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40 GHz 非同步鎖模掺鉺光纖光固子雷射之研究 

 
 
 

研究生：邱鐘响            指導教授：賴暎杰 博士 

 

國立交通大學光電工程研究所 

 
 

摘要 

 

 

  在本論文當中，我們透過實驗以及電腦模擬兩種方式對非同步鎖

模掺鉺光纖光固子雷射作一番探索了解。實驗上我們嘗試使用非同步

鎖模的方法成功的產生出重複率 20、30、40GHz 的光脈衝序列；脈寬

分別為 628、596、849femto-seconds；超模抑制比都可以大於 40dB。

理論模擬方面，也証實了非同步鎖模可以產生高重複率的短脈衝。我

們也利用了電腦模擬，所得的結果和實驗的結果也有定性的吻合。另

一方面，我們也探討了雷射共振腔中不同參數對於穩態脈衝脈寬及時

基誤差的影響；相位調變深度、相位調變頻率、色散、疊加波鎖模對

脈寬及時基誤差都有不同程度的影響。 

 



 ii

A Study of 40 GHz mode-locked Erbium-doped fiber soliton 
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Abstract 

 

In this thesis, asynchronous mode-locked Erbium-doped fiber 

soliton lasers are explored in experiments and computer simulation. In 

experiments, we successfully generate 20, 30, 40 GHz pulse trains; the 

pulse widths are 628, 596, 849 fs respectively with SMSR >40 dB. In 

simulations, it’s proved that asynchronous mode-locking is a viable 

method to generate ultra-short pulse trains at the high repetition rates and 

the results agree with those from experiments qualitatively. Besides, the 

effects of various cavity parameters on the pulse width and timing 

variation are also simulated. 
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Chapter 1 

Introduction 

1.1 Brief Introduction 

    Mode-locked fiber lasers are ideal light sources for fiber-optic communication 

due to their fiber-type device compatibility, compactness, and better quality (almost 

transform-limited short pulses compared to those from laser diodes). Fiber-type 

devices have the advantages such as lower coupling loss and simplicity for 

manufacturing by splicing as well as significant nonlinear effects due to small core 

area and long interaction length. Mode-locked fiber lasers can generate short pulses at 

the high repetition rate by employing mode-locking mechanisms to establish the fixed 

relationship among the phases of the different frequency components (modes). A 

detailed introduction for the theory will be given in chapter 2. 

    Typically, there are two popular approaches to achieve mode-locking; one is 

through the active modulation and the other is through passive modulation. Active 

mode-locking can generate pulse trains at higher repetition rates when compared with 

passive mode-locking. On the other hand, passive mode-locking can generate shorter 

pulses when compared to active mode-locking. To generate shorter pulses at high 

repetition rate simultaneously, hybrid mode-locking can be used by employing the 

two approaches simultaneously. 

    However, there are still some problems. In active mode-locking, synchronization 

between the modulation frequency and the harmonic component of the cavity 

frequency must be perfectly maintained in order to achieve stable mode-locking. It is 

not easy to do in practice due to the fiber-type nature of typical fiber lasers; since the 

ambient temperature fluctuations will cause the length of the fiber cavity to change 

thermally, the cavity frequency components drifts in frequency and the synchronicity 
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is no longer maintained. Especially, longer cavity length causes larger variation, 

which is further enlarged at higher harmonics. Therefore, some cavity 

length/modulation frequency stabilization schemes are needed to be implemented to 

maintain the synchronization for long term operation. 

In typical synchronous mode-locked fiber lasers, the required optical detection 

speed of the stabilization electronics is growing faster with a higher repetition rate and 

these high speed electronics are expensive for economic practice. Fortunately, by 

using asynchronous mode-locking the synchronization, in fact can be achieved more 

easily by detuning the modulation frequency of the phase modulator slightly off the 

cavity harmonic by 20~40 kHz. In this way, the 20~40kHz beating signal around DC 

in the electronic spectrum can be used to implement a more economic stabilization 

scheme with the use of only kHz electronics. It must be emphasized that 

asynchronous mode-locking mechanism needs intra-cavity soliton effects and guiding 

frequency filter effects in a complete sense, since detuning the modulation frequency 

in typical mode-locked fiber lasers will destroy the pulse patterns. Asynchronous 

mode-locked soliton fiber lasers can stably operate at a very high repetition rate and 

generate very short pulses in the same time with less cost.  

Another merit of ASM fiber lasers is that the super mode noise in harmonic 

mode-locking is reduced significantly. This is because the intra-cavity pulses are 

solitons. The frequency shift imposed by the phase modulator will shift the noises 

away while the solitons can resist this frequency shift more. Finally, the noises are 

filtered out by the filter while the solitons can sustain. This noise clean-up effect is 

similar to the sliding-frequency guiding filter effect in soliton transmission systems. 

 In asynchronous mode-locked soliton fiber lasers, an interesting bound soliton 

pairs can be generated noiseless and stably. This shows that ASM soliton fiber lasers 

are also suitable as a reliable platform for bound states experiments, in addition to the 
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use as a light source in fiber-optic communication systems. Due to the diversity of the 

pulse properties from these mode-locked fiber lasers, there are already many 

reports34,35 showing that the fiber lasers have got growing potentials in many kinds of 

applications, including optical metrology, ultra-fast optics, nonlinear optics, etc. 

 

1.2 Motivation 

    Due to the diverse properties and growing applications of the ASM soliton fiber 

laser, we begin our studies by trying to understand the fundamental principles of this 

type of lasers. In this way, we can gain, at least, the required basic knowledge to build 

a real working fiber laser system at a repetition rate up to 40GHz. In the process of 

achieving this goal, a lot more information about the lasers can be learned and 

eventually more applications of the laser can be explored. 

 

1.3 Contents of the thesis 

   The contents of this thesis are organized in five chapters. Chapter 1 presents a 

brief introduction about the development of mode-locked fiber lasers as a start. 

Chapter 2 is devoted to a detailed description about the theories for deeper 

understanding. Chapter 3 shows the experimental setup and the results based on the 

foregoing chapters. Chapter 4 is devoted to the simulation of the laser itself for a 

visualization of what is going on inside the laser cavity. Finally chapter 5 gives a 

summary about the future prospects of the work done here. 
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Chapter 2 

Theories of mode locked soliton lasers 

2.1 Short Pulses Generation 

 

 

To generate high-repetition-rate short pulses, the knowledge of what the pulses 

of interest explicitly look like1 and the methods for the generation2 of such pulses 

shall be needed. The mathematical function form of the pulse is in the form of 

Gaussian or hyperbolic secant which is a solution to the actively or passively 

mode-locking master equation that governs the short pulse generating laser systems. 

However, only when the population depletions of the gain medium and the saturable 

absorber are not excessive does a passively mode locked laser by slow saturable 

absorber have an analytical hyperbolic secant solution2. Many mode-locking methods 

have been developed and demonstrated in the literature. These will be described in the 

section entitled “Mode-lockers”. 

Fig. 2.1 Short pulse trains 
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2.1.1 Characterization of Pulses 

I. Gaussian pulses  

The function form of Gaussian pulses is written1,35 as bellows: 

           2
0

1( ) exp exp( )
2 pE t E t j tγ ω⎡ ⎤= −⎣ ⎦            (2.1) 

 jγ α β≡ −             (2.2) 

where α  describes the width of the Gaussian pulse, pω  is the carrier frequency, 

andβ  governs the frequency chirp of such pulse. The pulse width defined as the 
time separation between the two half-intensity points is  

                          2 ln 2 /pτ α=                          (2.3) 

The bandwidth of such pulses can be defined as the frequency separation between 

the two half-power points of the optical spectra. It is known that the Fourier 

transform of a Gaussian function is still a Gaussian function, so the pulse spectra can 

be written as: 

           2
0( ) / 2 / exp( ( ) / 4 )pE Eω π γ ω ω γ= − −                (2.4) 

So the bandwidth shall be 

                   2 2(1/ ) 2 ln 2( ) /pf π α β αΔ = +                    (2.5) 

Equation (2.3) along with (2.5) gives one of the important characteristics of a pulse, 

the pulse-bandwidth product. It can be written as 

                  2(2 ln 2 / ) 1 ( / )p pfτ π β αΔ Δ = +                    (2.6) 

Typically, for the case of Amplitude-Modulation-Active-Mode-Locking, which 

imposes no chirp on the pulse, 0β = , the value of the time-bandwidth product for 

Gaussian pulses is therefore 0.441. While for the case of 

Phase-Modulation-Active-Mode-Locking, which imposes a linear frequency chirp 

during the pulse and | |β α= , assuming no dispersion and no nonlinear effects, 
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0.624p pfτΔ Δ = . 

II. Hyperbolic secant function 
   The transform-limited sech pulse has the following function forms 

0( ) sec ( / ) exp( )pE t E h t j tτ ω=                         (2.7) 

0( ) sec ( / 2)
2

E E hπω τ τπω=                          (2.8) 

2 1ln 1.763
2 1

τ τ τ+
Δ = ≅

−
                          (2.9) 

2

1 2 1ln
2 1

f
τπ

+
Δ =

−
                                (2.10) 

The time-bandwidth product is thus 0.314p pfτΔ Δ = . 

The following figure depicts the difference between the Gaussian and 

hyperbolic secant pulses. It is noted that there are larger wings in sech pulses and the 

wings of Gaussian pulses drop abruptly due to the quadratic exponential decay. 

 

 

After examining the properties of the different pulses, the corresponding master 

equation is presented. 

Fig. 2.1 Gaussian and sech pulse shapes
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2.2 Master Equation 

The master equation2,3, for example, for the phase modulation case can be written as 

below: 

( )
2

2 2
2

2 2

11 cos | | ( )R m
lossg NoiseKerrEffectPhaseModulator

RoundTripVariation Dispersion
gain

T a g jD jM t l j a a N T
T t t

δ

⎧ ⎫
⎪ ⎪⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥= + + + Ω − − +⎜ ⎟⎨ ⎬⎜ ⎟∂ Ω ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦
⎪ ⎪⎩ ⎭

where RT  is the roundtrip time; g , saturated gain; gΩ , gain bandwidth; 

2 / 2D Lβ= , dispersion coefficient; 2(2 / ) / effn L Aδ π λ= , Kerr coefficient; where 2n  

is the nonlinear index; effA  is the effective mode area; L , cavity length; M , 

modulation index and mΩ , the modulation radian frequency. 

     It may seem very complicated at first, but with some careful inspection the 

master equation describes the laser cavity that contains some lumped elements: a gain 

medium, cavity loss, cavity dispersion effect, a mode-locker, nonlinear Kerr effect, 

and a spontaneous emission noise source. The total effects on the pulse formation 

during the roundtrip along the cavity (as shown in the right-hand-side) will be equal to 

the total roundtrip change (as shown in the left-hand-side). In the following sections, 

the action of the mode-locker is first described since it is the main mechanism for 

generating short pulses, we then consider the action of the other cavity elements, each 

of which also contributes significantly to the formation of short pulses individually or 

in cooperation with each other. The dispersion and nonlinear effects are omitted first 

for simplicity and then included afterwards. 

     To give an initial sense about the pulse formation, the figures in the next page 

depict a simple pulse formation/evolution example with respect to the round-trip time 
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of the cavity. The pulse grows from a very wide pulse initially and then evolves into a 

shorter one afterwards. 

 

 
 

 

 

Round trip times 

Tim
e  (ps) 

Round trip times 
Time  (ps) 

Fig. 2.3 Pulse formation from a top view 

Fig. 2.4 Pulse formation from a side view 
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2.2.1 Mode-lockers 

Assume that a laser is ready to emit CW signals at a specific wavelength. Now, 

if the laser has to emit pulses at a fix repetition rate, then some mechanisms are 

needed to be introduced into the cavity, either inside or outside the main cavity. One 

intuitive idea is to introduce a loss modulator in time domain inside the cavity so that 

the CW signal is modulated into pulses. This modulator can be either active or 

passive. That is, an active EO modulator driven at the desired repetition rate or a 

passive saturable absorber which has an intensity-dependent loss (high loss when 

energy is low and vice versa).  

 

 
 
I. Active mode lockers 

 Amplitude modulator 
The modulation (loss) can be written as a cosinusoidal function and can be 

expanded to the second order of time. This approximation is valid when the pulse 

passes through the modulator at the maximum transmission point1,2, which is the case 

in the steady case. 

[ ] ( )211 cos( ) 2
2m mM t M t+ Ω − Ω                (2.11) 

The master equation can then be modified by replacing the phase modulator term with 

Time 

Fig. 2.5 Mode-locking principles 
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this expression. The dispersion and Kerr effects are also omitted for the present 

discussion. 

2
2

2 2
2

1 11
2R m

lossg
AmplitudeModulationRoundTripVariation

gain

T a g M t l a
T t

⎧ ⎫
⎪ ⎪⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪⎢ ⎥= + − Ω −⎜ ⎟⎨ ⎬⎜ ⎟∂ Ω ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦
⎪ ⎪⎩ ⎭

     (2.12) 

The steady solution is a Gaussian pulse with a full width at 1/e intensity given by  

                           4
2

32
( )m g

g
M

τ =
Ω Ω

                       (2.13) 

which is consistent with the Kuizenga-Siegman formula for AM mode-locking. The 

pulse width at FWHM differs only by a factor ln 2  and is given by: 

     
1/ 21/ 42 ln 2 1

FWHM
m g

g
M f f

τ
π

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠
               (2.14) 

Typically, the pulse-width is limited by the strength of the modulator and is about 

picoseconds in fiber lasers. When the pulse is getting shorter, the strength of the pulse 

shaping effect by the modulator becomes less effective. One of the methods that can 

generate sub-picoseconds pulses is through passive mode-locking which utilizes 

self-amplitude modulation effects. 

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Modulation frequency GHz

pu
ls

e 
w

id
th

 p
s

Kuizenga-Siegman limit

 
Fig. 2.6 Typical pulse width achievable in active mode-locking 
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The exact modulation frequency can be obtained through an analytical 

approach1  

2 21/ 1/
2m R

L g cf T
c Lω

⎛ ⎞= + ≅ ≡⎜ ⎟Δ⎝ ⎠
            (2.15) 

where 

( )21 1 1 1ln ln 1 8ln 2 / ln
2 2m gg M f f

R R
⎛ ⎞⎡ ⎤= − − Δ ≅⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

        (2.16) 

R is the effective reflection of a mirror including all losses. The second term in the 

denominator is due to the dispersion effect or linear delay imposed by the Lorentzian 

line of the gain which is much smaller than the cavity roundtrip time. Usually 

m gf fΔ , so the final approximation is valid. For Erbium fiber amplifiers, the gain 

bandwidth is about the order of 40nm. It is also noted from equation (2.16) that when 

a laser is mode-locked, the gain is pinned at the loss level. This is because the pulses 

carrying increasing energy will grow until the gain is saturated at the steady state. 

If the modulation frequency is set to one of the harmonics of the cavity 

frequency (the inverse of the round trip time), 2
m

R

N
T
π

Ω = , where N= 1, 2, 3,…, then 

the repetition rate of the laser output can be raised to a higher one and the laser is said 

to be mode-locked harmonically. However, there will be N unlocked groups of 

locked modes (i.e. super-modes) competing the gain, which will give rise to 

amplitude fluctuations (super-mode noises). On the other hand, the long relaxation 

time(1ms) of erbium fiber amplifiers makes the gain can not get recovered within one 

round trip time, which may lead to some pulse-to-pulse amplitude fluctuations. These 

problems can be solved to some extend by introducing a Fabry-Perot filter in the 

cavity7 or by the incorporation of the combined SPM and spectral filtering effects8. 

The physical meaning of “mode-locker” can be appreciated in a different view 

when switched to the frequency domain. The ”mode” represents one of cavity 
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longitudinal modes with different frequencies. When all of the components are 

superimposed together with fixed phase relationship, constructive interference 

somewhere and destructive interference elsewhere leads to periodical pulse formation. 

In this way, steady pulses at a certain repetition rate are generated. 

 

 

 

 Phase modulation 
Assuming a pulse is to pass through a phase modulator, then the modified pulse can 
be represented as follows1,2 

( )

( )( ) ( )

cos

cos

' ;

' 1 cos

m

m

jM t m

jM t
m

Va e a M
V

a a a a e jM t a
π

πΩ

Ω

= =

Δ = − = − ≅ Ω
         (2.17) 

So the master equation can be written as  

  ( )
2

2

2

11 cosR m
lossg PhaseModulator

RoundTripVariation
gain

T a g jM t l a
T t

⎧ ⎫
⎪ ⎪⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪⎢ ⎥= + + Ω −⎜ ⎟⎨ ⎬⎜ ⎟∂ Ω ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦
⎪ ⎪⎩ ⎭

     (2.18) 

The pulse-width of a Gaussian pulse solution to this equation with the phase 

modulator term expanded to second order is given by: 

Fig. 2.7  Mode-locking illustrated in frequency domain 



 13

1/ 21/ 42 ln 2 1
FWHM

m g

g
M f f

τ
π

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠
               (2.19) 

where the modulation frequency is 

1/ 2 / 2 / / 2m R
Mf L c g c L T

c
λ ω

π
⎡ ⎤⎛ ⎞= + + Δ ≅ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

        (2.20) 

The second term of the denominator is due to the equivalent motion of the mirror. The 

phase modulator behaves like a vibrating mirror, which effect is small compared to 

the first term. The other terms are identical to the case of amplitude modulation, and 

the gain is  

( ) ( )( )22 21 1 1 1ln ln 1 8ln 2 / 8ln 2 /
2 4 2

1 1ln
2

m g m gg M f f M f f
R

R

⎡ ⎤= − − Δ + Δ⎢ ⎥⎣ ⎦

≅

         (2.21) 

The second equality is also because of the fact that m gf fΔ . Gain is pinned at the 

loss level of the cavity at the steady state. 

    Phase modulators also impose a frequency chirp over the pulse. This can be 

understood by expanding the phase modulation effect to the second order. 

( ) 21cos 1 sin( ) cos( )( )
2m m mjM t jM t tθ θ⎛ ⎞Ω = − Ω − Ω +⎜ ⎟

⎝ ⎠
      (2.22) 

where θ  corresponds to the phase delay between the pulse and the modulation. As 

0θ = , it is the case at the steady state. It is the last term that gives a frequency chirp 

over the pulse. The first term is a phase shift and the second one is a frequency shift 

which vanishes when 0θ = . 

II. Passive mode lockers: Saturable absorbers 

There are two categories of saturable absorbers, fast and slow absorbers. The 

main difference lies in the relaxation time relative to the pulse width. The relaxation 

time of the fast saturable absorber is short compared to the pulse width, while that of 

the slow absorber is long compared to the pulse width. 
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 Fast saturable absorber 

The loss modulation can be written as2,5 

                          0( )
1 ( ) / sat

ss t
I t I

=
+

      (2.23) 

where 0 ( 1)s <  is the linear (unsaturated) loss, ( )I t is the intensity, and satI  is the 

saturation energy of the absorber. If the saturation is relatively weak, then the result 

can be further expended as 

                         ( )0( ) 1 ( ) / sats t s I t I= −       (2.24) 

The mode amplitude is normalized so that 2| ( ) | effa t IA= .  

The transmission of the absorber becomes 

           
2

2 20
0 0 0

| ( ) |( ) 1 | ( ) | | ( ) |
sat eff sat eff

sa ts t s s a t s a t
I A I A

γ
⎛ ⎞

= − = − ≡ −⎜ ⎟⎜ ⎟
⎝ ⎠

  (2.25) 

It can be seen that the loss modulation is self-intensity dependent with γ  as the self 

amplitude modulation coefficient (SAM). 

With the mode-locker term being replaced with the nonlinear term and with the 

first linear term 0s  being incorporated into the loss coefficient, the master equation 

for fast saturable absorber mode locking becomes10 

2
2 2

2
2 2

11 ( ) | ( ) | ( )R
lossg SAM

RoundTripVariation
gain

T a g j a t l j x jD a
T t t

γ δ ψ

⎧ ⎫
⎪ ⎪⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞⎪ ⎪⎢ ⎥= + + − − + + +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ Ω ∂ ∂⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦
⎪ ⎪⎩ ⎭

                                                               (2.26) 

where the dispersion, nonlinearity, and phase shifts per pass are included for 

completeness; ( )0 / effc Lψ ω= Δ  denotes the phase shift induced by a carrier 

frequency shift, 0ωΔ , off from one of the Fabry-Perot resonances of the linear 

resonator and x  denotes the phase shift during propagation. 
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    The exact solution as recognized by Martinez et al can be written as 

sec ( / ) exp[ ln sec ( / )]a A h t j h tτ β τ=     (2.27) 

where pulse amplitude, A, pulse width,τ , and chirp parameter,β , characterize the 

pulse and can be obtained through substituting this ansantz into the master equation 

and with some manipulation the chirp parameter can be written as 

1/ 223 3 2
2 2

β χ χ
⎡ ⎤⎛ ⎞= − ± +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

     (2.28) 

where 

n

n

D
D

δ γχ
δ γ

−
≡

+
       (2.29) 

and the normalized pulse width is written as 
2 22 3 2 3n n n

n
D D Dβ β β βτ
γ δ

− − − − +
= =     (2.30) 

where                    
( )
( )

2

2

/ 2

/ 2

n g

n g

W g

D g D

τ τ= Ω

= Ω
      (2.31) 

The net gain is found to be 

 2
2 2 2

2(1 )
g

g Dg l ββ
τ τ

− = − − +
Ω

                (2.32) 

From equation (2.30), it is found that the pulse width is determined by the cavity 

parameters in the passive mode-locking case. 

 Slow saturable absorber 

For slow saturable absorber mode-locking2,6, the equations presented above need 

to be modified; The gain and SAM terms must take into account the relaxation effects. 

The gain and the (loss) modulation is energy dependent instead of intensity 

dependent. 
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2

0

2

0

( ) exp | ( ) | /

( ) exp | ( ) | /

t

i g

t

i s

g t g dt a t W

s t s dt a t W

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∫

∫
                  (2.33) 

where ig  and is  are the initial gain and loss before the arrival of the pulse, gW  

and sW  are the saturation energies.  

For this master equation to have a hyperbolic secant solution, one 

approximation is needed: the exponentials can be expended to second order. This is 

valid when the population depletion of the gain and the saturable absorber is weak. 

Further more, the effects of the saturable absorber must be sufficient to open up a net 

gain window during the pulse for a pulse to grow and a net loss window outside the 

pulse for noise to be suppressed. The pulse width of a pulse from a passively 

mode-locked laser can be of femto-seconds since when the pulse gets shorter and 

shorter, the strength of pulse shaping by SAM is still effective. 

The repetition rate of the passively mode locked lasers is the inverse of the 

round trip time, 1/ RT , which is very low with a long cavity length and can’t be 

raised to higher repetition rate unless the laser operates in the passive harmonic 

mode-locking4. 

 

 Artificial Fast Saturable Absorber  

In reality, there is almost no real saturable absorber with the relaxation time 

much shorter than 1 pico-second. Fortunately, there are some methods that use 

nonlinearity in corporation with some effects to act like an artificial fast saturable 

absorber (AFSA). These include the Additive-Pulse Mode-locking (APM)10, and 

Kerr-Lens Mode-locking(KLM). The Kerr effect, which is very fast, is used in both 

schemes but in different ways. Other methods to achieve AFSA are by using the 
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nonlinear amplifying loop mirror and semiconductor saturable absorbers. 

APM utilizes the nonlinear interference effect between two versions of the 

pulse inside the cavity. Both pulses are phase modulated by SPM to different extend 

during propagation so that constructive interference occurs around the peak, which 

leads to low loss, while destructive interference at both tails, which leads to high loss. 

In this way the pulse is shortened. This mechanism is suited for fiber laser due to the 

small core area that leads to high intensity required for SPM. 

KLM, as its name suggests, utilizes self-focusing through the nonlinear 

refractive index, 0 2n n n I= + ; higher intensity part is much focused due to higher 

induced refractive index and then with an aperture, high intensity part transmits at 

low loss and low intensity part is attenuated at high loss. In this way, pulses are also 

shortened. The KLM method is more suited for lasers with free space propagation. 

 

There is another version of APM called “Polarization-APM”, or “Nonlinear 

Polarization Rotation”11.The first APM is realized with two coupled resonators in 

which two pulses are added together to have interference at the mirror between two 

resonators12,13. The polarization states of the two pulses have to be the same, 

otherwise no interference occurs. But this doesn’t imply that the polarization hinders 

APM to take place. On the other hand, P-APM utilizes the polarization effect in a 

single resonator to have virtually two temporal coupled resonators by transforming a 

Fig. 2.8 Artificial saturable absorber realized with Kerr-lens mode-locking 
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pulse into elliptical polarization with a polarizer followed by a quarter–wave plate, 

thus creating a pulse in different polarization states, right-hand and left-hand circular 

polarization with different intensities. SPM from the isotropic Kerr medium 

modulates the phases unequally so that the ellipse rotates with maintained handedness 

and ellipticity. Then, adding two polarization components together at the polarizer 

where the peak of the pulse with more rotation transmits at low loss and the wings are 

blocked. The method is also called “Nonlinear Polarization Rotation Mode-locking”. 

 

 

 
Fig. 2.9 Principles of P-APM and the pulse formation process using P-APM 
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2.2.2 Gain medium 

In our mode locked laser system, the gain medium (Erbium-doped fiber) 14, 15 

can be ideally described by a Lorentzian function  

2

( ) / 1
g

g g ωω
⎛ ⎞⎛ ⎞Δ⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟Ω⎝ ⎠⎝ ⎠

                   (2.34) 

where ωΔ  denotes the frequency deviation from the central frequency of gain, gΩ  

is the bandwidth of radian frequency, and g  is the saturated gain which can be 
written as 

                            0

1 / sat

gg
W E

=
+

                       (2.35) 

where 0g  denotes the unsaturated gain, satE , the saturation energy of the gain 

medium. This saturation energy is dependent on the involved medium and optical 

frequency. It can be written as 

rep
sat eff

T
E Aω

σ τ
=                       (2.36) 

where ω  is the optical frequency, σ  the absorption cross section, repT  the time 

duration between pulses, effA  the effective mode area and τ  the life time of the 

populated level.  

Next figure shows the process of gain relaxation of a pulsing laser for different 

saturation energies with all the other parameters fixed. It is noted that no matter in 

which cases, laser gains are pinned at loss level after more than 10 round trips. The 

difference is that in the case of higher saturation energy, a pulse will accumulates 

higher energy. So, at the fixed repetition rate, higher energy pulses will saturate the 

gain medium faster than lower energy pulses. The gain with a higher saturation energy 

is thus dropped faster than others. 
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The pulse energy, W , inside cavity which can be written as 

/ 2
2

/ 2

| ( , ) |
R

R

T

T

W a T t dt
−

= ∫                     (2.37) 

As the repetition rate is raised, the numbers of pulses inside the cavity increases by a 

factor of the ratio of the modulation frequency to the fundamental cavity frequency. 

Thus, the total pulse energy inside the cavity becomes higher if the pulse energy of a 

single pulse is the same. 

  This gain is provided by the erbium doped fiber amplifiers in our laser system. 

This amplifier can be modeled by the rate and propagation equations. Furthermore, 

this model can be approximated as a three-level system when the pumping 

wavelength is at 540,650,800, or 980 nm. 

Fig. 2.10 Gain relaxation w. r. t. round trip times in different saturation energy 
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In this case, from the rate equation at steady state, the population density at the 

population-inverted level can be written as 

( )

( ) ( )

( ) ( ) ( ) ( )
2

21

a
a p up

s s u

s p

e a
e a p p up

s s s u

s p

I zI z

N z N
I zI z

σσ
ω ω

σ σσ σ
ω ω

=±

=±

+
=

++
Γ + +

∑

∑
      (2.38) 

and the propagation equations for the signal and the pump can be written as  

( )( )

( )( )

2

2

e a as
s s s s

p e a a
p p p p

dI N N I
dz u
dI

u N N I
dz

σ σ σ

σ σ σ

⎧ = + −⎪⎪ = ±⎨
⎪ = + −
⎪⎩

        (2.39) 

where the bi-directional pumping scheme is assumed and “u” represents the pumping 

direction relative to the signal. Simulation can be performed on the basis of these 

coupled equations. From the signal propagation equation, the unsaturated gain can be 

written as 

0 2 1
0 _

1 ( ( ) ( ) )
2

L
e a

s s s

population inversion

g N z N z dzσ σ= − Γ∫                (2.40) 

where the factor of 1
2

 is due to the fact that the field is considered in the master 

equation instead of the intensity. It can be noted that to have gain instead of loss, 

population inversion is required to be achieved. 

Fig. 2.11 Equivalent three level amplifiers for 980 nm pumping 
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Since it is often the case that gωΔ Ω , this saturated gain model can be 

further approximated by Taylor expansion relative to the central frequency of the gain, 

2

2( ) 1
g

g g ωω
⎛ ⎞Δ

≅ −⎜ ⎟⎜ ⎟Ω⎝ ⎠
                      (2.41) 

As transferred to the time domain by Fourier Transform, it becomes the following 
form, 

                    { }
2

2 2

1( ) ( , ) 1 ( , )
g

dF g a T g a T t
dt

ω ω
⎛ ⎞

≅ +⎜ ⎟⎜ ⎟Ω⎝ ⎠
          (2.42) 

The gain is then expressed as an operator in the master equation in the time 

domain. The dynamic gain saturation process is neglected due to the relatively long 

relaxation time of most of solid state lasers. For example, the relaxation time of 

erbium doped fiber amplifiers is about at the order of milliseconds. In addition, this 

relaxation time depends on the pump power when the medium follows a three-level 

model. 

 

2.2.3 Dispersion and Kerr effects 

    So far, a simplified model for mode-locked lasers is discussed. Dispersion and 

Kerr effects are neglected. These effects usually exist in the cavity and thus need to be 

considered unless the system is dispersion free and operates under the linear regime. 

To consider these two effects, the master equation is added with two terms each 

representing these two effects respectively.  

I. Dispersion 

    Assuming a pulse is to pass through a dispersive medium with the length L 

within one round trip, the changed field can be written as 

( )' ( ) exp ( )a j L aω β ω= −⎡ ⎤⎣ ⎦                    (2.43) 
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By expanding the propagation constant β to second order, we have 

' 2 2
2 2

1 1exp 1
2 2

a j L a j L aβ ω β ω⎛ ⎞ ⎛ ⎞= − Δ ≅ − Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (2.44) 

with the constant phase term and the firs order term 1β  omitted. Inverse-Fourier 

transforming the equation with some manipulation, one gets 

                         
2

2( ) ' ( )da t a a jD a t
dt

Δ = − ≅ −                 (2.45) 

where                           2 / 2D Lβ= .                      (2.46) 
 

II. Kerr effect 

The Kerr effect manifests through the SPM effect, which can be understood by 

considering 

 ( )'
0( ) exp ( )a t jn L a tβ= −                 (2.47) 

where n is the refractive index such that 0 2n n n I= + .  Omitting the constant phase 

term and using the normalized amplitude, 2| ( ) | effa t IA= , we have 

2| | ( )a j a a tδΔ ≅ −                     (2.48) 

where 2(2 / ) / effn L Aδ π λ= . Finally, the master equation becomes 

( )
2

2 2
2

2 2

11 cos | |R m
g

T a g jD jM t l j a a
T t t

δ
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥= + − + Ω − −⎜ ⎟⎨ ⎬⎜ ⎟∂ Ω ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

  (2.49) 

Since the dispersion broadens the width of the pulses, it imposes a limit on the 

shortest pulse achievable. However, this pulse broadening force can be reduced with a 

pulse narrowing force by SPM. This had been done by placing additional nonlinear 

mediums inside an amplitude modulated fiber laser15 and the resulting pulse width is 

shorter by a factor of 2.5 than the Kuizenga–Seigman limit. The shortening effect is 

limited by the instabilities induced by extra SPM. Interestingly, if additional negative 

dispersion is introduced to balance this extra SPM, the resulting pulse is a solitary 

pulse with shorter width21,22. Under some certain conditions, solitons can be 
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generated. 

A “solitary wave” is a propagating wave that retains its shape in the presence of 

dispersion and nonlinearities. A “soliton” is a propagating pulse that retains it shape in 

the presence of dispersion and nonlinearities even after a collision with a similar pulse. 

In the following sections, the formation of solitons is discussed. 

 

III. Soliton formation 

 Area Theorem: SPM and Anomalous dispersion 
In a mathematical sense, it’s known that solitons in the optical fibers are in the form 

of the hyperbolic secant function, 

2
0| | / 2

0( , ) sec ( / ) Rj A T Ta T t A h t e δτ −=              (2.50) 

which is a solution to the NLSE (Nonlinear Schrödinger Equation) 

                         
2

2
2

1 | |
R

a jD a j a a
T t t

δ∂ ∂
= −

∂ ∂
                (2.51) 

The solution has an important property called the “Area Theorem”,  

0 2 /A Dτ δ= −                     (2.52) 

After taking a careful inspection of this theorem, it indicates some important aspects 

of the soliton properties: the SPM has to be accompanied with anomalous dispersion 

to obtain a real amplitude-pulsewidth product and the required energy for soliton 

formation in this cavity is set by two cavity parameters. 

 Area Theorem: Energy of a soliton 

From the soliton area theorem, the energy of the fundamental soliton in the 

cavity is set by the net dispersion and Kerr effects of the cavity. The energy of the 

pulse is determined by the cavity gain and loss. If the soliton is to be generated, the 

cavity gain and loss together must be able to support the pulse energy set by the cavity 
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dispersion and Kerr effects. One of the important elements governing the gain 

behavior is the saturation energy. If the saturation energy of the gain medium is 

sufficient, then the gain medium will be able to provide the excessive gain for the 

required energy of fundamental soliton. At steady state, the gain is approximately 

saturated at the loss level and the energy of the pulse is determined, which should also 

be the energy of fundamental solitons of the cavity for a soliton laser. On the other 

hand, if the saturation energy is too low or too high, the steady state pulse may not be 

a soliton, either. To make a short statement, once the dispersion and Kerr parameters 

of the cavity are determined, the cavity gain and loss must be tailored to support 

solitons. 

From the point of view of the balance between the SPM and dispersion, if the 

saturation energy is low, the gain is easily saturated and the pulse intensity doesn’t 

initiate enough effects of SPM. Therefore, the dispersion will dominates. Otherwise, 

the SPM dominates.  

Besides, the pulse repetition rate is also an influential effect on the gain 

saturation. If the repetition rate is raised higher, since the total energy inside cavity is 

fixed, every pulse obtains lower energy and thus the strength of nonlinearity may not 

be sufficient for soliton formation. The following figure shows that for a higher 

repetition rate the gain saturates more easily. 
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 Perturbations 
In addition to the above implications of the area theorem, it is important to 

remember that the result is from the NLSE in which other actions in the cavity such as 

active phase modulation and SAM are not included. The NLSE in fact is an 

approximation of the original master equation. So, when building real fiber ring lasers, 

additional care must be taken to assure that the experimental settings satisfy the 

approximation in order to generate solitons. 

 

 

 

 

 

 

Fig. 2.12 Gain relaxation w. r. t. round trip times at different modulation frequency. 
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 Kelly sideband 
In some experiments of fiber soliton lasers, it is observed that there are some 

discrete sideband spectra in the optical spectrum of solitons. Some people thought that 

it is due to the modulation instability. But the fact is that these discrete sidebands are 

not located uniformly as in the case of modulation instability. It turns out that from the 

framework of the average soliton model18,19,20 these non-uniform discrete sideband 

can be explained well17. Specifically, from the average soliton model it’s known that 

the perturbations make the soliton shed continuum waves during propagation. 

Resonant effect occurs when one of the frequency components of the continuum 

waves phase-matches with that of the soliton, thus constructive interference occurs at 

these frequencies. The resonant frequencies in relative to the center soliton frequency 

can be written as follows17,9, 

0
1 8 / 1; 1,2,3,...anZ Z nω
τ

Δ = ± − =            (2.53) 

where 0Z  is the soliton period defined as 

2 ''
08 4 / | |pZ kπτ=                    (2.54) 

aZ  is the amplifier period and τ  is the pulse width. Note that in the limit of 

0 aZ Z  as in the case of broad pulses, the sidebands locate so far off the center 

frequency so that no sidebands occur. The following plots from Ref[17] clearly 

demonstrates this phenomena. 

 

 
Fig. 2.13 Kelly side bands. a. Intensity plot. b. Log (intensity) plot. ’‧’ 

indicates the position according to equation (2.53) 
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An interesting question arises when the picture is transferred to the time 

domain: what does the pulse look like when this resonant instability occurs? Since it 

is due to the phase matching between the continuum waves and solitons, we may 

think that there is something around the bottom of the pulse, that is, these sidebands 

may appear as a pedestal under the pulse and contain considerable energy. 

Another question follows what is the influence of this resonant instability on 

soliton lasers? For a cavity with a fixed dispersion, the continuum limits the 

obtainable shortest pulse. And from the soliton area theorem, this implies that the 

peak power is lower and the average output power is decreased. It seems that having a 

longer soliton period through decreasing dispersion can avoid this instability. 

However, doing this reduce the energy of soliton due to the soliton area theorem. So, 

dispersion is to be optimized between these two extremes. 

After going through the process of soliton formation and the related properties, 

it is important to keep in mind that the soliton effect has been used in mode-locked 

lasers to further shorten the pulse width beyond the Kuizenga–Seigman limit. 

Experiments22 by D. J. Jones, H. A. Haus, and E. P. Ippen et al show that by using 

soliton-like compression the resultant pulse width is reduced by a factor of 4.4 below 

the Kuizenga–Seigma limit in an amplitude modulated mode-locked fiber laser. 

However, super mode suppression ratio is only 20~30dB from the 5GHz harmonic. 
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2.2.4 Asynchronous Mode locking 

In a phase-modulated mode-locked soliton laser experiment 23, an interesting 

asynchronous modulation has been used through tuning the modulation frequency 

slightly off the harmonic by 5-20 kHz. This asynchronization mechanism provides 

pulse initialization, noise clean-up, and new form of pulse timing stabilization while 

not destroying the soliton pulse. The resulting pulse-width was of pico-seconds at 

1GHz with the frequency spectra oscillating at 15 kHz. No long term stabilization 

schemes (temperature or modulation frequency) were used in that experiment.  

The theory for ASM25 indicates that soliton formation is possible in a 

synchronously phase-modulated mode-locked laser under the condition that the 

required net gain for noise to grow is greater than that for soliton to form, which will 

be given in equation (2.60). This theory also indicates that asynchronous 

mode-locking allows soliton formation with an additional requirement that the noise 

decay rate is faster than the detuning rate, indicated by equation (2.61) later. By 

applying this asynchronization scheme, our previous work24 successfully generated 10 

GHz 816 fs soliton pulse train with SMSR>70dB from a hybrid mode-locked fiber 

laser. In the following paragraphs, this theory is introduced.  

I. Main Theory 

To model this frequency detuning action into the master equation, a time delay is 

to be added between the pulse peak and the modulation peak. Originally, master 

equation is modeled by assuming that the pulses pass through the modulation peak. So 

merely setting the modulation frequency to a detuned one is not sufficient. Based on 

this observation, the master equation can be written as follows: (note that when there 

is no frequency detuning, the equation is the same as for synchronous mode-locking) 
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( )
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11 cos ( ( )) | |R M
g

T a g jD jM t T T l j a a
T t t

δ
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥= + + + Ω +Δ − −⎜ ⎟⎨ ⎬⎜ ⎟∂ Ω ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (2.55) 

where                 ( ) H M

M

T T TΩ −Ω
Δ = −

Ω
                       (2.56) 

Equation (2.56) represents the time shift imposed by the detuned modulation 

frequency.  

In ASM, there is a timing variation, ( )t TΔ , resulting form the frequency shift 

off the nominal carrier frequency of the pulse due to the detuned modulation 

frequency; the carrier frequency shift results in a change in group velocity. This 

frequency shift, pΔ , can be derived from the equation of motion for the frequency 

deviation of the soliton. This carrier frequency shift was observed in an experiment23 

by C. R. Doer et al. and can be derived from equation (2.56) by using the soliton 

perturbation theory3 with the results as 

( ) 2 | |R
t TT D p
T

∂Δ
= Δ

∂
                    (2.57) 

where                    0 sin( )Mp M TτΔ = − Ω ΔΩ                   (2.58) 

and                         
2 2

0

3
4
g s

g
τ

τ
Ω

=                          (2.59) 

sτ  is the pulse width.  

Last but not least, the time delay related to the frequency shift should not be 

additionally added to (2.56) because (2.56) has already implicitly included this 

frequency shift effect. This can be understood by inspecting equation (2.22). 

II. Noise cleanup effect 

   The ASM mechanism can provide noise cleanup effects. Since in ASM the phase 

modulator imposes frequency shifts on both solitons and noises and the soliton can 

recover after being perturbed, so after some roundtrips the noises drift out of 

synchronism due to GVD and then filtered out by the filter. This effect sets the lower 
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limit of the cavity GVD and can be written as 

2

2 2 2

2Re >
2 3

m

g g s

Mg gjD j
τ

⎧ ⎫⎛ ⎞⎛ ⎞Ω⎪ ⎪+⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
             (2.60) 

This inequality is obtained from the fact that the required net gain for noises is higher 

than that for solitons in order for solitons formation to be possible. It seems that with 

higher GVD, less noise we will have. But remember that from the soliton area 

theorem, the required soliton energy is raised accordingly. Thus the GVD is to be 

optimized. 

III. The limits of the detuning range 

In fiber-optic soliton transmission, ASE induced noises from periodic amplifiers 

for compensating loss will cause the random frequency shifts of the soliton, which in 

turn changes the group velocity of the solitons and leads to the random timing jitter26. 

This timing jitter can be controlled, not eliminated, by using a sliding-frequency 

guiding filter27,28,29. In ASM fiber lasers, there is a similar mechanism in which a 

fixed-frequency filter is used and the solitons with a sliding carrier frequency, pΔ , due 

to the detuning play the role of sliding frequency. This timing stabilization must be 

frequent enough so that the pulse timing is periodically refreshed. This requirement 

imposes the lower limit of the detuning frequency. The upper limit of the detuning is 

obtained from the fact that the detuning rate should be much slower than the noise 

decay rate for soliton formation to be possible in asynchronous mode locking, which 

can be quantized as 

              
2

lim 2

2| | Re
2

m

R g

Mg jD j
T
π ⎧ ⎫⎛ ⎞⎛ ⎞Ω⎪ ⎪ΔΩ +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟Ω ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

         (2.61) 

If the detuning frequency is over this limit, noise grows and the pulse train is 

destroyed. Note also that when the laser is operating at a higher repetition rate, the 



 32

acceptable detuning range is wider. 

 

 

The figure above shows the simulation of the resultant pulse evolution by using 

the standard split-step FFT method. The cavity round trip time is 25 ns and the 

detuning frequency is 40 kHz, corresponding to a period of 1000 round-trips. The 

peak-to-peak timing displacement is ~20 ps. The FWHM pulse width is 1.53 ps at 1 

GHz. This shows that ASM is indeed a viable method for the generation of ultra-short 

pulses when compared with typical synchronous mode-locking. In the next chapter, 

our experiment setups and results will be presented. 

 

 

 

 

 

Fig. 2.14 ASM pulse timing variation. 
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Chapter 3 

The experiment settings and results 

3.1 The structure of the ASM soliton lasers 

 
 

 

The experimental setup of the ASM fiber laser is shown in the figure above. The 

phase modulator needs a polarizer in the input end to align the polarization axis of 

pulses with that of the EO crystal. The isolator is for single direction wave 

propagation to prevent spatial hole burning and is polarization-independent since the 

polarizer and the phase modulator provides enough polarization dependent loss for 

Polarization Additive Pulse Mode-locking (P-APM). The two polarization controllers 

are placed in the cavity to adjust the polarization state for achieving P-APM. A 

tunable band-pass filter is introduced in the cavity in cooperation with SPM to 

suppress super-modes in harmonic mode-locking and also provides the 

sliding-frequency guiding-filter effects for noise clean-up. A section of 10 meters 

Erbium-doped fiber pumped by two 980 laser diodes acts as the gain medium of our 

laser. Finally, the output coupler extracts 10% of the powers in the cavity. The total 

cavity length is 35.24 meters with cavity fundamental frequency 5.33 MHz. The 

Fig. 3-1. Experiment setup. TBF stands for tunable band-pass filter 
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estimated total dispersion and Kerr coefficient are -0.023 ps2 and 0.085 W-1 

respectively. The values and units of parameters for some devices used in the 

experiments are estimated as below. 

 

SMF  Value     Unit 

2β  -0.02328 ps2/m 
V parameter 2.0345  

corer  4.1 μm 
effA  82.32 μm2 

δ  0.00122 W-1/m 
EDF   

2β  0.05164 ps2/m 
δ  0.00629 W-1/m 

satI  70.39949 MJ/m2s 
a

sσ  1.81367342e-25 m2 
e

sσ  3.162998853e-25 m2 
a

pσ  1.9e-25 m2 
e

pσ  0 m2 
s
overlapΓ  0.4  

p
overlapΓ  0.64  
gλΔ  30 nm 

lifeτ  10 ms 
s
effA  16 μm2 

p
effA  7 μm2 

Optical band-pass filter   

fλΔ  12.5 nm 

loss 3 dB 

Phase modulator   

insertion loss 2.8 dB 

Vpi 4.7@1GHz volts 

 
Note: 

2

2 22

3
2

2 ; [ ] , [ ] , [ ] / , [ ]
*

1.2745 *10 @ 1550

c ps psD D c m s nm
km nm m

D nm

π β β λ
λ

β −

= − = = = =

= −
                      

Table 3.1 Estimated values of parameters 
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3.2 The results at 20 GHz 

     The resultant optical bandwidth is 4 nm which corresponds to a 628-fs soliton 

pulse, assuming transform limited sech2 pulses. The SMSR is greater than 40 dB with 

the resolution bandwidth of 300 kHz. If the resolution bandwidth is reduced, higher 

SMSR is observed. The average output power is 12.22 mW with 440 mW pump 

power. This pulse train is obtained when the detuning frequency is 30 kHz. Fig. 3.2 

shows the optical spectrum and Fig. 3.3 shows the RF spectra with the frequency 

spans of 50 MHz and 100 kHz. The laser can operate stably for tens of minutes and 

needs cavity stabilization for long term operation. 

 

 

 

 

Fig.3.2  The optical spectrum. The bandwidth is 4 nm directly from the 

laser cavity. 
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Fig 3.3 The RF spectrum with span 50. SMSR >40dBMHz 

(300kHz resolution bandwidth) 

Fig3.4  The RF spectrum with span 100 kHz. A 30 kHz  frequency 

detuning between the cavity harmonic and the modulation 

frequency is shown. 
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3.3 The results at 30 GHz 

When the modulation frequency is detuned from the 30GHz cavity harmonic 

component by 20 kHz, the resulting optical bandwidth is 4.24 nm directly from the 

laser cavity. This corresponds to a 596 fs pulse width assuming transform-limited 

sech pulse. The SMSR is at least greater than 40 dB with the resolution bandwidth of 

300 kHz. Fig. 3.5 shows the optical spectrum and Fig. 3.6-7 show the RF spectra with 

the frequency spans of 50 MHz and 100 kHz. The beating signal between the 

harmonic component and the modulation frequency is about 20 kHz. This is the 

characteristic of ASM soliton lasers. The output power from the 10% coupler is 

24.37mW with 732 mW pump power.  

 

 

 

 

 

Fig. 3.5 The optical spectrum. The bandwidth is 4.24 nm directly from the 

laser cavity. 
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Fig.3.6 The RF spectrum with span 50. SMSR >40dBMHz 

(300kHz resolution) 

Fig. 3.7  The RF spectrum with span 100 kHz. A 20 kHz  frequency 

detuning between the cavity harmonic and the modulation 

frequency is shown. 
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3.4.1 The results at 40 GHz 

     For the available maximum pumping powers of 900 mW, the laser cavity 

used to generate 20 and 30 GHz pulse trains needs more pumping power than 900 

mW to operate at 40GHz. Due to the fixed maximum power available inside the 

cavity, to generate 40 GHz pulse trains energy for each soliton needs to be reduced 

through either decreasing the dispersion or increasing the nonlinearity. The following 

figures show the resultant optical spectra and RF spectra from a cavity with less 

dispersion. 

    The pumping power is 880 mW and the output power is 25 mW. The 

modulation frequency is 39.999 GHz with <60 kHz detuning frequency away the 

harmonic frequency. The total cavity length is 32.24 meters (shorter SMF). The 

optical spectrum is 2.92 nm which is shorter due to lowered soliton energy. The 

SMSR of 40 dB is obtained. 

 

 Fig. 3.8 The optical spectrum. The bandwidth is 2.92 nm from the laser cavity. 



 40

 

 

 

 

 

 

Fig. 3.10 The RF spectra with the span 300 kHz. A 30 kHz  frequency detuning 

between the cavity harmonic and the modulation frequency is shown. 

Fig. 3.9 The RF spectra with the span 100 kHz. 
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3.4.2 Results from typical synchronous mode-locking 

For comparison, the resulting optical spectrum by synchronous mode-locking is 

shown below along with the SMSR. The width at 3dB of the optical spectrum directly 

from the laser cavity is 2.04 nm with ~0.4 nm modulation period due to 40 GHz 

modulation. The SMSR is >50 dB with the resolution bandwidth of 100 kHz. The 

output power is 24.7 mW with the total pump power of 888 mW. The optical 

bandwidth from synchronous mode-locking at 40 GHz is 2.04 nm which is smaller 

than that from ASM. The ASM can generate shorter pulses.  

 

 

 

Fig. 3.11 The optical spectra. The bandwidth is 2.04 nm from the synchronously 

mode-locked laser cavity. 

Fig. 3.12 The RF spectra with 50 MHz span and 100 kHz  

resolution bandwidth. 
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3.4.3 Bound solitons in FM synchronous mode-locking 

In this FM fiber laser, bound state of pulses can be generated with good quality 

at a very high repetition rate. Figures below show the optical spectra and the RF 

spectra at 40GHz in synchronous mode-locking. From the interferential optical 

spectrum modulation, the corresponding pulse separation is about 2.35 ps. The SMSR 

is >45 dB at the resolution bandwidth of 100 kHz. The phase modulation is very 

important for the formation of bound state31. 

 

 

 
Fig.3.14 The RF spectra with the 50 MHz span and the 100 kHz 

resolution bandwidth. 

Fig. 3.13 The optical spectra. The modulation period is 3.4 nm. 
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3.5 Long term stabilization 

Due to the ambient temperature fluctuations of the operation condition, the 

cavity length fluctuates accordingly. For example, for a typical mode-locked 

silica-fiber laser of the length 50 m and a thermal expansion coefficient of 1.1*10-5 

/oC, the resulting frequency drift at the 8-GHz cavity harmonic is ~60 kHz. At higher 

repetition rate, this cavity harmonic frequency drift is even larger. Therefore, 

stabilization of the cavity length/modulation frequency is needed for long term 

operation, especially for high repetition rate mode-locked fiber lasers. In our previous 

work30, a simple feedback control is implemented by using kHz electronics with 

computer monitoring. The laser can stably operate for hours with the stabilization 

schemes implemented. This is another merit of the ASM soliton lasers since the 

typical synchronous mode-locked fiber lasers at the high repetition rate will need high 

speed electronics to stabilize the laser. 

On the other hand, at a lower repetition rate, the cavity frequency drift 

< lim max| |ΔΩ , so that the operation regime of the fiber lasers could remain in ASM for 

sufficient time. In this way, no stabilization schemes are needed. In reality, indeed, C. 

R. Doerr et al. have shown this23. Another possible approach is to find new kinds of 

fibers with high dispersion and high gain, and then the total cavity length could be 

reduced considerably leading to considerable reduction on the frequency drift of the 

harmonic cavity components.  

    To conclude, the ASM mechanism provides a new kind of stabilization scheme 

which doesn’t need high speed electronics to implement the feedback control loop as 

in typical synchronous mode-locking. At the low repetition rate, even no additional 

stabilization scheme is needed as long as the frequency drift of the cavity harmonic 

component remains within a certain range. At the high repetition rate, some 
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stabilization scheme is needed due to larger drifts in higher harmonics. 

3.6 Discussions 

   From our experimental results it is proved that ASM is indeed a viable method for 

ultra-short pulse generation, especially at high repetition rates. The economic 

feedback stabilization also shows its additional advantage. The results at 40 GHz can 

still be improved by adding more dispersion so that the noise can be dispersed out of 

the soliton more efficiently. This idea is from the observation described in the next 

paragraph. 

The results shown in section 3.2, 3.3 are obtained from the same cavity with the 

same dispersion and nonlinearity. In an attempt to generate 10 GHz pulse trains, 

different lengths of single mode fibers were used. When the relative length of SMF to 

that of EDF was longer, the required pump power was close to our maximum 

available power and the SMSR was greater than 70 dB. As the relative length of SMF 

was cut shorter, the required pump power was reduced but with the reduced SMSR 

(<40 dB) at 10GHz. For this laser cavity, as the modulation frequency raised to 20 and 

30 GHz, the SMSR could reach >40dB. This observation seems to support the validity 

of equation (2.60): the required gain for noises is greater than that for solitons. Higher 

dispersion and higher modulation frequency could lead to better SMSR.  

    However, it’s known that the net gain is always negative for lasers at the steady 

state. The sign in equation (2.60) shall be reversed. Furthermore, what is observed in 

experiments seems to be in contradiction with this negative net gain idea. Therefore, 

in addition to the requirement for the net gains leading to equation (2.60), it seems 

that something is to be reconsidered. 

     To resolve this, if the values in left-hand-side and right-hand-side of equation 

(2.60) were absolute values, there would be no contradiction. Even so, the validity of 
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these absolute values needs to be confirmed. There are still plenty of interesting 

questions to find behind this argument. 

In the experiments, when the laser is mode-locked asynchronously at some 

wavelength, we attempt to change the lasing wavelength by slightly tuning the center 

wavelength through the tunable band-pass filter with necessary adjustment of the 

modulation frequency. It turns out that not in all of the tunable range of the 

wavelengths does the laser stay mode-locked. At some wavelengths the optical 

spectrum becomes asymmetric. It might be the parasitic filtering effect that causes 

this phenomenon. This still needs further investigation. 

In this thesis, another question of interest is that whether APM is necessary for 

ASM. In our experiments, when the polarizer hadn’t been placed at the input end of 

the EO phase modulator, the APM didn’t occur when the polarization state was 

adjusted, and neither did ASM. With a polarizer, ASM as well as APM occurred. One 

question arises that whether this polarizer in cooperation of other cavity elements 

gives any mechanisms other than APM to make ASM possible or it is just APM? All 

of these questions are worthwhile to be investigated for a deeper understanding. 
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Chapter 4 

Numerical Simulations 

4.1 The master equation and numerical method 

To simulate the dynamics of the mode-locked lasers, an average model 

presented in chapter 2 is used. Presented below, for convenience, is the master 

equation with the APM effect in the process of pulse generation: 

( ) ( ) ( )
2

2
2

2

1 cos ( ( )) | |R M
f

T a g l jD jM t T T j a a
T t

γ δ
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪⎢ ⎥= − + + + Ω +Δ + −⎜ ⎟⎨ ⎬⎜ ⎟∂ Ω ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

  

(4.1) 

where                 ( ) H M

M

T T TΩ −Ω
Δ = −

Ω
                         (4.2) 

2 2 2
1 1 1

f g filter

g
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Ω Ω Ω⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                    (4.3) 

In this model, a band-pass filter is also introduced in the laser cavity for accounting 

the effect of the tunable band-pass filter used in the experiments. The numerical 

method is the standard split-step Fourier transform used in pulse propagation 

problems. The formulation is described in the following paragraph: 

      

 

 

 

 

 

 

 

 
Fig.4.1 An average lumped model 
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The RHS of equation (4.1) can be re-arranged into two groups of operators by 

deciding whether it is a constant operator at that time or not. The resultant pulse 

evolution equation can be written as: 

ˆ ˆ( )a A B a
T
∂

= +
∂

                          (4.4) 

where              
2

2

2

1 1ˆ
R f

A jD
T t

⎧ ⎫⎛ ⎞⎛ ⎞ ∂⎪ ⎪⎜ ⎟≡ +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟Ω ∂⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
                      (4.5) 

and        ( )( ) ( ){ }21ˆ cos ( ) ( ) | |M
R

B jM t T T g l j a
T

γ δ≡ Ω + Δ + − + −        (4.6) 

B̂  is the constant operator at some time while Â  is a differential operator. After 

some small propagation time the resulting pulse is: 

( )1
ˆˆexp exp exp , 0,1,2...

2 2m m m
T Ta A B T A a m+

Δ Δ⎛ ⎞ ⎛ ⎞≅ ⋅ Δ ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       (4.7) 

For each iteration, equation (4.7) is evaluated in a split-step manner: first, apply the Â  

operator in the frequency domain with the Fourier transform pair, d j
dt

ω→ − , and then 

transforming back to the time domain; second, directly apply the B̂ operator in the 

time domain; the last step is the same as the first step. The programming plateform is 

the Matlab software. For the correctness of the simulation, an accurate or at least 

reasonable estimation of the parameters is necessary. The values and units used in the 

simulation are listed in the table (The wavelength is 1560 nm). Also, the absorbing 

boundary condition is implemented with a parabolic loss term within the window to 

prevent reflected waves from interfering with the pulse. 
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Item        Value     Unit 

RT        150 Ns 
Harmonicth 4500/6000  

SMF   

2β  -0.02328 ps2/m 
δ  0.00122 W-1/m 

EDF   

2β  0.05164 ps2/m 
δ  0.00629 W-1/m 

satI  70.39949 MJ/m2s 
gλΔ  30 nm 

Tunable Filter   

fλΔ  12.5 nm 

Phase Modulator   

M 0.3~0.5 radian 

MΩ  30 / 40 GHz 

APM   

γ  0.0069 /  W-1 

 

4.2 The simulation of ASM 

     In this section, numerical simulation is performed to see if the resulting pulse 

properties are identical to those predicted by the analytical theory in a qualitative 

manner. To do so, accurate parameter or at least reasonable estimation is required. To 

do this, some of the values of the parameters are obtained from the experimental 

measurement or estimation. However, in most of the cases these values in simulation 

don’t match exactly to those of the experiments and the resulting pulse properties are 

very sensitive to the set of parameters. Here, a qualitative instead of quantitative 

comparison is attempted. 

 

Table 4.1 Estimated values of parameters 
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4.2.1 Asynchronous mode-locking at 30 GHz 

The following figures show the steady state pulse shape and the evolution with 

time when the frequency detuning is 40 kHz. The resultant pulse is 0.5*1.763=0.881 

ps in width with a soliton pulse shape. The soliton area theorem is 

satisfied, 2 1.15o
D A τ
δ

−
≅ = . The output power is 20mW from a 10% coupler. A 

simulation period of 167 round trips is obtained. The estimated values from table 4.1 

are listed bellow: 

 

 

 

 

 

 

 

 

 Fig.4.2 The resultant pulse shape is a 0.5-ps sech soliton pulse. 

*Note: values are not exactly the same as those in the experiments 

40     kHzDetuning frequency 

0.011 W-1APM 

0.2Modulation index 

1.56   THzFilter bandwidth

3.75   THzGain bandwidth

0.03   W-1 Kerr 

-0.02  ps2 Dispersion

150   nsRound trip times

Table 4.2. Values of parameters* 
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Fig.4.3 The pulse evolution with a period of 167 round-trips from 

1500 to 1800 round-trip times. 

Fig.4.4  The pulse evolution with a period of 167 round-trips from 

1800 to 2100 round-trip times. 
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4.2.2 Asynchronous mode-locking at 40 GHz 

    When the modulation frequency is raised up to 40 GHz with a frequency 

detuning of 40 kHz(166 round-trip period), the pulse-width is shortened to 793 fs. The 

output power is 27 mW from a 10% coupler. The gain is raised to provide larger 

cavity powers for supporting more pulses. The values of the other parameters are all 

the same as those at 30 GHz. The table of values is repeated here for convenience. 

 

 

 

 

 

 

 

 

 
Fig.4.5 The resultant pulse shape is a 0.45-ps sech soliton pulse. 

40     kHz Detuning frequency 

0.011 W-1 APM 

0.2 Modulation index 

1.56   THz Filter bandwidth 

3.75   THz Gain bandwidth 

0.03   W-1 Kerr 

-0.02  ps2 Dispersion 

 150   ns Round trip times 

Table 4.2. Values of parameters 
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Fig.4.6  The pulse evolution with a period of 167 round-trips from 

1800 to 2100 round-trip times. 

Fig.4.7  The pulse evolution with a period of 167 round-trips from 

1800 to 2100 round-trip times. 
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4.3 Discussion 

    In this section, the impacts from various parameters on the pulse properties at 

the steady state of asynchronous mode-locking are discussed in a qualitative manner. 

Only one parameter is changed at one time with the others fixed to see how the result 

changes. The noise isn’t considered in the simulation. 

 Phase modulator 

The effects of the modulation index are explored without APM participating in 

the process. The values are listed in the table. The modulation index is varied from 0.6 

to 1.5 in this case. Before doing the simulation, it can be known from the equations 

(2.19) and (3.58-61) that the pulse width, frequency shift, noise-cleanup effect, and 

the maxima detuning range are related to the modulation index. 

Table 4.3 values of parameters 

Item Value     Unit 

satE  400 pJ 
gfΔ  3.75 THz 

0g  7  

Loss 2  

filterfΔ  1.56 THz 

M 0.6-1.5  

mf  10 GHz 

fΔ  20 kHz 

harmonic 50  

RT  50 ns 

D  -0.05 ps2 

δ  0.01 W-1 

γ  0 W-1 

    Figures 4.8-10 show the resultant pulse evolution, the cavity power relaxation 

and the pulse-width when M=0.8. Figure 4.8 also shows that the slow modulation 

period is 1000 round-trips, which corresponds to 20 kHz frequency deviation. 
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Fig.4.8  The pulse evolution at 1 GHz with a period of 5000 round-trips 

from 10000. to 12000 times, M=0.8. 

Fig.4.9  The cavity power relaxation. 
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Fig.4.10  The resultant 1.78 ps soliton pulse at 1GHz, M=0.8. 

Fig.4.11 The phase along the pulse which moves left, M=0.8. 
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Fig.4.12 The phase along the pulse at the left end, M=0.8. 

Fig.4.13 The phase along the pulse moving right, M=0.8. 
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Figures 4.11-13 also show the phases along the pulses at some time spots. It is found 

that the soliton is of a little chirp from the quadratic phase curve. The slope of the 

phase also shows that the frequency of the pulse is shifted in a periodic manner which 

in turns leads to pulse timing variation. The peak-to-peak timing variation is about 

9.77 ps.  

The next figure shows the situation after thousands of round trips when the 

modulation index is changed to 0.6 at 12000 round-trip. It turns out that the pulse is 

no longer stable. The pulse sheds off continuous waves which get amplified in turns. 

 
 

 

When the modulation index is changed to 1.2, the peak-to-peak timing variation 

becomes larger, 15 ps, and there are less continuous waves. The resultant pulse width 

is almost unchanged. It may be because the pulse-width is shortened by soliton 

compression and is already beyond the Kuizenga–Seigman limit, 11.6 ps, at 1GHz. 

The following figures show the results. 

Fig.4.14  The pulse evolution at 1 GHz with a period of 18000 

round-trips from 18000. to 20000 times, M=0.6. 
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Fig. 4.15 The pulse evolution at 1 GHz with a period of 18000 round-trips 

from 10000. to 12000 times, M=1.2. 

Fig.4.16  The resultant pulse when M=1.2. 
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     The changes in the peak-to-peak timing variation with respect to the modulation 

index are plotted in the figure 4.17. It is found that the peak-to-peak timing variation 

changes linearly with the modulation index. Figure 4.18 shows the resultant pulse 

width with respect to the modulation index. The pulse width is almost the same for 

different indices. For the modulation index = 1.6, the pulse shape is of Gaussian 

instead of sech. This may imply that there is a condition under which the pulse-width 

remains unchanged regardless of the modulation index. 

   

 
 

Fig. 4.17 The timing variation changes with M 
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Fig.4.18 The resultant pulse remains invariant for a range of M. 

Fig.4.19 The resultant pulse-width changes inverse-proportionally with the 

modulation frequency. 
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Figures 4.19-20 show the effects of modulation frequency on the pulse-width and 

the timing variation. It is noted that the pulse-width is shortened 

inverse-proportionally with the modulation frequency. The peak-to-peak timing 

variation grows linearly with the modulation index.  

To verify whether these results are reasonable or not, we can refer to the timing 

variation derived from the soliton perturbation theory, equations (2.57-59); the timing 

variation is indeed proportional to the modulation index and modulation frequency. 

The results of the pulse-width maybe right and need experimental and theoretical 

verification.  

      Notes: the simulations results, figures 17 and 19, of the effects of the 

modulation frequency uses the values listed in table 4.2 instead of table 4.3. The 

values in table 4.3 are used to explore the effects of the modulation index, the 

Fig.4.20 The peak-to-peak timing variation changes linearly with the modulation 

frequency. 
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dispersion and the APM. 

In the following sections, the effects of the dispersion and the APM are 

simulated. It can also be verified that the timing variation is proportional to the 

dispersion. Experimental and theoretical verifications are needed to check the effects 

of the dispersion on the pulse-width and the effects of APM. 

 Dispersion 

This section shows the effects of dispersion on the pulse-width and the 

peak-to-peak timing variation. The timing variation gets larger when cavity dispersion 

gets larger. The trend is shown in the following figure. It’s known that the time delay 

due to the frequency shift is proportional to dispersion. The timing variation shown 

here is not assured to change in a linear or quadratic form. But the general trend 

seems to be reasonable by considering the frequency-shift-induced time delay. 

   

 
Fig.4.21 The peak-to-peak timing variation changes with dispersion. 
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 The resultant pulse-width seems to be in a linear relation with respect to the 

dispersion from the simulation results. With larger dispersion the pulse width is also 

wider. Experiments are needed to measure the timing variation and pulse width for 

further investigation. 

 

 APM 

The previous discussion doesn’t take the APM effects into account. Here, this 

effect is included by setting 0.005γ = . The simulation results show that the pulse 

width and the timing variation are both reduced. The reduced pulse width may be 

expected since APM can shorten the pulse width nonlinearly. The more interesting 

result is that the timing variation is also reduced in ASM by APM. The following 

figures show the simulation results. 

Fig.4.22 The resultant pulse width changes linearly with dispersion. 
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Fig.4.23  Timing variation is reduced by APM. 

Fig.4.24 The resultant pulse width is reduced by APM. 
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Chapter 5 

Summary and Future Works 

5.1 Summary 
    In this thesis, asynchronous mode-locking is demonstrated to be a viable and 

economic method for ultra-short pulses generation at 40GHz both in experiments and 

simulation. In the experiments, the resulting pulse width is 596 fs with SMSR > 40 dB 

when the detuning frequency is 20 kHz at 30 GHz and 860 fs with the same SMSR at 

30GHz when the detuning frequency is 30 kHz at 40GHz. In simulation, the results 

reasonably agree with those from the experiments. 

From the results of the simulation and experiments, the effects of the phase 

modulator in ASM are described in terms of the modulation index and the modulation 

frequency. In simulation, it seems that the modulation index has a small impact on the 

pulse-width, because the pulse-width is mainly determined by the soliton effects and 

is already beyond the Kuizenga–Seigman limit. The peak-to-peak timing variation is 

larger with the increasing modulation index, which has been confirmed by the 

perturbation theory.  

In the experiments, larger modulation index leads to wider optical spectra but the 

pulse energy is too small to measure the real pulse width by SHG autocorrelation. The 

wider optical spectra may be due to the fact that the pulse gets chirped by the phase 

modulator while the pulse-width remains the same. Future works need to be done to 

confirm if this is possible by raising the pulse energy for measurement. 

     As for the modulation frequency, both in experiments and simulation, the pulse 

width is more shortened by using a higher modulation frequency. Although in this 

experiments the pulse width is not directly measured, in the previous experiments by 

C. R. Doerr23 et al and by ours24, shorter pulse-widths with higher modulation 
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frequency is observed. 

 
 

 In simulation, with a larger dispersion the pulse width and the timing variation will 

grow. The increasing pulse width may be explained by the broadening effect due to 

dispersion. The increasing timing variation may be due to the fact that the time delay 

by the frequency shift is proportional to the dispersion. Further investigation may be 

performed in experiments to confirm these observations. The functional forms for the 

timing variation and the pulse-width are arranged as follows: 

1, , ,MT M D f
γ

⎛ ⎞
Δ ∝ Ω⎜ ⎟

⎝ ⎠
                     (5.1) 

( )1 1, ,s
M

D f f Mτ
γ

⎛ ⎞
∝ ≠⎜ ⎟Ω⎝ ⎠

                 (5.2) 

The effects of the APM in ASM are investigated by simulation. The pulse 

width is shorter as expected, and the timing variation is reduced, too. This smaller 

timing variation due to APM is an interesting phenomenon and may need further 

investigation. Although in simulation it is still possible for pulses to form without 

Detuning: 20kHz 

SMSR >70 

Pulse-width : 837 fs 
Detuning: 30kHz 

SMSR > 40 

Pulse-width : 628 fs 

Detuning: <20 kHz 

SMSR > 40 

Pulse-width : 596 fs 

Dispersion 
MAX 

Fig 5.1 A summary of the experimental data. 

Detuning :<60kHz 

SMSR >40 

Pulse-width : 860 fs 
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APM, in experiments no ASM is observed without APM. 

5.2 Future Work 

 Theoretical work 

The effects of the phase modulator in ASM need an explicit analytical expression 

for accurate estimation. Future work may include expanding the phase modulation 

term to second order in the master equation and substituting the Sech ansatz into it to 

find a more analytical solution. In this way, the effects from various parameters on the 

solution may also be studied.  

 Experimental work 

In experiments, the relative length of SMF to that of Erbium-doped fiber plays an 

important role, since the resulting soliton energy is determined by the net cavity 

dispersion and nonlinearity. Once the relative length is determined, the cavity 

dispersion as well as the cavity nonlinearity is determined. Usually, it is preferable 

that there are more degrees of freedom to operate. If the cavity dispersion and 

nonlinearity can be chosen independently, it is possible to lower the soliton energy 

while maintaining the cavity dispersion by just increasing the cavity nonlinearity. To 

do this, certain types of fiber-compatible devices are desirable. For example, high 

nonlinearity fibers which have almost zero dispersion around 1550 nm are quite 

desirable. In this way, higher SMSR and lower required pumping power can be 

achieved and we can perform some experiments to make sure if the dispersion really 

helps improving the SMSR. 

In addition, in ASM fiber lasers a wide band width filter is needed for shorter 

pulses and such a suitable wide band filter may not be easy to get and also expensive. 

An alternative choice is to use a Sagnac loop interferometer based on the polarization 

maintaining fiber as a wide band filter. Attentions must be paid to the reflection 
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effects of the devices, because ASE noises will be induced when there is a gain 

medium between the devices which reflect lights. It is encouraged to invent or find 

new kinds of new devices depending on the applications. For example, a special 

material called “photonic crystal” is attracting great attentions for its diversity. 

 Since the power inside the cavity is approximately 200~300 mW depending on 

the gain medium and pumping powers, the pulse energy is smaller when repetition 

rate is higher. It’s not easy to measure the pulse-width by SHG autocorrelation. New 

measurement techniques and distortion-free amplification techniques are needed. 

 The frequency shifts of the soliton are also needed to be measured. The main 

difficulty is that the frequency component at 20~40 kHz on RF spectra includes the 

contributions from the timing variation and the frequency shifts. These two effects 

need to be separated by some methods. 

 Simulation Work 

In doing simulations, it is always a good idea to find a more efficient algorithm, 

no matter in memory space or computation time. In the case of ASM, since the pulse 

moves within the computation window, if the window could move accordingly, 

computation time would be saved due to reduced redundant part of the computation 

window. Especially, the timing variation grows with a higher repetition rate. 

Therefore, a moving computation window is needed. Furthermore, with the growing 

computation ability of computers form years to years, a more efficient algorithm is 

always desired. 

In the process of doing simulation, we’ve found that the time spot on which 

APM occurs is important; if there are considerable continuum waves before the 

effects of APM get greater, it is possible to form pulses from these continuum waves. 

Otherwise, APM acts as a noise cleaner and a pulse shaper. The role of APM in ASM 
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is still needed to be explored and defined. Also, the noise sources can be added to the 

equation for a simulation of a real system. 

 

Notes 

Most parts of this thesis put the emphasis on the steady state of the laser system. 

In fact, the initial situation of lasers which depends on the noise effects32, and the 

operation conditions has an influence on the dynamics of lasers. This is a challenging 

research topic. 
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