Chapter 2

Principle

2.1 Introduction

The great interest of this thesis is to makeetedtric grating with its period smaller than
wavelength of incident light which can be treatedaa effectively birefringence material. A
general dielectric grating is shown in Fig. 2.1.gRe O is a homogeneous dielectric with
refractive indexn,; and further, region S is a homogeneous dielewtitic refractive indexg .
Besides, the grating region is composed of a periddtribution of two dielectric media with

refractive indicesn, and n,, respectively. In the case of surface-relief g@tin, =n,,
n, = ng. For simplicity, both dielectric media are suppbse be lossless media. Actually, the

grating profile can be arbitrary. However, ‘sincey aarbitrary grating profile can be
approximated by separating the grating region stéibs of rectangular one, the theory of sub-

wavelength grating is developed forrectangulafifgronly in the following sections.
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Fig. 2.1 A general dielectric grating.



Therefore, the principle of dielectric gratingall be defined later by considering the
simplified grating shown in Fig. 2.2. The gratinggion is composed of dielectric 1 and
dielectric 2 with widthd; andt,, respectively. A rectangular profile can be ddiitey three
parameters: grating periog; grating depth,d; and fill factor, f, which is defined ag-’-r

p
[15][16].

Fig. 2.2 Schematic of a zero-order gratigg.<< A5 with the polarized orientations of the

incident electric field and definitions of rectamgugrating parameters. The fill factbris

defined asti.
p

The optical properties of sub-wavelength gratingyusually calculated ffective Medium
Theory (EMT). EMT regards the grating region as a uniaXiemh between region 1 and
region 2 and can derive the values of effectiveaative indices:n.andn,, . Then the
reflectance and the transmittance of optical wavth vits electric vector parallel and
perpendicular to the grating bar are calculatedhyy film theory withn, andn,,. The

principle is discussed in detail in the following.
2.2EMT by Average Weighting Method

Suppose that the grating perijpds much smaller than the wavelength of incidegitiA ,

the field in the grating region may be regardedm@form in dielectric 1 and dielectric 2, and



the relation of mean fiel and D can be carried out by averaging weighting methitth w
weighting factorl- f andf, respectively. The equations of. and n,, under normal

incidence are derived in sections 2.2.1 and 216,

The definitions of TE mode and TM mode of thetaagular grating are shown in Fig. 2.2.
Under normally incidence, when electric vectris perpendicular to grating vectét, the

incidence is defined as TE wave. On the other haviten electric vectoE lies in the

incident plane, the incidence is defined as TM wave

2.2.1 Effective Refractive Index N

According to the boundary conditions of Maxwekquations, the tangential component of
the electric vectoE is continuous across the border [17], so thatelketric vectorE will

have the same value in each dielettfic'layer, &edelectric displacemen® in the two

dielectric regions are
D, =¢E 2.2.1
D, =¢,E 2.2.2
Here £, and &, are the dielectric ‘constants: of dielectric 1 aneledtric 2 respectively.
Therefore, the average weighting of electric disptaentD is

5 = t,,E +t,6,E

2.2.3
tl + t2
Hence the effective dielectric constaptis given byD over E, therefore,
_D
&y = E
— tlgl +t2€2
tl + t2
=(1-f)g, + fe, 2.2.4
With the refractive indexn = /¢ , the effective refractive indem,. is given as
Ne =+/(L- f)nZ + fn2 2.2.5
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2.2.2 Effective Refractive Index Ny,

In the case of TM mode, the electric displaceni2ris parallel to the grating vectds .
According to boundary conditions of Maxwell's eqoas, the normal component of electric

displacemenD must be continuous across the border. Hence, rgeBtaare the same in both

dielectric regions. The corresponding electricfiél in each dielectric region is

E = b 2.2.6
81
E, = D 2.2.7
82
The average weighting of electric fielfl is
t1 D +t2 E
E=—& % 2.2.8
t, +t,
Hence, the effective dielectric constannis given by
_D
o i e
- (tl +t2)£1€2
1:1‘(52 +t2£1
Gt 2.2.9

Tt + (1-f)e,

Similarly, the effective refractive indemx,,, is given as

= i, 2.2.10
i fn? +(1- f )n? o

Therefore, for different polarization of the ident light, the sub-wavelength grating has

different refractive indicesp, andn,, . Since the amount of birefringence, defined by

An=./&,, —+ &= depends on the grating profile, this phenomenonsadscalled form

birefringence.
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Fig. 2.3 Effective refractive indices,. andnsg, , versus fill factof. n, is equal to 1, anah,

is equal to 3.48.

2.2.3 Propertiesof Nz and Ny,

The validity of Eq. 2.2.5 and Eq. 2.2.10 carvbsfied by setting fill factof equals to 0 or
1. For these two special cases, the grating reigiomade of either dielectric 1 or dielectric 2.

Consequentlyn,. andn,,, are of the same value and reducert@r n,. The relation ofn,.
andny,, versus fill factorf is plotted in Fig. 2.3, and several interestingperties of sub-
wavelength gratings are observed. First, the vadfies. andn,,, are changed with fill factor
f and are between, andn,. In other words, sub-wavelength grating can bézad as

artificial materials of variable index of refraatioThis property is useful in antireflection (AR)

coating, whose condition can be fulfilled by suchfiaial materials. Secondy is always

larger thann,,, . It is easy to verify that

f(l_ f)(nlz_nzz)2 <0 2211
fn2+(1-f)n2 o

2 2 _
Ny — Mg =~

implying that sub-wavelength grating behaves aggative uniaxial crystal. Third, the ratio
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of n. overn,, is also varied with f, and reaches to a maximuremhequals to 0.5.

2.3 EMT by Bloch Solution Method

The equations of,. and n,, derived by averaging weighting method is quite $enp

however, these equations are only valid for gragagod much smaller than the wavelength
of incident light. Therefore, it is necessary tove&lep new equations for gratings with larger

period, which is much easier to be fabricated.

F. Bloch has proved the important theorem thatwave function for an infinite periodic

potential must be of a special form [18]:

, (F)=u, (F)&*® 2.3.1
whereu, (F)=u, (F + p). Egs. 2.3.1 expresses that the eigenfunctionfefrvave equation
for a periodic potential are the product of a plamse e times a functioru, (F) with the
periodicity of the grating. In the_following seatis, the effective refractive indices,. and

n., , shall be derived by the Block solation method][19

Before deducing the effective refractive indicéise Cartesian coordinates have to be
defined to describe the components of field veclbandH. Assume the light is normally

incident on the grating, we then define the didectof incident light as x-axis, and the

directions parallel to the grating vecttr as z-axis, respectively, as shown in Fig. 2.2.

2.3.1 Effective Refractive Index N

In TE mode, the field vectorl® andH are

E=(0e0) 2.3.2
and

H=(h0h,) A3.
First, from Maxwell’s equation,

OxE = —iauH 2.3.4
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OxH =iweE 3.

Three differential equations are given as

%e _ i, 35
0z
% — g, 73
ox
o, _ 9N, _; re 238
0z ox

As mentioned above, the wave functions in gratingsinbe in Bloch form; therefore, hy,

andh, are assumed as:

e=U(z)e™™ 23,
h =V(z)e™™ 2.3.10
h, =W(z)e™™ 2.3.11
whereU (z), V(z), andW(z) are periodic functions, i.e.,
U(z+.p)=U(2) 2.3.12
V(z+ p)=V(2) 2.3.13
W(z+ p)=W(z) 2.3.14
Substituting Egs. 2.3.9~2.3.11 into Egs. 2.3.6 8#&spectively,
C:j_lj Y, 2.3.15
EU = W 8.
(il_\zl+iknW:ia£U 2.3.17

Then, we solve the simultaneous equations 2.3.B85k2.for U, V, and W. There are two

regions that are taken into account.

ForO<z<t,
U = Acoda,z)+ Bsin(a,2) 2.3.18
a .
V=- iﬂllw[Acos(alz)+ Bsin(a, z)] 2.3.19
= iC[Acos(alz)+ Bsin(a, 2)] 2.3.20

1
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a, =kyn? -n? 2.3.21

n’ =4, 322
For —-t,<z<0,
U =Ccoda,z)+ Dsin(a,z) 2.3.23
a :
V=- i,uzza)[c coda,z)+ Dsin(a,z)| 2.3.24
W = lC[C coda,z)+ Dsin(a,z)| 2.3.25
2
a, =k nz —n? 2.3.26
n; = &4, 23
After applying the four conditions of continuitydperiodicity ofeand h, with respect to z,
u(+0)=uU(-0) U(t)=U(-t,) 2.3.28
V(+0)=Vv(=0)  V()=V(-t,) 2.3.29
we obtain four homogeneous eguations#grB, G, D
A=C 2.3.30
Acodat,) + Bsin(ait,) = Ccoda,t,) - Dsin(at,) 2.3.31
B=XD 2.3.32
- x[Acodat, )+ Bsin(ayt, )] = Ccoda,t,) - Dsin(a,t,) 2.3.33
x = £ 334
Ha,

By setting the determinant of the system of Eg3.39~2.3.33 equal to zero, the dispersion
equation,n as function ofk, is obtained
[+ x?)sin(at, )sin(a,t,) + 2x{1- codat, )codar,t, )| = 0 2.3.35

Then, solving Eq. 2.3.35 fox,

tar(%)
N2 = A 2.3.36

ta,—(altlJ ayth
2

or
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2.3.37

Eq. 2.3.37 is of no interest because the mean frelthe grating region never satisfies the
condition of zero-order gratingEq. 1.2.2) .

Finally, replacingr, anda,with Eq. 2.3.21 and Eq. 2.3.26,andt, with (1- f)(p and

f [p, respectively, and setting equal to 1, which is suitable for most optical emnitls, then
the effective refractive inder,; is

tar(n n -Nn G@j

tmowa_;élfj N 2.3.38

2.3.2 Effective Refractive Index Mgy

In TM mode, the field vectol® andH are

E=(e-0e,) 23
and

=(0,h,0) 320
The derived steps are almost the same as that ofidde, except the conditions of continuity
are imposed oin ande, . The three differential equations are

on_ —iaee, 23
0z
—=iaue, 322
0X
de, oOe .
X ——Z =—jquh 2.3.43
0z 0Xx

It is interesting to find out that the equationsTéd mode can be derived by replacihge, ¢

M in Egs. 2.3.6~2.3.8 wite, —h, u, £. Hence, Eg. 2.3.36 is transformed into

16



-X=—-—= 2.3.44

and the effective refractive indax,, is

flp
tar(n n§—n2%j 2 [2_ 2
A __Teyh 7N 2.3.45

tar(ﬂ n? - n® Eg(il_;)tpj o -n

In the case of grating perigadl much smaller thanl , the tan(x) in Egs. 2.3.38 and 2.3.45

can be approximated by. As a result, Egs. 2.3.38 and 2.3.45 will reduw&gs. 2.2.5 and
2.2.10, respectively. Therefore, the equationsvedriby average weighting method can be
regarded as the first order approximation of tlyaBloch Solution Method.

2.4 Summary

The EMT derived can fully:describe the. phenonmeiwd form birefringence, which is
applicable for the most conditions with the percddrating much smaller than wavelength of
incident light. However, the period:designed. irsttiiesis is close to wavelength of incident
light. The results calculated by ‘EMT derived abave then not so accurate. Thus, another
theory, saidRigorous Coupled Wave Analysis (RCWA), is more suitable for our analysis.
RCWA is an exact solution of Maxwell's equationkge tcalculated results will be more
accurate than EMT in principle. Since package saféwbased on RCWA is already available,
we use the software, GAOLVER, to perform the siriafawhich will be introduced in detail

in chapter 4.

Sub-wavelength grating can be treated as a wahiasedium, and its effective indices can be
derived by Average Weighting Method when the gatperiod is much smaller than the
wavelength of incident light. The effective mediuras large birefringence, which can be
controlled by fill factor. Therefore, sub-wavelehgjrating is applicable for AR coating and
phase plate which requires specific index of rdfoac In the case of grating with larger

period, the accuracy of. andn,,, can be improved by Bloch Solution Method.
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