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Abstract

For tolerance interval, we define a concept of admissibility that
Is desired for manufacturer. This leads to a problem that the general
concept of tolerance intervals defined by Wilks (1941) may provide
in-admissible tolerance intervals. For this, we show that the most
popular normal tolerance interval of Eisenhart et al. (1947) is not
admissible. A theory showing that a random interval is an admissible
tolerance interval if and only if a confidence interval of a coverage
interval is established. We further evaluate some existed tolerance
intervals for their admissibility and also derive the shortest admissible
tolerance intervals for some distributions.
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Tolerance Intervals

Abstract

For tolerance interval, we define a concept of admissibility that is desired
for manufacturer. This leads to a problem that the general concept of tol-
erance interval defined by Wilks (1941) may provide in-admissible tolerance
intervals. For this, we show that the most popular normal tolerance interval
of Eisenhart et al. (1947) is not admissible. A theory showing that a ran-
dom interval is an admissible tolerance interval if and only if a confidence
interval of a coverage interval is established. We further evaluate some ex-
isted tolerance intervals for their admissibilities and also derive the shortest

admissible tolerance intervals for some distributions.

Key words: Confidence interval; coverage interval; tolerance interval.

1. Introduction and Motivation

Statistical theory of interval estimationsmostly.deals with the confidence
interval to contain a parameter . JIn many applications, we require an
interval to contain the future T.v. which is a prediction problem. Among
the alternatives, intervals in the form of tolerance intervals are widely used
in quality control and related prediction problems to monitor manufacturing
processes, detect changes in such processes, ensure product compliance with
specifications, etc.

In manufacturing industry, specification limits for one charateristic of
an item, saying L; and Lo, define the boundaries of acceptable quality
for an manufacturing item (component). For a manufacturer of a mass-
production item, the tolerance interval is designed for a quality assurance
problem. The manufacturer is interesting in an interval that contains a
specified (usually large) percentage of the product and he knows that unless
90% of his production is acceptable in the sense that the item’s characteristic

falls in the limits, he will loss money in this production. With this interest,
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a hypothesis testing problem is formulated as follows:

Hy : There is an interval that includes at least a certain proportion

of acceptable measurements with a stated confidence.
(1.1)

To conquer this hypothesis testing problem, it is done in literature through
two steps. The first step is to consider an interval estimation problem:

An interval that includes at least a certain proportion

of measurements with a stated confidence, (1.2)

called the tolerance interval. Suppose that we have a a random sample
X = (Xy,..., Xp)" from a distribution with pdf f(x,0), what have been
done in producing a tolerance interval? this problem was treated in a pioneer
article by Wilks (1941) where a y-content tolerance interval with confidence
1 — «vis an inetrval (T, T2) = (t1(X), t2(X)) that satisfies

Po{Py(Xp € (Th, T2)|X) >y} >1—aforf € O (1.3)

where © is the parameter space and Xg represents the future observation
with the same distribution. The secondsstep for.solving problem in (1.1) is
testing hypothesis of (1.1) based.on the telerance inteval in (1.3) with the
following rule (see Bowker and Goode(1952)) as
We accept the lot of product if {1 >'L; and ts < Lo,
i.e., we reject the lot of product;if either ¢; < Lior t5 > Lo (1.4)
or both ¢t; < Ljand t5 > L.

In this two steps in solving the hypothesis problem of (1.1), its power of
achievement completely relying on how good a tolerance interval devloped
from (1.3) for need in (1.2). That is, inappropriateness of selecting a toler-
ance interval may provide inappropriate decision for problem (1.1).

A vast literature on tolerance intervals of (1.3) has been developed (see
for example Wilks (1941), Wald (1943), Paulson (1943), Guttman (1970)
and, for a recent review, Patel (1986)). There are deficiencies for the classi-
cal approaches in developing tolerance intervals. As noted by Bucchianico,
Einmahl and Mushkudiani (2001), both the mathematically and the engi-
neering oriented statistics textbooks hardly deal with this topic explicitly,



and, if they do, the treatment is often confined to tolerance intervals for
the normal distribution. This is partly because tolerance intervals can be
difficult to construct for particular distributions (although nonparametric
tolerance intervals based on order statistics can be obtained for particular
values of the content) and, perhaps, partly because as Carroll and Ruppert
(1991) suggest, the idea of conditional coverage probability is considered
to be too difficult for beginning students. Besides the above deficincies,
we consider one question regarding with a fundamental concept of interval

selection.

Considering the whole class of tolerance intervals in (1.3) as a base, cri-
terions of goodness, mainly modified from goodness of confidence intervals,
have been introduced. Marshall (1949) and Wallis (1951) pointed out that
a tolerance interval of (1.3) can be thought as that it provides an accep-
tance region for a test of the hypothesis that a new observation is drawn
from the same distribution as that of the original sample. Goodman and
Madansky (1962) has a similar arguinent:, Comparing tolerance intervals
based on criterion of expectedslengthris-the most popularly used selection
technique. For normal tolerance. interval, Eisenhart etc. (1947) constructed
one, approximately the shortest. With the appealing property of shortest
length, it is now popularly implemented-im-manufacturing industry and in-
troduced in engineering texts. This criterion has also been a guide line
for developing regression tolerance interval (see Goodman and Madansky
(1962), Liman and Thomas (1988) and Mee et. al. (1991)). The goal that
the manufacturer wants to know if there is an interval that includes at least
a proprtion of acceptable measurements with a specifies confidence is clear.
Our concern is that if the the testing rule of (1.4) applying on the shortest

tolerance interval can achieves the goal of the manufacturer?

In statistical inferences, the general rule for determining a good technique
is first setting a class of admissible, in some sense, techniques and then
investigate and find the best (or an good) one with some advanced criterion
from this admissible class. For examples, the admissibilities being accepted

to apply in literature include unbiasedness and invariance in point estimation



and restricting the type one error probability in hypothesis testing with
advance criterions including variance and power, respectively. For tolerance

selection, our concern come from the following reason:

Without careful determination of admissible techniques,
a technique selected through any advanced criterion (1.5)
may be meaningless

It is done by treating the whole class of tolerance intervals in (1.3) as an
admissible class and searching the best (shortest) from it. Is this appropriate
from the point of product manufacturing?

What is an appropriate sense of admissibility for tolerance interval? A
100(1 — @)% confidence interval for a parameter 6 is expected to having
100(1 — o) percentage that the sample confidence intervals in the long run
will cover the unknown 6. With this, from the hypothesis testing problem in
(1.1), it is not in-appropriate that a manufacturer consider the admissibility
with:

A v — content tolerance interval with confidence 1 — « is

admissible if, when H is accepted through the rule in (1.4),

there are at leastyproportion v of acceptable

measurements included-with confidence 1 — a.
(1.6)

In this paper, we consider the:following topics: (a) We introduce an
explicit concept of admissibility for tolerance intervals. (b) We then show,
with normal tolerance interval of Eisenhart et al. (1947) as example, that
the shortest one may be in-admissible. (¢) We develop a necessary and
sufficient condition for a tolerance interval to be admissible, which indicates
that the the confidence interval of coverage interval by Chen et al. (2005)
is admissible. (d) Developing shortest admissible tolerance intervals is the

final task in this paper.

2. Admissibility for Tolerance Intervals
A tolerance interval is required, for example, by a manufacturer of a mass-
production item who needs to establish limits to contain at least a certain

proportion of the product with high degree of confidence. Since the pioneer
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article by Wilks (1941), this need leads to a popular notion of tolerance

interval formulated as a random interval (77, T>) that satisfies
Py{P% (T1,To) >y} >1—afor 6 €O (2.1)

which is called a «y-content tolerance interval with confidence 1—a. Our con-
cern is, with the fact that there may have many choices, that if any proposal
of interval (T, T») fulfilling (2.1) satisfies the real need of the manufacturer
especially for those been popularly applied in industry? We fist consider
formulating the concept of admissibility of (1.6) into an explicit form.

We say that (a(),b(f)) is a v coverage interval of variables Xy if it
satisfies

Px,{(a(0),b(0))} = for 6 € O.

We introduce a concept of admissible tolerance interval.

Definition 2.1. Let (73,7%) be a y-content tolerance interval with con-
fidence 1 — a. We call it an admissiblé ry-content tolerance interval with

confidence 1 — « and say that it is admissible if the following
Py{P% (T1,T>)] > 7, (a(8),0(0)) C (T1,T5)} 2 1 —afor 6 €O, (2.2)

holds for some v coverage interval (a(f),b(0)):

We have several notes in the followings:
(a) With the fact that

Py{P%,[(T1, T2)] = 7, (a(0),b(0)) C Ty, Tp)} <
Py{ P4 [(Ty, Ty)] > 7} for 0 € ©,

a y-content tolerance interval with confidence 1 — « is not guaranteed to
be an admissible vy-content tolerance interval with the same confidence. For
any in-admissible tolerance interval (77, T?), if its observation (¢1,¢3) is con-
tained in specification limit interval (LSL,USL), there is no assurance with
confidence that other observation intervals containing v percentage of mea-

surements are with acceptable measurements of v percentage or more.
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(b) If a y-content tolerance interval with confidence 1 — « is not admissible,
then it must be admissible for some other confidence smaller than 1 — a.
(¢) The admissibility has to be accompanied with a specified couple {7, 1 —
a}. Otherwise, every random interval is an admissible tolerance interval.
When (T, T5) is an admissible y-content tolerance interval with confidence
1 — « for some 7 coverage interval, there may have others (may be infi-
nite) alternative v coverage intervals (a(6),b(0)) such that (T7,T?) is still
an admissible tolerance interval for these coverage intervals.

(d) If there is a random interval (77, T5) satisfies (2.2), is it an admissible -
content tolerance interval with confidence 1 —a? The answer is yes through

the the fact that
{Px,[(T1, T2)] = v, (a(8),b(0)) C (T1,T2)} C {Px,[(T1, T2)] = 7}

The general theory of developing tolerance interval in literature is fixing
percentages v and 1 — « to select a statistic T'(k) with factor k£ and search kf

and k3 such that (T (k]), T (k%)) solves the following minimization problem:

argmino<y, <k, [1'(k2) = T (k1 )= Pod g [(T (k1 )37 (k2)] > v} 2 1 —a]. (2.3)
For review of examples of cheosing statistic 7', see Patel (1986).

Definition 2.2. Let (T'(k7),T(k3)) solves-the problem of (2.3). We then

call it the shortest y-content tolerance interval with confidence 1 — a.

We are arguing that a shortest tolerance interval may be meaningless
for that it may be in-admissible. We will study this point with normal
distribution as an example. Suppose that the normal mean p and variance

o2 are known. A vy-content tolerance interval with 100% confidence is

(M_ZHT”/O'MM""ZHTWU)- (2.4)

Suppose that the interval of (2.4) is contained in specification limit interval
(LSL,USL). We then assure with 100% confidence that it covered at pro-
portion 7 of acceptable measurements. Actually any one with 6 € (0,1 — )

in the following

(1 + 250, 1+ 20450 (2.5)



is a <y-content tolerance interval with 100% confidence. So, when interval
in (2.4) is not contained in specification interval (LSL,USL), we can not
be sure that there is no y-content tolerance interval with 100% confidence
since there may have other one in (2.5) contained in specification interval.
Determining appropriate v coverage is somehow more appropriate as an

engineering problem.

Suppose that now we have a normal random sample X1, ..., X, from nor-
mal distribution N (u,0%) where mean p and standard deviation o are both
unknown. Wald and Wolfowitz (1946) first introduced the normal tolerance

interval of the form

(X — kS, X +kS) (2.6)

where value k& meets the requirement (2.1) for pre-assigned 7, 1 — @ and
sample size n. The development of the shortest tolerance interval involves
the distribution of ®(X + kS) — ®(X — kS) which is extremely complicated
as indicated by Guttman (1970). With thisdifficulty, the shortest tolerance
interval (X — k*S, X + k*S) has not beensable to provide an explicit formu-
lation. However, among many authors; Eisenhart-et al. (1947) provides one
with length approximately shortest. -We will stidy this approximate one

latter for its admissibility in Section:3.

The study of admissibility of Eisenhart et al.’s shortest tolerance interval
(X —k*S, X +k*S) is important since the shortest one is generally accepted
the most interesting technique in literature in developing tolerance interval.
The aim of the rest in this section is to show the in-admissibility of it
in this normal case. To do this, we first show that among = coverages
(1 + 250,10 + zy450) for 0 < 6 < 1 — ~ the one achieves the maximum

1—v

confidence when the coverage is the symmetric one with § = ~5=.

Theorem 2.3. Let C5(y) = (¢ + 250, p + 2y450). Then

1-— _ _
T7 = argmaxocs<i—~Lu,o{Px, [(X — kS, X + kS)] > v,

Cs(7) € (X — kS, X + kS)).
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Proof. We know that
Puo{Px,[(X — kS, X + kS)] > 7,Cs(7) C (X — kS, X + kS)}
=P, {®(X +kS) — (X —kS) >v,Cs(y) C (X — kS, X +k9)}

o Puo[®(X + kS) — ®(X — kS) > v,Cs(y) C (X — kS, X + kS)|S]}.
We see that, for given § = s,
Puo{®(X + ks) — ®(X — ks) > v,Cs(y) C (X — ks, X + ks)} (2.7)
=P, {P(X +ks) — ®(X —ks) >y, 1+ 24150 —ks < X < p+ z50 + ks}
where @ is the distribution function of the standard normal distribution
N(0,1). Then minimizing the probability of (2.7) on § € (0,1 — v) may
be done by maximizing the probability P, ,(zy+s0 — ks < X - u < zso +
ks) given that value k satisfies P, ,(®(X + ks) — ®(X — ks) > ). This
implies that ¢, (250 +ks) = ¢y (24450 — ks) where ¢, is the pdf of a normal
distribution N(0,0?) which further indicates that

Puo{®(X + ks) — ®(X — ks) >,95Cs(7) C (X — ks, X + ks)} <

Puo{®(X + ks) — ®(X —=ks) > 9C(q) & (X — ks, X + ks)}.
(2.8)
The theorem is followed froi (2.8) associated with the fact that X has a
symmetric distribution. [
With this result, we evaluate the:maximum e€onfidence for that a tolerance

interval of (2.5) could be requiring only to check if for v coverage C(7).
Lemma 2.4. For given k£ > 0,

P, o{Px,[(X — kS, X +kS)] >~} >

Puo{Px,[(X — kS, X +kS)] >v,C(y C (X — kS, X + kS)}.
Proof. By letting

:n+ks
¢u o(x)dx > v} and

AC’('y) { ¢,u,cr(x)dx >, C(’Y) - ('f — ks, T+ kS)}

)
O



9

Obviously we have Ac(y)(k) C A(k). For fixed & > 0 and (p, o), there exists

ZT1,...,Tn such that T —ks = p— 21110 and £+ ks = p+ 21+~ 0. Then, this
2 2

T1
vector | : | isin A(k). We further let
Tn
T
A*(ky=A{| : | :Z—ks<p—ziryo and T+ ks < g+ 21+, 0 with
2 2
Tn

Px,[(Z — ks, T + ks)] = ~v}.

X1
With normal distribution, we have P, ,(| : € A*(k)) = Px,[(—o0, u —
Xn
2137,0)] = 357 > 0. This implies that
X1 Xl
Puo({ + | €A(R)>P(| © | €Acm(k) (2.9)
X, Xn,

with the facts that A*(k) C A(k) and | A*(k) 0 Ag(,) (k) = ¢. O

We are now ready to state the main theoremr about in-admissibility of

the popularly used the shortest normal tolerance interval.

Theorem 2.5. The shortest y-content tolerance interval of the form (X —
k*S, X + k*S) with confidence 1 — « is not admissible.
Proof. From (2.9),

P(Agy (k) <1 —afor k < k"

This tolerance interval (X — k*S, X + k*S) is not admissible in sense of

(2.2). O

3. Admissibility Verification of Tolerance Intervals Through Sim-
ulation
With showing that the shortest normal tolerance interval is in-admissible,

it is worth in examining the popularly used normal tolerance intervals to
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see if they are admissible. As noted by Guttman (1970,p59), the two sided

normal tolerance intervals involves the distribution of the coverage
O(X +kS) — ®(X — kS)

which is exceedingly complicated so that numerical approximation or simu-
lation are generally used to develop them. The most popularly used normal
tolerance interval is the one compute by Eisenhart et al. (1947) which is con-
sidered the approximately shortest. We perform two simulations to study
this normal tolerance intervals. First, we simulate its role as a tolerance
interval of (2.1). Second, we simulate its admissibilty by computing its ap-
proximate confidence of a coverage interval. If the approximate confidences

are smaller than 1 — s, they are approximately in-admissible.

We select values k£ from the table developed by Eisenhart et al. We
perform the simulation in two steps. First, we want to evaluate the confi-
dence that the proposed toleranee interval covers the sample space of the
underlying distribution, i.e., we want to.see.how close that it achieves the
shortest tolerance interval of=(2i1). Everytimeé we select n random sample
from normal distribution for a'fixedmean p and variance o2. We perform
this simulation with replicationt.m. = 100, 000." Let z; and s]2 be the sample
mean and sample variance for the jth'sample. The simulated confidence is

approximated by

m

D I(D(z + ksj) — Bz — ksj) > 7). (3.1)

1
m -
J=1

where @, ; is the distribution function of the underlying normal distribution.
For v =10.9,0.95,0.99, 1 — a = 0.9,0.95,0.99 and n = 10, 30, 50, we display

the simulated results in Table 1.

Table 1. Confidence for normal tolerance intervals in covering future vari-
able
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1—a=09 1—a=0.95 1—a=0.99

v=20.9

n =10 0.8962 0.9491 0.9887
n = 30 0.8976 0.9482 0.9892
n = 50 0.8976 0.9482 0.9900
v =0.95

n =10 0.8970 0.9491 0.9899
n =30 0.8978 0.9432 0.9895
n = 50 0.8985 0.9488 0.9891
v =0.99

n =10 0.9003 0.9508 0.9896
n =30 0.8985 0.9499 0.9897
n = 50 0.8995 0.9489 0.9903

Table 1 indicates that there are sample intervals (¢1, t2) with confidence close
to 1 — « containing v percentage or more of measurements, however, these
specified measurements are not sured to lie in some fixed covearge interval.

We further to verify this point.

We now concern the question if it is appropriate treated as a y-content
coverage interval based tolerance interval with confidence 1 — a? We per-
form the simulation in the same assumptions for results in Table 1. The
approximate confidence for it playing a role of confidence interval of the

coverage interval C'(y) = (u — 21 0 1 Z1gs o) is defined as

m

> I(®(T; + ksj) — ©(F; — ksj) > 7, C(7) C (& — ksj, Tj + ks;)).

j=1

1
m

Table 2. Confidence for normal tolerance intervals in covering prediction

interval (i — 21470, 1+ 2144 0)
2 2
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1—a=09 1—a=0.95 1—a=0.99

v=20.9

n =10 0.8197 0.8989 0.9765
n = 30 0.7736 0.8648 0.9617
n = 50 0.7595 0.8518 0.9561
v =0.95

n =10 0.8403 0.9129 0.9812
n =30 0.8032 0.8756 0.9700
n = 50 0.7917 0.8773 0.9648
v =0.99

n =10 0.8627 0.9278 0.9849
n =30 0.8356 0.9097 0.9776
n = 50 0.8268 0.9020 0.9762

For the simulation results in a design of given 1—q, the evaluated confidences
are fluctuant in sample size n and coverage . The deficits could be large
as the cases in 1 — a = 0.9 and n is large. If we expect the Eisenhart et
al.’s tolerance interval to be admissible, the answer is not promissing. This
verifies the result in Theorem 2.5 that the shortest tolerance interval may

be in-admissible.

4. Coverage Interval Based Tolerance Intervals

With the example of normal telerance interval of Wald and Wolfowitz
(1946), it is known that not every tolerance interval of (2.1) of Wilks (1941)
is admissible. Then, is there a‘general technique in developing tolerance
interval which ensures the property of admissibility?

Chen, Huang and Welsh (2005) introduced a tolerance interval which is
a 100(1 — a)% confidence interval of a special type coverage interval (mode
type interval). We extend this concept in a general setting. We say that a
random interval (T3, T5) is a 100(1 — «)% confidence interval of a coverage
interval (a(0),b(0)) if it satisfies

1—a=Py{Ty <a(f) <b0) <Tp} for € O (4.1)

When either ¢1(X) = a(f) = cor t2(X) = b(#) = ¢ holds for some constant ¢
including —oo or oo we have one sided 100(1—a)% C.I. of y-content coverage

interval. The interest of this confidence interval here is with v coverage.
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Definition 4.1. If a y-content tolerance interval with confidence 1 — « is a
100(1 — @)% confidence interval of some 7 coverage interval, then we call it

a y-content coverage interval based tolerance interval with confidence 1 — a.

The following theorem states a necessary and sufficient condition for that
a tolerance interval is admissible which also addresses a connection of the

tolerance interval with the confidence interval of a coverage interval.

Theorem 4.2. A random interval (T7,T>) is an admissible y-content tol-
erance interval with confidence 1 — « if and only if it is a 100(1 — @)%
confidence interval of a v coverage interval.

Proof. Let (T1,T2) be a 100(1 — «)% confidence interval of v coverage
interval (a(),b(0)), i.e.,

Py{(a(0),b(0)) C (t1(X), t2(X))} =1 —a. (4.2)
For X = x subjected to (a(f), b(0)) C (t1(X), (X)), we have

Px, {(t:(z), t2(2)}, > Pxsd(a(0);0(0))} > 7.
This leads to

{(a(6),0(0)) C (t1(X),15(X))}
C {Px,[(t1(X), 12(X))] = 7, (a(0),b(0)) C (£2(X), 22(X))}.

Henceful, from (4.2),
Po{Px, [(1(X), £2(X))] = 7, (a(0),0(0)) C (£2(X), 12(X))} > 1 — o

indicating the admissibility of (77, T3).
On the other hand, let (T}, T>2) be an admissible y-content tolerance in-

terval t v coverage interval (a(f),b(f)) with confidence 1 — a.

Po{(a(0),b(0)) C (t1(X),t2(X))} =
Po{ P, [(£1(X), £2(X))] = v, (a(0), b(0)) C (1(X), 12(X))} = 1 — o
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This shows that (T7,T») is a 100(1 — «)% confidence interval of (a(0),b(0))
and the direction (=) of the proof is done. O

When we are interesting in admissible tolerance interval, the confidence in-
terval of a coverage interval guranntees in achieving the goal of admissibility.
With this, the confidence interval of mode coverage interval is appealing in
sense of shortest length of coverage interval. If people are interesting in
other type of coverage intervals such as the symmetric ones, they may be
easily established from the lines of Chen, Huang and Welsh (2006).

Owen (1964) argued that most tolerance intervals developed for normal
distribution are set up so that the percentage nondefective is controlled
1007%, and hence the defectiveness could be all be in one tail. Then he
consider a normal tolerance interval such that no more than the proportion
1_77 is below the lower tolerance limit and no more than the proportion 1_77
is above the upper tolerance limit. Extension from his idea, we may expect

a y-content tolerance interval (77, T3) with confidence 1 — « that satisfies

— 1—
T aid P(Xo2 D|X) < — 2] >1—a.  (4.3)

1
P[P(Xy <T1|X) < 5

Theorem 4.3. Let (a(9),b(#)) be with P(X, <a(f)) < 152 and P(X, >
b(0)) < 552. Then the vy-content tolerance interval as a 100(1 — a)% confi-
dence interval of (a(f),b(0)) satisfies the:Owen’s restriction (4.3).

Proof. Tt is induced from the followingS:

T and P[Xo > To|X] < 1)

= Pp{Py[Xo < T1|X] < Fix,(a(0)) and Py[Xo > T5|X] <1 — Fx, (b(0))}
_ Py{Fx,(T1) < Fx,(a(0)) and 1 — Fx. (T5) < 1 — Fx. (b(60))}

= Pp{Fx,(T1) < Fx,(a(f)) and Fx,(b(f)) < Fx,(T2)}

= Pp{Fx,(T1) < Fx,(a(0)) < Fx,(b(0)) < Fx,(T2)}

>1—a.

1
Py{Py[ Xy < T1|X] <

5. Rate of Confidence Accomplishment for Tolerance Intervals
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For given v and 1—q, there may have many admissible y-content tolerance
intervals all at confidence 1 — . How can we choose one from this interval
class? It is now reasonable to apply the criterion of length for making
decision of selecting tolerance interval. Suppose that there exists a shortest
one in this class. We may call it the shortest admissible y-content tolerance
interval at confidence 1 — . At this moment, we are not going to investigate
the question that if it exists or what is it? We want to introduce an index
evaluating how close the admissibilities that the existed tolerance intervals

are.

Definition 5.1. Suppose that a y-content tolerance interval (Ty,Ts) at

confidence 1 — « satisfies, for some 7y-content coverage interval (a(f),b(6)),
Pp{Px,(T1 < a(f) <b(f) <Tp)|X)>~v}=1—-a" for § € O. (5.1)

Then the resulted 1 — o is called the retrieved confidence of this tolerance
interval. We further say that a tolerange interval with retrieved confidence
1 — o* is proper if 1 — o* = I — «, conservative if 1 — a* > 1 — a and

exaggerative if 1 — a* <1 — au

We consider the simple situation-that probability on the left hand of
(4.1) is uniformly equal to 1 =a* for § € O. Like the confidence interval
for a paprameter, this may be done if this probability is developed from
two pivotal quantities one based on T; and a(f) and one based on Ty and
b(#) where the examples that we will introduce in this paper are all satis-
fied this restriction. Among the y-content tolerance intervals at confidence
1 — «, we classify them into three classes. This provides the manufacturer
more precise information about the capability of the manufacturing pro-
cess. For example of Wald and Wolfowitz’s normal tolerance interval, if
(X — kS, X +kS) is a y-content tolerance interval with retrieved confidence
1 — a, then any (X — k*S, X + k*9) is also a y-content tolerance interval
with retrieved confidence > 1 — « for any £* > k. We definitely do not want
a tolerance interval to be too exaggerative and too conservetive. Otherwise,

it losses too much information about the quality of the manufacturing pro-
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cess. With this concern, displaying an index measuring the degree of either

conservertiveness and exaggeration is appropriate.

Definition 5.2. Suppose that we have a y-content tolerance interval at
confidence 1 — o and with retrieved confidence 1 — o*. We define the rate

of confidence accomplishment for this tolerance interval as

1—ao*

RCA = o

A ~-content tolerance interval at confidence 1 — « is proper if RCA = 1,
conservative if RCA > 1 and exaggerative if RCA < 1. We are more
interesting to see the size RC'A for tolerance interval. We want to investigate
the corresponding values of RC'A for the classical and the coverage interval
based tolerance intervals. Fromi-the proof of Theorem 4.2, if a y-content
tolerance interval at confidence 1 —«/is a confidence interval of a y-content
coverage interval at confidence 1 —a then'it is either a proper or conservative
tolerance interval . Basically a.conservativetolerance interval is not a serious
problem if RC'A is not larger than:1 too much:” On the other hand, we like
to investigate if a classical tolerance interval is conservative or exaggerative

and how far RC'A is from 1.

Suppose that we have a normal random sample from distribution N (p, 02)
parameters g and o unknown. Let’s study RCA’s for the Wald and Wol-
fowitz’s tolerance intervals (X — kS, X +kS). First, we consider the approx-
imate shortest tolerance interval by Eisenhart et al. (1947) for reason of
its popularity in receiving greatest attention in literature and applications.
We perform the same simulation as it stated in Section 3 and the estimated
RC A’s are listed in Table 3.

Table 3. Retrieved confidence for Eisenhart et al.’s tolerance interval
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l1-a=09 1—-a=0.95 1—-a=0.99

v=0.9

n =10 0.9108 0.9462 0.9863
n = 30 0.8595 0.9103 0.9714
n = 50 0.8439 0.8966 0.9657
v =0.95

n = 10 0.9336 0.9610 0.9911
n = 30 0.8924 0.9217 0.9798
n = 50 0.8797 0.9235 0.9745
v =0.99

n =10 0.9586 0.9767 0.9949
n = 30 0.9284 0.9576 0.9875
n = 50 0.9187 0.9495 0.9861

For this situation that parameters g and, o are both unknown, Chen,
Huang and Welsh (2005) showed that

S S
\/ﬁ,X—tl_%(n— 1,—\/ﬁZ1+Ty)

(X'—tl_%(n—l,\/ﬁzuTy) ) (5.2)

B

is a 100(1 — @)% C.I. for the coverage interval (u — 21440, + 2149 0) and
2 2

then it is also a y-content tolerance interval at confidence 1 — «. It is then

interesting to evaluate its rate of confidence accomplishmenet. We list the

simulation results in the following table.

Table 4. Retrieved confidence (RCA) for coverage interval based tolerance

interval when p and o are both uknown
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I—a=09 1—a=095 1—a=0.99
=0.9
0 0.9127 0.9555 0.9911
- (1.0141) (1.0058) (1.0011)
0 0.9079 0.9531 0.9904
- (1.0088) (1.0033 (1.0004)
- 0.9076 0.9523 0.9905
- (1.0084) (1.0025) (1.0005)
v =0.95
. 0.9174 0.9581 0.9918
- (1.0194) (1.0085) (1.0019)
0 0.9099 0.9550 0.9908
- (1.0110) (1.0052) (1.0008)
50 0.9114 0.9545 0.9901
- (1.0126) (1.0047) (1.0001)
v =0.99
10 0.9213 0.9609 0.9924
- (1.0237) (1.0114) (1.0025)
a0 0.9167 0.9575 0.9909
- (1:0185) (1.0079 (1.0009)
- 0:9168 0.9574 0.9914
- (1:0186) (1.0078) (1.0014)

Basically when a closed form of a 7y-content tolerance interval at con-

fidence 1 — «¢ is available to derive the resulted ones are with RCA = 1.

However, when a closed form is not able to derive so that approximation or

simulation is done, the resulted ones are with remarkably far from 1. That

is, although there is confidence 1 — v with resulted interval (¢1,t2) that cov-

ers Xy with probability v, a significant part of them do not cover a desired

set of acceptable product. We alos conducted a simulation for one sided tol-

erance intervals where we found that the evaluated rate of accomplishments

are all very close to 1. This indicates the inconsistency in developing the

tolerance intervals.

Gaussian distribution with known variance
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Suppose that the underlying distribution is N (p, 02) with o known. Owen
(1964) obatined a v-content tolerance interval at confidence 1 — « as, by
letting X = L 3" | X;,

(X—Zl+70'—21__% X+ 120+ 218 ) (5.3)

N

In the following, we show that (5.3) is a 100(1 — )% C.I. of some y-content

coverage interval.

This shows that the y-content-tolerance interval at;confidence 1—a« of (5.3) is
a 100(1 —a)% C.I. of the y-content,coverage.interval (u— 21420, 21ty o).
Suppose that from the specialist the interval (g= 2z 1420, it 210 o) contains
a part of acceptable product. Then this tolerance interval of Owen (1964) is
with confidence 1—« the sample tolerance interval (Z— 21490 —21-8 ﬁ, T+
21420 + 218 ﬁ) contains acceptable product with percentage . This
should be satisfactory with the manufacturer.

Morever, Jilek and Likar (1960a) established the vy-content one sided
tolerance intervals at confidence 1 — « for normal distribution with known
variance and unknown mean. We may also analogously proved that they are
also 100(1 — a)% C.I.’s of some 7y-content coverage intervals. We combine

these results and it for two sided case in the following table.

Table 5. v-content statistical tolerance interval at confidence 1 — « as a

100(1 — @)% C.I. of y-content coverage interval when o is known
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~v-content coverage interval

(e — 240, 00)

statistical coverage interval

(—00, pt + 240)

(120t 2120

A

(X — 21440 — 21_a

(X — 20 = e 00)
(—OO, X+ ZyO + 21_a \/Lﬁ)

2

Table 6. Retrieved confidence and RCA <1 @

interval when o is known

Vm A rmotsog n)

ROA ) for one sided tolerance

I—a=009 I—a=0095 I—a=0.99
= 0.9
0 0.9008 0.9503 0.9908
- (1.0008) (1.0003) (1.0008)
0 0.8998 0.9500 0.9896
- (0.9997) (1.0000) (0.9996)
50 0.8992 0.9481 0.9901
- (0.9991) (0.9980) (1.0001)
v =0.95
10 0.9014 0.9488 0.9896
- (1:0016) (0.9987) (0.9996)
a0 08980 0.9511 0.9897
- (0:9978) (1.0011) (0.9997)
50 0.9020 0.9498 0.9902
- (1.0023) (0.9997) (1.0002)
v = 0.99
. 0.8992 0.9499 0.9898
- (0.9991) (0.9999) (0.9998)
0 0.8997 0.9514 0.9902
- (0.9997) (1.0015) (1.0002)
50 0.8991 0.9501 0.9904
- (0.9990) (1.0001) (1.0004)

Let Xi,...,X,, be a random sample from normal distribution N (p,o?)

x2(n—1)) =« and S? = 2

where y is known but o is unknown. Denoting by x2(n—1) if P(x?(n—1) <

?:1 (Xi_X)2

n—1

, Jilek and Likar (1960b) and Owen
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(1964) both show that

n—1 n—1

14~ =, o< .4
S,,u+z% Xa(”—l)S) (5.4)

M R

is a two sided ~-content tolerance interval with confidence 1 — a. In the

following, we show that it is a 100(1 — «)% C.I. for some ~y-content coverage

interval,
1
P = 210n y | = S <p— 2140 < p+ 21420 < p
=\ x2(n—1) z z
n—1
) S
e en-n”
n—1 n—1
:P 1 7S<_1 1 < 1 7}5’
Cop\ e FRESE < =\ am -0
Jn — 1 vn—1
= P(- Y5 < V2l ) < /A1) < Ys)
g g
Vn—1
(by the fact that Y~ § and A/a(m= 1)) > 0)
g
n—1)S?
S LU LV TR
=1-oa.

Jilek and Likar (1960b) also considered one sided ~y-content tolerance
intervals with confidence 1 — « for case that p is known and o is unknown.

We combine these results in the following table.

Table 7. Retrieved confidence for two sided tolerance interval when p is

known
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l1-a=09 1—-a=0.95 1—-a=0.99

v=0.9
n =10 0.9001 0.9510 0.9899
n = 30 0.8998 0.9514 0.9896
n = 50 0.9004 0.9515 0.9896

v =0.95
n = 10 0.9002 0.9508 0.9900
n = 30 0.9008 0.9501 0.9904
n = 50 0.8995 0.9501 0.9895

=0.99
n =10 0.8989 0.9500 0.9903
n = 30 0.9007 0.9490 0.9896
n = 50 0.9006 0.9508 0.9902

Table 8. v-content statistical tolerancerinterval at confidence 1 — « as a

100(1 — @)% C.I. of y-content coverage interval:when p is known

v-content coverage interval

statistical coverage interval

(1= 2,07,00)

(—00, pt + 2y0)

(4= 21201+ 21520)

(N_Z'y\/x 2 (n— 1)5 00)
n—1
—00 “zv\/ms)
_z1+71/ (n 1)5 M+Z1+7 / 2rzn11)

Theorem 5.3. The one sided tolerance interval of Jilek and Likar (1960b)
and Odeh and Owen (1980) and the two sided tolerance interval of Jilek and

Likar (1960b) are all with RCA = 1.

6. Shortest Admissible Tolerance Intervals

With defining the concept of admissibility of tolerance interval, it is then

interesting in developing the shortest (expected shortest) one for the class

of admissible tolerance intervals if it does exist. How can we accomplish this

task. Let Q(T,#) be an appropriate pivotal quantity that may be inverted

for deriving the confidence interval of a coverage interval C(v) = (c1,¢2)
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through the following

1—a=P{qg <Q(T,0) < q}

= P{Q:1(T,c1,¢2,q1,q2) < c1 < c2 < Q2T c1,c2,q1,42)}-

We then have choices of ¢y, o, q1, g2 that minimizes the length (or expected

length) Q2(T, c1,¢2,q1,q2) — Q1(T, c1, c2, q1, g2) where

{(Q1(T, C1, 02791,Q2)7 Q2(T7 01,02,Q17Q2)) : Px, (C(’Y)) =7,
l1—a=P{n <Q(T,0) < q2}}

is the class of admissible 100(1 — /)% tolerance intervals based on pivotal
quantity Q(T,0). hen, the shortest tolerance interval needs to be solved
with minimizing the length (expected length) simultaneously with respect
to two factors.

With the technique for developing shortest admissible tolerance interval,
there is one fact interesting to investigate. ©hen, Huang and Welsh (2006)
introduced the confidence interval of;mode interval where this coverage in-
terval guaratees the shortestiwith a fixed coverage probability. This is an
admissible tolerance interval:Z With a-fixed-pivotal quantity, we then may
derive the shortest confidence<interval for this shortest coverage interval.
It is then interesting to see if this twao step tolerance interval is the short-
est tolerance interval. We derive the shortest tolerance intervals for several

distributions and use them to investigate the desired problem.

Theorem 6.1. Let X1, ..., X,, be arandom sample from normal distribution

N(p,0?) where o > 0 is known.

(a)

[X—zma—zl_gi, 0
2 2 /n Vn

is a shortest admissible y-content tolerance interval with confidence 1 — «.

] (6.1)

X+21+70'+21_%
2

(b) The shortest 100(1 — )% confidence interval of y-content mode cov-
erage interval is the shortest admissible y-content tolerance interval with

confidence 1 — a.
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Proof. We can modify the standard confidence interval calculation to show
that

_ o _
l—-a= P{X+clcr+q1—n <ptecio < ptceo < X+cepo+qo

NG Vi)

with constants ¢; and ¢; subject to P(c; < Z < c¢3) =y and P( < Z <

(6.2)

¢2) = 1 — a. This shows that the choices of admissible y-content tolerance

interval with confidence 1 — « is

[X+C1U+Q1%,X+020+Q2%] (6.3)
which is a 100(1 — @)% confidence interval of y-content coverage interval
[+ 10, 1+ ca0].

To obtain the shortest admissible y-content tolerance interval with con-

fidence 1 — o, we seek to minimize
1
L = olcy — ¥ (g2 Q1)ﬁ]

subject to

/62 fz(2)dz =~ and 5 fz(2)dz=1-« (6.4)

i
where fz(z) is the density of the standard.mermal distribution. Equations
in (6.4) give co and g2 as functions of ¢; and ¢ respectively and parially
differentiating these two equations with respect to c¢; and ¢; respectively
yied

362

fale2) g — faler) = 0 and fz<qz>§—gj — fala) = 0.

To minimize L, we set dL/0c10 and OL/0q; = 0; that is,

oL Oco oL o 0qs

9 =5~ =0, anda—ql:ﬁ[a—ql—l]zo,
but
ol 1= ol ey ~ 1 =0 G 1= T )=
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if and only if fz(c1) = fz(c2) and fz(q1) = fz(g2), which imply that

c1 = —co and g1 = —qo are the desired solutions. Morever, restrictions in

(6.4) indicates that cz = 214, and g2 = 1 — za which, joining with (6.3),
2

veries the theorem.

If we plug the shortest tolerance interval of (6.1) in (6.2), we have

_ o _
l—a = P{X—z#a—zl_%% < p=z1420 < ,LI/+Z1+T'yCT < X+Z1+T'ya-+2’1_ }
(6.5

This formulates (6.1) as a shortest confidence interval of the shortest cov-

NG

v|R

~—

erage interval (u — 21410, p + 21+, 0) and then, for this case, the shortest
2 2
confidence interval of the shortest coverage interval is the shortest tolerance

inteval. O

Theorem 6.2. Let Xq,..., X,, be'a randonmisample drawn from the expo-

nential distribution with density funetion fz, ) = Ae I (2 > 0).

(a) The interval

_22?:1)('

(0, 2 (2n) “log(1 — 7)) (6.6)

is a shortest admissible y-content tolerance interval at confidence coefficinet

1—o.

(b) The shortest 100(1—a)% confidence interval of y-content mode interval is
the shortest admissible y-content tolerance interval at confidence coefficinet

1—o.

Proof. The exponential distribution has the quantile function F~!(u) =
~A"tlog(l —u), 0 < u < 1. By letting 0 < ¢ < g2 < oo satisfying
l—a=P{g <x*(2n) < g2) and 0 < § < 1—~, since 2A > | X; ~ x2(2n),
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then
1—a=P{a <x*@2n) < g}

=P{q: < 2)\ZX2' < ¢}

i=1
_ P{—2>\ Y iy Xilog(1l—0) < _log(1-19)
q2 A A
L logl= (8 _ ATL Xilogll— (1+5),
A - q1 A
25" X, log(1 -9 log(1 — )
_pi- Dici log(1— 8) < — og(1=9) _ _log(1—(v+9))
q2 A A
25" X,
< 2= X0 (1)
q1
Since [— log(i_‘s) , —log(l_/\(7+5))] is a 7y-content covergae interval, the possi-

ble choices of admissible y-content tolerance interval with confidence 1 — «
include
2= Xy s X0 ey (o)
q2 q1
in terms of 6,0 < § < 1 — v and qi,93-
To obtain the shortest admissible y-content tolerance interval with con-

fidence 1 — a, we seek to minimize

I 22;Xi[log(;2— ) log(1 —qf’y + 5))]

subject to
q2

0<d<1l—+and fyreny(@)de =1 —«a (6.8)

q1

where fy2(2n)(2) is the density of the chi — squre distribution x*(2n). For
given ¢q; and g2 with 0 < ¢; < ¢o,

oL 1 1
oL ZQZXi[—qz(l_(s) + q1(1—(7+5))] >0

for 0 <0 < 1—+. As an increasing function of d, L achieves minimum at
§ = 0 which, from (6.8), further indicates that q; = x3,, () and then (a) of

the theorem is proved.
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Since the y-content mode interval is
(0, =A"Hog (1 — )], (6.9)

a one sided quantile interval, which must have one sided confidence interval.
On the other hand, (6.6) is the 100(1 — a))% one sided confidence interval
and then it is the shortest confidence interval of (6.9). Then, (b) of the

theorem is proved. [l

Theorem 6.3. Let Xq,...,X,, be a random sample from Gamma distri-

bution Gamma(k,3) with known shape parameter k£ > 1 having density

fx, B, k) = BFaFtexp(—px) /T (k).
(a) Let constants ¢y, ¢, q1 and go satisfy the following conditions:
(41) for(c) _ @

for(c2) = qo
fon ((Il) _ C2q§
(62) Fomilan) = ot

(43) fccfka r)dr = v and fq2f2nk (x)dr =1—-«

where for(z) and fo,x(x), respectively, represent the densities of chi-square

distributions with degrees of freedems 2k and 2nk. Then

- N8
[Zz:l c1, Zz:l 62]; (610)

q2 g1

stisfying conditions (¢1) — (/3), is.a shortest admissible y-content tolerance
interval with confidence 1 — a:

(b) The 100(1 — )% shortest confidenceinterval of the mode interval is the
form of (6.10) that satisfies the following conditions (¢2) and (¢3) and

(£a) far(c1) = far(ca).

Proof. Considering that ¢y, c2, q1, g2 satisfying condition (¢3), since 23 2?21 X; ~

Xanks We have
1—a=P{q < x5 < a2}

= P{q < 2/BZX1' < ¢}

=1
2 "X X;
:{/827,:1 C<Cl<02 ﬁZzl
q2 q1

— { Z?:l X
q2

ca}

c; < _ﬁcl < —ﬁcz Z’qllX 2} (6.11)
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which indicates, with setting [%cl, %cz] as a y coverage interval for distri-
bution Gamma(k, 3), that
2?21 X 2?21 Xi

c1, c 6.12
| q2 ' a1 d ( )

is an admissible y-content tolerance interval with confidence 1 — .

To obtain the shortest admissible tolerance interval, we seek to minimize

L= ZX =2_2

i1 a1 Q2
Now, partially differentiating 1 —a = quf fonk (x)dz with respect to g1 yields

8Q2 fznk(Q2) f2nk(CI1) =0,

and so
oL o cz 01 01 fonk(q1)
7 X;(— Y =0, (6.13
o ; ( q2 3Q1 Zl 1 CI% onk(qz)) ( )

On the other hand, partially-differentiating v = f for(x)dx with respect

to ¢y yields
862

8—ka(62) for(c1) =0,
c1

and so

S x,0e/0a 1y NSy fale)/fan(e) 1)
301 ;X . qz)—;xz( . —)=0. (6.14)

The conditions (¢1) and (¢3) are followed from (6.13) and (6.14) and then
(a) of the theorem is proved.

For this Gamma, distribution, the mode interval is an interval of the form

(c1,¢2), (6.15)

with smallest length cs — ¢; subject to fccf forx(x)dx = ~. This leads that

the mode interval is it of (6.15) subject to condition £4. From the derivation
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in (6.11), the 100(1 — )% shortest confidence interval of the mode interval
is of the same form of (6.10) subject to conditions (£2) - (£4). O
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