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緊束縛理論在光子晶體波導的應用 

 

研究生: 黃至賢                         指導教授: 謝文峰  教授  

 

國立交通大學光電工程研究所 

 

摘要 

本論文利用緊束縛理論來研究脈衝在單一且非線性光子晶體波導或共振耦合波

導以及電磁波在對稱或非對稱線性光子晶體耦合波導的傳播情形。從考慮缺陷間耦

合的緊束縛理論，電場在光子晶體和共振耦合波導的振幅可以寫成一個解析演化方

程式，此方程式稱為延伸離散非線性薛丁格方程式。在光子晶體波導或共振耦合波

導中，藉由解這個方程式我們可以得到光調制不穩定區域及在不同的平面波向量(p)

和不同擾動波向量(q)的增益係數G(p,q)的解析解形式。在共振耦合波導中，光調變

不穩定的區域只能出現在pa大於π/2或者小於π/2中。這裡a指的是缺陷間的距離。

而光調變不穩定區域的位置會由缺陷間界電柱數目以及克爾係數的正負號所決定。

然而，在光子晶體波導中，光調變不穩定區域中的pa可以超過π/2。當平面波的相位

pa超過π/2，在固定pa的情況下，光調變不穩定區域的增益曲線G(q)會有兩個最大

值，這和非線性光纖中的情況有很大的不同。 

    另外一方面，我們也成功地利用延伸離散非線性薛丁格方程式來描述光固子在

含有克爾介質的非線性光子晶體波導及共振耦合波導中的傳播及其傳播的條件。從

這個條件，我們得到了光固子在不同數目的間隔界電柱及不同自相位調變強度下的

穩定傳播區域，這和光調變不穩定區域是吻合的。光子晶體波導中，在低頻或者低
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波向量的脈衝傳播時，需要加入正的克爾係數的物質到波導中，反之亦然。由於光

子晶體波導和共振耦合波導的耦合係數大小不同，導致共振耦合波導的群速度、色

散和支持光固子傳播的自聚焦強度比光子晶體波導小。對於一個長脈衝在光固子傳

播條件下，他的脈衝擴散由於大於二階的的最低階色散係數所造成。當脈衝變窄，

其他高階項需要被考慮，這導致光固子最小擴散的自聚焦強度會比導出來的傳播條

件小，尤其在三階色散趨近於0的時候更加明顯。 

    當另一個相同的波導刻入光子晶體中且與原波導相隔一排或數排介電柱，我們

可以得到一個光子晶體耦合器。耦合器的色散曲線會有一個交點，稱為不耦合點。

在這個點上，能量不能耦合到另一個波導。所以我們可以利用調變不耦合點來改變

耦合器的性質。從考慮到兩個波導間的耦合到次鄰近缺陷的緊束縛理論，我們發現

如果平行於耦合器的方向去移動缺陷柱，不耦合點頻率在正方晶格會有藍移的現

象，但在三角晶格則有紅移的現象。如果讓缺陷互相靠近，由於耦合強度變強，導

致耦合器的傳播頻率及兩條色散曲線間的頻率差都有增加的趨勢。當我們利用平面

波展開法及時域有限差分法來作模擬時，發現其結果跟我們的理論非常吻合。 

    如果光子晶體中的兩條波導不一樣，耦合器變的不對稱。利用考慮到兩個波導

間的耦合到次鄰近缺陷的緊束縛理論，我們解釋了幾個非對稱耦合波導的物理性

質:(1)在某個特定點時，耦合波導的色散曲線會退化到單一波導的色散曲線且電場

只會侷限在單一個波導中，此點我們稱為不耦合點；(2)即使色散曲線沒交叉，本徵

模態的宇稱仍會在不耦合點交換；(3)即使本徵模態交換，高頻色散曲線的電場會主

要分佈在擁有較高本徵模態的單一波導，反之亦然。當一個單頻光射入耦合器中，

能量的轉換也可以用解析解的形式表達。由於色散曲線沒交叉，所以在非對稱的耦

合波導的耦合長度並非無限大，但是在不耦合點兩個波導間有最低的能量轉換。 
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Tight binding theory for photonic crystal waveguides 
 

Student: Chih-hsien Huang               Advisor: Dr. Wen-Feng Hsieh  

 

Department of Photonics & Institute of Electro-Optical Engineering  

National Chiao Tung University  

 

Abstract 

Tight binding theory (TBT) is used to study the pulse propagation in singe photonic 

crystal waveguides (PCWs) and coupled resonant optical waveguides (CROWs) with 

nonlinear media as well as an electromagnetic (EM) wave propagation in the symmetric 

and asymmetric photonic crystal (PC) coupler.  From the TBT and considering the 

coupling between the defects, the amplitude of the electric field in the PCWs or CROWs 

can be expressed as an analytic evolution equation and we termed it the extended discrete 

nonlinear Schrödinger (EDNLS) equation.  By solving this equation for CROWs and 

PCWs, we obtained the modulation instability (MI) region and the MI gains, G(p,q), for 

different wavevectors of the incident plane wave (p) and perturbation (q) analytically. In 

CROWs, the MI region, in which solitons can be formed, can only occur for pa being 

located either before or after π/2, where a is the separation of the cavities.  The location 

of the MI region is determined by the number of the separation rods between defects and 

the sign of the Kerr coefficient.  However, in the PCWs, pa in the MI region can exceed 

the π/2.  For those wavevectors close to π/2, the MI profile, G(q), can possess two gain 
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maxima at fixed pa. It is quite different from the results of the nonlinear CROWs and 

optical fibers. 

We also successfully used the EDNLS equation to describe the soliton propagation and 

to obtain the soliton propagation criteria (SPC) in the nonlinear PCWs and CROWs 

containing Kerr media.  From these criteria, we obtained the soliton propagating region 

of CROWs in different numbers of separated rods and strengths of self-phase modulation 

which coincides with the region of MI of the CROWs.  In the PCWs, the positive Kerr 

coefficient medium needs to be added to support the pulse propagation in the low 

frequency or wave vector region of the dispersion relation and vice versa.  Due to the 

different magnitudes of coupling coefficients in CROWs and PCWs, the group velocity, 

dispersion and self phase modulation strength to support soliton propagation in CROWs 

are smaller than those in PCWs.  For a long pulse, only the lowest nonzero dispersion 

coefficients, βn with n > 2 needs to take into consideration for pulse broadening at the 

SPC.  However, as decreasing the pulse width, even higher order dispersion should be 

taken into account that makes the self phase modulation strength smaller than the criteria 

when the third order dispersion is almost zero. 

As the other identical waveguides is inserted into the PC with one or several partition 

rods, the PC coupler is created.  The dispersion relation curves of the coupler could be 

crossing. The crossing point is named as the decupling point.  At this point, the energy 

cannot be transfer into the other waveguide.  Controlling the decoupling point can 

modify the properties of the coupler.  From the TBT that includes coupling of the 

guiding mode field up to the next nearest-neighbor defects, we find there is a blue shift in 

the frequency of the decoupling point in the square lattice and red shift in the triangular 

lattice by translating the defect rods along the axis of the coupler.  By moving defects of 
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the coupler close to each other transversely, not only the eigenfrequencies of the coupler 

but also separations of dispersion curves increase due to the stronger coupling between 

defect rods.  From the simulation results of the plane wave expansion method and finite 

difference time domain method, the theoretical analysis of TBT gets a great agreement 

with the numerical ones. 

If the other waveguide inserted into the PC is different from the original one, the 

coupler will be asymmetric.  By considering the next nearest-neighbor defects between 

two PCWs, analytic formulas derived by the TBT, we will explain the physical properties 

of the asymmetric directional coupler made of two coupled PCWs: (1) The dispersion 

curves of a PC coupler will decouple into the dispersion curves of a single line defect, 

and the electric field would only be localized in one waveguide of the coupler at a 

particular point that we name the decoupling point; (2) The parities of the eigenmode 

switch at the decoupling point, even though the dispersion curves are not crossing; (3) 

The eigenfield at a higher (lower) dispersion curve is always mainly localized in the 

waveguides that have higher (lower) eigenfrequencies of single line defects, even though 

the eigenmodes are switched. As a given frequency is incident into the coupler, the 

energy transfer between two waveguides and the coupling length can be expressed 

analytically. Due to no dispersion curve crossing, the coupling length is no longer infinite 

at the decoupling point in asymmetric PCWs, but it still possesses the minimal energy 

transfer between two waveguides when the frequency of the incident wave is close to the 

decoupling point.
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Chapter 1 Introduction 

 

1.1 Photonic crystals 

Photonic crystals (PCs) arise from the cooperation of periodic scatters thus, they are 

called “crystal” because of their periodicity and “photonic” because of their action on 

light [1].  The concept behind these materials stems from pioneering work of 

Yablonovitch and John [2-6].  Yablonovitch proposed a structure in which an electronic 

and photonic gap overlapped, making it possible to enhance the performance of lasers, 

heterojunctions, bipolar transistors, and solar cells [4].  In the same year, John also 

proposed using such structures for the localization of light in strongly scattering dielectric 

structures [3].  A PC is interesting owing to whose band structure possesses a complete 

photonic band gap (PBG) [5-7].  A PBG defines a range of frequencies in which light 

cannot propagate inside the crystals. As a result of the existence of PBGs and their 

unusual dispersion properties, photonic crystals can sustain various light waves, pulses, 

and beam propagation regimes which are of physical interest and important for numerous 

applications, such as perfect reflector and negative refraction index structures. 

  The mathematic description of the PCs should start from the four Maxwell’s equations 

rather than other scalar wave description, such as the beam propagation method, because 

the special variation of the refraction index is comparable to the wavelength. From the 

researches in early 1990s, four main algorithms are proposed to model the wave 

propagation in the PCs.  They are the plane wave expansion method (PWEM) [8, 9], 

finite difference time domain (FDTD) method [10-12], finite element method (FEM) [13, 

14] and transfer matrix method (TMM) [15, 16].  The PWEM deals with the Maxwell’s 
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equations in wave vector space and solves the eigenfrequencies in each wave vector to get 

the dispersion relation.  It is suitable for the high periodic structures.  In the FDTD 

method, a wave propagating through the PC structure is found by a direct discretization of 

Maxwell’s equations in both time and space.  It is powerful and flexible especially in a 

complex structure but is extremely time-consuming and its computational requirements 

grow exponentially with problem size.  The FEM is a frequency domain method used to 

solve Maxwell’s equations.  It takes into account material discontinuities in the dielectric 

structure more efficiently by a preconditioned subspace iteration algorithm, which helps 

overcome the slow convergence of the PWEM.  It is widely used to simulate the 

dispersion of the photonic crystal fiber due to its structure uniformity in the wave 

propagation direction.  TMM is powerful at layer structures such as 1D PCs or 2D and 

3D PCs with square lattices.  A matrix is used to connect the electric field or magnetic 

field between two layers.  By solving the matrix, the transmission, refraction and 

dispersion relation can be obtained. 

 

1.2 Photonic crystal waveguides and coupled resonant optical 

waveguides 

  A photonic crystal waveguide (PCW) can be created by sequentially changing the 

radius or dielectric constant of the dielectric rods or changing the radius of periodic air 

holes in a dielectric slab; on the other hand, the coupled resonator optical waveguide 

(CROW) is created by arranging the cavities, made of point defects, periodically [17, 18].  

The electromagnetic (EM) wave can propagate in these channels, PCWs or CROWs, with 

a very low loss even through a sharp bend [19].  Combining the point defects with the 
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PCWs or CROWs can be used to modulate the wave [20-22].  Lots of researches were 

focused on design the structures to modulate light to realize the all optical devices such as 

(1) Waveguide crossings:  The perpendicular crossings in the waveguides intersection 

exhibit negligible crosstalk which closes to 10% when the waveguide width is on the 

order of a wavelength.  The design in PC waveguide permitting single-mode waveguides 

with optimal miniaturization falls as low as 10-9 [23].  (2) Waveguide branches:  An 

idea waveguide branches is a device that splits the input power into two or more output 

waveguides without significant reflection or radiation losses [24, 25].  (3) Channel drop 

filters: Channel dropping filters are devices that are necessary for the manipulation of 

wavelength division multiplexing optical communications [26]. PCs present a unique 

opportunity to investigate the possibilities of miniaturizing such a device to the scale of 

the wavelength of interest. 

These defect resonators in the CROWs are designed such that their resonant frequency 

falls within the band gap of the surrounding 2D structure, which permits high-Q optical 

modes and the coupling is due to the overlap of evanescent waves between two cavities 

[17].  Therefore, the energy is strong localized in the cavities with very low group 

velocity.  If nonlinear media are added in the cavities, the high Q and slow light in the 

CROWs will enhance the nonlinearity of the media.  Another appearing feature of the 

CROW is the possibility of making lossless bends.  Since the coupling of the corner 

resonator to its two immediate neighbors is identical due to its rotational symmetry, the 

transmission coefficient through the bend is 100% throughout the entire CROW band.  

That is contract with the PCWs, 100% transmission occurs only at a particular frequency 

[19].  
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1.3 Photonic crystal coupler 

  The photonic crystal coupler is formed by two adjacent PCWs with one or several 

row(s) of partition rods [27, 28].  When we calculate the dispersion relation of this 

structure of two identical PCWs, there would be two dispersion relation curves existed 

within the band gap [29, 30].  One is odd mode and the other is even mode [29].  An 

EM wave with a given frequency located on the dispersion curves is incident into one 

channel (PCW) of this coupler will couple into the other channel.  The coupling length, 

in which the EM wave completely or maximally couples into the other waveguides for the 

symmetric or asymmetric cases, is defined as π/Δk, where Δk is the wave vector mismatch 

between two modes at the given frequency.  The coupling length highly depends upon 

the incident frequency that can be used to design the demultiplexer [30-32].  The 

directional coupler can also be used to design power splitter [33], polarization splitter [34] 

and add/drop filters [35].  If a nonlinear medium is added in the branch of the 

waveguides, the switch which is controlled by the EM wave or the external electric field 

can also be fabricated by directional coupler structures [36].  

 

1.4 Motivations 

The tight binding theory (TBT) has been widely used in the CROWs to describe the 

amplitude of the EM wave propagation in linear or nonlinear system.  When a plane 

wave is incident in these structures, the dispersion of the CROWs can be obtained by 

PWEM.  The numbers of the separation rods extremely influence the sign and the slope 

of dispersion relation.  From the dispersion relation, we can derive the group velocity 

and various orders of the group velocity dispersion (GVD) which means the difference of 

the separation rods in the CROWs will also determine the sign and the magnitudes of the 
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group velocity and GVD.  Once, the nonlinear material is added in the waveguides 

region, the dispersion relation curve of the CROW has a constant frequency shift 

comparing to the curve of linear waveguides, so the linearly physical properties of the 

waveguides will be preserved and the properties will influence the performance of the 

nonlinear materials. Therefore, the properties of the CROWs with different separation 

rods or structures should initially be investigated and the TBT provides a powerful 

method for us to realize these properties. 

As the defect rods are made of nonlinear materials such as Kerr media, the perturbation 

superimposed on a plane wave could grow exponentially at a certain condition.  It is 

named as the modulation instability (MI).  Because the field evolution in the PCWs with 

Kerr media can be expressed as a discrete nonlinear Schrödinger (DNLS) equation, the 

MI region and gain can be derived from this equation.  On the other hand, when a pulse 

is incident into the waveguides with nonlinear materials, the pulse could propagate in the 

waveguides without distortion which is the so-called soliton.  The criterion for soliton 

propagation under slowly varying envelope approximation (SVEA) can also be derived by 

the DNLS equation.  Therefore, we can use this criterion to discuss the soliton 

propagation regions in different structures of CROWs.  When the width of the pulse 

becomes shorter, the SVEA is broken.  The soliton disperses under propagation due to 

the high order GVD.  We can take the Fourier transform of the amplitudes of the pulse to 

discuss the pulse broadening caused by high order GVD under soliton propagation 

condition. 

In PCWs, the distance between two defect rods (a) is so close that the next 

nearest-neighbor coupling is no longer negligible.  Under this circumstance, the 

evolution equation to describe the wave propagation in the PCWs with nonlinear material 
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should be written as an extended formula.  In general, the next nearest-neighbor coupling 

coefficient is approximately one order smaller than the nearest-neighbor coupling 

coefficient, such making the properties in the PCWs is different from the properties in the 

CROWs especially when ka = π/2.  Therefore, it is needed to take advanced discussion 

on the MI and soliton propagation in the PCWs. 

When the other identical waveguide is carved into PCs and partitioned with one or 

several rows of perfect rod(s), another useful device, the directional coupler (DC), is 

created.  The dispersion relation curve of the coupler is usually crossing with triangular 

lattice but rare crossing in the square lattice.  This phenomenon gives some limitation as 

designing the device.  Therefore, we want to create the crossing point in the square 

lattice and then to move the crossing point at square lattice or triangular lattice which be 

achieved by moving the defect rods in the waveguides.  We also want to use TBT to 

further realize the trend of shift of the crossing point as moving the defect rods. 

On the other hand, when the other waveguide is created asymmetrically, the dispersion 

relation calculated by PWEM would not cross anymore, but the parity of the eigen mode 

may switch at a particular point, in which point we named it the decoupling point.  At 

this point, the electric field is only localized at one waveguide of this asymmetric coupler.  

These phenomena cannot give a good explanation by the numerical simulation results.  

Therefore, we also want to use TBT to derive an analytic description to realize the 

physical properties of asymmetric PC couplers. 

 

1.5 Organization of the dissertation  

In this dissertation, we firstly use TBT to derive the electric field evolution equation in 

single PCWs and CROWs with or without the nonlinear media in Chapter two.  The 



 

 7

coupling equations of double PCWs and the properties are also discussed in this chapter.  

By using the derived equation, we discuss the MI when the Kerr media are added in the 

PCWs or CROWs in Chapter 3.  In the Chapter 4, the soliton propagation criterion and 

pulse broadening at this criterion is discussed.  We found the soliton propagation regions 

agree with those of the MI.  In Chapter 5, we investigate the mechanism which causes 

the movement of the crossing point of the dispersion relation curves by TBT.  In Chapter 

6, the coupling equations of asymmetric PC coupler are derived to discuss mode 

switching phenomena and the simulation results by the PWEM. 
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Chapter 2 Tight binding theory 
 

2.1 Photonic crystal waveguides and coupled resonant optical 
waveguides 

We consider an optical waveguide which consists of a periodic sequence of identical 

single-mode defects in the PC with lattice constant aL as shown in Fig. 1.  The distance 

between successive defect points or cavities is a.  Assuming the isolated point defect is a 

single mode with eigenfrequency of ω0 and electric field distribution in triangular and 

square lattices as shown in Fig. 2, we can express the electric and magnetic fields of each 

point defect as E(r,t) = E0(r)exp(-iω0t) and H(r,t) = H0(r)exp(-iω0t).  Let us assume that 

the presence of the other defects near a particular site perturbs the total permittivity from 

ε(r) to ε'(r).  The fields in the waveguide 0
0( , ) ( , ) i tt t e ω−′ ′=E r E r  and 

0
0( , ) ( , ) i tt t e ω−′ ′=H r H r  should obey the equations: 0 0 0 0 0( / )i tμ ω′ ′ ′∇ × = − ∂ ∂E H H  and 

0 0 0( / )i tε ω′ ′ ′ ′∇ × = − ∂ ∂H E E .  

Using the divergence theory of * ' ' *
0 0 0 0( )∇ ⋅ × + ×E H E H , we can get the Lorentz 

reciprocity relation [37]: 

* ' ' * * ' * ' * '
0 0 0 0 0 0 0 0 0 0 0 0( ) ( / / )d dv i t tω ε ε μ′× + × = Δ ⋅ − ⋅ ∂ ∂ − ⋅ ∂ ∂∫ ∫s E H E H E E E E H H   (2.1)  

with Δε=ε-ε’.  The electric field 0 ( , )t′E r and magnetic field 0 ( , )t′H r  of the 

waveguide can be expressed as a superposition of the bound states, i.e., 

0 0( , ) ( )m mt b t′ ′= ∑E r E  and 0 0( , ) ( )m mt b t′ ′= ∑H r H , where 0 0 ( )m ma= −E E r  and 

0 0 ( ).m ma= −H H r   Substituting these equations into Eq. (1) and letting 
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0( ) ( ) i t
m mb t b t e ω−′= , we obtain   

  0 0( ) ( ) 0.n
n m n m n m

m

db
i P b P b b

dt
ω + −+ − + + + =∑             (2.2) 

Here the coupling coefficient Pm is defined as 

 0 0 0

2 2
0 0 0( )

n n m
m

n n

d E E
P

d H E

ω υ ε

υ μ ε
+Δ ⋅

= ⋅
+

∫∫∫
∫∫∫

                     (2.3) 

P0 is a small shift arising from the presence of the neighboring defects.  When we 

consider a plane wave with wave vector k and frequency ω is incident into this waveguide, 

the dispersion of the waveguide becomes 

0 0 1
1

( ) 2 cos( ).
m

ka P P kaω ω
=

= − − ∑                 (2.4) 

 

 

 

Fig. 1 The structures of (a) a PCW, (b) a CROW with one separation rod and (c) a CROW with 
two separation rods, where a is the length of successive defect points and aL is the lattice constant 

of a PC. 
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Fig. 2 The electric field distribution (Ez) of a point defect in square lattice for (a) f = 0.364 c/aL 
with reduce rod ( rd = 0.05aL) defect and (b) f = 0.333 c/a with rd=0.1aL. (c) (d) The electric field 

distribution of the blue dash line in (a) (b). 

 

2.2 The properties of coupling coefficients in PCWs and CROWs 

The electric field distribution (Ez) of a single point defect, simulated by the PWEM in 

the square lattice and triangular lattice with the dielectric constant and radii of dielectric 

rods being 12, 0.2aL is shown in Fig. 2.  The radius (rd) of the defect rods and eigen 

frequency in square lattice are 0.05aL and 0.364 c/aL; those in triangular lattice are 0.1aL 

and 0.333 c/aL.  The field profile along the (blue) dash line in Fig. 2(c) and (d) has the 

opposite sign when extending to odd nearest-neighbor rod(s) (E0(0,0)*E0(xa,0) < 0, x = 

1,3,5,…) and has identical sign when extending to even nearest-neighbor rods [18, 38].  

To maintain a single mode propagating in the waveguides, the radius or the refraction 

index of the rods in the waveguides is reduced therefore Δε is negative in the following 

discussion.  Since the electric field is mainly localized around the dielectric rods of the 

waveguides, we can use the maximum values to replace the integral values for a simple 
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estimation of Eq. (2.3).  Therefore, P1 is positive in even-separated-rod CROWs, in 

which E0(0,0)*E0(xa,0) < 0, x = 1,3; P1 is negative in odd-separated-rod CROWs; | P2 | is 

two orders smaller than | P1 | so P2 is negligible for considering the dispersion relation.  

In the PCWs, P1 and P3 are positive and P2 and P4 are negative; P3 is two orders of 

magnitude smaller than P1, and thus only P1 and P2 need to take into consideration when 

calculating the dispersion relation.  From the dispersion relation in Eq. (2.4), the 

frequency increases as k increases in PCWs and CROWs with even separation rods where 

P1 is positive, but the frequency decreases as k increases in the CROWs with odd 

separation rods. 

 

2.3 Discrete nonlinear Schrödinger equation 

If a Kerr medium (
22 2

0 0 22n n n n= + E ) is added around the defects, Eq. (2.2) can be 

written as a DNLS equation [37]: 

2
0 0( ) ( ) 0.n

n m n m n m n n
m

db
i P b P b b b b

dt
ω γ+ −+ − + + + + =∑        (2.5) 

The self phase modulation (SPM) strength is  

 
4

0 2 0 0 0

2 2
0 0 0

2

( )
n

n n

n n d E

d H E

ε ω υ
γ

υ μ ε
=

+
∫∫∫

∫∫∫
                      (2.6) 

with n2 being the Kerr coefficient.  Let the plane wave with amplitude φ, propagation 

wave vector k, and frequency ω in site n as bn = φ exp(inka-iωt)  being the solution of Eq. 

(2.5).  The dispersion relation of the nonlinear PCW can be derived as 

2 2
0 0 1 2( ) 2 cos( ) 2 cos(2 ) | | | | .ka c c ka c kaω ω γ φ ω γ φ′= − − − − = −     (2.7) 

Here, ω’ is the dispersion relation of linear waveguides.  The SPM will make the 

dispersion relation a constant frequency shift in all wave vectors.  The positive Kerr 
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coefficient leads a low frequency shift and vice versa. 

 
Fig. 3 Geometric structures of the photonic crystal waveguide couplers of (a) square lattice and (b) 

triangular lattice with the lattice constant a.  Ps and Qs are the coupling coefficients between 

defects within a single waveguide. α, and β are the coupling coefficients between waveguides. 

 

2.4 Coupling equations in asymmetric photonic-crystal coupler 

We consider an asymmetric coupled PCWs in a PC with the lattice constant a, in which 

a = aL, are formed by two rows of periodic defect rods partitioned by a perfect row of rods, 

shown as PCW1 and PCW2 in Fig. 3 for the square and the triangular lattices, 

respectively.  The field distribution of the eigenmode of an isolated (point) defect in each 

PCW can be written as the product of time-varying and spatial-varying functions, i.e., 

E10(r,t) = u0(t)E10(r) in PCW1 and E20(r,t) = v0(t)E20(r) in PCW2, where 

u0(t)=U’exp(-iω1t) and v0(t)= V’exp(-iω2t), with U’ and V’ being the constant amplitudes 

of electric fields and ω1 and ω2 the frequencies of localized modes of the point defect in 

each PCW. 

Under the TBT, the evolution equation of the isolated PCW1 can be written as  

1 0
1

( ) ( )n n m n m n m
m

i u P u P u u
t

ω + −
=

∂
= − − +

∂ ∑                   (2.8) 
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and 11
m mP P= , where ij

mP  is the coupling coefficient between the site n of the ith PCW 

and the site n+m of the jth PCW, and is defined as 

2 2
0

( )
.

[ ]

i in jn mij
m

in in

dv
P

dv

ω ε

μ ε

∞
+−∞

∞

−∞

Δ ⋅
=

+

∫
∫

r E E

H E
                       (2.9) 

Let k and 1ω be the wavevector and its corresponding eigenfrequency of PCW1, 

respectively, we obtain the dispersion relation of PCW1:  

1 1 0
1

( ) 2 cos( ).m
m

k P P mkaω ω
=

= − − ∑                     (2.10) 

Similarly, the evolution equation and dispersion relation of the isolated PCW2 are shown 

below: 

2 0
1

( ) ( ),n n m n m n m
m

i v Q v Q v v
t

ω + −
=

∂
= − − +

∂ ∑                    (2.11) 

 2 2 0
1

( ) 2 cos( ),m
m

k Q Q mkaω ω
=

= − − ∑                      (2.12) 

where 22
m mQ C= , vn(t) and 2ω  are the time-varying function and the eigenfrequency of 

the isolated PCW2, respectively. 

Due to the field distributions of defect modes being not strongly localized around 

defects, we shall consider the coupling effect of two asymmetric PCWs up to the second 

nearest-neighboring defects, with coupling coefficient 12 21
0 0C Cα = =  

and   12 21
1 1C Cβ ± ±= =  shown in Fig. 3 for the square and the triangular lattices, respectively. 

The coupled equations of asymmetric PCWs are given by [39, 40]: 

     1 0 1 1
1

( ) ( ) ( ),n n m n m n m n n n
m

i u P u P u u v v v
t

ω α β+ − + −
=

∂
= − − + − − +

∂ ∑           (2.13) 

2 0 1 1
1

( ) ( ) ( ).n n m n m n m n n n
m

i v Q v Q v v u u u
t

ω α β+ − + −
=

∂
= − − + − − +

∂ ∑           (2.14) 
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When the stationary solutions of coupled Eqs. (2.13) and (2.14) are taken as un = U0 

exp(ikna-iωt) and vn = V0 exp(ikna-iω t), we obtain the characteristic equations of the 

coupler:  

1 0 0( ) ( ) 0,U g ka Vω ω− + =                       (2.15) 

2 0 0( ) ( ) 0,V g ka Uω ω− + =                       (2.16) 

where ( ) 2 ( )g ka Cos kaα β= +  and 0

0

U
V

⎡ ⎤
⎢ ⎥
⎣ ⎦

 stands for the eigenvector or field amplitudes in 

two PCWs.  The eigenfrequencies (dispersion relations) and eigenvectors (field 

amplitudes) of Eqs. (2.15) and (2.16) are 

1 2 2 2( )( ) ( ( )) ,
2

k g kaω ωω± +
= ± Δ +                   (2.17) 

2 2

0 0
( ( ))

( / ) ,
( )

g ka
V U

g ka
χ ± ± Δ ± Δ +

= = −                 (2.18) 

where 2 1( ) / 2ω ωΔ = −  and χ ±  are the amplitude ratios corresponding to frequencies 

( )kω± .  Note that 1χ χ+ − = −  is due to the orthogonality of these two eigenmodes at a 

given wave vector k.  At a given frequency, χ χ+ −  is not necessarily equal to -1.  In 

symmetric waveguides, 2 1ω ω= , Eqs. (2.17) and (2.18) will become [41] 

1( ) ( ),k g kaω ω± = ±                          (2.19) 

 0 0( / ) 1.V Uχ ± ±= = ±                        (2.20) 

The existence of g(ka) makes the eigenstates of the coupler be the linear combination of 

eigenstates of the single waveguides, leading the EM wave coupled from one waveguide 

from another.  When g = 0, the waveguides will be no longer coupled to each other that 

means the coupling length is infinite. 

In this chapter, we used TBT to derive the coupling equations to describe the electric 

field propagation in nonlinear or linear single waveguides and linear symmetric or 

asymmetric PC couplers.  In the following chapters, these equations will be used to 
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further discuss pulse propagation in the PCWs and CROWs with nonlinear media and the 

EM wave coupling between two waveguides. 
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Chapter 3 Modulation instability in a single PCW and CROW 

 

3.1 Introduction 

A pulse experiences serious dispersion in the PCWs and CROWs [42, 43]; therefore, it 

would hardly propagate within the waveguides without broadening.  There are two ideas 

to improve the situation of allowing the pulse propagation in the waveguides without 

broadening.  The first method is to design a proper structure to create a linear dispersion 

curve in the range of operating frequency to provide dispersionless propagation; the other 

method is to add nonlinear Kerr media to provide soliton propagation [37, 44-46]. 

However, in the latter case, the criteria of forming a soliton is that the wavevector of 

the incident wave must be located within the modulation instability (MI) regions [46-48], 

where the MI refers to a process in which a small perturbation upon a uniform intensity 

beam would grow exponentially [49].  This phenomenon, which is commonly observed 

in nonlinear optical fibers [50], will also occur in the nonlinear PCWs and CROWs. 

 

3.2 Modulation instability gain 

In Section 2.3, we have derived the DNLS equation to describe the EM wave 

propagating in PCW or CROWs.  Now, considering a small perturbation νn(t) 

superimposed on a plane wave with wave vector and frequency being p and ω, shown as 

[49] 

( )( ( )) ,i pna t
n nb v t e ωφ −= +                      (3.1) 

we can substitute Eq. (3.1) into Eq. (2.5) in which the 1st and the 2nd nearest-neighbor 

coupling coefficients are considered to get   
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1 1 1

2 *
2 2 2

( 2cos( ) )

( 2cos(2 ) ) ( ) 0.

n ipa ipa
n n n

ipa ipa
n n n n n

dvi P v e v e pa v
dt

P v e v e pa v v vγ φ

−
+ −

−
+ −

+ + − +

+ − + + =
       (3.2) 

Taking νn(t) as this form [49] 

*
1 2( ) ( ) ,iqna iqna i t

n t V e V e eν − − Ω= +                   (3.3) 

where q and ω are the wavevector and frequency of the modulation perturbation, V1 and 

V2
* represent small perturbation with perturbation wavevectors of q and – q, and  

substituting vn(t) into Eq. (3.2), we obtained the dispersion relation of the perturbation:    

2( , ) ( | | )p q B A A γ φΩ = ± −                      (3.4) 

with 

 2 2
1 24 cos( )sin ( ) 4 cos(2 )sin ( )

2
qaA P pa P pa qa= +           (3.5) 

and 

1 22 sin( ) cos( ) 2 sin(2 )cos(2 )B P pa qa P pa qa= + .          (3.6) 

If the dispersion relation Ω (p,q) is complex as A(A - γ|φ|2) < 0, the perturbation field 

would become unstable.  The intensity growing rate G of MI, also called the MI gain, is 

related to the imaginary part of Ω (p, q) by 

G(p,q)=2*Im(Ω (p, q)) = 
1

2 2 42 22Re(2 ( ) ) 2 Re ( 0.5 ) 0.25A A Aγ φ γ φ γ φ⋅ − = ⋅ − − + .   (3.7) 

 

3.3 Gain regions and profiles analysis 

Because of P2 ≈ 0 for the CROWs, the coefficient A can be rewritten as 

2
14 cos( )sin ( / 2)A P pa qa= , in which the sign of A is determined only by pa and it changes 

sign at pa = π/2.  Here the region of pa (or qa) is defined between 0 and π.  For positive 

(negative) A, γ must also be positive (negative) and γ|φ|2 > A > 0 (γ|φ|2 < A < 0) to support 
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MI, which can be easily derived from Eq. (3.7); in other words, P1cos(pa)γ  must be 

positive in MI region.  Therefore, the boundary of MI must be located at pa = π/2.  In 

odd-separation-rod CROWs, P1 is negative, therefore A and γ must be both negative when 

0 < pa < π/2 and positive as pa > π/2.  However, in even-separation-rod CROWs, P1 is 

positive, therefore A and γ must be both positive when 0 < pa < π/2 and negative as pa 

> π/2, shown in Table 1.  When the structure of the waveguide (P1) has been chosen, |A| 

increases if q increases at constant P1 and p.  When we plot the gain profile as the graph 

of G vs. q at a given p and define the gain maximum as the maximal values in the graph, 

from Eq. (3.7), the gain maximum would be located at A = 0.5γ|φ|2 and cut off at A = γ|φ|2 

when 2
14 | cos( ) | 0.5 | |P pa γ φ> ; otherwise, the gain maximum would be located at qa = π.  

 

Table 1 MI regions of CROWs 

Separation rods Sign of P1 Sign of n2(γ) MI regions (pa) 

Odd ━ 
┼ > π/2 
━ < π/2 

Even ┼ 
┼ < π/2 
━ > π/2 

 

In negative (positive) P1 for an odd-separation-rod (even-separation-rod) case, the 

slope of dispersion relation is negative (positive) [51] and the frequency dispersion β2 

defined as d2ω/dk2 is negative (positive) when pa < π/2 and positive (negative) for pa > 

π/2 from Eq. (2.4).  Therefore, for negative β2 (pa < π/2 for the odd-separation-rod case 

and pa > π/2 for the even-separation-rod case), the negative γ is needed to support MI and 

positive γ is needed to support MI for positive β2.  In other words, the MI regions of the 

CROWs in pa can also be decided by simply considering the parameters of β2 and γ. 
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In PCWs, P1 is positive and P2, which cannot be neglected, is negative.  First, we 

consider the positive Kerr media having positive n2 (or γ) so the criterion of the MI is γ|φ|2 

> A > 0.  From the criterion of 2 2
1 24 cos( )sin ( / 2) 4 cos(2 )sin ( )A P pa qa P pa qa= +  > 0, 

since P2 is an order of magnitude smaller than P1, this criterion can be further reduced to 

cos(pa) > -4| P2 / P1 | cos2(qa/2).  Under this circumstance, the MI region is determined 

not only by pa but also by qa, and pa in the MI region can exceed π/2, unlike in CROWs 

that the MI boundary for pa is located at π/2 and is independent of qa.  From the other 

criterion:  γ|φ|2 > A, we found A is dominated by the P1 term as pa is located away from 

π/2, in this case the MI gain is similar to that in the CROWs with even separation rods.  

Contrarily, when pa approaches to π/2, the P1 term is almost zero and A becomes 

dominated by the P2 term.  In this case, A would not increase as increasing qa.  From 

Eq. (3.7), we knew that the maximum of the gain profile, G(q), is located at A = 0.5γ|φ|2 

or dA/dq = 0.  For the latter case, the peak gain would be smaller than that of the former 

condition.  When 4P2 cos(2pa) < 0.5γ|φ|2, there would be two gain maxima at a fixed pa 

and the gain maxima is located at A = 0.5γ|φ|2, but there would be only one gain 

maximum located at dA/dq = 0 as 4P2 cos(2pa) < 0.5γ|φ|2. 

On the other hand, in the condition of negative γ, the first criterion is cos(pa) < -4 | P2 

/ P1| cos2(qa/2).  We found the MI would happen only when pa > π/a.  However, when 

0 > cos(pa) > -4|P2 /P1|, the MI region is located at the higher q rather than the general 

case in which the perturbation would have gain at qa = 0+.  The cutoff gain is also 

decided by A = γ|φ|2.  

 

3.4 Simulation results 
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We consider a square lattice PC with the dielectric constant and radii of the dielectric 

rods being 12 and 0.2aL, where aL is the lattice constant of the PCs.  The radii (rd) of the 

defect rods are reduced to be 0.05aL and the Kerr media are introduced around the defects 

between one separation rod to create the CROW and sequentially to create the PCW.  

The structures and dispersion relations of the CROW and PCW in TM polarization (the 

electric field parallels the rod axis) without Kerr media are shown in Fig. 4, which are 

simulated by the PWEM. 

 

Fig. 4 The dispersion relations of (a) a CROW with one separation rod and (b) a PCW in square 

lattices, which are simulated by the plane wave expansion method.  The dash red lines are the 

edges of the band gaps. 

 

Fig. 5 (a) The values of A and (b) the gains and regions of the MI of the CROW with γ|φ|2=0.01 

(2π c/aL). 
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First, the properties of the MI in the CROW would be discussed.  The coupling 

coefficient P1 is -0.00841 (2πc/aL), where c is the speed of light in the vacuum.  Because 

P1 is negative, the eigenfrequencies will decrease as increasing k.  Figure 5(a) shows A 

vs. qa with different p.  Let A’ = γ|φ0|2－A so that G = 2 AA′ .  As aforementioned, the 

MI region is determined by the condition that A lies between 0 and γ|φ|2 and the 

maximum of G appears when A equals (or is the closest) to 0.5γ|φ|2.  Figure 5(b) shows 

G(p,a) with γ|φ|2=0.01 (2πc/aL).  It can be seen that there is no MI gain when pa ≤ 0.5π 

and only a single gain maximum at given pa in the condition of pa > 0.576π.  

In PCWs, the coupling coefficients of P1 and P2 are 0.039 and -0.0047(2πc/a), and ω0- 

P0 is 0.3632 (2πc/a).  The values of A at a given pa were shown in Fig. 6(a).  When pa 

is small, i.e., in [0, 0.4π], A is dominated by P1 term and A increases as qa increases.  

Due to P1 is positive, the properties of MI would be similar to the CROWs with even 

separation rods that possesses a single gain maximum as the solid curve in Fig. 7(a) for pa 

= 0.4π.  However, as pa is in (0.4π, 0.6π], A is not simple increasing or decreasing 

function of qa, shown in Fig. 6(b).  At a given pa with positive Kerr media (γ > 0), when 

the values of A(q) is always smaller than 0.5γ|φ|2, e.g., γ|φ|2 = 0.01 (2πc/a) and pa = 0.6π, 

there would be a maximal gain as the solid curve in Fig. 7(d).  However, when A(q) is 

larger than 0.5γ|φ|2, e.g., γ|φ|2=0.01 (2πc/a) and pa = 0.49π and 0.55π, there would have 2 

gain maxima, solid curves shown in Figs. 7(b) and (c).  And the MI region with positive 

γ can extend to pa = 0.6π, as shown in Fig. 6(c).  On the other hand, the MI region with 

negative Kerr media is shown in Fig. 6(d) which is located within π/2 < pa < π but having 

the MI region located at high qa as pa close to π/2.  
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Fig. 6 (a) (b)The values of A in the PCW.  The region and gains of MI with (c) positive Kerr 

media (γ |φ |2=0.01*2πc/a) and (d) negative Kerr media (γ|φ |2=-0.01*2πc/a). 

 

Next, we would use the 4th order Runge-Kutta method to simulate the evolution of the 

perturbation.  A plane wave with 10% initial sinusoidal perturbation is used as the input 

source in a square-array PCW with γ|φ|2 = 0.01 (2πc/a).  The perturbation will grow 

exponentially in the MI region to become a discrete soliton before it splits, as shown in 

Fig. 8(a), but the perturbation would never grow outside the MI region Fig. 8(b).  We 

plot the gain coefficients with square dots in Fig. 7 by evaluating the growing rate by the 

Runge-Kutta method then compare with gain profiles (solid curves) calculated by using 

Eq. (3.7).  The results show a quite good agreement.   
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Fig. 7 The MI gain profiles gotten by analytic solution and the simulation by 4th order 

Runge-Kutta method in different qa with γ|φ|2 = 0.01 (2πc/a). 

 

 

Fig. 8 The evolution of the perturbation in the PCW with (a) pa=0.4π and qa=0.1π (b) pa=0.6π 

and qa=0.1π. 

 

3.5 Summary 
We have successfully used the TBT to investigate the MI in both CROWs and PCWs 

by considering growth of a small perturbation superimposed on a plane wave.  The 
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number of separation rods in the CROWs would decide the signs of the nearest-neighbor 

coupling coefficients (P1) and the next nearest-neighbor coefficient (P2) can be neglected 

because it is more than 2 orders of magnitude smaller than P1.  This leads to positive 

dispersion for a positive coupling coefficient and vice versa.  Although the signs of the 

coupling coefficient could be different, the criterion: P1cos(pa)γ > 0 for obtaining MI is 

the same for incident plane wave of wave vector p.  Therefore, the MI region can only be 

located in either pa < π/2 or pa > π/2 with only one gain maximum.  In the air-defect 

PCWs, P1 is positive and P2, which is no longer negligible, is negative.  It makes the MI 

gain of positive Kerr media located at low wavevectors and vice versus. The boundary of 

gain region of pa is not exactly at π/2 due to the MI is mainly dominated by P2 term as pa 

approaches π/2 and there could exist two gain maxima.  Furthermore, the numerical 

simulation using the 4th order Runge-Kutta method reveals exponentially growing 

perturbation intensity as it propagates and the growing rate matches with the gain 

coefficient of MI in the analytic solution. 

In next chapter, a pulse will be incident into the waveguide within or without the MI 

region to understand if a soliton can exist in the MI region.  At the same time, the soliton 

propagation criterion will also be derived to observe the soliton propagation under this 

criterion. 



 

 25

Chapter 4 Soliton propagation in a single PCW and CROW 

 

The amplitude evolution of the electric field in the nonlinear CROWs containing Kerr 

media often leads to DNLS equation derived by the TBT [37, 51-53] and Section 2-3.  

By solving the DNLS equation under long-wavelength approximation, this equation 

reduces to a nonlinear Schrödinger (NLS) equation.  Spatiotemporal discrete solitons can 

propagate undistorted along the defects by balancing the effects of discrete lattice 

dispersion with material nonlinearity [37].  However, as the pulse becomes narrow, the 

long-wavelength approximation will be broken and high order dispersions should be 

considered [53].  Therefore, the more generalized criteria for solitons propagation in 

different structures of CROWs [51], e.g., different numbers of separation rods between 

two cavities or different pulse widths, should be derived.  Moreover, in the PCWs, the 

defect rods are so close that the next nearest-neighbor coupling cannot be neglected [41].  

The governed equation of motion is termed the extended discrete nonlinear Schrödinger 

(EDNLS) equation to distinguish the equations in CROWs in which only the 

nearest-neighbor coupling coefficient is considered.  There are rare reports on pulse 

propagation in nonlinear PCWs using the TBT but the Green-function approach[44, 45].  

Although the equations obtained from these two approaches are quite similar [54], it still 

lacks on the research about the dynamic or criteria of soliton propagation in the PCWs.  

Therefore, it is needed to take the advanced discussion about criteria of solitons 

propagation of different kinds of CROWs or PCWs, and to derive the EDNLS evolution 

equation for describing the dynamic properties of solitons with different nonlinear 

strengths and pulse widths. 
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4.1 Soliton propagation criteria  

In order to get the soliton solution and to give the advanced analysis of high-order 

dispersion as pulse propagating, we let x = na and ( ) .i kx t
nb e ωφ ′−=   Taking the Taylor’ 

expansion of φ [53] 
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Eq. (2.5) can be written as a NLS equation: 
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Therefore, the angular frequency of the waveguides can also be expressed as the Taylor’ 

expansion sum of dispersion coefficients, i.e., 

2 3
0 1 2 3( ) ( ) / 2! ( ) / 3! ,= + Δ + Δ + Δ + ⋅⋅ ⋅k k k kω ω β β β           (4.5) 

where β1 is the group velocity (vg) of the solitons in these waveguides if the high-order 

terms is neglected.  When the variation of the pulse amplitude is smooth enough, i.e., 

( ) / ! 0Δ ≈n
n k nβ  or 0∂

≈
∂

n

n nx
φβ  for n > 2, Eq. (4.2) has a soliton solution as   

     ( )1

0

sech( ) .−−
= i kx tx tb e

x
ωβφ                    (4.6) 

The criterion to support a soliton propagation is thus 2 2
0 2 0/= xγφ β  or  

2 2 2
1 2 3 0=2 ( cos( ) 4 cos(2 ) 9 cos(3 ) ) / .+ + + ⋅⋅ ⋅a P ka P ka P ka xγφ        (4.7) 

From Eq. (4.6), the dispersion relation of the soliton is the same as a plane wave incident 
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into the nonlinear waveguides.  The relationship between x0 and φ0 is determined by β2 

and γ  (n2 or χ(3)).  The sign of β2 and γ must be the same to support a soliton 

propagation and SPM strength (γs) is 2 2
2 0/( )xβ φ . 

In the CROWs, P2 is two orders of magnitude smaller than P1, so P2 can be neglected 

in considering β2 and the soliton propagation criterion (SPC) in Eq. (4.7) can be further 

reduced to 2 2 2
0 1/ =2 cos( ) /( ).x a P ka γφ   In even separated rods, P1 is positive so γ 

should be positive at the SPC when ka < π/2 and γ should be negative as ka > π/2; 

however, in odd separated rod(s), P1 is negative so γ should be negative (positive) at the 

SPC when ka <π/2 (ka > π /2), which correspond to the MI in these nonlinear waveguides 

[38] and the Kerr media should switch their signs when ka crosses π/2.  In PCWs, P1 is 

positive and P2 is negative with its value being an order of magnitude smaller than P1 [23].  

Therefore, positive Kerr media should be put in the waveguides as a low wave vector or 

low frequency EM wave is incident, and vice versa.  When the coupling coefficients Pn 

(n > 2) are neglected for a simply estimation, Eq. (4.7) can be written as cos(ka) = -4 | P2 / 

P1 | if γ = 0.  Therefore, the border of switching sign of Kerr medium for soliton 

propagation in PCWs occurs at ka > π/2.  However, if the dielectric defect is used, in 

which Δε > 0, the signs of P’s should be changed and the type of Kerr media would also 

be changed accordingly. 

 

4.2 Pulse broadening due to the high-order effect 

To estimate the influence of high-order dispersion which makes the pulse broadening, 

and the width of the soliton pulse that can make the high-order term negligible, we took 
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the Fourier transform of the soliton solution, sech(x/x0), and calculated the standard 

deviation of k’s distribution as Δk = 1/x0.  Taking derivative of Eq. (4.5) with respect to k, 

the group velocity can be expressed as 

 2 3
1 2 3 4/ ( ) ( ) / 2! ( ) / 3! .∂ ∂ = + Δ + Δ + Δ + ⋅⋅ ⋅k k k kω β β β β         (4.8) 

When the dispersion of β2 is balanced by the SPM and x0 > a, the pulse broaden will 

mainly dominated by the lowest nonzero dispersion coefficients, βn, having n > 2.  As 

the GVD arises from β3 is determined by 0.5β3Δk2 and is proportional to (1/x0)2.  The 

dispersion can be neglected when 0.5β3Δk2t ≈ 0.  At a particular frequency in which β3 = 

0, Eq. (4.5) can be rewritten as  

2 2
0 1 2 4 2( ) / 2!(1 ( / ) / 6)) .= + Δ + Δ + Δ + ⋅⋅⋅k k kω ω β β β β         (4.9) 

From the dispersion relation in Eq. (2.7), the signs of β2 and β4 are opposite in all 

propagation frequency of the CROWs and in mostly propagation frequency of the PCWs.  

Therefore, the term of (1+β4 / β2 Δk2/6) will be smaller than or equal to 1.  We should 

reduce the SPM strength (γs) to prevent overall SPM strength from making the pulse 

narrowing, especially when the pulse width is short for large β4 and small (or zero) β3 at 

ka approaches 0 or π.  However, when the pulse is seriously dispersed in the waveguide, 

it is no longer having the form of hyperbolic secant (HS), the dispersion would be 

dominated by the β2 term again. 

 

4.3 Simulation results and discussion 

We consider triangular-lattice PCs with the dielectric constant and radius of the 

dielectric rods being 12 and 0.2aL.  The radius (rd) of the defect rods is reduced to 0.1aL 

and the Kerr media are introduced in the defects between one separation rod to create the 
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CROW and sequentially to create the PCW as shown in Figs. 9(a) and (b).  The 

dispersion curves, which were simulated by the PWEM, and dispersion coefficients (βn) 

of the CROW and PCW in TM polarization without Kerr media are shown in Figs. 9(c) 

and (d).  The coupling coefficient of P1 is -0.00652 (2πc/a) in the CROWs and P1, P2 

and P3 are 0.02041, -0.00205 and 0.00026 (2πc/a) in the PCWs. 

 

Fig. 9 (a) The structure of a CROW with a separation rod and (b) of a PCW in triangular lattice. 
The dispersion relations and dispersion coefficients of (c) a CROW with one separation rod and 

(d) a PCW in triangular lattices calculated by the plane wave expansion method.  

 

Due to the magnitude of the coupling coefficients in the CROW is smaller than those 

in the PCW, the magnitude of the group velocity (β1) and the higher dispersion 

coefficients (β2,3,4) in CROWs would be smaller than in PCWs.  However, because the 

signs of P1’s are different so that the EM waves in these two structures will propagate in 

the opposite directions.  The neglected P2 term in CROWs makes β2 ≈ 0 and the values 
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of β3 is almost symmetric at ka = π/2, leading to soliton propagations at k and 1-k (in π/a 

unit) would be similar if different signs of Kerr media were introduced in the defects.  

However, it would behave quite differently in the PCWs.  The border of switching sign 

of Kerr medium for soliton propagation occurs at ka > π/2, and the high-order dispersion 

coefficients (β3 ,β4) in high k is larger than those in low k due to the negligible 2nd and 3rd  

next-neighbor coupling coefficients. 

We will use the 4th order Runge-Kutta method to solve Eq. (2.5) to simulate an initial 

HS pulse propagating in the PCW and CROWs, because the HS pulse is a soliton solution.  

The advantage of using this method is to directly solve Eq. (2.5) without the requirement 

of calculating the dispersion coefficients.  However, when the split-step Fourier method 

[53, 55] is used to solve Eq. (4.2), all orders of the dispersion coefficients are required to 

take into consideration for short pulse.  On the other hand, if a Gaussian pulse is incident 

into the nonlinear waveguides with the same energy of the HS pulse at the SPC with small 

high-order GVD, the Gaussian pulse will initially develop into HS envelope, then finally 

the pulse becomes broadened due to the high-order dispersions that behaves like initially 

launching the HS pulse into the nonlinear waveguides. 

 

4.3.1 Soliton propagation in the coupled resonant optical waveguides 

To observe the pulse broadening without Kerr media or under the SPC, where 

2 2 2
1 0=2 cos( ) /( )s c a ka xγ φ  in the CROWs with one separation rod and γs (n2) is positive 

as ka  > π / 2, we sent a hyperbolic-secant (HS) wave, i.e., φ sech(x/x0)eikx with x0 = 2a 

into the CROWs and let it propagate 400a/c in different k’s as shown in Fig. 10.  It can 

be seen that the pulse would spread seriously without Kerr medium but spread slightly or 
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even preserve at the SPC.  Because β2 = 0 at ka = 0.5π, the pulse would not spread even 

without Kerr medium, whereas, the dispersive waves were observed at the farther distance 

wing with the larger x in Fig. 10(a) due to the higher order dispersion βn with n > 2.  

From Fig. 9(a) we noticed that β2 monotonically increases, without Kerr medium the pulse 

becomes broader as increasing k as shown in Fig. 10(a) and it is the broadest at ka = π.   

At the SPC, however, β2 can be balanced by the SPM and thus the pulse is basically 

preserving the same shape without broadening except for the larger β3 as ka approaches 

0.5 π.  Because β3 = 0 at ka = 0 or π, it makes soliton propagation almost with no 

dispersive waves and the pulse disperse symmetrically in the waveguides even containing 

no Kerr media.   

 

Fig. 10 The hyperbolic-secant (HS) pulse (x0 = 2a) propagates in the CROWs of different wave 

vectors at t = 400a/c (a) without Kerr medium and (b) at the soliton propagation criterion by using 

the 4th order Runge-Kutta method.  The black solid line in (a) is the incident pulse. 

 

4.3.2 Soliton propagation in the photonic crystal waveguides 

In the PCWs, in order to further evaluate the degree of the pulse broadening arising 

from high-order dispersions, we define the broadening factor (BF) as σ/σ0, where σ is the 

root-mean-square energy of output pulse and σ0 is that of the input pulse.  From the BF 

of PCWs at different propagating time (T) for ka = 0.6π and 0.75π as shown in Fig. 11 (a), 

the BF is proportional to 1+T2 as the BF is small, but it is proportional to 1+T when BF 
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>> 1, which corresponds to the Gaussian pulse propagating in the PCWs [55].  The BF 

(ka = 0.75π) > BF (0.6π) initially, but becoming reversely with BF (0.6π) > BF (0.75π) 

after the pulse propagates a span of 60 a/c for x0 = 2a.  This is because the BF is mainly 

dominated by β3 at the SPC but dominated by β2 after having been severely distorted by 

β3.  However, when ka = 0.9π and x0 = 2a, the BF would become smaller, which means 

that the pulse width becomes narrower and its peak electric field becomes higher.  It is 

due to the opposite signs of β2 and β4 make SPM at γ = γs too strong, especially when β4 is 

much larger than β2 and β3 = 0 with small x0.  At γ = 0.9γs, the pulse width would 

become less broadening and neither further narrowing as time passes as shown in Fig. 

11(b).  Once the pulse width becomes wider, the high-order dispersions become 

negligible.  The overall self phase modulation at γ = γs should not be apparent.   

 

Fig. 11(a) The broadening factor of ka = 0.6π, 0.75π, and 0.9π and x0 = 2a and 4a of the HS 

envelope at the SPC and (b) the broadening factor of γ = 0.9γs and 1γs at ka = 0.9π and x0 = 2a. 

 

The broadening mechanism and the formula to define the SPCs in CROWs and PCWs 

are similar but the condition (γ or k) to support the SPC is quite different due to the 

difference of the coupling coefficients.  Once when the coupling coefficients are 

obtained by the PWEM, the pulse broadening and the SPC can be well analyzed by the 
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derived equations.  The simulation results obtained from the 4th order Runge-Kutta 

method agree well with our analyses in both the CROWs and PCWs. 

 

4.4 Summary 

The soliton propagation in the CROWs and the PCWs containing optical Kerr media 

was studied using the tight-binding theory.  By considering the coupling between the 

defects, we derived an extended discrete nonlinear Schrödinger equation to describe the 

wave propagation in these nonlinear waveguides.  By solving this equation, we obtained 

the criterion which supports the soliton propagation if the dispersion more than three 

orders can be neglected or the dispersion can be highly depressed at the criterion if the 

high order dispersions cannot be neglected.  In CROWs, the different kinds of Kerr 

media (positive or negative Kerr coefficients) should be added if the wave vector of the 

propagation wave (before or after π/2a) or separated rods (odd or even) are different but 

the signs of the second order dispersion coefficients of the waveguides and three-order 

susceptibility of the Kerr media must be identical. Due to the coupling coefficients in the 

PCW are larger than that in the CROW, the group velocity and the dispersion should also 

be larger in the PCWs, making SPM stronger to support solitons propagation in the PCWs.  

When the pulse width is long enough, only the first nonzero βn with n> 2 should be taken 

into consideration for pulse broadening but as the pulse width becomes shorter, the 

high-order dispersions become more significant to make the SPM smaller than the criteria 

when β3 approaches zero. 

In Chapters 3 and 4, we have discussed the pulse propagation in the single PCW and 

CROW.  In the next chapter, another identical waveguide will be carved into the PC with 

one or several partition rods to investigate the wave coupling between two waveguides.  
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Chapter 5 Tuning the decoupling point of a photonic-crystal 

directional coupler 

 

There are two dispersion curves with one even mode and one odd mode in a symmetric 

directional coupler (DC).  The field amplitude of EM wave propagating along the DC 

can be expressed as the linear combination of these eigenmodes and the coupling length 

of a DC is defined as π/Δk, where Δk is the wave vector mismatch of these eigenmodes 

[41].  In a triangular lattice PCs made of dielectric rods in the air, the dispersion curves 

of a DC will cross at a particular wave vector.  At this crossing point, named as the 

decoupling point, the coupling length becomes infinite so that the EM wave incident from 

one PCW will never be coupled into the other PCW.  In a square lattice of PCs, however, 

only the DC made of removed rods or reduced rods with small radii of dielectric will 

make dispersion curves crossed at the wave vector near the Brilluoin-zone boundary.  

Using the infinite coupling length for one wavelength and a finite coupling length for 

another, we have designed a miniature bidirectional coupler [30, 31], in which knowing 

the crossing point and coupling length in advance is an important issue.  Here, we 

propose using the TBT to control these two parameters and derive the design rules for DC 

[56]. 

 

5.1 Theory analysis 

We consider a TM-polarization wave propagating in a PCW, which consists of one row 

of reduced rods in a square (triangular) lattice of dielectric rods in air with lattice constant 
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a, shown in Fig. 12(a).  By applying TBT to these cases which is derived in Section 2.1, 

we can express the amplitude (un) of the electric field in the site n as [57] 

 1 0
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∂
= − − +

∂ ∑               (5.1) 

where 
1ω  is the eigenfrequency of a single point defect, P0 represents a small shift to the 

eigenfrequency 
1ω  due to the dielectric perturbation of the neighboring defects to the 

point defect at site n, and Pm is the coupling coefficient between sites n and n+m. The 

dispersion relation of a single PCW can be written as  
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1
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k P P mkaω ω
=

= − − ∑               (5.2) 

Ηere, P0 causes the relative frequency shift for all wave vector k from
1ω , whereas Pm’s 

cause the sinusoidal modulation. 

 
Fig. 12 Geometric structures of (a) single and (b) double PCWs with the lattice constant a.  Pm’s 

are the coupling coefficients between defects within a single waveguide.  α and β  are the 
coupling coefficients between waveguides. 

 

5.1.1 Eigen frequency shift and dispersion relation shifts of moving point 

defects in PCWs 
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Moving the point defect along ±y (or ±x) direction in the square lattice will shift the 

eigenfrequency (
1ω ) of a point defect toward the higher frequency as shown in Fig. 13(a).  

Such a blue shift in frequency is caused by less concentration of electric fields in the 

dielectric defect rod [58] when the defect rod moves away from the center as shown in Fig. 

13(b) for field distribution along the y-direction and Fig. 13(c) for that along the 

x-direction.  From Fig. 13(c) the field distribution is almost unchanged along the 

propagation axis (the x-direction) of PCW so that it would remain unaffected.  Therefore, 

the dispersion curve should just show a blue shift after moving all the defect rods along y 

direction in the PCW (see Fig. 14(a)).  However, if moving all the defect rods of the 

PCW along the x-direction, shown in Fig. 14 (b), one would increase both 
1ω  and P0 but 

only slightly change Pm’s.  Therefore, we would expect that the dispersion curve is 

almost unchanged at small wave vector k and slightly increases at the larger wave vector k 

by translating all the defects along the x-direction. 

 

Fig. 13 (a) The eigenfrequencies, (b) the electric field along the y axis, and (c) the electric field 

along the x axis of the point-defect modes with a defect rod located at different positions along the 
y axis, where c is the speed of light in vacuum. 
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Fig. 14 The ways of moving the defect rods in single or coupled PCWs. 

 

5.1.2 Dispersion relation shifts in photonic-crystal couplers 

When a second identical waveguide is created to make a symmetric DC, shown in Fig. 

12(b), the amplitudes of electric fields (U0,V0) in PCW1 and PCW2 are given by the 

coupled equations: 

1 0 0( ) ( ( )) 0,U Cos ka Vω ω α β− + + =                  (5.3) 

1 0 0( ) ( ( )) 0,V Cos ka Uω ω α β− + + =                 (5.4) 

where α and β are the coupling coefficients of one PCW induced by the nearest-neighbor 

and the next-nearest neighbor defect rods of the other PCW; ω1 and ω are the 

eigenfrequencies of the single PCW and the DC, respectively.  Solving for Eqs. (5.3) and 

(5.4), we obtained the dispersion relations of the DC:   

1( ) ( ) ( 2 cos( )),k k kaω ω α β= ± +                 (5.5) 

where the plus sign stands for the odd mode and the minus sign for the even mode [24]. 

The dispersion relations of the DC split from ω1(k) with their frequency difference being 

determined by coefficients α and β.  Whether the dispersion curves cross at a point or 
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not is determined by the ratio ζ=|2β/α| [57].  As the PCWs are formed by moving all the 

defect rods along the y-direction, shown in Fig. 14(c), we would expect that there exists a 

larger ω1 and barely changes in α and β  because the distance of the defect rods between 

two waveguides is unchanged.  Therefore, the dispersion curves of the DC would show 

only a blue shift.  As enlarging the distance between two line defects in the DC by 

oppositely moving all the defect rods along the y direction as shown in Fig. 14(d), we 

would expect that coefficients α and β  become smaller and there is a reduced coupling of 

PCWs.  Thus it would reduce the frequency separation between two dispersion curves, 

which shift together toward the higher frequency.  On the other hand, as reducing the 

separation of the line defects, shown in Fig. 14(e), we can increase the separation of the 

dispersion curves, which both shift to the higher frequency.  In addition, similar effects 

showing in a square lattice are reproduced by reducing the separation of the line defects of 

DC in a triangular lattice, shown in Fig. 14(f). 

Moving all the defect rods along the x axis, shown in Figs. 14(g) and (h), will change 

the ratios of electric fields at (0,2a) and (±1a, 2a) in the square lattice so that the 

coefficients α and β would also change.  It makes the decoupling point moved to 

different wave vector k.  The larger ζ makes the decoupling point moved to the smaller 

wave vector k.  Let the ratio ζ and the electric field before (after) moving all the defect 

rods along the x-axis as ζ1 (ζ 2) and Ε1 (Ε2), respectively.  Assuming the field distribution 

is strongly localized at the dielectric rods, we can simply use the ratio of the maximal 

field values instead of integrals as Eq. (2.9) to estimate coefficients α, β and ζ .  Thus, 

 2 1 2 2 1 1 / (E (-a,2a)/E (0,2a))/(E (-a,2a)/E (0,2a)).ζ ζ ≈          (5.6) 

From the field distribution before and after shifting the defect rods shown as in Fig. 15, 

we obtained ζ2 /ζ1 > 1 in square lattice but ζ2 /ζ1 < 1 in triangular lattice.  Therefore, 
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moving all defects along the x-direction in the square lattice will create dispersions’ 

crossing and further shift toward the smaller wave vector k with increasing the moving 

distance in the x-direction.  However, in the triangular lattice, the decoupling point 

shifted toward the larger wave vector k.  These phenomena are due to the lattice 

structure of the former case being getting close to a triangular one which possesses 

dispersions’ crossing on translating the line defects along the x-direction; while that of 

latter case tends to become a rectangular one. 

 
Fig. 15 The electric field distribution of the point defect mode before (x = 0a) and after moving 

the defect rods by 0.5a along the x-axis (x=0.5a).  (a) The electric field located at y = 2a in the 
square lattice and (b) the electric field located y = 3a  in the triangular lattice. 

 

5.2 Simulation results and discussion 

In the previous section, we have used the TBT to analyze the variation of dispersion 

curves by moving defects in the DCs that causes the change of eigenfrequency of a single 

PCW and coupling coefficients Pm, α and β.  Here, we will use the PWEM and the 

FDTD to examine the proposed design rule for a PC with the radii and the dielectric 

constant of the dielectric rods being 0.2a and 12, respectively.  The radii of the defect 

rods in the square lattice are 0.1a and 0.09a in the triangular lattice.  
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Firstly, we examined a single PCW with all line defect rods being transversely moved 

(along the y-axis) in the square lattice using the PWEM.  We can see that the dispersion 

curve in Fig. 16(a) shifts completely to the higher frequency, which means that the 

coupling coefficients Pm between defect rods are unaffected during transversely moving 

all defect rods.  The frequency shift is mainly dominated by the variation of the 

eigenfrequency (
1ω ) of the point defect as moving the defect rod.  However, as the 

defect rods moved along the x-axis shown in Fig. 16 (b), both 
1ω  and P0 would increase 

and cancel out the effect of changing eigenfrequency ω1 in the regime of small wave 

vectors, whereas the dispersion curve bends down in the regime of large wave vectors, 

due to the high-order terms Pmcos(mka) becoming important. 

 

Fig. 16 Dispersion curves of a single PCW with all the defect rods moving along (a) the 

y-direction, and (b) along the x-direction. 

 

Secondly, by transversely moving defect rods separately, Figure 17 shows how the 

dispersion curve varies as changing the structure of the DC.  Here, we used the square 

lattice as a demonstration because there are similar results in square lattice and triangular 
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lattice.  As simultaneously moving two line defects off the center of the original PCWs 

and keeping the separation between PCWs fixed, we find the dispersion curves shift 

toward the higher frequency as shown in Fig. 17(a).  On the other hand, the reduction of 

the separation of the line defects to decrease the coupling between PCWs pushes the 

dispersion curves apart (see Fig. 17(b)); whereas, symmetrically enlarging the separation 

of the line defects not only shifts the dispersion curves toward high frequencies but also 

makes two dispersion curves closer (see Fig. 17(c)).   

 

 

Fig. 17 The dispersion curves of the shifted DCs, whose structures are indicated in the insets. 

 

Thirdly, we examined the effects of moving all the defect rods along the x-direction in 

Fig. 18.  We found that the dispersion relations, originally showing no decoupling point, 

in a square lattice become cross at a high frequency as the symmetry is broken.  And the 

decoupling point moves toward the lower frequency or the smaller wave vector k as the 

rods are moved further.  Contrarily, the decoupling point moves toward the higher 

frequency or the larger wave vector k in the triangular structure and eventually without 

crossing. 
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Fig. 18 The dispersion curves as moving the defect rods along the x-direction in the square lattice 

(a) and triangular lattice (b). 

 

Finally, we used a 2D FDTD method to simulate the electric field transferring between 

these two shifted coupled PCWs.  For the photonic crystal slab, the effective refractive 

index approach has been proved adequate to reduce this 3D FDTD problem to 2D one [59, 

60].  Therefore, 2D FDTD method is sufficient to describe the propagation phenomena 

in the slab photonic crystal DC, especially for understanding only the physical insight.  

When an EM wave with the given frequency (0.362 c/a) is incident one (PCW1) of these 

two channels (or PCWs), the coupling length, for which the energy completely couples to 

another channel (PCW2), is defined as π/Δk, where Δk is the wave vector mismatch 

between two modes of the DC at the incident frequency.  Using the square lattices as 

examples, we have shown the dispersion curves of a square lattice DC in Fig. 19(a).  

Due to rather smaller Δk ~ 0.0346 π/a for the original DC without moving defects, as 

shown in Fig. 19(b) the coupling length is 29a, which is quite long but finite.  When the 

incident frequency is chosen located at the decoupling point formed by longitudinally 

shifting all defects a 0.5a distance, the electric field will propagate in the incident channel 
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without leaking into another channel (see Fig. 19(c)).  In addition, moving the line 

defects close to each other by 0.5a makes Δk ~ 0.23 π/a, which is a larger vector 

mismatch, so that the coupling length becomes shorter (~ 4a see Fig. 19(d)).  These 

FDTD simulation results verify the coupling length can be tuned by properly moving the 

defect rods to shift the decoupling point of dispersion curves that agree with those 

calculated by PWEM. 

 
Fig. 19 The dispersion relation curves (a) and the FDTD simulation results of the original DC 

without moving defects in (b), longitudinally moving the defect rods by 0.5a in (c), and 
transversely moving the defects closer by 0.5a in (d). 

 

The proposed TBT can also be applied to other structures, e.g., TM polarization in a PC 

with air holes in a dielectric slab or transversely moving a perfect rod.  In the case of a 

PC with air holes in dielectric slab, the radii of the holes must be increased to insure 

single mode existing in the PCW and there would be also a decupling point in this 

structure.  On the other hand, the TBT can also well predict the propagation of an EM 

wave in a single line defect or a DC created by transversely moving a row or two rows of 
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perfect dielectric rods without changing the radii or dielectric constant of the dielectric 

rods.  

For practical use, the DC can be designed as a dichroic filter for bidirectional 

multiplexing as reported in [30].  However, it might not realistic to design multichannel 

filter by cascading DCs with different coupling lengths, because to achieve < 20 dB cross 

talk, the ratio of coupling lengths of proximal channels has to be less than 0.03.  On the 

other hand, for switching application, we can add a nonlinear medium in the DC to 

change the refraction index by a controlling light.  In the symmetric DC, without the 

controlling light, the transmission around the decupling point but not at the decoupling 

point can be quite high.  However, the DC will become asymmetric when the controlling 

light is injected into one branch of the DC.  In this case, the transmission would become 

very low around the decoupling point [57].  Therefore, the signal can be switch rapidly 

by a controlling light. 

 

5.3 Summary 

The movement of defect rods in the DC is an efficient way to modify its dispersion 

curves, so that the coupling length and the decoupling point of the DC can be tuned.  

Moreover, it can make the dispersion curves crossing in the square lattice with a 

reduced-rods DC.  The TBT explains these coupling phenomena consistently with 

PWEM and FDTD methods and provides design rules for the DC in photonic integrate 

circuits.  The dispersion curves show a blue shift as the defect rods moving away from 

the center of the PCWs.  Two dispersion curves of the DC are pulled apart by reducing 

the separation of the coupled PCWs, on the contrary, the dispersion curves get closer by 

enlarging the separation of the coupled PCWs, no matter what the DC is in a square or 
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triangular structure.  However, longitudinally moving the defect rods along waveguides 

axis, the ratio of the coupling coefficients of the first (α) and the second (β) neighboring 

rods of the DC would change its magnitude that in turn shifts the decoupling point.  This 

moving effect on the DCs of the square lattice shifts the decoupling point toward the 

lower frequency or the smaller wave vector k; whereas, toward the higher frequency or 

the larger wave vector k in the DCs of the triangular lattice.  

In this chapter, we focused on the properties of the symmetric couplers.  In the next 

chapter, we will consider the asymmetric cases in which the physical properties are quite 

different from symmetric ones. 
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Chapter 6 Physical properties of coupled asymmetric photonic 

crystal waveguides 
 

From the simulation results by the PWEM for the triangular lattice, the dispersion 

curves of asymmetric PCWs are not crossing, but the eigenmodes do switch.  The 

electric field ratios of the eigenmodes in both waveguides no longer are ±1, especially at 

the switching point of the mode pattern (Fig. 21).  However, the results of the PWEM or 

TBT derived from symmetric PCWs cannot provide good reasons to explain these 

phenomena.  Therefore, similar to the tight binding method, we derive an analytic 

solution considering up to the next nearest-neighbor coupling between two PCWs to 

describe the physical properties of asymmetric PCWs.  This formula provides more 

generalized discussion and gives a good explanation about asymmetric coupled PCWs.  

In practice, the coupled identical PCWs should become asymmetric due to the intensity 

dependent index of refraction in the nonlinear photonic crystal directional coupler, and 

this can be used as switches to control EM wave to output with proper ratio in each 

channel.  

 

6.1 Coupled equations of asymmetric photonic crystal waveguides 

In Section 2.4, we derived the eigenfrequencies (dispersion relations) and eigenvectors 

(field amplitudes) of asymmetric PCWs are 

1 2 2 2( )( ) ( ( )) ,
2

k g kaω ω
ω± +

= ± Δ +                   (6.1) 

2 2

0 0
( ( ))

( / ) ,
( )

g ka
V U

g ka
χ ± ± Δ ± Δ +

= = −                 (6.2) 
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where 2 1( ) / 2ω ωΔ = −  and χ ±  are the amplitude ratios corresponding to frequencies 

( )kω± ; 1ω  and 2ω  are the dispersion relations of the sing PCW1 and PCW2 as shown in 

Fig. 3; ( ) 2 ( )g ka Cos kaα β= + ; α and β are the coupling coefficient between two 

waveguides. 

From the electric field distributions of defects in the square and triangular lattices, 

shown in Fig. 20, we find that the electric field at the site (x = 0, y = 0) of the square lattice 

has the same polarity (sign) as its nearest-neighboring site (x = 0, y =2a) and the next 

nearest-neighboring site (x = a, y = 2a).  Because Δε < 0 for the air-defect PCWs in both 

square and triangular lattices, the coupling coefficients α and β both are negative values. 

Here, we assume 2ω > 1ω  in the following discussion; therefore, we shall call the 

waveguide 2 (waveguide 1) as the high-frequency PCW2 (low-frequency PCW1). 

 
Fig. 20 The electric field distribution (Ez) of a point defect mode in the square lattice for (a) f 

=0.364 c/a with a reduced-rod (rd = 0.05a) defect; that in the triangular lattice for (b) eigen 

frequency f = 0.365 c/a with a defect rod εr = 2.56; and (c) The electric field distribution in the 
dash lines. 

 

Because |g(ka)| has a maximum value at k = 0, one should expect that the dispersion 

curves have the largest splitting there.  As α and β are negative values discussed before, 

g(ka) always is a negative value for all k if |2β /α | < 1, and its value can change from the 

negative to the positive sign as k is increasing from 0 to π when |2β /α |>1.  Under this 
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condition of |2β /α | > 1, the coupler can be decoupled when g(kDa) = 0 at a certain k = kD 

and have eigenfrequencies ω+ = 2ω and ω− = 1ω  separately; that is, the field launched in 

PCW1 always will be confined in PCW1 without being coupled to PCW2, and vice versa. 

We can simply use the ratio of the maximal field values instead of integrals as Eq. (2.9) to 

estimate coefficients α, β and |2β /α | by assuming the field distribution is strongly 

localized near the dielectric rods.  Thus, |2β /α |~2E(0,2a)/E(±a,2a) in the square lattice 

and ~2E(0, 3 a)/E(±a, 3 a) in the triangular lattice. 

Because g(ka) < 0 for 0 Dk k≤ < under |2β /α | > 1 (or for all k under |2β /α | < 1), the 

lower frequency mode (ω−) has -1 < χ- < 0; namely, the eigenmode of the coupler displays 

the PCW1 and PCW2 electric fields not only being out-of-phase but also concentrated on 

the low-frequency PCW1.  This odd-like fundamental (low-frequency) mode is called the 

“anti-bonding” mode, borrowed from the molecular physics of two atoms.  On the other 

hand, the high-frequency and even-like mode called the “bonding” mode has χ+ > 1; thus, 

it is superimposed by the in-phase electric fields from both PCWs, where the field strength 

is concentrated on the high-frequency PCW2. 

However, as k > kD under |2β /α | > 1, g(ka) becomes positive and 0 < χ- < 1.  The 

fundamental mode is a bonding mode, which is superimposed by the in-phase electric 

fields from both PCWs, where the field strength is concentrated on the low-frequency 

PCW1.  And the high frequency antibonding mode with χ+ < -1 has the field strength 

concentrated on the high-frequency PCW2.  We find that the fundamental modes of the 

asymmetric coupler contain no degenerate state (anti-crossing dispersion relations) and 

can switch from the antibonding to bonding mode as k varies crossing the decoupling 

point kD.  As the previous study on the symmetric coupler, we simply can set Δ = 0 to 
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obtain χ ± = 1±  at all k, i.e., the fundamental mode is either odd or even depending upon 

the sign of g(ka).  The dispersion curves of the symmetric coupler can cross at the 

decoupling point if |2β /α | > 1.  Furthermore, upon increasing the separation of PCWs to 

two rows apart [27], from Eq. (2.9), coupling coefficients α and β become positive values 

and are smaller than coupling coefficients of the one-row-separation PCWs. The 

fundamental mode becomes a bonding mode, and whether or not mode switching would 

happen still is determined by the criterion: |2β /α | > 1. 

In order to prove that the derived formula by TBT can explain phenomena gotten by 

PWEM well, we consider for example a 2D triangular (square) lattice PC made by 

dielectric rods with dielectric constant εr = 12 and radius = 0.2a in the air.  Due to the 

field symmetry, the coupling coefficient ratio β /α is a larger value in the triangular lattice 

than in the square lattice.  It should be easier to reach the criterion |2β /α | ≈ 

2E(0,2a)/E(±a,2a) > 1 of the mode switching behavior in the triangular lattice than in the 

square lattice, shown in Fig. 20(c).  Therefore, we consider a triangular lattice PC, and 

the line defects forming the PCW1 and PCW2 are created by setting the dielectric 

constants of defect rods at 2.56 and 2.25, respectively.  The eigenfrequencies of a point 

defect with transverse magnetic field (TM), whose electric field is parallel to the dielectric 

rods, are ω1 = 0.365 (2πc/a) and ω2 = 0.371 (2πc/a), respectively, where c is the speed of 

light in vacuum.  The decoupling point is located at kD = 0.73π/a where the 

eigenfrequencies of the PC couplers decouple in the eigenfrequency in single line-defect 

PCWs, shown in Fig. 21(a).  Note that the dispersion curves do not cross in the 

asymmetric coupler.  As shown in Fig. 21(b), the eigenmode of the high (low) frequency 

band at the wave vectors k < kD are the bonding (anti-bonding) modes, but these modes 

switch when k > kD, namely, the eigenmode of high (low) frequency band being 
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anti-bonding (bonding).  And the electric field is concentrated on the PCW2 for the 

high-frequency (ω+(kD)) mode and on the PCW1 for the low frequency (ω-(kD)) mode at 

the decoupling point kD.  The mode switching phenomenon at kD is shown easily by 

plotting the ratios of the eigenmodes (χ=V0/U0) obtained either by the PWEM.  We 

observe that χ's change sign at the decoupling point kD (see Fig. 21(c)). 

 

 

Fig. 21 Simulation results of PWEM. (a) Dispersion relations of two isolated PCWs (ε =2.56 and 

ε =2.25) and the directional coupler in the triangular lattice (shown as the inset). (b) The 
dispersion curves of the directional coupler and its eigenmode profiles below, above and at the 
decoupling point. (c) The mode amplitude ratios of the coupler. 

 

6.2 Electric field distribution and energy transfer 

After obtaining the eigenfrequencies (dispersion relations) and eigenvectors (field 

amplitudes) of the DC, we shall calculate the energy transfer between the coupled PCWs.  

If an EM wave with a given frequency propagates in the DC, the wave function or field 

distribution at site n in each of the coupled PCWs can be expressed as the superposition of 

the eigenmodes of the DC, 

( ) a bik na ik na
nU na Ae Be= + ,                       (6.3) 

( ) ,a bik na ik naa b
nV na A e B eχ χ= +                     (6.4) 

where the propagation constants of the anti-bonding mode ka and bonding mode kb and 

their corresponding amplitude ratios of χa and χb can be obtained from Eqs. (6.1) and 
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(6.2).  Note that χaχb is not necessarily equal to -1 for a given frequency because the 

mode patterns of the DC at a given frequency are not the eigenmodes of the same system.  

Let x = na, one can rewrite Eqs. (6.3) and (6.4) as the following continuous equations,  

( ) a bik x ik xU x Ae Be= + ,                       (6.5) 

( ) a bik x ik xa bV x A e B eχ χ= + .                    (6.6) 

Taking derivatives of U(x) and V(x) with respect to x, we have the coupled PCW 

equations 

1 12
( ) ( ) ( )dU x iM U x i V x

dx
κ= + ,                     (6.7) 

2 21
( ) ( ) ( )dV x iM V x i U x

dx
κ= + ,                     (6.8) 

where ( ) ( )1
b a b a

a bM k kχ χ χ χ= − −  and ( ) ( )2
a b a b

a bM k kχ χ χ χ= − − are the effective 

propagation constants of PCW1 and PCW2 of the directional coupler, 21 12
b aκ κ χ χ= −  

and 12 ( ) /( )a b
a bk kκ χ χ= − − are the effective coupling coefficients between PCWs.  The 

solutions of the coupled PCW equations are 

1

2
11 12

* *
21 22

0( ) (0) .( ) (0)0
iM x

iM x
D iDeU x U

V x ViD De
η η
η η

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
            (6.9) 

Here U(0) and V(0) are the electric field amplitudes at x = 0, ( )12 12  ( )D Sin fx fκ= , 

( )21 21 ( )D Sin fx fκ= , *
11 22 ( ) ( ) /D D Cos fx i Sin fx fδ= = − , and exp( )i xη δ= , with 

( ) / 2a bf k k= −  and ( ) ( )a b a bfδ χ χ χ χ= + − .  The maximum energy transferred from 

PCW1 to PCW2 is proportional to 2 2 2
21| / | 4( ) /( )b a b afκ χ χ χ χ= −  and that from PCW2 

to PCW1 is proportional to 2 2
12| / | 4 /( )b afκ χ χ= − .  There are maximum energy 

transfers into the other waveguides at fx=π/2, so coupling length is defined as π/ |ka-kb|.  

There are no crossing points in asymmetric PCWs, as making the coupling would not be 

infinite by TBT, shown in Fig. 22(a), but the lowest energy transfer still around the 



 

 52

decoupling points.  The energy will transfer completely into the other waveguide only in 

symmetric ones because it happens only at δ=0. 

 
Fig. 22 (a) The wave vectors of the bonding (antibonding) mode and coupling length of the PC 

couplers for different frequencies. (b) The mode amplitude ratio (χ=V0/U0) of the bonding and 
antibonding mode. (c) The ratios of the maximum energy transferred from the PCW2 to PCW1 

(|k12/f|2) and from the PCW1 to PCW2 (|k21/f|2). 

 

For an incident wave frequency ω, the wave vector ka for the anti-bonding mode 

should be larger than kb for the bonding mode for k < kD.  Since aχ  is smaller for 

large wave vector, if we denote the mode ratio of the lower frequency band at kb as χa(kb), 

we have ( ) 1b a b a
bkχ χ χ χ≤ =  and 2 2 24( ) /( ) 4 /( )b a b a b aχ χ χ χ χ χ− ≤ −  and ≤ 1, 

shown in Figs. 22(b) and (c), which are obtained by the PWEM.  Therefore, the 

maximum energy transferred from PCW1 to PCW2 should be smaller than that 

transferred from PCW2 to PCW1.  However 2
12| / |fκ  can be larger than 1, meaning the 

output peak energy can be larger than the input peak energy.  It results from the 

difference field localization of the eigenmodes. 

 

6.3 Summary 

We have extended the TBT to study asymmetric couplings between two non-identical 

line-defect photonic waveguides.  By considering the coupling between two waveguides 
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beyond the nearest-neighbor approximation, analytic expressions of the dispersion 

relations and eigenmode ratios of an asymmetric photonic-crystal coupler agree well with 

the phenomena calculated by PWEM results.  Due to the symmetry breaking, these two 

dispersion curves will never cross, even with the criterion |2β| > |α|.   Nevertheless, as the 

symmetric coupler shows, the eigenmode patterns, which are the bonding and 

anti-bonding modes, do switch on the same dispersion curves when wave vector k varies 

across the decoupling point.  At the higher (lower) frequency of the dispersion relation 

curve, the electric field distribution of the eigenmodes would localize mainly at the PCW 

with a higher (lower) eigen frequency, which corresponds to an incomplete EM field 

transformation between two waveguides.  For a given incident frequency, the 

electric-field distribution and energy transfer of the coupler can be expressed analytically 

by using the wavevector and derived amplitude ratios of the bonding and anti-bonding 

modes.  The coupling length at the decoupling point no longer is infinite but low energy 

transfer around there.  Although complete energy transfer into the other waveguides is 

impossible in asymmetric waveguides, the peak power in the output dielectric rods can be 

larger than that in the input ones due to the electric fields having difference strength of 

electric field localization in each waveguide. 
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Chapter 7 Conclusions and Prospective 

 

7.1 Conclusions  

In this dissertation, we used TBT to realize the wave propagation of PCWs and 

CROWs.  The basic advantage of this method is that an analytic solution can be derived 

to describe wave evolution in the waveguides with linear or nonlinear materials.  In the 

single PCW or CROW with Kerr media, we found when a perturbation was superimposed 

into a plane wave, the perturbation could grow exponentially, as the so-called MI.  In the 

CROWs, the region of MI varies as we change the numbers of separation rods and sign of 

Kerr media added into the waveguides, but in the MI region, the relationship of 

nearest-neighbor coupling coefficient (P1), wave vector of the plane wave (k) and SPM 

strength must be P1cos(ka)γ  > 0 and the MI boundary locates at ka=π/2.  In the 

air-defect PCWs, the nearest-neighbor coupling coefficient is positive and non-negligible 

next nearest-neighbor coupling coefficient make the boundary of the MI (ka) exceed π/2 

and exist 2 gain maxima. 

If the variation of the envelope of the electric field amplitudes is slow, the incident 

wave in the MI region could become soliton.  From TBT, the soliton propagation criteria 

of the CROWs and PCWs can be derived.  From the criteria, the sign of SPM strength 

and the 2nd order dispersion (β2) must have the same sign.  As the pulse width of the 

soliton becomes shorter, the slowly varying amplitude approximation is broken and the 

pulse will broaden due to high order GVD.  As the broadening factor is small, the pulse 

broadening is dominated by β3 when ka is away from 0 or π.  As ka is near 0 or π, β3 is 

almost zero.  The pulse broadening is dominated β4 at soliton propagation condition.  



 

 55

Under this circumstance, the SPM at soliton propagation criteria would be too strong and 

make the pulse become narrowing at beginning.  When the SPM strength is reduced, the 

pulse would not be narrowed and the broadening factor would be smaller than that at SPM 

strength.  

When the other identical waveguide is carved into the single PCW with one or several 

partition rods, we found the crossing point of the dispersion relation curves and coupling 

length could be tuned by moving the defect rods.  When moving the defect the rods 

along the propagation direction, the crossing point shifts toward the high frequency or 

wave vector in triangular lattice PCs and toward the low frequency or wave vector in 

square lattice PCs.  As moving the two rows of the defect rods in the waveguides close 

to each other, the coupling length descends and the coupling length ascends as moving 

two rows of the defect rods away from each other.  These phenomena can be well 

explained by TBT and coincide with the simulation results of FDTD. 

As the other waveguides is not identical to the original one, the symmetry breaks and 

these two dispersion curves will never cross, even with the criterion |2β| > |α|.   But the  

mode switches at this criterion.  At the higher frequency of the dispersion relation curve, 

the electric field distribution of the eigenmodes would localize mainly at the PCW with a 

higher eigen frequency and vice versa, which corresponds to an incomplete EM field 

transformation between two waveguides. For a given incident frequency, the electric-field 

distributions and energy transfer of the coupler can be expressed analytically by using the 

wavevector and derived amplitude ratios of the bonding and anti-bonding modes.  The 

coupling length at the decoupling point no longer is infinite but the lowest energy transfer 

around there.  Although complete energy transfer into the other waveguides is 

impossible in asymmetric waveguides, the peak power in the output dielectric rods can be 
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larger than that in the input ones due to the electric fields having difference strength of 

electric field localization in each waveguide.  

 

7.2 Prospective  

In Chapter 4, we have used EDNLS equation to describe the soliton or pulse 

propagation in the CROWs or PCWs.  In this method, the electric field in the 

waveguides is assumed as the linear combination of the electric field distribution of the 

point defect.  This is valid when the field propagates in the center of the waveguides, but 

the field at the input or output boundary must have some distortion, making the EDNLS is 

not so suitable to describe wave propagation in these regions.  In order to consider all 

circumstance as designing the device, the FDTD method should be used to recheck the 

results. 

In the TBT, only TM polarization is considered because polarization of the electric 

field is identical in all incident angles of 2D simulation.  But as the PC is made of 

dielectric substrate with air hole pattern, there exists a complete photonic band gap only 

on TE polarization.  We should extend the TBT to TE polarization and compare this 

analytic result with other numerical results.  

In this dissertation, only 2D PCs are considered.  To approach the practice experiment 

devices, we should extend our theory and simulation to the PC slab in which 3D 

simulation tools should be used.  In the primary simulation results of PWEM, we found 

the dispersion relation curves can cross in PC slab with triangular lattice similar as the 

simulation results in Chapter 6.  We still need to use FDTD to do the double check and 

get the coupling coefficients from PWEM in order to further analysis the physical 

properties the PCWs or PC couplers. 
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