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Abstract

Tight binding theory (TBT) is used. to:study-the pulse propagation in singe photonic
crystal waveguides (PCWs) and. coupled resonant optical waveguides (CROWS) with
nonlinear media as well as an electromagnetic (EM) wave propagation in the symmetric
and asymmetric photonic crystal. (PC)-coupler.= From the TBT and considering the
coupling between the defects, the amplitude of the electric field in the PCWs or CROWSs
can be expressed as an analytic evolution equation and we termed it the extended discrete
nonlinear Schrédinger (EDNLS) equation. By solving this equation for CROWSs and
PCWs, we obtained the modulation instability (MI) region and the Ml gains, G(p,q), for
different wavevectors of the incident plane wave (p) and perturbation (q) analytically. In
CROWs, the MI region, in which solitons can be formed, can only occur for pa being
located either before or after ©/2, where a is the separation of the cavities. The location
of the MI region is determined by the number of the separation rods between defects and
the sign of the Kerr coefficient. However, in the PCWSs, pa in the MI region can exceed

the /2. For those wavevectors close to n/2, the Ml profile, G(q), can possess two gain



maxima at fixed pa. It is quite different from the results of the nonlinear CROWSs and
optical fibers.

We also successfully used the EDNLS equation to describe the soliton propagation and
to obtain the soliton propagation criteria (SPC) in the nonlinear PCWs and CROWSs
containing Kerr media. From these criteria, we obtained the soliton propagating region
of CROWs in different numbers of separated rods and strengths of self-phase modulation
which coincides with the region of MI of the CROWSs. In the PCWs, the positive Kerr
coefficient medium needs to be added to support the pulse propagation in the low
frequency or wave vector region of the dispersion relation and vice versa. Due to the
different magnitudes of coupling coefficients in CROWSs and PCWs, the group velocity,
dispersion and self phase modulation Strength to support soliton propagation in CROWSs
are smaller than those in PCWSs.  For a'long pulse, only the lowest nonzero dispersion
coefficients, £, with n > 2 needs to take“into consideration for pulse broadening at the
SPC. However, as decreasing the pulse width, even higher order dispersion should be
taken into account that makes the self phase modulation strength smaller than the criteria
when the third order dispersion is almost zero.

As the other identical waveguides is inserted into the PC with one or several partition
rods, the PC coupler is created. The dispersion relation curves of the coupler could be
crossing. The crossing point is named as the decupling point. At this point, the energy
cannot be transfer into the other waveguide. Controlling the decoupling point can
modify the properties of the coupler. From the TBT that includes coupling of the
guiding mode field up to the next nearest-neighbor defects, we find there is a blue shift in
the frequency of the decoupling point in the square lattice and red shift in the triangular

lattice by translating the defect rods along the axis of the coupler. By moving defects of
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the coupler close to each other transversely, not only the eigenfrequencies of the coupler
but also separations of dispersion curves increase due to the stronger coupling between
defect rods. From the simulation results of the plane wave expansion method and finite
difference time domain method, the theoretical analysis of TBT gets a great agreement
with the numerical ones.

If the other waveguide inserted into the PC is different from the original one, the
coupler will be asymmetric. By considering the next nearest-neighbor defects between
two PCWs, analytic formulas derived by the TBT, we will explain the physical properties
of the asymmetric directional coupler made of two coupled PCWs: (1) The dispersion
curves of a PC coupler will decouple into the dispersion curves of a single line defect,
and the electric field would only=be localized in ene waveguide of the coupler at a
particular point that we name the decoupling point; (2) The parities of the eigenmode
switch at the decoupling point,=even though the-dispersion curves are not crossing; (3)
The eigenfield at a higher (lower). dispersion curve®is always mainly localized in the
waveguides that have higher (lower) eigenfrequencies of single line defects, even though
the eigenmodes are switched. As a given frequency is incident into the coupler, the
energy transfer between two waveguides and the coupling length can be expressed
analytically. Due to no dispersion curve crossing, the coupling length is no longer infinite
at the decoupling point in asymmetric PCWs, but it still possesses the minimal energy
transfer between two waveguides when the frequency of the incident wave is close to the

decoupling point.
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Chapter 1 Introduction

1.1 Photonic crystals

Photonic crystals (PCs) arise from the cooperation of periodic scatters thus, they are
called “crystal” because of their periodicity and “photonic” because of their action on
light [1]. The concept behind these materials stems from pioneering work of
Yablonovitch and John [2-6]. Yablonovitch proposed a structure in which an electronic
and photonic gap overlapped, making it possible to enhance the performance of lasers,
heterojunctions, bipolar transistors, and solar cells [4]. In the same year, John also
proposed using such structures for the'localization’of light in strongly scattering dielectric
structures [3]. A PC is interesting owing to.whose band structure possesses a complete
photonic band gap (PBG) [5-7]. | A'PBG defines a range of frequencies in which light
cannot propagate inside the crystals."'As a“tesult .of the existence of PBGs and their
unusual dispersion properties, photonic ‘crystals’ can sustain various light waves, pulses,
and beam propagation regimes which are of physical interest and important for numerous
applications, such as perfect reflector and negative refraction index structures.

The mathematic description of the PCs should start from the four Maxwell’s equations
rather than other scalar wave description, such as the beam propagation method, because
the special variation of the refraction index is comparable to the wavelength. From the
researches in early 1990s, four main algorithms are proposed to model the wave
propagation in the PCs. They are the plane wave expansion method (PWEM) [8, 9],
finite difference time domain (FDTD) method [10-12], finite element method (FEM) [13,

14] and transfer matrix method (TMM) [15, 16]. The PWEM deals with the Maxwell’s



equations in wave vector space and solves the eigenfrequencies in each wave vector to get
the dispersion relation. It is suitable for the high periodic structures. In the FDTD
method, a wave propagating through the PC structure is found by a direct discretization of
Maxwell’s equations in both time and space. It is powerful and flexible especially in a
complex structure but is extremely time-consuming and its computational requirements
grow exponentially with problem size. The FEM is a frequency domain method used to
solve Maxwell’s equations. It takes into account material discontinuities in the dielectric
structure more efficiently by a preconditioned subspace iteration algorithm, which helps
overcome the slow convergence of the PWEM. It is widely used to simulate the
dispersion of the photonic crystal fiber due to its structure uniformity in the wave
propagation direction. TMM is pewerful at layer structures such as 1D PCs or 2D and
3D PCs with square lattices. A matrix is used:-to connect the electric field or magnetic
field between two layers. By solving“the matrix, the transmission, refraction and

dispersion relation can be obtained:

1.2 Photonic crystal waveguides and coupled resonant optical
waveguides
A photonic crystal waveguide (PCW) can be created by sequentially changing the
radius or dielectric constant of the dielectric rods or changing the radius of periodic air
holes in a dielectric slab; on the other hand, the coupled resonator optical waveguide
(CROW) is created by arranging the cavities, made of point defects, periodically [17, 18].
The electromagnetic (EM) wave can propagate in these channels, PCWs or CROWs, with

a very low loss even through a sharp bend [19]. Combining the point defects with the



PCWs or CROWs can be used to modulate the wave [20-22]. Lots of researches were
focused on design the structures to modulate light to realize the all optical devices such as
(1) Waveguide crossings: The perpendicular crossings in the waveguides intersection
exhibit negligible crosstalk which closes to 10% when the waveguide width is on the
order of a wavelength. The design in PC waveguide permitting single-mode waveguides
with optimal miniaturization falls as low as 10 [23]. (2) Waveguide branches: An
idea waveguide branches is a device that splits the input power into two or more output
waveguides without significant reflection or radiation losses [24, 25]. (3) Channel drop
filters: Channel dropping filters are devices that are necessary for the manipulation of
wavelength division multiplexing optical communications [26]. PCs present a unique
opportunity to investigate the possibilities of miniaturizing such a device to the scale of
the wavelength of interest.

These defect resonators in the?!CROWSsare designed such that their resonant frequency
falls within the band gap of the sutrounding 2D structure, which permits high-Q optical
modes and the coupling is due to the overlap of evanescent waves between two cavities
[17]. Therefore, the energy is strong localized in the cavities with very low group
velocity. If nonlinear media are added in the cavities, the high Q and slow light in the
CROWSs will enhance the nonlinearity of the media. Another appearing feature of the
CROW is the possibility of making lossless bends. Since the coupling of the corner
resonator to its two immediate neighbors is identical due to its rotational symmetry, the
transmission coefficient through the bend is 100% throughout the entire CROW band.
That is contract with the PCWs, 100% transmission occurs only at a particular frequency

[19].



1.3 Photonic crystal coupler

The photonic crystal coupler is formed by two adjacent PCWs with one or several
row(s) of partition rods [27, 28]. When we calculate the dispersion relation of this
structure of two identical PCWs, there would be two dispersion relation curves existed
within the band gap [29, 30]. One is odd mode and the other is even mode [29]. An
EM wave with a given frequency located on the dispersion curves is incident into one
channel (PCW) of this coupler will couple into the other channel. The coupling length,
in which the EM wave completely or maximally couples into the other waveguides for the
symmetric or asymmetric cases, is defined as m/Ak, where Ak is the wave vector mismatch
between two modes at the given frequency. The coupling length highly depends upon
the incident frequency that can be used to design the demultiplexer [30-32]. The
directional coupler can also be used to design power splitter [33], polarization splitter [34]
and add/drop filters [35]. If‘a nonlinear medium s added in the branch of the
waveguides, the switch which is centrolled by the EM wave or the external electric field

can also be fabricated by directional coupler structures [36].

1.4 Motivations

The tight binding theory (TBT) has been widely used in the CROWs to describe the
amplitude of the EM wave propagation in linear or nonlinear system. When a plane
wave is incident in these structures, the dispersion of the CROWSs can be obtained by
PWEM. The numbers of the separation rods extremely influence the sign and the slope
of dispersion relation. From the dispersion relation, we can derive the group velocity
and various orders of the group velocity dispersion (GVD) which means the difference of

the separation rods in the CROWs will also determine the sign and the magnitudes of the
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group velocity and GVD. Once, the nonlinear material is added in the waveguides
region, the dispersion relation curve of the CROW has a constant frequency shift
comparing to the curve of linear waveguides, so the linearly physical properties of the
waveguides will be preserved and the properties will influence the performance of the
nonlinear materials. Therefore, the properties of the CROWs with different separation
rods or structures should initially be investigated and the TBT provides a powerful
method for us to realize these properties.

As the defect rods are made of nonlinear materials such as Kerr media, the perturbation
superimposed on a plane wave could grow exponentially at a certain condition. It is
named as the modulation instability (MI). Because the field evolution in the PCWs with
Kerr media can be expressed as asdiscrete nonlinear Schrodinger (DNLS) equation, the
MI region and gain can be derived from this equation.| ~On the other hand, when a pulse
is incident into the waveguides with nonlinéar materials; the pulse could propagate in the
waveguides without distortion which is the so-called soliton. The criterion for soliton
propagation under slowly varying envelope approximation (SVEA) can also be derived by
the DNLS equation. Therefore, we can use this criterion to discuss the soliton
propagation regions in different structures of CROWs. When the width of the pulse
becomes shorter, the SVEA is broken. The soliton disperses under propagation due to
the high order GVD. We can take the Fourier transform of the amplitudes of the pulse to
discuss the pulse broadening caused by high order GVD under soliton propagation
condition.

In PCWs, the distance between two defect rods (a) is so close that the next
nearest-neighbor coupling is no longer negligible. Under this circumstance, the

evolution equation to describe the wave propagation in the PCWs with nonlinear material



should be written as an extended formula. In general, the next nearest-neighbor coupling
coefficient is approximately one order smaller than the nearest-neighbor coupling
coefficient, such making the properties in the PCWs is different from the properties in the
CROWs especially when ka = w/2.  Therefore, it is needed to take advanced discussion
on the MI and soliton propagation in the PCWs.

When the other identical waveguide is carved into PCs and partitioned with one or
several rows of perfect rod(s), another useful device, the directional coupler (DC), is
created. The dispersion relation curve of the coupler is usually crossing with triangular
lattice but rare crossing in the square lattice. This phenomenon gives some limitation as
designing the device. Therefore, we want to create the crossing point in the square
lattice and then to move the crossing point at square-attice or triangular lattice which be
achieved by moving the defect.rods 'in the ‘waveguides. We also want to use TBT to
further realize the trend of shift of the crossing point as moving the defect rods.

On the other hand, when the other,waveguide is ¢reated asymmetrically, the dispersion
relation calculated by PWEM would not cross anymore, but the parity of the eigen mode
may switch at a particular point, in which point we named it the decoupling point. At
this point, the electric field is only localized at one waveguide of this asymmetric coupler.
These phenomena cannot give a good explanation by the numerical simulation results.
Therefore, we also want to use TBT to derive an analytic description to realize the

physical properties of asymmetric PC couplers.

1.5 Organization of the dissertation
In this dissertation, we firstly use TBT to derive the electric field evolution equation in

single PCWs and CROWSs with or without the nonlinear media in Chapter two. The



coupling equations of double PCWs and the properties are also discussed in this chapter.
By using the derived equation, we discuss the MI when the Kerr media are added in the
PCWs or CROWs in Chapter 3. In the Chapter 4, the soliton propagation criterion and
pulse broadening at this criterion is discussed. We found the soliton propagation regions
agree with those of the MI. In Chapter 5, we investigate the mechanism which causes
the movement of the crossing point of the dispersion relation curves by TBT. In Chapter
6, the coupling equations of asymmetric PC coupler are derived to discuss mode

switching phenomena and the simulation results by the PWEM.



Chapter 2 Tight binding theory

2.1 Photonic crystal waveguides and coupled resonant optical
waveguides

We consider an optical waveguide which consists of a periodic sequence of identical
single-mode defects in the PC with lattice constant a; as shown in Fig. 1. The distance

between successive defect points or cavities is @. Assuming the isolated point defect is a
single mode with eigenfrequency of wo and electric field distribution in triangular and

square lattices as shown in Fig. 2, we can express the electric and magnetic fields of each
point defect as E(r,7) = Eg(r)exp(-iwot) and H(r,£) = Ho(rexp(-iwot). Let us assume that

the presence of the other defects near’a particular site perturbs the total permittivity from
g(r) to &(r). The fields in the “waveguide E'(r,)=E(r,H)e™" and
H'(r,r) = Hy(r,t)e”™" should obey the equations: Vx E{ = 1, (io,H; —0H{ /) and
VxH'=¢'(im,E; — OE| /0t) .

Using the divergence theory of V-(E,xH,+E,xH,), we can get the Lorentz

reciprocity relation [37]:

[ds(Ey xH, +E, xH}) = [ dv(io,AsE; -E, - ¢'E, - 0E, /0t — i, Hy -0H, /0r) - (2.1)

with Ag=ge-¢’.  The electric field Eg(r,f) and magnetic field H(r,z) of the
waveguide can be expressed as a superposition of the bound states, i.e.,
E\(r.t)=%b, (H)E,, and Hé(l’,t)=zb,;(t)H0m , where E,, =E,(r-ma) and

H,,, =H,(r—ma). Substituting these equations into Eq. (1) and letting



b, (1) =B, (t)e™™ , we obtain

CZ” +(-w, + B)b, + Y P, (b,,, +b,.,)=0. 2.2)

i

Here the coupling coefficient P, is defined as

, H dvAsE,, -E,

= AR 2.3
" i dvtaali, 23

")

2 +e|E0n

Py is a small shift arising from the presence of the neighboring defects. When we
consider a plane wave with wave vector k and frequency @ is incident into this waveguide,

the dispersion of the waveguide becomes

0000000000000
eelo 00000000000

w(ka) = w,— P, -2 P, cos(ka). (2.4)
(a) (b) ()
000000 0000000 0000000
©0 000000000000 0000000
. SFNEPN Lo @ e i@ ev e o

Fig. 1 The structures of (a) a PCW, (b) a CROW with one separation rod and (¢) a CROW with
two separation rods, where a is the length of successive defect points and a; is the lattice constant
ofa PC.
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Fig. 2 The electric field distribution (E,) of a point defect in square lattice for (a) f= 0.364 c/a,
with reduce rod ( rg= 0.05a;) defect and'(b) f = 0.333 ¢/a_with r;=0.1a;. (c) (d) The electric field
distribution of the blue dash line in (&) (b). .

2.2 The properties of coupling coefficie_nts inPCWs and CROWSs

The electric field distribution iEZ) of a single -point- defect, simulated by the PWEM in
the square lattice and triangular lattice with the dielectric constant and radii of dielectric
rods being 12, 0.2a; is shown in Fig. 2. The radius (r4) of the defect rods and eigen
frequency in square lattice are 0.05a and 0.364 c/a;; those in triangular lattice are 0.1a;
and 0.333 c/a;. The field profile along the (blue) dash line in Fig. 2(c) and (d) has the
opposite sign when extending to odd nearest-neighbor rod(s) (Eo(0,0)*Ey(xa,0) < 0, x =
1,3,5,...) and has identical sign when extending to even nearest-neighbor rods [18, 38].
To maintain a single mode propagating in the waveguides, the radius or the refraction
index of the rods in the waveguides is reduced therefore A¢ is negative in the following
discussion. Since the electric field is mainly localized around the dielectric rods of the

waveguides, we can use the maximum values to replace the integral values for a simple
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estimation of Eq. (2.3). Therefore, P; is positive in even-separated-rod CROWSs, in
which E(0,0)*Ey(xa,0) <0, x = 1,3; P; is negative in odd-separated-rod CROWs; | P, | is
two orders smaller than | P; | so P, is negligible for considering the dispersion relation.
In the PCWs, P; and P; are positive and P, and P, are negative; P; is two orders of
magnitude smaller than P;, and thus only P; and P;need to take into consideration when
calculating the dispersion relation. From the dispersion relation in Eq. (2.4), the
frequency increases as k increases in PCWs and CROWSs with even separation rods where
P; is positive, but the frequency decreases as k increases in the CROWs with odd

separation rods.

2.3 Discrete nonlinear Schrodinger equation
If a Kerr medium (l’l2 = n; + 213 |E|2 ) is added around the defects, Eq. (2.2) can be
written as a DNLS equation [37]:
.db >
zd—t"+ (—w, + P+ DR (b,,, +b, )+ 7|b,| b, =0. (2.5)

The self phase modulation (SPM) strength is

4

/o 2n,n,&,m, ”j dU|E0n
[[] dvtu,|H,,

2.6
N (2.6)

: +8|E0n

with n, being the Kerr coefficient. Let the plane wave with amplitude ¢, propagation
wave vector &, and frequency @ in site n as b, = gexp(inka-iwt) being the solution of Eq.
(2.5). The dispersion relation of the nonlinear PCW can be derived as

o(ka) = o, —c,—2c, cos(ka)—2c, cos(2ka)—y |pP=a'—y |P|*. 2.7
Here, ®’ is the dispersion relation of linear waveguides. The SPM will make the

dispersion relation a constant frequency shift in all wave vectors. The positive Kerr
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coefficient leads a low frequency shift and vice versa.
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Fig. 3 Geometric structures of the photonic crystal waveguide couplers of (a) square lattice and (b)

triangular lattice with the lattice constant a. Ps and Qs are the coupling coefficients between

defects within a single waveguide. &, and S are the coupling coefficients between waveguides.

2.4 Coupling equations in a_syr'hmetric ph.ot'qr]ic-crystal coupler

We consider an asymmetric cdupled PC{;ﬁs :fn,é PC 'w.igh the lattice constant a, in which
a = ay, are formed by two rows of perlodlc defect rods partltloned by a perfect row of rods,
shown as PCW1 and PCW2 in Flg 3 for the square and the triangular lattices,
respectively. The field distribution of the eigehmode of an isolated (point) defect in each
PCW can be written as the product of time-varying and spatial-varying functions, i.e.,
Ei(r,t) = uy(H)Ejp(r) in PCWI and Ejyo(r,t) = vo(£)Ex(r) in PCW2, where
uo(t)=U"exp(-iw;t) and vo(¢)= V’exp(-iawst), with U’ and V'’ being the constant amplitudes
of electric fields and w; and w; the frequencies of localized modes of the point defect in
each PCW.

Under the TBT, the evolution equation of the isolated PCW1 can be written as

l%un = (a)l _PO )un - z Pm(uner +un7m) (28)
m=1
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and P, =P.', where P! is the coupling coefficient between the site n of the ith PCW
and the site n+m of the jth PCW, and is defined as

i O [© avAe(NE,, -E ., 2.9)
! J.jooodv[ﬂ0|Hin|2+g|Ein|2]

Let & and @ be the wavevector and its corresponding eigenfrequency of PCWI,

respectively, we obtain the dispersion relation of PCW1:

(k)= — By — > 2P, cos(mka). (2.10)

m=1
Similarly, the evolution equation and dispersion relation of the isolated PCW2 are shown

below:
.0
lavn :(a)Z _QO)Vn = ZQm(Vn+m +vn—m)’ (211)
m=t

@, (k) = @y, — 0y — 20, cos(mka), (2.12)
m=1

where 0, =C?*, v,(t) and @, are the fime-varying function and the eigenfrequency of

the isolated PCW2, respectively.

Due to the field distributions of defect modes being not strongly localized around
defects, we shall consider the coupling effect of two asymmetric PCWs up to the second
nearest-neighboring defects, with coupling coefficient a=Cy=C]
and p=ci=c? shown in Fig. 3 for the square and the triangular lattices, respectively.

The coupled equations of asymmetric PCWs are given by [39, 40]:

i%un (@ = Bty — 3 Pyt + ity )~y — B 1), 2.13)
m=1
.0
lavn - (602 B QO )Vn B Z Qm (er-m + Vn—m) —ou, — ﬂ(un-#l + un—l)' (2 14)
m=1
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When the stationary solutions of coupled Egs. (2.13) and (2.14) are taken as u,= Uy
exp(ikna-iat) and v, = Vyexp(ikna-io t), we obtain the characteristic equations of the
coupler:

(0-a) Uy + gka) Vy =0, (2.15)

(0—a,) Vy+g(ka) Uy =0, (2.16)

U
where g(ka)=a +2pBCos(ka) and { VO

} stands for the eigenvector or field amplitudes in
0

two PCWs. The eigenfrequencies (dispersion relations) and eigenvectors (field

amplitudes) of Egs. (2.15) and (2.16) are

(@ + @)

wt (k) = + A2 + (g(ka))?, (2.17)
2=y O == VA;;;? (ka)” (2.18)

where A=(w,-@))/2 and y*.are the amplitude ratios corresponding to frequencies
o*(k). Note that y*y~ =-1 15 due to-the orthogonality of these two eigenmodes at a
given wave vector k. At a given frequency, y*g:"is not necessarily equal to -1. In
symmetric waveguides, @, = @, Eqs. (2.17) and (2.18) will become [41]
w* (k) = @, + g(ka), (2.19)
2=V, /1Uy)* ==1. (2.20)
The existence of g(ka) makes the eigenstates of the coupler be the linear combination of
eigenstates of the single waveguides, leading the EM wave coupled from one waveguide
from another. When g = 0, the waveguides will be no longer coupled to each other that
means the coupling length is infinite.
In this chapter, we used TBT to derive the coupling equations to describe the electric
field propagation in nonlinear or linear single waveguides and linear symmetric or

asymmetric PC couplers. In the following chapters, these equations will be used to
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further discuss pulse propagation in the PCWs and CROWs with nonlinear media and the

EM wave coupling between two waveguides.
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Chapter 3 Modulation instability in a single PCW and CROW

3.1 Introduction

A pulse experiences serious dispersion in the PCWs and CROWs [42, 43]; therefore, it
would hardly propagate within the waveguides without broadening. There are two ideas
to improve the situation of allowing the pulse propagation in the waveguides without
broadening. The first method is to design a proper structure to create a linear dispersion
curve in the range of operating frequency to provide dispersionless propagation; the other
method is to add nonlinear Kerr media to provide soliton propagation [37, 44-46].

However, in the latter case, the criteria of forming a soliton is that the wavevector of
the incident wave must be located within,thé ' modulation instability (MI) regions [46-48],
where the MI refers to a process in which a small perturbation upon a uniform intensity
beam would grow exponentially.{49].  This'phenomenon, which is commonly observed

in nonlinear optical fibers [50], will alsooccur.in‘the nonlinear PCWs and CROWs.

3.2 Modulation instability gain

In Section 2.3, we have derived the DNLS equation to describe the EM wave
propagating in PCW or CROWSs. Now, considering a small perturbation vy(t)
superimposed on a plane wave with wave vector and frequency being p and ®, shown as
[49]

b, =(¢+v,(t))e P, (3.1)

we can substitute Eq. (3.1) into Eq. (2.5) in which the 1% and the o nearest-neighbor

coupling coefficients are considered to get
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dv,

i—*+FBv,er+v, e —2cos(pa)v,)+

dt 2 (3.2)
1)2 (vn+261pa + vn—Zeiipa - 2 Cos(zpa)vn) + 7|¢| (Vn + V:) = 0
Taking vy (t) as this form [49]
Vn (t) — (Vleiqna + Vz*e—iqna )e—iQt s (3 3)

where ¢ and o are the wavevector and frequency of the modulation perturbation, V; and
V, represent small perturbation with perturbation wavevectors of q and — q, and

substituting v,(2) into Eq. (3.2), we obtained the dispersion relation of the perturbation:
Q(p,q) = B\ AA-7|4[) (3:4)
with
A= 4P, cos(pa)sin”’ (q_2a) +4P, cos(2 pa)sin®(qa) (3.5)
and
B = 2P sin( pa)cos(ga) + 2P, sin(2 pa)cos(2qa) . (3.6)

If the dispersion relation £2(p.q) is ‘complex-asA(4 - y|¢]°) < 0, the perturbation field
would become unstable. The intensity growing rate G of MI, also called the MI gain, is

related to the imaginary part of 2 (p, ¢q) by

G(p,q)=2*Im(2 (p, q)) = Re(2-‘A(y|¢|2—A)E):2~Re\/—(A—O.57|¢|2)2+0.2572|¢|4. (3.7)

3.3 Gain regions and profiles analysis

Because of P, = 0 for the CROWSs, the coefficient 4 can be rewritten as
A=4P cos(pa)sin®(ga/2) , in which the sign of 4 is determined only by pa and it changes

sign at pa = m/2. Here the region of pa (or ga) is defined between 0 and n.  For positive

(negative) 4, y must also be positive (negative) and y|¢|°> 4> 0 (y|¢|°< 4 < 0) to support
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MI, which can be easily derived from Eq. (3.7); in other words, P;cos(pa)y must be
positive in MI region. Therefore, the boundary of MI must be located at pa = n/2. In
odd-separation-rod CROWSs, P; is negative, therefore 4 and y must be both negative when
0 < pa < /2 and positive as pa > /2. However, in even-separation-rod CROWSs, P; is
positive, therefore 4 and y must be both positive when 0 < pa < /2 and negative as pa
> m/2, shown in Table 1. When the structure of the waveguide (P;) has been chosen, |4]
increases if ¢ increases at constant P; and p. When we plot the gain profile as the graph
of G vs. g at a given p and define the gain maximum as the maximal values in the graph,

from Eq. (3.7), the gain maximum would be located at 4 = 0.5y|¢4|° and cut off at 4 = y| 4|’

when 4| P, cos(pa)[>0.5| 7 ||¢[ ; otherwise, the gain maximum would be located at ga = .

Table 1 MI regions of CROWs

Separation rods Sign of P; Sign of nx(y) MI regions (pa)
> /2
Odd — is -
— <m/2
<m/2
Even -+ - &
— >n/2

In negative (positive) P; for an odd-separation-rod (even-separation-rod) case, the
slope of dispersion relation is negative (positive) [51] and the frequency dispersion 3,
defined as d’w/dk” is negative (positive) when pa < 7/2 and positive (negative) for pa >
n/2 from Eq. (2.4). Therefore, for negative 3, (pa < m/2 for the odd-separation-rod case
and pa > /2 for the even-separation-rod case), the negative y is needed to support MI and
positive y is needed to support MI for positive 3,. In other words, the MI regions of the

CROWs in pa can also be decided by simply considering the parameters of 3, and y.
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In PCWs, P;is positive and P,, which cannot be neglected, is negative. First, we

consider the positive Kerr media having positive n, (or y) so the criterion of the MI is y| @[’
> A4 > 0. From the criterion of A4 =4F cos(pa) sin’ (qa/2)+4P cos(2pa) sin’ (ga) >0,

since P, is an order of magnitude smaller than P;, this criterion can be further reduced to
cos(pa) > -4| P,/ P;| cos*(qa/2). Under this circumstance, the MI region is determined
not only by pa but also by ga, and pa in the MI region can exceed 7/2, unlike in CROWs
that the MI boundary for pa is located at w/2 and is independent of ga. From the other
criterion:  y|¢|° > 4, we found A is dominated by the P; term as pa is located away from
7/2, in this case the MI gain is similar to that in the CROWs with even separation rods.
Contrarily, when pa approaches to m/2; therP; term is almost zero and A4 becomes
dominated by the P, term. In this case, 4'would not.increase as increasing ga. From
Eq. (3.7), we knew that the maximum of the gain profile, G(q), is located at 4 = 0.5y|¢|’
or dA/dq = 0. For the latter case, the peak gain'would be smaller than that of the former
condition. When 4P; cos(2pa) < 0.5p|@}’; there' would be two gain maxima at a fixed pa
and the gain maxima is located at 4 = 0.5y|¢|°, but there would be only one gain
maximum located at d4/dg = 0 as 4P cos(2pa) < 0.5y|¢|’.

On the other hand, in the condition of negative v, the first criterion is cos(pa) < -4 | P,
/ Py| cos*(ga/2). We found the MI would happen only when pa > n/a. However, when
0 > cos(pa) > -4|P,/P/|, the MI region is located at the higher ¢ rather than the general
case in which the perturbation would have gain at ga = 0". The cutoff gain is also

decided by 4 =y|d|".

3.4 Simulation results
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We consider a square lattice PC with the dielectric constant and radii of the dielectric
rods being 12 and 0.2a;, where q;, is the lattice constant of the PCs. The radii (7,) of the
defect rods are reduced to be 0.05a; and the Kerr media are introduced around the defects
between one separation rod to create the CROW and sequentially to create the PCW.
The structures and dispersion relations of the CROW and PCW in TM polarization (the

electric field parallels the rod axis) without Kerr media are shown in Fig. 4, which are

simulated by the PWEM.
(a)
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Fig. 4 The dispersion relations of (a)’a CROW with ong‘separation rod and (b) a PCW in square

lattices, which are simulated by the plane/wave€xpansion method. The dash red lines are the

edges of the band gaps.
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Fig. 5 (a) The values of A and (b) the gains and regions of the MI of the CROW with #¢[>=0.01
(27 c/ay).
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First, the properties of the MI in the CROW would be discussed. The coupling
coefficient P; is -0.00841 (2nc/ar), where c is the speed of light in the vacuum. Because

P; is negative, the eigenfrequencies will decrease as increasing k. Figure 5(a) shows 4

vs. ga with different p. Let A’= y|¢y|°—A4 so that G =244’ . As aforementioned, the

MI region is determined by the condition that A lies between 0 and y|¢|° and the
maximum of G appears when A equals (or is the closest) to 0.5y|¢|°. Figure 5(b) shows
G(p,a) with y|¢’=0.01 (2nc/a;). It can be seen that there is no MI gain when pa < 0.5
and only a single gain maximum at given pa in the condition of pa > 0.576r.

In PCWs, the coupling coefficients of P; and P, are 0.039 and -0.0047(2nc/a), and ®o-
Py is 0.3632 (2nc/a). The values of 4,atia given pa were shown in Fig. 6(a). When pa
is small, i.e., in [0, 0.47], 4 is dominated by P;.term and A increases as ga increases.
Due to P; is positive, the properties of MI would be similar to the CROWs with even
separation rods that possesses a single gainmaximumas the solid curve in Fig. 7(a) for pa
= 0.4n. However, as pa is in (0.4x,0.67],4 is not simple increasing or decreasing
function of ga, shown in Fig. 6(b). At a given pa with positive Kerr media (y > 0), when
the values of A(q) is always smaller than 0.5y|¢|°, e.g., y|¢|°= 0.01 (2nc/a) and pa = 0.6m,
there would be a maximal gain as the solid curve in Fig. 7(d). However, when A(q) is
larger than 0.5y|¢|°, e.g., 7|#|’=0.01 (2nc/a) and pa = 0.497 and 0.55m, there would have 2
gain maxima, solid curves shown in Figs. 7(b) and (c). And the MI region with positive
y can extend to pa = 0.6m, as shown in Fig. 6(c). On the other hand, the MI region with
negative Kerr media is shown in Fig. 6(d) which is located within /2 < pa < n but having

the MI region located at high ga as pa close to m/2.
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Fig. 6 (a) (b)The values of A in the PCW... The region“and gains of MI with (c) positive Kerr
media (7|4 [*=0.01*2nc/a) and (d) negative Kerr media (¢ [*=-0.01*27¢/a).

Next, we would use the 4™ order Runge-Kutta method to simulate the evolution of the
perturbation. A plane wave with 10% initial sinusoidal perturbation is used as the input
source in a square-array PCW with y|¢|° = 0.01 (2rnc/a). The perturbation will grow
exponentially in the MI region to become a discrete soliton before it splits, as shown in
Fig. 8(a), but the perturbation would never grow outside the MI region Fig. 8(b). We
plot the gain coefficients with square dots in Fig. 7 by evaluating the growing rate by the
Runge-Kutta method then compare with gain profiles (solid curves) calculated by using

Eq. (3.7). The results show a quite good agreement.
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Fig. 8 The evolution of the perturbation in the PCW with (a) pa=0.4n and qa=0.17 (b) pa=0.6n
and qa=0.17.

3.5 Summary

We have successfully used the TBT to investigate the MI in both CROWs and PCWs
by considering growth of a small perturbation superimposed on a plane wave. The
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number of separation rods in the CROWs would decide the signs of the nearest-neighbor
coupling coefficients (P;) and the next nearest-neighbor coefficient (P,) can be neglected
because it is more than 2 orders of magnitude smaller than P;. This leads to positive
dispersion for a positive coupling coefficient and vice versa. Although the signs of the
coupling coefficient could be different, the criterion: P;cos(pa)y > 0 for obtaining MI is
the same for incident plane wave of wave vector p. Therefore, the MI region can only be
located in either pa < m/2 or pa > n/2 with only one gain maximum. In the air-defect
PCWs, P, is positive and P,, which is no longer negligible, is negative. It makes the MI
gain of positive Kerr media located at low wavevectors and vice versus. The boundary of
gain region of pa is not exactly at n/2 due to the MI is mainly dominated by P, term as pa
approaches m/2 and there could exist two gain maxima. Furthermore, the numerical
simulation using the 4™ ordet’ Runge-Kutta .method- reveals exponentially growing
perturbation intensity as it propagates -and the- growing rate matches with the gain
coefficient of MI in the analytic solution.

In next chapter, a pulse will be incident into the waveguide within or without the MI
region to understand if a soliton can exist in the MI region. At the same time, the soliton
propagation criterion will also be derived to observe the soliton propagation under this

criterion.
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Chapter 4 Soliton propagation in a single PCW and CROW

The amplitude evolution of the electric field in the nonlinear CROWSs containing Kerr
media often leads to DNLS equation derived by the TBT [37, 51-53] and Section 2-3.
By solving the DNLS equation under long-wavelength approximation, this equation
reduces to a nonlinear Schrodinger (NLS) equation.  Spatiotemporal discrete solitons can
propagate undistorted along the defects by balancing the effects of discrete lattice
dispersion with material nonlinearity [37]. However, as the pulse becomes narrow, the
long-wavelength approximation will be broken and high order dispersions should be
considered [53]. Therefore, the morg sgeneralized criteria for solitons propagation in
different structures of CROWs [§1], e.g., different numbers of separation rods between
two cavities or different pulse widths, shouldbe derived. Moreover, in the PCWs, the
defect rods are so close that the next nearest-neighbor coupling cannot be neglected [41].
The governed equation of motion is‘tetmed the €xtended discrete nonlinear Schrodinger
(EDNLS) equation to distinguish the equations in CROWSs in which only the
nearest-neighbor coupling coefficient is considered. There are rare reports on pulse
propagation in nonlinear PCWs using the TBT but the Green-function approach[44, 45].
Although the equations obtained from these two approaches are quite similar [54], it still
lacks on the research about the dynamic or criteria of soliton propagation in the PCWs.
Therefore, it is needed to take the advanced discussion about criteria of solitons
propagation of different kinds of CROWs or PCWs, and to derive the EDNLS evolution
equation for describing the dynamic properties of solitons with different nonlinear

strengths and pulse widths.

25



4.1 Soliton propagation criteria

In order to get the soliton solution and to give the advanced analysis of high-order

dispersion as pulse propagating, we let x = na and b, = ge!®™“".  Taking the Taylor’

expansion of ¢ [53]
a" o"¢
p(x+a)= ¢+Z o 4.1)
Eq. (2.5) can be written as a NLS equation:
8
Dy Erp terierg-o (42)
The dispersion coefficients, f,, equal to &"w(k)/ok" or
Bony =227 (=1)V1D. m*"'P, sin(mka), (4.3)
m=1
B, =287 (=)%Y m "R cos(mka). (4.4)
m=i

Therefore, the angular frequency-of the waveguides can also be expressed as the Taylor’

expansion sum of dispersion coefficients, i.e.,
o(k) =@, + BAK + B,(AK)* / 2+ B,(AK) /31+ -+, (4.5)

where f; is the group velocity (v,) of the solitons in these waveguides if the high-order

terms is neglected. When the variation of the pulse amplitude is smooth enough, i.e.,

B.(AK)"/nl=0 or B, 2 ? ~0 forn>2, Eq. (4.2) has a soliton solution as
X

b = ¢ sech(——— X’B Ye!(kx-at), (4.6)

0
The criterion to support a soliton propagation is thus yd; = B,/ X, or
y$>=2a’ (P, cos(ka) + 4P, cos(2ka) + 9P, cos(3ka) +---) / X;. 4.7

From Eq. (4.6), the dispersion relation of the soliton is the same as a plane wave incident
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into the nonlinear waveguides. The relationship between xy and ¢ is determined by £

and y (n, or ).  The sign of 3 and ymust be the same to support a soliton
propagation and SPM strength () is B, /(X ¢°).

In the CROWs, P, is two orders of magnitude smaller than P;, so P, can be neglected

in considering £ and the soliton propagation criterion (SPC) in Eq. (4.7) can be further

reduced to X;/a’=2P, cos(ka)/(y¢>). In even separated rods, P; is positive so y

should be positive at the SPC when ka < m/2 and y should be negative as ka > m/2;
however, in odd separated rod(s), P; is negative so y should be negative (positive) at the
SPC when ka <n/2 (ka > w /2), which correspond to the MI in these nonlinear waveguides
[38] and the Kerr media should switeh their signs ' when ka crosses /2. In PCWs, P; is
positive and P; is negative with its value being an order'of magnitude smaller than P; [23].
Therefore, positive Kerr media should be put in the waveguides as a low wave vector or
low frequency EM wave is incidént, and vice versa.. \When the coupling coefficients P,
(n > 2) are neglected for a simply estimation, Eq. (4.7) can be written as cos(ka) = -4 | P>/
P;| if y = 0. Therefore, the border of switching sign of Kerr medium for soliton
propagation in PCWs occurs at ka > w/2. However, if the dielectric defect is used, in
which Ag > 0, the signs of P’s should be changed and the type of Kerr media would also

be changed accordingly.

4.2 Pulse broadening due to the high-order effect

To estimate the influence of high-order dispersion which makes the pulse broadening,

and the width of the soliton pulse that can make the high-order term negligible, we took
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the Fourier transform of the soliton solution, sech(x/xy), and calculated the standard
deviation of k£ ’s distribution as Ak = 1/xy. Taking derivative of Eq. (4.5) with respect to £,

the group velocity can be expressed as
0w/ ok = B, + B,(AK) + B,(AK)* / 21+ B,(AK)’ / 31+, (4.8)

When the dispersion of f is balanced by the SPM and xy > a, the pulse broaden will
mainly dominated by the lowest nonzero dispersion coefficients, f,, having n > 2. As
the GVD arises from f; is determined by 0.58Ak* and is proportional to (1/xp)>. The
dispersion can be neglected when 0.55;Ak* ~ 0. At a particular frequency in which £ =

0, Eq. (4.5) can be rewritten as
@ = o, + BAK + BiAK) 121+ (B, / B,)AK’ /6))+---. (4.9)

From the dispersion relation in"Eq. (2.7);|the signs of £, and f; are opposite in all
propagation frequency of the CROWSs and in-mostly propagation frequency of the PCWs.
Therefore, the term of (1+4,/ 5 Ak*/6) will be smaller than or equal to 1. We should
reduce the SPM strength (j;) to prevent overall SPM strength from making the pulse
narrowing, especially when the pulse width is short for large £, and small (or zero) f; at
ka approaches 0 or 1. However, when the pulse is seriously dispersed in the waveguide,
it is no longer having the form of hyperbolic secant (HS), the dispersion would be

dominated by the £, term again.

4.3 Simulation results and discussion

We consider triangular-lattice PCs with the dielectric constant and radius of the
dielectric rods being 12 and 0.2a;. The radius (7;) of the defect rods is reduced to 0.1a,
and the Kerr media are introduced in the defects between one separation rod to create the
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CROW and sequentially to create the PCW as shown in Figs. 9(a) and (b). The
dispersion curves, which were simulated by the PWEM, and dispersion coefficients (/3,)
of the CROW and PCW in TM polarization without Kerr media are shown in Figs. 9(c)
and (d). The coupling coefficient of P, is -0.00652 (2nc/a) in the CROWs and P,, P;

and P; are 0.02041, -0.00205 and 0.00026 (2nc/a) in the PCWs.
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Fig. 9 (a) The structure of a CROW with a separation rod and (b) of a PCW in triangular lattice.
The dispersion relations and dispersion coefficients of (¢) a CROW with one separation rod and

(d) a PCW in triangular lattices calculated by the plane wave expansion method.

Due to the magnitude of the coupling coefficients in the CROW is smaller than those
in the PCW, the magnitude of the group velocity (f;) and the higher dispersion
coefficients (f,34) in CROWs would be smaller than in PCWs. However, because the
signs of P; s are different so that the EM waves in these two structures will propagate in

the opposite directions. The neglected P, term in CROWs makes =~ 0 and the values
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of f; is almost symmetric at ka = n/2, leading to soliton propagations at k£ and 1-k (in m/a
unit) would be similar if different signs of Kerr media were introduced in the defects.
However, it would behave quite differently in the PCWs. The border of switching sign
of Kerr medium for soliton propagation occurs at ka > n/2, and the high-order dispersion
coefficients (fs,/3) in high k is larger than those in low k due to the negligible 2™ and 3™
next-neighbor coupling coefficients.

We will use the 4™ order Runge-Kutta method to solve Eq. (2.5) to simulate an initial
HS pulse propagating in the PCW and CROWs, because the HS pulse is a soliton solution.
The advantage of using this method is to directly solve Eq. (2.5) without the requirement
of calculating the dispersion coefficients. However, when the split-step Fourier method
[53, 55] is used to solve Eq. (4.2),all orders of the dispersion coefficients are required to
take into consideration for short.pulse. - On the other hand, if a Gaussian pulse is incident
into the nonlinear waveguides with the same energy of the HS pulse at the SPC with small
high-order GVD, the Gaussian pulse will initially develop into HS envelope, then finally
the pulse becomes broadened due to the high-order dispersions that behaves like initially

launching the HS pulse into the nonlinear waveguides.

4.3.1 Soliton propagation in the coupled resonant optical waveguides

To observe the pulse broadening without Kerr media or under the SPC, where
y.=2c,a’ cos(ka)/(¢*x;) in the CROWs with one separation rod and y (n>) is positive

as ka > m/ 2, we sent a hyperbolic-secant (HS) wave, i.c., ¢sech(x/xy)e™ with xo= 2a
into the CROWs and let it propagate 400a/c in different £’s as shown in Fig. 10. It can

be seen that the pulse would spread seriously without Kerr medium but spread slightly or
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even preserve at the SPC. Because /% = 0 at ka = 0.5m, the pulse would not spread even
without Kerr medium, whereas, the dispersive waves were observed at the farther distance
wing with the larger x in Fig. 10(a) due to the higher order dispersion B, with n > 2.
From Fig. 9(a) we noticed that /% monotonically increases, without Kerr medium the pulse
becomes broader as increasing £ as shown in Fig. 10(a) and it is the broadest at ka = m.
At the SPC, however, /% can be balanced by the SPM and thus the pulse is basically
preserving the same shape without broadening except for the larger f; as ka approaches
0.5 m. Because f3=0at ka = 0 or m, it makes soliton propagation almost with no
dispersive waves and the pulse disperse symmetrically in the waveguides even containing

no Kerr media.
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Fig. 10 The hyperbolic-secant (HS) pulse (xo= 2a) propagates in the CROWs of different wave
vectors at ¢ = 400a/c (a) without Kerr medium and (b) at the soliton propagation criterion by using

the 4™ order Runge-Kutta method. The black solid line in (a) is the incident pulse.

4.3.2 Soliton propagation in the photonic crystal waveguides

In the PCWs, in order to further evaluate the degree of the pulse broadening arising
from high-order dispersions, we define the broadening factor (BF) as o/cy, where o is the
root-mean-square energy of output pulse and oy is that of the input pulse. From the BF
of PCWs at different propagating time (T) for ka = 0.6 and 0.757w as shown in Fig. 11 (a),

the BF is proportional to 1+7” as the BF is small, but it is proportional to 1+7 when BF
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>> 1, which corresponds to the Gaussian pulse propagating in the PCWs [55]. The BF
(ka = 0.75m) > BF (0.6m) initially, but becoming reversely with BF (0.6t) > BF (0.75n)
after the pulse propagates a span of 60 a/c for xp=2a. This is because the BF is mainly
dominated by f; at the SPC but dominated by £ after having been severely distorted by
f;. However, when ka = 0.97 and x( = 2a, the BF would become smaller, which means
that the pulse width becomes narrower and its peak electric field becomes higher. It is
due to the opposite signs of 3, and £ make SPM at y= y too strong, especially when S is
much larger than £ and £ = 0 with small xy. At y= 0.9%, the pulse width would
become less broadening and neither further narrowing as time passes as shown in Fig.
11(b). Once the pulse width becomes wider, the high-order dispersions become

negligible. The overall self phase:modulation at 7= should not be apparent.

Broadening factor

0 50 100 150 200 0 100 200 300 400
T (alc) T (alc)

Fig. 11(a) The broadening factor of ka = 0.6m, 0.75%, and 0.9 and x( = 2a and 4a of the HS
envelope at the SPC and (b) the broadening factor of y= 0.9y, and 1y, at ka = 0.9 and x,= 2a.

The broadening mechanism and the formula to define the SPCs in CROWs and PCWs
are similar but the condition (¥ or k) to support the SPC is quite different due to the
difference of the coupling coefficients. Once when the coupling coefficients are

obtained by the PWEM, the pulse broadening and the SPC can be well analyzed by the

32



derived equations. The simulation results obtained from the 4™ order Runge-Kutta

method agree well with our analyses in both the CROWs and PCWs.

4.4 Summary

The soliton propagation in the CROWs and the PCWs containing optical Kerr media
was studied using the tight-binding theory. By considering the coupling between the
defects, we derived an extended discrete nonlinear Schrodinger equation to describe the
wave propagation in these nonlinear waveguides. By solving this equation, we obtained
the criterion which supports the soliton propagation if the dispersion more than three
orders can be neglected or the dispersion can be highly depressed at the criterion if the
high order dispersions cannot be+neglected. In CROWs, the different kinds of Kerr
media (positive or negative Kerr coefficients) should be added if the wave vector of the
propagation wave (before or after /2a) or-separated rods (odd or even) are different but
the signs of the second order dispersion coefficients*of the waveguides and three-order
susceptibility of the Kerr media must be identical. Due to the coupling coefficients in the
PCW are larger than that in the CROW, the group velocity and the dispersion should also
be larger in the PCWs, making SPM stronger to support solitons propagation in the PCWs.
When the pulse width is long enough, only the first nonzero £, with n> 2 should be taken
into consideration for pulse broadening but as the pulse width becomes shorter, the
high-order dispersions become more significant to make the SPM smaller than the criteria
when f; approaches zero.

In Chapters 3 and 4, we have discussed the pulse propagation in the single PCW and
CROW. In the next chapter, another identical waveguide will be carved into the PC with

one or several partition rods to investigate the wave coupling between two waveguides.
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Chapter 5 Tuning the decoupling point of a photonic-crystal

directional coupler

There are two dispersion curves with one even mode and one odd mode in a symmetric
directional coupler (DC). The field amplitude of EM wave propagating along the DC
can be expressed as the linear combination of these eigenmodes and the coupling length
of a DC is defined as n/Ak, where Ak is the wave vector mismatch of these eigenmodes
[41]. In a triangular lattice PCs made of dielectric rods in the air, the dispersion curves
of a DC will cross at a particular wave vector. At this crossing point, named as the
decoupling point, the coupling length.becomes infinite so that the EM wave incident from
one PCW will never be coupled into the other;,PCW. In a square lattice of PCs, however,
only the DC made of removed.-rods or reduced rods with small radii of dielectric will
make dispersion curves crossed “at:thewave vector near the Brilluoin-zone boundary.
Using the infinite coupling length for”one wavelength and a finite coupling length for
another, we have designed a miniature bidirectional coupler [30, 31], in which knowing
the crossing point and coupling length in advance is an important issue. Here, we
propose using the TBT to control these two parameters and derive the design rules for DC

[56].

5.1 Theory analysis
We consider a TM-polarization wave propagating in a PCW, which consists of one row

of reduced rods in a square (triangular) lattice of dielectric rods in air with lattice constant
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a, shown in Fig. 12(a). By applying TBT to these cases which is derived in Section 2.1,

we can express the amplitude (u,) of the electric field in the site n as [57]
.0 _
laun :(a)l_E))un_zpm(un+m+un—m)’ (51)
m=1
where @ is the eigenfrequency of a single point defect, P represents a small shift to the

eigenfrequency ¢, due to the dielectric perturbation of the neighboring defects to the

point defect at site n, and P,, is the coupling coefficient between sites n and n+m. The
dispersion relation of a single PCW can be written as

o, (k) =@, — B, =) 2P, cos(mka). (5.2)

m=1

Here, Py causes the relative frequency shift for all wave vector k from @, , whereas P, ’s

cause the sinusoidal modulation.
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Fig. 12 Geometric structures of (a) single and (b) double PCWs with the lattice constant a. P, ’s
are the coupling coefficients between defects within a single waveguide. «and f are the

coupling coefficients between waveguides.

5.1.1 Eigen frequency shift and dispersion relation shifts of moving point

defects in PCWs
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Moving the point defect along ty (or £x) direction in the square lattice will shift the
eigenfrequency (@, ) of a point defect toward the higher frequency as shown in Fig. 13(a).
Such a blue shift in frequency is caused by less concentration of electric fields in the
dielectric defect rod [58] when the defect rod moves away from the center as shown in Fig.
13(b) for field distribution along the y-direction and Fig. 13(c) for that along the
x-direction. From Fig. 13(c) the field distribution is almost unchanged along the
propagation axis (the x-direction) of PCW so that it would remain unaffected. Therefore,
the dispersion curve should just show a blue shift after moving all the defect rods along y
direction in the PCW (see Fig. 14(a)). However, if moving all the defect rods of the
PCW along the x-direction, shown in Fig. 14 (b), one would increase both @ and Py but
only slightly change Py’s. Therefore, we would expect that the dispersion curve is
almost unchanged at small wave.vector &k and slightly inereases at the larger wave vector &

by translating all the defects along the x-diréction:

(a) (b) (c)
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Fig. 13 (a) The eigenfrequencies, (b) the electric field along the y axis, and (c) the electric field
along the x axis of the point-defect modes with a defect rod located at different positions along the

y axis, where c is the speed of light in vacuum.
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Fig. 14 The ways of moving the defect rods in single or coupled PCWs.

5.1.2 Dispersion relation shifts in photonic-crystal couplers

When a second identical waveguide is created to.make a symmetric DC, shown in Fig.
12(b), the amplitudes of electric fields (U ¥p) in PCW1 and PCW2 are given by the
coupled equations:

(0—o)U;+(a+ pCos(ka))V, =0, (5.3)

(0—)V,+(a+ pCos(ka))U, =0, (5.4)

where o and f are the coupling coefficients of one PCW induced by the nearest-neighbor

and the next-nearest neighbor defect rods of the other PCW; @, and ware the

eigenfrequencies of the single PCW and the DC, respectively. Solving for Egs. (5.3) and
(5.4), we obtained the dispersion relations of the DC:

(k) = o,(k)t(a+2pcos(ka)), (5.5)

where the plus sign stands for the odd mode and the minus sign for the even mode [24].

The dispersion relations of the DC split from (k) with their frequency difference being

determined by coefficients & and . Whether the dispersion curves cross at a point or
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not is determined by the ratio £=2p/a| [57]. As the PCWs are formed by moving all the
defect rods along the y-direction, shown in Fig. 14(c), we would expect that there exists a
larger @, and barely changes in & and £ because the distance of the defect rods between
two waveguides is unchanged. Therefore, the dispersion curves of the DC would show
only a blue shift. As enlarging the distance between two line defects in the DC by
oppositely moving all the defect rods along the y direction as shown in Fig. 14(d), we
would expect that coefficients & and f become smaller and there is a reduced coupling of
PCWs. Thus it would reduce the frequency separation between two dispersion curves,
which shift together toward the higher frequency. On the other hand, as reducing the
separation of the line defects, shown in Fig. 14(e), we can increase the separation of the
dispersion curves, which both shift.to the higher frequency. In addition, similar effects
showing in a square lattice are reproduced by reducing the separation of the line defects of
DC in a triangular lattice, shownin Fig. 14(f).

Moving all the defect rods along the x axis, shown in Figs. 14(g) and (h), will change
the ratios of electric fields at (0,2a) and (£la, 2a) in the square lattice so that the
coefficients o and f would also change. It makes the decoupling point moved to
different wave vector k. The larger  makes the decoupling point moved to the smaller
wave vector k. Let the ratio { and the electric field before (after) moving all the defect
rods along the x-axis as {; (€ ) and E; (E,), respectively. Assuming the field distribution
is strongly localized at the dielectric rods, we can simply use the ratio of the maximal
field values instead of integrals as Eq. (2.9) to estimate coefficients ¢, fand {. Thus,

¢,/¢, = (E,(-a,2a)/E,(0,2a))/(E, (-a,2a)/E, (0,2a)). (5.6)
From the field distribution before and after shifting the defect rods shown as in Fig. 15,

we obtained &, /C; > 1 in square lattice but £, /C; < 1 in triangular lattice. Therefore,
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moving all defects along the x-direction in the square lattice will create dispersions’
crossing and further shift toward the smaller wave vector £ with increasing the moving
distance in the x-direction. However, in the triangular lattice, the decoupling point
shifted toward the larger wave vector k. These phenomena are due to the lattice
structure of the former case being getting close to a triangular one which possesses
dispersions’ crossing on translating the line defects along the x-direction; while that of

latter case tends to become a rectangular one.
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Fig. 15 The electric field distribution’ of the point defect'mode before (x = 0a) and after moving
the defect rods by 0.5a along the x-axis (x=0:5a);" (a) The electric field located at y = 2a in the
square lattice and (b) the electric field located y =+/3¢ in the triangular lattice.

5.2 Simulation results and discussion

In the previous section, we have used the TBT to analyze the variation of dispersion
curves by moving defects in the DCs that causes the change of eigenfrequency of a single
PCW and coupling coefficients Py, o and . Here, we will use the PWEM and the
FDTD to examine the proposed design rule for a PC with the radii and the dielectric
constant of the dielectric rods being 0.2a and 12, respectively. The radii of the defect

rods in the square lattice are 0.1a and 0.09¢ in the triangular lattice.
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Firstly, we examined a single PCW with all line defect rods being transversely moved
(along the y-axis) in the square lattice using the PWEM. We can see that the dispersion
curve in Fig. 16(a) shifts completely to the higher frequency, which means that the
coupling coefficients Py, between defect rods are unaffected during transversely moving
all defect rods. The frequency shift is mainly dominated by the variation of the
eigenfrequency (@, ) of the point defect as moving the defect rod. However, as the
defect rods moved along the x-axis shown in Fig. 16 (b), both & and Py would increase
and cancel out the effect of changing eigenfrequency @; in the regime of small wave
vectors, whereas the dispersion curve bends down in the regime of large wave vectors,

due to the high-order terms P,cos(mka) becoming important.
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Fig. 16 Dispersion curves of a single PCW with all the defect rods moving along (a) the

y-direction, and (b) along the x-direction.

Secondly, by transversely moving defect rods separately, Figure 17 shows how the
dispersion curve varies as changing the structure of the DC. Here, we used the square

lattice as a demonstration because there are similar results in square lattice and triangular
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lattice. As simultaneously moving two line defects off the center of the original PCWs
and keeping the separation between PCWs fixed, we find the dispersion curves shift
toward the higher frequency as shown in Fig. 17(a). On the other hand, the reduction of
the separation of the line defects to decrease the coupling between PCWs pushes the
dispersion curves apart (see Fig. 17(b)); whereas, symmetrically enlarging the separation
of the line defects not only shifts the dispersion curves toward high frequencies but also

makes two dispersion curves closer (see Fig. 17(c)).
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Fig. 17 The dispersion curves of the shifted' DCs, whose.structures are indicated in the insets.

Thirdly, we examined the effects of moving all the defect rods along the x-direction in
Fig. 18. We found that the dispersion relations, originally showing no decoupling point,
in a square lattice become cross at a high frequency as the symmetry is broken. And the
decoupling point moves toward the lower frequency or the smaller wave vector k as the
rods are moved further. Contrarily, the decoupling point moves toward the higher
frequency or the larger wave vector k in the triangular structure and eventually without

crossing.
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Fig. 18 The dispersion curves as moving the defect rods along the x-direction in the square lattice

(a) and triangular lattice (b).

Finally, we used a 2D FDTD method to simulatesthe electric field transferring between
these two shifted coupled PCWs:  For the photonic crystal slab, the effective refractive
index approach has been proved-adequate to'reéduce this 3D FDTD problem to 2D one [59,
60]. Therefore, 2D FDTD method is suffictent to.describe the propagation phenomena
in the slab photonic crystal DC, especially for understanding only the physical insight.
When an EM wave with the given frequency (0.362 c/a) is incident one (PCW1) of these
two channels (or PCWs), the coupling length, for which the energy completely couples to
another channel (PCW2), is defined as m/Ak, where Ak is the wave vector mismatch
between two modes of the DC at the incident frequency. Using the square lattices as
examples, we have shown the dispersion curves of a square lattice DC in Fig. 19(a).
Due to rather smaller Ak ~ 0.0346 m/a for the original DC without moving defects, as
shown in Fig. 19(b) the coupling length is 294, which is quite long but finite. When the
incident frequency is chosen located at the decoupling point formed by longitudinally

shifting all defects a 0.5a distance, the electric field will propagate in the incident channel
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without leaking into another channel (see Fig. 19(c)). In addition, moving the line
defects close to each other by 0.5¢ makes Ak ~ 0.23 m/a, which is a larger vector
mismatch, so that the coupling length becomes shorter (~ 4a see Fig. 19(d)). These
FDTD simulation results verify the coupling length can be tuned by properly moving the

defect rods to shift the decoupling point of dispersion curves that agree with those

calculated by PWEM.
(a)
0.38 P
/ #GSQ&'&aye o
0.374 ; c-s:afnlottzvilb%
osel - — £ _ose2

Frequency (c/a)
o
w
i

0.34- —0a
se X0.5a

0.33+ -« YS0.52
0.32 —

0.5 0.6 0.7 0.8 0.9

K (n/a)
- .
Fig. 19 The dispersion relation curves (a) aﬁi Eﬁ EDTD simulation results of the original DC

without moving defects in (b), longitudinally moving the defect rods by 0.5a in (c), and

transversely moving the defects closer by 0.5a in (d).

The proposed TBT can also be applied to other structures, e.g., TM polarization in a PC
with air holes in a dielectric slab or transversely moving a perfect rod. In the case of a
PC with air holes in dielectric slab, the radii of the holes must be increased to insure
single mode existing in the PCW and there would be also a decupling point in this
structure. On the other hand, the TBT can also well predict the propagation of an EM

wave in a single line defect or a DC created by transversely moving a row or two rows of
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perfect dielectric rods without changing the radii or dielectric constant of the dielectric
rods.

For practical use, the DC can be designed as a dichroic filter for bidirectional
multiplexing as reported in [30]. However, it might not realistic to design multichannel
filter by cascading DCs with different coupling lengths, because to achieve < 20 dB cross
talk, the ratio of coupling lengths of proximal channels has to be less than 0.03. On the
other hand, for switching application, we can add a nonlinear medium in the DC to
change the refraction index by a controlling light. In the symmetric DC, without the
controlling light, the transmission around the decupling point but not at the decoupling
point can be quite high. However, the DC will become asymmetric when the controlling
light is injected into one branch of'the DC. In this case, the transmission would become
very low around the decoupling.point [S7]. " Therefore; the signal can be switch rapidly

by a controlling light.

5.3 Summary

The movement of defect rods in the DC is an efficient way to modify its dispersion
curves, so that the coupling length and the decoupling point of the DC can be tuned.
Moreover, it can make the dispersion curves crossing in the square lattice with a
reduced-rods DC. The TBT explains these coupling phenomena consistently with
PWEM and FDTD methods and provides design rules for the DC in photonic integrate
circuits. The dispersion curves show a blue shift as the defect rods moving away from
the center of the PCWs. Two dispersion curves of the DC are pulled apart by reducing
the separation of the coupled PCWs, on the contrary, the dispersion curves get closer by

enlarging the separation of the coupled PCWs, no matter what the DC is in a square or
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triangular structure. However, longitudinally moving the defect rods along waveguides
axis, the ratio of the coupling coefficients of the first (o) and the second (/) neighboring
rods of the DC would change its magnitude that in turn shifts the decoupling point. This
moving effect on the DCs of the square lattice shifts the decoupling point toward the
lower frequency or the smaller wave vector k; whereas, toward the higher frequency or
the larger wave vector k in the DCs of the triangular lattice.

In this chapter, we focused on the properties of the symmetric couplers. In the next
chapter, we will consider the asymmetric cases in which the physical properties are quite

different from symmetric ones.
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Chapter 6 Physical properties of coupled asymmetric photonic

crystal waveguides

From the simulation results by the PWEM for the triangular lattice, the dispersion
curves of asymmetric PCWs are not crossing, but the eigenmodes do switch. The
electric field ratios of the eigenmodes in both waveguides no longer are £1, especially at
the switching point of the mode pattern (Fig. 21). However, the results of the PWEM or
TBT derived from symmetric PCWs cannot provide good reasons to explain these
phenomena. Therefore, similar to the tight binding method, we derive an analytic
solution considering up to the next nearest-neighbor coupling between two PCWs to
describe the physical properties.of asymméettic.PCWs. This formula provides more
generalized discussion and gives a good explanation about asymmetric coupled PCWs.
In practice, the coupled identical PCWs-should become asymmetric due to the intensity
dependent index of refraction in the nonlinear photonic crystal directional coupler, and
this can be used as switches to control EM wave to output with proper ratio in each

channel.

6.1 Coupled equations of asymmetric photonic crystal waveguides
In Section 2.4, we derived the eigenfrequencies (dispersion relations) and eigenvectors

(field amplitudes) of asymmetric PCWs are

wi(k)z@i\mz +(g(ka))?, (6.1)
1= /Uy)* :_Ai A+ (glka)y ) (6.2)

g(ka)
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where A=(w,—@)/2 and y* are the amplitude ratios corresponding to frequencies
o*(k); @ and @, are the dispersion relations of the sing PCW1 and PCW2 as shown in
Fig. 3; g(ka)=a+2pCos(ka) ; a and f are the coupling coefficient between two
waveguides.

From the electric field distributions of defects in the square and triangular lattices,
shown in Fig. 20, we find that the electric field at the site (x = 0, y = 0) of the square lattice
has the same polarity (sign) as its nearest-neighboring site (x = 0, y =2a) and the next
nearest-neighboring site (x = a, y = 2a). Because Ag < 0 for the air-defect PCWs in both

square and triangular lattices, the coupling coefficients a and [ both are negative values.

Here, we assume @, >, in the following discussion; therefore, we shall call the
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Fig. 20 The electric field distribution (E,) of a point defect mode in the square lattice for (a) f
=0.364 c/a with a reduced-rod (rq = 0.05a) defect; that in the triangular lattice for (b) eigen
frequency f = 0.365 c¢/a with a defect rod €,= 2.56; and (c) The electric field distribution in the

dash lines.

Because |g(ka)| has a maximum value at k = 0, one should expect that the dispersion
curves have the largest splitting there. As o and 3 are negative values discussed before,
g(ka) always is a negative value for all k if |2/ /a| < 1, and its value can change from the

negative to the positive sign as k is increasing from 0 to © when |24/ |>1. Under this
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condition of |2/ /| > 1, the coupler can be decoupled when g(kpa) = 0 at a certain k = kp

and have eigenfrequencies @ = @,and @ = @, separately; that is, the field launched in

PCWI1 always will be confined in PCW1 without being coupled to PCW2, and vice versa.
We can simply use the ratio of the maximal field values instead of integrals as Eq. (2.9) to
estimate coefficients o, fand [2f/c| by assuming the field distribution is strongly
localized near the dielectric rods. Thus, |2/ /a |~2E(0,2a)/E(£a,2a) in the square lattice

and ~2E(0,+/3 a)/E(+a,~/3 a) in the triangular lattice.

Because g(ka) <0 for 0<k <k,under |28 /0| > 1 (or for all k under |2 /| < 1), the

lower frequency mode (@) has -1 <y~ < 0; namely, the eigenmode of the coupler displays
the PCW1 and PCW2 electric fields siet only being out-of-phase but also concentrated on
the low-frequency PCW1. This"odd-like fundamental (low-frequency) mode is called the
“anti-bonding” mode, borrowed-from the molecular physics of two atoms. On the other
hand, the high-frequency and even-like mode-called.thé “bonding” mode has " > 1; thus,
it is superimposed by the in-phase electric fields from both PCWs, where the field strength
is concentrated on the high-frequency PCW2.

However, as k > kp under |25 /a| > 1, g(ka) becomes positive and 0 < x < 1. The
fundamental mode is a bonding mode, which is superimposed by the in-phase electric
fields from both PCWs, where the field strength is concentrated on the low-frequency
PCWI. And the high frequency antibonding mode with 3~ < -1 has the field strength
concentrated on the high-frequency PCW2. We find that the fundamental modes of the
asymmetric coupler contain no degenerate state (anti-crossing dispersion relations) and
can switch from the antibonding to bonding mode as k varies crossing the decoupling

point kp. As the previous study on the symmetric coupler, we simply can set A= 0 to

48



obtain y*=+1 at all £, i.e., the fundamental mode is either odd or even depending upon
the sign of g(ka). The dispersion curves of the symmetric coupler can cross at the
decoupling point if |2 /| > 1. Furthermore, upon increasing the separation of PCWs to
two rows apart [27], from Eq. (2.9), coupling coefficients & and £ become positive values
and are smaller than coupling coefficients of the one-row-separation PCWs. The
fundamental mode becomes a bonding mode, and whether or not mode switching would
happen still is determined by the criterion: 248 /a | > 1.

In order to prove that the derived formula by TBT can explain phenomena gotten by
PWEM well, we consider for example a 2D triangular (square) lattice PC made by
dielectric rods with dielectric constant & = 12 and radius = 0.2a in the air. Due to the
field symmetry, the coupling coefficient ratio /¢ 18 a larger value in the triangular lattice
than in the square lattice. It should be easier. to- reach the criterion 28/a| =
2E(0,2a)/E(£a,2a) > 1 of the mode switching behavior in the triangular lattice than in the
square lattice, shown in Fig. 20(c):. = Therefore, we consider a triangular lattice PC, and
the line defects forming the PCW1 and PCW2 are created by setting the dielectric
constants of defect rods at 2.56 and 2.25, respectively. The eigenfrequencies of a point
defect with transverse magnetic field (TM), whose electric field is parallel to the dielectric
rods, are w; = 0.365 (2rnc/a) and @, = 0.371 (2nc/a), respectively, where c is the speed of
light in vacuum. The decoupling point is located at kp = 0.73n/a where the
eigenfrequencies of the PC couplers decouple in the eigenfrequency in single line-defect
PCWs, shown in Fig. 21(a). Note that the dispersion curves do not cross in the
asymmetric coupler. As shown in Fig. 21(b), the eigenmode of the high (low) frequency
band at the wave vectors k < kp are the bonding (anti-bonding) modes, but these modes

switch when k& > kp, namely, the eigenmode of high (low) frequency band being
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anti-bonding (bonding). And the electric field is concentrated on the PCW2 for the
high-frequency (@ (kp)) mode and on the PCW1 for the low frequency (@ (kp)) mode at
the decoupling point kp. The mode switching phenomenon at kp is shown easily by
plotting the ratios of the eigenmodes (y=V(/Uj) obtained either by the PWEM. We

observe that x's change sign at the decoupling point kp (see Fig. 21(c)).
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Fig. 21 Simulation results of PWEMa(a) Dispersion.relations of two isolated PCWs (£=2.56 and
£=2.25) and the directional coupler in-theltriangular. lattice (shown as the inset). (b) The
dispersion curves of the directional coupler and-its eigenmode profiles below, above and at the

decoupling point. (¢) The mode amplitudératios-of the coupler.

6.2 Electric field distribution and energy transfer
After obtaining the eigenfrequencies (dispersion relations) and eigenvectors (field
amplitudes) of the DC, we shall calculate the energy transfer between the coupled PCWs.
If an EM wave with a given frequency propagates in the DC, the wave function or field
distribution at site # in each of the coupled PCWs can be expressed as the superposition of

the eigenmodes of the DC,

U, (na) = Ae'*a® + Belkyna | (6.3)
V. (na) = Aye*a@ + B ybelkna, (6.4)
where the propagation constants of the anti-bonding mode &, and bonding mode &, and

their corresponding amplitude ratios of %" and xb can be obtained from Egs. (6.1) and
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(6.2). Note that y*" is not necessarily equal to -1 for a given frequency because the
mode patterns of the DC at a given frequency are not the eigenmodes of the same system.
Let x = na, one can rewrite Egs. (6.3) and (6.4) as the following continuous equations,
U(x) = Aetka* + Betko | (6.5)
V(x)=Ay2ek* + B ybeikr~ (6.6)
Taking derivatives of U(x) and V(x) with respect to x, we have the coupled PCW

equations

dU (x)

=iM\U(x)+ ik, V (x), (6.7)

dv(x)

=iM,V (x)+ix,U(x), (6.8)

where M, =(k,z" —kyz*)/(x® - x*)2and M, =(kx —k, 2" )/(x* - x") are the effective
propagation constants of PCW L and PCW2 -of. the directional coupler, &, =—k, 7" z*
and xy, =(k, —k)/(x* — x*) are-the effective coupling coefficients between PCWs. The
solutions of the coupled PCW equations are

[g(x)} _ {e%x 0 }[.Dlm* iDy,1) }[U(O)} 6.9)

@7 0 e |[iDyn' Dy’ |[V(0)

Here U(0) and V(0) are the electric field amplitudes at x = 0, Dy, =(xy, Sin(f))/f,
Dy, =(iy, Sin(fx))/f , Dy, =D5, =Cos(fx)—idSin(fx)/ f , and n=exp(idx) , with
f=(k,=ky)/2 and 5=f(x*+2")/(x*-x"). The maximum energy transferred from
PCWI1 to PCW2 is proportional to |,/ f P=4(x>x%)? /(y* — y*)?> and that from PCW2
to PCWI1 is proportional to |x,/f[?=4/(y*—x%)>. There are maximum energy
transfers into the other waveguides at fx=n/2, so coupling length is defined as 7/ |ka-ks|.

There are no crossing points in asymmetric PCWs, as making the coupling would not be

infinite by TBT, shown in Fig. 22(a), but the lowest energy transfer still around the
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decoupling points. The energy will transfer completely into the other waveguide only in

symmetric ones because it happens only at 5=0.

(a) (b) (c)
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Fig. 22 (a) The wave vectors of the bonding (antibonding) mode and coupling length of the PC
couplers for different frequencies. (b) The mode amplitude ratio (y=V/Uy) of the bonding and
antibonding mode. (c) The ratios of the maximum energy transferred from the PCW2 to PCW1
(Ik12/f?) and from the PCW1 to PCW2 ([ky,/f]).

For an incident wave frequency. w,,the wave vector k, for the anti-bonding mode

should be larger than k&, for the bonding mode for £ < kp. Since ‘ % is smaller for

large wave vector, if we denote the mode ratio of the lower frequency band at &, as ¥*(ks),

we have |77 7%|<|x 2% (ky)| =1 and "ACz079 (2> ~ 79)* <4/(z* ~ 79) and <1,
shown in Figs. 22(b) and (c), which are obtained by the PWEM. Therefore, the
maximum energy transferred from PCWI1 to PCW2 should be smaller than that
transferred from PCW2 to PCW1. However |xj,/f|* can be larger than 1, meaning the

output peak energy can be larger than the input peak energy. It results from the

difference field localization of the eigenmodes.

6.3 Summary
We have extended the TBT to study asymmetric couplings between two non-identical

line-defect photonic waveguides. By considering the coupling between two waveguides
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beyond the nearest-neighbor approximation, analytic expressions of the dispersion
relations and eigenmode ratios of an asymmetric photonic-crystal coupler agree well with
the phenomena calculated by PWEM results. Due to the symmetry breaking, these two
dispersion curves will never cross, even with the criterion |23| > |o|. Nevertheless, as the
symmetric coupler shows, the eigenmode patterns, which are the bonding and
anti-bonding modes, do switch on the same dispersion curves when wave vector k varies
across the decoupling point. At the higher (lower) frequency of the dispersion relation
curve, the electric field distribution of the eigenmodes would localize mainly at the PCW
with a higher (lower) eigen frequency, which corresponds to an incomplete EM field
transformation between two waveguides. For a given incident frequency, the
electric-field distribution and energy transfer of the coupler can be expressed analytically
by using the wavevector and derived amplitude ratios -of the bonding and anti-bonding
modes. The coupling length at'the decoupling point no longer is infinite but low energy
transfer around there. Although complete energy transfer into the other waveguides is
impossible in asymmetric waveguides, the peak power in the output dielectric rods can be
larger than that in the input ones due to the electric fields having difference strength of

electric field localization in each waveguide.
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Chapter 7 Conclusions and Prospective

7.1 Conclusions

In this dissertation, we used TBT to realize the wave propagation of PCWs and
CROWs. The basic advantage of this method is that an analytic solution can be derived
to describe wave evolution in the waveguides with linear or nonlinear materials. In the
single PCW or CROW with Kerr media, we found when a perturbation was superimposed
into a plane wave, the perturbation could grow exponentially, as the so-called MI. In the
CROWs, the region of MI varies as we change the numbers of separation rods and sign of
Kerr media added into the waveguides, ibut.in the MI region, the relationship of
nearest-neighbor coupling coefficient (P;), Wave wector of the plane wave (k) and SPM
strength must be P;cos(ka)y > 0" and the MI boundary locates at ka=n/2. In the
air-defect PCWs, the nearest-neighbor coeuplingicoefficient is positive and non-negligible
next nearest-neighbor coupling coefficient make'the boundary of the MI (ka) exceed n/2
and exist 2 gain maxima.

If the variation of the envelope of the electric field amplitudes is slow, the incident
wave in the MI region could become soliton. From TBT, the soliton propagation criteria
of the CROWs and PCWs can be derived. From the criteria, the sign of SPM strength
and the 2™ order dispersion (/;) must have the same sign. As the pulse width of the
soliton becomes shorter, the slowly varying amplitude approximation is broken and the
pulse will broaden due to high order GVD. As the broadening factor is small, the pulse
broadening is dominated by f; when ka is away from 0 or n. As ka is near 0 or &, [ is

almost zero. The pulse broadening is dominated f; at soliton propagation condition.
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Under this circumstance, the SPM at soliton propagation criteria would be too strong and
make the pulse become narrowing at beginning. When the SPM strength is reduced, the
pulse would not be narrowed and the broadening factor would be smaller than that at SPM
strength.

When the other identical waveguide is carved into the single PCW with one or several
partition rods, we found the crossing point of the dispersion relation curves and coupling
length could be tuned by moving the defect rods. When moving the defect the rods
along the propagation direction, the crossing point shifts toward the high frequency or
wave vector in triangular lattice PCs and toward the low frequency or wave vector in
square lattice PCs. As moving the two rows of the defect rods in the waveguides close
to each other, the coupling length:descends and theé-coupling length ascends as moving
two rows of the defect rods away. from each:other. - These phenomena can be well
explained by TBT and coincide with the simulation results of FDTD.

As the other waveguides is not identical to the original one, the symmetry breaks and
these two dispersion curves will never cross, even with the criterion 23| > |o|. But the
mode switches at this criterion. At the higher frequency of the dispersion relation curve,
the electric field distribution of the eigenmodes would localize mainly at the PCW with a
higher eigen frequency and vice versa, which corresponds to an incomplete EM field
transformation between two waveguides. For a given incident frequency, the electric-field
distributions and energy transfer of the coupler can be expressed analytically by using the
wavevector and derived amplitude ratios of the bonding and anti-bonding modes. The
coupling length at the decoupling point no longer is infinite but the lowest energy transfer
around there. Although complete energy transfer into the other waveguides is

impossible in asymmetric waveguides, the peak power in the output dielectric rods can be

55



larger than that in the input ones due to the electric fields having difference strength of

electric field localization in each waveguide.

7.2 Prospective

In Chapter 4, we have used EDNLS equation to describe the soliton or pulse
propagation in the CROWs or PCWs. In this method, the electric field in the
waveguides is assumed as the linear combination of the electric field distribution of the
point defect. This is valid when the field propagates in the center of the waveguides, but
the field at the input or output boundary must have some distortion, making the EDNLS is
not so suitable to describe wave propagation in these regions. In order to consider all
circumstance as designing the device;-the FDTD method should be used to recheck the
results.

In the TBT, only TM polarization is considered because polarization of the electric
field is identical in all incident “angles*of 2D simulation. But as the PC is made of
dielectric substrate with air hole pattern; there exists a complete photonic band gap only
on TE polarization. We should extend the TBT to TE polarization and compare this
analytic result with other numerical results.

In this dissertation, only 2D PCs are considered. To approach the practice experiment
devices, we should extend our theory and simulation to the PC slab in which 3D
simulation tools should be used. In the primary simulation results of PWEM, we found
the dispersion relation curves can cross in PC slab with triangular lattice similar as the
simulation results in Chapter 6. We still need to use FDTD to do the double check and
get the coupling coefficients from PWEM in order to further analysis the physical

properties the PCWs or PC couplers.

56



References

1.

10.

S. G. Johnson, Photonic crystals : the road from theory to practice (Kluwer
Academic, Boston, 2002).

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen,
and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview,
and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006).

S. John, "Strong localization of photons on certain disordered dielectric
superlattices," Phys. Rev. Lett. 58, 2486-2488 (1987).

E. Yablonovitch, "Inhibited spontaneous emission on solid-state physics and
electronics," Phys. Rev. Lett. 58, 2059+2062:(1987).

E. Yablonovitch, "Photonic ®band-gap erystals,’ J. Phys. Condens. Matter 5,
2443-2460 (1993).

E. Yablonovitch, "Photonic.band-gaprstructutes," J. Opt. Soc. Am. B 10, 283-295
(1993).

C. M. Soukoulis, Phtonic crystals and light localization in the 21st century (Kluwer
Academic, Dordrecht, The Netherlands, 2000).

K. M. Leung, and Y. F. Liu, "Full vector wave calculation of photonic band
structures in face-centered-cubic dielectric media," Phys. Rev. Lett. 65, 2646-2649
(1990).

S. G. Johnson, and J. D. Joannopoulos, "Block-iterative frequency-domain methods
for Maxwell's equations in a planewave basis," Optics Express 8, 173-190 (2001).

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, "Ultrawideband

absorbing boundary-condition for terminaiton of wave-guding structures in FD-TD

57



I1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

simulaitons," IEEE Microw. and Guided Wave Lett. 4, 344-346 (1994).

H. Benisty, "Modal analysis of optical guides with two-dimensional photonic
band-gap boundaries," J. Appl. Phys. 79, 7483-7492 (1996).

A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite-difference
time-domain method (Artech House, Norwood, MA, 2000).

W. Axmann, and P. Kuchment, "An efficient finite element method for computing
spectra of photonic and acoustic band-gap materials - 1. Scalar case," J. Comput. Phys
150, 468-481 (1999).

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the
characteristics of propagation into photonic crystal fibers, by the finite element
method," Opt. Fiber Technol. 6, 181-191 (2000).

J. B. Pendry, and A. Mackinnon, "Calculation of photon dispersion-relations," Phys.
Rev. Lett. 69, 2772-2775 (1992).

K. Sakoda, Optical properties’ of photonic crystals (Berlin, Heidelberg, New York,
2005).

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a
proposal and analysis," Opt. Lett. 24, 711-713 (1999).

K. Hosomi, and T. Katsuyama, "A dispersion compensator using coupled defects in a
photonic crystal," IEEE J. Quantum Electron. 38, 825-829 (2002).

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos,
"High transmission through sharp bends in photonic crystal waveguides," Phys. Rev.
Lett. 77, 3787-3790 (1996).

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, D. Z.

Zhang, and H. F. Yang, "High resolution three-port filter in two dimensional photonic

58



21.

22.

23.

24.

25.

26.

27.

28.

29.

crystal slabs," Opt. Express 14, 10014-10020 (2006).

M. Djavid, and M. S. Abrishamian, "Photonic crystal channel drop filters with mirror
cavities," Opt. and Quantum Electron. 39, 1183-1190 (2007).

B. S. Song, T. Asano, and S. Noda, "Recent advances in two-dimensional photonic
crystals slab structure: Defect engineering and heterostructure," Nano 2, 1-13 (2007).
S. G. Johnson, C. Manolatou, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H.
A. Haus, "Elimination of cross talk in waveguide intersections," Opt. Lett. 23,
1855-1857 (1998).

P. G. Luan, and K. D. Chang, "Periodic dielectric waveguide beam splitter based on
co-directional coupling," Opt. Express 15, 4536-4545 (2007).

M. Djavid, A. Ghaffari, F. Monifi, and M. S."Abrishamian, "Photonic crystal power
dividers using L-shaped bend based on ring resonators," J. Opt. Soc. Amer. B 25,
1231-1235 (2008).

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, "Surface-emitting channel drop
filters using single defects in two-dimensional photonic crystal slabs," Appl. Phys.
Lett. 79, 2690-2692 (2001).

T. Koponen, A. Huttunen, and P. Torma, "Conditions for waveguide decoupling in
square-lattice photonic crystals," J. Appl. Phys. 96, 4039-4041 (2004).

W. Y. Chiu, T. W. Huang, Y. H. Wu, F. H. Huang, Y. J. Chan, C. H. Hou, H. T.
Chien, C. C. Chen, S. H. Chen, and J. I. Chyi, "Directional coupler formed by
photonic crystal InAlGaAs nanorods," J. Lightw. Technol. 26, 488-491 (2008).

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of
electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J.

Quantum Electron. 38, 47-53 (2002).

59



30

31.

32.

33.

34.

35.

36.

37.

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, "Dual wavelength
demultiplexing by coupling and decoupling of photonic crystal waveguides," Opt.
Express 12, 1119-1125 (2004).

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, "Dual-band
multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional
communications," Opt. Commun. 266, 592-597 (2006).

L. W. Chung, and S. L. Lee, "Photonic crystal-based dual-band demultiplexers on
silicon materials," Opt. and Quantum Electron. 39, 677-686 (2007).

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, "Ultracompact and
wideband power splitter based on triple photonic crystal waveguides directional
coupler," J. Opt. A, Pure Appl«Opt. 9, 37-42 (2007).

T. Liu, A. R. Zakharian, M«Fallahi, J. V.-Moloney,-and M. Mansuripur, "Design of a
compact photonic-crystal-based polatizing beam' splitter," IEEE Photon. Technol.
Lett. 17, 1435-1437 (2005).

M. Qiu, and B. Jaskorzynska, "Design of a channel drop filter in a two-dimensional
triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y.
Kitagawa, H. Ishikawa, N. lkeda, K. Awazu, X. M. Wang, A. Watanabe, S.
Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R.
Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic
device," New J. Phys. 8 (2006).

D. N. Christodoulides, and N. K. Efremidis, "Discrete temporal solitons along a chain
of nonlinear coupled microcavities embedded in photonic crystals," Opt. Lett. 27,

568-570 (2002).

60



38

39.

40.

41.

42.

43.

44,

45.

46.

47.

C. H. Huang, Y. H. Lai, S. C. Cheng, and W. F. Hsieh, "Modulation instability in
nonlinear coupled resonator optical waveguides and photonic crystal waveguides,"
Opt. Express 17, 1299-1307 (2009).

C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Tight-binding theory for coupling
asymmetric photonic crystal waveguides," in [0th Asia Pacific Physics
Conference(Pohang, SOUTH KOREA, 2007), pp. 1246-1250.

C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Physical properties of asymmetric
photonic crystal waveguides," J. Opt. A, Pure Appl. Opt. 11, 015103 (2009).

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, "Tight-binding theory for
coupled photonic crystal waveguides," Phys. Rev. B 75, 125113 (2007).

A. Imhof, W. L. Vos, R. Sprik; and A. Lagendijk, "Large dispersive effects near the
band edges of photonic crystals," Phys. Rev.-Lett. 83, 2942-2945 (1999).

W. J. Kim, W. Kuang, and J. D.'O'Brien, ' Dispersion characteristics of photonic
crystal coupled resonator optical waveguides,"-Opt. Express 11, 3431-3437 (2003).

S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, "Long-range interaction and
nonlinear localized modes in photonic crystal waveguides," Phys. Rev. E 62,
5777-5782 (2000).

S. F. Mingaleev, and Y. S. Kivshar, "Self-trapping and stable localized modes in
nonlinear photonic crystals," Phys. Rev. Lett. 86, 5474-5477 (2001).

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, "All-optical
switching, bistability, and slow-light transmission in photonic crystal
waveguide-resonator structures," Phys. Rev. E 74, 046603 (2006).

A. G. Shagalov, "Modulational instability of nonlinear waves in the range of zero

dispersion," Phys. Lett. A 239, 41-45 (1998).

61



48

49.

50.

51.

52.

53.

54.

55.

56.

57.

58

L. Hadzievski, M. Stepic, and M. M. Skoric, "Modulation instability in
two-dimensional nonlinear Schrodinger lattice models with dispersion and long-range
interactions," Phys. Rev. B 68, 014305 (2003).

F. K. Abdullacv, A. Bouketir, A. Messikh, and B. A. Umarov, "Modulational
instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger
equation," Physica D-Nonlinear Phenomena 232, 54-61 (2007).

F. M. Mitschke, and L. F. Mollenauer, "Discovery of the soliton self-frequency shitt,"
Opt. Lett. 11, 659-661 (1986).

T. Kamalakis, and T. Sphicopoulos, "Analytical expressions for the resonant
frequencies and modal fields of finite coupled optical cavity chains," IEEE 1J.
Quantum Electron. 41, 1419-1425 (2005).

S. Mookherjea, "Dispersion.characteristics of coupled-resonator optical waveguides,"
Opt. Lett. 30, 2406-2408 (2005).

I. Neokosmidis, T. Kamalakis; and T. Sphicopeulos, "Optical delay lines based on
soliton propagation in photonic crystal coupled resonator optical waveguides," IEEE
J. Quantum Electron. 43, 560-567 (2007).

Y. S. Kivshar, and G. P. Agrawal, Optical solitons (Academic, California, 2003).

G. P. Agrawal, Nonlinear fiber optics (Academic, Burlington, MA, 2007).

C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Tuning the decoupling point of a
photonic-crystal directional coupler," J. Opt. Soc. Amer. B 26, 203-209 (2009).

C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Tight-binding theory for coupling
asymmetric photonic crystal waveguides," J. Korean Phys. Soc. 53, 1246-1250
(2008).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals

62



(Princeton University Press, New Jersey, 2008).

59. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based
two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).

60. W. D. Zhou, Z. X. Qiang, and L. Chen, "Photonic crystal defect mode cavity
modelling: a phenomenological dimensional reduction approach," J. Phys. D 40,

2615-2623 (2007).

63



7 1 ¥ E(Vita)
¥ % : % I ¥ (Chih-Hsien Huang)

v &2 p: 1974 % 10 2 03 p

4! s B :%r/ [ 7%‘:2
AKX MR F5 0 BR N EFRATE T R FER 44 5L
Email: hjames.c090g@nctu.edu:tw

hjamese090g@hotmail.com

i

1993.9-1998.6 W= - #fFde <~ FFH 12 1§21
2001.9-2003.6 = 2 ~ F 7T 1 EF T “THL
2004.9-2009.6 B> =i * kT 1 feFm g g L

T—% ,.FHWQ ’S:EE]
%iﬁﬁ%&%é&%%%ﬁ@?

Tight Binding Theory for Photonic Crystal Waveguides

64



Publication list

Journal paper

1. C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Tight-binding theory for coupling
asymmetric photonic crystal waveguides," J. Korean Phys. Soc. 53, 1246-1250
(2008).

2. C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Tuning the decoupling point of a
photonic-crystal directional coupler," J. Opt. Soc. Amer. B 26, 203-209 (2009).

3. C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Physical properties of asymmetric
photonic crystal waveguides," J. Opt. A, Pure Appl. Opt. 11, 015103 (2009).

4. C. H. Huang, Y. H. Lai, S. C. Cheng, and W:_F. Hsieh, "Modulation instability in
nonlinear coupled resonatoroptical ‘waveguides and photonic crystal waveguides,"

Opt. Express 17, 1299-1307+(2009).

International conference paper

1. C. H. Huang, W. F. Hsieh, and S. C. Cheng, "Coupling theory of asymmetric
photonic-crystal waveguides," in Progress in Electromagnetics Research Symposium

(PIERS 2008)(Cambridge, MA, 2008), pp. 187-191.

65



	封面
	封面_英_
	Contentsv3
	dissertationv1.4

