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Supercontinuum Generation from Microstructured Fibers

by a Q-Switched Mode-Locked Laser

Student: Chan-Jung Hsu Advisor: Dr. Wen-Feng Hsieh

Institute of Electro-Optical Engineering

National Chiao Tung University

Abstract

In this thesis, we reported-the supercontinum generation from 950 nm to 1450
nm by using a Q-switched mode-locked laser coupling to a microstructured fiber
under the low pumping average power of 220 mW. The microstructured fibers have
special dispersion curve and high nonlinear coefficient and therefore are a powerful
tool to generate supercontinuum. A Q-switched mode-locked laser has high peak
power even with low average power, whose peak power is about 14 times higher than
that of the CW mode-locked laser, thus it can easily generate various kinds of
nonlinear effects, such as the modulation instability, the stimulated Raman scattering
and the higher-order dispersion. These nonlinear effects are the major causes to
generate the supercontinuum. We will introduce the microstructured fibers and the
nonlinear effects thoroughly in this thesis. We also simulated our experiment results
by using the nonlinear Schrodinger equation that shows a great matching. The
theory and the detail simulation will also be demonstrated in this thesis.
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Chapter 1 Introduction

1.1 Photonic Crystal Fibers

The research of photonic crystal fibers (PCFs) started as early as in the 70’s [1].
However, its impact was not prominent until the 90’s when the technology was able
to fabricate the perfect structures of PCFs. The great flexibility in the design of
PCFs led to tremendous progress in various domains such as optical frequency

metrology, sensor technology, medical science, and telecommunications [2-6].

Photonic crystal fibers [7-9] can be classified into two categories: microstructured
fibers (MFs) and photonic bandgap fibers (PBFs). Figure 1.1 shows the MF in
which its solid core is surrounded by an array of air holes. Due to its higher
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refractive index of the core than thé c:1adding, thb,MF can guide light as the standard
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Fig. 1.1 The scheme of the microstructured fiber. d is the diameter of the air holes

and A is the pitch, the distance between the two air holes.

The dispersion profile of MFs strongly depends on the air-filling fraction and
core size. For example, increasing the air-filling fraction and reducing the size of the

core allows for a drastic increase of the waveguide dispersion, thus enabling to shift

1



the zero-dispersion wavelength of MFs to below 800 nm [10]. The dispersion is
then anomalous at visible wavelengths and soliton propagation becomes possible for
this range of wavelengths. A shift of the zero-dispersion wavelength to any value
from 500 nm to 1500 nm can be obtained in MFs. Furthermore, by choosing the
appropriate air-hole size and pitch, it is possible to fabricate MFs that exhibit very low

and flat dispersion over a relatively broad wavelength range [11-13].

PBFs are the fibers which guide light in their hollow core. Figure 1.2 shows the
scheme of PBFs. In PBFs, the periodic arrangement of the air holes can be seen as
the photonic bandgap structure and their hollow core is the defect inside the structure.
The photonic bandgap structure will result in a bandgap which allows only certain
range of wavelength exiting in it.‘ ) ‘Out_s,i_‘de this range, PBFs is anti-guiding.
Guiding light in a hollow core hbias mq?y pr“‘onfﬁis,ing applications like high power

EISpe

delivery without the risk of fiber damage, gas sensors or extreme low loss guidance in

J

vacuum. Furthermore, they ai’ell alm.gs'ti‘insensitivg to bending (even at very small
bending radii) and have extreme diéﬁersion pro‘péﬁies, such as anomalous dispersion
values in the thousands of ps/nm/km regime are easily obtained. Due to a negligible
contribution from the core material (air), the total dispersion of PBG fibers is to a high

degree dominated by waveguide dispersion.
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Fig. 1.2 The scheme of photonic bandgap fibers (PBFs). Light is guided in the

air-core of PBFs.



1.2 Supercontinuum Generation

Supercontinuum (SC) generation is formation of broad continuous spectra by
propagation of high power pulses through nonlinear media [14]. Provided enough
power, SC generation can be observed in a drop of water [15]. However, the
nonlinear effects involved in the spectral broadening are highly dependent on the
dispersion of the media; and a clever dispersion design can significantly reduce the
power required. The widest spectra are obtained when the pump pulses are launched
close to the zero-dispersion wavelength of the nonlinear media. Due to the
technology which can fabricate the shiftable dispersion profile and small core MFs,
MFs become powerful tools to generate the SC and was first demonstrated in 1999
[16]. The zero-dispersion wavelength'of MEs, can be shifted close to the pumping
wavelength and the small core -0f MFs enhances the nonlinear effects, mechanisms

leading to the SC.

To generate the SC with MFs, femtosecond [17][18] and picosecond mode-locked
laser systems were generally used as the pumping sources [19]. For femtosecond
pumping, it’s easily to get higher peak power of the pumping pulse due to its short
pulse duration and therefore to induce strong nonlinear effects. These nonlinear
effects include high-order soliton breakup [20][21], self-frequency shift [22] and
four-wave mixing [23]. Usually about mini-watts of average pumping power are
needed to generate the supercontinuum for a femtosecond mode-locked laser system
[18]. However, a femtosecond mode-locked laser system is more expensive and
complex to build. A picosecond mode-locked laser system is a better way to choose.
For picosecond pumping, the major nonlinear effects for spectrum broadening are
modulation instability and stimulated Raman scattering if it is pumped in the

anomalous dispersion region, where the group-velocity dispersion f,is negative. In



2002, Mickael Seefeldt reported the SC from 700 nm to 1600 nm with an average
input power of 5.0 W using passively mode-locked Nd:YVO, which generated a pulse
width of 10 ps. [19] Compared with femtosecond pumping, an average power up to
several watts should be needed to generate sufficient supercontinuum for picosecond
pumping. It is due to its longer duration of pulse width. Therefore, a higher

average power is necessary to get enough pumping peak power.

1.3 Motivation

To enhance the effect of the SC, a simple way is to increase the pumping peak
power. In our passively mode-locked Nd:GdVOy laser system which can generate a
pulse width of 15 ps, the peak power of Q-switched mode-locked (QML) state is
about 14 times higher than that of EW mode-locked state (CML). We can utilize

this characteristic to strengthen the nonlinear optical effects for the SC.

1.4 Organization of this Thesis

In Chapter 2, we will introduce the theory of SC. The content describes several
nonlinear effects and the nonlinear Schrédinger equation, a general equation
presenting the nonlinear phenomenon. In Chapter 3, we will describe how to
simulate the nonlinear Schrodinger equation. Then, we will introduce our
experiment, including the pumping laser system, the specification of our MF and the
experimental setup in Chapter 4. Chapter 5 is the experiment results and discussion.
We will compare the experiments results with the numerical results in this chapter.
Finally, we will give a conclusion and the future works in Chapter 6. Appendix will

show how to simulate the dispersion of the fiber using “Mode solutions”, software



made by Lumerical.




Chapter 2 Theory of the Supercontinuum Generation

2.1 Nonlinear Optical Effects

Nonlinear effects are the major mechanisms leading to the supercontinuum (SC).
With enough peak power, a pulse propagating in the fiber will induce several
nonlinear effects. Under the picosecond pulse pumping in the anomalous dispersion
region, a pulse will experience the self-phase modulation (SPM) [21], one of the
nonlinear effects leading to the spectral broadening of the pulse. The nonlinear
phase induced by SPM will interact with the anomalous dispersion and generate pairs
of new frequencies at each side of pumping. This phenomenon is what we call
modulation instability (MI) [17][21], which can be regarded as degenerate four-wave
mixing (DFWM). Once the new frequencies locate in the spectrum of Raman gain,
they will experience the stimulated Raman scattering (SRS) and self-steepening (SS)
which shift the spectrum further into lenger wavelength and distort the shape of
spectrum.  Higher-order disperSion. (HOD) (usually f; and f4) should also be
considered if the spectrum extends from the anomalous dispersion region to the
normal dispersion region [24]. The new dispersive wave will be generated at the
normal dispersion region. Those nonlinear effects mentioned above will be

described more detail in the following.

2.1.1 Self-phase Modulation

SPM is a phenomenon that leads to spectral broadening of optical pulses. It

originates from the intensity-dependence of the refractive index [25]:
n=n, +nl4’, 2.1.1)

where nr is the linear part of the refractive index, n; is the nonlinear index coefficient



and |A|2 is the optical intensity. A typical value of n for silica material is 3.2x10™2°

m*/W. For an optical pulse, SPM refers to the self-induced nonlinear phase shift as

it propagates along the fiber

27l
e (T) = 7”2|A(T)

2
»

(2.1.2)

where L is the length of the fiber. This nonlinear phase shift can induce a frequency
chirp which leads to the spectral broadening of the pulse. A useful quantity yP,
interprets the maximum nonlinear phase shift for a pulse propagating in fibers, where
P, is the peak power of the optical pulse and y is the nonlinear coefficient [21]

y =109 (2.1.3)
cAeff

Here A4, is the effective area of the propagating.mode inside the fiber and o is the

center frequency of the optical field. The nonlinear coefficient y represents the

strength of nonlinear effects and-is inversely proportional to the area of fiber core.

2.1.2 Degenerate Four-Wave Mixing
DFWM is a process where two pump photons generate a Stokes photon and an

anti-Stokes photon:

20, > o, +0,, (2.1.4)

where w,, ws and w,s correspond to the pump, Stokes, and anti-Stokes frequencies,
respectively. Being a coherent process, four-wave mixing is efficient only if the

phase-matching condition is fulfilled [18], i.e.,

A¢= (o) + J@,,) - 2¢(®,) = L[z (5—2')(@ ~w,)" +27/Pp} =0. (2.1.5)
o (Zn!



Here fo, is the 2n™ derivative of the propagation constant # with respect to the
frequency. Note that only the even terms of the series expansion of S contribute to
the phase-matching condition and the odd terms will cancel one another. The
nonlinear phase shift 2yP, due to SPM should be also included in the phase-matching
condition. For a pump wavelength located in the anomalous dispersion region, the
phase-matching condition is mainly governed by the induced nonlinear phase shift.
Usually the process of DFWM in the anomalous region can be regarded as MI which

we will discuss in next section.

2.1.3 Modulation Instability

For a pump wavelength located in‘the anomalous dispersion region, it is possible to
compensate the induced nonlinear phase-shift 2yPy by the negative value of f, and
generate the corresponding Stokes_ and-anti-Stokes components. The frequency
difference between the pump and the Stokes (anti-Stokes) component calculated by

Eq.2.1.5is [21]

2yP, %
_Qs=i( |,5’|] , (2.1.6)

if considering only the term of f,. This frequency shift can also be calculated by
solving the standard nonlinear Schrodinger equation (NSE) of CW light [21]. By
using the perturbation theory, the CW light solution of NSE will become unstable in
the anomalous dispersion region and generate two new frequencies on ether side of
the pump frequency. These two new frequencies calculated by perturbation of CW
solution are as the same as the frequencies calculated by the DFWM. The new

frequencies will break up the CW or quasi-CW radiation into a train of ultra short



pulses. We call this phenomenon MI which results from an interplay between the
nonlinear and the dispersive effects. In fact, MI can be interpreted in terms of
DFWM in the frequency domain, whereas in the time domain it results from an

unstable growth of weak perturbation from the CW steady state.

2.1.4 Stimulated Raman Scattering

SRS is a photon-phonon interaction. It is described quantum-mechanically as
scattering of a photon by one of the molecules to a lower -frequency photon, while the
molecule makes transition to a higher energy vibrational state. SRS can yield gain
for a probe wave co-propagating with a pump wave and whose wavelength is located
within the Raman gain bandwidth. _4The normalized Raman gain spectrum of silica is
shown in Fig. 2.1 as a function-of frequency difference between the pump and probe
waves [26]. The Raman gain-of the MEs is comparable to that of silica fibers [27].
The gain bandwidth is 40 THz with a peak located at 13.2 THz from the pump
frequency. For an ultra-short pulse, the spectral width of the pulse is large enough
that the Raman gain can amplify the low-frequency (red) spectral components of the
pulse, with high-frequency (blue) components of the same pulse acting as a pump.
This effect is called intrapulse Raman scattering [21]. As a result, the pulse
spectrum shifts toward the low-frequency (red) side as the pulse propagates inside the

fiber, a phenomenon referred to as the self-frequency shift.



Normalized Raman gain

i
0 10132 20 30 a0
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Fig. 2.1 Raman-gain spectrum for fused silica at a pump wavelength 4, = 1 um.

2.1.5 Self-Steepening

Self-steepening (SS) results from the dispersion of the third-order susceptibility, i.e.,
the red frequency components experience a lower nonlinearity than the blue
frequency components. In the time domain, SS, can be thought as the intensity
dependence of the group velocity: the peak-of the pulse moves at a slower velocity
than the wings which induces the trailingedgeof the pulse to become steeper as the
pulse propagates [21]. In combination-with"SPM, SS results in a more pronounced
broadening of the blue frequency components compared to the red ones. The
process of self-frequency shift is substantially reduced by SS since the nonlinearity

decreases as the center wavelength of the soliton shifts towards the red.

2.1.6 Higher-order Dispersion

Higher-order dispersion (HOD) effect becomes important in optical fibers when the
carrier frequency is close to the zero dispersion point. Once the spectrum extends
beyond the zero dispersion point to the normal dispersion region, the spectrum will be
disturbed by the HOD to generate a new dispersive wave [See Fig 2.2]. This is

because when accounting the higher-order dispersion, the wavenumber of the

10



propagating pulse is the same as the dispersive wave so that the energy can transfer

from the pulse to the dispersive wave.

The specirum

Saliton of lnear waves

specirum

. 1}
wormd
ersion

¢ crpr et W I
Jous d1P2 0
Anum/i//’\

Zero dispersion
point

Fig. 2.2 The dispersive wave generated at the normal dispersion due to the

perturbation of HOD [24].

2.2 Nonlinear Schrodinger Equation

An electromagnetic field propagating th a medium induces a polarization of the
electric dipoles. The evolution+of the electromagnetic field in the medium can be

described by a propagation equation derived from the general wave equation [21]

1 0°E o’P
VZE—C—ZW:/JO?, (221)

where E is the electric field, P the induced polarization, uy the vacuum permeability
and ¢ the speed of light in vacuum. For intense radiation such as laser pulses, the
response of the medium becomes nonlinear and the induced polarization consists of a
linear and a nonlinear parts. In the scalar approximation, the linear and nonlinear

induced polarizations are related to the electromagnetic field as [21]
P =¢,yVE, (2.2.2)

P =gy x"E’, (2.2.3)

=2
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where & is the vacuum permittivity and y¥ is the j™ order susceptibility of the
medium. The inversion symmetry of silica glass at the molecular level results in
negligible even-order susceptibilities. Moreover, susceptibilities of order higher
than 3 are not significant for silica glass. Therefore, the relevant nonlinear effects in

optical fibers are mainly induced by 4 [21].

Optical nonlinear processes can be divided in two categories. Elastic processes
correspond to photon-photon interaction with no energy exchange occurring between
the electric field and the medium. Such effects include SPM, DFWM, and
generation of dispersive wave. Inelastic processes correspond to photon-phonon
interaction, which leads to energy exchange between the electric field and the
nonlinear medium. Raman scattering is one of the effects of inelastic process.
Treating the nonlinear part of the inducedpolarization as a perturbation in Eq. 2.2.1

and assuming that the electric field is of the form
E(z,T)y=A(zyTyexp(ifz=io,T), (2.24)

where A(z,T) is the slowly varying envelope of the electric field, § is the propagation
constant and wyis the center frequency of the field, one can derive the well-known
NSE. The NSE models accurately the propagation of light along optical fibers for
pulses as short as 30 fs [28]. In a frame of reference moving at the group velocity of

the pulse, the NSE can be written as [21]

2
04 « " 0"A i 0. T . .

oA, =iy +— AR A(z T -T))| dT', (2.2.3
ozt L P = a)OGT)_'[O( A | 4T, 223

where a is the fiber loss and S, are the coefficients of the Taylor-series expansion of
the propagation constant £ around wy, and R(7) is the response function describing the

interaction between the photon and medium. The response function should include

12



both the instantaneous response (interaction between electron and photon) and the

delayed Raman response (interaction between photon and phonon) and is given by
R(T) = (1= fr)o(T) + frhe(T), (2.2.4)

where fz represents the fractional contribution of the delayed Raman response

function hg(7). The value of fz is typically 0.18 and /x(T) can be presented as [300]

2 2 _T
ho(T) =072 5 in( Dy (2.2.5)
172 7

where 7;,=12.2 fs and 7,= 32 fs. Figure 2.3 shows the temporal variation of Ag(7)
[29]. The delayed Raman response /g(7) can describe the phenomenon of intrapulse
Raman scattering referred to the self-frequency shift. The right-hand side of Eq.
2.2.3 contains the nonlinear effects:Such as SPM;.intrapulse Raman scattering and SS,
the differential term which accounts for‘the dispersion of the nonlinear coefficient.
On the left side of the Eq. 2.2.3; it presents not only-the dispersion effect but also the
fiber loss. By simulating the NLS; we can.get the evolution of an optical pulse

propagating in fibers and therefore realize the causes of the SC.

T T I T T T

f(t—t") ARBITRARY

0 200 400 600 800 1000 1200
{t — t) fsec

Fig. 2.3 Temporal variation of delayed Raman response function hg(7) for silica

fibers [28].
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Chapter 3 Simulation Methods

3.1 Simulation of the Nonlinear Schrodinger Equation

The NSE is an important tool to analyze the evolution of a pulse propagating in
fibers. By solving the NSE, we can get the final spectrum of the pulse out of the
fiber. In general, the NSE is a nonlinear partial differential equation and doesn’t
have an analytic solution. A numerical approach is therefore often necessary for
understanding the nonlinear effects in optical fibers. A large number of numerical
methods can be used for this purpose. These can be classified into two broad
categories known as: (i) the finite-difference methods and (ii) the pseudospecral
methods.  Generally speaking, pseudospecral methods are faster by up to an order of
magnitude to achieve the same accuracy [30].7+It has been used extensively to solve
the pulse-propagation problem in nonlinear. dispersive media is the split-step Fourier
method [31] [32].

In this thesis, we solve the NSE using the split-step Fourier method. Other
concepts such as the discrete Fourier transform (DFT), fast Fourier transform (FFT)
and convolution theory should also be used in the simulation of NSE. In this chapter,
we will introduce the DFT, FFT and the convolution theory from 3.1.1 to 3.1.3.
Then we will show how to use these tools to solve NSE by the split-step Fourier

method in detail in 3.2

3.1.1 Discrete Fourier Transform

A physical process can be described in the time domain ¢ and the frequency domain
f as functions of A(¢) and H(f) respectively. For many purposes it is useful to think
h(t) and H(f) as being two different representations of a physical process. One goes

back and forth between these two representations by means of the Fourier transform.

14



We can get H(f) by the Fourier transform of A(f) or A(f) by the inverse Fourier

transform of H(f) [33] .

H(f)= Th(t)e“"ffdz, (3.1.1)

h(t) = TH(f) e mar (3.1.2)

In the most computational work, the function we deal is usually a train of sampled
data at evenly spaced intervals in time. If we sample a continuous function A(¢) to N
consecutive values, A(¢) can be presented as

h, =h(t,), t =k4, k=012..,N-1, (3.1.3)
where A is the time interval. According to the sampling theory, a continuous
function A(f), sampled at an interval A, happens to be bandwidth limited to
frequencies from - f. to f. where f.=1/2A [33]. . Let us sample the frequency to N

consecutive values inside the bandwidth, i-¢-;

fnzl, n:—lﬁ
2 2,

(3.1.4)
where N is usually taken as an even number. If we really count the number of f,, we
will find that there are N+1 values of n. It turns out that the two extreme values of n

are not independent (in fact they are equal), but all the others are. This reduces the

count to V.

We can approximate the integral in Eq. 3.1.1 by a discrete sum [33]:

< N-I N-1
H(f;,): J-h(t)ehzl/tdt ~ ;hkeZHl/nlkA: A;hkehrzkn/N ) (315)

The final summation in Eq. 3.1.5 is called the DFT of the N points of /4. Let us

denote it as function H,,
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N-1
H,=Y he™ " (3.1.6)
k=0

The relation between the DFT and continuous Fourier transform with a continuous
function sampled at an interval A can be written as
H(f)=H, (3.1.7)

From Eq. 3.1.4, we have seen that the index » varies from —N/2 to N/2. However, we
find that Eq. 3.1.6 is periodic in n with period N. Therefore, H-, = Hy-,, where
n=1,2,... With this conversion, we let H, for n from 0 to N-1 form one complete
period. When this convention is followed, we must remember that the zero
frequency corresponds to n = 0, positive frequencies 0 < f < f. correspond to values 1
<n < N/2—1, while negative frequencies —f. < /< 0 correspond to N/2+1 <n < N—1.

The value n = N/2 corresponds to both f = f..and f= —f. [33].

The formula for the discrete dnverse! Fourier:transform, which recovers the set of

hi’s exactly from the H,’s is [33]:

N-1
h, N H et/ (3.1.8)
Nn=0

Notice that there are only two differences between Eq. 3.1.6 and Eq. 3.1.8. One is
changing sign in the exponential and the other is further dividing by N. This means
that a routine for calculating the DFT can also be used, with slight modification, to

calculate the inverse transform.

3.1.2 Fast Fourier Transform

How much computation work is needed to compute the DFT? Let us introduce a
new complex number W:
w=em'N, (3.1.9)
then Eq. 3.1.6 can be written as [33]
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N-1
H, =Y W"n". (3.1.10)

k=0

The vector h; is multiplied by a matrix W of the power nxk. This matrix
multiplication finally requires N* complex multiplications, plus a smaller number of
operations to generate the required powers of . So, the DFT appears to be an order
of N? processes. However, the computation work can be reduced to an order of N
logs N by means of FFT. The difference between N* and N log, N is huge for large N.
For a microsecond time computer, it takes 2 weeks to finish N* computation whereas

only 30 seconds for N log, N for N=1 0°.

The DFT of length N can be rewritten as the sum of two DFTs, each of length N/2.
One of the two is formed from the even-numbered points of original N, the other from

the odd-numbered points [33].

=

-1

_ 2 ing k /N-
Fo=Ye %

Jj=0
N/2-1 N/2=1

— eZnik/N‘]rZ'_I_ Zelni (Z'i+1)k/Nf‘2-

2j j+1

< < G.1.11)
N/2-1 N/2-1

~ omwi RN 2) k 2mi jk AN /2)
e fy+W Ze Soe
=0

S

Jj=

E‘e + WkF;co

F? denotes the kth component of the Fourier transform of length N/2 formed from

the even components, while F;” is the corresponding transform of length N/2 formed

from the odd components. The dichotomy of the DFT can be used recursively. We

can do the same reduction of F to the two DFTs, each of length N/4. In other

words, we can define F, and F,” to be the DFTs of the points which are

respectively even-even and even-odd on the successive subdivisions of the data. If

we treat NV as an integer power of 2, it is evident that we can continue applying the
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dichotomy until we have subdivided the data all the way down to transforms of length

1.
eroeeoeo..,ee — fk fOI' some n. (3 1 . 12)

From Eq. 3.1.12, we can see that for every pattern of log,N e’s and o’s, there is a
one-point transform that is just one of the input numbers f,. The final step is to
figure out which value of n corresponds to which pattern of e’s and o’s in Eq. 3.1.12.

By using this information, we can calculate F;. This is what we call the FFT.

In our simulation, we use Compaq Visual Fortran 6.6. In the library of Compaq
Visual Fortran 6.6, the instructions of the FFT and the inverse FFT are DFFTCF and
DFFTCB. The output of DFFTCF is H,. That means we need to multiply the
output by the interval A to get the.Fourier transform H(f,). For DFFTCB, the output
should be divided the sampled-number N to- get. 4 as Eq. 3.1.8. We should also
notice that the sampled number-¥, the‘input-in.DFFTCF and DFFTCB, should be an

integer of the power of 2.

3.1.3 Convolution Theory

A system is said to be linear if it satisfies the principle of superposition, i.e., if its
response to the sum of any two inputs is the sum of its responses to each of the inputs
separately. The output at time ¢ is, in general, a weighted superposition of the input

contributions at difference time 7 [34],
5= [rE0) fi(2)dr, (3.1.13)

where fi(¢), f>(tf) and h(t;7) are the input, the output of the linear system and a

weighting function representing the contribution of the input at time 7 to the output at
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time ¢z, respectively.
A linear system is said to be time-invariant or shift-invariant, if when the input of
a linear system is shifted in time, its output shifts by an equal time, but otherwise

remains the same. Then /(#;7) can be written as 4(f —7) and Eq. 3.1.13 becomes [34]

H()= Th(f—f)fl(f)df- (3.1.13)

The Fourier transform of f3(¢) is the product of the Fourier transform of 4(¢ —7) and

f1(¢). This is known as the convolution theory presented as [34]
E() = HWF (), (3.1.14)

where F(v), F,(v)and H (v) are the Fourier transform of f;(¢), f2(t) andh(t;7). In
the NSE, the response function R(7) can_be treated as A(f—7) and thus we can

calculated the integral part in NSE by theiinverse Fourier transform of Eq. 3.1.14.

3.2 Split-step Fourier method

One of the pseudospecral methods that have been used extensively to solve the
pulse-propagation problem in nonlinear dispersive media is the split-step Fourier
method. The main reason for the faster speed of the split-step method compared
with the most finite-difference schemes is the use of the FFT.

To understand the philosophy behind the split-step Fourier method, it is useful to
rewrite Eq. 2.2.3 in the form [21]

.%=®+MA, (3.2.1)

where D is a differential operator that accounts for the dispersion and absorption in a
media and N is a nonlinear operator that presents the effect of fiber nonlinearities on

pulse propagation. These operators are given by [21]
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. a l-n+1
D=—->» —f ., 322
e (3.22)

nx2

A 1 i o ¢ 2
N=—<iy|1+— |— A| R(THA(z, T -T")| dT" ;. 3.2.3
A{w{ %Jar L( )|A(z ) } (3.2.3)

In general, the dispersion and nonlinearity effects act together along the length of
the fiber. The split-step Fourier method assumes that the dispersive and nonlinear
effects can be pretended to act independently inside a small distance /# and therefore
obtains an approximation solution. More specifically, propagation along the fiber
from the position z to z + & is carried out in two steps. In the first step, the

nonlinearity acts alone, and D=0 in Eq. 3.2.1. In the second step, dispersion acts

alone, and N =0. Mathematically [21],
A(z+hT) ~exp(hD)yexp (hN) A(zT). (3.2.4)
The first step can be evaluated:n the time: domain“while the second step should be

calculated in the frequency domain. .“The process is shown as the following

prescription

A(z+hT)= F;' (exp[ hD (iw)]* F, [exp(hN)A(zTY] ) (3.2.5)

where F,, F; ', D(iw)are the FFT operation, the inverse FFT operation and the Fourier

transform of D in Eq. 3.2.5. Notice that the differential operatord/dT'in D can be

replaced byiw, just a number in the frequency domain. That’s the reason why the
dispersion effect should be calculated in the frequency space. After finishing the
dispersion effect on A(z,7), we should change the calculation from the frequency
domain to the time domain by the inverse FFT. The use of the FFT makes numerical
evaluation of Eq. 3.2.5 relatively fast. It is for this reason that the split-step Fourier
method is faster up to two orders of magnitude compared with most of the

finite-difference schemes.

20



To estimate the accuracy of the split-step Fourier method, we note that a formally

exact solution of Eq. 3.2.1 is given by
A(z+hT)~exp[h(D+N)] AzT), (3.2.6)

if N is assumed to be z independent. At this point, it is useful to recall the Baker

-Hausdorff formula [35] for two noncommutating operators a andb,

exp(&)exp(l;) =expla+b+ %[d,é] + é[& —b, [d,lg]] +.... (3.2.7)

where[d,b]=ab—ba. A comparison of Eq. 3.2.4 and Eq. 3.2.6 shows that the

split-step Fourier method ignores the noncommutating feature of the operators[)

and N . By using Eq. 3.2.7 with a = hD andb = hN , the dominant error term is

found resulting from the single commutator%hz[ﬁ, N]. Thus, the split-step Fourier

method is accurate to the second.order in'the step size /.
The accuracy of the split-step ‘method can be improved by adopting a different
procedure to propagate the optical pulse-over one -segment from z to z+hA. In this

procedure Eq. 3.2.4 is replaced by

Az+h,T) = exp(%f)) exp(TN(z') dz')exp(gf))A(z, T) (3.2.8)
The procedure divides into 3 parts [See Fig. 3.1]. At first, the dispersion effect acts
alone in the first half of distance 4. Then the effect of nonlinearity acts alone in the
middle of segment. Finally the dispersion effect acts again in the rest of length £/2.
Similar to Eq. 3.2.5, the dispersion effects at the both sides of the segment is
calculated in the frequency domain by the FFT whereas the nonlinear effect at the

middle part is calculated in time domain.
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Fig. 3.1 Schematic illustration of the symmetrized split-step Fourier method. Fiber
length is divided into a large number of segments of width 4. Within the segment,

the effect of nonlinearity acts at the midplane shown by a dashed line.

Because of the symmetrie form of Eg. 3.2.8; this scheme is known as the
symmetrized split-step Fourier method [36J-—~Fhe integral in the middle exponential

considers the z dependent of the nonlinear operatorN . If the step size A is small
enough, the integral can be approximated by exp(h]\7 ). The most important

advantage of using the symmetrized form of Eq. 3.2.8 is that the leading error term
comes from the double commutator in Eq. 3.2.7 is of the third order in the step size 4.
This can be proved by applying Eq. 3.2.8 twice in Eq. 3.2.7.

The accuracy of the symmetrized split-step Fourier method can be further

improved by evaluating the integral in Eq. 3.2.8 more accurately than approximating
it byhN(z). A simple approach is to employ the trapezoidal rule and approximate

the integral by [37]

z+h

j N(z)dz = S[N(Z) + N(z+h)] (3.2.9)
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However, the implementation of Eq. 3.2.9 is not simple because N(z + /) is unknown
at the mid-segment located atz+ /4 /2. It is necessary to use an iterative procedure

that is initiated by replacing N (z+h) by]\7 (z). Equation is than used to estimate

A(z+h,T) which in turn is used to calculate the new value of N (z+h). Although

the iteration procedure is time-consuming, it can still reduce the overall computing
time if the step size & can be increased because of the improved accuracy of the

numerical algorithm. Two iterations are generally enough in practice.

Let us see Eq. 3.2.3 again, the nonlinear operatorN contains an integral part and the

differential part which corresponds to the Raman effect and the SS. It is more

complicated to deal with them. We rewrite N by using Eq. 2.2.4 and Eq. 3.2.3 as the

following form:

N = i;{(l ~ fACT] + £ | hR(T)|A(z,T)|2dT'J

.(3.2.10)

1 V4 0 2 S ' |2 '
_ZZOG_T{A[(I_fR)M(Z’Tﬂ +fRIhR(T )|A(Z’T'T)| dTJ}

—00

The integral part can be solved by the convolution theory by inversely FFT the
product of h,(£2) (the FFT of h,(T)) and the FFT of |A(Z,T)|2 [38]. The

differential part can be solved in the frequency domain by replacingd /07T withiw.
Therefore, N can be written as

V= inX —L(gFT‘I[ia) F,[A]]+F;' [ia)FT[X]]j, (3.2.11)

@,

wherexz{(l— oA + fRF;‘[hR(Q)FTﬂA(z,T)|2]] } Finally, we can com-

pute the nonlinear operator]\7 in use of the convolution theory and the FFT algorithm.

In many papers, it is usually solved the SS term using the Runge-Kutta method with

treating the differential term as a perturbation [33][38][39]. However, we use the
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FFT algorithm, which is simpler and more straightforward than the Runge-Kutta
method. We therefore simulate the evolution of the pulse spectrum using the
split-step Fourier method. We also combine the plug-in program Matfor 4.0 with
Compaq Visual Fortran 6.6. Matfor is a very powerful tool which can draft the

evolution of spectrum synchronously [Fig. 3.2].
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Chapter 4 Experiments

4.1 Pumping Source

Our pumping source, the passively mode-locked Nd:GdVO, laser, can generate
picosecond pulses about 15 ps (FWHM) at the wavelength of 1062.9 nm. The setup
is shown in Figure 4.1. The laser system is pumped by a diode laser with the
maximum power up to 16 W. The gain medium Nd:GdVO, has broader emission
bandwidth (1.25 nm) and higher thermal conductivity (11.7 W/m*K) than Nd:YVO;,
(0.8nm, 5.1W/m*K), thus can generate narrow pulse at high pumping power. We
also use the semiconductor saturable absorber mirror (SESAM) as the saturable
absorber. The SESAM in the laser system is used to generate the CML state and
QML state. With increasing pumping power of diode laser, the laser will be
transformed from the CW state to QML state and finally CML state. Therefore, the
average power of CML state ig a little bit higher than that of QML state. At CML
state, the laser produces mode-locked pulses at'a repetition rate of 126 MHz. At
QML state, the laser produces 1 us (FWHM) wave packet at a repetition rate of 83.3

kHz [see Fig. 4.2]. There are about 100 CML peaks inside the wave packet.

Fiber-coupled

laser diode N¢:GIVO, -1
| A\
~1 | 2
i ,f’
d ¥
M1 T M2
E=100nun If*"fﬂ B=500nun
.___.-v'"
- Tll'-.rf
AT fﬁ;‘-i
oc SESAM on
Total Out 13.5% Heat Sink

Fig. 4.1 The setup of passively mode-locked Nd:GdVOy4 laser
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Fig. 42 The QML pulse trains. The inset is its mode-locked pulses inside the
QML pulse. There are about 100 mode-locked pulses inside QML pulse.

4.2 The Specification of the Micrestructured Fiber

The core diameter of the used microstructured fibet is about 1.7 pm and the pitch A
(spacing between adjacent holes§) is ‘about-t4yum: = The diameter of holes is about
0.6um except for the two holes near the core whose diameter is about 0.7um. The
cross sectional scanning electron microscope image (SEM) of our MF is shown in Fig.
4.3. This fiber has quite high nonlinearity with nonlinear coefficient y being 74
km™ W™ due to its small core diameter. It is also polarization maintaining because
of its asymmetric arrangement of the holes near the core. It also has two zero
dispersion points which are located at 760 nm and 1160 nm. The used pump
wavelength is in the anomalous dispersion region. The dispersion curve can be
simulated by Mode Solutions, software which can calculate frequency-dependent
properties of MFs by importing the structures (SEM) of MFs. We will show the

result in 5.1.
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Fig. 43 The cross sectional scanning electron microscope image (SEM) of the

microstructured fiber.

4.3 Experimental Setup

In our experiment, the pumpmg sourpﬁ: passwely mode-locked Nd:GdV Oy laser,

is focused into a 1-m-long MF w1th about 35% couple efficiency by a 40X

microscope objective lens. The _‘exp‘er"lment 'setup 1s shown in Fig. 4.4. A M2 plate
is used to change the polarization state "of the laser to get the widest spectral
broadening. Finally we measured the output spectrum using an optical spectrum

analyzer (OSA).

Objective lens

Nd:GdVO, ' >
OSA
1064 nm 40X

Microstructured fiber
A2 plate

Fig. 4.4 The setup of our experiment.
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Chapter S Results and Discussion

5.1 Simulated Dispersion Curve of the Microstructured Fiber

By the Mode Solutions mentioned in Chapter 4.2, we obtained the simulated
dispersion curve and the mode pattern of our MF which are shown in Fig. 5.1. Our
simulation result shows that the two zero-dispersion points are located at 790 nm and
1190 nm which slightly different from the provide specification from the suppler.
This may be due to the distortion of SEM, the shadows around the air holes. The
shadows will influence the calculation of real size of air holes. However, our
simulation result of the SC which will be shown in Fig. 5.3 is quite similar to the
experiment result when using the parameters of the simulated dispersion curve. The
parameters of the dispersion (including the higher order dispersion up to fs ) at the

1062.9 nm are shown in Table 5:1.

200 1 1 1 1 1 1 1 1
e
c 04 -----—= e e T g mm e
£ i !
< ! !
»n -2004 : '
= i :
c : I
O  -4004 5 !
= | |
o ! 1
) i |
Q6004 i |
wn ! |
a | |
-800 ; !

600 700 800 900 1000 1100 1200 1300 1400 1500
Wavelength [nm]

Fig. 5.1 The dispersion curve of our MF. The two zero-dispersion points are

located at 790 nm and 1190 nm. The inset is the mode pattern of our MF.
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Table 5.1

The parameters of dispersion at 1062.9 nm

B2 (ps’/km)

B3 (ps’/km)

P4 (ps'/km)

B5 (ps’/km)

P6 (ps*/km)

-57.79207

-0.08328d0

0.00153

-9.20867%10°

5.66594%10°

5.2 The Reliability of our Simulation: Nonlinear

Schrodinger Equation

The method we used to simulate the NSE has been described in Chapter 3.

ensure our simulation is reliable, we compared our simulation results with Ref [18].
In Ref [18], the authors simulated the contributions of various optical effects to the
SC under the femtosecond pumping. There are four circumstances the authors
simulated, only SPM, SPM + SS +HOD, SPM +.SS + RS and SPM + HOD + RS +
SS, respectively. The simulationresults of these circumstances are shown in Fig. 5.2.
Under the same simulation parameters-instable 5.2, our simulation results are also

shown in Fig. 5.3 and have a good-agreement with Fig. 5.2. This indicates that our

simulation of NSE is quite reliable.

Fig. 5.2 Simulation of four circumstances in Ref [18]. a) only SPM, b) SPM + SS +
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Fig. 5.3 Simulation result compared with Ref [18]. a) only SPM, b) SPM + SS +

HOD, ¢) SPM+SS+RS and d) SPM-+HOD+RS+SS

Table 5.2 The simulation parametets ih-Ref-{18]

Pulse

o B2 (ps’/km) | B3 (ps’/km) | P4 (ps’/km) | B5 (ps’/km) | P6 (pskm) | ¥ (/m/km)
widt,
0.1ps -57.5 0.135 3.12%10° -2.9%107 3.69*10°" 100

5.3 The Supercontinuum Spectra: Comparison of

Experiment and Simulation Results

In our experiment, we first use the CML state of the Nd:GdVOy, laser with 230

mW of average power to couple to our MF. The output spectrum is shown in Fig.

5.3.

There are about 5 nm broadband resulted from SPM near the center.

The peak

power of the CML state is only about 42 W that is not enough to generate the SC.
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Fig. 5.4 The output spectrum generated by CML state of Nd: GdVO, laser.

In the next step, we use the QML state 'of Nd:GdVO, laser to couple to the MF.
Under the same average powery the peak-power of the QML pulse is about 14 times
higher than the CML pulse. It can-induce more nonlinear effects and therefore
generate the SC. The spectrum generated by the QML pulses at 160 mW of average
power is shown in Fig. 5.5. We can find that the peak power is large enough to
induce the MI even though its average power is only 160 mW. The first Stokes and
anti-Stokes components of MI are at 1081 nm and 1046 nm. The frequency
difference between the pump and the Stokes component is about 4.8 THz which is
close to Q; = 5.28 THz (corresponding to the Stokes component at 1083 nm)
calculated by the theory described in 2.1.3 with f,=-57.79207, y = 74 and P,= 430 W.
The Stokes component is located within the spectrum of Raman gain and thus
amplified. The amplified Stokes component can be regarded as pumping to induce
the second or the even higher Stokes component. Therefore the spectrum shifts to

the longer wavelength. This phenomenon is also called the intrapulse Raman
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scattering mentioned in 2.1.4. The red-shift of spectrum suppresses the gain of
anti-Stokes component and result in only one anti-Stokes component on the right side

of the pump.

-20

-30- 160mW Modulation
E' ] Instability (MI)
2 40
2 | 1081nm
g =501 Second order
I 1046nm Stoke component
c
— -604

-704

Mfﬁ ﬂlﬂﬂ/\ f\ | L,

1000 1020 1040 1060 1080 1100 1120 1140
Wavelength [nm]

Fig. 5.5 The SC generated by QML pulses under 160 mW of average power.

Then we show the spectrum generated by QML pulses under 220 mW of average
power in Fig. 5.6. Once the red-shift spectrum exceeds the zero-dispersion point
located at 1190 nm, the higher-order dispersion will disturb the spectrum and
therefore generate the dispersive wave at 1315 nm. The theory of HOD effect has
mention in 2.1.6. Compared with the spectrum generated by CML pumping in Fig.
5.4, we can get the SC from 950 nm to 1450 nm by QML pumping with average

pumping power of only 220 mW.
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Fig. 5.6 The SC generated by QML pulses under 220 mW of average power.

Finally, we show the spectrum generated by QML pules from 160 mW to 220 mW of
average power in Fig. 5.7(a) to«(d). » Once-the average power exceeds 230 mW, the
laser system has transferred from the QML state to CML state. Figures 5.7(e) to (h)
are the corresponding simulation SC spectra. The corresponding peak power of the

experiment and the simulation is marked in Fig. 5.7.

Our simulation results [Fig. 5.7(e)-(h)] are quite similar to our experiment results.
Both show the red-shift of spectrum with higher-order dispersion. In our simulation,
we sample 2'° points in a time window of 120 ps, giving the wavelength window from
716 to 2059 nm. Each simulation step /4 is 50 um normalized to the nonlinear
interaction length and the simulated fiber length is 1 m.  However, the peak power
used in the simulation is not exactly the same as the experiment. It is because the
peak power of the QML pulse in the experiment can not be measured precisely. The

noise of our simulation is a little bit high. This may be due to the high sample points
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up to 2" and the effect of boundary. In the case of femtosecond pumping, the
sample points are only 2'° and therefore there is less simulation noise in the case of
picosecond pumping. Besides, the boundary condition of the simulation of NSE is
the periodic boundary due to the use of the Fourier transform. Once the splitting
pulse from the pump exceeds the end of the time window, it will restart shifting from
the beginning of the time window and thus overlap the original signal. The original

signal will be perturbed slightly and contribute to the noise in the simulation.
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Fig. 5.7 The SC generated by QML pulse. The comparison of the experiment results

(the upper row) and the simulation results (the lower row).

5.4 Numerical Results: the contribution of various optical

effects to the Supercontinuum

To understand the contribution of various optical effects to the SC, we simulate
four circumstances, SPM only, SPM + Raman, SPM + Raman + SS and SPM +
Raman + SS +HOD, respectively, under peak power of 490 W, 600 W and 1200 W in

Fig. 5.8. If we consider only the SPM effect [Fig. 5.8(a),(e),(i)], the spectrum is
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symmetrically broadened due to the MI. The contribution of SPM to the SC is
limited. Then we add the Raman effect into our simulation [Fig. 5.8(b),(f),(j)]. The
peak power has exceeded the threshold of the Raman effect to shift the spectrum to
the longer wavelength while the anti-Stokes components are suppressed. Figures
5.8(c)(g)(k) contain additional nonlinear effect of SS. The red shift of the spectrum
in (c) and (g) is a little narrower than (b) and (f). This is because of the depletion of
the red shift by the SS which we have mentioned in 2.1.5. The phenomenon of
depletion in (k) will also appear at about 1900 nm. Finally, we add the effect of
higher order dispersion (HOD) to generate the dispersive wave, that agree with the

experiment results.

o1 (a) SPM " SPM+Raman (C) SPM+Raman+SS] (d) sPy+Raman+ss+HOD
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Fig. 5.8 Four circumstances of simulation: SPM only ((a),(e),(i)), SPM+Raman ((b),
(.,(G)), SPM+Raman+SS ((c),(g),(k)) and SPM+Raman+SS+HOD((d),(h),(1)).
Upper row from (a) to (d) is the simulation of 490 W peak power while the lower

rows from (e) to (h) and (i) to (1) are corresponding to 600 W and 1200 W.



Conclusion and Future Works

We have demonstrated that the QML laser can be a great pumping source which
can generate the SC from 900 nm to 1400 nm in MF under the average power of 220
mW. The peak power can be enhanced to about 14 times if we change the laser
system from the CML state to the QML state. The major nonlinear effects
contributing to the spectrum broadening are MI, stimulated Raman scattering and the
HOD eftfect which were also confirmed in our simulation.

In our future work, we will increase the average power of QML laser system as
high as possible to test the maximum spectral broadening. The potential of the QML
laser has not been unleashed completely because we only tune our laser to 220 mW.
We also can use the CML laser with the same peak power of QML laser as pumping
to figure out the difference of spectrum between the CML and QML pulse. Or we
can double the frequency of QML pulsésby KTP and couple the two kinds of QML
pulses with different frequencies®into the MF."[40][41]. This may broaden the
spectrum further. In the future work of our simulation, we can increase the speed of
simulation by changing the compiler from Compaq Visual Fortran 6.6 to Intel Fortran
compiler 9.0 and using the FFT function in the Intel math kernel library. The two
kinds of software have been optimized to the Intel processor. We can also use
Matfor to construct the interface where we can enter the parameters of input

conveniently.
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Appendix: Simulation of Dispersion of the Microstructured Fiber

“Mode solutions” developed by Lumerical is a powerful tool to simulate the
dispersion profile of the MFs. It is constructed by the fully-vectorial optical mode
solver based on the finite difference time domain (FDTD) Yee cell. One of the
special properties of this software is the importing of SEM. By importing the SEM
of MFs, we can easily get the dispersion profile of MFs. In the following, we will

illustrate the steps how to use this software.

Step 1 Fist, we select “EDIT” tab and then “IMPORT” tab, the import dialog will
appear. This dialog contains three parts: General, Rotations and Image import. In
General, it can select the material of the fiber which is shown in Fig. A.l. In
Rotation, it can rotate the SEM to tlnle angle we Want In Image import, not only can
import the SEM but also tune the scale of SEM after we import. We should notice
that the image size of SEM should be symmetrlcal such as 638%638 pixels, or the

SEM will be distorted after 1mp0rt1ng. ‘
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Fig. A.1 The import dialog.
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Step 2 Select the material of our MF.  Usually, it is Corning 7980 Silica.
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Fig. A.2 The General dlalog Wthh can select the material of the fibers

I i 5 b

Step 3  After we select the Import 1mage tab shown in Fig. A.1, the Image Import

} - a

Wizard dialog will show up. We can change the contrast of SEM by tuning the

threshold bar.

Sp § o i Sel e Foneold ko mport

Fig A.3 The Image Import Wizard dialog

Step 4 After tuning the contrast of SEM, we should input the scale of SEM. We
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pull the mouse to define a distance of 10 microns the same as the scale shown in the

SEM. In fact, the cross section of MFs will be a little distorted after taking the

picture of SEM. We can adjust the input of the scale to compensate the distortion.

Gragh contro

# calbrade scaie

© Toom

caliration dinection
& horizontal

O verhcal

© diagonal

pOinL A

«[08 66

4 5 ]
¥ (no unis)

Step 2 of 4. Carale the image scale

Cancel | Back Mg

Fig A4 “Input of the scale of SEM

Step 5 After importing the SEM, we should-selecta region to simulate.
=]
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Fig A.5 Selected region to simulate

Step 6 To select the analysis tab and to calculate the possible modes inside the MF.
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Fig A.6 Calculation of modes existing inside the MF
Step 7 After calculating the modes, we shdul‘d select a mode and simulate the

dispersion of the MF. The data can'be oﬁtputted t0 Matlab or the wordpad.
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Fig A.7 Simulation of the dispersion of the MF
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