圖目錄

啚	1-1、毛細管電泳分離機制示意圖	12
圖	1-2、熱壓印法之示意圖	13
圖	1-3、PDMS 微晶片複製鑄模製程示意圖	14
圖	1-4、聚二甲基矽氧烷之單體分子結構。	15
圖	1-5、三電極系統與微晶片結合之示意圖	16
圖	1-6、循環伏安法之電壓線性掃描方式示意圖	17
圖	1-7、典型可逆氧化還原反應之循環伏安法示意圖	18
圖	1-8、典型流體動力伏安法圖譜	19
圖	1-9、兩種工作電極之擺設方式	20
圖	1-10、孔洞性玻璃接縫阻斷器示意圖	21
圖	1-11、薄膜型阻斷器微晶片之示意圖	22
圖	2-1、折射法二雷射束折射率差異所造成干涉圖譜之示意圖。	26
圖	2-2、脈衝式安培法電位隨時間轉換之示意圖	27
圖	3-1、矽晶圓母模照片與微晶片詳細規格	35
圖	3-2、二代微晶片之結構示意圖	36
圖	3-3、1 代微晶片結構示意照片	37
圖	3-4、2 代微晶片結構示意照片	38
圖	3-5、2代製程中電極與流道交會之示意圖	39
圖	4-1、多巴胺與兒茶酚之化學結構式	49
圖	4-2、銅電極表面氧化鄰-苯二酚類化合物反應機構示意圖	50
圖	4-3、以流體動力伏安法選定兒茶酚胺類化合物偵測電位	51
圖	4-4、添加 0.8mM SDS 前,不同時間下電滲流之變化之示意圖	52
圖	4-5、添加 0.8mM SDS 後,不同時間下電滲流之變化之示意圖	53
圖	4-6、分離電場對電泳分析之影響	54
圖	4-7、分離電流過高導致於阻斷器處產生氫氣氣泡示意圖	55
圖	4-8、不同注射長度對電泳分析之影響	56
圖	4-9、兒茶酚胺類化合物之濃度校正曲線	57
圖	4-10、傳統管柱內電極擺設方式所產生之樣品滲漏情形	58

圖	4-11	•	蔗糖與果糖分子結構圖	59
圖	4-12	`	以流體動力伏安法選定醣類之偵測電位	60
圖	4-13	`	添加硼酸根離子對醣類電泳分析之影響	61
圖	4-14	`	不同 NaOH 濃度對醣類電泳分析之影響	62
圖	4-15	`	不同 NaOH 濃度對蔗糖與果糖解析度之影響	63
圖	4-16	•	添加 50 µM 銅離子對醣類電泳分析之影響	64
圖	4-17	`	不同分離電場對醣類電泳分析之影響	65
圖	4-18	`	蔗糖濃度校正曲線	66
圖	4-19	`	果糖濃度校正曲線	67
圖	4-20	`	真實樣品與標準添加之電泳分析圖	68

