目	錄

頁

審定書	
授權書	
中文摘要	I
英文摘要	III
謝誌	V
目錄	VII

第一章 緒論 ----- 1 1.1 前言------EIS 1.1.1 歷史及元件優點. ----- 2 共軛高分子電激發光元件-----1.2 ----- 3 1.2.1 發光原理------3 1.2.2 雙層及多層結構之 OEL 元件------6 1.2.3 多層結構的必要性及其優點------9 電子傳輸/電洞阻擋之高分子材料------10 1.3 1.3.1 元件能階------10 1.3.2 穿遂效應 (Tunneling Effect)------ 13 1.3.3 電子傳輸/ 電洞阻擋層之材料------14 研究動機------26 1.4 第二章 實驗部分 試藥------28 2.1 測試儀器------28 2.2 2.2.1 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR)----- 28

2.2.2 微差掃描卡計(Differential Scanning Calorimeter, DSC)	- 28
2.2.3 熱重分析儀(Thermal Gravimetric Analyzer, TGA)	- 29
2.2.4 凝膠滲透層析儀(Gel Permeation Chromatography, GPC)-	- 29
2.2.5 紫外線與可見光譜儀(UV-Vis Spectrophotometer)	29
2.2.6 螢光光譜儀(Photoluminescence Spectrophotometer)	29
2.2.7 循環伏安計(Cyclic voltammetry, CV)	30
2.2.8 LED 元件性質的量測	30
2.2.9 薄膜測厚儀(surface profiler, α -stepper)	30
2.3 合成部份	31
2.3.1 單體 M1 的合成	31
2.3.2 含 Oxadiazole 聚合物及其共聚物之合成	35
第三章 結果與討論	
3.1 單體結構鑑定	38
3.2 聚合物 P1~P4 系列之合成與鑑定	38
3.2.1 聚合物 P1~P4 之聚合結果討論	39
3.3 熱性質分析	41
3.4 聚合物之紫外光-可見光光譜與螢光光譜之分析	42
3.5 循環伏安計量(Cyclic Voltammetry)分析	47
3.6 高分子有機電激發光二極體元件製作與光電性質之量測	51
3.6.1 ITO pattern 的製作	51
3.6.2 高分子發光元件製作	53
3.6.3 元件光電性質之量測	54
第四章 結論	66
第五章 參考文獻	68
附圖	
附圖 1 ¹ H-NMR spectrum of M1	73
附圖 2 ¹³ C-NMR spectrum of M1	74

附圖3	Mass spectrum of M1	- 75
附圖 4	¹ H-NMR spectrum of P1	- 76
附圖 5	¹ H-NMR spectrum of P2	- 77
附圖 6	¹ H-NMR spectrum of P3	- 78
附圖7	¹ H-NMR spectrum of P4	- 79
附圖8	TGA of P1	- 80
附圖9	DSC thermogram of P1	80
附圖 10	TGA of P2	81
附圖 11	DSC thermogram of P2	81
附圖 12	TGA of P3	82
附圖 13	DSC thermogram of P3	- 82
附圖 14	TGA of P4	83
附圖 15	DSC thermogram of P4	- 83
Scheme	1 Synthesis of monomer M1	- 34

Scheme 2	Synthesis of polymer P1 ~ P4	37

List of Tables

Table 1-1 The work function of electron injection electrodes6
Table 1-2 Electron-transporting amorphous molecular materials 15~17
Table 1-3 Hole-blocking amorphous molecular materials 18~20
Table 1-4 Comparison between main chain and side chain24
Table 3-1 Molecular weight of P1 ~ P4 39
Table 3-2 Thermal analysis of P1 ~ P4 42

Table	3-3	UV-visible	absorption	and	photoluminescence	maxima	of
		oligomer P1	~ P4 in solu	ition	and thin film state		44
Table	3-4 C	Blass-cleanin	g process				52
Table	3-5 E	EL analysis o	f the devices	s with	n P1 ~ P4		58

List of Figures

Figure 1-1 Illustration of an ITO/Diamine/Alq ₃ /Mg: Ag device 1
Figure 1-2 Schematic structure of a single layer PLED 3
Figure 1-3 Band diagram of PL process 4
Figure 1-4 Band diagram of EL process 4
Figure 1-5 Schematic energy-level diagram for an ITO/PPV/Al device 5
Figure 1-6 Diagrams of multi-layer device 6
Figure 1-7 Structures of double-layer-type OEL device7
Figure 1-8 Structures of triple-layer-type OEL device 8
Figure 1-9 Structures of double-layer-type OEL device with a dielectric
reflector9
Figure 1-10 The electronic structure of the LED 10
Figure 1-11 Flat-band diagram of the electronic structure of a LED with a
hole-blocking layer 11
Figure 1-12 Electronic structure of a LED with a hole-blocking layer in
forward bias12
Figure 1-13 Electronic structure of a LED with impurities 12
Figure 1-14 Role of hole-blocking materials 18
Figure 3-1 Mechanism of a cationic ring-opening polymerization 39
Figure 3-2 UV-PL of P1 44
Figure 3-3 UV-PL of P2 45

Figure 3-4 UV-PL of P3-	45
Figure 3-5 UV-PL of P4-	46
Figure 3-6 UV-Vis spect	ra of P1 ~ P4 46
Figure 3-7 Energy-level	diagram for M1, polymer G2 and P1 ~ P4 48
Figure 3-8 CV voltammo	gram of M1 49
Figure 3-9 CV voltammo	gram of P1 49
Figure 3-10 CV voltamm	ogram of P2 50
Figure 3-11 CV voltamm	ogram of P3 50
Figure 3-12 CV voltamm	ogram of P4 51
Figure 3-13 Structure of	Multilayer Device 54
Figure 3-14 EL spectrum	of polyfluorene-G2 59
Figure 3-15 Current Den	sity-Voltage curves for the devices with configu-
ration of IT	O / PEDOT / G2 / Ca / Al and ITO / PEDOT / G2
/ P1 ~ P4 / C	Ca / Al 59
Figure 3-16 Luminance-	Voltage curves for the devices with configure-
tion of ITO	PEDOT / G2 / Ca / Al and ITO / PEDOT / G2 /
P1 ~ P4 / Ca	u / Al 60
Figure 3-17 EL Efficien	cy-Current Density curves for the devices with
configuratio	n of ITO / PEDOT / G2 / Ca / Al and ITO /
PEDOT / G	$2 / P1 \sim P4 / Ca / Al$ 60
Figure 3-18 Fowler-Nord	theim plot, $\ln (I/F^2)$ vs. 1/F, for the devices with
configuratio	n of ITO / PEDOT / G2 / Ca / Al and ITO /
PEDOT / G	2 / P1 ~ P4 / Ca / Al 61
Figure 3-19 Luminance-	Voltage curves for the devices with configuration
of ITO / PE	DOT / G2 / P2 or P2 : Li / Ca / Al 61
Figure 3-20 EL Efficienc	y-Current Density curves for the devices with
the configur	ation of ITO / PEDOT / G2 / P2 or P2 : Li / Ca /

Al----- 62

- Figure 3-21 Luminance-Voltage curves for the devices with the configuration of ITO / PEDOT / G2 / P3 or P3 : Li / Ca / Al----- 62
- Figure 3-22 EL Efficiency-Current Density curve for the devices with the configuration of ITO/PEDOT/G2/P3 or P3 : Li/Ca/Al----- 62
- Figure 3-23 Luminance-Voltage curve for the devices with configurations ITO / PEDOT / G2 / P4 or P4 : Li / Ca / Al-----63
- Figure 3-24 EL Efficiency-Current Density curves for the devices with configuration of ITO/PEDOT/G2/P4 or P4 : Li/Ca/Al---- 64
- Figure 3-25 Luminance-Voltage curves for the devices with configuration of ITO / PEDOT / G2 / P1 or P1 : Li / Ca / Al----- 64
- Figure 3-26 EL Efficiency-Current Density curves for the devices with configuration of ITO/PEDOT/G2/P1 or P1 : Li/Ca/Al---- 65
- Figure 3-27 Fowler-Nordheim plot, ln (I/F²) vs. 1/F, for the devices with configurations of ITO / PEDOT / G2 / Ca / Al and ITO / PEDOT / G2 / P1 ~ P4 : Li / Ca / Al------ 65