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摘要 

 

我們於此篇論文報導了藉由 Q-開關(Q-switched)鎖模脈衝雷射耦合至微結

構光纖，在低平均功率底下(220 mW)，產生了 950 nm 至 1450 nm 寬的超連續光

譜。微結構光纖具有特殊的色散曲線和很大的非線性係數，因此成為產生超連續

光譜的有力材料。而 Q-switched 鎖模脈衝雷射即使在低平均功率底下，仍具有

很高的峰值功率，其峰值功率約 CW 鎖模脈衝雷射的 14 倍，因此可以引發各種非

線性效應，諸如調制不穩(modulation instability)、受激拉曼散射(Stimulated Raman 

scattering)和高階色散(higher-order dispersion)等效應，這些效應均是產生超連續

光譜的主因。我們將在此篇論文對微結構光纖之非線性效應，作詳盡的解說。另

外我們也利用非線性薛丁格方程式來模擬實驗的結果，得到相當好的印證，模擬

理論與方式也會在此篇論文作詳細的介紹。 
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Abstract 

 

In this thesis, we reported the supercontinum generation from 950 nm to 1450 

nm by using a Q-switched mode-locked laser coupling to a microstructured fiber 

under the low pumping average power of 220 mW.  The microstructured fibers have 

special dispersion curve and high nonlinear coefficient and therefore are a powerful 

tool to generate supercontinuum.  A Q-switched mode-locked laser has high peak 

power even with low average power, whose peak power is about 14 times higher than 

that of the CW mode-locked laser, thus it can easily generate various kinds of 

nonlinear effects, such as the modulation instability, the stimulated Raman scattering 

and the higher-order dispersion.  These nonlinear effects are the major causes to 

generate the supercontinuum.  We will introduce the microstructured fibers and the 

nonlinear effects thoroughly in this thesis.  We also simulated our experiment results 

by using the nonlinear Schrödinger equation that shows a great matching.  The 

theory and the detail simulation will also be demonstrated in this thesis. 
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Chapter 1 Introduction 

1.1  Photonic Crystal Fibers  

The research of photonic crystal fibers (PCFs) started as early as in the 70’s [1]. 

However, its impact was not prominent until the 90’s when the technology was able 

to fabricate the perfect structures of PCFs.  The great flexibility in the design of 

PCFs led to tremendous progress in various domains such as optical frequency 

metrology, sensor technology, medical science, and telecommunications [2-6].   

Photonic crystal fibers [7-9] can be classified into two categories: microstructured 

fibers (MFs) and photonic bandgap fibers (PBFs).  Figure 1.1 shows the MF in 

which its solid core is surrounded by an array of air holes.  Due to its higher 

refractive index of the core than the cladding, the MF can guide light as the standard 

fibers by the principle of the total internal reflection.   

 

Fig. 1.1  The scheme of the microstructured fiber.  d is the diameter of the air holes 

and Λ is the pitch, the distance between the two air holes. 

 

The dispersion profile of MFs strongly depends on the air-filling fraction and 

core size.  For example, increasing the air-filling fraction and reducing the size of the 

core allows for a drastic increase of the waveguide dispersion, thus enabling to shift 
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the zero-dispersion wavelength of MFs to below 800 nm [10].  The dispersion is 

then anomalous at visible wavelengths and soliton propagation becomes possible for 

this range of wavelengths.  A shift of the zero-dispersion wavelength to any value 

from 500 nm to 1500 nm can be obtained in MFs.  Furthermore, by choosing the 

appropriate air-hole size and pitch, it is possible to fabricate MFs that exhibit very low 

and flat dispersion over a relatively broad wavelength range [11-13]. 

   PBFs are the fibers which guide light in their hollow core.  Figure 1.2 shows the 

scheme of PBFs.  In PBFs, the periodic arrangement of the air holes can be seen as 

the photonic bandgap structure and their hollow core is the defect inside the structure.  

The photonic bandgap structure will result in a bandgap which allows only certain 

range of wavelength exiting in it.  Outside this range, PBFs is anti-guiding.  

Guiding light in a hollow core holds many promising applications like high power 

delivery without the risk of fiber damage, gas sensors or extreme low loss guidance in 

vacuum.  Furthermore, they are almost insensitive to bending (even at very small 

bending radii) and have extreme dispersion properties, such as anomalous dispersion 

values in the thousands of ps/nm/km regime are easily obtained.  Due to a negligible 

contribution from the core material (air), the total dispersion of PBG fibers is to a high 

degree dominated by waveguide dispersion. 

 

Fig. 1.2  The scheme of photonic bandgap fibers (PBFs).  Light is guided in the 

air-core of PBFs. 
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1.2  Supercontinuum Generation 

Supercontinuum (SC) generation is formation of broad continuous spectra by 

propagation of high power pulses through nonlinear media [14].  Provided enough 

power, SC generation can be observed in a drop of water [15].  However, the 

nonlinear effects involved in the spectral broadening are highly dependent on the 

dispersion of the media; and a clever dispersion design can significantly reduce the 

power required.  The widest spectra are obtained when the pump pulses are launched 

close to the zero-dispersion wavelength of the nonlinear media.  Due to the 

technology which can fabricate the shiftable dispersion profile and small core MFs, 

MFs become powerful tools to generate the SC and was first demonstrated in 1999 

[16].  The zero-dispersion wavelength of MFs can be shifted close to the pumping 

wavelength and the small core of MFs enhances the nonlinear effects, mechanisms 

leading to the SC.  

To generate the SC with MFs, femtosecond [17][18] and picosecond mode-locked 

laser systems were generally used as the pumping sources [19].  For femtosecond 

pumping, it’s easily to get higher peak power of the pumping pulse due to its short 

pulse duration and therefore to induce strong nonlinear effects.  These nonlinear 

effects include high-order soliton breakup [20][21], self-frequency shift [22] and 

four-wave mixing [23].  Usually about mini-watts of average pumping power are 

needed to generate the supercontinuum for a femtosecond mode-locked laser system 

[18].  However, a femtosecond mode-locked laser system is more expensive and 

complex to build.  A picosecond mode-locked laser system is a better way to choose.  

For picosecond pumping, the major nonlinear effects for spectrum broadening are 

modulation instability and stimulated Raman scattering if it is pumped in the 

anomalous dispersion region, where the group-velocity dispersion β2 is negative.  In 
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2002, Mickael Seefeldt reported the SC from 700 nm to 1600 nm with an average 

input power of 5.0 W using passively mode-locked Nd:YVO4 which generated a pulse 

width of 10 ps. [19]  Compared with femtosecond pumping, an average power up to 

several watts should be needed to generate sufficient supercontinuum for picosecond 

pumping.  It is due to its longer duration of pulse width.  Therefore, a higher 

average power is necessary to get enough pumping peak power. 

 

1.3  Motivation 

To enhance the effect of the SC, a simple way is to increase the pumping peak 

power.  In our passively mode-locked Nd:GdVO4 laser system which can generate a 

pulse width of 15 ps, the peak power of Q-switched mode-locked (QML) state is 

about 14 times higher than that of CW mode-locked state (CML).  We can utilize 

this characteristic to strengthen the nonlinear optical effects for the SC. 

 

1.4  Organization of this Thesis 

In Chapter 2, we will introduce the theory of SC.  The content describes several 

nonlinear effects and the nonlinear Schrödinger equation, a general equation 

presenting the nonlinear phenomenon.  In Chapter 3, we will describe how to 

simulate the nonlinear Schrödinger equation.  Then, we will introduce our 

experiment, including the pumping laser system, the specification of our MF and the 

experimental setup in Chapter 4.  Chapter 5 is the experiment results and discussion.  

We will compare the experiments results with the numerical results in this chapter.  

Finally, we will give a conclusion and the future works in Chapter 6.  Appendix will 

show how to simulate the dispersion of the fiber using “Mode solutions”, software 
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made by Lumerical. 
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Chapter 2 Theory of the Supercontinuum Generation 

2.1  Nonlinear Optical Effects 

Nonlinear effects are the major mechanisms leading to the supercontinuum (SC).  

With enough peak power, a pulse propagating in the fiber will induce several 

nonlinear effects.  Under the picosecond pulse pumping in the anomalous dispersion 

region, a pulse will experience the self-phase modulation (SPM) [21], one of the 

nonlinear effects leading to the spectral broadening of the pulse.  The nonlinear 

phase induced by SPM will interact with the anomalous dispersion and generate pairs 

of new frequencies at each side of pumping.  This phenomenon is what we call 

modulation instability (MI) [17][21], which can be regarded as degenerate four-wave 

mixing (DFWM).  Once the new frequencies locate in the spectrum of Raman gain, 

they will experience the stimulated Raman scattering (SRS) and self-steepening (SS) 

which shift the spectrum further into longer wavelength and distort the shape of 

spectrum.  Higher-order dispersion (HOD) (usually β3 and β4) should also be 

considered if the spectrum extends from the anomalous dispersion region to the 

normal dispersion region [24].  The new dispersive wave will be generated at the 

normal dispersion region.  Those nonlinear effects mentioned above will be 

described more detail in the following. 

 

2.1.1  Self-phase Modulation  

SPM is a phenomenon that leads to spectral broadening of optical pulses.  It 

originates from the intensity-dependence of the refractive index [25]: 

2
2 Annn L += ,                    (2.1.1) 

where nL is the linear part of the refractive index, n2 is the nonlinear index coefficient 
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and 2A is the optical intensity.  A typical value of n2 for silica material is 3.2×10-20 

m2/W.  For an optical pulse, SPM refers to the self-induced nonlinear phase shift as 

it propagates along the fiber 

2
2 )(2)( TAnLTSPM

NL λ
πφ = ,                (2.1.2) 

where L is the length of the fiber.  This nonlinear phase shift can induce a frequency 

chirp which leads to the spectral broadening of the pulse.  A useful quantity γPp 

interprets the maximum nonlinear phase shift for a pulse propagating in fibers, where 

Pp is the peak power of the optical pulse and γ is the nonlinear coefficient [21] 

effcA
n ωγ 2= .                     (2.1.3) 

Here is the effective area of the propagating mode inside the fiber and ω is the 

center frequency of the optical field.  The nonlinear coefficient γ represents the 

strength of nonlinear effects and is inversely proportional to the area of fiber core. 

effA

 

2.1.2  Degenerate Four-Wave Mixing 

 DFWM is a process where two pump photons generate a Stokes photon and an 

anti-Stokes photon: 

assp ωωω +→2 ,                    (2.1.4) 

where ωp, ωs and ωas correspond to the pump, Stokes, and anti-Stokes frequencies, 

respectively.  Being a coherent process, four-wave mixing is efficient only if the 

phase-matching condition is fulfilled [18], i.e., 

02)(
)!2(

2)(2)()( 22 =⎥
⎦

⎤
⎢
⎣

⎡
+−=−+= ∑

n
p

n
ps

n
pass P

n
L γωωβωφωφωφφ∆ .   (2.1.5) 
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Here β2n is the 2nth derivative of the propagation constant β with respect to the 

frequency.  Note that only the even terms of the series expansion of β contribute to 

the phase-matching condition and the odd terms will cancel one another.  The 

nonlinear phase shift 2γPp due to SPM should be also included in the phase-matching 

condition.  For a pump wavelength located in the anomalous dispersion region, the 

phase-matching condition is mainly governed by the induced nonlinear phase shift.  

Usually the process of DFWM in the anomalous region can be regarded as MI which 

we will discuss in next section. 

 

2.1.3  Modulation Instability 

For a pump wavelength located in the anomalous dispersion region, it is possible to 

compensate the induced nonlinear phase shift 2γPp by the negative value of β2 and 

generate the corresponding Stokes and anti-Stokes components.  The frequency 

difference between the pump and the Stokes (anti-Stokes) component calculated by 

Eq. 2.1.5 is [21] 

2
1

2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=

β
γ

Ω p
s

P
,                    (2.1.6) 

if considering only the term of β2.  This frequency shift can also be calculated by 

solving the standard nonlinear Schrödinger equation (NSE) of CW light [21].  By 

using the perturbation theory, the CW light solution of NSE will become unstable in 

the anomalous dispersion region and generate two new frequencies on ether side of 

the pump frequency.  These two new frequencies calculated by perturbation of CW 

solution are as the same as the frequencies calculated by the DFWM.  The new 

frequencies will break up the CW or quasi-CW radiation into a train of ultra short 

 8



pulses.  We call this phenomenon MI which results from an interplay between the 

nonlinear and the dispersive effects.  In fact, MI can be interpreted in terms of 

DFWM in the frequency domain, whereas in the time domain it results from an 

unstable growth of weak perturbation from the CW steady state. 

 

2.1.4  Stimulated Raman Scattering 

SRS is a photon-phonon interaction.  It is described quantum-mechanically as 

scattering of a photon by one of the molecules to a lower -frequency photon, while the 

molecule makes transition to a higher energy vibrational state.  SRS can yield gain 

for a probe wave co-propagating with a pump wave and whose wavelength is located 

within the Raman gain bandwidth.  The normalized Raman gain spectrum of silica is 

shown in Fig. 2.1 as a function of frequency difference between the pump and probe 

waves [26].  The Raman gain of the MFs is comparable to that of silica fibers [27].  

The gain bandwidth is 40 THz with a peak located at 13.2 THz from the pump 

frequency.  For an ultra-short pulse, the spectral width of the pulse is large enough 

that the Raman gain can amplify the low-frequency (red) spectral components of the 

pulse, with high-frequency (blue) components of the same pulse acting as a pump.  

This effect is called intrapulse Raman scattering [21].  As a result, the pulse 

spectrum shifts toward the low-frequency (red) side as the pulse propagates inside the 

fiber, a phenomenon referred to as the self-frequency shift. 
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Fig. 2.1  Raman-gain spectrum for fused silica at a pump wavelength λp = 1 µm. 

2.1.5  Self-Steepening 

Self-steepening (SS) results from the dispersion of the third-order susceptibility, i.e., 

the red frequency components experience a lower nonlinearity than the blue 

frequency components.  In the time domain, SS can be thought as the intensity 

dependence of the group velocity:  the peak of the pulse moves at a slower velocity 

than the wings which induces the trailing edge of the pulse to become steeper as the 

pulse propagates [21].  In combination with SPM, SS results in a more pronounced 

broadening of the blue frequency components compared to the red ones.  The 

process of self-frequency shift is substantially reduced by SS since the nonlinearity 

decreases as the center wavelength of the soliton shifts towards the red. 

 

2.1.6  Higher-order Dispersion 

  Higher-order dispersion (HOD) effect becomes important in optical fibers when the 

carrier frequency is close to the zero dispersion point.  Once the spectrum extends 

beyond the zero dispersion point to the normal dispersion region, the spectrum will be 

disturbed by the HOD to generate a new dispersive wave [See Fig 2.2].  This is 

because when accounting the higher-order dispersion, the wavenumber of the 
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propagating pulse is the same as the dispersive wave so that the energy can transfer 

from the pulse to the dispersive wave. 

 

Fig. 2.2  The dispersive wave generated at the normal dispersion due to the 

perturbation of HOD [24]. 

 

2.2  Nonlinear Schrödinger Equation 

An electromagnetic field propagating in a medium induces a polarization of the 

electric dipoles.  The evolution of the electromagnetic field in the medium can be 

described by a propagation equation derived from the general wave equation [21] 

2

2

02

2

2
2 1

t
P

t
E

c
E

∂
∂

=
∂
∂

−∇ µ ,               (2.2.1) 

where E is the electric field, P the induced polarization, µ0 the vacuum permeability 

and c the speed of light in vacuum.  For intense radiation such as laser pulses, the 

response of the medium becomes nonlinear and the induced polarization consists of a 

linear and a nonlinear parts.  In the scalar approximation, the linear and nonlinear 

induced polarizations are related to the electromagnetic field as [21] 

EP )(
L

1
0χε= ,                        (2.2.2) 

∑
≥

=
2

0
j

j)j(
L EP χε ,                      (2.2.3) 
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where ε0 is the vacuum permittivity and χ(j) is the jth order susceptibility of the 

medium.  The inversion symmetry of silica glass at the molecular level results in 

negligible even-order susceptibilities.  Moreover, susceptibilities of order higher 

than 3 are not significant for silica glass.  Therefore, the relevant nonlinear effects in 

optical fibers are mainly induced by χ(3) [21]. 

  Optical nonlinear processes can be divided in two categories.  Elastic processes 

correspond to photon-photon interaction with no energy exchange occurring between 

the electric field and the medium.  Such effects include SPM, DFWM, and 

generation of dispersive wave.  Inelastic processes correspond to photon-phonon 

interaction, which leads to energy exchange between the electric field and the 

nonlinear medium.  Raman scattering is one of the effects of inelastic process.  

Treating the nonlinear part of the induced polarization as a perturbation in Eq. 2.2.1 

and assuming that the electric field is of the form 

)exp(),(),( 0TiziTzATzE ωβ −= ,               (2.2.4) 

where A(z,T) is the slowly varying envelope of the electric field, β is the propagation 

constant and ω0 is the center frequency of the field, one can derive the well-known 

NSE.  The NSE models accurately the propagation of light along optical fibers for 

pulses as short as 30 fs [28].  In a frame of reference moving at the group velocity of 

the pulse, the NSE can be written as [21] 

'
2

''

02

1

),()()1(
!2
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where α is the fiber loss and βn are the coefficients of the Taylor-series expansion of 

the propagation constant β around ω0, and R(T) is the response function describing the 

interaction between the photon and medium.  The response function should include 
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both the instantaneous response (interaction between electron and photon) and the 

delayed Raman response (interaction between photon and phonon) and is given by 

)()()1()( ThfTfTR RRR +−= δ ,               (2.2.4) 

where fR represents the fractional contribution of the delayed Raman response 

function hR(T).  The value of fR is typically 0.18 and hR(T) can be presented as [300] 

)sin()(
1

2
21

2
2

2
1 2

τττ
ττ τ TeTh

T

R

−+
=                 (2.2.5) 

where τ1 = 12.2 fs and τ2 = 32 fs.  Figure 2.3 shows the temporal variation of hR(T) 

[29].  The delayed Raman response hR(T) can describe the phenomenon of intrapulse 

Raman scattering referred to the self-frequency shift.  The right-hand side of Eq. 

2.2.3 contains the nonlinear effects such as SPM, intrapulse Raman scattering and SS, 

the differential term which accounts for the dispersion of the nonlinear coefficient.  

On the left side of the Eq. 2.2.3, it presents not only the dispersion effect but also the 

fiber loss.  By simulating the NLS, we can get the evolution of an optical pulse 

propagating in fibers and therefore realize the causes of the SC. 

 

Fig. 2.3  Temporal variation of delayed Raman response function hR(T) for silica 

fibers [28]. 
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Chapter 3 Simulation Methods 

3.1  Simulation of the Nonlinear Schrödinger Equation 

  The NSE is an important tool to analyze the evolution of a pulse propagating in 

fibers.  By solving the NSE, we can get the final spectrum of the pulse out of the 

fiber.  In general, the NSE is a nonlinear partial differential equation and doesn’t 

have an analytic solution.  A numerical approach is therefore often necessary for 

understanding the nonlinear effects in optical fibers.  A large number of numerical 

methods can be used for this purpose.  These can be classified into two broad 

categories known as: (i) the finite-difference methods and (ii) the pseudospecral 

methods.  Generally speaking, pseudospecral methods are faster by up to an order of 

magnitude to achieve the same accuracy [30].  It has been used extensively to solve 

the pulse-propagation problem in nonlinear dispersive media is the split-step Fourier 

method [31] [32].   

  In this thesis, we solve the NSE using the split-step Fourier method.  Other 

concepts such as the discrete Fourier transform (DFT), fast Fourier transform (FFT) 

and convolution theory should also be used in the simulation of NSE.  In this chapter, 

we will introduce the DFT, FFT and the convolution theory from 3.1.1 to 3.1.3.  

Then we will show how to use these tools to solve NSE by the split-step Fourier 

method in detail in 3.2 

 

3.1.1  Discrete Fourier Transform 

  A physical process can be described in the time domain t and the frequency domain 

f as functions of h(t) and H(f) respectively.  For many purposes it is useful to think 

h(t) and H(f) as being two different representations of a physical process.  One goes 

back and forth between these two representations by means of the Fourier transform.  
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We can get H(f) by the Fourier transform of h(t) or h(t) by the inverse Fourier 

transform of H(f) [33] . 

∫
∞

∞−

= dteth   fH t fi  π 2)()( ,                 (3.1.1) 

∫
∞

∞

=
-

t fi   2 - dfefH  th π )()( .                (3.1.2) 

In the most computational work, the function we deal is usually a train of sampled 

data at evenly spaced intervals in time.  If we sample a continuous function h(t) to N 

consecutive values, h(t) can be presented as  

1-N., . . 2, 1, 0, k        ,k t      ,th  h kkk =≡≡ ∆)( ,         (3.1.3) 

where ∆ is the time interval.  According to the sampling theory, a continuous 

function h(t), sampled at an interval ∆, happens to be bandwidth limited to 

frequencies from - fc to fc where fc=1/2∆ [33].  Let us sample the frequency to N 

consecutive values inside the bandwidth, i.e.,  

22
N....,Nn     ,

N
nfn −=≡
∆ ,                (3.1.4) 

where N is usually taken as an even number.  If we really count the number of fn, we 

will find that there are N+1 values of n.  It turns out that the two extreme values of n 

are not independent (in fact they are equal), but all the others are.  This reduces the 

count to N.   

We can approximate the integral in Eq. 3.1.1 by a discrete sum [33]:  

∑∑∫
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2)()(
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Nn k i 
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k

t f i 
k

t fi  2
n ehehdteth   fH kn πππ ∆∆ .  (3.1.5) 

The final summation in Eq. 3.1.5 is called the DFT of the N points of hk.  Let us 

denote it as function Hn,   
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The relation between the DFT and continuous Fourier transform with a continuous 

function sampled at an interval ∆ can be written as 

( )nH f Hn≈                       (3.1.7) 

From Eq. 3.1.4, we have seen that the index n varies from –N/2 to N/2.  However, we 

find that Eq. 3.1.6 is periodic in n with period N.  Therefore, H−n = HN−n, where         

n = 1, 2,….  With this conversion, we let Hn for n from 0 to N-1 form one complete 

period.  When this convention is followed, we must remember that the zero 

frequency corresponds to n = 0, positive frequencies 0 < f < fc correspond to values 1 

≤ n ≤ N/2−1, while negative frequencies −fc < f < 0 correspond to N/2+1 ≤ n ≤ N−1.  

The value n = N/2 corresponds to both f = fc and f = −fc [33]. 

The formula for the discrete inverse Fourier transform, which recovers the set of 

hk’s exactly from the Hn’s is [33]: 

∑
−

=

−=
1

0

21 N

n

N/n k i 
nk eH

N
 h π .                  (3.1.8) 

Notice that there are only two differences between Eq. 3.1.6 and Eq. 3.1.8.  One is 

changing sign in the exponential and the other is further dividing by N.  This means 

that a routine for calculating the DFT can also be used, with slight modification, to 

calculate the inverse transform. 

 

3.1.2  Fast Fourier Transform 

  How much computation work is needed to compute the DFT?  Let us introduce a 

new complex number W: 

N/i eW π2≡ ,                     (3.1.9) 

then Eq. 3.1.6 can be written as [33] 
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The vector hk is multiplied by a matrix W of the power n×k.  This matrix 

multiplication finally requires N2 complex multiplications, plus a smaller number of 

operations to generate the required powers of W.  So, the DFT appears to be an order 

of N2 processes.  However, the computation work can be reduced to an order of N 

log2 N by means of FFT.  The difference between N2 and N log2 N is huge for large N.  

For a microsecond time computer, it takes 2 weeks to finish N2 computation whereas 

only 30 seconds for N log2 N for N=106.   

  The DFT of length N can be rewritten as the sum of two DFTs, each of length N/2.  

One of the two is formed from the even-numbered points of original N, the other from 

the odd-numbered points [33]. 
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e
kF  denotes the kth component of the Fourier transform of length N/2 formed from 

the even components, while  is the corresponding transform of length N/2 formed 

from the odd components.  The dichotomy of the DFT can be used recursively.  We 

can do the same reduction of  to the two DFTs, each of length N/4.  In other 

words, we can define  and  to be the DFTs of the points which are 

respectively even-even and even-odd on the successive subdivisions of the data.  If 

we treat N as an integer power of 2, it is evident that we can continue applying the 

o
kF

e
kF

ee
kF eo

kF
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dichotomy until we have subdivided the data all the way down to transforms of length 

1.  

k
eeeoeeoeo...

k fF =    for some n.           (3.1.12) 

From Eq. 3.1.12, we can see that for every pattern of  e’s and o’s, there is a 

one-point transform that is just one of the input numbers f

N2log

n.  The final step is to 

figure out which value of n corresponds to which pattern of e’s and o’s in Eq. 3.1.12. 

By using this information, we can calculate Fk.  This is what we call the FFT. 

  In our simulation, we use Compaq Visual Fortran 6.6.  In the library of Compaq 

Visual Fortran 6.6, the instructions of the FFT and the inverse FFT are DFFTCF and 

DFFTCB.  The output of DFFTCF is Hn.  That means we need to multiply the 

output by the interval ∆ to get the Fourier transform H(fn).  For DFFTCB, the output 

should be divided the sampled number N to get hk as Eq. 3.1.8.  We should also 

notice that the sampled number N, the input in DFFTCF and DFFTCB, should be an 

integer of the power of 2. 

 

3.1.3  Convolution Theory 

  A system is said to be linear if it satisfies the principle of superposition, i.e., if its 

response to the sum of any two inputs is the sum of its responses to each of the inputs 

separately.  The output at time t is, in general, a weighted superposition of the input 

contributions at difference time τ [34], 

τττ dfthtf )();()( 12 ∫
∞

∞−

= ,                  (3.1.13) 

where f1(t), f2(t) and );( τth  are the input, the output of the linear system and a 

weighting function representing the contribution of the input at time τ to the output at 
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time t, respectively.  

A linear system is said to be time-invariant or shift-invariant, if when the input of 

a linear system is shifted in time, its output shifts by an equal time, but otherwise 

remains the same.  Then );( τth can be written as )( τ−th and Eq. 3.1.13 becomes [34] 

τττ dfthtf )()()( 12 ∫
∞

∞−

−= .                (3.1.13) 

The Fourier transform of f2(t) is the product of the Fourier transform of )( τ−th  and 

f1(t).  This is known as the convolution theory presented as [34]   

)()()( 12 ννΗν FF = ,                 (3.1.14) 

where )(1 νF , )(2 νF and )(νΗ are the Fourier transform of f1(t), f2(t) and );( τth .  In 

the NSE, the response function R(T) can be treated as )( τ−th  and thus we can 

calculated the integral part in NSE by the inverse Fourier transform of Eq. 3.1.14. 

 

3.2  Split-step Fourier method  

One of the pseudospecral methods that have been used extensively to solve the 

pulse-propagation problem in nonlinear dispersive media is the split-step Fourier 

method.  The main reason for the faster speed of the split-step method compared 

with the most finite-difference schemes is the use of the FFT. 

To understand the philosophy behind the split-step Fourier method, it is useful to 

rewrite Eq. 2.2.3 in the form [21] 

( )A N̂D̂
z
A

+=
∂
∂ ,                     (3.2.1) 

where is a differential operator that accounts for the dispersion and absorption in a 

media and is a nonlinear operator that presents the effect of fiber nonlinearities on 

pulse propagation.  These operators are given by [21] 

D̂

N̂
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  In general, the dispersion and nonlinearity effects act together along the length of 

the fiber.  The split-step Fourier method assumes that the dispersive and nonlinear 

effects can be pretended to act independently inside a small distance h and therefore 

obtains an approximation solution.  More specifically, propagation along the fiber 

from the position z to z + h is carried out in two steps.  In the first step, the 

nonlinearity acts alone, and =0 in Eq. 3.2.1.  In the second step, dispersion acts 

alone, and =0.  Mathematically [21], 

D̂

N̂

)()ˆ(exp)ˆ( exp)( Tz,A Nh  DhTh,z A ≈+ .            (3.2.4) 

The first step can be evaluated in the time domain while the second step should be 

calculated in the frequency domain.  The process is shown as the following 

prescription 

( ) ( ) )]()ˆ[exp()](ˆ[ exp Tz,ANh F iω Dh   FTh,z A 1 ∗≈+ −
TT     (3.2.5) 

where , , are the FFT operation, the inverse FFT operation and the Fourier 

transform of in Eq. 3.2.5.  Notice that the differential operator

TF 1−
TF )(ˆ ωiD

D̂ T∂∂ / in  can be 

replaced by

D̂

ωi , just a number in the frequency domain.  That’s the reason why the 

dispersion effect should be calculated in the frequency space.  After finishing the 

dispersion effect on , we should change the calculation from the frequency 

domain to the time domain by the inverse FFT.  The use of the FFT makes numerical 

evaluation of Eq. 3.2.5 relatively fast.  It is for this reason that the split-step Fourier 

method is faster up to two orders of magnitude compared with most of the 

finite-difference schemes. 

),( TzA
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  To estimate the accuracy of the split-step Fourier method, we note that a formally 

exact solution of Eq. 3.2.1 is given by 

)( )]ˆˆ([ exp)( Tz,ANDhTh,z A +≈+ ,              (3.2.6) 

if is assumed to be z independent.  At this point, it is useful to recall the Baker 

-Hausdorff formula [35] for two noncommutating operators a

N̂

ˆ and b̂ , 

....]]ˆ,ˆ[,ˆˆ[
12
1]ˆ,ˆ[

2
1exp()ˆexp()ˆexp( +−+++= bababababa       (3.2.7) 

where .  A comparison of Eq. 3.2.4 and Eq. 3.2.6 shows that the 

split-step Fourier method ignores the noncommutating feature of the operators  

and .  By using Eq. 3.2.7 with and , the dominant error term is 

found resulting from the single commutator

abbaba ˆˆˆˆ]ˆ,ˆ[ −=

D̂

N̂ Dha ˆˆ = Nhb ˆˆ =

]ˆ,ˆ[
2
1 2 NDh .  Thus, the split-step Fourier 

method is accurate to the second order in the step size h. 

  The accuracy of the split-step method can be improved by adopting a different 

procedure to propagate the optical pulse over one segment from z to z+h.  In this 

procedure Eq. 3.2.4 is replaced by 

),()ˆ
2

exp())(ˆexp()ˆ
2

exp(),( '' TzADhdz zNDhThzA
hz

z
∫
+

≈+       (3.2.8) 

The procedure divides into 3 parts [See Fig. 3.1].  At first, the dispersion effect acts 

alone in the first half of distance h.  Then the effect of nonlinearity acts alone in the 

middle of segment.  Finally the dispersion effect acts again in the rest of length h/2.  

Similar to Eq. 3.2.5, the dispersion effects at the both sides of the segment is 

calculated in the frequency domain by the FFT whereas the nonlinear effect at the 

middle part is calculated in time domain.   
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Fig. 3.1  Schematic illustration of the symmetrized split-step Fourier method.  Fiber 

length is divided into a large number of segments of width h.  Within the segment, 

the effect of nonlinearity acts at the midplane shown by a dashed line. 

 

Because of the symmetric form of Eq. 3.2.8, this scheme is known as the 

symmetrized split-step Fourier method [36].  The integral in the middle exponential 

considers the z dependent of the nonlinear operator .  If the step size h is small 

enough, the integral can be approximated by .  The most important 

advantage of using the symmetrized form of Eq. 3.2.8 is that the leading error term 

comes from the double commutator in Eq. 3.2.7 is of the third order in the step size h.  

This can be proved by applying Eq. 3.2.8 twice in Eq. 3.2.7. 

N̂

)ˆexp( Nh

The accuracy of the symmetrized split-step Fourier method can be further 

improved by evaluating the integral in Eq. 3.2.8 more accurately than approximating 

it by .  A simple approach is to employ the trapezoidal rule and approximate 

the integral by [37] 

)(ˆ zNh

)](ˆ)(ˆ[
2

)(ˆ '' hzNzNhdz zN
hz

z

++≈∫
+

                (3.2.9) 
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However, the implementation of Eq. 3.2.9 is not simple because is unknown 

at the mid-segment located at .  It is necessary to use an iterative procedure 

that is initiated by replacing by .  Equation is than used to estimate 

 which in turn is used to calculate the new value of .  Although 

the iteration procedure is time-consuming, it can still reduce the overall computing 

time if the step size h can be increased because of the improved accuracy of the 

numerical algorithm.  Two iterations are generally enough in practice. 

)(ˆ hzN +

2/hz +

)(ˆ hzN + )(ˆ zN

),( ThzA + )(ˆ hzN +

  Let us see Eq. 3.2.3 again, the nonlinear operator contains an integral part and the 

differential part which corresponds to the Raman effect and the SS.  It is more 

complicated to deal with them.  We rewrite by using Eq. 2.2.4 and Eq. 3.2.3 as the 

following form: 
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The integral part can be solved by the convolution theory by inversely FFT the 

product of )(ΩRh (the FFT of ) and the FFT of )(ThR
2)( Tz,A [38].  The 

differential part can be solved in the frequency domain by replacing withT∂∂ / ωi .  

Therefore, can be written as N̂

⎟
⎠
⎞

⎜
⎝
⎛ +−= −− ]][[]][[ 11

0

XF iFAF iF
A
XXiN TTTT ωω

ω
γγ

)
,        (3.2.11) 

where { } TzAFhFfTzAf X TRTRR ]]),([)([),()1( 212 Ω−+−= .  Finally, we can com- 

pute the nonlinear operator in use of the convolution theory and the FFT algorithm.  

In many papers, it is usually solved the SS term using the Runge-Kutta method with 

treating the differential term as a perturbation [33][38][39].  However, we use the 

N̂
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FFT algorithm, which is simpler and more straightforward than the Runge-Kutta 

method.  We therefore simulate the evolution of the pulse spectrum using the 

split-step Fourier method.  We also combine the plug-in program Matfor 4.0 with 

Compaq Visual Fortran 6.6.  Matfor is a very powerful tool which can draft the 

evolution of spectrum synchronously [Fig. 3.2]. 

 

Fig. 3.2  The plug-in program Matfor 4.0 
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Chapter 4 Experiments 

4.1  Pumping Source 

  Our pumping source, the passively mode-locked Nd:GdVO4 laser, can generate 

picosecond pulses about 15 ps (FWHM) at the wavelength of 1062.9 nm.  The setup 

is shown in Figure 4.1.  The laser system is pumped by a diode laser with the 

maximum power up to 16 W.  The gain medium Nd:GdVO4 has broader emission 

bandwidth (1.25 nm) and higher thermal conductivity (11.7 W/m*K) than Nd:YVO4 

(0.8nm, 5.1W/m*K), thus can generate narrow pulse at high pumping power.  We 

also use the semiconductor saturable absorber mirror (SESAM) as the saturable 

absorber.  The SESAM in the laser system is used to generate the CML state and 

QML state.  With increasing pumping power of diode laser, the laser will be 

transformed from the CW state to QML state and finally CML state.  Therefore, the 

average power of CML state is a little bit higher than that of QML state.  At CML 

state, the laser produces mode-locked pulses at a repetition rate of 126 MHz.  At 

QML state, the laser produces 1 µs (FWHM) wave packet at a repetition rate of 83.3 

kHz [see Fig. 4.2].  There are about 100 CML peaks inside the wave packet. 

 

Fig. 4.1  The setup of passively mode-locked Nd:GdVO4 laser 

 25



10 15 20

0

1

2

3

10.1 10.2 10.3

0

1

2

3

In
te

ns
ity

 [a
. u

.]

Time scale [us]
 

Fig. 4.2  The QML pulse trains.  The inset is its mode-locked pulses inside the 

QML pulse.  There are about 100 mode-locked pulses inside QML pulse. 

 

4.2  The Specification of the Microstructured Fiber 

The core diameter of the used microstructured fiber is about 1.7 µm and the pitch Λ 

(spacing between adjacent holes) is about 1.4 µm.  The diameter of holes is about 

0.6µm except for the two holes near the core whose diameter is about 0.7µm.  The 

cross sectional scanning electron microscope image (SEM) of our MF is shown in Fig. 

4.3.  This fiber has quite high nonlinearity with nonlinear coefficient γ being 74 

km-1⋅W-1 due to its small core diameter.  It is also polarization maintaining because 

of its asymmetric arrangement of the holes near the core.  It also has two zero 

dispersion points which are located at 760 nm and 1160 nm.  The used pump 

wavelength is in the anomalous dispersion region.  The dispersion curve can be 

simulated by Mode Solutions, software which can calculate frequency-dependent 

properties of MFs by importing the structures (SEM) of MFs.  We will show the 

result in 5.1.   
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Fig. 4.3  The cross sectional scanning electron microscope image (SEM) of the 

microstructured fiber. 

 

4.3  Experimental Setup 

In our experiment, the pumping source, passively mode-locked Nd:GdVO4 laser, 

is focused into a 1-m-long MF with about 35% couple efficiency by a 40X 

microscope objective lens.  The experiment setup is shown in Fig. 4.4.  A λ/2 plate 

is used to change the polarization state of the laser to get the widest spectral 

broadening.  Finally we measured the output spectrum using an optical spectrum 

analyzer (OSA).   

OSA

Microstructured fiber

Nd:GdVO4
1064 nm

Objective lens

40X

λ/2 plate
 

Fig. 4.4  The setup of our experiment. 
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Chapter 5 Results and Discussion 

5.1  Simulated Dispersion Curve of the Microstructured Fiber 

By the Mode Solutions mentioned in Chapter 4.2, we obtained the simulated 

dispersion curve and the mode pattern of our MF which are shown in Fig. 5.1.  Our 

simulation result shows that the two zero-dispersion points are located at 790 nm and 

1190 nm which slightly different from the provide specification from the suppler.  

This may be due to the distortion of SEM, the shadows around the air holes.  The 

shadows will influence the calculation of real size of air holes.  However, our 

simulation result of the SC which will be shown in Fig. 5.3 is quite similar to the 

experiment result when using the parameters of the simulated dispersion curve.  The 

parameters of the dispersion (including the higher order dispersion up to β6 ) at the 

1062.9 nm are shown in Table 5.1.  
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Fig. 5.1  The dispersion curve of our MF.  The two zero-dispersion points are 

located at 790 nm and 1190 nm.  The inset is the mode pattern of our MF. 
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Table 5.1  The parameters of dispersion at 1062.9 nm 

β2 (ps2/km) β3 (ps3/km) β4 (ps4/km) β5 (ps5/km) β6 (ps6/km) 

-57.79207 -0.08328d0 0.00153 -9.20867*10-6 5.66594*10-8

 

5.2  The Reliability of our Simulation: Nonlinear 

Schrödinger Equation 

   The method we used to simulate the NSE has been described in Chapter 3.  To 

ensure our simulation is reliable, we compared our simulation results with Ref [18].  

In Ref [18], the authors simulated the contributions of various optical effects to the 

SC under the femtosecond pumping.  There are four circumstances the authors 

simulated, only SPM, SPM + SS + HOD, SPM + SS + RS and SPM + HOD + RS + 

SS, respectively.  The simulation results of these circumstances are shown in Fig. 5.2.  

Under the same simulation parameters in Table 5.2, our simulation results are also 

shown in Fig. 5.3 and have a good agreement with Fig. 5.2.  This indicates that our 

simulation of NSE is quite reliable.  

 

Fig. 5.2  Simulation of four circumstances in Ref [18]. a) only SPM, b) SPM + SS + 

HOD, c) SPM+SS+RS and d) SPM+HOD+RS+SS 
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Fig. 5.3  Simulation result compared with Ref [18]. a) only SPM, b) SPM + SS + 

HOD, c) SPM+SS+RS and d) SPM+HOD+RS+SS 

 

Table 5.2  The simulation parameters in Ref [18] 

Pulse 

width 
β2 (ps2/km) β3 (ps3/km) β4 (ps4/km) β5 (ps5/km) β6 (ps6/km) r (/m/km)

0.1ps -57.5 0.135 3.12*10-6 -2.9*10-7 3.69*10-10 100 

 

5.3  The Supercontinuum Spectra: Comparison of 

Experiment and Simulation Results 

In our experiment, we first use the CML state of the Nd:GdVO4 laser with 230 

mW of average power to couple to our MF.  The output spectrum is shown in Fig. 

5.3.  There are about 5 nm broadband resulted from SPM near the center.  The peak 

power of the CML state is only about 42 W that is not enough to generate the SC.   
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Fig. 5.4  The output spectrum generated by CML state of Nd: GdVO4 laser. 

 

In the next step, we use the QML state of Nd:GdVO4 laser to couple to the MF.  

Under the same average power, the peak power of the QML pulse is about 14 times 

higher than the CML pulse.  It can induce more nonlinear effects and therefore 

generate the SC.  The spectrum generated by the QML pulses at 160 mW of average 

power is shown in Fig. 5.5.  We can find that the peak power is large enough to 

induce the MI even though its average power is only 160 mW.  The first Stokes and 

anti-Stokes components of MI are at 1081 nm and 1046 nm.  The frequency 

difference between the pump and the Stokes component is about 4.8 THz which is 

close to Ωs = 5.28 THz (corresponding to the Stokes component at 1083 nm) 

calculated by the theory described in 2.1.3 with β2 = -57.79207, γ = 74 and Pp = 430 W.  

The Stokes component is located within the spectrum of Raman gain and thus 

amplified.  The amplified Stokes component can be regarded as pumping to induce 

the second or the even higher Stokes component.  Therefore the spectrum shifts to 

the longer wavelength.  This phenomenon is also called the intrapulse Raman 
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scattering mentioned in 2.1.4.  The red-shift of spectrum suppresses the gain of 

anti-Stokes component and result in only one anti-Stokes component on the right side 

of the pump. 
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Fig. 5.5  The SC generated by QML pulses under 160 mW of average power.  

 

Then we show the spectrum generated by QML pulses under 220 mW of average 

power in Fig. 5.6.  Once the red-shift spectrum exceeds the zero-dispersion point 

located at 1190 nm, the higher-order dispersion will disturb the spectrum and 

therefore generate the dispersive wave at 1315 nm.  The theory of HOD effect has 

mention in 2.1.6.  Compared with the spectrum generated by CML pumping in Fig. 

5.4, we can get the SC from 950 nm to 1450 nm by QML pumping with average 

pumping power of only 220 mW. 
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Fig. 5.6  The SC generated by QML pulses under 220 mW of average power.  

 

Finally, we show the spectrum generated by QML pules from 160 mW to 220 mW of 

average power in Fig. 5.7(a) to (d).  Once the average power exceeds 230 mW, the 

laser system has transferred from the QML state to CML state.  Figures 5.7(e) to (h) 

are the corresponding simulation SC spectra.  The corresponding peak power of the 

experiment and the simulation is marked in Fig. 5.7.   

Our simulation results [Fig. 5.7(e)-(h)] are quite similar to our experiment results.  

Both show the red-shift of spectrum with higher-order dispersion.  In our simulation, 

we sample 215 points in a time window of 120 ps, giving the wavelength window from 

716 to 2059 nm.  Each simulation step h is 50 µm normalized to the nonlinear 

interaction length and the simulated fiber length is 1 m.   However, the peak power 

used in the simulation is not exactly the same as the experiment.  It is because the 

peak power of the QML pulse in the experiment can not be measured precisely.  The 

noise of our simulation is a little bit high.  This may be due to the high sample points 
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up to 215 and the effect of boundary.  In the case of femtosecond pumping, the 

sample points are only 210 and therefore there is less simulation noise in the case of 

picosecond pumping.  Besides, the boundary condition of the simulation of NSE is 

the periodic boundary due to the use of the Fourier transform.  Once the splitting 

pulse from the pump exceeds the end of the time window, it will restart shifting from 

the beginning of the time window and thus overlap the original signal.  The original 

signal will be perturbed slightly and contribute to the noise in the simulation. 
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Fig. 5.7  The SC generated by QML pulse. The comparison of the experiment results 

(the upper row) and the simulation results (the lower row). 

 

5.4  Numerical Results: the contribution of various optical 

effects to the Supercontinuum 

To understand the contribution of various optical effects to the SC, we simulate 

four circumstances, SPM only, SPM + Raman, SPM + Raman + SS and SPM + 

Raman + SS +HOD, respectively, under peak power of 490 W, 600 W and 1200 W in 

Fig. 5.8.  If we consider only the SPM effect [Fig. 5.8(a),(e),(i)], the spectrum is 
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symmetrically broadened due to the MI.  The contribution of SPM to the SC is 

limited.  Then we add the Raman effect into our simulation [Fig. 5.8(b),(f),(j)].  The 

peak power has exceeded the threshold of the Raman effect to shift the spectrum to 

the longer wavelength while the anti-Stokes components are suppressed.  Figures 

5.8(c)(g)(k) contain additional nonlinear effect of SS.  The red shift of the spectrum 

in (c) and (g) is a little narrower than (b) and (f).  This is because of the depletion of 

the red shift by the SS which we have mentioned in 2.1.5.  The phenomenon of 

depletion in (k) will also appear at about 1900 nm.  Finally, we add the effect of 

higher order dispersion (HOD) to generate the dispersive wave, that agree with the 

experiment results. 
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Fig. 5.8  Four circumstances of simulation: SPM only ((a),(e),(i)), SPM+Raman ((b), 

(f),(j)), SPM+Raman+SS ((c),(g),(k)) and SPM+Raman+SS+HOD((d),(h),(i)).  

Upper row from (a) to (d) is the simulation of 490 W peak power while the lower 

rows from (e) to (h) and (i) to (l) are corresponding to 600 W and 1200 W. 
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Conclusion and Future Works 

We have demonstrated that the QML laser can be a great pumping source which 

can generate the SC from 900 nm to 1400 nm in MF under the average power of 220 

mW.  The peak power can be enhanced to about 14 times if we change the laser 

system from the CML state to the QML state.  The major nonlinear effects 

contributing to the spectrum broadening are MI, stimulated Raman scattering and the 

HOD effect which were also confirmed in our simulation.   

   In our future work, we will increase the average power of QML laser system as 

high as possible to test the maximum spectral broadening.  The potential of the QML 

laser has not been unleashed completely because we only tune our laser to 220 mW.  

We also can use the CML laser with the same peak power of QML laser as pumping 

to figure out the difference of spectrum between the CML and QML pulse.  Or we 

can double the frequency of QML pulses by KTP and couple the two kinds of QML 

pulses with different frequencies into the MF [40][41].  This may broaden the 

spectrum further.  In the future work of our simulation, we can increase the speed of 

simulation by changing the compiler from Compaq Visual Fortran 6.6 to Intel Fortran 

compiler 9.0 and using the FFT function in the Intel math kernel library.  The two 

kinds of software have been optimized to the Intel processor.  We can also use 

Matfor to construct the interface where we can enter the parameters of input 

conveniently. 
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Appendix:  Simulation of Dispersion of the Microstructured Fiber 

“Mode solutions” developed by Lumerical is a powerful tool to simulate the 

dispersion profile of the MFs.  It is constructed by the fully-vectorial optical mode 

solver based on the finite difference time domain (FDTD) Yee cell.  One of the 

special properties of this software is the importing of SEM.  By importing the SEM 

of MFs, we can easily get the dispersion profile of MFs.  In the following, we will 

illustrate the steps how to use this software. 

 

Step 1  Fist, we select “EDIT” tab and then “IMPORT” tab, the import dialog will 

appear.  This dialog contains three parts: General, Rotations and Image import.  In 

General, it can select the material of the fiber which is shown in Fig. A.1.  In 

Rotation, it can rotate the SEM to the angle we want.  In Image import, not only can 

import the SEM but also tune the scale of SEM after we import.  We should notice 

that the image size of SEM should be symmetrical, such as 638*638 pixels, or the 

SEM will be distorted after importing. 

 

Fig. A.1  The import dialog. 
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Step 2  Select the material of our MF.  Usually, it is Corning 7980 Silica.  

 

Fig. A.2  The General dialog which can select the material of the fibers 

Step 3  After we select the Import image tab shown in Fig. A.1, the Image Import 

Wizard dialog will show up.  We can change the contrast of SEM by tuning the 

threshold bar.   

 

Fig A.3  The Image Import Wizard dialog 

Step 4  After tuning the contrast of SEM, we should input the scale of SEM.  We 
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pull the mouse to define a distance of 10 microns the same as the scale shown in the 

SEM.  In fact, the cross section of MFs will be a little distorted after taking the 

picture of SEM.  We can adjust the input of the scale to compensate the distortion. 

 

Fig A.4  Input of the scale of SEM 

Step 5  After importing the SEM, we should select a region to simulate. 

 
Fig A.5  Selected region to simulate 

Step 6  To select the analysis tab and to calculate the possible modes inside the MF. 
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Fig A.6  Calculation of modes existing inside the MF 

Step 7  After calculating the modes, we should select a mode and simulate the 

dispersion of the MF.  The data can be outputted to Matlab or the wordpad. 

 

Fig A.7  Simulation of the dispersion of the MF 
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