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Abstract

In this thesis, asynchronous mode-locked Erbium-doped fiber
soliton lasers are explored in experiments and computer simulation. In
experiments, we successfully generate 20, 30, 40 GHz pulse trains; the
pulse widths are 628, 596, 849 fs respectively with SMSR >40 dB. In
simulations, it’s proved that asynchronous mode-locking is a viable
method to generate ultra-short pulse trains at the high repetition rates and
the results agree with those from experiments qualitatively. Besides, the
effects of various cavity parameters on the pulse width and timing

variation are also simulated.
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Chapter 1
Introduction

1.1 Brief Introduction

Mode-locked fiber lasers are ideal light sources for fiber-optic communication
due to their fiber-type device compatibility, compactness, and better quality (almost
transform-limited short pulses compared to those from laser diodes). Fiber-type
devices have the advantages such as lower coupling loss and simplicity for
manufacturing by splicing as well as significant nonlinear effects due to small core
area and long interaction length. Mode-locked fiber lasers can generate short pulses at
the high repetition rate by employing mode-locking mechanisms to establish the fixed
relationship among the phases of'the different frequency components (modes). A
detailed introduction for the theory.will be given in chapter 2.

Typically, there are two popular approaches to achieve mode-locking; one is
through the active modulation and-the.other-is through passive modulation. Active
mode-locking can generate pulse trains at higher repetition rates when compared with
passive mode-locking. On the other hand, passive mode-locking can generate shorter
pulses when compared to active mode-locking. To generate shorter pulses at high
repetition rate simultaneously, hybrid mode-locking can be used by employing the
two approaches simultaneously.

However, there are still some problems. In active mode-locking, synchronization
between the modulation frequency and the harmonic component of the cavity
frequency must be perfectly maintained in order to achieve stable mode-locking. It is
not easy to do in practice due to the fiber-type nature of typical fiber lasers; since the
ambient temperature fluctuations will cause the length of the fiber cavity to change

thermally, the cavity frequency components drifts in frequency and the synchronicity
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is no longer maintained. Especially, longer cavity length causes larger variation,
which is further enlarged at higher harmonics. Therefore, some cavity
length/modulation frequency stabilization schemes are needed to be implemented to
maintain the synchronization for long term operation.

In typical synchronous mode-locked fiber lasers, the required optical detection
speed of the stabilization electronics is growing faster with a higher repetition rate and
these high speed electronics are expensive for economic practice. Fortunately, by
using asynchronous mode-locking the synchronization, in fact can be achieved more
easily by detuning the modulation frequency of the phase modulator slightly off the
cavity harmonic by 20~40 kHz. In this way, the 20~40kHz beating signal around DC
in the electronic spectrum can be used to implement a more economic stabilization
scheme with the use of only.kkHz electronics. It must be emphasized that
asynchronous mode-locking mechanism needs intra-cavity soliton effects and guiding
frequency filter effects in a complete.sense,-since detuning the modulation frequency
in typical mode-locked fiber lasers will destroy the pulse patterns. Asynchronous
mode-locked soliton fiber lasers can stably operate at a very high repetition rate and
generate very short pulses in the same time with less cost.

Another merit of ASM fiber lasers is that the super mode noise in harmonic
mode-locking is reduced significantly. This is because the intra-cavity pulses are
solitons. The frequency shift imposed by the phase modulator will shift the noises
away while the solitons can resist this frequency shift more. Finally, the noises are
filtered out by the filter while the solitons can sustain. This noise clean-up effect is
similar to the sliding-frequency guiding filter effect in soliton transmission systems.

In asynchronous mode-locked soliton fiber lasers, an interesting bound soliton
pairs can be generated noiseless and stably. This shows that ASM soliton fiber lasers

are also suitable as a reliable platform for bound states experiments, in addition to the
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use as a light source in fiber-optic communication systems. Due to the diversity of the
pulse properties from these mode-locked fiber lasers, there are already many

34,35

reports”™> showing that the fiber lasers have got growing potentials in many kinds of

applications, including optical metrology, ultra-fast optics, nonlinear optics, etc.

1.2 Motivation

Due to the diverse properties and growing applications of the ASM soliton fiber
laser, we begin our studies by trying to understand the fundamental principles of this
type of lasers. In this way, we can gain, at least, the required basic knowledge to build
a real working fiber laser system at a repetition rate up to 40GHz. In the process of
achieving this goal, a lot more information about the lasers can be learned and

eventually more applications of the laser can be explored.

1.3 Contents of the thesis

The contents of this thesis are organized in five chapters. Chapter 1 presents a
brief introduction about the development of mode-locked fiber lasers as a start.
Chapter 2 is devoted to a detailed description about the theories for deeper
understanding. Chapter 3 shows the experimental setup and the results based on the
foregoing chapters. Chapter 4 is devoted to the simulation of the laser itself for a
visualization of what is going on inside the laser cavity. Finally chapter 5 gives a

summary about the future prospects of the work done here.



Chapter 2
Theories of mode locked soliton lasers

2.1 Short Pulses Generation

1.4

Repetition

Amplitude
(=]
o

T

|

<
3]
T

Pulse width b

0.4 b

02+ N

0 I I I I I
-10 -8 -6 -4 -2 0 2 4 g8 8 10
Time

Fig. 2.1 Short pulse trains

To generate high-repetition-rate short pulses, the knowledge of what the pulses
of interest explicitly look like! and the methods for the generation” of such pulses
shall be needed. The mathematical function form of the pulse is in the form of
Gaussian or hyperbolic secant which is a solution to the actively or passively
mode-locking master equation that governs the short pulse generating laser systems.
However, only when the population depletions of the gain medium and the saturable
absorber are not excessive does a passively mode locked laser by slow saturable
absorber have an analytical hyperbolic secant solution?. Many mode-locking methods
have been developed and demonstrated in the literature. These will be described in the

section entitled “Mode-lockers”.



2.1.1 Characterization of Pulses

I. Gaussian pulses

The function form of Gaussian pulses is written'*° as bellows:

1 .
E(t) = > E,exp| —1t° |exp(ja,t) (2.1)
y=a-jp (2.2)
where « describes the width of the Gaussian pulse, @, is the carrier frequency,

and S governs the frequency chirp of such pulse. The pulse width defined as the
time separation between the two half-intensity points is

7, =\2In2/a (2.3)

The bandwidth of such pulses can be defined as the frequency separation between
the two half-power points of the optical spectra. It is known that the Fourier
transform of a Gaussian function is still-a Gaussian. function, so the pulse spectra can

be written as:

E(w) = E, F2y7 Iy exp(=(w<w,)* 1 47) (2.4)

So the bandwidth shall be

Af, = Uz 2In2(a? + %) (2.5)

Equation (2.3) along with (2.5) gives one of the important characteristics of a pulse,

the pulse-bandwidth product. It can be written as

Az, Af, = (2In2/ Z) 1+ (B @) (2.6)

Typically, for the case of Amplitude-Modulation-Active-Mode-Locking, which
imposes no chirp on the pulse, £ =0, the value of the time-bandwidth product for
Gaussian  pulses is  therefore  0.441. While for the case of
Phase-Modulation-Active-Mode-Locking, which imposes a linear frequency chirp

during the pulse and| #|=«, assuming no dispersion and no nonlinear effects,



A, Af, =0.624.

I1. Hyperbolic secant function

The transform-limited sech pulse has the following function forms

E(t) =E,sech(t/z)exp(jo,t) (2.7)

E(w) = Eor\/%sec h(zzw! 2) (2.8)

Ar:rlnﬁtizl.m% (2.9)
1, 241

Af =—In—— 2.10

T’ \/5—1 ( )

The time-bandwidth product is thus Az Af ' =0.314.

The following figure depicts the difference between the Gaussian and
hyperbolic secant pulses. It is noted:that thererare larger wings in sech pulses and the

wings of Gaussian pulses drop.abruptly due te the guadratic exponential decay.

_,-f'\ T T T 1
f ¥ Gaussain
‘t | + Sech
0.9 i \ : !
0.8 ’{ 1;
o
0.7 |
4 \
/ |
06 J ll.‘ =
-] | \
2 + +
2 05- / h -
E +/ \ll'
0.4 o \* i
N é
03 . \s
+ )' l\ +
+ \
0.2+ + \\ d
a‘ l,r'llll ."\
01t ot -
J N M
o .
0 4a 1 L 1 e
-5 4 3 2 1 a 1 2 3 4 5

Normalized time

Fig. 2.1 Gaussian and sech pulse shapes

After examining the properties of the different pulses, the corresponding master

equation is presented.



2.2 Master Equation

.23 . i
The master equation ", for example, for the phase modulation case can be written as

below:
0 1)6| ..0 . _
T.—a =19|1+| = | =5 |+iD=5+Mcos(Q,t)- | —jo|af ra+N(T)
N aT Q at 8( (S — |(;SS — ——
g — PhaseModulator KerrEffect Noise
RoundTripVariation Dispersion
gain

N

where T, is the roundtrip time; g , saturated gain; €, , gain bandwidth;

D =p,L/2, dispersion coefficient; &= (2x/A)n,L/ A , Kerr coefficient; where n,

is the nonlinear index; Ay is the effective. :mode area; L, cavity length; M ,

modulation index and €, , the.modulation radian frequency.

It may seem very complicated. at-first,-but with some careful inspection the
master equation describes the laser cavity that-contains some lumped elements: a gain
medium, cavity loss, cavity dispersion effect, a mode-locker, nonlinear Kerr effect,
and a spontaneous emission noise source. The total effects on the pulse formation
during the roundtrip along the cavity (as shown in the right-hand-side) will be equal to
the total roundtrip change (as shown in the left-hand-side). In the following sections,
the action of the mode-locker is first described since it is the main mechanism for
generating short pulses, we then consider the action of the other cavity elements, each
of which also contributes significantly to the formation of short pulses individually or
in cooperation with each other. The dispersion and nonlinear effects are omitted first
for simplicity and then included afterwards.

To give an initial sense about the pulse formation, the figures in the next page

depict a simple pulse formation/evolution example with respect to the round-trip time
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of the cavity. The pulse grows from a very wide pulse initially and then evolves into a

shorter one afterwards.
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Fig. 2.3 Pulse formation from a'top view

LA
1.2

08-
08-
04

02

0-
1000

200 ‘ ~ Time  (ps)

Round trip times

Fig. 2.4 Pulse formation from a side view



2.2.1 Mode-lockers

Assume that a laser is ready to emit CW signals at a specific wavelength. Now,
if the laser has to emit pulses at a fix repetition rate, then some mechanisms are
needed to be introduced into the cavity, either inside or outside the main cavity. One
intuitive idea is to introduce a loss modulator in time domain inside the cavity so that
the CW signal is modulated into pulses. This modulator can be either active or
passive. That is, an active EO modulator driven at the desired repetition rate or a
passive saturable absorber which has an intensity-dependent loss (high loss when

energy is low and vice versa).

Transmission

Loss

Gain

A ]

Time

v

Fig. 2.5 Mode-locking principles

I. Active mode lockers
® Amplitude modulator

The modulation (loss) can be written as a cosinusoidal function and can be
expanded to the second order of time. This approximation is valid when the pulse

passes through the modulator at the maximum transmission pointl’z, which is the case

in the steady case.

M [L+cos(Q,t)]=2-M %(th)2 (2.11)

The master equation can then be modified by replacing the phase modulator term with



this expression. The dispersion and Kerr effects are also omitted for the present

discussion.

2 2
T.2a =lglte| 2| 2 |- tmae — 1 la (2.12)
oT Q. | ot 2 .
[ ¢} | —
RoundTripVariation / AmplitudeModulation

gain

The steady solution is a Gaussian pulse with a full width at 1/e intensity given by

4 329

which is consistent with the Kuizenga-Siegman formula for AM mode-locking. The

pulse width at FWHM differs only by a factor~/In2 and is given by:

:\/2|n2(i]“[ 1 ] (2.14)
T

TrwHM

\Y] f Af,
Typically, the pulse-width is limited by the strength of the modulator and is about
picoseconds in fiber lasers. When the pulse is getting:shorter, the strength of the pulse
shaping effect by the modulator becomes less effective. One of the methods that can
generate sub-picoseconds pulses is through passive mode-locking which utilizes

self-amplitude modulation effects.

Kuizenga-Siegman limit

pulse width ps

Modulation frequency GHz

Fig. 2.6 Typical pulse width achievable in active mode-locking 10



The exact modulation frequency can be obtained through an analytical

approach’
fmzll(&f—g];isl/n (2.15)
c Ao 2L
where
1(, 1 T 1.1
_Z |n——|n[1—8|n2|v| £ /Af } T 2.16
9-3(In (turat,) ]| 23 (2.16)

R is the effective reflection of a mirror including all losses. The second term in the
denominator is due to the dispersion effect or linear delay imposed by the Lorentzian

line of the gain which is much smaller than the cavity roundtrip time. Usually

f,, < Af,, so the final approximation is valid. For Erbium fiber amplifiers, the gain

bandwidth is about the order of 40nm. It is also noted from equation (2.16) that when
a laser is mode-locked, the gain is;pinned at the loss level. This is because the pulses
carrying increasing energy will grow until the.gain.is-saturated at the steady state.

If the modulation frequency.iS-set-to-one-of the harmonics of the cavity

frequency (the inverse of the round trip time); 2, = N ?I'_ﬂ where N=1, 2, 3,..., then
R

the repetition rate of the laser output can be raised to a higher one and the laser is said
to be mode-locked harmonically. However, there will be N unlocked groups of
locked modes (i.e. super-modes) competing the gain, which will give rise to
amplitude fluctuations (super-mode noises). On the other hand, the long relaxation
time(1ms) of erbium fiber amplifiers makes the gain can not get recovered within one
round trip time, which may lead to some pulse-to-pulse amplitude fluctuations. These
problems can be solved to some extend by introducing a Fabry-Perot filter in the
cavity’ or by the incorporation of the combined SPM and spectral filtering effects®,
The physical meaning of “mode-locker” can be appreciated in a different view

when switched to the frequency domain. The ”mode” represents one of cavity
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longitudinal modes with different frequencies. When all of the components are
superimposed together with fixed phase relationship, constructive interference
somewhere and destructive interference elsewhere leads to periodical pulse formation.

In this way, steady pulses at a certain repetition rate are generated.

g(w)
A
modes
T =\
| |
........................ 4 Mode
locking

Fig. 2.7 Mode-locking illustrated ih frequency domain

® Phase modulation
Assuming a pulse is to pass through a phase modulator, then the modified pulse can

be represented as follows™?

iM cos(Qpt)

a'=e a;M:ﬁV—”‘
V

. (2.17)
Aa=a'-a= a(ejM oos{@nt) —1) =~ jM cos(Q,t)a

So the master equation can be written as

loss

0 1 0° .
T,—a = 1+| — | — |+ jMcos(Q t)- | +a
R T g (Q ] o |7 M cos(@,t)- | (2.18)

PhaseModulator

The pulse-width of a Gaussian pulse solution to this equation with the phase

modulator term expanded to second order is given by:
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T M f Af

m—"g

TEWHM :ﬂ(ij { L ] (2.19)

where the modulation frequency is

fm=1/[2L/c+(MJ+29/Aa)};c/2L=TR (2.20)

7C

The second term of the denominator is due to the equivalent motion of the mirror. The
phase modulator behaves like a vibrating mirror, which effect is small compared to
the first term. The other terms are identical to the case of amplitude modulation, and

the gain is

2
g=2in=—2in|1-8In2M (f, /Af )2+3(8|n2M(fm/Af )2)
2R 4 o) 73 : (2.20)

I

N |~

1
In—
R
The second equality is also because of the fact that f < Af . Gain is pinned at the

loss level of the cavity at the steady state.
Phase modulators also impase a.frequency chirp over the pulse. This can be

understood by expanding the phase modulation effect to the second order.
jM cos(Q,t)= jM (1—sin(¢9)th—%cos(&)(th)2 +j (2.22)

where @ corresponds to the phase delay between the pulse and the modulation. As
60 =0, it is the case at the steady state. It is the last term that gives a frequency chirp
over the pulse. The first term is a phase shift and the second one is a frequency shift
which vanishes when 8 =0.
I1. Passive mode lockers: Saturable absorbers

There are two categories of saturable absorbers, fast and slow absorbers. The
main difference lies in the relaxation time relative to the pulse width. The relaxation
time of the fast saturable absorber is short compared to the pulse width, while that of

the slow absorber is long compared to the pulse width.
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® [ast saturable absorber

The loss modulation can be written as®®

S
s(t)y=——>—— 2.23
® 1+ 1)/ 1, (2.23)
where s,(<1) is the linear (unsaturated) loss, I(t)is the intensity, and I, is the

saturation energy of the absorber. If the saturation is relatively weak, then the result

can be further expended as
s(t)=s,(1-1(t)/ 1) (2.24)
The mode amplitude is normalized so that|a(t) |’= 1A, .

The transmission of the absorber becomes

[ 1a®F) . s, s laOP
s(t)—so[l ,Sat&ﬁ]—so ol a0f=s 12| (2.25)

It can be seen that the loss modulation is self-intensity dependent with y as the self
amplitude modulation coefficient (SAM).

With the mode-locker term being.replaced with the nonlinear term and with the

first linear terms, being incorporated into the loss coefficient, the master equation

for fast saturable absorber mode locking becomes™

0 1) 82 . ) . . 0°
TRa_Ta =101+ — | =z [+ (y —Jo)a®) [ -| | + iy +Xx) +JD6—2a
S;HM loss t

RoundTripVariation [N —

(2.26)

where the dispersion, nonlinearity, and phase shifts per pass are included for
completeness; y =(Aw,/c)L, denotes the phase shift induced by a carrier
frequency shift, Aew,, off from one of the Fabry-Perot resonances of the linear

resonator and x denotes the phase shift during propagation.
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The exact solution as recognized by Martinez et al can be written as
a=Asech(t/r)exp[jgInsech(t/7)] (2.27)
where pulse amplitude, A, pulse width,z, and chirp parameter, £, characterize the
pulse and can be obtained through substituting this ansantz into the master equation

and with some manipulation the chirp parameter can be written as

1/2

3 3 Y
=——yxl|l=x| +2 2.28
B=—3x Kzzj } (2.28)
where
_9D.—7 (2.29)
o+yD,
and the normalized pulse width is written as
_ 2 _ _ 2
- 2-3pD,-p° _ -2D,-38+D,B (2.30)
% o
=~ =(WQ92/29)T
where (2.31)
D, =(Q,°/29)D
The net gain is found to be
g-1-—(1-p)—9_, 2P (2.32)

ngz'z r°
From equation (2.30), it is found that the pulse width is determined by the cavity
parameters in the passive mode-locking case.
® Slow saturable absorber
For slow saturable absorber mode-locking®®, the equations presented above need
to be modified; The gain and SAM terms must take into account the relaxation effects.

The gain and the (loss) modulation is energy dependent instead of intensity

dependent.
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90)=9, exp(— [dtia®mF /WQJ
° (2.33)

s(t) =s, exp(—j' dt]a(t) ] /WS]

where g, and s; are the initial gain and loss before the arrival of the pulse, W,

and W, are the saturation energies.

For this master equation to have a hyperbolic secant solution, one
approximation is needed: the exponentials can be expended to second order. This is
valid when the population depletion of the gain and the saturable absorber is weak.
Further more, the effects of the saturable absorber must be sufficient to open up a net
gain window during the pulse for a pulse to grow and a net loss window outside the
pulse for noise to be suppressed.«The pulse: width of a pulse from a passively
mode-locked laser can be of femto-seconds since when the pulse gets shorter and
shorter, the strength of pulse shaping by.SAM is still-effective.

The repetition rate of the“passively mode locked lasers is the inverse of the
round trip time, 1/T,, which is very low with a long cavity length and can’t be
raised to higher repetition rate unless the laser operates in the passive harmonic

mode-locking”.

® Artificial Fast Saturable Absorber

In reality, there is almost no real saturable absorber with the relaxation time
much shorter than 1 pico-second. Fortunately, there are some methods that use
nonlinearity in corporation with some effects to act like an artificial fast saturable
absorber (AFSA). These include the Additive-Pulse Mode-locking (APM)™, and
Kerr-Lens Mode-locking(KLM). The Kerr effect, which is very fast, is used in both

schemes but in different ways. Other methods to achieve AFSA are by using the
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nonlinear amplifying loop mirror and semiconductor saturable absorbers.

APM utilizes the nonlinear interference effect between two versions of the
pulse inside the cavity. Both pulses are phase modulated by SPM to different extend
during propagation so that constructive interference occurs around the peak, which
leads to low loss, while destructive interference at both tails, which leads to high loss.
In this way the pulse is shortened. This mechanism is suited for fiber laser due to the
small core area that leads to high intensity required for SPM.

KLM, as its name suggests, utilizes self-focusing through the nonlinear
refractive index, n=n,+n,l; higher intensity part is much focused due to higher
induced refractive index and then with an aperture, high intensity part transmits at
low loss and low intensity part is attenuated at high loss. In this way, pulses are also

shortened. The KLM method is mare suited for lasers with free space propagation.

intensity self-focusing
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Fig. 2.8 Artificial saturable absorber realized with Kerr-lens mode-locking

There is another version of APM called “Polarization-APM”, or “Nonlinear
Polarization Rotation”™ . The first APM is realized with two coupled resonators in
which two pulses are added together to have interference at the mirror between two
resonators'®*3, The polarization states of the two pulses have to be the same,
otherwise no interference occurs. But this doesn’t imply that the polarization hinders
APM to take place. On the other hand, P-APM utilizes the polarization effect in a

single resonator to have virtually two temporal coupled resonators by transforming a
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pulse into elliptical polarization with a polarizer followed by a quarter-wave plate,
thus creating a pulse in different polarization states, right-hand and left-hand circular
polarization with different intensities. SPM from the isotropic Kerr medium
modulates the phases unequally so that the ellipse rotates with maintained handedness
and ellipticity. Then, adding two polarization components together at the polarizer
where the peak of the pulse with more rotation transmits at low loss and the wings are

blocked. The method is also called “Nonlinear Polarization Rotation Mode-locking”.
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Fig. 2.9 Principles of P-APM and the pulse formation process using P-APM
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2.2.2 Gain medium

In our mode locked laser system, the gain medium (Erbium-doped fiber) ***°

can be ideally described by a Lorentzian function

9() =g /[1{?2—2’} J (2:34)

where Aw denotes the frequency deviation from the central frequency of gain, Q

is the bandwidth of radian frequency, and g is the saturated gain which can be
written as

Jo
= Jo__ 2.35
ST TWIE, (2.35)

where g, denotes the unsaturated gain, E_,, the saturation energy of the gain

sat !

medium. This saturation energy is dependent on the involved medium and optical

frequency. It can be written as
T

rep
T

h

(0]
Esat B Aeff
(X

(2.36)

where « is the optical frequency, o the absorption cross section, T the time

r

duration between pulses, A, the effective mode area and z the life time of the

populated level.

Next figure shows the process of gain relaxation of a pulsing laser for different
saturation energies with all the other parameters fixed. It is noted that no matter in
which cases, laser gains are pinned at loss level after more than 10 round trips. The
difference is that in the case of higher saturation energy, a pulse will accumulates
higher energy. So, at the fixed repetition rate, higher energy pulses will saturate the
gain medium faster than lower energy pulses. The gain with a higher saturation energy

is thus dropped faster than others.
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Gain Relaxation of a pulsing laser
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Fig. 2.10 Gain relaxation w. r. t. round trip times in different saturation energy

The pulse energy, W, inside cavity which.can-be written as
Ta/2
w ="["a(,t) [ dt (2.37)
Tol2
As the repetition rate is raised, the numbers of pulses inside the cavity increases by a
factor of the ratio of the modulation frequency to the fundamental cavity frequency.
Thus, the total pulse energy inside the cavity becomes higher if the pulse energy of a
single pulse is the same.
This gain is provided by the erbium doped fiber amplifiers in our laser system.
This amplifier can be modeled by the rate and propagation equations. Furthermore,

this model can be approximated as a three-level system when the pumping

wavelength is at 540,650,800, or 980 nm.
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Fig. 2.11 Equivalent three level amplifiers for 980 nm pumping

In this case, from the rate equation at steady state, the population density at the

population-inverted level can be written as

S + u=+
ho, o,
Na(2)= . AP
(Jse"i'o-sa)ls(z) (O'p +O'p )Zlup(z)
r, + + U=
ho, ho,
and the propagation equations for the:signal-and.-the pump can be written as
dls € a a
& =(N2(0'S R )— No, )IS
u=+= (2.39)
di,

UE=(N2(O")e +apa)—Napa)lp
where the bi-directional pumping scheme is assumed and “u” represents the pumping
direction relative to the signal. Simulation can be performed on the basis of these
coupled equations. From the signal propagation equation, the unsaturated gain can be
written as

0 =§I<N2(z)a: ~N,(2)0,")T 0z (2.40)

population _inversion

where the factor of E is due to the fact that the field is considered in the master

equation instead of the intensity. It can be noted that to have gain instead of loss,

population inversion is required to be achieved.
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Since it is often the case thatAw < Q, this saturated gain model can be

further approximated by Taylor expansion relative to the central frequency of the gain,

Q 2

9

Ao’
g(w)=g {1— ] (2.41)
As transferred to the time domain by Fourier Transform, it becomes the following
form,

. 1 d?
F{g(0)a(T,0)} = g[1+Q—g?_WJa(T,t) (2.42)

The gain is then expressed as an operator in the master equation in the time
domain. The dynamic gain saturation process is neglected due to the relatively long
relaxation time of most of solid state lasers. For example, the relaxation time of
erbium doped fiber amplifiers is about at,the order of milliseconds. In addition, this

relaxation time depends on the pump power when'the medium follows a three-level

model.

2.2.3 Dispersion and Kerr effects

So far, a simplified model for mode-locked lasers is discussed. Dispersion and
Kerr effects are neglected. These effects usually exist in the cavity and thus need to be
considered unless the system is dispersion free and operates under the linear regime.
To consider these two effects, the master equation is added with two terms each
representing these two effects respectively.

I. Dispersion
Assuming a pulse is to pass through a dispersive medium with the length L

within one round trip, the changed field can be written as

a (o) = exp(-jpL)]a(w) (2.43)
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By expanding the propagation constant £ to second order, we have
: 1 2 1 )

a =exp —jEﬂZAa) Llaz= 1—j§ﬂ2Aa) L |a (2.44)
with the constant phase term and the firs order term £, omitted. Inverse-Fourier
transforming the equation with some manipulation, one gets

d2

Aa(t) :a'—a;—jDFa(t) (2.45)

where D=g,L/2. (2.46)

Il. Kerr effect
The Kerr effect manifests through the SPM effect, which can be understood by

considering

a (t) =exp(—jnAL)a(t) (2.47)
where n is the refractive index such thatz=n=n, +n,l . Omitting the constant phase
term and using the normalized amplitude, {a(t)[’= IA, , we have

Aa=—jo|al aft) (2.48)

where 6 =(2z/A)n,L/ A, . Finally, the master equation becomes

0 1 i 0? N .
TRa_Ta: g[1+(Q—gj ﬁ} jD¥+ jMcos(Q.t)-I-js|alta (2.49)
Since the dispersion broadens the width of the pulses, it imposes a limit on the
shortest pulse achievable. However, this pulse broadening force can be reduced with a
pulse narrowing force by SPM. This had been done by placing additional nonlinear
mediums inside an amplitude modulated fiber laser™ and the resulting pulse width is
shorter by a factor of 2.5 than the Kuizenga—Seigman limit. The shortening effect is
limited by the instabilities induced by extra SPM. Interestingly, if additional negative

dispersion is introduced to balance this extra SPM, the resulting pulse is a solitary

pulse with shorter width?®?. Under some certain conditions, solitons can be
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generated.

A “solitary wave” is a propagating wave that retains its shape in the presence of
dispersion and nonlinearities. A “soliton” is a propagating pulse that retains it shape in
the presence of dispersion and nonlinearities even after a collision with a similar pulse.

In the following sections, the formation of solitons is discussed.

I11. Soliton formation

® Area Theorem: SPM and Anomalous dispersion

In a mathematical sense, it’s known that solitons in the optical fibers are in the form

of the hyperbolic secant function,

a(T,t) = A sech(t/z)e I T/ZT (2.50)

which is a solution to the NLSE (Nonlinear. Schrodinger Equation)

i O i
— — - jb—a-jslalfa 2.51
T ot D=7a-] (al (2.51)

The solution has an important property-called.the “Area Theorem”,
Ar=~-2D/o (2.52)

After taking a careful inspection of this theorem, it indicates some important aspects
of the soliton properties: the SPM has to be accompanied with anomalous dispersion
to obtain a real amplitude-pulsewidth product and the required energy for soliton
formation in this cavity is set by two cavity parameters.
® Area Theorem: Energy of a soliton

From the soliton area theorem, the energy of the fundamental soliton in the
cavity is set by the net dispersion and Kerr effects of the cavity. The energy of the
pulse is determined by the cavity gain and loss. If the soliton is to be generated, the

cavity gain and loss together must be able to support the pulse energy set by the cavity

24



dispersion and Kerr effects. One of the important elements governing the gain
behavior is the saturation energy. If the saturation energy of the gain medium is
sufficient, then the gain medium will be able to provide the excessive gain for the
required energy of fundamental soliton. At steady state, the gain is approximately
saturated at the loss level and the energy of the pulse is determined, which should also
be the energy of fundamental solitons of the cavity for a soliton laser. On the other
hand, if the saturation energy is too low or too high, the steady state pulse may not be
a soliton, either. To make a short statement, once the dispersion and Kerr parameters
of the cavity are determined, the cavity gain and loss must be tailored to support
solitons.

From the point of view of the balance between the SPM and dispersion, if the
saturation energy is low, the gain.is easily saturated and the pulse intensity doesn’t
initiate enough effects of SPM=Therefore, the dispersion will dominates. Otherwise,
the SPM dominates.

Besides, the pulse repetition rate_is.also an influential effect on the gain
saturation. If the repetition rate is raised higher, since the total energy inside cavity is
fixed, every pulse obtains lower energy and thus the strength of nonlinearity may not
be sufficient for soliton formation. The following figure shows that for a higher

repetition rate the gain saturates more easily.
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Fig. 2.12 Gain relaxation w. r. t. round trip times at different modulation frequency.
® Perturbations
In addition to the above-implications of the area theorem, it is important to
remember that the result is from“the NLSE"in-which-other actions in the cavity such as
active phase modulation and SAM"are not" included. The NLSE in fact is an
approximation of the original master equation. So, when building real fiber ring lasers,
additional care must be taken to assure that the experimental settings satisfy the

approximation in order to generate solitons.
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® Kelly sideband

In some experiments of fiber soliton lasers, it is observed that there are some
discrete sideband spectra in the optical spectrum of solitons. Some people thought that
it is due to the modulation instability. But the fact is that these discrete sidebands are
not located uniformly as in the case of modulation instability. It turns out that from the
framework of the average soliton model'®*%?° these non-uniform discrete sideband
can be explained well*’. Specifically, from the average soliton model it’s known that
the perturbations make the soliton shed continuum waves during propagation.
Resonant effect occurs when one of the frequency components of the continuum

waves phase-matches with that of the soliton, thus constructive interference occurs at

these frequencies. The resonant frequencies in relative to the center soliton frequency

can be written as follows'"®,
Aa):i%\/éﬁzo—lz_a—‘l;nzl,z&... (2.53)
where Z, is the soliton period-defined.as
8Z, = 4rzgt K | (2.54)
Z, is the amplifier period and z is the pulse width. Note that in the limit of
Z,>Z, as in the case of broad pulses, the sidebands locate so far off the center

frequency so that no sidebands occur. The following plots from Ref[17] clearly

demonstrates this phenomena.
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Fig. 2.13 Kelly side bands. a. Intensity plot. b. Log (intensity) plot. * - °
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An interesting question arises when the picture is transferred to the time
domain: what does the pulse look like when this resonant instability occurs? Since it
is due to the phase matching between the continuum waves and solitons, we may
think that there is something around the bottom of the pulse, that is, these sidebands
may appear as a pedestal under the pulse and contain considerable energy.

Another question follows what is the influence of this resonant instability on
soliton lasers? For a cavity with a fixed dispersion, the continuum limits the
obtainable shortest pulse. And from the soliton area theorem, this implies that the
peak power is lower and the average output power is decreased. It seems that having a
longer soliton period through decreasing dispersion can avoid this instability.
However, doing this reduce the energy of soliton due to the soliton area theorem. So,
dispersion is to be optimized between these two extremes.

After going through the process of soliton formation and the related properties,
it is important to keep in mind-that the soliton-effect has been used in mode-locked
lasers to further shorten the pulse width.beyond the Kuizenga—Seigman limit.
Experiments®® by D. J. Jones, H. A. Haus, and E. P. Ippen et al show that by using
soliton-like compression the resultant pulse width is reduced by a factor of 4.4 below
the Kuizenga—Seigma limit in an amplitude modulated mode-locked fiber laser.

However, super mode suppression ratio is only 20~30dB from the 5GHz harmonic.
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2.2.4 Asynchronous Mode locking

In a phase-modulated mode-locked soliton laser experiment %%, an interesting
asynchronous modulation has been used through tuning the modulation frequency
slightly off the harmonic by 5-20 kHz. This asynchronization mechanism provides
pulse initialization, noise clean-up, and new form of pulse timing stabilization while
not destroying the soliton pulse. The resulting pulse-width was of pico-seconds at
1GHz with the frequency spectra oscillating at 15 kHz. No long term stabilization
schemes (temperature or modulation frequency) were used in that experiment.

The theory for ASM? indicates that soliton formation is possible in a
synchronously phase-modulated mode-locked laser under the condition that the
required net gain for noise to grow is greater than that for soliton to form, which will
be given in equation (2.60).% This itheory. also indicates that asynchronous
mode-locking allows soliton formation with an additional requirement that the noise
decay rate is faster than the detuning rate;-indicated by equation (2.61) later. By
applying this asynchronization scheme; our previous work® successfully generated 10
GHz 816 fs soliton pulse train with SMSR>70dB from a hybrid mode-locked fiber

laser. In the following paragraphs, this theory is introduced.

I. Main Theory

To model this frequency detuning action into the master equation, a time delay is
to be added between the pulse peak and the modulation peak. Originally, master
equation is modeled by assuming that the pulses pass through the modulation peak. So
merely setting the modulation frequency to a detuned one is not sufficient. Based on
this observation, the master equation can be written as follows: (note that when there

is no frequency detuning, the equation is the same as for synchronous mode-locking)
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2
0 1)8| .0 . :

where AT(T) = —QHQ;QMT (2.56)

M

Equation (2.56) represents the time shift imposed by the detuned modulation
frequency.

In ASM, there is a timing variation, At(T), resulting form the frequency shift
off the nominal carrier frequency of the pulse due to the detuned modulation
frequency; the carrier frequency shift results in a change in group velocity. This
frequency shift, Ap, can be derived from the equation of motion for the frequency
deviation of the soliton. This carrier frequency shift was observed in an experiment®
by C. R. Doer et al. and can be derived, from equation (2.56) by using the soliton

perturbation theory® with the results as

OAL(T)
I.—==2|D]|A 2.57
- D] Ap (2.57)
where Ap=—-1,MQ,, sin(AQT) (2.58)
BQ 20 #7
and r =8’ (2.59)
49

7, is the pulse width.
Last but not least, the time delay related to the frequency shift should not be
additionally added to (2.56) because (2.56) has already implicitly included this

frequency shift effect. This can be understood by inspecting equation (2.22).

I1. Noise cleanup effect

The ASM mechanism can provide noise cleanup effects. Since in ASM the phase
modulator imposes frequency shifts on both solitons and noises and the soliton can
recover after being perturbed, so after some roundtrips the noises drift out of

synchronism due to GVD and then filtered out by the filter. This effect sets the lower
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limit of the cavity GVD and can be written as

g . .MQ 2 2 g
Re D it >— 2.60
{\/[ng " }(J 2 j} 3 ngrsz e

This inequality is obtained from the fact that the required net gain for noises is higher

than that for solitons in order for solitons formation to be possible. It seems that with
higher GVD, less noise we will have. But remember that from the soliton area
theorem, the required soliton energy is raised accordingly. Thus the GVD is to be

optimized.
I11. The limits of the detuning range

In fiber-optic soliton transmission, ASE induced noises from periodic amplifiers
for compensating loss will cause the random frequency shifts of the soliton, which in
turn changes the group velocity of the solitons'and leads to the random timing jitter®.
This timing jitter can be controlled, not ehminated, by using a sliding-frequency
guiding filter’”?%_In ASM fiber. lasers, there is-a similar mechanism in which a
fixed-frequency filter is used and the solitons with a sliding carrier frequency, Ap, due
to the detuning play the role of sliding frequency. This timing stabilization must be
frequent enough so that the pulse timing is periodically refreshed. This requirement
imposes the lower limit of the detuning frequency. The upper limit of the detuning is
obtained from the fact that the detuning rate should be much slower than the noise

decay rate for soliton formation to be possible in asynchronous mode locking, which

2
140, I« ZZRel || -2 1 jp [ jMEn (2.61)
T, Q, 2

If the detuning frequency is over this limit, noise grows and the pulse train is

can be quantized as

destroyed. Note also that when the laser is operating at a higher repetition rate, the
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acceptable detuning range is wider.
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Fig. 2.14 ASM pulse timing variation.

The figure above shows the simulation.of the resultant pulse evolution by using
the standard split-step FFT method. The cavity round trip time is 25 ns and the
detuning frequency is 40 kHz, corresponding to a period of 1000 round-trips. The
peak-to-peak timing displacement is ~20 ps. The FWHM pulse width is 1.53 ps at 1
GHz. This shows that ASM is indeed a viable method for the generation of ultra-short
pulses when compared with typical synchronous mode-locking. In the next chapter,

our experiment setups and results will be presented.

32



Chapter 3
The experiment settings and results

3.1 The structure of the ASM soliton lasers

980 nm 980 nm
WDM @ WDM
Erbium
fiber
Isolator
Polarization
controller
10/90
Coupler Polarization

controller

Polarizer

Fig. 3-1. Experiment setup. TBF stands for tunable band-pass filter

Phase

modulator |

The experimental setup of the ASM-fiber-laser is shown in the figure above. The
phase modulator needs a polarizerin:the_input.end to align the polarization axis of
pulses with that of the EO crystal. The isolator is for single direction wave
propagation to prevent spatial hole burning and is polarization-independent since the
polarizer and the phase modulator provides enough polarization dependent loss for
Polarization Additive Pulse Mode-locking (P-APM). The two polarization controllers
are placed in the cavity to adjust the polarization state for achieving P-APM. A
tunable band-pass filter is introduced in the cavity in cooperation with SPM to
suppress super-modes in  harmonic mode-locking and also provides the
sliding-frequency guiding-filter effects for noise clean-up. A section of 10 meters
Erbium-doped fiber pumped by two 980 laser diodes acts as the gain medium of our
laser. Finally, the output coupler extracts 10% of the powers in the cavity. The total

cavity length is 35.24 meters with cavity fundamental frequency 5.33 MHz. The
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estimated total dispersion and Kerr coefficient are -0.023 ps® and 0.085 W™

respectively. The values and units of parameters for some devices used in the

experiments are estimated as below.

Table 3.1 Estimated values of parameters

SMF Value Unit

Jia -0.02328 ps¥/m

V parameter 2.0345

More 41 um

A 82.32 um?

) 0.00122 Wm
EDF

B, 0.05164 ps?/m

) 0.00629 Wm

I 70.39949 MJ/m?s

oA 1.81367342¢:25 m?

ol 3.162998853¢-25 m?

o, 1.9e-25 m?

o, 0 m?

T et 0.4

0.64

A4, 30 nm

Tige 10 ms

A, 16 um?

AP 7 o m?
Optical band-pass filter

A% 12.5 nm

loss 3 dB
Phase modulator

insertion loss 2.8 dB

Vpi 4.7@1GHz volts
Note:

2rc B
D = —7ﬂz,[D]—

B, =-1.2745*107°D @ 1550nm

— P 1p,1=L [c]=m/s,[4]=nm
km *nm m
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3.2 The results at 20 GHz

The resultant optical bandwidth is 4 nm which corresponds to a 628-fs soliton

pulse, assuming transform limited sech? pulses. The SMSR is greater than 40 dB with

the resolution bandwidth of 300 kHz. If the resolution bandwidth is reduced, higher

SMSR is observed. The average output power is 12.22 mW with 440 mW pump

power. This pulse train is obtained when the detuning frequency is 30 kHz. Fig. 3.2

shows the optical spectrum and Fig. 3.3 shows the RF spectra with the frequency

spans of 50 MHz and 100 kHz. The laser can operate stably for tens of minutes and

needs cavity stabilization for long term operation.

VB 1kHz

Anriktsu BE-@5-24 17:11
AMker A 1586, 8nm B: 1570 Enm E-&:  4.0mm
LMkr C: -21.5T7dBm D: -24.5TdBm C-0: 2.0dEB
Threshold Mormal ¢ & )
ekt il &4
-20. A rer A 1568, 2nm
dBm ¥ A Bnm Mqﬁﬂﬂmﬁm
10. BB & : : )
“di : '
R Jy"’ | | I'khl
| |
A
_'TB @mr i . w,v,_,h_m._..lq)frl | | 1,MlLLI 1A
dBm ! !
1
! !
| |
|
-120.0 B
dBm L
1235 Bim 5. Brmed i 1568, Bnm inAir 1585, Anm
Res:@. 1rm(@. B9l nmy -~ BvgrOFf < SmplgrbAl o
SEmi0ff o Intwl:0ff S OBt Off

Fig.3.2 The optical spectrum. The bandwidth is 4 nm directly from the

laser cavity.
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Fig 3.3 The RF spectrum with span 50. SMSR >40dBMHz
(300kHz resolution bandwidth)
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Fig3.4 The RF spectrum with span 100 kHz. A 30 kHz frequency
detuning between the cavity harmonic and the modulation

frequency is shown.
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3.3 The results at 30 GHz

When the modulation frequency is detuned from the 30GHz cavity harmonic
component by 20 kHz, the resulting optical bandwidth is 4.24 nm directly from the
laser cavity. This corresponds to a 596 fs pulse width assuming transform-limited
sech pulse. The SMSR is at least greater than 40 dB with the resolution bandwidth of
300 kHz. Fig. 3.5 shows the optical spectrum and Fig. 3.6-7 show the RF spectra with
the frequency spans of 50 MHz and 100 kHz. The beating signal between the
harmonic component and the modulation frequency is about 20 kHz. This is the
characteristic of ASM soliton lasers. The output power from the 10% coupler is

24.37mW with 732 mW pump power.
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Fig. 3.5 The optical spectrum. The bandwidth is 4.24 nm directly from the

laser cavity.
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Fig.3.6 The RF spectrum with span 50. SMSR >40dBMHz
(300kHz resolution)
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Fig. 3.7 The RF spectrum with span 100 kHz. A 20 kHz frequency
detuning between the cavity harmonic and the modulation

frequency is shown.
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3.4.1 The results at 40 GHz

For the available maximum pumping powers of 900 mW, the laser cavity
used to generate 20 and 30 GHz pulse trains needs more pumping power than 900
mW to operate at 40GHz. Due to the fixed maximum power available inside the
cavity, to generate 40 GHz pulse trains energy for each soliton needs to be reduced
through either decreasing the dispersion or increasing the nonlinearity. The following
figures show the resultant optical spectra and RF spectra from a cavity with less
dispersion.

The pumping power is 880 mW and the output power is 25 mW. The
modulation frequency is 39.999 GHz with <60 kHz detuning frequency away the
harmonic frequency. The total cavity, length is 32.24 meters (shorter SMF). The
optical spectrum is 2.92 nm which is shorter. due to lowered soliton energy. The

SMSR of 40 dB is obtained.
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Fig. 3.8 The optical spectrum. The bandwidth is 2.92 nm from the laser cavity.
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Fig. 3.9 The RF spectra with the span 100 kHz.
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Fig. 3.10 The RF spectra with the span 300 kHz. A 30 kHz frequency detuning

between the cavity harmonic and the modulation frequency is shown.
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3.4.2 Results from typical synchronous mode-locking

For comparison, the resulting optical spectrum by synchronous mode-locking is
shown below along with the SMSR. The width at 3dB of the optical spectrum directly
from the laser cavity is 2.04 nm with ~0.4 nm modulation period due to 40 GHz
modulation. The SMSR is >50 dB with the resolution bandwidth of 100 kHz. The
output power is 24.7 mW with the total pump power of 888 mW. The optical
bandwidth from synchronous mode-locking at 40 GHz is 2.04 nm which is smaller

than that from ASM. The ASM can generate shorter pulses.
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Fig. 3.11 The optical spectra. The bandwidth is 2.04 nm from the synchronously

mode-locked laser cavity.
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3.4.3 Bound solitons in FM synchronous mode-locking

In this FM fiber laser, bound state of pulses can be generated with good quality
at a very high repetition rate. Figures below show the optical spectra and the RF
spectra at 40GHz in synchronous mode-locking. From the interferential optical
spectrum modulation, the corresponding pulse separation is about 2.35 ps. The SMSR
is >45 dB at the resolution bandwidth of 100 kHz. The phase modulation is very

important for the formation of bound state®..
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Fig. 3.13 The optical spectra. The modulation period is 3.4 nm.
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3.5 Long term stabilization

Due to the ambient temperature fluctuations of the operation condition, the
cavity length fluctuates accordingly. For example, for a typical mode-locked
silica-fiber laser of the length 50 m and a thermal expansion coefficient of 1.1*107
/°C, the resulting frequency drift at the 8-GHz cavity harmonic is ~60 kHz. At higher
repetition rate, this cavity harmonic frequency drift is even larger. Therefore,
stabilization of the cavity length/modulation frequency is needed for long term
operation, especially for high repetition rate mode-locked fiber lasers. In our previous
work®, a simple feedback control is implemented by using kHz electronics with
computer monitoring. The laser can stably operate for hours with the stabilization
schemes implemented. This is another, merit of the ASM soliton lasers since the
typical synchronous mode-locked fiber lasers.at the high repetition rate will need high
speed electronics to stabilize the laser.

On the other hand, at & lower repetition -rate, the cavity frequency drift
<| AQ;;,, max » SO that the operation regime of the fiber lasers could remain in ASM for
sufficient time. In this way, no stabilization schemes are needed. In reality, indeed, C.
R. Doerr et al. have shown this®. Another possible approach is to find new kinds of
fibers with high dispersion and high gain, and then the total cavity length could be
reduced considerably leading to considerable reduction on the frequency drift of the
harmonic cavity components.

To conclude, the ASM mechanism provides a new kind of stabilization scheme
which doesn’t need high speed electronics to implement the feedback control loop as
in typical synchronous mode-locking. At the low repetition rate, even no additional

stabilization scheme is needed as long as the frequency drift of the cavity harmonic

component remains within a certain range. At the high repetition rate, some
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stabilization scheme is needed due to larger drifts in higher harmonics.

3.6 Discussions

From our experimental results it is proved that ASM is indeed a viable method for
ultra-short pulse generation, especially at high repetition rates. The economic
feedback stabilization also shows its additional advantage. The results at 40 GHz can
still be improved by adding more dispersion so that the noise can be dispersed out of
the soliton more efficiently. This idea is from the observation described in the next
paragraph.

The results shown in section 3.2, 3.3 are obtained from the same cavity with the
same dispersion and nonlinearity. In an attempt to generate 10 GHz pulse trains,
different lengths of single mode fibers were used. When the relative length of SMF to
that of EDF was longer, the requiredzpump. power was close to our maximum
available power and the SMSR:was greater-than 70 dB. As the relative length of SMF
was cut shorter, the required pump power-was reduced but with the reduced SMSR
(<40 dB) at 10GHz. For this laser cavity, asthe'modulation frequency raised to 20 and
30 GHz, the SMSR could reach >40dB. This observation seems to support the validity
of equation (2.60): the required gain for noises is greater than that for solitons. Higher
dispersion and higher modulation frequency could lead to better SMSR.

However, it’s known that the net gain is always negative for lasers at the steady
state. The sign in equation (2.60) shall be reversed. Furthermore, what is observed in
experiments seems to be in contradiction with this negative net gain idea. Therefore,
in addition to the requirement for the net gains leading to equation (2.60), it seems
that something is to be reconsidered.

To resolve this, if the values in left-hand-side and right-hand-side of equation

(2.60) were absolute values, there would be no contradiction. Even so, the validity of
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these absolute values needs to be confirmed. There are still plenty of interesting
questions to find behind this argument.

In the experiments, when the laser is mode-locked asynchronously at some
wavelength, we attempt to change the lasing wavelength by slightly tuning the center
wavelength through the tunable band-pass filter with necessary adjustment of the
modulation frequency. It turns out that not in all of the tunable range of the
wavelengths does the laser stay mode-locked. At some wavelengths the optical
spectrum becomes asymmetric. It might be the parasitic filtering effect that causes
this phenomenon. This still needs further investigation.

In this thesis, another question of interest is that whether APM is necessary for
ASM. In our experiments, when the polarizer hadn’t been placed at the input end of
the EO phase modulator, the ARM didn’t occur when the polarization state was
adjusted, and neither did ASM.-With a polarizer, ASM as well as APM occurred. One
question arises that whether this polarizer-in-cooperation of other cavity elements
gives any mechanisms other than APM.to_make. ASM possible or it is just APM? All

of these questions are worthwhile to be investigated for a deeper understanding.
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Chapter 4
Numerical Simulations

4.1 The master equation and numerical method

To simulate the dynamics of the mode-locked lasers, an average model
presented in chapter 2 is used. Presented below, for convenience, is the master

equation with the APM effect in the process of pulse generation:

TRaiTa: (g—l)+[[QifJ +jD]%+jM cos(Q, (t+AT(T))+(r—js)lal ra
(4.1)

Q, -0

where AT(T)=- MT 4.2)

M

1V [t @ Y
[Q_f] =g(Q_gJ +(inlterJ (43)

In this model, a band-pass filter is alsg-introduced in the laser cavity for accounting

the effect of the tunable band-pass filter used “in the experiments. The numerical
method is the standard split-step Fourier transform used in pulse propagation

problems. The formulation is described in the following paragraph:

/’ Gain/loss \/\‘

APM Dispersion
“ /\
A\ !
Phase
P modulation

A

Fig.4.1 An average lumped model
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The RHS of equation (4.1) can be re-arranged into two groups of operators by
deciding whether it is a constant operator at that time or not. The resultant pulse

evolution equation can be written as:

P A .

a—_l_a =(A+B)a (4.4)

where A=l (iJ +ip | (4.5)
Tl o, ot

and ézTi{jM cos(Q, (t+AT(T)))+(g-1)+(— i5) | aP) (4.6)

B is the constant operator at some time while A is a differential operator. After

some small propagation time the resulting pulse is:
., = exp(A%) : exp( I§mAT )~exp(A%) a,,m=0,12.. (4.7)
For each iteration, equation (4.7) is'evaluated in a'split-step manner: first, apply the A

operator in the frequency domain with the Fourier transform pair,% — —jw, and then

transforming back to the time domain; second, directly apply theéoperator in the
time domain; the last step is the same"as the first step. The programming plateform is
the Matlab software. For the correctness of the simulation, an accurate or at least
reasonable estimation of the parameters is necessary. The values and units used in the
simulation are listed in the table (The wavelength is 1560 nm). Also, the absorbing
boundary condition is implemented with a parabolic loss term within the window to

prevent reflected waves from interfering with the pulse.
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Table 4.1 Estimated values of parameters

ltem Value Unit
T, 150 Ns
Harmonic™ 4500/6000
SMF
B, -0.02328 ps?/m
) 0.00122 Wm
EDF
B, 0.05164 ps¥/m
) 0.00629 Wm
| e 70.39949 MJ/m?s
A, 30 nm
Tunable Filter
A4 12.5 nm
Phase Modulator
M 0.3~0.5 radian
Q, 30/40 GHz
APM
4 0.0069/ wt

4.2 The simulation of ASM

In this section, numerical simulation is performed to see if the resulting pulse
properties are identical to those predicted by the analytical theory in a qualitative
manner. To do so, accurate parameter or at least reasonable estimation is required. To
do this, some of the values of the parameters are obtained from the experimental
measurement or estimation. However, in most of the cases these values in simulation
don’t match exactly to those of the experiments and the resulting pulse properties are
very sensitive to the set of parameters. Here, a qualitative instead of quantitative

comparison is attempted.
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4.2.1 Asynchronous mode-locking at 30 GHz

The following figures show the steady state pulse shape and the evolution with
time when the frequency detuning is 40 kHz. The resultant pulse is 0.5*1.763=0.881

ps in width with a soliton pulse shape. The soliton area theorem is

satisfied,‘/%; Ar=1.15. The output power is 20mW from a 10% coupler. A

simulation period of 167 round trips is obtained. The estimated values from table 4.1
are listed bellow:

Table 4.2. Values of parameters*

Round trip times 150 ns
Dispersion -0.02 ps’
Kerr 003 W'
Gain bandwidth 3:/5 THz
Filter bandwidth 156 THz
Modulation index 0.2
Detunina freauency 40 kHz
APM 0.011 W*

25F

I —5im |
¢ sech(-t/0.5)

Field

1
-2 -1 0 1 2 3 4
time (ps)

Fig.4.2 The resultant pulse shape is a 0.5-ps sech soliton pulse.

*Note: values are not exactly the same as those in the experiments 49



Field
N

Field

1500

1550

1600

1650

1700

1800
Fig.4.3 The pulse evolution with a period of 167 round-trips from
1500 to 1800 round-trip times.
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Fig.4.4 The pulse evolution with a period of 167 round-trips from
1800 to 2100 round-trip times.
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4.2.2 Asynchronous mode-locking at 40 GHz

When the modulation frequency is raised up to 40 GHz with a frequency
detuning of 40 kHz(166 round-trip period), the pulse-width is shortened to 793 fs. The
output power is 27 mW from a 10% coupler. The gain is raised to provide larger
cavity powers for supporting more pulses. The values of the other parameters are all
the same as those at 30 GHz. The table of values is repeated here for convenience.

Table 4.2. Values of parameters

Round trip times 150 ns
Dispersion -0.02 ps?
Kerr 0.03 W'
Gain bandwidth 3.75 THz
Filter bandwidth 156 THz
Modulation‘index 0.2
Detuning-frequency 40 kHz
APM 0.011W*

T T T T T T T 1
— sim
2351 & fit:sechit/0.45)

Field

time ps

Fig.4.5 The resultant pulse shape is a 0.45-ps sech soliton pulse.
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Fig.4.6 The pulse evolution with a period of 167 round-trips from
1800 to 2100 round-trip times.
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Fig.4.7 The pulse evolution with a period of 167 round-trips from
1800 to 2100 round-trip times.
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4.3 Discussion

In this section, the impacts from various parameters on the pulse properties at

the steady state of asynchronous mode-locking are discussed in a qualitative manner.

Only one parameter is changed at one time with the others fixed to see how the result

changes. The noise isn’t considered in the simulation.

® Phase modulator

The effects of the modulation index are explored without APM participating in

the process. The values are listed in the table. The modulation index is varied from 0.6

to 1.5 in this case. Before doing the simulation, it can be known from the equations

(2.19) and (3.58-61) that the pulse width, frequency shift, noise-cleanup effect, and

the maxima detuning range are related to-the modulation index.

Table 4.3 values of parameters

Item Value Unit
Eg 400 pJ
Af, 3.75 THz
gO 7

Loss 2

Af ier 1.56 THz
M 0.6-1.5

f 10 GHz
Af 20 kHz
harmonic 50

T, 50 ns

D -0.05 ps’
5 0.01 wt
Y 0 wt

Figures 4.8-10 show the resultant pulse evolution, the cavity power relaxation

and the pulse-width when M=0.8. Figure 4.8 also shows that the slow modulation

period is 1000 round-trips, which corresponds to 20 kHz frequency deviation.
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Fig.4.8 The pulse evolution at 1 GHz with a period of 5000 round-trips

from 10000. to 12000 times, M=0.8.
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Fig.4.10 The resultant 1.78 ps soliton pulse at 1GHz, M=0.8.
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Fig.4.11 The phase along the pulse which moves left, M=0.8.
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Figures 4.11-13 also show the phases along the pulses at some time spots. It is found
that the soliton is of a little chirp from the quadratic phase curve. The slope of the
phase also shows that the frequency of the pulse is shifted in a periodic manner which
in turns leads to pulse timing variation. The peak-to-peak timing variation is about
9.77 ps.

The next figure shows the situation after thousands of round trips when the
modulation index is changed to 0.6 at 12000 round-trip. It turns out that the pulse is

no longer stable. The pulse sheds off continuous waves which get amplified in turns.

Round trips

time ps
Fig.4.14 The pulse evolution at 1 GHz with a period of 18000
round-trips from 18000. to 20000 times, M=0.6.

When the modulation index is changed to 1.2, the peak-to-peak timing variation
becomes larger, 15 ps, and there are less continuous waves. The resultant pulse width
is almost unchanged. It may be because the pulse-width is shortened by soliton
compression and is already beyond the Kuizenga—Seigman limit, 11.6 ps, at 1GHz.

The following figures show the results.
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Fig. 4.15 The pulse evolution at 1 GHz with a period of 18000 round-trips
from 10000. to 12000 times, M=1.2.
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Fig.4.16 The resultant pulse when M=1.2
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The changes in the peak-to-peak timing variation with respect to the modulation
index are plotted in the figure 4.17. It is found that the peak-to-peak timing variation
changes linearly with the modulation index. Figure 4.18 shows the resultant pulse
width with respect to the modulation index. The pulse width is almost the same for
different indices. For the modulation index = 1.6, the pulse shape is of Gaussian
instead of sech. This may imply that there is a condition under which the pulse-width

remains unchanged regardless of the modulation index.
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Fig. 4.17 The timing variation changes with M
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Fig.4.18 The resultant pulse remains invariant for a range of M.
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Fig.4.19 The resultant pulse-width changes inverse-proportionally with the

modulation frequency.
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Fig.4.20 The peak-to-peak timing variation changes linearly with the modulation

frequency.

Figures 4.19-20 show the effects of medulation-frequency on the pulse-width and
the timing variation. It is noted 'that the pulse-width is shortened
inverse-proportionally with the modulation frequency. The peak-to-peak timing
variation grows linearly with the modulation index.

To verify whether these results are reasonable or not, we can refer to the timing
variation derived from the soliton perturbation theory, equations (2.57-59); the timing
variation is indeed proportional to the modulation index and modulation frequency.
The results of the pulse-width maybe right and need experimental and theoretical
verification.

Notes: the simulations results, figures 17 and 19, of the effects of the
modulation frequency uses the values listed in table 4.2 instead of table 4.3. The

values in table 4.3 are used to explore the effects of the modulation index, the

61



dispersion and the APM.

In the following sections, the effects of the dispersion and the APM are
simulated. It can also be verified that the timing variation is proportional to the
dispersion. Experimental and theoretical verifications are needed to check the effects

of the dispersion on the pulse-width and the effects of APM.
® Dispersion

This section shows the effects of dispersion on the pulse-width and the
peak-to-peak timing variation. The timing variation gets larger when cavity dispersion
gets larger. The trend is shown in the following figure. It’s known that the time delay
due to the frequency shift is proportional to dispersion. The timing variation shown
here is not assured to change in a linear. or quadratic form. But the general trend

seems to be reasonable by considering thefrequency-shift-induced time delay.
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Fig.4.21 The peak-to-peak timing variation changes with dispersion.
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Fig.4.22 The resultant pulse width changes linearly with dispersion.

The resultant pulse-width-seems to be in a linear relation with respect to the
dispersion from the simulation results..With-larger dispersion the pulse width is also
wider. Experiments are needed to measure the timing variation and pulse width for

further investigation.

® APM

The previous discussion doesn’t take the APM effects into account. Here, this
effect is included by setting =0.005. The simulation results show that the pulse
width and the timing variation are both reduced. The reduced pulse width may be
expected since APM can shorten the pulse width nonlinearly. The more interesting
result is that the timing variation is also reduced in ASM by APM. The following

figures show the simulation results.
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Fig.4.23 Timing variation is reduced by APM.
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Fig.4.24 The resultant pulse width is reduced by APM.
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Chapter 5
Summary and Future Works

5.1 Summary

In this thesis, asynchronous mode-locking is demonstrated to be a viable and
economic method for ultra-short pulses generation at 40GHz both in experiments and
simulation. In the experiments, the resulting pulse width is 596 fs with SMSR > 40 dB
when the detuning frequency is 20 kHz at 30 GHz and 860 fs with the same SMSR at
30GHz when the detuning frequency is 30 kHz at 40GHz. In simulation, the results
reasonably agree with those from the experiments.

From the results of the simulation and experiments, the effects of the phase
modulator in ASM are described in-terms of the modulation index and the modulation
frequency. In simulation, it seems that the modulation index has a small impact on the
pulse-width, because the pulse-width.is-mainly-determined by the soliton effects and
is already beyond the Kuizenga—Seigman limit. The peak-to-peak timing variation is
larger with the increasing modulation index, which has been confirmed by the
perturbation theory.

In the experiments, larger modulation index leads to wider optical spectra but the
pulse energy is too small to measure the real pulse width by SHG autocorrelation. The
wider optical spectra may be due to the fact that the pulse gets chirped by the phase
modulator while the pulse-width remains the same. Future works need to be done to
confirm if this is possible by raising the pulse energy for measurement.

As for the modulation frequency, both in experiments and simulation, the pulse
width is more shortened by using a higher modulation frequency. Although in this
experiments the pulse width is not directly measured, in the previous experiments by

C. R. Doerr® et al and by ours®, shorter pulse-widths with higher modulation
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frequency is observed.
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Fig 5.1 A summary of the experimental data.

In simulation, with a larger dispersion the pulse width and the timing variation will

grow. The increasing pulse width-may be explained by the broadening effect due to

dispersion. The

increasing timing variation may be due to the fact that the time delay

by the frequency shift is proportional to the dispersion. Further investigation may be

performed in experiments to confirm these observations. The functional forms for the

timing variation

and the pulse-width are arranged as follows:

ATocM,D,f(QM,ij (5.1)
/4

1 1
TSOCD,f(g,;j¢ f(M) (52)

The effects of the APM in ASM are investigated by simulation. The pulse

width is shorter
timing variation

investigation. A

as expected, and the timing variation is reduced, too. This smaller
due to APM is an interesting phenomenon and may need further

Ithough in simulation it is still possible for pulses to form without
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APM, in experiments no ASM is observed without APM.
5.2 Future Work

® Theoretical work

The effects of the phase modulator in ASM need an explicit analytical expression
for accurate estimation. Future work may include expanding the phase modulation
term to second order in the master equation and substituting the Sech ansatz into it to
find a more analytical solution. In this way, the effects from various parameters on the

solution may also be studied.

® Experimental work

In experiments, the relative length of SMF to that of Erbium-doped fiber plays an
important role, since the resulting soliton energy is determined by the net cavity
dispersion and nonlinearity. Once. the relative. length is determined, the cavity
dispersion as well as the cavity nonlinearity-is. determined. Usually, it is preferable
that there are more degrees of freedom to-Operate. If the cavity dispersion and
nonlinearity can be chosen independently, it is possible to lower the soliton energy
while maintaining the cavity dispersion by just increasing the cavity nonlinearity. To
do this, certain types of fiber-compatible devices are desirable. For example, high
nonlinearity fibers which have almost zero dispersion around 1550 nm are quite
desirable. In this way, higher SMSR and lower required pumping power can be
achieved and we can perform some experiments to make sure if the dispersion really
helps improving the SMSR.

In addition, in ASM fiber lasers a wide band width filter is needed for shorter
pulses and such a suitable wide band filter may not be easy to get and also expensive.
An alternative choice is to use a Sagnac loop interferometer based on the polarization

maintaining fiber as a wide band filter. Attentions must be paid to the reflection
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effects of the devices, because ASE noises will be induced when there is a gain
medium between the devices which reflect lights. It is encouraged to invent or find
new kinds of new devices depending on the applications. For example, a special
material called “photonic crystal” is attracting great attentions for its diversity.

Since the power inside the cavity is approximately 200~300 mW depending on
the gain medium and pumping powers, the pulse energy is smaller when repetition
rate is higher. It’s not easy to measure the pulse-width by SHG autocorrelation. New
measurement techniques and distortion-free amplification techniques are needed.

The frequency shifts of the soliton are also needed to be measured. The main
difficulty is that the frequency component at 20~40 kHz on RF spectra includes the
contributions from the timing variation and the frequency shifts. These two effects

need to be separated by some methods.

® Simulation Work

In doing simulations, it is always a good-idea to find a more efficient algorithm,
no matter in memory space or computation time. In the case of ASM, since the pulse
moves within the computation window, if the window could move accordingly,
computation time would be saved due to reduced redundant part of the computation
window. Especially, the timing variation grows with a higher repetition rate.
Therefore, a moving computation window is needed. Furthermore, with the growing
computation ability of computers form years to years, a more efficient algorithm is
always desired.

In the process of doing simulation, we’ve found that the time spot on which
APM occurs is important; if there are considerable continuum waves before the
effects of APM get greater, it is possible to form pulses from these continuum waves.

Otherwise, APM acts as a noise cleaner and a pulse shaper. The role of APM in ASM
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is still needed to be explored and defined. Also, the noise sources can be added to the

equation for a simulation of a real system.

Notes

Most parts of this thesis put the emphasis on the steady state of the laser system.
In fact, the initial situation of lasers which depends on the noise effects®, and the
operation conditions has an influence on the dynamics of lasers. This is a challenging

research topic.
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