目錄

	頁次
中文摘要	I
英文摘要	П
目錄	Ш
表目錄	V
圖目錄	VI
第一章 序論	1
第二章 實驗	4
2.1 試劑及其來源	4
2.2 分析儀器	4
2.3 產物之合成	5
2.3.1 利用CTAC做為晶面成長控制劑進行Cu-Ag置換反	應合
成奈米带狀銀	5
2.3.2 改變靜置時間觀察帶狀產物的改變	6
2.3.3 利用不同型態的碳膜進行反應,觀察帶狀產物	6
2.3.4 銅的影響	6
2.3.5 温度的影響	6
第三章 實驗結果與討論	7

3.1 改變靜置時間觀察帶狀產物的改變	7
3.1.1 利用 SEM 觀察不同靜置時間的產物型態	7
3.2 利用不同型態的碳膜進行反應,觀察帶狀產物	9
3.2.1 利用 SEM 觀察不同型態探膜的產物形態	9
3.3 銅的影響	11
3.3.1 利用 SEM 觀察銅網前處理過後的產物形態	11
3.4 温度的影響	13
3.4.1 利用 SEM 觀察感便反應溫度過後的產物型態	13
3.5 利用 TEM、ED、HRTEM與XRD對奈米銀帶作細部結構分析	14
第四章 反應機制與變因討論	19
第五章 結論	22
參考文獻	23

表目錄

	頁次
表一 A 系列樣品之製備條件	26
表二 B 系列與 C 系列樣品之製備條件	26
表三 D系列與E系列樣品之製備條件	26

圖一	(樣品A1)溶液靜置5 min後進行反應 (a)碳膜上的生成物之
	SEM影像圖 (b)圖(a)之能量分散光譜(EDS)27
圖二	(樣品A2)靜置10 min反應後的生成物之SEM影像圖 (a)碳膜
	上 (b)碳膜與銅網之間28
圖二	(樣品A3)溶液靜置15 min反應後碳膜上的生成物之SEM影
	像圖 (a)低倍率SEM影像圖 (b)高倍率SEM影像圖29
圖四	(樣品B1)利用無洞碳膜進行反應,銅網上的生成物之SEM
	影像圖 (a)低倍率SEM影像圖 (b)高倍率SEM影像圖30
圖五	溶液靜置15 min有洞碳膜的反應生成物之SEM影像圖(a)(樣
	品B2)有許多奈米銀帶 (b)(樣品B3)只有右邊部分有奈米銀
	帶,左上方沒有 (c)(樣品B4)沒有奈米銀帶31
圖六	(a)最佳的碳膜形態 (b)最佳形態碳膜反應後的生成物32
圖七	(樣品C1)無碳膜銅網在最佳條件下進行反應之SEM影像圖
	(a)低倍率SEM影像圖 (b)高倍率SEM影像圖33
圖八	(樣品C2)銅片在最佳條件下反應之SEM影像圖 (a)低倍率
	SEM影像圖 (b)高倍率SEM影像圖34
圖力	(樣品D1) 銅網473 K執處理24小時,以最佳條件進行反應

	的SEM影像圖 (a)與(b)皆為碳膜上的反應生成物35
圖十	銅網473 K熱處理24小時的SEM影像圖 (a)低倍率SEM影像
	圖 (b)高倍率SEM影像圖36
圖十一	(樣品D1) 銅網473 K熱處理24小時,以最佳條件進行反應
	的SEM影像圖 (a)與(b)皆為銅網上的反應生成物。(C)為圖
	(b)之能量分散光譜圖(EDS)37
圖十二	(樣品E1)銅網在298 K進行反應的SEM影像圖(a)碳膜上
	(b)銅網上38
圖十三	(A)奈米銀帶TEM影像圖 (B)奈米銀帶示意圖 (C)將圖(A)
	箭頭所指部位放大,基座無傾斜(x=0,y=0);(D)基座沿
	著y軸傾斜19°(x=0,y=19);(E)基座沿著x軸傾斜19°(x
	=19,y=0)。圖(C)到(E)可以清楚看見箭頭所指部分有不
	同的寬度,從圖(D)可知奈米銀帶厚度約為3.6 nm,其寬度
	約在11 nm到23 nm之間,其寬度與厚度比(w/t)約為3到6。39
圖十四	(a)奈米銀帶的低倍率 TEM 影像圖 (b)對圖(a)中的奈米銀
	带進行全光束電子繞射所得的ED 圖;右半邊為利用銀fcc
	XRD 數據轉換所得電子繞射圖 (c)為對圖(a)中的奈米銀帶
	進行全光束電子繞射所得的 ED 圖;右半邊為利用銀hcp
	XRD 數據轉換所得雷子繞射圖,其中較細的圓圈表示其強

	度較強。其中較粗的圓圈表示其強度較	10
圖十五	(a)奈米銀帶 TEM 影像圖 (b)對圖(a)中的單一奈米銀帶進	
	行電子繞射(圈選部份)所得的 ED 圖 (c)奈米銀帶HRTEM	
	影像圖,其層間距為0.25 nm,與銀hcp結構中的(10-10)面	
	層間距0.25 nm相同。	1 1
圖十六	(a)奈米銀帶成核點附近之 TEM 影像圖 (b)對圖(a)進行全	
	光束電子繞射所得的 ED 圖;左半邊為利用 XRD 數據	
	轉換所得電子繞射圖 (c)奈米銀帶高倍率TEM影像 (d)對	
	(c)中單一奈米銀帶進行電子繞射(箭頭所指部分)所得的ED	
	圖;其zone axis=[111]	12
圖十七	奈米銀帶樣品所做的 XRD 繞射圖,下表為由 XRD 數	
	據中利用公式求得奈米銀帶的晶格常數與JCPDS標準值之	
	比較。	13
圖十八	奈米銀帶產生途徑之示意圖。首先,AgNO3的Ag ⁺ 與CTAC	
	的Cl ⁻ 在溶液中相遇而產生了AgCl的懸浮顆粒;接著藉由光	
	的能量,AgCl的懸浮顆粒被還原為懸浮的銀奈米顆粒,部	
	分隨機移動的奈米銀顆粒落到了銅網上;之後,藉由賈凡	
	尼電池的Cu-Ag制換反應在CTAC的輔助之下成長為奈米銀	
	带。	14