
Chapter 1.  Introduction 

1-1. Photonic Crystals 

    In early twenty century, physicists found that electron in crystal scatter by lattice periodic 

potential, and energy gap arises in some wavelength by destructive interference causing band  

distribution dispersion relation, which is known as electronic band structure. 

 

    In 1987, E. Yablonovitch and S. John addressed electromagnetic wave in periodic 

dielectric can behave as electron in crystal and the optical characteristic is controlled by 

dielectric constant and spacial distribution of periodic structure[1]. The artificial material is 

called Photonic Crystal. The defining feature of a photonic crystal is the periodicity of 

dielectric material along one or more axes. Thereby photonic crystal can be divided into   

one-dimensional, two-dimensional and three-dimensional photonic crystal as shown in Fig. 

1-1[2]. In my thesis, two-dimensional photonic crystal will be concerntrated. 

 

 
Fig. 1-1.   Simple examples of one-, two-, three-dimensional photonic crystals. The different 

colors represent materials with different dielectric constants.[1] 
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    In order to explore photonic crystal band structure, electronic band theory is utilized. In 

periodically arranged crystal structure, the behavior of electron will observe Schrodinger 

equation : 
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*m : effective mass of electron           : potential function ( )V r

E : eigen-energy                      ( )rψ : wavefunction 
The square of ( )rψ  denotes the probability density of electrons in space. When ( )rψ  term 

is equal to zero, i.e. there is no electron in some energy levels. These energy levels form the 

well-known electronic band gap. If the potential function is strong enough, the gap might 

extend to all directions, resulting in a “complete band-gap”.  

 

    The behavior of light in photonic crystal can be regarded as the behavior of electron in 

crystal. The periodic refractive index provides potential function which is analogous to 

potential function of crystal to affect the behavior of light in photonic crystal. The motion of 

light in photonic crystal is described by Maxwell equations. By Maxwell equations, the 

master equation can be derived : 

                
21( ( )) ( )
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wH r H r

r cε
∇× ∇× = ( )                       (1.2) 

( )rε : the dielectric constant variation function in space. 

w   : frequency                          : light velocity in vacuum c
( )H r : eigen-vector 

    For a given ( )rε , we can solve the master equation to find the modes  for a 

given frequency. Thereby, these eigen-values and the corresponding eigen-vectors can be 

obtained. Then the band diagrams of photonic crystals can be also obtained.   

( )H r

     

    H(r) term in some frequencies exponentially decay, and these frequencies form a 

forbidden in which light could not propagate. The frequency zone is so-called photonic band 
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gap. For example, we calculate the band diagram of two-dimensional photonic crystals with 

500(nm) lattice constant and 150(nm) radius of air hole through two-dimensional 

plane-wave-expansion (PWE) method as shown in Fig. 1-2 and the two-dimensional 

triangular lattice photonic crystal is shown in inset. The index of InGaAsP is 3.4. In figure, the 

x-axis and y-axis denote the wave vector and normalized frequency a/λ. There are no 

eigen-values in the shadow region, i.e. light propagating in this region is forbidden in the 

triangular lattice photonic crystal. The shadow region is called “photonic band gap”.  

            

 

 

 

 

 

 

 

 

Fig. 1-2.   This is TM band diagram of two-dimensional triangular lattice photonic crystal.  

          “TM” denotes light with electric field in the plane of crystal. There is a photonic 

band gap between the first band (known as dielectric band) and the second band 

(known as air band). 

 

        By utilizing photonic band gap effect, some defects by removing parts of the periodic 

structure in photonic crystal were constructed. Thereby, light in specific frequencies can 

propagate with low loss in defect region and is forbidden in photonic crystal region. In Fig. 

1-3(a), a point defect is formed by removing a single air hole in two-dimensional photonic 

crystal slab. This is widely utilized to construct the photonic crystal cavities. In Fig. 1-3(b), a 

line defect os formed by removing one row of air holes in two-dimensional photonic crystal 

slab. This is widely utilized to construct low-loss photonic crystal waveguides. 
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    Fig. 1-3.      (a) Point defect                       (b) Line defect 

 

 

1-2. Developments of Photonic Crystal Lasers 

 

    On optical communication, laser source at long wavelength plays an important role. The 

characteristic of vertical cavity surface emitting laser (VCSEL) at optical communication 

wavelength (1550nm) is unable to accomplish ultra small cavity mode volume, low threshold 

current and high quality factor. However, photonic crystal laser is able to overcome 

difficulties above.      

 

    Presently, several groups play decisive roles in the filed of photonic crystal lasers, 

including O. Painter, A. Scherer, A. Yariv et al. at Caltech, J. D. O’Brien et al. at USC, S. 

Noda et al. at Kyoto University, and Y. H. Lee at KAIST. Recently, several important 

achievements were presented by these groups. Photonic crystal lasers can be divided into two 

categories which are photonic crystal cavity laser and photonic crystal band edge laser. 

 

1-2-1.  Photonic Crystal Cavity Lasers 

     

    Utilizing photonic crystal to be reflected mirror around the cavity of laser was first 

proposed in 1994[3]. In 1999, two-dimensional photonic crystal lasers were first 
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demonstrated by O. Painter et al. at Caltech [4]. The typical configuration of a 

two-dimensional photonic crystal laser is shown in Fig. 1-4 [4].  

 

                
cal structure of two-dimensional photonic crystal laser. [4] 

   In Fig. 1-4, the photonic crystal patterns are defined on two-dimensional dielectric slab 

   After first photonic crystal laser was presented, most researches focus on preferable 

In 2002, O. Painter et al modified the size and the position of air holes around cavity in 

orde

 
Fig. 1-4.   The typi

 

 

with quantum wells or quantum dots through electron-beam lithography. Micro-cavity is 

formed by several missing air holes in photonic crystal patterns. Then undercut is fabricated 

for a symmetric waveguide structure. The photonic crystal patterns defined at active layers 

through the defect region construct photonic crystal micro-cavity. In the structure, a 

symmetric waveguide structure provides the vertical confinement by total reflection and the 

photonic crystal patterns provide the in-plane confinement by photonic band gap. 

 

 

characteristics of two-dimensional photonic crystal lasers, such as ultra-low threshold, high 

quality factor, high side mode suppression ratio, and small mode volume. 

 

r to control the defect mode as shown in Fig. 1-5[5]. Because of altering effective 

refraction index in some direction by modulating air holes around cavity in the direction, the 

resonant mode in the direction is suppressed.   
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Fig. 1-5.   Photonic crystal cavity geometries with different symmetries. [5] 

     

 In 2005, J. D. O’Brien et al added six smaller air holes in cavity destroys other resonant 

mode and preserves lasing mode. And then the side mode suppression ratio increases almost 

10dB as shown in Fig. 1-6[6].  
 

                  
rease side mode suppression ratio. [6]  

   In 2004, the electrical pumping single defect photonic crystal micro-cavity laser with 

 
Fig. 1-6.   Six sm dded to incaller air holes are a

 

 

higher quality factor and lower threshold current than general VCSELs were demonstrated by 

H. G. Park and Y. H. Lee et al[7]. The schematic device is shown in Fig. 1-7(a). The small 

central post function as an electrical wire, a mode selector, and a heat sinker. And the L-I 

curve is shown in Fig. 1-7(b). This is a well proof of photonic crystal lasers with high quality 

factor and low threshold. 
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                      (a)                                  (b) 

Fig. 1-7.  (a) The illustration of electrical pumping single defect photonic crystal 

micro-cavity. (b) The L-I curve of this photonic crystal laser. [7] 

 

1-2-2.  Photonic Crystal Band Edge Lasers 

 

    Because the slope of band is proportioned to the general definition of the group velocity: 

Vg = dw / dk , it will approach to zero near the photonic band-edge as shown in Fig1-8 

simulated through two-dimensional plane-wave-expansion (PWE) method. This implies a 

longer optical path length in the photonic structure. If an active medium is present, longer 

optical path leads to better optical gain. 

 

 
   The photonic band edge effect occurs in the circle. Fig 1-8.
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    If gain medium were present, the largely increasing in optical path length would enhance 

                                                                      (1.3) 

   At the band edge the group velocity is almost zero, i.e. effective gain will approach 

   In 1999, the photonic crystal band edge laser was first demonstrated by S. Noda et al. 

                 

hematic structure of the surface-emitting laser has 2D triangular-lattice 

 

   The type of photonic crystal device is not designed by photonic band gap effect, so the 

the effective gain. The smaller group velocity vg leads to a an increased optical path length 

leff that is larger than the expected value l.  The effective gain geff can be estimated by： 

 

 

 

 

infinity. 

 

 

The photonic crystal is integrated with an multiple-quantum-well active layer by a wafer 

fusion technique as shown in Fig. 1-9[8]. The photonic band edge lasers has higher output 

power and narrower divergence angle than the photonic crystal cavity lasers. 

2/ / /eff eff gg g l l cn v≡ =

 

      Fig. 1-9.   Sc

structure embedded by the wafer fusion technique. The inset shows the 

SEM photograph of the triangular-lattice structure. [8] 

 

in-plane loss is larger than the photonic crystal cavity laser. In 2003, the graded structure was 

demonstrated to improve the in-plane loss by O. Painter et al as shown in Fig 1-10(a)[9]. And 

the L-L curve and sub-threshold spectrum is shown in Fig 1-10(b) [9].By utilizing in-plane 
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graded reflection index provides in-plane confinement like hetero-structure to suppress 

in-plane loss. The high quality factor will be achieved. 

                 

        (a)                              (b) 

 photograph. 

    Two-dim vice for optical 

-3.   Thesis Overview 

   In my thesis, the simulation, fabrication, measurement, and analysis of two-dimensional 

                

Fig. 1-10.   (a) Schematic graded structure. The inset shows the SEM

(b) The L-L curve of this photonic crystal band edge laser. [9] 

ensional photonic crystal lasers are very attractive de

communication system. Many fabrications, simulation tools, and measurement system have 

been setup in order to gain lasers with high quality factor, low threshold, and small mode 

volume. 

 

1

 

 

photonic crystal lasers are investigated. In chapter 2, the method of the simulation will be 

illustrated. In chapter 3, the photonic crystal laser design and simulation results will be 

embraced. In chapter 4, the fabrication and the measured results by NIR micro- 

photo-luminescence (PL) of two-dimensional circular photonic crystal lasers will be 

introduced. In chapter 5, the final conclusion will be presented.     
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Chapter 2.  Simulation Methods 

2-1. Introduction 

   In this chapter, the numerical method to calculating the characteristic of photonic crystal 

-2.  Plane-Wave Expansion Method 

   We begin with Maxwell’s equations. Because we are interested the eigen-modes of the 

 

 

 

will be illustrated. We solve the eigenvalue problem of the wave equation to calculate the 

photonic bands through plane wave expansion (PWE) method. And, we simulate the behavior 

of electromagnetic wave in the photonic crystal through finite-difference time-domain (FDTD) 

method. These numerical methods are very helpful to design the photonic crystal 

micro-cavity.    

 

2

 

 

electromagnetic field and the interaction between the field, we assume that free charges and 

the electric current are absent. Maxwell’s equations in the most general form are given in 

MKS units as following : 

 

( , ) ( , )                                                                          (2.1)

( , ) ( , )                                                                       

E r t B r t
t

H r t D r t
t

∂
∇× = −

∂
∂

∇× =
∂

JK K JK K

JJK K JK K
     (2.2)

( , ) 0                                                                                           (2.3)

( , ) 0                                                                    

D r t

B r t

∇ =

∇ =

JK K
i
JK K
i                        (2.4)

 

here E and H denote the electric and the magnetic field, D denotes the electric displacement, W

and B magnetic induction. 

 10



    To solve the wave equations derived from Maxwell’s equation, we need the constitutive 

equations that relate D to E and B to H. We assume that the magnetic permeability of photonic 

crystal is equal to that in free space, 0µ . For the dielectric constant, we assume it is real, 

isotropic, perfectly periodic with respect to the spatial coordinate r
K

, and does not depend on 

frequency. We denote the dielectric constant in free space by 0ε  nd the relative dielectric 

constant in the photonic crystal by ( )r

a

ε
K

. Then, we obtained :   

 

0

0

( , ) ( , )                                                                                                    (2.5)

( , ) ( ) ( , )                                               

B r t H r t

D r t r E r t

µ

ε ε

=

=

JK K JJK K

JK K K JK K
                                               (2.6)

     

 

ince the dielectric constant is periodic distribution in photonic crystal, the periodicity of  S

( )rε
K

 implies : 

 

 

where denotes the elementary lattice vector in photonic crystal. Because of this spatial 

 

here are arbitrary integers and 

( ) ( )                       (i=1, 2, 3)                                                                       (2.7)ir a rε ε+ =
K JK K

 

ia
JK

 

periodicity, we can expand 1( )rε −
K

 in a Fourier series. For this, we introduce the elementary 

reciprocal lattice vectors {  1, 2,3}ib e i =
JK

 and the reciprocal lattice vectors, { }G
JK

: 

 

  wher

1 1 2 2 3 3                                                                                                          (2.8)

2                                                  i j ij

G l b l b l b

a b πδ

= + +

⋅ =

JK JK JJK JK

JK JJK
                                                                   (2.9)

w il  ijδ  is Kronecker’s delta. Then, is expressed as : 1( )rε −
K

 

 

1 ( )exp( )                                                                                              (2.10)
( ) G

G iG r
r

κ
ε

= ⋅∑JJK
JK JK K

K

 

Because we assumed that the dielectric constant is real, we obtained )( ) (G Gκ κ∗− =
JK JK

. 
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When we substitute (2.5) and (2.6) into (2.1) ~ (2.4) and eliminate ( , ) or ( , )E r t
JK K

e 

obtain the following wave equations: 

 

H r t
JJK K

 , w

2

2 2

2

2 2

1 1{ ( , )} ( , )                                                                          (2.11)
( )

1 1{ ( , )} ( , )                                     
( )

E r t E r t
c tr

H r t H r t
c tr

ε

ε

∂
∇× ∇× = −

∂

∂
∇× ∇× = −

∂

JK K JK K
K

JJK K JJK K
K                                     (2.12)

 

otes the light velocity in free space, and c is equal towhere c den
0 0

1
ε µ

. 

Then electric and magnetic field are expressed as the form of plane wave:  

 

here 

 

( , ) ( )                                                                                                           (2.13)

( , ) ( )                                          

i t

i t

E r t E r e

H r t H r e

ω

ω

−

−

=

=

JK K JK K
JJK K JJK K

                                                                 (2.14)

w ω  denotes the eigen-angular frequency, and ( ) and ( )E r H r
JK K JJK K

 are the eigenfunction.  

ations : These eigenfunction should satisfy the eigenvalue equ

 
2

2

2

2

1( ) { ( )} ( )                                                                      (2.13) 
( )

1( ) { ( )} ( )                                      
( )

E

H

E r E r E r
cr

H r H r H r
cr

ω
ε

ω
ε

Θ ∇× ∇× =

Θ ∇× ∇× =

JK K JK K JK K
K�

JJK K JJK K JJK K
K�                              (2.14)

 

here the two differential operators w and E HΘ Θ  are defined by the first equality in each of 

the above equations.  

    Because ε  is a periodic function of the spatial coordinate r
K

, we can apply Bloch’s 

theorem to (2.13) and (2.14) as in the case of the electronic wave equation in ordinary crystals 

with a periodic potential due to the regular array of atoms. Therefore, ( ) and ( )E r H r
JK K JJK K

 are 

characterized by a wave vector k
K

 in the first Brillouin zone and a and 

expressed as :   

band index n 
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( ) ( ) ( )                                                                                              (2.15)

( ) ( ) ( )                              

ik r
kn kn

ik r
kn kn

E r E r u r e

H r H r v r e

⋅

⋅

= =

= =

K K
K K

K K
K K

JK K JK K K K

JJK K JJK K K K
                                                               (2.16)

 

here  denote periodic vector functions that satisfy the relations 

knia u r=
K K JK K K K K JK K K

They can be expanded in Fourier series b atial periodicity of these functions. 

 

ubstituting (2.10), (2.17), and (2.18) into (2.13) and (2.14), we obtain the following 

w  and kn knu vK K
K K

( d ( ) ( )kn kn kniu r v r a v r+ + =K K K K , for i=1, 2, 3.  

ecause of the sp

) ( ) an

Then, we can obtain the Fourier expansion as the following form of the eigenfunctions : 

 

( ) ( ) exp{ ( ) }                                                                       (2.17)

( ) ( ) exp{ ( ) }                                

kn kn
G

kn kn
G

E r E G i k G r

H r H G i k G r

= + ⋅

= + ⋅

∑

∑

K K
JJK

K K
JJK

JK K JK JK K JK K

JJK K JJK JK K JK K
                                       (2.18)

S

eigenvalue equations for the expansion coefficients { ( )} and { ( )}kn knE G H GK K
JK JK JJK JK

: 

 

'

'

2
' ' ' '

2

2
' ' '

2

( )( ) {( ) ( )} ( )                                         (2.19)

( )( ) {( ) ( )} ( )    

kn
kn kn

G

kn
kn kn

G G k G k G E G E G
c

G G k G k G E G H G
c

ω
κ

ω
κ

− − + × + × =

− − + × + × =

∑

∑

K
K K

JJK

K
K K

JJK

JJK JJK JJK JJKJK K K JK JK JK

JJK JJK JJKJK K JK K JK JJK JK
                                      (2.20)

G

 

here w knωK  denotes the eigen-angular frequency of ( ) and ( )kn knE r H rK K
JK K JJK K

. By solving one of 

n the Fourier expansion of the electromagnetic 

these two sets of equations numerically, we can obtain the dispersion relation of the 

eigenmodes, or the photonic band structure.  

    This numerical method, which is based o

field and the dielectric function, is so-called the plane wave expansion (PWE) method. 
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2-3.  Finite-Difference Time-Domain Method 

ns, we can replace the differential 

-3-1.  Maxwell’s Equations and Yee Algorithm  

   As simulating by FDTD method, Maxwell’s curl equations are given in the following: 

    To solve the differential form of Maxwell’s equatio

form with differencing form, and expand the differencing form to obtain the basic 

Finite-Difference Time-Domain (FDTD) equation. Because the time-domain technique can 

cover a wide frequency range with single simulation run, FDTD method is the one of the most 

popular method to simulate the electromagnetic wave in the photonic crystal. 

 

2

 

 

 

                                                                                                          (2.21)

m

e

BE J
t

DH J
t

∂
∇× = − −

∂
∂

∇× = +
∂

JKJK JJK

JKJJK JJK
 

 

here  and denote electric current source and magnetic current source. Then, we w eJ
JJK

 mJ
JJK

 

substitute the relation of them into (2.21). We can obtain: 

 

1

1 '                                                                                                (2.22)

E H E
t
H E H
t

σ
ε ε

ρ
µ µ

∂
= ∇× −

∂
∂

= − ∇× −
∂

JK JJK JK

JJK JK JJK  

 

here w ε  is the electrical permittivity, µ  is the magnetic permeability, σ  is the electrical 

conductivity, and 'ρ  is an equivalent m gnetic resistivity. The magnetic resistivity term is 

provided to yield symmetric curl equations. By the Maxwell’s diverge equation 0B

a

∇⋅ =
JK

, 

mJ  is absent. Therefore, The magnetic resistivity term is absent. Because of small variation 

agnetic permeability in materials, We assume that the magnetic permeability in materials 

JJK

of m
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is equal to that in free space, 0µ . And the material is assumed to be lossless, which implies 

that σ  is equal to zero. In a rectangular coordinate system, (2.22) is equal to the following 

syste of scalar equations : 

 

m 

0

0

1 ( )                                                                                               (2.23)

1 ( )                                                       

yx z

y xz

EH E
t z y

z
H EE
t x

µ

µ

∂∂ ∂
= −

∂ ∂ ∂
∂ ∂∂

= −
∂ ∂ ∂

0

                                        (2.24)

1 ( )                                                                                               (2.25)

1 ( )

yxz

yx z

EEH
t y

HE H
t y z

µ

ε

∂∂∂
= −

∂ ∂ ∂
∂∂ ∂

= −
∂ ∂ ∂

          

x

                                                                                       (2.26)

1 ( )                                                                                      y x zE H H
t z xε

∂ ∂ ∂
= −

∂ ∂ ∂
           (2.27)

1 ( )                                                                                                 (2.28)y xz H HE
t x yε

∂ ∂∂
= −

∂ ∂ ∂

 

 

he six partial differential equations are the basic the FDTD equations. To do numerical 

 

nd for any function of space and time we put : 

 

here 

T

calculation, we shall transform differential equations above into differencing equations. We 

denote a space point in a rectangular lattice as :   

 

( , , ) ( , , )                                                                                        (2.29)i j k i x j y k z= + + +

a

 

( , , ) ( , , , )                                                                      (2.30)nF i j k F i x j y k z n t= + + + +

w ,  , and x y z+ + +  are the lattice space increments in x, y, z coordinate direction, 

me increment, and 

t+  

is the ti , , ,  and i j k n  are integers. By using the centered finite-difference 

approximation for the spacial and temporal differential equations, we can obtain :  
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1 1
2 2

1 1
2 2

1 1
2 2

1 1 1
2 2 2

( , , ) ( , , )( , , )

( , , ) ( , , )( , , )

( , , ) ( , , )( , , )

( , , ) ( , , ) ( , , )                                      

n nn

n nn

n nn

n nn

F i j k F i j kF i j k
x x

F i j k F i j kF i j k
y y

F i j k F i j kF i j k
z x

F i j k F i j k F i j k
t t

+ −

+ − −∂
=

∂
+ − −∂

=
∂

+ − − −∂
=

∂

∂ −
=

∂

+

+

+

+
                                 (2.31)

    

o substitute (2.31) into (2.23 – 2.28), Yee put the components of  at an unit 

cell o

T  and E H
JK JJK

f rectangular lattice as shown in Fig. 2-1[10]  

 

Fig. 2-1.  Yee’s unit cell. The E
JK

 components are in the middle of the edges and the H
JJK

 

components are in the center of the faces.[10] 

aluated  and And Yee ev E H
JK JJK

 at alternate half time step as shown in Fig. 2-2 : 

Fig. 2 on of

 

-2

H HE E

(n-1/2)∆t (n+1/2)∆t (n)∆t (n+1)∆t 

t

 and E H
JK JJK

.  Temporal divisi  components. 
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Then, we substitute (2.31) into d (2.28) to ob(2.25) an tain and E H
JK JK

 
J

components in the 

z-direction, we have : 

 

1 1
1 1 1 1 1 12 2
2 2 2 2 2 2

0

1 1
2 2

1

1( , , ) ( , , ) { [ ( , 1, ) ( , , )]

1                                 [ ( 1, , ) ( , , )]}                                    (2.32)

( ,

n n n n
z z x x

n n
y y

n
z

tH i j k H i j k E i j k E i j k
y

E i j k E i j k
x

E i

µ
+ −

+

+ + = + + + ⋅ + + − +

− + + − +

+
+

+
1 1

1 1 1 1 12 2
2 2 2 2 21

2

1 1
1 1 1 12 2
2 2 2 2

1, ) ( , , ) { [ ( , , ) ( , , )]
( , , )

1                     [ ( , , ) ( , , )]}                                 (2.33)  

n nn
z y y

n n
x x

tj k E i j k H i j k H i j k
i j k x

H i j k H i j k
y

ε
+ +

+ +

= + + ⋅ + + − − +
+

− + + − − +

+
+

+

 

he equations corresponding to (2.23), (2.24), (2.26), (2.27) can be similarly constructed. By T

the system of finite-difference equations, the new value of the and E H
JK JJK

 component at any 

lattice point depends only on its previous value and on the previous values of the and E H
JK JJK

 

component at adjacent points. 

 

2-3-2.  Boundary Conditions 

   There are many electromagnetic calculation for infinite dielectric space, but the practical 

-3-3.  Grid Size and Stability Criterion  

   As the electromagnetic wave propagates in homogeneous dielectric, the propagating 

 

 

simulation can calculate infinite dielectric space problem. Therefore, the calculated dielectric 

space has to be appropriately downscaled. Then, we make an artificial boundary and the 

electromagnetic field will vanish ta the artificial boundary.     

 

2

 

 

velocity in the x, y, z direction is the same. But the propagating velocity in the diagonal 

direction is faster than that in the x, y, z direction. Therefore, the simulating wave will cause 

distortion as the propagating time increase. In order to reduce the space error between the x, y, 
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z direction and the diagonal direction, the space grid size must be chosen such that a 

increment of the electromagnetic field does not change significantly. And the time grid size is 

also chosen for the stability. For constant and ε µ , computational stability implies : 

 

2 2 2

1                                                                               (2.34)
1 1 1( ) ( ) ( )

t
c

x y z

≤
+ +

+

+ + +

 

his requirement puts a restriction on for our chosen T t+  ,  ,  and x y z+ + + .  
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Chapter 3. Simulation and Discussion 
 

-1. Introduction 

   Photonic crystal has attracted lots of attentions due to the possibilities and abilities of 

-2.  Device Design 

   The geometry of circular photonic crystal micro-cavity is similar to that of micro-gear 

3

 

 

controlling the flow of photons in recent years. The electromagnetic wave propagation inside 

a photonic crystal is forbidden in all directions for a certain frequency range due to photonic 

band-gap (PBG) effect. The applications of photonic crystal have been widely investigated, 

such as optical communication systems, quantum optical devices, and optical integrated 

circuits. Recently, it was suggested to employ radial Bragg layers instead of photonic crystal 

to confine light in small cavities [11]. The radial structure offers significant advantages for 

optimal cavity design, primarily because it enable analytic design of the layer structure and 

optimal tailoring of the cavity size and the reflector periodicity. Unfortunately, the radial 

Bragg structure is difficult to realize using the suspended membrane concept which was 

successfully used for photonic crystal cavities. In addition, the upper surface of such structure 

is not continuous which makes it not suitable for electrical pumping and for realizing 

electrically pumping lasers. To facilitate that, several analytical and numerical results of 

circular photonic crystal resonator have been reported [12 - 17], but there are no experimental 

results for circular photonic crystal cavities. Therefore, we will design smaller circular 

photonic crystal micro-cavity than these in reports before. And, the existence of photonic band 

gap and several defect modes of circular photonic crystal cavities can be calculated by using 

finite-difference time-domain (FDTD) method.    

 

3

 

 

laser [18] and the gear has good consistency to the whispering-gallery mode (WGM) at the 
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cavity edge. The standing wave with azimuthal number equal to half of the gear number will 

form. Then, the schematic of 2D circular photonic crystal micro-cavity on a dielectric slab is 

shown in Fig. 3-1 (a). The circular PC patterns formed by air hole with dielectric constant 1.0 

are fabricated on a InGaAsP slab with dielectric constant 12.96. The membrane structure is 

formed by multi-quantum-wells (MQWs) membrane surrounded by air cladding. The lattice 

geometry of circular PC is also shown in the inset of Fig. 3-1 (b). The numbers of air holes in 

each concentric ring is proportional to the circumference of each concentric ring. Therefore, 

the same angular length can be obtained in order to let angular dependence of the perturbation 

less significant. And, we choose D2 cavity, which means the micro-cavity is formed by 

removing two-ring air holes (i.e. removing seven air holes from the center of the circular 

photonic crystal), because the circular photonic crystal has the really circular geometry from 

third ring and D2 cavity has the smallest micro-cavity size of circular photonic crystal.   

 

 

Cavity region 

InP Substrate 

MQWs Membrane 

(a) 

 20



 

(b) 

Fig. 3-1.  (a) The schematic of a circular photonic crystal micro-cavity laser. 

         (b) The lattice geometry of circular photonic crystal.  

 

3-3.  Symmetry and Photonic Band Gap of Circular Photonic Crystals 

 

    In Fig. 3-2, we can find that the circular photonic crystal has the symmetric axes at the 

angular angle / 6π , and the pattern will rotate / 2π  along each symmetric axes. 

 
/ 3π

/6π

0

 

Fig. 3-2.  The symmetry of circular photonic crystal. 

 

To explain that there is the photonic band gap in 2D circular photonic crystal, we 

performed the 2D FDTD analysis with the effective index approximation. We calculated the 
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transmission spectrum of circular photonic crystal to confirm the photonic band gap. The 

effective index of the membrane and air holes was assumed to be 2.7 and 1.0. A Gaussian 

pulse excitation was given for the polarization inside the 2D plane with a central normalized 

frequency a/ oλ  of 0.3703. Transmission spectrum calculated for r/a=0.35 was shown in Fig. 

3-3. The symbol “a” denotes lattice constant, which means the distance of two neighboring air 

holes and the symbol “r” denotes the radius of air hole.  

 

A 

 

Fig. 3-3.  Transmission spectrum of circular photonic crystal. The five different incident 

angles from (a) to (e) is 0,  /18,  /12,  / 9,  and / 6π π π π . 

 

Against five different incident angles (a) ~ (e), which was chosen by the symmetry, we 

can find that the transmission is strongly suppressed in frequency range A. In particular, a 

transmission suppression of ~ 40 dB is observed in frequency range A for five incident angles. 

Therefore, this range can be though as photonic band gap of this structure. And we can find 

that the position and width of the photonic band gap are almost independent of the incident 

angle, hence there is isotropic photonic band gap in the circular photonic crystal. 

 

 22



    Because the device is designed for the optical communication, and our MQWs has the  

photon-luminescence (PL) spectrum centered at 1550nm, we have to optimize the position of 

the photonic band gap in order to obtain a good alignment between the PL spectrum and the 

photonic band gap. Therefore, we fix the lattice constant at 520 nm and tune the r/a ratio to 

change the position of photonic band gap. The transmission spectrum with r/a= 0.38, 0.4, 0.42, 

and 0.44 is shown in Fig. 3-4.  

 

source monitor 

A A 

A A 

 

Fig. 3-4.  The transmission spectrum of circular photonic crystal with r/a= 0.38, 0.4, 0.42, 

and 0.44 at a fixed lattice constant = 520 nm. The inset shows the simulated structure and the 

position of the source and the monitor.  

 

 

 23



    By this simulation, we can find that the photonic band gap will still exist and shift to the 

higher normalized frequency when r/a ratio increases, i.e. the effective index decreases. And 

the photonic band gap middle lies at the wavelength = 1513 nm and 1591 nm, which is near 

the PL spectrum peak, when r/a = 0.44 and 0.42. Therefore, we can tune the r/a ratio in the 

range to obtain the better alignment. And the shift of the photonic band gap versus varying r/a 

ratio is shown in Fig. 3-5. 

 

 

Fig. 3-5.  The photonic band gap shifts versus r/a ratio at a fixed lattice constant 

 

    By Fig. 3-5, we can find the middle of band gap at the wavelength = 1550 nm when r/a = 

0.4297 and fixed lattice constant a = 520 nm. 

 

3-4.  Mode Analysis 

 

    In order to explain defect modes in 2D circular photonic crystal micro-cavity, we 

performed the 2D FDTD analysis with the effective index approximation. 2D FDTD 

simulation is compared with 3D FDTD simulation using circular photonic crystal 
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micro-cavity, which is form by removing seven air holes. In Fig. 3-6, there is 1% ~ 3% 

normalized frequency shift in 2D FDTD simulation and no different mode profile is observed. 

Thus, we confirm the 2D FDTD simulation method is efficient and reliable approach. And, 

because 3D FDTD simulation is complicated and time-consuming, we use 2D FDTD method 

to simulate the spectrum and resonant modes below.  

 

(a) 

 

Fig. 3-6.  (a) The spectrum of D2 circular photonic crystal micro-cavity simulated by 3D 

FDTD method. The right and the left inset show the structure in the x-y plane 

and x-z plane.(b) The spectrum of D2 circular photonic crystal micro-cavity 

simulated by 2D FDTD method. The inset shows the structure in the xy plane. 

 

    A D2 circular photonic crystal micro-cavity is simulated by the setup of lattice constant = 

526 and the r/a ratio = 0.435. A resonant spectrum is shown in Fig. 3-7. There are eight 

resonant modes in this spectrum. The two dash line show the photonic band gap. We can find 

that there are five resonant modes inside the band gap region.  

 

(b) 

0.2814 

0.24618 

0.28483 0.2464 
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Band Gap 

Fig. 3-7.  The resonant spectrum of D2 circular photonic crystal micro-cavity 

 

In order to analyze the circular photonic crystal micro-cavity, we have to obtain the 

lasing mode profile by pumping the micro-cavity at each peak wavelength. Then, the 

normalized frequency a/λ  of defect modes versus the r/a ratio varied from 0.38 to 0.45 with 

520 nm lattice constant was summarized in Fig. 3-8 (a). Here, black plots with solid lines 

show the numerical results. The gray area indicates the photonic band gap of frequency range 

A in Fig. 3-3. There are eight main defect modes inside photonic band gap. These modes were 

divided into k=4, k=2, k=0, k=5, WGM (k=6), k=3, k=1, k=6 modes from low to high 

normalized frequency, where k denotes the rotational Bloch number. The calculated magnetic 

field distribution of defect modes with 1, 2, 4, 6, 8, 10, 12, and 12 lobes (matches the most 

inner air holes) corresponding to k=0,  k=1, k=2, k=3, k=4, k=6, WGM (k=6) were shown in 

Fig. 3-8 (b). Here, we proposed to focus on the WGM (k=6), which has standing wave with 

azimuthal number equal to half of the gear number. 
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(a) 

     

(b) 

Fig. 3-8  (a) Calculated resonant mode frequencies of circular PC micro-cavity. Gray area 

indicates calculated photonic gaps of A in Fig. 3-3. (b) The mode profiles  

correspond to their symbols in Fig. 3-8 (a). 

 

    In Fig. 3-8 (a), we can find that the WGM (k=6) separates far away to the other modes, 

which is a nice characteristic. And the significant node with no field distribution of WGM has 

potential for the design of current-injected circular photonic crystal micro-cavity. Therefore, 
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we will focus on the WGM (k=6) in our design so we eliminate these modes with k=4, k=2, 

k=0, k=5 by letting these modes out of the MQWs gain region, which was discussed in 3-3.   

 

3-5.  Side Mode Elimination  

 

    An intuitive idea of destroying these modes in the center of cavity and maintaining the 

WGM is to add central air hole. The central air hole can destroy the electromagnetic 

distribution in the center of cavity. In order to eliminate some modes in the band gap, we add 

the central air hole in circular photonic crystal D2 micro-cavity. And, the resonant spectrum is 

shown in fig. 3-9. The inset shows the mode profiles and the structure with central air hole. 

 

 

Band gap 

Fig. 3-9.  The resonant spectrum of D2 circular photonic crystal micro-cavity with and 

without central air hole. The inset shows the mode profile and the structure with 

central air hole. 
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    We can find that the resonant mode peaks was reduced from five to three. And, these 

eliminated modes are k=1, k=3, k=6 modes. The k=1, k=3 modes are eliminated because its 

mode profile overlap the central air hole. By adding central air hole, the r/a ratio increases, so 

the k=6 mode blue shifts to smaller wavelength outside the band gap. After adding central air 

hole, the three modes inside band gap are all WGM-like modes, which are WGM (k=6), k=5, 

k=4 form low to high wavelength. From the mode profiles, we can find that WGM (k=6) has 

good existence and the k=5 and k=4 WGM-like mode profiles were constricted by the central 

air hole as result of more loss in air holes. Therefore, some resonant modes except WGM (k=6) 

can be eliminated or reduced by adding central air hole. 
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Chapter 4. Fabrication and Measurement 
 

4-1.  Introduction 

 

    The structure design and numerical results for D2 circular photonic crystal micro-cavity 

have been introduced in chapter 3. In this chapter, the fabrication processes with membrane 

structure will be introduced. Then the real device of the circular photonic crystal micro-cavity 

laser with membrane structure will be fabricated and presented. The measurement setup and 

measured results will be shown and the experiment results will be compared with the 

numerical results obtained by two-dimensional finite-difference time-domain (FDTD) 

method.   

 

4-2.  Fabrication of Photonic Crystal Lasers with Membrane Structure 

 

    The epitaxial structure of InGaAsP with compressively strained/unstrained MQWs for 

membrane structure is shown in Fig. 4-1. The epitaxial structure composed of four 10 nm 

0.85% compressively strained InGaAsP quantum wells layers, which are separated by three 

20 nm unstrained InGaAsP barrier layers, is treated as active region. The photoluminescence 

(PL) spectrum of the MQWs with highest gain peak at 1550 nm is shown in Fig. 4-2. The 

MQWs layers are grown on InP substrate by metalorganic chemical vapor deposition 

(MOCVD) and then a 60 nm InP cap layer is deposited on the MQWs layers in order to 

protect the MQWs during a series of dry etching processes.   
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 60 nm InP cap layer  

57.5 nm unstrained InGaAsP barriers 

four 10 nm 0.85% compressively 

strained InGaAsP  
220 nm 

                + 

three 20 nm unstrained InGaAsP 

barrier layers  57.5 nm unstrained InGaAsP barriers

 InP  Substrate

 

Fig. 4-1.  The epitaxial structure with compressively strained/unstrained MQWs for photonic 

crystal lasers with membrane structure. The thickness of the membrane is about 

220 nm 

 

 

 

 

 

 

 

 

 

 

Fig. 4-2.  The PL spectrum of the MQWs with highest gain peak at 1550 nm 
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    After the epitaxial growth, a hard mask composed of 140 nm Si3N4 layer is deposited on 

the sample by plasma enhanced chemical vapor deposition (PECVD). We decide the thickness 

of Si3N4 through the selective dry etching ratio in ICP/RIE pattern transfer process. In the 

fabrication of membrane structure, a 140 nm Si3N4 hard mask was good enough to let dry 

etching reaching the depth to 800 nm in InP/InGaAsP layer.  

 

    Then, a polymethylmethacrylate (PMMA) resist layer is spun on the sample by a spin 

coater. Two spinning steps, 1000 rpm for 10 seconds and 4000 rpm for 25 seconds, were used 

respectively. The photonic crystal pattern is defined by electron-beam lithography (EBL) 

system. The EBL system is a field-emission scanning electron microscope, which employs a 

schmasky type fields-emission gun for the electron source and state-of-the-art computer 

technology for high-resolution image observation.  

 

    After the patterns were defined by EBL system, the process of patterns transference will 

be introduced as follows. The inductively coupled plasma (ICP) and reactive ion etching (RIE) 

system are used in order to transfer the photonic crystal patterns into InP layer. Si3N4 hard 

mask is etched by CHF3/O2 mixed gas in RIE dry etching process. Before the Si3N4 hard 

mask is etched, the sample is etched by O2 plasma in order to clean the residual PMMA 

around air holes. The O2 plasma is used to remove the PMMA layer after the photonic crystal 

patterns were transferred into Si3N4 layer. Then, the photonic crystal patterns are transferred 

into InP/InGaAsP MQWs layer by H2/CH4/Cl2 mixed gas in ICP dry etching process. 

Afterward, the Si3N4 hard mask is removed.  

 

    In order to fabricate the membrane structure, the InP substrate below the MQWs should 

be removed. The undercut can be constructed by using a mixture of solution with HCl : H2O = 

4 : 1 at 0℃ for 9 minutes. This process also removes the 60 nm InP cap layer and smoothes 

the surface and the sidewall of the air holes. This process could be also regarded as a gentle 

wet etching process to reduce the optical loss caused by the surface roughness. Although wet 
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etching process is anisotropic, the InP wet etching stops at 95° and 40° from <-1, 0, 0> 

direction in the (0, -1, -1) plane and the (0, 1, -1) plane because of the InP material 

characteristic.  

 

The undercut trench under the photonic crystal patterns can be easily formed for the air 

holes with larger radius. For air holes with smaller radius, the wet etching results in a small 

wedge-shape undercut in each air hole of photonic crystal. And, the small wedges under each 

air hole have no chance to meet each other at the corners, so no undercut trench can be 

formed.  

 

    A real device is shown in fig. 4-3. Side view SEM of the circular photonic crystal lasers 

with membrane structure are shown in fig. 4-3 (a). The V-shaped undercut trench is clearly 

observed. In fig. 4-3 (b), top view SEM of single circular photonic micro-cavity laser is 

shown.   

 

 

(a) (b) 

Fig. 4-3.  (a) Side view SEM and (b) top view SEM of circular photonic crystal lasers. 
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   An overview of the fabrication processes is shown in Fig. 4-4. 

MQWs Si3N4  PMMA InP Substrate 

Deposit Si3N4 PMMA Spin-Coating 

Electron-Beam 

Lithography 

Photonic Crystal 

Patterns Transference 

Remove PMMA 

Substrate Undercut & Patterns Transference 

into MQWs 

Remove Si3N4

Remove Cap Layer 
 

Fig. 4-4.  The overview of fabrication processes of two-dimensional photonic crystal lasers 

with membrane structure. 

 

4-3.  Circular Photonic Crystal Lasers 

 

The lasing wavelength of the lasers is determined by the lattice constant, the size of 

defect, the r/a ratio, and the refraction index of the material, so we can vary lattice parameters 

of circular photonic crystal patterns, such as the lattice constant and the r/a ratio in order to 

observe the lasing characteristics and obtain the lasing wavelength of two-dimensional 
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circular photonic crystal laser near the communication wavelength 1550 nm. An array 

containing 7×12 (rows  columns) circular photonic crystal lasers was fabricated. In a row, 

the lattice constant increases form 450 nm to 560 nm with the increment 10 nm as the r/a ratio 

is fixed. In a column, the r/a ratio increases from 0.33 to 0.45 with the increment 0.02 as the 

lattice constant is fixed. The top view SEM of two-dimensional circular photonic crystal laser 

array is shown in Fig. 4-5.     

×

 

 

Fig. 4-5.  The top view SEM of two-dimensional circular photonic crystal laser array with 

five different electron dosage. 

 

    The top view SEM of single two-dimensional D2 circular photonic crystal laser is shown 

in Fig. 4-6. The D2 micro-cavity region and the V-shaped under trench can be observed 

obviously. 
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V-shaped  

Undercut Trench 

Fig. 4-6.  The top view SEM of two-dimensional D2 circular photonic crystal laser. 

 

4-4.  Measurement Results and Analysis  

 

4-4-1.  Measurement Setup 

 

    In order to obtain the characteristics of the fabricated circular photonic crystal 

micro-cavity laser, we record pulsed room-temperature photoluminescence (PL) spectrum of 

the laser by using a micro-PL system with sub-micro-scale special resolution and 

sub-nanometer-scale resolution in spectrum. The simple setup is shown in Fig 4-7 (a) and the 

photo is shown in Fig 4-7 (b).  
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Fig. 4-7.  (a) The setup of micro-PL system. (b) The photo of real micro-PL system. 

 

In this system, an 845 nm TTL laser with focused pump spot size about 1.5um is used as 

the pump source. This TTL laser can be used in pulse operation and continuous-wave  

operation by switching a function generator. The pulse width of the pump beam is 25 ns with 

200 KHz repetition rate. The pump beam is reflected into a 50x long working distance NIR 

IR Camera 

OSA Ando AQ-6315A

(a) 

Monitor 
Collective lens 

White Light 

Source Plane Mirror  

Pumping Source 

Emission Light 

Cable Line 

50/50 Beam Splitter 
on Flipper 

845 nm TTL Laser 

Power- 
objective lens

meter 

sample 
Optical Fiber 

(b) 
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objective lens which is mounted on a 3-axis stage with numerical aperture of 0.5 by a 50/50 

beam splitter, which has 48% reflection in angle 45°of the splitter for 845 nm wavelength is 

confirmed. The output light from the top of the sample is collected by the objective lens and 

we use a collective lens to focus the output signal into the slit of our optical spectrum analyzer 

(OSA) with 0.05 nm resolution. And, the plane mirror can be flipped in order to reflect the 

pump source into the power-meter when the threshold is measured. All the measurement 

results were measured by the micro-PL system. 

 

4-4-2.  Modes Identification 

 

    First, we measured the resonant spectrum of fabricated device to identify these resonant 

modes. The constitutive resonant spectrum in dB scale is shown in Fig. 4-8. Each resonant 

mode can be addressed through comparing with numerical results. The measured peaks with 

normalized frequencies a/λ  0.34175, 0.34787, 0.35395, 0.36235 from low to high frequency 

correspond to WGM (k=6), k=3, k=1, k=6 modes with normalized frequencies a/λ  0.33975, 

0.34772, 0.35747, 0.36743 in numerical results. The slight shift of frequency is owing to the 

2D approximation simulation, which is discussed before.  

 

 
Measured resonant spectrum with 200 nm span and the calculated m

K=6 K=1 K=3 WGM(K=6) 

Fig. 4-8.  agnetic field 

distribution of each resonant mode.  
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    Then, w r to obtain the lasing spectrum. The lasing e increase the pump power in orde

spectrum is shown in Fig. 4-9. By comparing the lasing spectrum to the resonant spectrum in 

Fig. 4-8, we can identify that the lasing mode is the WGM (k=6) and the side mode is the 

dipole (k=1) mode. Therefore, we confirm that the lasing mode is WGM (k=6). The WGM 

conform to what we want, which was discussed in 3-4. 

 

 

Fig. 4-9.  The lasing spectrum in dB scale. 

-4-3.  Lasing Characteristics 

   A plot of the output power versus input pump power for a typical 2D photonic crystal 

 

4

 

 

circular micro-cavity laser is shown in Fig. 4-10. As the input pump power increased, the 

lasing of the WGM (k=6) was excited. Its threshold is as low as 0.13 mW. As the input pump 

power is larger than 5.5 mW, the rolling-off effect is observed. This effect is accused for the 

small cavity size about 1.5 um in diameter and the poor heat dissipation in the surrounding air. 

The lasing spectrum above threshold is shown in Fig. 4-11. The lasing wavelength is 1574.35 

nm and the measured full width at half maximum (FWHM) is 0.13 nm, which is limited by 
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our optical spectrum analyzer. The inset in Fig. 4-11 show the lasing spectrum below 

threshold with 2 nm span and the FWHM is 0.15 nm. The mode peak above the threshold is 

25 dB higher than the background spontaneous emission level. On the other hand, the single 

mode lasing is observed. The quality factor about 10000 is estimated from the measured 

line-width below the threshold pump power.  

 

 

  L-L curve of the WGM (k=6). The threFig. 4-10. shold of ~0.13 mW was observed in the 

 

inset and the rolling-off effect occurred as the input pump power was larger than 

5.5 mW. 
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0.13 nm

 

Fig. 4-11.  Lasing spectrum above threshold of the WGM (k=6). T

1574.35 nm. The inset shows lasing spectrum below thre

 

    In addition, single mode lasing is observed from 1456.8 nm to

mode hopping when we measured a row lasers, which vary lattice c

550 nm with a fixed r/a ratio as shown in Fig. 4-12. The intensity of e

normalized.  
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Fig. 4-12.  The lasing wavelengths of a row lasers with varied lattice constant form 490 nm 

to 550 nm and a fixed r/a ratio. 

 

We can find that the wavelength interval between lasing peaks is almost equal. The 

interval has the maximum of 26 nm and the minimum of 20 nm. The little difference is caused 

by small differences of the r/a ratio due to fabrication variation. This large tuning range results 

from the lasing mode far away to the other modes. The large-range single-mode lasing has 

advantage of the tolerance of design and fabrication.  

 

4-4-4.  Comparison between Measurement and Numerical Results 

 

    By measuring the array lasers, many measurement results of 2D circular photonic crystal 

micro-cavity lasers can be obtained. Therefore, we will compare the measurement results to 

the numerical results as follows. The normalized frequency a/λ  of defect modes versus the 

r/a ratio varied from 0.38 to 0.45 with 520 nm lattice constant was summarized in Fig. 4-13. 

Here, white circles and black plots with solid lines show the measurement results and 

numerical results. The gray area indicates the photonic band gap of frequency range A in Fig. 
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3-3. There are eight main defect modes inside photonic band gap. These modes were divided 

into k=4, k=2, k=0, k=5, WGM (k=6), k=3, k=1, k=6 modes from low to high normalized 

frequency, where k denotes the rotational Bloch number. Here, we proposed to focus on the 

WGM (k=6), which has standing wave with azimuthal number equal to half of the gear 

number. In our design, these modes with k=4, k=2, k=0, k=5 was eliminated by letting these 

modes out of the MQWs gain region. The calculated magnetic field distribution of defect 

modes with 12 lobes corresponding to WGM (k=6) is shown in the inset. The WGM separates 

far away to the other modes, which is a nice characteristic and the significant node with no 

field distribution of WGM has potential for the design of current-injected circular photonic 

crystal micro-cavity laser.  

 

 

 

                                                         

 

 

 

 

 

 

Fig. 4-13.  Calculated resonant mode frequencies of circular photonic crystal micro-cavity. 

The white circles denote the measured lasing frequencies. Gray area indicates 

calculated photonic band gaps of A in Fig. 3-3. The inset shows the calculated 

magnetic field distribution of WGM (k=6). 
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4-4-5.  Side Mode Reduction 

 

    Because the side mode is k=1 mode, we add a central air hole in circular photonic crystal 

in order to eliminate k=1 mode. And, the size of central air hole was chosen for no effect on 

the lasing WGM (k=6). We measured the lasing spectrum in dB scale with and without central 

air hole as shown in Fig. 4-14. The modified circular photonic crystal laser with central air 

hole was fabricated and top view SEM is shown inset. And the reduced side mode profile is 

also shown inset. 

 

Side mode

Fig. 4-14.  The lasing spectrum of circular photonic crystal with and without central air hole. 

The top view SEM of real device and the side mode profile are shown inset. The 

side mode is effectively reduced by adding central air hole. 

     

    In Fig. 4-14, we can find that the side mode is effectively reduced and the SMSR 

increase 5 dB after adding the central air hole. Because the lasing mode was not affected by 

the central air hole, we can newly identify that the lasing mode is WGM. 
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    Then, we measured the L-L curve of D2 circular photonic crystal micro-cavity laser with 

and without central air hole as shown in fig. 4-15. In order to diminish the effect of QW 

gain-region, we choose approximate lasing wavelength.  

 
Fig. 4-15.  L-L curve of D2 circular photonic crystal micro-cavity laser with and without 

central air hole. 

 

    We can find that the threshold of D2 circular photonic crystal micro-cavity laser with and 

without central air hole is 0.445 mW and 0.131 mW. The higher threshold of laser with central 

air hole is because the destroyed cavity region resulted in less photon distributing at cavity 

region.  

 

4-4-6.  Lasing Characteristics Comparison between Circular Photonic 

Crystal and 12 Fold Quasi-Photonic Crystal Lasers 

 

    The 12 fold quasi photonic crystal D2 micro-cavity has several characteristics like 

circular photonic crystal D2 micro-cavity, such as the 12 most inner air hole around the 

cavity ,the WGM (k=6) lasing action, and the cavity size [19]. Therefore, we compare the 

circular photonic crystal lasers with 12 fold quasi photonic crystal lasers. The top view SEM 

of circular photonic crystal and 12 fold quasi photonic crystal lasers are shown in Fig. 4-16. 
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(a) (b)

 

Fig. 4-16.   Top view SEM of (a) circular photonic crystal laser and (b) 12 fold quasi 

photonic crystal laser 

 

    To reduce the domination of MQWs gain region, we choose the near lasing wavelength 

of the two lasers. The lasing spectrum of circular photonic crystal and 12 fold quasi photonic 

crystal are shown in Fig. 4-17. The lasing wavelength is 1574.35 nm and 1571.66 nm, 

respectively. And, the FWHM is 0.15 nm and 0.37 nm, respectively. We can find that the 

FWHM of circular photonic crystal laser is thinner than that of 12 fold quasi photonic crystal. 

Therefore, the quality factor of circular photonic crystal laser is higher than Q of 12 fold quasi 

photonic crystal. It means that the circular photonic crystal has better confinement for the 

WGM (k=6). That is because the circular photonic crystal micro-cavity confirm to the 

micro-disk theory. 
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0.37nm 0.15nm 

Fig. 4-17.  Lasing spectrum above threshold of the WGM (k=6). The lasing wavelength is 

1574.35 nm and 1571.66, respectively. The inset shows lasing spectrum below 

threshold with 2 nm span. 

 

    The L-L curve of circular photonic crystal and 12 fold quasi photonic crystal lasers is 

shown in Fig. 4-18. The threshold of circular and quasi photonic crystal laser is 0.131 mW 

and 0.208 mW, respectively. The lower threshold of circular photonic crystal laser is because 

the efficient photonic band gap confinement and the total internal reflection confinement of 

the large r/a ratio are provided by circular photonic crystal. The rolling-off effect is observed 

at 5.5 mW and 3.3 mW, respectively. From this, we can find that the circular photonic crystal 

laser has weaker thermal effect than the 12 fold quasi photonic crystal. This is because 

circular photonic crystal laser has smaller device size. From discussion above, we can find 

that the circular photonic crystal laser has better lasing characteristics 12 fold quasi photonic 

crystal laser. 
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Fig. 4-18.  L-L curve of the circular and 12 fold quasi photonic crystal laser. The thresholds 

are estimated to be 0.131 and 0.208 mW, respectively. The rolling-off effect is 

observed at 5.5 mW and 3.3 mW, respectively 

 

4-5.  Summary 

 

    In this chapter, the fabrication processes of photonic crystal micro-cavity lasers were 

introduced. The photonic crystal patterns are defined by EBL and a series of dry etching 

process. The membrane structure is formed by HCl selective wet etching. Then, the real 2D 

circular photonic crystal micro-cavity lasers were fabricated.  

 

We set up a micro-PL system with nano-scale spectrum resolution to measure the devices. 

The lasing mode and these resonant modes were identified by comparing the measurement 

results with the numerical results, so we can identify that the lasing mode and the side mode 

are WGM (k=6) and k=1 mode, respectively. The basic characteristics including the L-L curve, 

the lasing spectrum were measured. By measuring the array lasers, we can obtain the 

illustration of normalized frequency a/λ  versus the r/a ratio and compare with numerical 
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results to check the lasing mode, again. By tuning lattice constant, We obtained a large 

single-mode lasing range of 140 nm without any mode hopping. And, The side mode was 

reduced by adding central air hole. Finally, we compared the lasing characteristics between 

the circular and 12 fold quasi photonic crystal laser. 
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Chapter 5. Conclusion 
 

    In this thesis, the history and the basic theory of the photonic crystal were introduced. 

Then, the application and the evolution of photonic crystal micro-cavity lasers were also 

introduced.  

 

The theory and the methodology of simulation including plane-wave-expansion (PWE) 

and finite-difference time-domain (FDTD) were presented. The structure design was 

simulated. We defined that there is the photonic band gap in the circular photonic crystal by 

using transmission spectrum. And, we explained that the defect modes is confined by the 

photonic band gap and gained the magnetic field distribution of these modes. Some modes 

can be eliminated by adding central air hole. 

 

    In the fabrication, we presented the fabrication processes of two-dimensional photonic 

crystal micro-cavity lasers with membrane structure. Then, an array containing 7×12 (rows 

 columns) circular photonic crystal lasers was fabricated. In order to characterize the 

circular photonic crystal lasers, a micro-scale photoluminescence (PL) system with 

sub-micro-scale special resolution and sub-nanometer-scale resolution in spectrum was set up 

and used for measurement. By using the PL system, the lasing and resonant spectrum were 

obtained. Then, we identified the lasing mode and resonant modes by comparing the 

measurement results with numerical results. The basic characteristics of two-dimensional 

circular photonic crystal micro-cavity lasers including the L-L curve, the lasing spectrum 

were presented. We reduced the side mode by adding central air hole. And, we obtained the 

circular photonic crystal has good confinement for WGM by compare the lasing 

characteristics with 12 fold quasi photonic crystal laser. 

×
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