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摘 要 

 

    針對生產者的需求，我們定義了可容許性容忍區間的概念。

由此一觀念，一般藉由 Wilks (1941) 所定義的容忍區間可能是

不具可容許性的容忍區間。因此，我們證明出最常用於常態分配

的 Eisenhart et al. (1947) 容忍區間是不具可容許性的。我們

證明出一個隨機區間是具有可容許性的性質，若且為若它是一個

由覆蓋區間所建立的信賴區間。我們更進一步地評估一些已存在

的容忍區間它們的可容許性程度。最後，我們推導出某些分配的

最短可容許性容忍區間。 

關鍵字：信賴區間；覆蓋區間；容忍區間 
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Abstract 
 

For tolerance interval, we define a concept of admissibility that 

is desired for manufacturer. This leads to a problem that the general 

concept of tolerance intervals defined by Wilks (1941) may provide 

in-admissible tolerance intervals. For this, we show that the most 

popular normal tolerance interval of Eisenhart et al. (1947) is not 

admissible. A theory showing that a random interval is an admissible 

tolerance interval if and only if a confidence interval of a coverage 

interval is established. We further evaluate some existed tolerance 

intervals for their admissibility and also derive the shortest admissible 

tolerance intervals for some distributions. 

Key words: Confidence interval; coverage interval; tolerance interval. 
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Tolerance Intervals

Abstract

For tolerance interval� we de�ne a concept of admissibility that is desired

for manufacturer� This leads to a problem that the general concept of tol�

erance interval de�ned by Wilks ���	�
 may provide in�admissible tolerance

intervals� For this� we show that the most popular normal tolerance interval

of Eisenhart et al� ���	�
 is not admissible� A theory showing that a ran�

dom interval is an admissible tolerance interval if and only if a con�dence

interval of a coverage interval is established� We further evaluate some ex�

isted tolerance intervals for their admissibilities and also derive the shortest

admissible tolerance intervals for some distributions�

Key words� Con�dence interval coverage interval tolerance interval�

�� Introduction and Motivation

Statistical theory of interval estimation mostly deals with the con�dence

interval to contain a parameter �� In many applications� we require an

interval to contain the future r�v� which is a prediction problem� Among

the alternatives� intervals in the form of tolerance intervals are widely used

in quality control and related prediction problems to monitor manufacturing

processes� detect changes in such processes� ensure product compliance with

speci�cations� etc�

In manufacturing industry� speci�cation limits for one charateristic of

an item� saying L� and L�� de�ne the boundaries of acceptable quality

for an manufacturing item �component
� For a manufacturer of a mass�

production item� the tolerance interval is designed for a quality assurance

problem� The manufacturer is interesting in an interval that contains a

speci�ed �usually large
 percentage of the product and he knows that unless

��� of his production is acceptable in the sense that the item�s characteristic

falls in the limits� he will loss money in this production� With this interest�

Typeset by AMS�TEX
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�

a hypothesis testing problem is formulated as follows�

H� � There is an interval that includes at least a certain proportion
of acceptable measurements with a stated con�dence�

����


To conquer this hypothesis testing problem� it is done in literature through

two steps� The �rst step is to consider an interval estimation problem�

An interval that includes at least a certain proportion
of measurements with a stated con�dence�

����


called the tolerance interval� Suppose that we have a a random sample

X � �X�� ���� Xn

� from a distribution with pdf f�x� �
� what have been

done in producing a tolerance interval� this problem was treated in a pioneer

article by Wilks ���	�
 where a ��content tolerance interval with con�dence

�� � is an inetrval �T�� T�
 � �t��X
� t��X

 that satis�es

P�fP��X� � �T�� T�
jX
 � �g � �� � for � � � ����


where � is the parameter space and X� represents the future observation

with the same distribution� The second step for solving problem in ����
 is

testing hypothesis of ����
 based on the tolerance inteval in ����
 with the

following rule �see Bowker and Goode �����

 as

We accept the lot of product if t� � L� and t� � L��
i�e�� we reject the lot of product if either t� � L�or t� � L�

or both t� � L�and t� � L��
���	


In this two steps in solving the hypothesis problem of ����
� its power of

achievement completely relying on how good a tolerance interval devloped

from ����
 for need in ����
� That is� inappropriateness of selecting a toler�

ance interval may provide inappropriate decision for problem ����
�

A vast literature on tolerance intervals of ����
 has been developed �see

for example Wilks ���	�
� Wald ���	�
� Paulson ���	�
� Guttman �����


and� for a recent review� Patel �����

� There are de�ciencies for the classi�

cal approaches in developing tolerance intervals� As noted by Bucchianico�

Einmahl and Mushkudiani �����
� both the mathematically and the engi�

neering oriented statistics textbooks hardly deal with this topic explicitly�



�

and� if they do� the treatment is often con�ned to tolerance intervals for

the normal distribution� This is partly because tolerance intervals can be

di�cult to construct for particular distributions �although nonparametric

tolerance intervals based on order statistics can be obtained for particular

values of the content
 and� perhaps� partly because as Carroll and Ruppert

�����
 suggest� the idea of conditional coverage probability is considered

to be too di�cult for beginning students� Besides the above de�cincies�

we consider one question regarding with a fundamental concept of interval

selection�

Considering the whole class of tolerance intervals in ����
 as a base� cri�

terions of goodness� mainly modi�ed from goodness of con�dence intervals�

have been introduced� Marshall ���	�
 and Wallis �����
 pointed out that

a tolerance interval of ����
 can be thought as that it provides an accep�

tance region for a test of the hypothesis that a new observation is drawn

from the same distribution as that of the original sample� Goodman and

Madansky �����
 has a similar argument� Comparing tolerance intervals

based on criterion of expected length is the most popularly used selection

technique� For normal tolerance interval� Eisenhart etc� ���	�
 constructed

one� approximately the shortest� With the appealing property of shortest

length� it is now popularly implemented in manufacturing industry and in�

troduced in engineering texts� This criterion has also been a guide line

for developing regression tolerance interval �see Goodman and Madansky

�����
� Liman and Thomas �����
 and Mee et� al� �����

� The goal that

the manufacturer wants to know if there is an interval that includes at least

a proprtion of acceptable measurements with a speci�es con�dence is clear�

Our concern is that if the the testing rule of ���	
 applying on the shortest

tolerance interval can achieves the goal of the manufacturer�

In statistical inferences� the general rule for determining a good technique

is �rst setting a class of admissible� in some sense� techniques and then

investigate and �nd the best �or an good
 one with some advanced criterion

from this admissible class� For examples� the admissibilities being accepted

to apply in literature include unbiasedness and invariance in point estimation



�

and restricting the type one error probability in hypothesis testing with

advance criterions including variance and power� respectively� For tolerance

selection� our concern come from the following reason�

Without careful determination of admissible techniques�
a technique selected through any advanced criterion

may be meaningless
����


It is done by treating the whole class of tolerance intervals in ����
 as an

admissible class and searching the best �shortest
 from it� Is this appropriate

from the point of product manufacturing�

What is an appropriate sense of admissibility for tolerance interval� A

����� � �
� con�dence interval for a parameter � is expected to having

������ �
 percentage that the sample con�dence intervals in the long run

will cover the unknown �� With this� from the hypothesis testing problem in

����
� it is not in�appropriate that a manufacturer consider the admissibility

with�

A � � content tolerance interval with con�dence �� � is
admissible if� when H� is accepted through the rule in ������

there are at least proportion � of acceptable
measurements included with con�dence �� ��

����


In this paper� we consider the following topics� �a
 We introduce an

explicit concept of admissibility for tolerance intervals� �b
 We then show�

with normal tolerance interval of Eisenhart et al� ���	�
 as example� that

the shortest one may be in�admissible� �c
 We develop a necessary and

su�cient condition for a tolerance interval to be admissible� which indicates

that the the con�dence interval of coverage interval by Chen et al� �����


is admissible� �d
 Developing shortest admissible tolerance intervals is the

�nal task in this paper�

	� Admissibility for Tolerance Intervals

A tolerance interval is required� for example� by a manufacturer of a mass�

production item who needs to establish limits to contain at least a certain

proportion of the product with high degree of con�dence� Since the pioneer



�

article by Wilks �l�	�
� this need leads to a popular notion of tolerance

interval formulated as a random interval �T�� T�
 that satis�es

P�fP �
X�

�T�� T�
 � �g � �� � for � � � ����


which is called a ��content tolerance interval with con�dence ���� Our con�

cern is� with the fact that there may have many choices� that if any proposal

of interval �T�� T�
 ful�lling ����
 satis�es the real need of the manufacturer

especially for those been popularly applied in industry� We �st consider

formulating the concept of admissibility of ����
 into an explicit form�

We say that �a��
� b��

 is a � coverage interval of variables X� if it

satis�es

PX�
f�a��
� b��

g � � for � � ��

We introduce a concept of admissible tolerance interval�

De�nition 	��� Let �T�� T�
 be a ��content tolerance interval with con�

�dence � � �� We call it an admissible ��content tolerance interval with

con�dence �� � and say that it is admissible if the following

P�fP �
X�

��T�� T�
� � �� �a��
� b��

� �T�� T�
g � �� � for � � �� ����


holds for some � coverage interval �a��
� b��

�

We have several notes in the followings�

�a
 With the fact that

P�fP �
X�

��T�� T�
� � �� �a��
� b��

� T�� T�
g �
P�fP �

X�
��T�� T�
� � �g for � � ��

a ��content tolerance interval with con�dence � � � is not guaranteed to

be an admissible ��content tolerance interval with the same con�dence� For

any in�admissible tolerance interval �T�� T�
� if its observation �t�� t�
 is con�

tained in speci�cation limit interval �LSL�USL
� there is no assurance with

con�dence that other observation intervals containing � percentage of mea�

surements are with acceptable measurements of � percentage or more�



�

�b
 If a ��content tolerance interval with con�dence ��� is not admissible�

then it must be admissible for some other con�dence smaller than �� ��

�c
 The admissibility has to be accompanied with a speci�ed couple f�� ��
�g� Otherwise� every random interval is an admissible tolerance interval�

When �T�� T�
 is an admissible ��content tolerance interval with con�dence

� � � for some � coverage interval� there may have others �may be in��

nite
 alternative � coverage intervals �a��
� b��

 such that �T�� T�
 is still

an admissible tolerance interval for these coverage intervals�

�d
 If there is a random interval �T�� T�
 satis�es ����
� is it an admissible ��

content tolerance interval with con�dence ���� The answer is yes through

the the fact that

fPX�
��T�� T�
� � �� �a��
� b��

� �T�� T�
g � fPX�

��T�� T�
� � �g�

The general theory of developing tolerance interval in literature is �xing

percentages � and ��� to select a statistic T �k
 with factor k and search k��

and k�� such that �T �k��
� T �k
�
�

 solves the following minimization problem�

argmin��k��k� �T �k�
�T �k�
 � P�fPX�
��T �k�
� T �k�
� � �g � ����� ����


For review of examples of choosing statistic T � see Patel �����
�

De�nition 	�	� Let �T �k��
� T �k
�
�

 solves the problem of ����
� We then

call it the shortest ��content tolerance interval with con�dence �� ��

We are arguing that a shortest tolerance interval may be meaningless

for that it may be in�admissible� We will study this point with normal

distribution as an example� Suppose that the normal mean 	 and variance


� are known� A ��content tolerance interval with ���� con�dence is

�	� z ���
�


� 	� z ���
�



� ���	


Suppose that the interval of ���	
 is contained in speci�cation limit interval

�LSL�USL
� We then assure with ���� con�dence that it covered at pro�

portion � of acceptable measurements� Actually any one with � � ��� �� �


in the following

�	� z�
� 	� z���

 ����




	

is a ��content tolerance interval with ���� con�dence� So� when interval

in ���	
 is not contained in speci�cation interval �LSL�USL
� we can not

be sure that there is no ��content tolerance interval with ���� con�dence

since there may have other one in ����
 contained in speci�cation interval�

Determining appropriate � coverage is somehow more appropriate as an

engineering problem�

Suppose that now we have a normal random sample X�� ���� Xn from nor�

mal distribution N�	� 
�
 where mean 	 and standard deviation 
 are both

unknown� Wald and Wolfowitz ���	�
 �rst introduced the normal tolerance

interval of the form

� �X � kS� �X � kS
 ����


where value k meets the requirement ����
 for pre�assigned �� � � � and

sample size n� The development of the shortest tolerance interval involves

the distribution of �� �X � kS
��� �X � kS
 which is extremely complicated

as indicated by Guttman �����
� With this di�culty� the shortest tolerance

interval � �X� k�S� �X� k�S
 has not been able to provide an explicit formu�

lation� However� among many authors� Eisenhart et al� ���	�
 provides one

with length approximately shortest� We will study this approximate one

latter for its admissibility in Section ��

The study of admissibility of Eisenhart et al��s shortest tolerance interval

� �X�k�S� �X�k�S
 is important since the shortest one is generally accepted

the most interesting technique in literature in developing tolerance interval�

The aim of the rest in this section is to show the in�admissibility of it

in this normal case� To do this� we �rst show that among � coverages

�	 � z�
� 	 � z���

 for � � � � � � � the one achieves the maximum

con�dence when the coverage is the symmetric one with � � ���
� �

Theorem 	�
� Let C���
 � �	� z�
� 	� z���

� Then

�� �

�
� argmax�������P���fPX�

�� �X � kS� �X � kS
� � ��

C���
 � � �X � kS� �X � kS
g�






Proof� We know that

P���fPX�
�� �X � kS� �X � kS
� � �� C���
 � � �X � kS� �X � kS
g

� P���f�� �X � kS
� �� �X � kS
 � �� C���
 � � �X � kS� �X � kS
g
� E���fP������ �X � kS
� �� �X � kS
 � �� C���
 � � �X � kS� �X � kS
jS�g�
We see that� for given S � s�

P���f�� �X � ks
� �� �X � ks
 � �� C���
 � � �X � ks� �X � ks
g ����


� P���f�� �X � ks
� �� �X � ks
 � �� 	� z���
 � ks � �X � 	� z�
 � ksg
where � is the distribution function of the standard normal distribution

N��� �
� Then minimizing the probability of ����
 on � � ��� � � �
 may

be done by maximizing the probability P����z���
 � ks � �X � 	 � z�
 �

ks
 given that value k satis�es P������ �X � ks
 � �� �X � ks
 � �
� This

implies that ���z�
�ks
 � ���z���
�ks
 where �� is the pdf of a normal

distribution N��� 
�
 which further indicates that

P���f�� �X � ks
� �� �X � ks
 � �� C���
 � � �X � ks� �X � ks
g �
P���f�� �X � ks
� �� �X � ks
 � �� C��
 � � �X � ks� �X � ks
g�

����


The theorem is followed from ����
 associated with the fact that �X has a

symmetric distribution� �

With this result� we evaluate the maximum con�dence for that a tolerance

interval of ����
 could be requiring only to check if for � coverage C��
�

Lemma 	��� For given k � ��

P���fPX�
�� �X � kS� �X � kS
� � �g �

P���fPX�
�� �X � kS� �X � kS
� � �� C�� � � �X � kS� �X � kS
g�

Proof� By letting

A�k
 � f
�
� x�

���
xn

�
A �

Z �x�ks

�x�ks
�����x
dx � �g and

AC����k
 � f
�
� x�

���
xn

�
A �

Z �x�ks

�x�ks
�����x
dx � �� C��
 � ��x� ks� �x� ks
g�



�

Obviously we have AC����k
 � A�k
� For �xed k � � and �	� 

� there exists

x�� ���� xn such that �x� ks � 	� z ���
�


 and �x� ks � 	� z ���
�


� Then� this

vector

�
� x�

���
xn

�
A is in A�k
� We further let

A��k
 � f
�
� x�

���
xn

�
A � �x� ks � 	� z ���

�


 and �x� ks � 	� z ���
�


 with

PX�
���x� ks� �x� ks
� � �g�

With normal distribution� we have P����

�
�X�

���
Xn

�
A � A��k

 � PX�

����� 	�

z ���
�



� � ���
� � �� This implies that

P����

�
�X�

���
Xn

�
A � A�k

 � P �

�
�X�

���
Xn

�
A � AC����k

 ����


with the facts that A��k
 � A�k
 and A��k
 � AC����k
 � �� �

We are now ready to state the main theorem about in�admissibility of

the popularly used the shortest normal tolerance interval�

Theorem 	��� The shortest ��content tolerance interval of the form � �X �
k�S� �X � k�S
 with con�dence �� � is not admissible�

Proof� From ����
�

P �AC����k

 � �� � for k � k��

This tolerance interval � �X � k�S� �X � k�S
 is not admissible in sense of

����
� �


� Admissibility Veri�cation of Tolerance Intervals Through Sim�

ulation

With showing that the shortest normal tolerance interval is in�admissible�

it is worth in examining the popularly used normal tolerance intervals to



��

see if they are admissible� As noted by Guttman ������p��
� the two sided

normal tolerance intervals involves the distribution of the coverage

�� �X � kS
� �� �X � kS


which is exceedingly complicated so that numerical approximation or simu�

lation are generally used to develop them� The most popularly used normal

tolerance interval is the one compute by Eisenhart et al� ���	�
 which is con�

sidered the approximately shortest� We perform two simulations to study

this normal tolerance intervals� First� we simulate its role as a tolerance

interval of ����
� Second� we simulate its admissibilty by computing its ap�

proximate con�dence of a coverage interval� If the approximate con�dences

are smaller than �� ��s� they are approximately in�admissible�

We select values k from the table developed by Eisenhart et al� We

perform the simulation in two steps� First� we want to evaluate the con��

dence that the proposed tolerance interval covers the sample space of the

underlying distribution� i�e�� we want to see how close that it achieves the

shortest tolerance interval of ����
� Everytime we select n random sample

from normal distribution for a �xed mean 	 and variance 
�� We perform

this simulation with replication m � ���� ���� Let �xj and s�j be the sample

mean and sample variance for the jth sample� The simulated con�dence is

approximated by

�

m

mX
j��

I����xj � ksj
� ���xj � ksj
 � �
� ����


where ���� is the distribution function of the underlying normal distribution�

For � � ���� ����� ����� �� � � ���� ����� ���� and n � ��� ��� ��� we display

the simulated results in Table ��

Table �� Con�dence for normal tolerance intervals in covering future vari�

able



��

�� � � ��� �� � � ���� �� � � ����
� � ���
n � �� ������ ���	�� ������
n � �� ������ ���	�� ������
n � �� ������ ���	�� ������
� � ����
n � �� ������ ���	�� ������
n � �� ������ ���	�� ������
n � �� ������ ���	�� ������
� � ����
n � �� ������ ������ ������
n � �� ������ ���	�� ������
n � �� ������ ���	�� ������

Table � indicates that there are sample intervals �t�� t�
 with con�dence close

to �� � containing � percentage or more of measurements� however� these

speci�ed measurements are not sured to lie in some �xed covearge interval�

We further to verify this point�

We now concern the question if it is appropriate treated as a ��content

coverage interval based tolerance interval with con�dence � � �� We per�

form the simulation in the same assumptions for results in Table �� The

approximate con�dence for it playing a role of con�dence interval of the

coverage interval C��
 � �	� z ���
�


� 	� z ���
�



 is de�ned as

�

m

mX
j��

I����xj � ksj
� ���xj � ksj
 � �� C��
 � ��xj � ksj � �xj � ksj

�

Table 	� Con�dence for normal tolerance intervals in covering prediction

interval �	� z ���
�


� 	� z ���
�
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�� � � ��� �� � � ���� �� � � ����
� � ���
n � �� ������ ������ ������
n � �� ������ ����	� ������
n � �� ������ ������ ������
� � ����
n � �� ���	�� ������ ������
n � �� ������ ������ ������
n � �� ������ ������ ����	�
� � ����
n � �� ������ ������ ����	�
n � �� ������ ������ ������
n � �� ������ ������ ������

For the simulation results in a design of given ���� the evaluated con�dences

are �uctuant in sample size n and coverage �� The de�cits could be large

as the cases in � � � � ��� and n is large� If we expect the Eisenhart et

al��s tolerance interval to be admissible� the answer is not promissing� This

veri�es the result in Theorem ��� that the shortest tolerance interval may

be in�admissible�

�� Coverage Interval Based Tolerance Intervals

With the example of normal tolerance interval of Wald and Wolfowitz

���	�
� it is known that not every tolerance interval of ����
 of Wilks ���	�


is admissible� Then� is there a general technique in developing tolerance

interval which ensures the property of admissibility�

Chen� Huang and Welsh �����
 introduced a tolerance interval which is

a ������ �
� con�dence interval of a special type coverage interval �mode

type interval
� We extend this concept in a general setting� We say that a

random interval �T�� T�
 is a ������ �
� con�dence interval of a coverage

interval �a��
� b��

 if it satis�es

�� � � P�fT� � a��
 � b��
 � T�g for � � � �	��


When either t��X
 � a��
 � c or t��X
 � b��
 � c holds for some constant c

including �� or� we have one sided �������
� C�I� of ��content coverage

interval� The interest of this con�dence interval here is with � coverage�



��

De�nition ���� If a ��content tolerance interval with con�dence ��� is a

������ �
� con�dence interval of some � coverage interval� then we call it

a ��content coverage interval based tolerance interval with con�dence ����

The following theorem states a necessary and su�cient condition for that

a tolerance interval is admissible which also addresses a connection of the

tolerance interval with the con�dence interval of a coverage interval�

Theorem ��	� A random interval �T�� T�
 is an admissible ��content tol�

erance interval with con�dence � � � if and only if it is a ����� � �
�

con�dence interval of a � coverage interval�

Proof� Let �T�� T�
 be a ����� � �
� con�dence interval of � coverage

interval �a��
� b��

� i�e��

P�f�a��
� b��

 � �t��X
� t��X

g � �� �� �	��


For X � x subjected to �a��
� b��

 � �t��X
� t��X

� we have

PX�
f�t��x
� t��x
g � PX�

f�a��
� b��

g � ��

This leads to

f�a��
� b��

� �t��X
� t��X

g
� fPX�

��t��X
� t��X

� � �� �a��
� b��

� �t��X
� t��X

g�

Henceful� from �	��
�

P�fPX�
��t��X
� t��X

� � �� �a��
� b��

� �t��X
� t��X

g � �� �

indicating the admissibility of �T�� T�
�

On the other hand� let �T�� T�
 be an admissible ��content tolerance in�

terval t � coverage interval �a��
� b��

 with con�dence �� ��

P�f�a��
� b��

 � �t��X
� t��X

g �
P�fPX�

��t��X
� t��X

� � �� �a��
� b��

� �t��X
� t��X

g � �� ��



��

This shows that �T�� T�
 is a ������ �
� con�dence interval of �a��
� b��



and the direction ��
 of the proof is done� �

When we are interesting in admissible tolerance interval� the con�dence in�

terval of a coverage interval guranntees in achieving the goal of admissibility�

With this� the con�dence interval of mode coverage interval is appealing in

sense of shortest length of coverage interval� If people are interesting in

other type of coverage intervals such as the symmetric ones� they may be

easily established from the lines of Chen� Huang and Welsh �����
�

Owen ����	
 argued that most tolerance intervals developed for normal

distribution are set up so that the percentage nondefective is controlled

������ and hence the defectiveness could be all be in one tail� Then he

consider a normal tolerance interval such that no more than the proportion
���
� is below the lower tolerance limit and no more than the proportion ���

�

is above the upper tolerance limit� Extension from his idea� we may expect

a ��content tolerance interval �T�� T�
 with con�dence �� � that satis�es

P �P �X� � T�jX
 � �� �

�
and P �X� � T�jX
 � �� �

�
� � �� �� �	��


Theorem ��
� Let �a��
� b��

 be with P �X� � a��

 � ���
� and P �X� �

b��

 � ���
� � Then the ��content tolerance interval as a ������ �
� con��

dence interval of �a��
� b��

 satis�es the Owen�s restriction �	��
�

Proof� It is induced from the followingS�

P�fP��X� � T�jX� � �� �

�
and P �X� � T�jX� � �� �

�
g

� P�fP��X� � T�jX� � FX�
�a��

 and P��X� � T�jX� � �� FX�

�b��

g
� P�fFX�

�T�
 � FX�
�a��

 and �� FX�

�T�
 � �� FX�
�b��

g

� P�fFX�
�T�
 � FX�

�a��

 and FX�
�b��

 � FX�

�T�
g
� P�fFX�

�T�
 � FX�
�a��

 � FX�

�b��

 � FX�
�T�
g

� �� ��

�� Rate of Con�dence Accomplishment for Tolerance Intervals



��

For given � and ���� there may have many admissible ��content tolerance

intervals all at con�dence �� �� How can we choose one from this interval

class� It is now reasonable to apply the criterion of length for making

decision of selecting tolerance interval� Suppose that there exists a shortest

one in this class� We may call it the shortest admissible ��content tolerance

interval at con�dence ���� At this moment� we are not going to investigate

the question that if it exists or what is it� We want to introduce an index

evaluating how close the admissibilities that the existed tolerance intervals

are�

De�nition ���� Suppose that a ��content tolerance interval �T�� T�
 at

con�dence �� � satis�es� for some ��content coverage interval �a��
� b��

�

P�fPX�
�T� � a��
 � b��
 � T�
jX
 � �g � �� �� for � � �� ����


Then the resulted �� �� is called the retrieved con�dence of this tolerance

interval� We further say that a tolerance interval with retrieved con�dence

� � �� is proper if � � �� � � � �� conservative if � � �� � � � � and

exaggerative if �� �� � �� ��

We consider the simple situation that probability on the left hand of

�	��
 is uniformly equal to � � �� for � � �� Like the con�dence interval

for a paprameter� this may be done if this probability is developed from

two pivotal quantities one based on T� and a��
 and one based on T� and

b��
 where the examples that we will introduce in this paper are all satis�

�ed this restriction� Among the ��content tolerance intervals at con�dence

� � �� we classify them into three classes� This provides the manufacturer

more precise information about the capability of the manufacturing pro�

cess� For example of Wald and Wolfowitz�s normal tolerance interval� if

� �X� kS� �X� kS
 is a ��content tolerance interval with retrieved con�dence

� � �� then any � �X � k�S� �X � k�S
 is also a ��content tolerance interval

with retrieved con�dence � ��� for any k� � k� We de�nitely do not want

a tolerance interval to be too exaggerative and too conservetive� Otherwise�

it losses too much information about the quality of the manufacturing pro�



��

cess� With this concern� displaying an index measuring the degree of either

conservertiveness and exaggeration is appropriate�

De�nition ��	� Suppose that we have a ��content tolerance interval at

con�dence � � � and with retrieved con�dence � � ��� We de�ne the rate

of con�dence accomplishment for this tolerance interval as

RCA �
�� ��

�� �
�

A ��content tolerance interval at con�dence � � � is proper if RCA � ��

conservative if RCA � � and exaggerative if RCA � �� We are more

interesting to see the size RCA for tolerance interval� We want to investigate

the corresponding values of RCA for the classical and the coverage interval

based tolerance intervals� From the proof of Theorem 	��� if a ��content

tolerance interval at con�dence �� � is a con�dence interval of a ��content

coverage interval at con�dence ��� then it is either a proper or conservative

tolerance interval � Basically a conservative tolerance interval is not a serious

problem if RCA is not larger than � too much� On the other hand� we like

to investigate if a classical tolerance interval is conservative or exaggerative

and how far RCA is from ��

Suppose that we have a normal random sample from distributionN�	� 
�


parameters 	 and 
 unknown� Let�s study RCA�s for the Wald and Wol�

fowitz�s tolerance intervals � �X�kS� �X�kS
� First� we consider the approx�

imate shortest tolerance interval by Eisenhart et al� ���	�
 for reason of

its popularity in receiving greatest attention in literature and applications�

We perform the same simulation as it stated in Section � and the estimated

RCA�s are listed in Table ��

Table 
� Retrieved con�dence for Eisenhart et al��s tolerance interval



�	

�� � � ��� �� � � ���� �� � � ����
� � ���
n � �� ������ ���	�� ������

n � �� ������ ������ �����	

n � �� ���	�� ������ ������
� � ����
n � �� ������ ������ ������

n � �� �����	 ������ ������

n � �� ������ ������ ����	�
� � ����
n � �� ������ ������ ����	�

n � �� �����	 ������ ������

n � �� ������ ���	�� ������

For this situation that parameters 	 and 
 are both unknown� Chen�

Huang and Welsh �����
 showed that

� �X � t���
�
�n� ��

p
nz ���

�



Sp
n
� �X � t���

�
�n� ���pnz ���

�



Sp
n

 ����


is a ������ �
� C�I� for the coverage interval �	 � z ���
�


� 	� z ���
�



 and

then it is also a ��content tolerance interval at con�dence �� �� It is then

interesting to evaluate its rate of con�dence accomplishmenet� We list the

simulation results in the following table�

Table �� Retrieved con�dence �RCA
 for coverage interval based tolerance

interval when 	 and 
 are both uknown
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Basically when a closed form of a ��content tolerance interval at con�

�dence � � � is available to derive the resulted ones are with RCA � ��

However� when a closed form is not able to derive so that approximation or

simulation is done� the resulted ones are with remarkably far from �� That

is� although there is con�dence ��� with resulted interval �t�� t�
 that cov�

ers X� with probability �� a signi�cant part of them do not cover a desired

set of acceptable product� We alos conducted a simulation for one sided tol�

erance intervals where we found that the evaluated rate of accomplishments

are all very close to �� This indicates the inconsistency in developing the

tolerance intervals�

Gaussian distribution with known variance



��

Suppose that the underlying distribution isN�	� 
�
 with 
 known� Owen

����	
 obatined a ��content tolerance interval at con�dence � � � as� by

letting  X � �
n

Pn
i��Xi�

�  X � z ���
�


 � z���
�


p
n
�  X � z ���

�


 � z���
�


p
n

� ����


In the following� we show that ����
 is a �������
� C�I� of some ��content

coverage interval�

P �  X � z ���
�


 � z���
�


p
n
� 	� z ���

�


 � 	� z ���
�


 �  X � z ���
�


 � z���
�


p
n



� P ��z ���
�


 � z���
�


p
n
�  X � 	� z ���

�


 �  X � 	� z ���
�


 � z ���
�


 � z���
�


p
n



� P ��z���
�


p
n
�  X � 	 � z���

�


p
n



� P ��z���
�
�

 X � 	



p
n
� z���

�



� �� ��

This shows that the ��content tolerance interval at con�dence ��� of ����
 is

a �������
� C�I� of the ��content coverage interval �	�z ���
�


� 	�z ���
�



�

Suppose that from the specialist the interval �	�z ���
�


� 	�z ���
�



 contains

a part of acceptable product� Then this tolerance interval of Owen ����	
 is

with con�dence ��� the sample tolerance interval ��x�z ���
�


�z���
�

�p
n
�  x�

z ���
�


 � z���
�

�p
n

 contains acceptable product with percentage �� This

should be satisfactory with the manufacturer�

Morever� Jilek and Likar �����a
 established the ��content one sided

tolerance intervals at con�dence � � � for normal distribution with known

variance and unknown mean� We may also analogously proved that they are

also ����� � �
� C�I��s of some ��content coverage intervals� We combine

these results and it for two sided case in the following table�

Table �� ��content statistical tolerance interval at con�dence � � � as a

������ �
� C�I� of ��content coverage interval when 
 is known
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��content coverage interval statistical coverage interval
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Table � Retrieved con�dence and RCA

�
�� ��

RCA

�
for one sided tolerance

interval when 
 is known
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Let X�� ���� Xn be a random sample from normal distribution N�	� 
�


where 	 is known but 
 is unknown� Denoting by ��	�n��
 if P ����n��
 �
��	�n� �

 � � and S� �

Pn
i���Xi� �X��

n�� � Jilek and Likar �����b
 and Owen



��

����	
 both show that

�	� z ���
�

s
n� �

��	�n� �

S� 	� z ���

�

s
n� �

��	�n� �

S
 ���	


is a two sided ��content tolerance interval with con�dence � � �� In the

following� we show that it is a �������
� C�I� for some ��content coverage

interval�

P �	� z ���
�

s
n� �

��	�n� �

S � 	� z ���

�


 � 	� z ���
�


 � 	

� z ���
�

s
n� �

��	�n� �

S


� P ��z ���
�

s
n� �

��	�n� �

S � �z ���

�


 � z ���
�


 � z ���
�

s
n� �

��	�n� �

S


� P ��
p
n� �



S � �

p
��	�n� �
 �

p
��	�n� �
 �

p
n� �



S


�by the fact that

p
n� �



S and

p
��	�n� �

 � �


� P �
�n� �
S�


�
� ��	�n� �



� �� ��

Jilek and Likar �����b
 also considered one sided ��content tolerance

intervals with con�dence �� � for case that 	 is known and 
 is unknown�

We combine these results in the following table�

Table �� Retrieved con�dence for two sided tolerance interval when 	 is

known
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Table �� ��content statistical tolerance interval at con�dence � � � as a

������ �
� C�I� of ��content coverage interval when 	 is known

��content coverage interval statistical coverage interval
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Theorem ��
� The one sided tolerance interval of Jilek and Likar �����b


and Odeh and Owen �����
 and the two sided tolerance interval of Jilek and

Likar �����b
 are all with RCA � ��

� Shortest Admissible Tolerance Intervals

With de�ning the concept of admissibility of tolerance interval� it is then

interesting in developing the shortest �expected shortest
 one for the class

of admissible tolerance intervals if it does exist� How can we accomplish this

task� Let Q�T� �
 be an appropriate pivotal quantity that may be inverted

for deriving the con�dence interval of a coverage interval C��
 � �c�� c�




��

through the following

�� � � Pfq� � Q�T� �
 � q�g
� PfQ��T� c�� c�� q�� q�
 � c� � c� � Q��T� c�� c�� q�� q�
g�

We then have choices of c�� c�� q�� q� that minimizes the length �or expected

length
 Q��T� c�� c�� q�� q�
�Q��T� c�� c�� q�� q�
 where

f�Q��T� c�� c�� q�� q�
� Q��T� c�� c�� q�� q�

 � PX�
�C��

 � ��

�� � � Pfq� � Q�T� �
 � q�gg

is the class of admissible ����� � �
� tolerance intervals based on pivotal

quantity Q�T� �
� hen� the shortest tolerance interval needs to be solved

with minimizing the length �expected length
 simultaneously with respect

to two factors�

With the technique for developing shortest admissible tolerance interval�

there is one fact interesting to investigate� Chen� Huang and Welsh �����


introduced the con�dence interval of mode interval where this coverage in�

terval guaratees the shortest with a �xed coverage probability� This is an

admissible tolerance interval� With a �xed pivotal quantity� we then may

derive the shortest con�dence interval for this shortest coverage interval�

It is then interesting to see if this two step tolerance interval is the short�

est tolerance interval� We derive the shortest tolerance intervals for several

distributions and use them to investigate the desired problem�

Theorem ��� Let X�� ���� Xn be a random sample from normal distribution

N�	� 
�
 where 
 � � is known�

�a


� �X � z ���
�


 � z���
�


p
n
� �X � z ���

�


 � z���
�


p
n
� ����


is a shortest admissible ��content tolerance interval with con�dence �� ��

�b
 The shortest ����� � �
� con�dence interval of ��content mode cov�

erage interval is the shortest admissible ��content tolerance interval with

con�dence �� ��



��

Proof� We can modify the standard con�dence interval calculation to show

that

��� � Pf �X� c�
� q�

p
n
� 	� c�
 � 	� c�
 � �X� c�
� q�


p
n
g ����


with constants ci and qi subject to P �c� � Z � c�
 � � and P �q� � Z �
q�
 � � � �� This shows that the choices of admissible ��content tolerance

interval with con�dence �� � is

� �X � c�
 � q�

p
n
� �X � c�
 � q�


p
n
� ����


which is a ����� � �
� con�dence interval of ��content coverage interval

�	� c�
� 	� c�
��

To obtain the shortest admissible ��content tolerance interval with con�

�dence �� �� we seek to minimize

L � 
�c� � c� � �q� � q�

�p
n
�

subject to Z c�

c�

fZ�z
dz � � and

Z q�

q�

fZ�z
dz � �� � ���	


where fZ�z
 is the density of the standard normal distribution� Equations

in ���	
 give c� and q� as functions of c� and q� respectively and parially

di!erentiating these two equations with respect to c� and q� respectively

yied

fZ�c�

�c�
�c�

� fZ�c�
 � � and fZ�q�

�q�
�q�

� fZ�q�
 � ��

To minimize L� we set �L�c�� and �L�q� � � that is�

�L

�c�
� 
�

�c�
�c�

� �� � �� and
�L

�q�
�


p
n
�
�q�
�q�

� �� � ��

but


�
�c�
�c�

� �� � 
�
fZ�c�


fZ�c�

� �� � � and


p
n
�
�q�
�q�

� �� �

p
n
�
fZ�q�


fZ�q�

� �� � �



��

if and only if fZ�c�
 � fZ�c�
 and fZ�q�
 � fZ�q�
� which imply that

c� � �c� and q� � �q� are the desired solutions� Morever� restrictions in

���	
 indicates that c� � z ���
�

and q� � � � z�
�
which� joining with ����
�

veries the theorem�

If we plug the shortest tolerance interval of ����
 in ����
� we have

��� � Pf �X�z ���
�


�z���
�


p
n
� 	�z ���

�


 � 	�z ���
�


 � �X�z ���
�


�z���
�


p
n
g�

����


This formulates ����
 as a shortest con�dence interval of the shortest cov�

erage interval �	 � z ���
�


� 	 � z ���
�



 and then� for this case� the shortest

con�dence interval of the shortest coverage interval is the shortest tolerance

inteval� �

Theorem �	� Let X�� ���� Xn be a random sample drawn from the expo�

nential distribution with density function f�x� �
 � �e��xI�x � �
�

�a
 The interval

�����
Pn

i��Xi

��	��n

log��� �

 ����


is a shortest admissible ��content tolerance interval at con�dence coe�cinet

�� ��

�b
 The shortest �������
� con�dence interval of ��content mode interval is

the shortest admissible ��content tolerance interval at con�dence coe�cinet

�� ��

Proof� The exponential distribution has the quantile function F���u
 �

���� log�� � u
� � � u � �� By letting � � q� � q� � � satisfying

��� � Pfq� � ����n
 � q�
 and � � � � ���� since ��Pn

i��Xi 	 ����n
�



��

then

�� � � Pfq� � ����n
 � q�g

� Pfq� � ��
nX
i��

Xi � q�g

� Pf���
Pn

i��Xi

q�

log��� �


�
� � log��� �


�

� � log��� �� � �



�
� ���

Pn
i��Xi

q�

log��� �� � �



�
g

� Pf��
Pn

i��Xi

q�
log��� �
 � � log��� �


�
� � log��� �� � �



�

� ��
Pn

i��Xi

q�
log��� �� � �

g

Since �� log�����
�

�� log���������
�

� is a ��content covergae interval� the possi�

ble choices of admissible ��content tolerance interval with con�dence �� �

include

���
Pn

i��Xi

q�
log��� �
���

Pn
i��Xi

q�
log��� �� � �

� ����


in terms of �� � � � � �� � and q�� q��

To obtain the shortest admissible ��content tolerance interval with con�

�dence �� �� we seek to minimize

L � �
nX
i��

Xi�
log��� �


q�
� log��� �� � �



q�
�

subject to

� � � � �� � and

Z q�

q�

f
���n��x
dx � �� � ����


where f
���n��x
 is the density of the chi � squre distribution ����n
� For

given q� and q� with � � q� � q��

�L

��
� �

nX
i��

Xi�� �

q���� �

�

�

q���� �� � �


� � �

for � � � � � � �� As an increasing function of �� L achieves minimum at

� � � which� from ����
� further indicates that q� � ���n��
 and then �a
 of

the theorem is proved�



�	

Since the ��content mode interval is

�������log��� �
�� ����


a one sided quantile interval� which must have one sided con�dence interval�

On the other hand� ����
 is the ����� � �
� one sided con�dence interval

and then it is the shortest con�dence interval of ����
� Then� �b
 of the

theorem is proved� �

Theorem �
� Let X�� ���� Xn be a random sample from Gamma distri�

bution Gamma�k� �
 with known shape parameter k � � having density

f�x� �� k
 � �kxk��exp���x
"�k
�
�a
 Let constants c�� c�� q� and q� satisfy the following conditions�

���

f�k�c��
f�k�c��

� q�
q�

���

f�nk�q��
f�nk�q��

�
c�q

�
�

c�q
�
�

��	

R c�
c�

f�k�x
dx � � and
R q�
q�

f�nk�x
dx � �� �

where f�k�x
 and f�nk�x
� respectively� represent the densities of chi�square

distributions with degrees of freedoms �k and �nk� Then

�

Pn

i��Xi

q�
c��

Pn

i��Xi

q�
c��� �����


stisfying conditions ���
 � ��	
� is a shortest admissible ��content tolerance

interval with con�dence �� ��

�b
 The �������
� shortest con�dence interval of the mode interval is the

form of �����
 that satis�es the following conditions ���
 and ��	
 and

��

 f�k�c�
 � f�k�c�
�

Proof� Considering that c�� c�� q�� q� satisfying condition ��	
� since ��
Pn

i��Xi 	
���nk� we have

�� � � Pfq� � ���nk � q�g

� Pfq� � ��
nX
i��

Xi � q�g

� f��
Pn

i��Xi

q�
c� � c� � c� � ��

Pn
i��Xi

q�
c�g

� f
Pn

i��Xi

q�
c� � �

��
c� �

�

��
c� �

Pn
i��Xi

q�
c�g �����




�


which indicates� with setting � ��� c��
�
�� c�� as a � coverage interval for distri�

bution Gamma�k� �
� that

�

Pn
i��Xi

q�
c��

Pn
i��Xi

q�
c�� �����


is an admissible ��content tolerance interval with con�dence �� ��

To obtain the shortest admissible tolerance interval� we seek to minimize

L �
nX
i��

Xi�
c�
q�
� c�
q�


�

Now� partially di!erentiating ��� �
R q�
q�

f�nk�x
dx with respect to q� yields

�q�
�q�

f�nk�q�
� f�nk�q�
 � ��

and so

�L

�q�
�

nX
i��

Xi�� c�
q��

�
c�
�q��

q�
�q�


 �
nX
i��

Xi�� c�
q��

�
c�
q��

f�nk�q�


f�nk�q�


 � �� �����


On the other hand� partially di!erentiating � �
R c�
c�

f�k�x
dx with respect

to c� yields
�c�
�c�

f�k�c�
� f�k�c�
 � ��

and so

�L

�c�
�

nX
i��

Xi�
�c��c�

q�
� �

q�

 �

nX
i��

Xi�
f�k�c�
f�k�c�


q�
� �

q�

 � �� ����	


The conditions ���
 and ���
 are followed from �����
 and ����	
 and then

�a
 of the theorem is proved�

For this Gamma distribution� the mode interval is an interval of the form

�c�� c�
� �����


with smallest length c� � c� subject to
R c�
c�

f�k�x
dx � �� This leads that

the mode interval is it of �����
 subject to condition �
� From the derivation



��

in �����
� the ������ �
� shortest con�dence interval of the mode interval

is of the same form of �����
 subject to conditions ���
 � ��

� �
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