LIST OF FIGURES

Chpater 1
Figure 1.1 : Colloidal Semiconductor nanocrystals2
Figure 1.2 : Illustration of quantum confinement3
Figure 1.3 : The energy level of general II-VI semiconductor materials
Figure 1.4 : Emission and sizes of quantum dots of different composition
Figure 1.5 : Absorption spectra of a size series of ZnSe QDs (a) CdSe QDs6
Figure 1.6: (A) The diagram of a general OLED (B) Principle of operation of a OLED 10
Figure 1.7: A representation of Förster and Dexter processes in energy transfer
Figure 1.8: (A) Basic QD-LED structure14
Figure 1.9 : Schematic description of bulk heterojunction solar cells
Figure 1.10 : Schematic description of photoactive materials.
Figure 1.11 : Schematic description of device: ITO/PEDOT:PSS/polymer blend/Al 17
Figure 1.12: Current-voltage (I-V) curves of a solar cell
Chpater 3
Figure 3.1: PL spectra of pure co-polymer, co-polymer/QDs thin films and QDs in solution.
Inset shows the chemical structure of the co-polymer. (B) Luminance-voltage characteristic
of device with or without QDs at $T = 300 \text{ K}$
Figure 3.2: (a) FT-IR spectra of PF1, PF1-CdSe/ZnS nanocomposite and CdSe/ZnS. (b)
Luminescence-voltage efficiency characteristics of the PF1 and nanocomposite LED
devices
Figur 3.3: (a) The schematic of the device structure the chemical structures for
polyfluorene derivatives: (b) PFO and (c) PF1
Figure 3.4 (a) UV-Vis absorption and solution PL spectra of CdSe QD and (b) TEM
micrograph of CdSe
Figure 3.5 : PL (solid lines) and PLE (dotted) spectra of CdSe/ZnS QDs in hexane and PL
spectrum of PF1 (dashed doted), showing the overlap between PL of PF1 and PLE of
CdSe/ZnS QDs 34
Figure 3.6 : Energy level diagram of the hybrid multilayered white-emitting QD-LEDs
35
Figure 3.7: (a) Applied voltage dependence of EL spectra for devices with
ITO/PEDOT/PF1/QDs (40 nm)/TBPI/Ca:Al structure. (b) Comparison of band width of EL
spectra (soild lines) at 13 V and that of solution PL spectra for QDs (dashed)

The EL spectra of the PF1 and PF1/QD LEDs are shown as a function of the bias in the
inget. The bigg violations for the EU in the ingest and 0.0 V (solid lines) and 6.0 (deched)
inset. The bias voltages for the EL in the inset are 9.0 V (solid lines) and 6.0 (dashed).
39
Figure 3.9: I-V curves of hybrid PFO/QD (solid lines) and PFO (dashed) LEDs. The EL
spectra of the pure PFO and PFO/QD LEDs are shown as a function of the bias in the inset.
The bias volatges for the EL spectra in the inset are 6.0V for both EL devices39
Chpater 4
Figure 4.1 : The energy levels and different materials for inverted polymer solar cell $\ldots \ldots 42$
Figure 4.2 : Scheme for the formation of dipole layer on ITO and its effect on reducing the
work function of ITO
Figure 4.3 : (a) TGA and differential thermal analysis of zinc acetate dihydrate at 10 $^{\circ}\text{C}$
min ⁻¹ ramp rate. The inset shows XRD patterns of (40 nm) ZnO films on ITO/glass,
showing intensity of (002) peak ($2\theta=34.4^{\circ}$) increasing with increased annealing
temperature to $\sim\!500$ °C, and then leveling off thereafter. (b) XRD patterns of a ZnO film
obtained by annealing from 25 to 500 °C
Figure 4.4 : (a) Device structure and chemical structure of inverted solar cell with C_{60} -SAM
modification. (b) J-V characteristics of inverted ZnO NP/ P3HT:PCBM BHJ solar cells
with and without C ₆₀ -SAM modification processed under inert and ambient environments
Figure 4.5 : (a) Schematic diagram of an ideal nanostructured oxide/ conjugated polymer
photovoltaic device.(b) Absorption spectra of the P3HT:PCBM films on the array of the
ZnO nanorods. The ZnO crystal growth time was changed from 0 to 80 min.(c) FE-SEM
cross section images of ZnO nanorod on ITO with different crystal growth time. (d)
FE-SEM cross section images of the P3HT/PCBM layer spin-coated on the ZnO nanorods.
Figure 4.6: (a) device structure, (b) SEM cross-sectional image of the inverted polymer
solar cell, scale bar: 200 nm
Figure 4.7 : SEM image of the ZnO nano-ridge film
Figure 4.8: AFM images of the (a) ZnO nano-ridge and (b) ZnO nanoparticle planar films
showing a 5 μm×5 μm surface area. Close-up AFM images of ZnO nano-ridge(c) and ZnO
nanoparticle planar(d) films showing a 500nm×500nm surface area

Figure 4.9: The absorbance spectra for P3HT:PCBM on ZnO nano-ridge film (dotted
line) and planar film of ZnO nanoparticles (bold line) and the transmittance spectra of
the nanoridge film (dotted line) and planar film (bold line)
Figure 4.10: (a) Current density-voltage (J-V) curves of the ZnO nano-ridge (triangle) and
ZnO nanoparticles (square) devices under 100 mW/ cm2 AM1.5 irradiation (b) Dark J-V
curve of the same devices57
Chpater 5
Figure 5.1: (The J-V characteristic of two cells under illumination.) The top cell delivers
higher open-circuit voltages, while its photocurrent is much lower than the bottom cell $\dots 61$
Figure 5.2: A close-up of the vertical axis of Fig. 1 between 0 and 10 A/m2. The horizontal
lines 1–3 cross the curves of the bottom (A, D and F) and top cells (B, C and E), indicating
a constant current density. For each line the energy-band diagrams are given
Figure 5.3: The structure of the tandem device in which the two cells are separated by a
highly transparent layer of TiOx covered by the highly conductive PEDOT:PSS65
Figure 5.4: a, Device configuration and b, proposed energy level diagram of tandem solar
cells containing two BHJs as sub-cells and TiO ₂ /PEDOT4083 as inter-connection layer. c,
absorbance (optical density, i.e. O.D.) of P3HT:PC71BM and HSi:PC71BM BHJ films, and
tandem photovoltaic cells in absence of metal cathode. d, Calculated absorption profile of
the tandem cell under AM1.5G spectrum illumination. Integration of the absorbed number
of photon for the two sub-cells indicates that the rear cell has overall absorption 15% larger
absorption than the front cell.
Figure 5.5: (a) The device structure (left) and TEM cross-sectional image (right) of the
inverted polymer tandem solar cell. Scale bars, 100 nm (b) absorbance (optical density, i.e.
O.D.) of P3HT:PC71BM and HSi:PC71BM BHJ films, and tandem photovoltaic cells in
absence of metal cathode (c) Energy-level diagram showing the HOMO and LUMO
energies of each of the component materials
Figure 5.6 : (a) J-V characteristics of a tandem and reference single cells measured under
standard AM1.5G, 100mW/cm ² illumination. (b) EQE of sub-cells in tandem structure
(with and without monocolor light bias) and reference single cells
Figure 5.7: FE-SEM cross section images of ZnO on ITO with different annealing
temperature (a) 150°C and (b) 300°C ; (c) Dark J-V curves of the amorphous ZnO layer
(solid triangle) and crystalline ZnO layer (triangle) devices

Figure 5.8 : Dark J-V curves of the Amorphous ZnO layer (solid triangle) and crystalline
ZnO layer (square) devices
Figure 5.9 : (a) AFM image of ZnO films on top of ITO at 150°C treatment and (b) on the
top of MoO_3/Al with 150oC treatment, respectively. A more dense coverage of ZnO layer
is formed. 79
Figure 5.10 : J-V characteristics of tandem cells with different interlayers. Insert: SEM
images of each tandem device.
Figure 5.11 : Comparison of the absorption of V_2O_5 and MoO_3 layer before and after
ZnO-d deposition.
Figure 5.12 : J–V characteristics of tandem cells with different active polymer materials82

LIST OF TABLES

Table 4-1 Summarized results of the device characteristics from representative inverted
polymer solar cells
Table 4-2 The device performance of ZnO nanostructure based inverted polymer solar cells
Table 5-1 The device performance of amorphous or crystalline ZnO inverted cells 77
Table 5-2 The device performance of different combined layer on ITO based inverted cells
Table 5-3 The device performance of inverted tandem cells with different combined
interlayers 80

Abbreviations

<>	Averaged value
CdSe	Cadmium Selenide
ZnS	Znic Sulfide
ZnO	Znic Oxide
EDX	Energy dispersive X-ray
FWHM	Full Width at Half Maximum
HDA	Hexadecylamine
HRTEM	High Resolution Transmission Electron Microscopy
ITO	Indium tin oxides
LED	Light Emitting Device
NC	Nanocrystal
NP	Nanoparticle
PL	Photoluminescence
PMMA	Poly(methylmethacrylate)
PSS	Poly(4-styrenesulfonate)
PVK	Polyvinylcarbazole
QD	Quantum Dot 1896
QE	Quantum Efficiency
RT	Room Temperature
TBP	Tri-n-butylphosphine
TEM	Transmission Electron Microscopy
ТОР	Tri-n-octylphosphine
ТОРО	Tri-n-octylphosphine oxide
UV-Vis	Ultraviolet-visible
EQE	External quantum efficiency
MEA	Monoethanolamine
TGA	Thermogravimetric analysis
PCE	Power conversion efficiency
ВНЈ	Bulk heterojunction