it is possible to correctly indicate all the faulty
processors in a t-diagnosable system when the number of faulty processors is greater than
t. For example, consider a multiprocessor system generated by integrating two arbitrary
subsystems with a few communication links in some way, where the two subsystems are
m-~diagnosable and n-diagnosable, respectively, and m >> n. The diagnosability of this
system is limited by n, but it is possible to correctly point out all the faulty processors
even if the number of the faulty ones is between m and n. Therefore, if only considering

the global faulty/fault-free status, we lose some local systematic details.

In this thesis, we propose a new measure of diagnosability, called local diagnosability,



and study the local diagnosability of each processor of a system. We can identify the
diagnosability of a system by computing the local diagnosability of each processor. This
measure of the local diagnosability leads us to study the local diagnosability of each
processor instead of the whole system. We propose a necessary and sufficient condition,
Theorem 6, to determine the local diagnosability of a processor. We also provide two
useful structures, called Type I structure and Type 11 structure, to determine the local
diagnosability of a processor under the PMC model. Based on these structures, the local
diagnosability of each vertex of hypercube and star graph is shown to be equal to its
own degree. Then, we propose a concept for system diagnosis, called strongly local-
diagnosable property. A system G(V, E) is said to have a strongly local-diagnosable
property, if the local diagnosability of each vertex is equal to its degree. We show that
an n-dimensional hypercube @,, and an n-dimensional star graph S,, all have this strong
property. Then, we study the local diagnosability of an incomplete hypercube and an
incomplete star graph. Firstly, we show that both @), and .S, keep this strong property
even if it has up to n — 2 faulty edges and n — 3 faulty edges, respectively. Secondly,
assume that each vertex of an incomplete hypercube @),, and an incomplete star graph S,
is incident with at least two fault-free edges, we show @),, keeps this strong property even
if it has up to 3(n—2)—1 faulty edges and .S,, will also keep this strong property no matter
how many edges are faulty. Furthermore, we show that (),, keeps this strong property no
matter how many edges are faulty, provided that each vertex of an incomplete hypercube
@, is incident with at least three fault-free edges. Our bounds on the number of faulty
edges are all tight. Besides, we propose a new diagnosis algorithm for general systems.
The time complexity of our algorithm to diagnose all the faulty processors is bounded by

O(Nlog N), where N is the total number of processors.

In 1980, Malek and Maeng introduced the comparison model using Comparison-based
diagnosis approach, also known as the MM model [42, 43]. In this model, the number
of faulty processors is limited and all faults are permanent. The MM model deals with
the faulty diagnosis by sending the same input (or task) from a processor w to each pair
of distinct neighbors, u and v, and then comparing their responses. The processor w is
called the comparator of processors v and v. Different comparators may examine the

same pair of processors. The result of the comparison is either the two responses agreed



or two responses disagreed. Based on the results of all the comparisons, one need to
decide the faulty or fault-free status of the processors in the system. Using a comparison
diagnosis model, Sengupta and Dahbura described a diagnosable system and presented a

polynomial algorithm to determine the set of all faulty processors [47].

Reviewing some previous literatures [4, 10, 21, 22, 23, 26, 35, 39, 41, 46, 51], Q,, CQ.,
TQ, and MQ,, all have diagnosability n under the comparison model or the PMC model.
The diagnosability of the Star S,, is shown to be n — 1 under the comparison model [56].
In classical measures of system-level diagnosability for multiprocessor systems, if all the
neighbors of some processor v are faulty simultaneously, it is not possible to determine
whether processor v is fault-free or faulty. As a consequence, the diagnosability of a
system is limited by its minimum degree. Hence, Lai et al. introduced a restricted
diagnosability of multiprocessor systems called conditional diagnosability in [40]. Lai et
al. considered a measure by restricting that, for each processor v in a system, all the
processors which are directly connected to v do not fail at the same time. In this thesis,
We make a contribution to the evaluation of diagnosability for hypercube networks under
the comparison model and prove that the conditional diagnosability of n-dimensional
hypercube @, is 3(n — 2) + 1 for n > 5. The conditional diagnosability of @, is about
three times larger than the classical diagnosability of @),,. Furthermore, we extend the
result to bijective connection network (in brief, BC network). An n-dimensional BC
network, denoted by X,,, is an n-regular graph with 2" vertices and n2"~! edges. The n-
dimensional hypercube, crossed cube, twisted cube, and Mobius cube are some examples
of the n-dimensional BC networks. In this thesis, we also prove that the conditional
diagnosability of X,, is 3(n — 2) + 1 under the comparison model, n > 5. As a corollary

of this result, we obtain the conditional diagnosability of the cube family.

1.1 Basic Terms and Notations

A multiprocessor system can be represented by a graph G(V, E), where the set of vertices
V(G) represents processors and the set of edges E(G) represents communication links

between processors. Throughout this thesis, we focus on undirected graph without loops



and follow [52] for graph theoretical definitions and notations.

Let G(V, E) be a graph and v € V(G) be a vertex. We use the notation Eg(v) to
denote the set of edges incident with v. The cardinality |Eg(v)| is called the degree of
v, denoted by degg(v) or simply deg(v). The maximum degree is denoted by A(G), the
minimum degree is §(G), and G is regular if A(G) = 0(G). G is d-regular if deg(v) = d
for every v € V(G). The neighborhood N (v) of a vertex v in G is the set of all vertices
that are adjacent to v in G. For a subset of vertices V' C V(G), the neighborhood set of

the vertex set V' is defined as N(V') = |J N(v) — V'. For a set of edges(respectively,
veV’
vertices) F', we use the notation G — F' to denote the graph obtained from G by removing

all the edges(respectively, vertices) in F'. The components of a graph G are its maximal
connected subgraphs. A component is trivial if it has no edges; otherwise, it is nontrivial.
The connectivity «(G) of a graph G(V, E) is the minimum number of vertices whose
removal results in a disconnected or a trivial graph. Let G; be a subgraph of G, we
shall write the vertex set of Gy as V(Gy). The neighborhood set of V(G) is defined as
N(V(Gh)) = {u € V(G) — V(G,) | there exists a vertex v € V(G1) such that (u,v) €
E(G)}. The following is an useful characterization for the distinguishability of two sets
of vertices under the PMC model and the comparison model. Let Fy, [, C V(G) be two
distinct sets. The symmetric difference of the two sets F; and F5 is defined as the set
FIAF, = (F, — B)U(F, — Fy).

For studying the conditional diagnosability of a system, we also need some definitions
for further discussion. Let G(V, E) be a graph. For any set of vertices U C V(G), G[U]
denotes the subgraph of GG induced by the vertex subset U. Let H be a subgraph of G
and v be a vertex in H. We use V(H;3) = {v € V(H) | degy(v) > 3} to represent the
set of vertices which has degree 3 or more in H. Let Fy, F; C V(G) be two distinct sets
and S = Fy [ Fy. We use Cr,arp,s to denote the subgraph induced by the vertex subset
(F1AF) [ J{u | there exists a vertex v € Fy AF; such that v and v are connected in G—S}.



1.2 Organization of the Thesis

The rest of this thesis is organized as follows. The details for the PMC model and the
comparison model are described in Chapter 2, and the previous results for diagnosing a

system are also provided in this chapter as well.

In Chapter 3, we introduce the concept of local diagnosability and propose a necessary
and sufficient condition for verifying if it is locally ¢-diagnosable at a given processor in
a system. Then, we define a strongly local-diagnosable property for a system and study
the strong property in a faulty hypercube and a faulty star graph respectively. Next, we
study the strong property in a conditional faulty hypercube and star graph. A diagnosis
algorithm is proposed at the end of this chapter.

In Chapter 4, we focus on the measure of conditional diagnosability we study the
conditional diagnosability of the hypercube @,, under the comparison model. Finally, our

conclusions and future works are given in Chapter 5.



Chapter 2

Diagnosis Model

The process of identifying faulty processors in a system is known as the system-level
diagnosis. Several different approaches have been developed to diagnose faulty processors,
among which there are two fundamental approaches on system-level diagnosis. One major
approach is called PMC model established by Preparata, Metze and Chien [45]. Another
major approach is the comparison model, proposed by Malek and Maeng [42, 43]. In the
following, we describe the details of the two major models and give some previous results

for diagnosing a system.

2.1 The PMC Model and Some Previous Results

The PMC diagnosis model is presented by Preparata, Metze and Chien [45]. In this model,
a self-diagnosable system is often represented by a directed graph T(V, E) in which an
edge directed from vertex u to vertex v means that u can test v. In this situation, u
is called the tester and v is called the tested vertex. The outcome of a test (u,v) is
1(respectively, 0) if u evaluates v as faulty (respectively, fault-free). We assume that
the testing results of fault-free vertices are always reliable and the testing results of faulty
vertices are unreliable. The collection of all testing results is called a syndrome. Formally,
a syndrome is a function o : E — {0,1}. The set of all faulty processors in the system is

called a faulty set. This can be any subset of V(7). For a given syndrome o, a subset



of vertices F' C V(T') is compatible with ¢ if the syndrome ¢ can be produced from the
situation that all vertices in F' are faulty and all vertices in V' — F' are fault-free. Since
faulty testers can give arbitrary testing results, any syndrome compatible with a faulty set
F' can occur when faulty processors in the system are exactly those in F'. Let o be the set
of all syndromes which could be produced if F' is the set of faulty vertices. Two distinct
sets F1, Fy C V(@) are said to be distinguishable if op, (| og, = ¢; otherwise, Fy, Fy are
said to be indistinguishable. We say (F}, Fy) is a distinguishable pair if op, (or, = ¢;
otherwise, (Fi, Fy) is an indistinguishable pair. For PMC model, some known results
about the definition of ¢-diagnosable system and related concepts are listed as follows.

Some of these previous results are on directed graphs and others are on undirected.

Definition 1 [45] A system G is called t-diagnosable if, given the test outcomes obtained
by the testing link, all the faulty vertices can be uniquely identified without replacement,

provided that the number of faulty vertices does not exceed t.

Definition 2 [45] The mazimum number of faulty vertices that a system G can guarantee
to identify is called the diagnosability of G, written as t(G).

Dahbura and Masson [19] proposed a polynomial time algorithm to check whether a

system is t-diagnosable.

Lemma 1 [19] A system G(V, E) is t-diagnosable under the PMC model if and only if
for each pair Fy, Fy C V with |Fy|,|Fs| <t and Fy # F,, there is at least one test from
vV — (Fl UF2> to FlAFQ.

The following two lemmas related to t-diagnosable systems are proposed by Preparata

et al. [45] and Hakimi et al. [26], respectively.

Lemma 2 [45] Let G(V, E) be a graph and |V| = N. The following two conditions are

necessary for G to be t-diagnosable;

1. N>2t+1, and



2. each processor in G is tested by at least t other processors.
Lemma 3 [26] Let G(V, E) be a graph and |V| = N. G is t-diagnosable if

1. N>2t+1, and
2. k(G) > t.
For a directed graph G(V, E) and vertex v € V, let I'(v) = {v;|(v,v;) € E} and

I'(X) = Upex I'(v) = X, X C V. Hakimi and Amin presented a necessary and sufficient

condition for a system G to be t-diagnosable as follows:

Theorem 1 [26] Let G(V, E) be the directed graph of a system G and |V| = N. Then
G is t-diagnosable under the PMC model if and only if: (i) N > 2t + 1, (i) din(v) >t
for all v € V, and (iii) for each integer p with 0 < p < t — 1, and each X C V with
| X|=N—=2t+p, I'(X)| > p.

In this thesis, we propose some new concepts on diagnosis, and we focus on undirected

graph. The following lemma follows directly from Lemma 1.

Lemma 4 [19] Let G(V, E) be a graph. For any two distinct sets Fy, Fo C 'V, (Fy, Fy)
1s a distinguishable pair under the PMC model if and only if there exists a vertex u €
V — (F1UF,) and a vertex v € F{AF, such that (u,v) € E (see Figure 2.1).

GOD COW

u u

(4) (i)
Figure 2.1: Hlustration for a distinguishable pair (F}, Fy)

It follows from Definition 1 that the following lemma holds.

9



Lemma 5 [19] A system G(V, E) is t-diagnosable under the PMC model if and only if,
for any two distinct sets Fy, Fy C 'V with |Fy| <t and |F5| < t, (Fy, F3) is a distinguishable

pair.
The following Lemma 6 is equivalent to Lemma 5.

Lemma 6 [19] A system G(V, E) is t-diagnosable if and only if, for each indistinguishable
pair Fy, Fy C V., it implies that |Fy| >t or |Fy| > t.

By Lemma 2, a similar result for undirected graph is stated as follows.

Corollary 1 [45] Let G(V, E) be an undirected graph and |V| = N. The following two

conditions are necessary for G to be t-diagnosable under the PMC model:

1. N>2t+1, and

2. 6(G) > t.
For our discussion later, a useful result presented by Lai [40] is stated below.

Theorem 2 [40] Let G(V, E) be a graph. G is t-diagnosable if and only if, for each set
of vertices F C 'V with |F| =p, 0 < p <t —1, each connected component of G — F has
at least 2(t — p) + 1 vertices.

2.2 The Comparison Model and Some Previous Re-
sults

The comparison diagnosis model is proposed by Malek and Maeng [42, 43]. In this model,
a self-diagnosable system is often represented by a multigraph M (V, '), where V is the
same vertex set defined in G and C' is the labeled edge set. Let (u,v), be a labeled
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edge. If (u,v) is an edge labeled by w, then (u,v),, is said to belong to C', which implies
that the vertex v and v are being compared by vertex w. The same pair of vertices may
be compared by different comparators, so M is a multigraph. For (u,v), € C, we use
r((u,v),) to denote the result of comparing vertices u and v by w such that r((u, v),) =0
if the outputs of u and v agree, and r((u,v),,) = 1 if the outputs disagree. In this model,
if 7((u,v),) = 0 and w is fault-free, then both v and v are fault-free. If r((u,v),) = 1,
then at least one of the three vertices u, v, w must be faulty. If the comparator w is
faulty, then the result of the comparison is unreliable that means both r((u,v),) = 0 and
r((u,v),) = 1 are possible outputs, and it outputs only one of these two possibilities. In
this thesis, we consider a complete diagnosis that means each vertex diagnoses all pairs
of distinct neighbors. For an n-dimensional hypercube (@),,, each vertex has degree n, and
therefore, there are (Z) comparisons for each vertex acting as a comparator. Furthermore,

there are 2" vertices in @, so the total number of comparisons is (5)2" = O(n?2").

As the description for the PMC model, the collection of all comparison results defined
as a function o: C' — {0,1}, is called the syndrome of the diagnosis. A subset F' C V
is said to be compatible with a syndrome o if o can arise from the circumstance that all
vertices in F' are faulty and all vertices in V' — F are fault-free. A system is said to be
diagnosable if, for every syndrome o, there is a unique F' C V that is compatible with o.
In [47], a system is called a t-diagnosable system if the system is diagnosable as long as
the number of faulty vertices does not exceed ¢t. The maximum number of faulty vertices
that the system G can guarantee to identify is called the diagnosability of G, written as
t(G). A faulty comparator can lead to unreliable results. So, a set of faulty vertices may
produce different syndromes. Let o = {0 | o is compatible with F'}. Two distinct sets
Fy, F5 C V are said to be indistinguishable if and only if o, () or, # 0; otherwise, Fy, Fy
are said to be distinguishable. There are several different ways to verify a system to be
t-diagnosable under the comparison approach. The following theorem given by Sengupta

and Dahbura [47] is a necessary and sufficient condition for ensuring distinguishability.

Theorem 3 [47] Let G(V, E) be a graph. For any two distinct sets Fy, Fy CV, (Fy, Fy)
s a distinguishable pair under the comparison model if and only if at least one of the

following conditions is satisfied (see Figure 2.2):
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1. Ju,w e V—{FJF} and Fv € F1AFy such that (u,v), € C,
2. Ju,v € Fy — Fy and 3w € V — {F,|J F2} such that (u,v), € C, or

3. Ju,v € Fy — Fy and 3w € V — {F,|J F»} such that (u,v), € C.

Figure 2.2: Description of distinguishability for Theorem 3.

The following result is a useful sufficient condition for checking whether (F}, F») is a

distinguishable pair.

Theorem 4 Let G(V, E) be a graph. For any two distinct sets Fy, Fy C V with |F;| <'t,
i=1,2, and S = F1( F,. (F1, Fy) is distinguishable under the comparison model if, the
subgraph Cpap,s of G — S contains at least 2(t — |S|) + 1 vertices having degree 3 or

more.

Proof.

Given any pair of distinct sets of vertices Fy, Fy C V with |F;| < ¢, i = 1,2. Let
S = Fi(Fy, then 0 < |S| <t —1, and |F1AF,| < 2(t —|S]). Consider the subgraph
Crar,.s, the number of vertices having degree 3 or more is at least 2(¢t — |[S|) + 1 in
Cr AR, s, the subgraph Cp ap, s contains at least 2(¢ — |S|) + 1 vertices. There is at least
one vertex with degree 3 or more lying in Cp,ap, s — F1AF,. Let u be one of such vertices
with degree 3 or more. Let i, j, and k be three distinct vertices linked to w. If one of i,
J, and k lies in Cpap, s — F1AF;, condition 1 of Theorem 3 holds obviously. Suppose all
these three vertices belong to F1AF,. Without loss of generality, assume i lies in F; — Fb,

one of the two cases will happen: 1) if j lies in F} — F», condition 2 of Theorem 3 holds;
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or, 2) if j lies in F» — Fy, wherever k lies in F} — F5 or F; — F, condition 2 or 3 of Theorem

3 holds. So (F}, F») is a distinguishable pair and the proof is complete. O

By Theorem 4, we now propose a sufficient condition to verify whether a system is

t-diagnosable under the comparison diagnosis model.

Corollary 2 Let G(V, E) be a graph. G is t-diagnosable under the comparison model if,
for each set of vertices S C V with |S| =p, 0 < p <t—1, every connected component C

of G— S contains at least 2(t —p) + 1 vertices having degree at least three. More precisely,
V(C;3)] > 2(t —p) + 1.
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Chapter 3

Local Diagnosability

We first review some related results on system diagnosability of some well-known networks
under the PMC model. In[35], Kavianpour et al. proved that the diagnosability of an n-
dimensional hypercube @, is n. In [21] and [22], Fan proved that an n-dimensional Crossed
cube and an n-dimensional Mdébius cube have diagnosability n under the PMC model.
In [50], Wang proved that the diagnosability of a faulty hypercube can be determined by
checking the degree of each vertex under the PMC model, provided that the minimum

degree of the faulty hypercube is at least three.

We observe that the traditional diagnosability discussed in most literatures describes
the global status of a system. In this thesis, we study the local status of each processor
instead of the global status of a system. For example, for any two positive integers m
and n with m >> n > 3, the diagnosability of two hypercube systems @),, and @Q,, is m
and n, respectively. Combining (),,, and @),, with a few edges in some way may cause the
diagnosability of the new system to become n. In this situation, the strong diagnosability
of @), is disregarded. For this reason, we are motivated to study the local status of each
processor. Given a single vertex, we require only identifying the status of this particular

processor correctly. We now propose the following concept.

Definition 3 Let G(V, E) be a graph and v € V' be a vertex. G is locally t-diagnosable
at vertex v if, given a syndrome op produced by a set of faulty vertices ' C'V' containing

vertex v with |F| < t, every set of faulty vertices F' compatible with or and |F'| < t, must

14



also contain vertex v.

Definition 4 Let G(V, E) be a graph and v € V' be a vertex. The local diagnosability of
vertex v, written as t;(v), is defined to be the mazimum value of t such that G is locally

t-diagnosable at verter v.

The following result is another point of view for checking whether a vertex is locally

t-diagnosable.

Lemma 7 Let G(V, E) be a graph and v € V' be a vertex. G is locally t-diagnosable at
vertex v if and only if, for any two distinct sets of vertices Fy, Fy CV, |Fi| <t, |Fy| <t
and v € F1AF,, (Fy, Fy) is a distinguishable pair.

In the following, we study some properties of a system being locally t-diagnosable at

a given vertex, and its relationship between a system being t-diagnosable.

Proposition 1 Let G(V, E) be a graph and v € V(G) be a vertex. G is locally t-
diagnosable at vertex v under the PMC model, then |V (G)| > 2t + 1.

Proof.

We show this by contradiction. Assume that |V(G)| < 2t. We partition V(G) into
two disjoint subsets Fy, Fy with |Fi| <t, |Fy| < t. The vertex v is either in F} or in Fs.
Since V — (Fy |J F2) = 0, there is no edge between V' — (Fy |J F») and F1AF,. By Lemma
4, (Fy, Fy) is an indistinguishable pair, this contradicts the assumption that G is locally

t-diagnosable at vertex v. So the result follows. O

Proposition 2 Let G(V, E) be a graph and v € V be a vertex with deg(v) = n. The local

diagnosability of vertex v is at most n under the PMC model.

Proof.
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Let Fi be the set of vertices adjacent to vertex v, F; = Ng(v) and |Fi| = n. Let
Fy, = FyJ{v} with |Fy] = n+ 1. Tt is a simple matter to check that there is no edge
between V' — (Fy|J Fz) and FiAF,. By Lemma 4, (Fy, F,) is an indistinguishable pair.
Thus, G is not locally (n + 1)-diagnosable at vertex v, so ¢;(v) < n = deg(v). We have
the stated result. O

Proposition 3 Let G(V, E) be a graph. Under the PMC model, G is t-diagnosable if and

only if G is locally t-diagnosable at every vertez.

Proof.

To prove the necessity, we assume that G is t-diagnosable. If the result is not true,
there exists a vertex v € V such that G is not locally t-diagnosable at vertex v. By
Lemma 7, there exists a distinct pair of sets Fi, F, C V with |Fi| < ¢, |Fy| < t and
v € F1AF,, (F1, F,) is an indistinguishable pair. By Lemma 5, G is not t-diagnosable.

This contradicts the assumption, hence the necessary condition follows.

To prove the sufficiency, suppose on the contrary that G is not t-diagnosable, there
exists a distinct pair of sets Fy, Fo C V with |Fy| < t, |F5| <t, (Fy, F3) is an indistinguish-
able pair. Being distinct, the set F1AF, # (), we can find a vertex v € F;AF,. By Lemma
7, G is not locally t-diagnosable at vertex v, which is a contradiction. This completes the

proof. a

By Definition 4 and Proposition 3, we know that the diagnosability of a multiprocessor
system is equal to the minimum local diagnosability of all vertices of the system. Thus,

we have the following theorem.

Theorem 5 Let G(V, E) be a multiprocessor system. Under the PMC model, the diag-
nosability of G is t if and only if

min{t;(v) | for everyv € V} =t.

From Theorem 5, we can identify the diagnosability of a system by computing the local
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diagnosability of each vertex. Because many well-known systems are vertex-symmetric,

the diagnosability of these system can be easily identified by this effective method.

Before studying the local diagnosability of a vertex, we need some definitions for
further discussion. Let F' be a set of vertices and v be a vertex not in F. After deleting
the vertices in F' from G, we use C, to denote the connected component which vertex v
belongs to. Now, we propose a necessary and sufficient condition for verifying if a system

is locally t-diagnosable at a given vertex v.

Theorem 6 Let G(V, E) be a graph and v € V be a vertex. G is locally t-diagnosable at
vertex v under the PMC model if and only if, for each set of vertices F' C V with |F| = p,
0<p<t—1andv & F, the connected component, which v belongs to in G — F, has at
least 2(t — p) + 1 vertices.

Proof.

To prove the necessity, we assume that G is locally t-diagnosable at vertex v. If the
result does not hold, there exists a set of vertices /' C V with |F| = p,0 < p <t —1,
v ¢ F such that the connected component C, has strictly less than 2(¢t — p) + 1 vertices,
|V(Cy)| < 2(t—p). We then arbitrarily partition V(C,) into two disjoint subsets, V(C,) =
FiUF with |Fy| <t —p, |[Fo| <t—p. Let Ay = Fi|JF and Ay = FL|JF. Tt is clear
that |[A;] < (t —p) +p=1t, |As| < (t —p) +p =t, the vertex v € A;AA, and there is no
edge between V' — (A;|J As) and A;AA,;. By Lemma 7, (A;, Az) is an indistinguishable

pair. This contradicts the assumption that G is locally ¢t-diagnosable at vertex v.

We now prove the sufficiency by contradiction. Suppose G is not locally t-diagnosable
at vertex v, then, there exists an indistinguishable pair (Fi, Fy) with [Fy| < t, |Fy| <t
and v € F1AF,. By Lemma 4, there is no edge between V — (Fy |J F2) and F1AF;. Let
F=FNFwith |[F|=p,0<p<t—1andv ¢ F. F{AF; is disconnected from other
parts after removing all the vertices in F' from G. We observe that |F1AFy| < 2(t — p).
Thus, the connected component C, has at most 2(¢t — p) vertices and |V (C,)| < 2(t — p).
This contradicts the assumption that the connected component C,, has to satisfy |V (C,)| >
2(t — p) + 1. Hence, the theorem holds. O
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We now propose two special subgraphs called Type I structure and Type II structure.
They provide us with an efficient and simple method to identify the local diagnosability

of each vertex of a system under the PMC diagnosis model.

Definition 5 Let G(V, E) be a graph, v € V be a vertex and k be an integer, k > 1, a
Type I structure Ti(v; k) of order k at vertex v is defined to be the following graph,

Ti(v; k) = [V (v; k), E(v; k)]
which s composed of 2k + 1 vertices and of 2k edges as illustrated in Figure 3.1, where

o V(v;k) = {v}U{z,y |1 <d < kY,

o B(vik) = {(v, ), (ws, 4p)|[1 < i <k}

Figure 3.1: A Type I structure T (v; k) consists of 2k + 1 vertices and 2k edges.

Following Theorem 6 and Definition 5, we propose a sufficient condition for verifying

if it is locally ¢-diagnosable at a given processor in a system.

Theorem 7 Let G(V, E) be a graph and v € V' be a vertex. G is locally t-diagnosable
at vertex v under the PMC model if G contains a Type I structure T\ (v;t) of order t at

vertex v as a subgraph.

Proof.

We use Theorem 6 to prove this result. Assume that G contains a subgraph T (v;t) at
vertex v. Let e; = (x;,y;) be the edge for each 7, 1 < i < t, with respect to T3 (v;t). The
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number of vertices of the connected component including vertex v is at least 2t + 1. Let
F C V(G) be a set of vertices with |F| = p,0 <p <t—1and v ¢ F. After deleting F
from V(G), there are at least (¢ — p) complete e;’s still remain in 77 (v;t). Therefore, the
number of vertices of the connected component C, is at least 2(t — p) + 1. By Theorem

6, G is locally t-diagnosable at vertex v. The proof is complete. O

A Type II structure Ty(v; k, 2) at a vertex v is defined as follows:

Definition 6 Let G(V, E) be a graph, v € V' be a vertex and k be an integer, k > 1, a
Type II structure Ty(v; k,2) of order k+ 2 at vertez v is defined to be the following graph,

To(v; k,2) = [V(v; k, 2), E(v; k, 2)]

which is composed of 2k + 5 wvertices and of 2k + 5 edges as illustrated in Figure 3.2,
where
hd V(U, k72) = {U} U {xzvyz | 1 S { S k} U {21922a 23, 24}7

o E(vik,2) ={(v, ), (zi,9:)|1 < i < k}U{(v, 21),

(v, 29), (21, 23), (22, 23), (23, 24) } -

Figure 3.2: A Type II structure T5(v; k, 2) consists of 2k + 5 vertices and 2k + 5 edges.

In the following, we propose another sufficient condition for verifying if it is locally

t-diagnosable at a given processor in a system.

Theorem 8 Let G(V, E) be a graph and v € V' be a vertex. G is locally t-diagnosable at
vertex v under the PMC model if G contains a Type II structure Ty(v; k,2) of order k + 2

at vertex v as a subgraph, where t =k + 2.
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Proof.

We use Theorem 6 to prove this result. Assume that G contains a subgraph T5(v; k, 2)
of order t = k + 2 at vertex v. The number of vertices of the connected component
including vertex v is at least 2k +5 = 2t + 1. Let F' C V be a set of vertices with
|F|=p,0<p<t—1and v ¢ F, the number of vertices of C, is at least (2k +5) —2x* 1
after removing one vertex in F', the number of vertices of C, is at least (2k +5) — 2 * 2
after removing two vertices in F', and so on. Thus, the connected component C, satisfies
\V(C,)| > (2k+5)—2p = 2(t—p)+ 1. By Theorem 6, G is locally t-diagnosable at vertex
v. This proves the theorem. O

In the following, we give some examples.
Example 1 Let us consider a cycle of length four as shown in Figure 3.3(a). We can

find a Type I structure Ty(v;1) of order 1 at vertex v as shown in Figure 3.3(b), hence

vertex v is locally 1-diagnosable.

(a) (b)

Figure 3.3: A cycle of length four and a Type I structure T;(v; 1) of order 1 at v.

Example 2 Consider ezamples as shown in Figure 3.4(a), 3.4(b) and 3.4(c). It is a rou-
tine work to check that there is a subgraph T1(vy;2), Ti(ve;2) and To(vs; 1,2) at vertex vy,
vy and vs, respectively. Hence it is locally 2-diagnosable, 2-diagnosable and 3-diagnosable

at vertex vy, vo and vs, respectively.
By Theorem 7, Theorem 8 and Proposition 2, we have the following result.
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U3
U1 V2

(a) (0) ()
Figure 3.4: Some examples of local diagnosability.

Theorem 9 Let G(V, E) be a graph and v € V be a vertex with deg(v) = n. The local
diagnosability of vertex v is n under the PMC model if G contains a subgraph, which is
either a Type I structure Ty (v;n) of order n or a Type II structure Ty(v;n —2,2) of order

n, at vertex v.

3.1 The Local Diagnosability of Hypercube under
the PMC Model

In this section, we study the local diagnosability of hypercube under the PMC model. An
n-dimensional hypercube can be modeled as a graph @, with the vertex set V' (Q,) and
the edge set E(Q,). There are 2" vertices in @, and each vertex has degree n. Each
vertex v of (), can be distinctly labeled by a binary n-bit string, v = v,_10,_2...010p.
There is an edge between two vertices if and only if their binary labels differ in exactly
one bit position. Let u and v be two adjacent vertices. If the binary labels of v and v differ
in 7th position, then the edge between them is said to be in ith dimension and the edge
(u,v) is called an ith dimensional edge. Let i be a fixed position, we use Q°_; to denote
the subgraph of @,, induced by {v € V(Q,) | v; = 0} and Q! _, to denote the subgraph
of Q, induced by {v € V(Q,) | v; = 1}. Consequently, Q,, is decomposed to Q°_, and

L by dimension 7, and Q° | and Q! | are (n — 1)-dimensional subcube of Q,, induced

by the vertices with the ith bit position being 0 and 1 respectively. Q°_, and Q}_; are
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isomorphic to Q,,_1. For each vertex v € V(Q%_,), there is exactly one vertex in Q}

n—1»
denoted by v, such that (v,v™) € E(Q,). Conversely, for each vertex v € V(Q}_,),
there is exactly one vertex in Q°_,, denoted by v(®), such that (v,v?) € E(Q,). Let D;

be the set of all edges with one end in Q°_; and the other in Q! ;. These edges are called
crossing edges in the ith dimension between Q°_; and Q! . We also call D; the set of

all ith dimensional edges.

Based on Theorem 9, we prove that the local diagnosability of each vertex in @), is

equal to its degree.

Theorem 10 Let ), be an n-dimensional hypercube. The local diagnosability of each
vertex in QQ, s n under the PMC model, for n > 3.

Proof.

We use Theorem 9 to prove this result, and we shall construct a Type I structure
of order n at each vertex, for n > 3. We prove this by induction on n. Since an n-
dimensional hypercube @), is vertex-symmetric, we can concentrate on the construction
of Type I structure at a given vertex v. For n = 3, deg(v) = 3 and it is clear that
()3 contains a Type I structure T3 (v;3) of order 3 at vertex v (see Figure 3.5). As the
inductive hypothesis, we assume that @),_; contains a Type I structure T (v;n — 1) of
order n — 1 at each vertex, for some n > 4. Now we consider @),,, ),, can be decomposed
into two subcubes Q% | and Q. | by some dimension. Without loss of generality, we may
assume that the vertex v € Q°_,. By the inductive hypothesis, Q°_, contains a Type I
structure T (v;n — 1) of order n — 1 at vertex v. Consider the vertex v in QL . Vertex
v has an adjacent neighbor that is in Q! , due to deg(v")) = n, where n > 3. Thus,
@, contains a Type I structure T} (v;n) of order n at vertex v. By Theorem 9, the local

diagnosability of each vertex in @, is n, for n > 3. O
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(a) (b)

Figure 3.5: A Q3 and a Type I structure 73 (v; 3) of order 3 at vertex v.

3.2 The Local Diagnosability of Star Graph under
the PMC Model

In this section, we study the local diagnosability of star graph under the PMC model.
An n-dimensional star graph S, is an (n — 1)-regular graph consisting of n! vertices and
(n—1)n!/2 edges. The set of vertices V(S,) = {wus...u,|u; € (n) and u; # u; for i # j},
where (n) is the set {1,2,...,n}. The adjacency is defined as follows: wujusg...u;...u, is
adjacent to v1vy...v;...v;, through an edge of dimension i, if v; = w;, v; = uy, and v; = u;
for j ¢ {1,i}, where 2 < i < n. Let u = ujus...u;...u,, be any vertex in S,,. We use (u);
to denote the ith coordinate u; of u and S to denote the ith subgraph of .S,, induced by
those vertices u with (u), = ¢. Obviously, S,, can be decomposed into n vertex disjoint
subgraphs S for 1 < i < n, such that each S s isomorphic to S,_;. Thus, the
star graph can be constructed recursively. By the definition of S,,, there is exactly one
neighbor v of u such that u and v are adjacent through an edge of dimension i, for each
2 < i < n. For example, S; contains 4! vertices in which two vertices ujususus and
uqususzuy are neighbors and joined through an edge of dimensional 4. Let (u)’ denote the
unique é-neighbor of u. We have ((u)’)! = u and (u)” € S{™". For 1 < i,j < n and
i # 7, we use E% to denote the set of edges between St and S§. The star graph s,

Ss and Sy are shown in Figure 3.6.

Based on Theorem 9, we prove that the local diagnosability of each vertex in S, is

equal to its degree.
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Figure 3.6: The star graph Sy, S3 and Sj.

Theorem 11 Let S, be an n-dimensional star graph. The local diagnosability of each
vertex in S, is n — 1 under the PMC model, for n > 3.

Proof.

We shall construct a Type I structure of order n — 1 at each vertex, for n > 3. We
prove this by induction on n. Since an n-dimensional star graph S, is vertex-symmetric,
we can concentrate on an arbitrary vertex v = v0,...v,. For n = 3, deg(v) = 2 and it is
clear that S5 contains a Type I structure 73 (v;2) of order 2 at vertex v. As the inductive
hypothesis, we assume that S,,_; contains a Type I structure 73 (v;n — 2) of order n — 2
at each vertex, for some n > 4. Now we consider S,,. By the definition of star graphs,
S, can be decomposed into n subgraphs Si*7, Si**) ... and S, So v € S, By
the inductive hypothesis, ST{LU"} contains a Type I structure Ti(v;n — 2) of order n — 2
at vertex v. Consider the vertex (v)" in "), Vertex (v)" has at least one adjacent
neighbor in S due to deg((v)") = n — 1, where n > 3. Thus, S, contains a Type I
structure T1(v;n — 1) of order n — 1 at vertex v. By Theorem 9, the local diagnosability

of each vertex in S, is n — 1, for n > 3. O
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3.3 Strongly Local-diagnosable Property

In this section, we use hypercube as an example to introduce our concept of the strongly
local-diagnosable property. In previous section, we presented two sufficient conditions,
Theorem 7 and Theorem 8, for identifying the local diagnosability of a vertex. It seems
that identifying the local diagnosability of a vertex is the same as counting its degree.
We give an example to show that this is not true in general. As shown in Figure 3.7, we
take a vertex v in two-dimensional hypercube Qq, let Fy = {v,1} and F, = {2,3} with
|Fi| = 2 and |Fy| = 2. It is a simple matter to check that (Fi, F3) is an indistinguishable
pair. Hence t;(v) # deg(v) = 2. We then propose the following two concepts.

Fy Fy

Figure 3.7: An indistinguishable pair (Fi, F3) in Q.

Definition 7 Let G(V, E) be a graph and v € V' be a vertex. Vertexr v has the strongly

local-diagnosable property if the local diagnosability of vertex v is equal to its degree.

Definition 8 Let G(V, E) be a graph. G has the strongly local-diagnosable property if,
every vertex in the graph G has the strongly local- diagnosable property.

Following Definition 7, Definition 8, Theorem 10 and Theorem 11 imply the following

two propositions.

Proposition 4 Let (), be an n-dimensional hypercube, n > 3. Q),, has the strongly local-
diagnosable property under the PMC model.

Proposition 5 Let S,, be an n-dimensional star graph, n > 3. S, has the strongly local-

diagnosable property under the PMC model.
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We now consider a system which is not vertex-symmetric. Let G(V, E) be a graph
and F' C E(G) be a set of edges. Removing the edges in F' from G, the degree of each
vertex in the resulting graph G'— F' is called the remaining degree of v, and is denoted by
dega—r(v). We consider a faulty hypercube @,, with a faulty set F' C E(Q,), n > 3. We
shall prove that @,, has the strongly local-diagnosable property even if it has up to (n—2)
faulty edges. The number n — 2 is optimal in the sense that a faulty hypercube @),, cannot
be guaranteed to have this strong property if there are n — 1 faulty edges. As shown in
Figure 3.8, we take a vertex v € V(Q,,) and a vertex = which is an adjacent neighbor of v.
Let F = {(y,z) € E(Q,) | vertex y is directly adjacent to z}—{(v,z)}, then |F| =n —1
and the remaining degree of v in ), — F' is n. Let F} = (Ng,—r(v) — {z}) |U{v} and
Fy, = Ng,_p(v), then |Fy| = |[Fy| = n and v € F1AF,. It is clear that there is no edge
between V' — (Fy|J Fz) and F1AF,. By Lemma 4, (Fy, F,) is an indistinguishable pair,
hence t;(v) # degg, —r(v) = n. Therefore, @), — F may not have this strong property, if
|F| >n—1.

faulty edges jo) jol

(@) (b)

Figure 3.8: An indistinguishable pair (F}, Fy), where |Fi| = |Fy| = n.

Theorem 12 Let @, be an n-dimensional hypercube with n > 3, and F' C E(Q,,) be a set
of edges, 0 < |F| < n — 2. Removing all the edges in F' from Q,, the local diagnosability

of each vertex is still equal to its remaining degree under the PMC model.

Proof.

We use Theorem 9 to prove this result, and we shall construct a Type I structure at
each vertex. We prove this by induction on n. Forn = 3, 0 < |F| < 1, if |F| = 0,

26



it is clear that @3 contains a Type I structure 7;(v;3) of order 3 at every vertex. If
|F'| = 1, a three-dimensional hypercube ()3 with one missing edge is shown in Figure 3.9.
It is a routine work to see that every vertex has a Type I structure 77 (v; k) of order k
at it, where k is the remaining degree of the vertex. As the inductive hypothesis, we
assume that the result is true for Q,—1, 0 < |F| < (n — 1) — 2, for some n > 4. Now
we consider @, 0 < |F| < n —2. If |F| = 0, refer to the proof of Theorem 10, @,
contains a Type I structure T;(v;n) of order n at every vertex. If 1 < |F| < n —2, we
choose an edge in F', the edge is in some dimension, decomposing (),, into two subcubes

0 and Q! , by this dimension, such that the edge is a crossing edge. Consider a
vertex v € V(Q,,). Let Fp = FNE(Q%_)), 0 < |Fy| < (n—3)and Fy = FNE(Q! _,),
0 < |F1] < (n —3). Without loss of generality, we may assume that the vertex v is in

o1 and deggo g (v) = k. By the inductive hypothesis, @), — F contains a Type
I structure T3 (v; k) at v. Consider the crossing edge (v,vM). If (v,0M) € F, Q, — F
contains a Type I structure T}(v; k) of order k at vertex v. If (v,v™")) ¢ F, the remaining
degree of v in Q,, — F'is k+1 and the vertex v™") has at least an adjacent neighbor in Q. _,
due to 0 < |Fy| < (n—1) — 2. Therefore, @, — F' contains a Type I structure T’ (v; k+ 1)
of order k£ + 1 at vertex v. By Theorem 9, removing all the edges in F' from @Q,,, the local

diagnosability of each vertex is still equal to its remaining degree. a

Figure 3.9: (93 with one missing edge. The number labeled on each vertex represents its
local diagnosability.

We have the following corollary.

Corollary 3 Let @, be an n-dimensional hypercube with n > 3, and F C E(Q,) be a
set of edges, 0 < |F| <n —2. Then, Q,, — F has the strongly local-diagnosable property
under the PMC model.
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We now consider a faulty star graph S,, with a faulty set F* C F(S,), n > 3. Similarly,
we shall prove that S, has the strongly local-diagnosable property even if it has up to
(n — 3) faulty edges and the number (n — 3) is also optimal.

Theorem 13 Let S,, be an n-dimensional star graph with n > 3, and F' C E(S,,) be a set
of edges, 0 < |F| < n — 3. Removing all the edges in F' from S, the local diagnosability

of each vertex is still equal to its remaining degree under the PMC model.

Proof.

We prove this result by constructing a Type I structure T} at each vertex. We prove
this by induction on n. For n = 3, |F| = 0, it is clear that S; contains a Type I structure
Ti(v;2) of order 2 at every vertex. As the inductive hypothesis, we assume that the
result is true for S,_1, 0 < |[F| < (n— 1) — 3, for some n > 4. Now we consider S,
0 <|F| <n-3.If |F| =0, refer to the proof of Theorem 11, S, contains a Type I
structure 71 (v;n — 1) of order n — 1 at every vertex. If 1 < |F| < n — 3, we choose an
edge e € F' in some dimension. The star graph can be decomposed into n subgraphs
Sr{Ll}, S,{f}, ..., and Sim. By the symmetric property of S,,, we may assume that e is a
crossing edge between St and Si2. Consider a vertex v € V(S,). Let F; = FN E(Sili}),
0 < |F| < (n—4) foral 1 <i < n. Without loss of generality, we may assume that
vertex v is in S and deggy_pm (v) = k. By the inductive hypothesis, S — Fy contains
a Type I structure T (v; k) at v. Consider the crossing edge (v, (v)"). If (v, (v)") € F,
S, — F contains a Type I structure 71(v; k) of order k at vertex v. If (v, (v)") ¢ F', the
remaining degree of v in S,, — F'is k + 1 and the vertex (v)" has at least one adjacent
neighbor in S} due to 0 < |Fyvyy| < (n—1) = 3. Therefore, S,, — F' contains a Type
I structure T7(v; k + 1) of order k 4+ 1 at vertex v. By Theorem 9, removing all the edges
in F' from S,,, the local diagnosability of each vertex is still equal to its remaining degree.
O

With Theorem 13, we have the following corollary.

Corollary 4 Let S, be an n-dimensional star graph with n > 3, and F' C E(S,,) be a set
of edges, 0 < |F| <n—3. Then, S,, — F has the strongly local-diagnosable property under
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the PMC model.

We now give an example to show that an n-regular graph G(V, E) has the strong local
diagnosability property, but it may not keep this strong property after removing n — 2
edges from G. For example, a 3-regular graph is shown in Figure 3.10(a). The degree of
each vertex is 3 and there exists a Type I structure 77 (v; 3) of order 3 at each vertex. By
Theorem 9, Definition 7 and Definition 8, this graph has the strong local diagnosability
property. Let F' = {(2,3)} be a set of one single edge, G — F is shown in Figure 3.10
(b). The vertex u does not have the strong local diagnosability property. The reason is
as follows. Let I} = {u, 1,4} and F, = {1,2,4} with |F| < 3, |F3| < 3. Since there is no
edge between V(G) — (Fy | F») and F1AFy, by Lemma 4, (Fy, F) is an indistinguishable
pair. Therefore, the local diagnosability of vertex u is at most 2 which is smaller than its

degree.

Figure 3.10: A 3-regular graph without the strong local diagnosability property after
removing one edge.

3.4 Conditional Fault Local Diagnosability

In previous section, we know that (), does not have the strongly local-diagnosable prop-
erty, if there are n — 1 faulty edges, all these faulty edges are incident with a single vertex
and this vertex is incident with only one fault-free edge. Therefore, we are led to the
following question: How many edges can be removed from @), such that @, keeps the

strongly local-diagnosable property under the condition that each vertex of the faulty
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hypercube @), is incident with at least two fault-free edges? Firstly, we give an exam-
ple to show that a faulty hypercube @, with 3(n — 2) faulty edges may not have the
strongly local-diagnosable property, even if each vertex of the faulty hypercube @, is
incident with at least two fault-free edges. As shown in Figure 3.11(a), we take a cy-
cle of length four in @,, n > 3. Let {v,a,b,c} be the four consecutive vertices on this
cycle, and F C F(Q,) be a set of edges, FF = Fy|J F>|J F3, where F} is the set of all
edges incident with a except (v,a) and (b,a), Fy is the set of all edges incident with b
except (a,b) and (c,b), and F3 is the set of all edges incident with ¢ except (v,c) and
(b,c), then |Fy| = |Fy| = |F3] = n — 2. The remaining degree of vertex v in @, — F'is
n, degg,-r(v) = n. As shown in Figure 3.11(b), let A; = (Ng,-r(v) — {c}) U{v} and
Ay = (Ng,—r(v) — {a}) U{b}, then |A;] = |As] = n and v € A;AAy. Tt is clear that
there is no edge between V(Q,) — (A1 U A2) and A;AA;. By Lemma 4, (A;, As) is an
indistinguishable pair, hence ¢;(v) # degg, -r(v) = n. So some vertex of @, — F' may not
have this strong property, if |F'| > 3(n — 2). Then, we shall show that @, — F has the
strongly local-diagnosable property, if each vertex of @),, — F' is incident with at least two
fault-free edges and |F| < 3(n—2) — 1. We need the following results to construct a Type

I structure or a Type II structure at a vertex of a faulty hypercube.

Ay Ay

Figure 3.11: An indistinguishable pair (A, Ay), where |A;| = |A3| = n.

Theorem 14 [52] Let G(V, E) be a bipartite graph with bipartition (X,Y). Then G has
a matching that saturates every vertex in X if and only if

IN(S)| > |S|, for all S C X.
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Theorem 15 [52] Let G(V, E) be a bipartite graph. The mazximum size of a matching in

G equals the minimum size of a vertex cover of GG.

Lemma 8 An n-dimensional hypercube @), has no cycle of length three and any two

vertices have at most two common neighbors.

For our discussion later, we need some definitions. Let (),, be an n-dimensional hyper-
cube and F' C F(Q,) be a set of edges. Removing the edges in F' from @, for a vertex v
in the resulting graph Q,, — F, we define BG(v) = (L1(v) |J L2(v), E) to be the bipartite
graph under v with bipartition (L;(v), Ls(v)), where Li(v) = {x € V(Q,) | vertex x is
adjacent to vertex v in @, — F'}, La(v) = {y € V(Q,) | there exists a vertex x € L;(v)
such that (z,y) € E(Q,) in Q, — F} — {v} and E(BG(v)) = {(z,y) € E(Q,) | vertex
x € Ly(v) and vertex y € Ly(v)}. Li(v) (L2(v), respectively) is called the level one (level

two, respectively) vertex under v (see Figure 3.12).

Figure 3.12: The bipartite graph BG(v).

Theorem 16 Let @, be an n-dimensional hypercube with n > 3, and F C E(Q,) be a
set of edges, 0 < |F| < 3(n —2) — 1. Assume that each vertex of Q, — F' is incident with
at least two fault-free edges. Removing all the edges in F' from Q,,, the local diagnosability

of each vertez is still equal to its remaining degree under the PMC model.

Proof.

According to Theorem 9, we can concentrate on the construction of Type I structure

or Type II structure at each vertex. Consider a vertex v in @, — F with degq, —r(v) = k.
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As shown in Figure 3.12, let BG(v) = (L1(v) U L2(v), E) be the bipartite graph under v.
Then, |Ly(v)| = k. Let M C E(BG(v)) be a maximum matching from L;(v) to Lo(v). In
the following proof, we consider three cases by the size of M: 1) |[M| =k, 2) |M|=k—1
and 3) M| <k —2.

Case 1: |[M| =k

Since |M| = k and |L;(v)| = k, there exists a Type I structure T} (v; k) of order k at

vertex v. By Theorem 9, the local diagnosability of vertex v is equal to k.
Case 2: [M|=Fk—-1

We shall show that there is a Type II structure of order k at vertex v. As shown in
Figure 3.13, let Ly(v) = {x1,za,..., 2} and let M Ls(v) C Lo(v) be the set of vertices
matched under M, MLs(v) = {y € La(v) | there exists a vertex « € L;(v) such that
(x,y) € M}. So |[MLy(v)| = k—1. Let MLy(v) = {y1,¥2, ..., yr—1} and assume vertex
x; is matched with vertex y; for each i, 1 < i < k — 1. Then there exists a vertex
xp € Li(v), x) is unmatched by M. Since each vertex of @), — F' is incident with at
least two fault-free edges, there exists a vertex y; € MLs(v), ¢ € {1,2,....,k — 1}, such
that (xy,v;) € E(BG(v)). Without loss of generality, let (zx,y1) € E(BG(v)). If the
remaining degree of y; is at least three, as shown in Figure 3.14, there exists a Type II
structure Th(v; k — 2,2) of order k at vertex v. By Theorem 9, the local diagnosability
of vertex v is equal to k and the result follows. If the remaining degree of y; is two,
the number of faulty edges incident with y; is n — 2. Next, we divide the case into two
subcases: 2.1), both x; and x; have remaining degree two and 2.2), one of x; and x; has

remaining degree at least three and the other has at least two.
Subcase 2.1: Both x; and x; have remaining degree two.

This is an impossible case. Since the number of faulty edges incident with z; and x;
is 2(n — 2), the total number of faulty edges is at least 3(n — 2) which is greater than

3(n —2) — 1, a contradiction.

Subcase 2.2: One of z; and x; has remaining degree at least three and the

other has at least two.
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Figure 3.13: Illustration for the case 2 of Theorem 16 and Theorem 18.

U

Tk—1 x2 x] T

o MLQ(U)
BG(v)

Figure 3.14: A Type II structure T(v; k — 2,2) of order k at vertex v.

Without loss of generality, assume x; has remaining degree at least three and x; has
remaining degree at least two. Since degq, —r(x)) > 3, there exist at least two vertices in
M Ls(v) that are the neighbors of vertex ;. Then, we can find a vertex y; € M Ly(v) and
v # 1,1 € {2,3,...,k—1}, such that (zy,y;) € E(BG(v)). Without loss of generality, let
(xk,y2) € E(BG(v)). If the remaining degree of y, is at least three, there exists a Type
I structure Ty (v; k — 2,2) of order k at vertex v. By Theorem 9, the local diagnosability
of vertex v is equal to k£ and the result follows. If the remaining degree of ys is two, the

number of faulty edges incident with ys is n — 2. We then consider two further cases:
Subcase 2.2.1: Vertex x; has remaining degree two.

This is an impossible case. Since the number of faulty edges incident with x; is n — 2,

the total number of faulty edges is at least 3(n — 2) which is greater than 3(n —2) — 1, a
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contradiction.
Subcase 2.2.2: Vertex r; has remaining degree at least three.

Since degg, —r(x1) > 3, there exist at least two vertices in M Ly(v) that are the
neighbors of vertex x;. By Lemma 8, any two vertices of (J,, have at most two common
neighbors. We can find a vertex y; € M Ly(v), y; # y1 and y; # s, @ € {3,4, ...,k — 1},
such that (z1,y;) € E(BG(v)). Without loss of generality, let (z1,y3) € E(BG(v)). If the
remaining degree of ys is at least three, there exists a Type II structure Ty(v; k — 2,2) of
order k at vertex v. By Theorem 9, the local diagnosability of vertex v is equal to k and
the result follows. If the remaining degree of y3 is two, then the number of faulty edges
incident with y3 is n — 2, and the total number of faulty edges is at least 3(n — 2) which

is greater than 3(n — 2) — 1, a contradiction.
Case 3: |[M|<k—-2

We shall see that this is an impossible case. By Theorem 15, the minimum size
of a vertex cover of the bipartite graph BG(v) is no greater than k£ — 2. We take a
vertex cover with the minimum size, and let VCL,(v) C Ly(v), VCLy(v) C Ly(v) and
VCLy(v) |JVCLy(v) be the vertex cover as shown in Figure 3.15. VCL;(v) and VC Ly (v)
can cover all the edges of BG(v). Let NVCLi(v) = Li(v) — VCLy(v). We claim that
the total number of faulty edges is at least (n — 1)|[NVCLy(v)| — 2|VCLy(v)|, and this
number is greater than 3(n — 2) which is a contradiction. With this claim, the case is

impossible.

Now we prove the claim. First, for each vertex x € NV CL;(v), the edges connecting x
except (x,v) must be incident with the vertices in V. C'La(v). For each vertex y € VC'Ly(v),
by Lemma 8, at most 2 edges connecting y are incident with the vertices in NV CL;(v).
Then, the total number of faulty edges is at least (n — 1)|[NVCLy(v)| — 2|V CLy(v)|.
Since VCL1(v) | JVCLy(v) is a minimum vertex cover, |VCLy(v)| + |[VCLy(v)| < k — 2.
Since |Ly(v)] = k and each vertex of @, — F' is incident with at least two fault-free
edges, there exists a vertex in Ly(v) — VCLy(v) such that the vertex has at least one
neighbor in VCLsy(v). Thus, |VCLy(v)] > 1. Now, we show that the number (n —
DINVCLy(v)|—2|VC Ly(v)| is greater than 3(n—2). With |VC Ly (v)|+|VCLy(v)| < k—2
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and |VC'Ly(v)| > 1, we have the following

(n = DINVCLy(v)] = 2|VCLy(v)]] = [3(n — 2)]

(n = 1)(k = [VCLi(v)]) = 2|VCLy(v)[] — [3(n — 2)]
(n = 1)(JVCLs(v)| +2) = 2[VCLy(v)]] — [3(n — 2)]
= ([VCLy(v)| = 1)(n—=3)+1

> 0, for all n > 3.

Thus, our claim holds.

[
= |
> |

In summary, aside from those impossible cases, we showed that @),, — F' contains either
a Type I structure T} (v; k) or a Type II structure T5(v; k — 2, 2) of order k at vertex v. By
Theorem 9, removing all the edges in F' from @),,, the local diagnosability of each vertex

is still equal to its remaining degree. O

VCLl( ) A\ NVCLl(U)

Figure 3.15: Illustration for the case 3 of Theorem 16 and Theorem 18.

By Theorem 16, we have the following corollary.

Corollary 5 Let Q,, be an n-dimensional hypercube with n > 3, and F C E(Q,) be a
set of edges, 0 < |F| < 3(n—2)—1. Q, — F has the strong local diagnosability property
under the PMC model, provided that each vertex of Q, — F' is incident with at least two
fault-free edges.
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Based on the same requirement, we shall show that S, keeps the strongly local-

diagnosable property no matter how many edges are faulty.

Theorem 17 Let S,, be an n-dimensional star graph with n > 3, and F C E(S,) be a
set of edges. Assume that each vertex of S, — F is incident with at least two fault-free
edges. Removing all the edges in F' from S, the local diagnosability of each vertex is still

equal to its remaining degree under the PMC model.

Proof.

According to Theorem 9, we can concentrate on the construction of the Type I struc-
ture 77 at each vertex. Consider a vertex v in S, — F with degs, _r(v) = k. Let
Ns, _r(v) = {21, 29, ..., 2} be the neighborhood of v. Let Lo(v) = {y € V(S,) | there
exists a vertex x € Ng,_p(v) such that (z,y) € E(S,)}—{v}. Since each vertex of S,, — F'
is incident with at least two fault-free edges and S,, has no cycle of length less than six,
the maximum size of a matching from Ng, _r(v) to Ly(v) is equal to k. As a result, there
must exist a Type I structure T} (v; k) of order k at vertex v. By Theorem 9, removing
all the edges in F' from §S,,, the local diagnosability of each vertex is still equal to its

remaining degree. a

By Theorem 17, the following corollary holds.

Corollary 6 Let S, be an n-dimensional star graph with n > 3, and F C E(S,) be a
set of edges. S, keeps the strongly local- diagnosable property under the PMC model no
matter how many edges are faulty, provided that each vertex of S,, — F' is incident with at

least two fault-free edges.

In the end of this section, we consider another condition: each vertex of a faulty
hypercube @), is incident with at least three fault-free edges. Based on this condition, we
prove that @, keeps the strong local diagnosability property no matter how many edges

are faulty.
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Theorem 18 Let @, be an n-dimensional hypercube with n > 3, and F C E(Q,) be a
set of edges. Assume that each vertexr of Q, — F is incident with at least three fault-free
edges. Removing all the edges in F' from Q,,, the local diagnosability of each vertex is still

equal to its remaining degree under the PMC model.

Proof.

According to Theorem 9, we can concentrate on the construction of Type I structure
or Type II structure at each vertex. Consider a vertex v in @, — F with degq, —r(v) = k.
Let BG(v) = (L1(v) |J La(v), E) be the bipartite graph under v. Then, |L;(v)| = k. Let
M C E(BG(v)) be a maximum matching from L;(v) to Ly(v). In the following proof, we
consider three cases by the size of M: 1) |M| =k, 2) |[M|=k—1and 3) | M| <k —2.

Case 1: |[M| =k

Since |M| = k and |Ly(v)| = k, there exists a Type I structure T’ (v; k) of order k at

vertex v. By Theorem 9, the local diagnosability of vertex v is equal to k.
Case 2: [M|=Fk—-1

We will show that there is a Type II structure of order k at vertex v. As shown in
Figure 3.13, let Li(v) = {x1, %9, ...,2x} and let M Ly(v) C Ly(v) be the set of vertices
matched under M, M Ls(v) = {y € Ls(v) | there exists a vertex x € Li(v) such that
(x,y) € M}. So [MLy(v)| = k — 1. Let MLy(v) = {v1,¥2, ..., Y—1} and assume vertex
x; is matched with vertex y; for each 7, 1 < ¢ < k — 1. Then there exists a vertex
x € Li(v), x) is unmatched by M. Since each vertex of @, — F' is incident with at
least three fault-free edges, there exists a vertex y; € M Ls(v), 1 € {1,2,....k — 1}, such
that (zy,y;) € E(BG(v)). Without loss of generality, let (xy,y1) € E(BG(v)). Since the
remaining degree of y; is at least three, as shown in Figure 3.14, there exists a Type II
structure Ty (v; k — 2,2) of order k at vertex v. By Theorem 9, the local diagnosability of

vertex v is equal to k and the result follows.

Case 3: |[M|<k-2
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We will see that this is an impossible case. By Theorem 15, the minimum size of a
vertex cover of the bipartite graph BG(v) is no greater than k£ — 2. However, we claim
that any k& — 2 vertices of BG(v) can not cover all the edges of BG(v). With this claim,

the case is impossible.

Now we prove this claim. Suppose not, we take a vertex cover with the minimum size,
and let VCL;(v) C Ly(v), VCLy(v) C La(v) and VCLy(v) | VC La(v) be the vertex cover
as shown in Figure 3.15. VCL;(v) and VCLy(v) can cover all the edges of BG(v). Since
|[VCLy(v)| 4+ |[VCLy(v)| < k — 2, we rewrite this inequality into the following equivalent
form: 2(k — |[VCLy(v)|) > 2(|[VCLy(v)| + 2). Let NVCLy(v) = Li(v) — VCL;y(v). Since
each vertex of (), — F' is incident with at least three fault-free edges, for each vertex
x € NVCL;y(v), aside from the edge (x,v), at least 2 edges connecting x must be incident
with the vertices in VC'Ls(v). So the total number of edges incident with the vertices in
VCLy(v) is at least 2| NV CL;(v)|. For each vertex y € VCLy(v), by Lemma 8, at most
2 edges connecting y are incident with the vertices in NV CL;(v). So the total number of
edges incident with the vertices in NV CLy(v) is at most 2|V CLy(v)|. Compare the lower
bound 2|NVCL;(v)| and the upper bound 2|V C Ly(v)|. We have the following inequality

2|NVCL:i(v)| = 2(k — [VCL1(v)])
> 2(|VCLy(v)| +2) > 2|VCLsy(v)|.

The lower bound 2| NV C L, (v)| is greater than the upper bound 2|V C'Ly(v)|. It means
that some edges are not covered by VCL;(v) or VCLs(v) in BG(v). Thus, our claim

follows.

In Case 1, @, — F' contains a Type I structure T} (v; k) of order k at vertex v. In Case
2, @, — F contains a Type II structure T5(v; k — 2,2) of order k at vertex v. We also
proved that Case 3 is impossible. By Theorem 9, removing all the edges in F' from @,

the local diagnosability of each vertex is still equal to its remaining degree. a

By Theorem 18, the following corollary holds.

Corollary 7 Let Q, be an n-dimensional hypercube with n > 3, and F C E(Q,) be a
set of edges. @, keeps the strong local diagnosability property under the PMC model no
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matter how many edges are faulty, provided that each vertex of Q, — F' is incident with

at least three fault-free edges.

3.5 A Diagnosis Algorithm

We now introduce a diagnosis algorithm to determine if a vertex is faulty or not for a
given syndrome under the PMC model. Given a Type I structure 77(v;n) of order n at
vertex v, there are communication links between v and z;, x; and y;, for all 1 < i < n, x;
and y; can be the tester of the PMC model. After the test, each tester has a testing result
denoted by 0 (1, respectively) representing the approval (disapproval, respectively). We
define r; = (r!,r?), where r! is the result of z; testing v and 72 is the result of y; testing
x;. Then, r; can be in one of the four different states which are r(0) = (0,0), r(1) = (0, 1),
r(2) = (1,0) and r(3) = (1,1) (as illustrated in Figure 3.16). Let R(k) be the collection

of all r(k), for all 0 < k < 3. Obviously, >_3_, |R(k)| = n.

R(0) R(1) R(2) R(3)
Figure 3.16: four different output states.

Suppose that there is a Type I structure T3 (v;n) of order n at vertex v, where v has
degree n. By Theorem 9, the local diagnosability of v is limited to n. Therefore, we may
not be able to identify all the faulty vertices, if the number of faulty vertices in T} (v;n)
is n + 1 or more. Hence, we assume that the number of faulty vertices is at most n.
Under this assumption, we propose the following algorithm to determine whether vertex

v is faulty or not.

Theorem 19 Let v be a vertex with degree n in G(V, E). Suppose that there is a Type 1
structure Ty (v;n) of order n at vertex v and the number of faulty vertices is at most n.

The following two conditions are satisfied:
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1. the vertex v is fault-free if |R(0)| > |R(2)|, and

2. the vertex v is faulty if |R(0)| < |R(2)].

Proof.

Let I; = (x;,y;) be an ordered double, 1 < i < n, with respect to Ti(v;n). First, we
prove the condition 1 by contradiction. Assume that v is faulty, then the counting of all

the other faulty vertices is as follows:

For those [; with result 7(0), there are at least two faulty vertices which are

Lis Yi-
For those {; with result r(1), there is at least one faulty vertex which is z;.
For those [; with result r(2), the number of faulty vertices is uncertain.

For those [; with result r(3), there is at least one faulty vertex which is either

ZT; Or Y;.

Thus, the number of faulty vertices is at least 1+2|R(0)|+|R(1)|+|R(3)| = Zi:o |R(k)|+
(14+|R(0)|—|R(2)]). By the assumption that |R(0)| > |R(2)]|, the number of faulty vertices
is strictly more than n. This contradicts to the assumption that the number of faulty

vertices is at most n. Therefore, the vertex v is fault-free.

Next, we prove the condition 2 by contradiction again. Assume that v is fault-free,

then the counting of all the other faulty vertices is as follows:
For those [; with result r(0), the number of faulty vertices is uncertain.
For those [; with result (1), there is at least one faulty vertex which is either

ZT; Or Y;.
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For those [; with result r(2), there are at least two faulty vertices which are

x; and y;.
For those I; with result r(3), there is at least one faulty vertex which is ;.

Thus, the number of faulty vertices is at least |R(1)| + 2|R(2)| + |R(3)| = Si_, |R(k)| +
(|IR(2)| — |R(0)|). By the assumption that |R(0)| < |R(2)|, the number of faulty vertices
is larger than n. This contradicts to the assumption that the number of faulty vertices is

at most n. Therefore, the vertex v is faulty.
This completes the proof. O

We now measure the time complexity of our algorithm to diagnose all the faulty
vertices in a system. For many well-know general systems with N vertices, the degree
of each vertex is in the order of log N. For example, the n-dimensional Hypercube @,
has N = 2" vertices and the degree of each vertex is n, n = log N; the n-dimensional
star graph S,, has N = n! vertices and the degree of each vertex is n — 1 = O(n) =
O(log N/logn) = O(log N/loglog N). We assume that a testing result of each tester is
directly stored in a syndrome table. Given a Type I structure 77 (v;n) of order n at vertex
v, assume the time for looking up the testing result of a tester in the syndrome table is
constant c¢. Then, the time needed for determining the faulty or fault-free status of a
vertexv is 2clog N = O(log N). Consequently, the total time to diagnose all the faulty
vertices is bounded by O(N log N).
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Chapter 4

Conditionally Diagnosable Systems

In this section, we study the conditional diagnosis problem under the comparison model.
In classical measures of diagnosability for multiprocessor systems, if all the neighbors
of some processor v are faulty simultaneously, it is not possible to determine whether
processor v is fault-free or faulty. For example, consider an n-dimensional hypercube
@, and two faulty sets Fy, Fy C V(Q,) as shown in Figure 4.1. As we observe the all
neighbors of vertex v are included in F; and Fy. Let F; = N(v)|J{v} and F; = N(v),
then |Fi| = n+1 and |Fy| = n. By Theorem 3, I} and F are indistinguishable under the
comparison model. So the diagnosability of a system is limited by its minimum vertex

degree.

I

Figure 4.1: An indistinguishable pair (F}, F3).

In an n-dimensional hypercube @),,, @, has (2n) vertex subsets of size n, among which
there are only 2" vertex subsets which contains all the neighbors of some vertex. Since

the ratio 2"/ (2:) is very small for large n, the probability of a faulty set containing all the
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neighbors of any vertex is very low. For this reason, Lai et al. introduced a new restricted
diagnosability of multiprocessor systems called conditional diagnosability in [40]. They
consider the situation that any faulty set cannot contain all the neighbors of any vertex
in a system. In the following, we need some terms to define the conditional diagnosability
formally. A faulty set FF C V is called a conditional faulty set if N(v) € F for every
vertex v € V. A system G(V, E) is said to be conditionally t-diagnosable if Fy and Fy
are distinguishable, for each pair of conditional faulty sets Fi, F5 C V, and F} # F5,
with |Fy| < ¢ and |Fy| < ¢t. The maximum value of ¢ such that G is conditionally t-
diagnosable is called the conditional diagnosability of G, written as t.(G). It is trivial
that t.(G) > t(G).

Lemma 9 Let G be a multiprocessor system. Then, t.(G) > t(G).

Let G(V,E) be a graph and Fy,Fy C V, Fy # F,. We say (Fy, Fy) is a distin-
guishable conditional-pair (an indistinguishable conditional-pair, respectively) if F; and
F, are conditional faulty sets and are distinguishable (indistinguishable, respectively).
Before discussing the conditional diagnosability, we have some observations as follows:
Let Fy,F, C V be an indistinguishable conditional-pair. Let X = V — (F;J Fy).
Since F; and F3 are an indistinguishable conditional-pair, none of the three conditions
of Theorem 3 holds and every vertex has at least one fault-free neighbor. Let vertex
u € X. If Nu)(X # 0, then N(u)((F1AF,) = 0 (see Figure 4.2 (a)); otherwise
IN(w)((Fy — F2)| = 1 and |N(u)((F2 — F1)| = 1(see Figure 4.2 (b)). Let vertex
v e FRAF,. Iif N(w)(\X =0, then |[N(v)((F1 — F2)| > 1 and |N(v) (F2 — F1)| > 1(see
Figure 4.2 (c)). We state this fact in the following lemma.

Lemma 10 Let G(V, E) be a graph and Fy, Fy C V be an indistinguishable conditional-
pair under the comparison model. Let X =V — (Fy|J F»). The following three conditions
holds:

1. [N(u) (F1AF)| =0 foru e X and N(u) (X # 0,

2. IN(w)(F1 — F2)| =1 and |[N(u) (Fy — F1)| = 1 foru € X and N(u) (X = 0,

and
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3. INw)(Fi—F)| > 1 and |[N(v) (Fo—F1)| > 1 forv € F{AF; and N(v) (X = 0.

u
Fy F Fy F Fy F

Pt NN 7S N N BN N
/ / \ \ / / \ \ /U \
\ \ ) ) \ \ ! h \ \ ! h

/ / / / /
\ \ \ \ \ \

\\\_—\»/\/_—/// \\\_—\»/\/_—’// \\\_—\»/\/_—’//
UO—@

Figure 4.2: An indistinguishable conditional-pair (F}, F3).

In the following sections, we will first evaluate the conditional diagnosability for hyper-

cube networks under the comparison model. Then, we extend the result to BC network.

4.1 Conditional Diagnosability of Hypercube under
the Comparison Model

In this section, we study the conditional diagnosability of hypercube under the comparison
model. First, we give an example to show that the conditional diagnosability of the
hypercube @, is no greater than 3(n — 2) + 2, n > 5. As shown in Figure 4.3, we
take a cycle of length four in @Q,. Let {vy,vs,v3,v4} be the four consecutive vertices
on this cycle, and let Fy = N({vy,vs3,v4}) J{v1} and F» = N({vy,v3,v4}) J{vs}, then
|Fi| = |Fy] = 3(n—2)+2. It is straightforward to check that F} and F; are two conditional
faulty sets, and F; and F; are indistinguishable by Theorem 3. Note that the hypercube
@, has no cycle of length three and any two vertices have at most two common neighbors.
As we can see, |F} — Fy| = |Fy, — Fi| = 1 and |Fy () F2| = 3(n — 2) + 1. Therefore, Q,, is
not conditionally (3(n — 2) + 2)-diagnosable and t.(Q,) < 3(n —2) + 1, n > 3. Then, we
shall show that @, is conditionally ¢t-diagnosable, where ¢t = 3(n — 2) 4 1.

Lemma 11 t.(Q,) < 3(n — 2) + 1 under the comparison model, for n > 3.
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Figure 4.3: An indistinguishable conditional-pair (F, Fy), where |Fy| = |Fy| = 3(n—2)+-2.

Let F be a set of vertices F' C V(@,,) and C be a connected component of Q),, — F. We
need some results on the cardinalities of /' and V' (C) under some restricted conditions.
The results are listed in Lemma 12 and 16. In Lemma 12, Lai et al. proved that deleting
at most 2(n — 1) — 1 vertices from @),,, the incomplete hypercube @,, has one connected
component containing at least 2" — |F| — 1 vertices. We expand this result further.
In Lemma 16, we show that deleting at most 3n — 6 vertices from @),,, the incomplete

hypercube @,, has one connected component containing at least 2" — |F'| — 2 vertices.

Lemma 12 [/0] Let Q,, be an n-dimensional hypercube, n > 3, and let F' be a set of
vertices FF C V(Q,) withn < |F| < 2(n—1) — 1. Suppose that Q, — F is disconnected.
Then Q,, — F' has exactly two components, one is trivial and the other is nontrivial. The

nontrivial component of Q, — F contains 2™ — |F| — 1 vertices.

In order to prove Lemma 16, we need some preliminary results as follows.

Lemma 13 [46] Let Q,, be an n-dimensional hypercube. The connectivity of Q,, is k(Qy) =

n.

Lemma 14 For any three vertices x,y, z in Qq, |N({x,y,2})| > 7.

Proof.
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A four-dimensional hypercube Q4 can be divided into two Q3’s, denoted by Q% and Q.
Any two vertices in the @), have at most two common neighbors. If these three vertices x,
y, z all fall in Q%, then x, y, z have at least four neighboring vertices, all in Q%. Besides,
X, v, z have three more neighboring vertices in Q%. Therefore, |N({z,y,z})| > 4+3 =7.
Suppose now x, y fall in QZ, z falls in Q. Vertex x and y have at least four neighboring
vertices, all in Q%. Vertex z will bring in at least three neighboring vertices in Q.
Therefore, |[N({z,y,2})| >4+3="17. O

We are going to prove Lemma 16 by induction on n, and we need a base case to start
with. As we observed, for n = 4, we found a counter example that the result of Lemma
16 does not hold. So we have to start with n = 5.

Lemma 15 Let Q5 be a five-dimensional hypercube, and let F' be a set of vertices F' C
V(Qs) with |[F| <3n—6=29. Then Qs — F' has a connected component containing at
least 2™ — |F| — 2 = 30 — |F'| vertices.

Proof.

A five-dimensional hypercube Qs can be divided into two Q4’s, denoted by Q¥ and

B oLet Fp = FOV(QE),0 < |Fy| <9 and Frp = FOV(QE),0 < |Fg| < 9. Then

|F| = |FL| + |Fg|. Without loss of generality, we may assume that |Fp| > |Fg|. In the

following proof, we consider three cases by the size of Fr: 1) 0 < |Fg| < 2, 2) |Fgr| = 3,
and 3) |Fg| = 4.

Case 1: 0 < |Fg| <2.

Since k(Q4) = 4, QF — Fg is connected and |V (QF — Fr)| = 2% — |Fg|. Let FéL) C
V(QF) be the set of vertices which has neighboring vertices in Fp. For each vertex
v E Qf—FL—F,(%L), there is exactly one vertex v in Q¥ — Fg, such that (v,v®) € E(Qs).
Besides, |V (QF — F, — F{)| > 2'—|F| —|Fg|. Hence Qs — F has a connected component
that contains at least [2* — |Fg|] + [2* — |FL| — | Fr|] = 32 — |F| — | Fr| > 30 — | F| vertices.

Case 2: |Fg| = 3.
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Since r(Q4) = 4, Q¥ —Fg is connected and |V (QF—Fr)| = 2*—|Fg|. Let Fgr = {x,y, 2}
and F,(%L) = {20 4B AN V(QE), where (z,2"), (y,yD), (2, 2)) € E(Qs). For
each vertex v € QF — F — FI(%L), there is exactly one vertex v® in Q¥ — Fg, such that
(v,v%)) € E(Qs). If at least one of the three vertices x5, 3y(") 2(E) belongs to Fy, then
|V(Q£—FL—F,(%L))| > 21— |F|—2. Hence Q5— F has a connected component that contains
at least [21 — | Fg|] + [2% — |F1| — 2] = 30 — |F| vertices; otherwise, |V (Q} — F, — F}(%L))| >
24 — |Fp| — 3. Since |F| < 6, by Lemma 14, 20y »(L) have at least one neighboring
vertex in QY — F — FI(%L). Hence Q5 — F has a connected component that contains at
least [2* — |Fr|] + [2* — |FL| — 3] + 1 = 30 — | F| vertices.

Case 3: |Fg| =4.

Since |Fgr| = 4 and |F| < 5, by Lemma 12, Q¥ — F, (QF — Fpg, respectively) has a
connected component Cf, (Cr, respectively) that contains at least 2*—|Fy|—1 (2*—|Fg|—1,
respectively) vertices. Since |V (Cp)| > |Fr|+ 1, there exists a vertex u € C', and a vertex
v € Cg such that (u,v) € F(Q5). Hence Q5 — F has a connected component that contains
at least [24 — |Fp| — 1] + [2* — |Fr| — 1] = 30 — | F| vertices.

Consequently, the lemma holds. O
We now prove Lemma 16.

Lemma 16 Let ), be an n-dimensional hypercube, n > 5, and let F' be a set of vertices
F Cc V(Q,) with |[F| <3n—6. Then Q, — F has a connected component containing at

least 2™ — |F'| — 2 vertices.

Proof.

We prove the lemma by induction on n. By Lemma 15, the lemma holds for n = 5. As
the inductive hypothesis, we assume that the result is true for Q,,_1, for |F'| < 3(n—1)—6,
and for some n > 6. Now we consider @Q,,, |F| < 3n —6. An n-dimensional hypercube @,
can be divided into two Q,,_;’s, denoted by QX | and QE |. Let F;, = FO\V(Q:_,),0<
|Fr| < 3n—6and Fr = FOV(QE ),0 < |Fgr| < 3n — 6. Then |F| = |Fr| + |Fr|.
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Without loss of generality, we may assume that |Fp| > |Fg|. In the following proof, we
consider two cases by the size of Fg: 1) 0 < |Fg| <2 and 2) |Fg| > 3.

Case 1: 0 < |Fg| <2.

Since 0 < |Fgr| < 2, QR | — Fg is connected and |V (QE | — Fg)| = 2"~1 — |Fg|. Let
F I(f) C V(QE_,) be the set of vertices which has neighboring vertices in Fr. For each
vertex v € QL | — Fp — F}(%L), there is exactly one vertex v in QF | — Fg, such that
(v,0®) € E(Q,). Besides, |V(QL_, — Fy, — F)| > 2"' — |F,| — |Fg|. Hence Q, — F
has a connected component that contains at least [2"~1 — |Fg|] + [2"7! — |FL| — | FRr|] =
2" — |F| — |Fg| > 2™ — |F| — 2 vertices.

Case 2: |Fg| > 3.

Since |Fg| > 3, 3 < |F] < 3(n—1)—6 and 3 < |Fg| < 3(n — 1) — 6. By the
inductive hypothesis, QL | — F (QF | — Fg, respectively) has a connected component
Cr (Cg, respectively) that contains at least 2771 — |F| —2 (2"~1 — | Fg| — 2, respectively)
vertices. Next, we divide the case into three subcases: 2.1) |[V(Cp)| = 2"t — |F| — 2 and

R | — Fgis disconnected, 2.2) |[V(Cp)| = 2! — |F| — 2 and QF | — Fg is connected,

and 2.3) |V(Cr)| > 2"t — |Fi| — 1 and |V (Cg)| > 277! — |Fg| — 1.
Case 2.1: |V(Cp)| =2""1 — |FL| — 2 and QF | — Fy is disconnected.

This is an impossible case. Since k(Q,-1) = n — 1, |Fg| > n — 1. By Lemma 12,
|F| > 2((n—1) —1). Then the total number of faulty vertices is at least (n— 1)+ 2((n —

1) — 1) = 3n — 5 which is greater than 3n — 6, a contradiction.
Case 2.2: |V(Cp)| =2""' —|F.| — 2 and QF ;| — Fg is connected.

Since Q2 | — Fg is connected, |V (QF | — Fg)| = 2"~ —|Fg|. Since |V (C)| > |Fr|+1,
there exists a vertex u € (', and a vertex v € C such that (u,v) € E(Q,). Hence Q,, — F
has a connected component that contains at least [2"7! — |Fg|] + [2"7! — |Fy| — 2] =

2" — |F| — 2 vertices.

Case 2.3: |V(Cp)| > 2"' — |Fy| — 1 and |V(CRg)| > 2"' — |Fg| — 1.
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Since |V(CL)| > |Fg| + 1, there exists a vertex u € Cp and a vertex v € Cg such

that (u,v) € E(Q,). Hence @, — F has a connected component that contains at least
271 — |Fp| — 1] + [2"7' — |Fg| — 1] = 2™ — | F| — 2 vertices.
This completes the proof of the lemma. a

By Lemma 16, we have the following corollary.

Corollary 8 Let ), be an n-dimensional hypercube, n > 5, and let F' be a set of vertices
F CcV(Q,) with |F| <3n —6. Then Q, — F satisfies one of the following conditions:

1. Q, — F is connected.

2. Qn— F has two components, one of which is Ky, and the other one has 2" — |F|—1

vertices.

3. Qn— F has two components, one of which is Ks, and the other one has 2" — |F| —2

vertices.

4. Qn—F has three components, two of which are K1, and the third one has 2" —|F|—2

vertices

Let G(V, E) be a graph. A subset M of E(G) is called a matching in G if its elements
are links and no two are adjacent in GG; the two ends of an edge in M are said to be
matched under M. A vertex cover of G is a subset K of V(G) such that every edge of G
has at least one end in K. A subset [ of V(G) is called an independent set of G if no two
vertices of I are adjacent in G. As the description for Theorem 15, the maximum size of
a matching in a bipartite graph is equal to the minimum size of a vertex cover. To prove

the conditional diagnosability of the hypercube, we need the following classical result.

Proposition 6 [52] Let G(V, E) be a bipartite graph. The set I C V(G) is a maximum

independent set of G if and only if V — I is a minimum vertex cover of G.

The hypercube can be described as follows: Let @), denote an n-dimensional hyper-

cube. () is a complete graph with two vertices labeled with 0 and 1, respectively. For
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n > 2, each @, consists of two @Q,,_;’s, denoted by Q°_, and Q! _,, with a perfect match-
ing M between them. That is, M is a set of edges connecting the vertices of Q% ; and
the vertices of Q! ;| in a one-to-one manner. It is easy to see that there are 2"~! edges
between Q°_, and Q! ;. The hypercube is a bipartite graph with 2" vertices. Hence, we

have the following Lemma.

Lemma 17 Let ), be an n-dimensional hypercube. In hypercube QQ,, the mazximum size
of a matching, the minimum size of a vertex cover and the maximum size of an independent

set are all 2" 1.

We are now ready to show that the conditional diagnosability of @, is 3(n — 2) + 1
for n > 5. Let Fi, Fy, C V(Q,) be two conditional faulty sets with F; < 3(n — 2) + 1
and Fy < 3(n —2) + 1, n > 5. We shall show our result by proving that (£}, F») is a

distinguishable conditional-pair under the comparison diagnosis model.

Lemma 18 Let Q,, be an n-dimensional hypercube with n > 5. For any two conditional
faulty sets Fy, F5 C V(Q,), and Fy # Fy, with F; <3(n—2)+1 and F; < 3(n—2) + 1.

Then (F1, Fy) is a distinguishable conditional-pair under the comparison diagnosis model.

Proof.

We use Theorem 4 to prove this result. Let S = Fj (] Fy, then 0 < [S| < 3(n — 2).
We will show that, deleting S from (), the subgraph Cg ap, s containing F;AF, has
"many” vertices having degree three or more. More precisely, we are going to prove that,
in the subgraph Cp ap, s the number of vertices having degree three or more is at least
2[3(n—2)+1— S]] +1=06n—2[S| —9. In the following proof, we consider three cases
by the size of S: 1) 0 < [S|<n—1,2)|S|=n,and 3) n+1 < |S| < 3(n—2).

Case 1: 0<|S|<n—1.

Since the connectivity of @, is n, @, — S is connected, the subgraph Cg ap, g is the
only component in (),, — S. Since the hypercube @),, has no cycle of length three and any

two vertices have at most two common neighbors, it is straightforward, though tedious, to
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check that the number of vertices which has degree two or one is at most two in Cpap,,s-
Hence, the number of vertices having degree three or more is at least 2" — |S| — 2 which
is greater than 6n — 2|S| — 9, for n > 5. By Theorem 4, ([, F) is a distinguishable

conditional-pair under the comparison diagnosis model.
Case 2: |S|=n.

If @, — S is disconnected, by Lemma 12, (),, — S has one trivial component {v} such
that N(v) C Fy and N(v) C Fy. Since Fy and F, are two conditional faulty sets, this
is an impossible case. So @), — S is connected, and the subgraph Cg ap, s is the only
component in @, — S. Let U = Q, — (F1|J F2). If there exist two vertices u and v in
V(U) such that v is adjacent to v, then the condition 1 of Theorem 3 holds and therefore
(Fy, F) is a distinguishable conditional-pair; otherwise V(U) is an independent set. Since
|S| = n and |F1AF| < 2(2n —5), [V(U)| > 2" —=2(2n—5) —n = 2" — 5n + 10. By
Lemma 17, the maximum size of a independent set is 27! in ),,. Comparing the lower
bound 2" — 5n + 10 and the upper bound 2"~ !, we have 2" —5n + 10 > 2" forn > 5, a

contradiction.
Case 3: n+1<|S| <3(n—2).

By Corollary 8, there are four cases in @), — S we need to consider. For case 1 of
Corollary 8, @), — S is connected, the proof is exactly the same as that of Case 2, and
hence the detail is omitted. For case 2 and 4 of Corollary 8, ), — S has at least one
trivial component {v} such that N(v) C F; and N(v) C F,. Since F; and F, are two
conditional faulty sets, the two cases are disregarded. Therefore, we only need to consider
that @, — S has two components, one of which is K5 and the other one has 2" — |S| — 2
vertices. Let (z,y) be the component with only one edge. Since N({z,y}) C S and F}
and F, do not contain all the neighbors of any vertex, vertex x and y cannot belong to
FiAF,. So the subgraph Cp ap, s is the other large connected component of @), — S.
Let U = Q, — (F1UF2) —{z,y}. If no two vertices of V(U) are adjacent, then V(U)
is an independent set and |[V(U)| > 2" — 6n + |S| + 8. By Lemma 17, the maximum
size of a matching is 2"! — 1 in Q,, — {z,y}. By Theorem 15 and Proposition 6, the
maximum size of a independent set is 2" 7' —1 in Q,, — {z,y}. Comparing the lower bound
2" — 6n + |S| + 8 and the upper bound 2"~! — 1, we have 2" — 6n + |S| +8 > 2"~ —1
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forn > 5, n+1<|S] <3(n—2), a contradiction. Hence, there exist two vertices u and
v in V(U) such that u is adjacent to v, then condition 1 of Theorem 3 is satisfied and

therefore (F1, Fy) is a distinguishable conditional-pair.

In Case 1, we prove that at least one of the conditions of Theorem 3 is satisfied in
subgraph Cpap,s. In Case 2 and 3, the condition 1 of Theorem 3 holds in subgraph
Crar.s. Therefore, (Fy, Fy) is a distinguishable conditional-pair under the comparison

diagnosis model. O

By Lemma 11, t.(Q,) < 3(n — 2) + 1, and by Lemma 18, @, is conditionally (3(n —
2) + 1)—diagnosable for n > 5. Hence, t.(Q,) = 3(n —2) + 1 for n > 5. For )3 and
(4, we observe that ()3 is not conditionally four-diagnosable and @), is not conditionally
six-diagnosable, as shown in Figure 4.4. So, t.(Q3) < 3 and ¢.(Q4) < 5. Hence, the
conditional diagnosabilities of @3 and @4 are both strictly less than 3(n — 2) + 1.

0100 0010 0001 0111 1101 1011

(a) (b)

Figure 4.4: Two indistinguishable conditional-pairs for ()3 and Q.

For the three-dimensional hypercube ()3, (J3 is three-diagnosable and it is not condi-
tionally 4-diagnosable. It follows from Lemma 9 that t.(Q3) = 3. For the four-dimensional
hypercube ()4, we can use the similar technique used in proving Lemma 18 to prove that
for any two conditional faulty sets Fy, F» C V(Q4), and F; # F,, with |F}| < 5 and
|F5| <5, then (Fy, Fy) is a distinguishable conditional-pair under the comparison diagno-

sis model. Hence, the conditional diagnosability of ()4 is 5. In summary, the conditional
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diagnosability of (), is stated as follows:

Theorem 20 Under the comparison model, the conditional diagnosability of Q,, is 3(n —
2)+ 1 forn >5, t.(Qs3) =3 and t.(Q4) = 5.

4.2 Conditional Diagnosability of BC Networks un-
der the Comparison Model

An n-dimensional bijective connection network (BC network), denoted by X,,, is an n-
regular graph with 2" vertices and n2"~! edges. The set of all the n-dimensional BC
networks is called the family of the n-dimensional BC networks, denoted by L,,. X,, and

L,, may be recursively defined as below [24].

Definition 9 The one-dimensional BC' graph X, is a complete graph with two vertices.
The family of the one-dimensional BC graph is defined as L1 = {X1}. Let G be a graph.
G is an n-dimensional BC graph, denoted by X, if there exist Vo, Vi C V(G) such that

the following two conditions hold:

1L V(G)=VoUVi, Vo #0, Vi #0, Vo(NV1 = 0; and

2. There exists an edge set M C E(G) such that M is a perfect matching between Vi
and Vi, G(Vp) € L,y and G(Vy) € L,,_4.

Now, we use again Figure 4.3 to show that the conditional diagnosability of BC graph
X, is no greater than 3(n — 2) +2, n > 5. As shown in Figure 4.3, we take a cycle of
length four in X, and it is easy to check the two conditional faulty sets F; and F, are
indistinguishable, where |Fj| = |F;| = 3(n — 2) + 2. Therefore, X,, is not conditionally
(3(n — 2) + 2)-diagnosable and t.(X,,) < 3(n —2) + 1, n > 3. Next, we shall show that
X, is conditionally t-diagnosable, where t = 3(n — 2) + 1.

Lemma 19 t.(X,,) < 3(n —2) + 1 under the comparison model, for n > 3.
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Let F be a set of vertices F' C V(X,,) and C' be a connected component of X, —F. We
need some results on the cardinalities of F' and V(C') under some restricted conditions.
The results are listed in Lemma 20 and 21. In Lemma 20, Zhu proved that deleting at
most 2(n — 1) — 1 vertices from X,,, the incomplete BC graph X,, has one connected
component containing at least 2" — |F| — 1 vertices. We expand this result further. In
Lemma 20, we show that deleting at most 3n — 6 vertices from X,,, the incomplete BC

graph X, has one connected component containing at least 2" — |F'| — 2 vertices.

Lemma 20 [57/ VX, € L,(n > 3), let F' be a set of vertices F' C V(X,,) with n <
|F| < 2(n —1) — 1. Suppose that X, — F is disconnected. Then X, — F has exactly
two components, one is trivial and the other is nontrivial. The nontrivial component of

X, — F contains 2" — |F| — 1 vertices.

The BC graph can be described as follows: Let X,, denote an n-dimensional BC graph.
X is a complete graph with two vertices labeled with 0 and 1, respectively. For n > 2,
each X, consists of two X,,_;’s, denoted by X% | and X' |, with a perfect matching M
between them. That is, M is a set of edges connectlng the vertices of X | and the vertices
of X' | in a one-to-one manner. It is easy to see that there are 2”1 edges between X1 |

and X |. By using a simple induction, we can prove the following lemma.

Lemma 21 VX, € L,(n >5), let F be a set of vertices ' C V(X,,) with |F| < 3n — 6.

Then X, — F has a connected component containing at least 2™ — |F'| — 2 vertices.

Proof.

We prove the lemma by induction on n. For n = 5, it is straightforward to verify that
the lemma holds. As the inductive hypothesis, we assume that the result is true for X,,_1,
for |F| < 3(n —1) — 6, and for some n > 6. Now we consider X, |F| < 3n—6. An
n-dimensional BC graph X, can be divided into two X,,_1’s, denoted by XX | and X
Let i, = FO\ V(XL ), 0<|Fp| <3n—6and Fp = FNV(XE )O<\FR|<3n—6
Then |F| = |Fy| + |Fg|. Without loss of generality, we may assume that |Fy| > |Fg|.
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In the following proof, we consider two cases by the size of Fg: 1) 0 < |Fg| < 2 and 2)
|Fr| = 3.

Case 1: 0 < |Fg| <2.

Since 0 < |Fgr| <2, XE | — Fg is connected and |V(X2 | — Fg)| =271 — |Fg|. Let
F 1(%L) C V(XL ) be the set of vertices which has neighboring vertices in Fr. For each
vertex v € XI | — Fp — FI(%L), there is exactly one vertex v in X® | — Fy, such that
(v,0®) € B(X,). Besides, |V(XE | — F, — F{)| > 2n=! — |F,| — |Fg|. Hence X,, — F
has a connected component that contains at least [2"~1 — |Fg|] + [2"7! — |FL| — | FRr|] =
2" — |F| — |Fg| > 2™ — |F| — 2 vertices.

Case 2: |Fg| > 3.

Since |Fg| > 3, 3 < |F] < 3(n—1)—6 and 3 < |Fg| < 3(n — 1) — 6. By the
inductive hypothesis, X |, — F (X | — Fy, respectively) has a connected component
Cr (Cg, respectively) that contains at least 2771 — |F| —2 (2771 — | Fg| — 2, respectively)
vertices. Next, we divide the case into three subcases: 2.1) |V(Cp)| = 2" —|F| — 2 and
X! — Fgis disconnected, 2.2) |V(Cp)| = 2" — |F| — 2 and X | — Fg is connected,

and 2.3) |V(Cr)| > 2"t — |Fi| — 1 and |V (Cg)| > 277! — |Fg| — 1.
Case 2.1: |V(Cp)| =2""' —|F| — 2 and X® | — Fj is disconnected.

This is an impossible case. Since k(X, 1) = n — 1, |Fgr| > n — 1. By Lemma 20,
|F| > 2((n—1) —1). Then the total number of faulty vertices is at least (n— 1)+ 2((n —

1) — 1) = 3n — 5 which is greater than 3n — 6, a contradiction.
Case 2.2: |V(Cp)| =2""' —|F.| — 2 and XF | — Fj is connected.

Since X | — Fp is connected, |V(XE | — Fg)| = 2"~ ' —|Fg|. Since |V(C)| > |Fg|+1,
there exists a vertex u € O, and a vertex v € Cp such that (u,v) € E(X,,). Hence X,, — F
has a connected component that contains at least [2"7! — |Fg|] + [2"7! — |Fy| — 2] =

2" — |F| — 2 vertices.

Case 2.3: [V(Cp)| > 2"' — |Fy| — 1 and |V(CRg)| > 2"' — |Fg| — 1.
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Since |V(Cp)| > |Fr| + 1, there exists a vertex u € Cp, and a vertex v € Cg such
that (u,v) € E(X,). Hence X, — I has a connected component that contains at least
21 — |Fp| — 1] + [2"7' — |Fg| — 1] = 2™ — | F| — 2 vertices.

This completes the proof of the lemma. a
By Lemma 21, we have the following corollary.

Corollary 9 VX, € L,(n >5), let F' be a set of vertices F C V(X,,) with |F| < 3n — 6.
Then X, — F satisfies one of the following conditions:

1. X, — F is connected.

2. X, — F has two components, one of which is K1, and the other one has 2" — |F| —1

vertices.

3. X, — F has two components, one of which is K5, and the other one has 2" — |F| — 2

vertices.

4. X, —F has three components, two of which are Ky, and the third one has 2" —|F|—2

vertices

We are now ready to show that the conditional diagnosability of X, is 3(n — 2) + 1
for n > 5. Let Fy, F5 C V(X,) be two conditional faulty sets with |F;| < 3(n —2) + 1
and |Fp| < 3(n —2) + 1, n > 5. We shall show our result by proving that (F, F3) is a

distinguishable conditional-pair under the comparison model.

Lemma 22 Let X,, be an n-dimensional BC graph with n > 5. For any two conditional
faulty sets Fy, F5 C V(X,,), and Fy # Fy, with |F1| <3(n—2)+1 and |Fy| <3(n—2)+1.

Then (Fy, Fy) is a distinguishable conditional-pair under the comparison model.

Proof.

We use Theorem 4 to prove this result. Let S = Fj[]Fy, then 0 < |[S| < 3(n — 2).
We will show that, deleting S from X, the subgraph Cp ap, s containing F;AF, has
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"many” vertices having degree three or more. More precisely, we are going to prove that,
in the subgraph Cp ap, s the number of vertices having degree three or more is at least
2[3(n—2)+1—|S|]+1=06n—2|S| —9. In the following proof, we consider three cases
by the size of S: 1) 0 < [S|<n—1,2)|S|=n,and 3) n+1 < |S| < 3(n—2).

Case 1: 0<|S|<n-—1.

Since the connectivity of X,, is n [24], X,, — S is connected, the subgraph Cpap, s
is the only component in X, —.S. Since the BC graph X,, has no cycle of length three
and any two vertices have at most two common neighbors, it is straightforward, though
tedious, to check that the number of vertices which has degree two or one is at most 2 in
Crar,s- Hence, the number of vertices having degree three or more is at least 2" — | S| —2
which is greater than 6n —2|S| -9, for n > 5. By Theorem 4, (Fy, F3) is a distinguishable

conditional-pair under the comparison diagnosis model.
Case 2: |S|=n.

If X,, — S is disconnected, by Lemma 20, X, — S has one trivial component {v}
such that N(v) C Fy and N(v) C F;. Since F; and F; are two conditional faulty sets,
this is an impossible case. So X,, — S is connected, and the subgraph Cpap, s is the
only component in X,, —S. Let U = X,, — (Fy|J F,). If there exist two vertices u and
v in V(U) such that u is adjacent to v, then the condition 1 of Theorem 3 holds and
therefore (F1, Fy) is a distinguishable conditional-pair; otherwise V' (U) is an independent

set. Hence, Ny, _g(v) C F1AF;, Yv € U, and we have the following inequality

> ver 1degx,—s(V)] < D cp ar, |degx,—s(v)].

To check the inequality, we have

> ver ldegx,—s(v)| = [2" = 2(3(n — 2) + 1) + |S|Jn — |S|n = n2" — 6n* + 10n
and

S eran [degx, s < 2[3(n —2) + 1 - [S]ln = 4n® — 10n,

n2" — 6n? + 10n > 4n? — 10n for n > 5, a contradiction.
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Case 3: n+1< S| <3(n—2).

By Corollary 9, there are four cases in X,, — S we need to consider. For case 1 of
Corollary 9, X,, — S is connected, the proof is exactly the same as that of Case 2, and
hence the detail is omitted. For case 2 and 4 of Corollary 9, X,, — S has at least one
trivial component {v} such that N(v) C F; and N(v) C Fy. Since F; and F, are two
conditional faulty sets, the two cases are disregarded. Therefore, we only need to consider
that X,, — S has two components, one of which is K5 and the other one has 2" — |S| — 2
vertices. Let (z,y) be the component with only one edge. Since N({z,y}) C S and F; and
F5 do not contain all the neighbors of any vertex, vertex x and y cannot belong to F1AF;.
So the subgraph Cp,ap, s is the other large connected component of X,, —S. Let U =
Xn—(F1J Fy) —{z,y}. If there exist two vertices u and v in V(U) such that u is adjacent
to v, then the condition 1 of Theorem 3 holds and therefore (Fi, F3) is a distinguishable
conditional-pair; otherwise V(U) is an independent set. Hence, Nx, _gs(v) C F1AF,
Vv € U, and we have the following inequality

D vev ldegx, —s(V)| £ 3 vep ar, [degx,-s(v)].
To check the inequality, we have
> ver 1degx,—s()| = [2" = 2(3(n — 2) + 1) + |S| — 2]n — |S|n = n2" — 60 + 8n
and
5 eman degx,-s(v)] < 218(n—2) + 1= [S[In < 4n? - 12n.
n2" — 6n% + 8n > 4n? — 12n for n > 5, a contradiction.

In Case 1, we prove that at least one of the conditions of Theorem 3 is satisfied in
subgraph Cpap,s. In Case 2 and 3, the condition 1 of Theorem 3 holds in subgraph
Crar.s. Therefore, (Fy, Fy) is a distinguishable conditional-pair under the comparison

diagnosis model. O

By Lemma 19, t.(X,,) < 3(n —2) + 1, and by Lemma 22, X,, is conditionally (3(n —
2) + 1)-diagnosable for n > 5. We now have the following theorem.

Theorem 21 Under the comparison model, the conditional diagnosability of X,, is 3(n —
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2)+1 forn >5.

Since @, CQ,, TQ,, MQ, € L,, the following corollary holds.

Corollary 10 t.(Q,) = t.(CQy) = t(TQ,) = t.(MQ,) = 3(n —2) + 1 under the com-

parison model, for n > 5.
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Chapter 5

Conclusion, discussion, and future
work

In this thesis, we propose a new concept called local diagnosability for a system and
derive some structures for determining whether a system is locally t-diagnosable at a
given vertex. Through this concept, the diagnosability of a system can be determined by
computing the local diagnosability of each vertex. We also introduce a concept for system
diagnosis, called strongly local-diagnosable property. A system has this strong property
if the local diagnosability of every vertex is equal to its degree. We prove that both the
hypercube network and the star graph have this strong property. Next, we study the local
diagnosability of a faulty multiprocessor systems. For a faulty hypercube @), and a faulty
star graph S,,, we prove that both @), and S,, keep this strong property even if they have
up to n — 2 faulty edges and n — 3 faulty edges, respectively. According to Theorem 5,
the global diagnosability of @),, — F' is equal to the minimum local diagnosability of all
vertices. A conditional local diagnosability measure for systems is also introduced in this
thesis. Assume that each vertex of a faulty hypercube @, and a faulty star graph .S, is
incident with at least two fault-free edges, we prove that @), keeps this strong property
even if it has up to 3(n —2) — 1 faulty edges and S,, will also keep this strong property no
matter how many edges are faulty. Furthermore, we prove @), keeps this strong property
no matter how many edges are faulty, provided that each vertex of a faulty hypercube @,

is incident with at least three fault-free edges. Our bounds on the number of faulty edges
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are all tight.

We use the hypercube and the star graph as two examples to introduce the concepts of
the local diagnosability, the local structures and the strongly local-diagnosable property.
In fact, many well-known systems also have these local structures and this strong prop-
erty. Furthermore, there is a close relationship between its local structure and its local
syndrome. So we propose a new diagnosis algorithm for general systems. The time com-
plexity of our algorithm to diagnose all the faulty processors is bounded by O(N log N),

where N is the total number of processors.

There are several different fault diagnosis models in the area of diagnosability. It
is worth investigating, under various models, whether a system has this strongly local-
diagnosable property after removing some edges. It is also an attractive work to develop
more different measures of diagnosability based on network reliability, network topology,

application environment and statistics related to fault patterns.

In the real world, processors fail independently and with different probabilities. The
probability that any faulty set contains all the neighbors of some processor is very small
20, 44] so we are interested in the study of conditional diagnosability. A new diagnosis
measure proposed by Lai et al. [40], it restricts that each processor of a system is incident
with at least one fault-free processor. In this thesis, we first use the hypercube as an
example and show that the conditional diagnosability of @, is 3(n — 2) + 1 under the
comparison model. This number 3(n —2) + 1 is about three times as large as the classical
diagnosability. Furthermore, we extend the result to bijective connection network. Since
the hypercube, crossed cube, twisted cube, and Mobius cube are some examples of BC

networks, we can obtain the conditional diagnosability of the cube family.

In this thesis, we study the conditional diagnosability of (), under the comparison
model. Under the PMC model, however, the conditional diagnosability of ), is shown to
be 4(n—2)+1 by Lai et al. [40]. In order to understand why the increase in diagnosability
under the comparison model is lower than that under the PMC model, we take a look
at Figure 4.3. As shown in Figure 4.3, there are two conditional faulty sets F; and
Fy with |Fy| = |Fy] = 3(n — 2) + 2. As shown, F; and F; are indistinguishable, and
therefore the conditional diagnosability of @, is no greater than 3(n — 2) + 2 under the
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comparison model. We now consider the same conditional faulty sets under the PMC
model in Figure 4.3, either the edge (vy,v1) or the edge (vy,v3) provides “effective” test
to distinguish the syndrome of F; and F, under the PMC model, namely v, tests vy
or vy tests v3. Therefore F; and F, are distinguishable. However, vs compares v; and
vg is not an effective comparison to distinguish the syndrome of F; and F5 under the
comparison model. On the other hand, see Figure 2.2, every effective comparison under
the comparison model provides effective test under the PMC model. So the conditional
diagnosability of (),, under the comparison model is intuitively lower than that under the
PMC model. In this thesis, we give a complete proof to support our intuition and finally

obtain the main result.
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