A PROCESS MONITORING TECHNIQUE FOR
CATEGORICAL DATA USING
A PARAMETRIC TWO-COMPONENTS MIXTURE
PRIOR FAMILY



R FORLR & A B A fe Kok PN 7 AR
£ e
A PROCESS MONITORING TECHNIQUE FOR

CATEGORICAL DATA USING
A PARAMETRIC TWO-COMPONENTS MIXTURE

PRIOR FAMILY
MoroA L ERE Student : Chia-Hui Yu
hEre mEE #4 Advisor: Dr. Chih-Rung Chen

A Thesis
Submitted to'Institute of Statistics
College of Science
Nation Chiao Tung University
in partial Fulfillment of the Requirements
for the degree of Master
in
Statistics

June 2006
Hsinchu, Taiwan



Pl TORR & LBk A e 5D e
FEE i Y

B ARE RERERAYE K

k|
| +
<k
=
N

S L L

R

y
s
<

™

S AHLARERTT AR A RE D - Bd 5 B
PR anR & AR A fiow RS v R R AR T AT A
R EE R TR - BESKREL NE c BRFRS- B
Bl KRt sk b HER o A1 HECE AP S % D
Qﬁ@kJﬁﬁ&jﬂﬁﬂoﬁm%ﬁ@uwﬁ%g,ii RN
SRR 4ﬁirfpiﬁwmvnﬂlﬂﬁéﬁoﬁxégﬁﬂwéﬁe
Rgipiwﬂ% o 3| o

&P
o

N

i

etz 5% b ~; @y
7 ; Dirichlet-2 78 7% ; 4% fa-- 787\, B -¥F &7 74,
B ARl &R A

’P"i
m;
S
«\
&
R}
>\l
23
]
"
&
H
o
@
(_’_
<
I
e



A PROCESS MONITORING TECHNIQUE FOR
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Abstract

In the paper, first, a two-components mixture prior parametric family for
the in-control prior distribution is propesed in a manufacturing process.
Then an empirical Bayes approach is proposed when there are available
in-control categorical data generated from the manufacturing process. As
an illustration, an example of the proposed empirical Bayes model is
introduced. For the purpose of model building, the goodness of fit and the
simplification of the proposed model are discussed. Utilizing the
likelihood ratio method, both Bayesian and empirical Bayes monitoring
techniques are proposed as the main purpose of the paper. Finally, the
performance of the proposed process monitoring scheme is studied in terms

of the average run length to show the robustness of the methodology.

Key words: Empirical Bayes; Process monitoring; Categorical data; Mixture
prior; Beta-binomial; Dirichlet-multinomial; Transformed-normal-binomial;

Transformed-normal-multinomial; Control chart; Quality control
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1 INTRODUCTION

In a manufacturing process, suppose that a product has k possible types of
defects for some known positive integer k. For each tested product item, the result
could be recorded as exactly one of the following k + 1 disjoint categories: {the
first defect type, ..., the kth defect type, pass}. Such data are called either binary
for k = 1 or polytomous for k£ > 2. In the paper, categorical data denote either
binary or polytomous data. See, e.g., McCullagh and Nelder (1989, Chapters 4
and 5) or Agresti (2002) for a review of the categorical data analysis.

In a Bayesian framework, the prior distribution of the unobserved random
parameters is pre-specified explicitly, i.e., it does not depend on the observed
data. However, it is usually a non-trivial task for practitioners to pre-specify an
appropriate prior distribution of the random parameters. Thus, an empirical Bayes
approach is commonly used inStead.

In an empirical Bayes framework, there exist seme unknown hyperparameters
in the prior distribution of the unobserved randem parameters. Then the marginal
distribution of the observed data is utilized to estimate the hyperparameters. Fi-
nally, a Bayesian inference is made for the random parameters by treating the
estimated prior distribution as the prior distribution. Since the estimated prior
distribution does depend on the observed data, an empirical Bayes inference is not
a Bayesian inference.

There are some research works utilizing the empirical Bayes model to monitor
the categorical data generated in a manufacturing process. For example, Yousry
et al. (1991) used the beta-binomial empirical Bayes model to monitor the binary

data and utilized the method of moments for estimation of the hyperparame-



ters. Recently, Shiau et al. (2005) used the Dirichlet-multinomial empirical Bayes
model to monitor the polytomous data and utilized both the pseudo maximum
likelihood method and the method of moments for estimation of the hyperparame-
ters. Chen et al. (2004) used the beta-binomial/Dirichlet-multinomial empirical
Bayes model to monitor the categorical data and utilized the maximum likelihood
method for estimation of the hyperparameters. Similarly, Chen et al. (2005) used
the transformed-normal-binomial /multinomial empirical Bayes model to monitor
the categorical data and utilized the maximum likelihood method for estimation of
the hyperparameters. Chen and Liu (2005) developed a model selection technique
between two empirical Bayes models for the categorical data.

To proceed the discussion, we give a brief description on the Bayesian inference
as follows: In a Bayesian frameworkythe prior distribution of the unobserved ran-
dom parameter vector @ has an explieitly pre-specified prior probability density
function (p.d.f.) or probability mass function (p.m:.f.) 7(6) and that the response
vector y given @ has a known conditional p.d.f. or p.m.f. f(y|@), where the func-
tion 7(-) does not depend on y. ‘Then-the Bayesian inference is based on the

posterior p.d.f. or p.m.f. p(8]y) of 8 given y, where

p(@ly) o f(y|@)n(0).

In the Bayesian terminology, 7(6), f(y|@), and p(8|y) are also called the prior
likelihood, the likelihood, and the posterior likelihood of 8, respectively. In the

literature, it is common practice to estimate 6 by the posterior mean F(8|y) of 0



given y, where

f@ Hf yye) ( )de or ZOE@ 0f(Y|0)7T(9)
f@ y,e d@ 2066 f(Y|9) W(O)

E(Oly)

with P({6 € ©}) = 1. An alternative estimator of 6 is the posterior mode

mode(@|y) of @ given y, where

mode(fly) = argsup p(fly) = argsup f(y|6)m(6).
6co 0cO

See, e.g., Gelman et al. (2004) for a review of the Bayesian data analysis.

Next, we give a brief description on the empirical Bayes inference as follows:
In an empirical Bayes framework, the unobserved random parameter vector 6 has
a prior p.d.f. or p.m.f. 7(8; ) fof Some unknown hyperparameter vector A and
that the response vector y given 6 has & known, conditional p.d.f. or p.m.f. f(y|0).
An empirical Bayes inference 18 simply & Bayesian‘inference discussed above with
7(6) being replaced by m(8; A)[sLz ) (= 7(0; Aly))), where A(y) is an estimator
of A. Then an empirical Bayes inference'is based on the estimated posterior p.d.f. or

pm.f. p(Bly; A)ls_s(y) (= P(Bly; A(y))) of 6 given y, where
p(Oly;A) o f(y|0) m(6;A).

In practice, either the maximum likelihood estimator or a method-of-moments
estimator of X is usually used as A(y) in an empirical Bayes inference. Similarly, it

is common practice to estimate 6 by the estimated posterior mean E(8y; A)|,_ Ay)



(= E(8]y; A(y))) of 8 given y, where

Jo 0 f(y|0) 7(6;X) d6 > oco 0 f(y|0)m(6; )

EOY:X) = “rno o " S F(v10) 70N

with P({€ € ©};A) = 1. An alternative estimator of € is the estimated posterior

mode mode(6]y; A)[y_5,) (= mode(6|y; A(y))) of 8 given y, where
mode(fly; ) = argsup p(0ly;A) = argsup f(y|6)m(6; ).
6co 0co

See, e.g., Carlin and Louis (2000) for a review of the empirical Bayes data analysis.

The remaining parts of the paper is organized as follows. In Section 2, a two-
components mixture prior parametric family for the in-control prior distribution is
proposed in a manufacturing process. In Section 3, an empirical Bayes approach
is proposed when there are available in-contrel categorical data generated from
the manufacturing process. An example of the proposed empirical Bayes model is
introduced in Section 4. The goedness of fit and the simplification of the proposed
model are discussed in Sections 5 and 6, respectively. Utilizing the likelihood ratio
method, both Bayesian and empirical Bayes monitoring techniques are proposed in
Section 7. The performance of the proposed process monitoring scheme is studied
in terms of the average run length in Section 8. Some concluding remarks are

given in the final section.



2 A TWO-COMPONENTS MIXTURE PRIOR PARAMETRIC
FAMILY

Assume that a product item is classified as one of the following k£ + 1 disjoint
categories: {the first defect type, ..., the kth defect type, pass}, where k is a
known positive integer. Let ¢ be any positive integer. For i € {1,...,k}, let
0;; denote the probability that a product item manufactured at time ¢ has the ith
defect type. Then 1 — Zle 0it (= Ok+1.) is the probability that a product item
manufactured at time ¢ passes the test. Set 6; = (0y,...,0,)" and © = {6;:
O1,...,01, > 0 and Zle 0;; < 1}. In the paper, 6, is called the (unobserved)
random parameter vector at time t. Let Fp, denote the prior cumulative distrib-
ution function (c.d.f.) of ;. For simplicity of notation, set R™ = (—o0, 00)™ for
any positive integer m.

Throughout the paper, thé manufacturing process is said to be in control at
time t if and only if Fy, = F, svhere’ F-is an-unknewn in-control prior c.d.f. on ©
with p.d.f. 7(0;). In other words; the manufacturing process is said to be out of
control at time ¢ if and only if Fy, # F.

For u € {1,2}, let {F,x,: Ay € A,} denote the uth component prior para-
metric family, where A, is a ¢, X 1 hyperparameter vector for some known pos-
itive integer g,, each F, x, is a known prior c.d.f. on © with p.d.f. m,(0: Ay),
and A, is a known open subset of R%. Assume that 9%m,(0;;A,)/OAOAL ex-
ists for each 8, € ©, A, € A,, and u € {1,2}. Let {Fx: A € A} denote the
two-components mixture prior parametric family, where A (= (w, AT, A7) is a

(14+ ¢+ ¢2) x 1 (= ¢ x 1) hyperparameter vector, each Fy is a known prior



c.d.f. on © with p.d.f.

exp(w) 1
0N = ————— -1 (O A ———— m2(0; A 1
T(6:5 ) 1+ exp(@) T1(04 A1) + 1+ exp(@) T2(04; A2), (1)
and A = [—00,00] X A; X Ay. Assume that the two-components mixture prior

parametric family is identifiable, i.e., Fy1 # Fy2 if A' # A* with A1, A* € A.
When w = oo, the two-components mixture prior parametric family is simplified
to the first component prior parametric family with 7(0;; A) = 71(0;; A1). When
w = —00, the two-components mixture prior parametric family is simplified to the
second component prior parametric family with 7(0;; X)) = m5(0;; A2). See, e.g.,
McLachlan and Peel (2000).

For any A € A, the Kullback-Leibler, divergence between the in-control prior
c.d.f. F' and the prior c.d.f. Fy is'defined.as

d(F,Fy) = /@ log L%fi)}dzr(et) = AN 2)

By the Jensen inequality,

d(\) = /@ —log {%} dr(@,) > —log { /@ %-w(@t)d&}

{04:m(6:)>0} C]

for A € A, where d(A) = 0 if and only if F = F.

Assume that all of the following conditions hold: For A € (—o00,00) X A X Ay



(= A°), %d(X)/ONIAT exists,

and
gi\dé?)\T /8)\8)\T 08 [ t))] dF(6,) = J(A).

Assume that there exists a unique A € A° such that

0o .
AV = arg ;‘relg d(N).

Then S(A°) = 0,51 Observe that, for A € A°,

_ B O (0,; X)X _ mA(05A)

- / S(X 0 AEB,) = B(S(A6,); F)
(€]

and
o= [ —“gi;"” IF (6,
B aAaAT SNCEPNESACERN)
- [ S} e
_ TANT Ht, SNCEPNESACEDY)
= [ 1o o) e
_ / JAOt)dF(Bt) = BJ(A6,): F).
(€]



For X € A°, set

— . T(y. _ 7T>\(9t3>\)7§(9t§>\)
KA = /@S(A,Ot)s (X;0,)dF(0;) = /@ ECINE

/ K(X8,)dF(6,) = E(K(X6):F). (6)
()

dF(,)

Then K () is a positive definite covariance matrix for A € A°. For A\, € A, and u €
{1,2}, set mua, (01; An) = Oy (0 A u) = Pma(050,)/

OXONT.

W) /0Ny and m, \ (04 A

Observe that, for A € A°,

QZ%%EQ _ ﬁ:?ggigﬁ-wwmeﬁxg-wgeﬁAg} = m.(05N),
ng%?ﬁ Tizigaﬁ.ﬂiAgaﬁxg = T, (0, ),
% exp[(lwl[ix;&){)?ﬁ””-[mwtﬂl)—ﬂwt;w = (655 A),
%ﬁ;\{) LT_}Z})—}E;U(L)'WLAlA{(Gt;Al) = maar(0sA),
% HG;W-@Mg(etw) = T ar(05N),
Gl T eaap N0 = m00)
T T o83 =m0
and
a;%?)t);\? = Opxg = Taar(0isA),

where 04, x4, denotes the ¢; X g2 matrix with all components being 0.



One way to evaluate A” is to iterate the following procedure until A*) converges

to A% First choose a good initial value A € A° for A%, Next, set
PR N R (Aw)) IS (A@)) (7)

when A is defined for v € {0,1,2,...}. If A*@*D e A° and d(ATY) < d(A™),

set AUTD = N+ otherwise, set
1 . _
Aot = @) o K1 ( )\(v)> IS <>\<v)> (8)

for u € {0,1,2,...} and set AT = XNt where m*, | = min{u: u €
{0,1,2,...}, Xt g po Nr@hLot) e po - and d(AUHDY < min {d(AY),
d()\*(u+1,v+1))}}.

Note that, by the Taylor series expansion; we obtain

d ()\*(“’““)> — d (A(”)> ST (Aw)) ( SRde) A(v)> L
= d()\@) _ 2%.5@ (A(v)) e ()M) g )\(@) Lo <2Tlu>

as u — oo for any fixed non-negative integer v. Since ST(A)K-1(A)SA®) >
0 for any fixed non-negative integer v, d(A*®*™V) is a strictly increasing function
of u for large u with limit d(A™), which implies that m?,, is well-defined. Thus,
d(A") is a decreasing function of v, i.e., dA?) > d(AW) > d(AP) > ...

When any of d(X), S(X), J(X), and K () does not have a closed-form formula,
we may first simulate an independent and identically distributed (i.i.d.) sample

{Ogl), e ,0§R)} of size R, e.g., R = 50000, from the in-control prior c.d.f. F' and



then numerically evaluate d(X), S(A), J(A), and K(X) by

log[ (6:) }

S
X

i
==
[M]=

— (0 N) 0,—0" ’
A 1 & 0.: \
SA) = & ; % oot (10)
. R (0, : T(0.-
JA) = % : ; {_ﬂ);:‘w(f‘;\))‘) + ﬂ/\(e[;(z):))\\;}zt’ A)} s (11)
and
- 1 0.\ 77(0.: \
KX = & ; Ta( [;(9):)/:)(]2“ ) . (12)
respectively.

3 AN EMPIRICAL BAYES APPROACH

Let t be any positive integer. Suppese-that there are n; tested product items
manufactured at time ¢, where n;is:a known positive integer. For i € {1,...,k},
let y;; denote the number of the tested product items which have the ¢th defect type
among the n; tested product items manufactured at time ¢. Then n; — Zle Yit
(= Ykt1,.) is the number of the tested product items which pass the test among
the n; tested product items manufactured at time t. Set y; = (yis,...,yw)’ and
Vo, = {ye: vty ue € {0,1,...,n;} and Zle yi < ny}. In the paper, y; is
called the (observed) response vector at time ¢.

At each time ¢, assume that the response vector y; given the random parameter
vector 0, is distributed as either the conditional binomial(n; 8;) distribution for

k = 1 or the conditional multinomial(n; 8;) distribution for k£ > 2, denoted by

10



y:|6; ~ binomial(n;; 8;) for k = 1 or multinomial(n; 0;) for & > 2. Let Fy,g,

denote the conditional c.d.f. of y; given 8; with p.m.f.

k+1

! it
fyid®:) = 1y, (v¢)- m : g 0%, (13)

where 1y, (y¢) = 1 for y; € ), and 0 otherwise. Let Fy, denote the marginal

c.d.f. of y, with p.m.f.

k+1
F(yiFo) = Ly, (y)- =t / [T o 00 (14)

21y1t

For A, € A, and u € {1,2}, let Fy, ., », denote the marginal c.d.f. of y, with

p.m.f.

k%1

JulYi; Aa) = 1ynt(}"t k+1 / Heggt dFu}\u (6,)

k41
= Ly, (ve)7 Hmy : / (H 9) (05 A,)d0;  (15)
i=1 Jit*

when 6, is distributed as the prior c.d.f. F, »,, denoted by 8; ~ F, », and y; ~

Fy,ux,. For A € A, let Fy,.» denote the marginal c.d.f. of y; with p.m.f.

flysA) = 146_}?—)5;}(10) filys ) + He;Xp(w) - fa(ye; A2) (16)

when 0, is distributed as the prior c.d.f. F}, denoted by 8; ~ F and y; ~ Fy, ..

11



For A, € A, and u € {1,2}, assume that

afu(}’t; )‘u) nt'
o = ) = /
a)\u Hk+11 yzt

= fur. (Y A)

(i) wion]

and

0 fulys; M) e
W - 13}"7& (Yt k-‘rl / aA 8AT H ey . eta A ) d@t
= fu,Auxg (Yt, Au>~

Then, for A, € A, and u € {1, 2},

o (¥eA) = 1y ( )n—t'/ Iﬁgyit Mdp 6,) (17)
A Y y"t v Hf+11 yzt (S) -9 & 71-u(et;Au> A '

and

A it u,AuAZ;(et§ Au)
fu,)\u)\g (Yta Au) = 1y’nt (Yt) Hf+11 Vi | / H 0 Wu(et; )\u> dFu,}\u<0t>'
(18)
In the paper, it is assumed that the in-control prior c.d.f. F' = F\o for some

unique A’ € A. Then d(A°) = 0. Assume that there are available historical in-

control response vectors {y1,y2,...,yr} generated in the manufacturing process
for some known large positive integer T, where (87, y1)7, (8%, yD)T, ..., (0%, y5)T
are independent 2k x 1 random vectors. Set @ = (81,0%,....00)7, y= (T, y?, ...,

yE) T, and Y = Yo, X Yoy X -+ X Yy, where 6 and y are, respectively, called the

historical in-control (unobserved) random vector and the historical in-control (ob-

12



served) response vector in the paper.

Let Fj.,o denote the marginal c.d.f. of y

with p.m.f.
T
A% = J[fsX’). (19)
t=1
Given the historical in-control response vector y, the log-likelihood function
for A is
T
UNy) = loglf(y;A)] = log [H f(Yt;)‘)]
t=1
T
exp(w) 1
= l —_— . . - . .
tz; Og |:1 + eXp(CU) fl(}’t, Al) + 1 + eXp((U) fQ(yta A2):|
d exp(w) 1
= ; log {rxp(w) -exp[li(As; ye)] + Txp(w) 'eXP%()\z;Yt)]}
T
= > (i), (20)
t=1
the score function for A is
(A y) . 0(( )\ Yt S yt, /8>\
S(; = =
Iy S
= Z AYEA) > S(Aiya), (21)
=1 yt7

13



and the observed (Fisher) information for X is

o _ 08(\y) r S(Aiye)
JAy) = —— 7 ; T
= AN A 9 f (v A)/OAIAT
B E{ [f (ys; M) FlysX) }
o S AN asN)  farlysA)
- ;{ [f(ye; A)]? F(yeA) }
= > Jy). (22)
For A € A°
KAy) = ZT:S()\;Yt) (Asye) ZT: A yf)‘T)]Yt’)‘)
= > K(Aiy): (23)

t=1

Then K(A;y) is a non-negativé.definite covariance matrix for A € A° and y € ).
For large T', K(;y) is in general a positive definite covariance matrix for A € A°

andy € ).

14



Observe that, for A € A°,

8f(g5)\) = [1f;i§i)]z'[fl(yt;kl)—fz(yt;kz)] = fulys ),
af(a};)\) N 1—?25;)@']0%(3’1:3)\1) = falys ),

THR s hliid) = )

02fa(Z’jt2;>\) _ exp[(lw_?_[ixg(ix)r])ggw”'[fl(YtQAl)_fz(YtQ/\2)] N,
a;ﬁ%&?) - 1—T-X§)£;}(>w).fl)‘lA{<Yt;)\1) = fuar(ysA),
AT~ Tranm PN = Al

IR e SN = gl

%y;;) - _%'fgkz(YﬁAﬁ = foar(ys ),
and

%};\? Opxar =z (Vs A).

The maximum likelihood estimator (MLE) A(y) (= A) of A solves the score
equation S(A;y) = 0gx1 for A. That is, S(A;y)| s (= S(A;y)) = Oge.
One way to evaluate A is to iterate the following procedure until A converges

to A: First choose a good initial value A@ € A° for A. Next, set
NEH) = Z@) 4 g1 ( A®. y> g ( A® y> (24)

when A is defined for v € {0,1,2,...}. If @Y e A° and ¢(A*HD.y) >

15



(A y), set ATD = X0 otherwise, set

1
)\*(u,v-i-l) = A(U) + 2_u . K_l ()\(U), y> S (A(v); y> (25)

for u € {0,1,2,...} and set AUTY = Xm0 tD - where my,, = min{u: u €
{0,1,2,...}, Aot o po  Z\#(utlotl) o po apd E()\*(“’”H);y) < min {E()\(”);y),
(AT ),

Note that, by the Taylor series expansion, we obtain

é (A*(U7U+1); y>

— <A<v>;y) g7 (Aw);y) (A*(u,vﬂ) _ }\(v)> T

=/ ()\(U);y> + 2% . g7 (}\(v);y) Fil ()\(v);y> IS ()\(U);y> ) <22Lu>

as u — oo for any non-negativeinteger v. Sirice ST()\(”); y)K‘l()\(“); y)S(A(”); y) >
0 for any fixed non-negative infeger v, £A*™Y): y¥is a strictly decreasing function
of u for large u with limit E()\(”); ¥);-which implies that m} , is well-defined. Thus,
¢(A®);y) is an increasing function of v, i.e., {(A?;y) < (AW y) < ¢(A?.y) <

When any of ¢(A;y), S(A;y), J(A;y), and K(A;y) does not have a closed-
form formula, we may numerically evaluate any of them as follows: First, for
u € {1,2}, simulate an i.i.d. sample {6\", ... 8“1 of size R, e.g., R = 50000,
from the prior c.d.f. F,, »,. Secondly, for u € {1, 2}, numerically evaluate f,(y:; Au),

fur.(¥t; Au), and fu,)\u)\f (45 Au) by




fu,)\u (Yt, Au)

_ (_y ) nt‘ 1 i lﬁ Qy” 7Tu Ay 9t7 A ) (27)

- Y \Xt) " Sx1 T o )

Hfjll Wl I (04 Au) o)
and
fu,AuAZ (Yt§ Au)
R k+1
1! 1 . Tu <0t7 Au)

= 1y, (vi)  ——— =" 9?” . ud (28)

: Hfjll yz‘t! R ; H ! WU(Otv )‘U) etzggu,r)

respectively. As all of f(yi; A), fa(ye; A), and fy,7(y; A) have closed-form for-
mulae of W, fu(Yta ) fu Ay <YtaA )7 and fu,AuAZ<yt;Au) for u € {172}7 thirdl}’a

numerically evaluate f(y; ), fa(ye A), and fy,r(y; A) by f(yt;)\), fA(yt;)\),

and f»\T (y+; A), respectively, utilizing their elgsed-form formulae. Finally, numer-

ically evaluate £(A;y), S(A;y)s J (A y)sland K (Ayy) by

I(Ny) = > log [f(yt;A)}, (29)
5 - A )
Siy) = 3 2S (30)
t=1 A
T .
. B AWy A f>\ Yt>>\) _far(ysA)
) tz1 { flys A f(Yt; A) } ’ 31)
and .
2 f Yt7 f>\ Yn A)
K(X; = , 32
respectively.
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4 AN EXAMPLE

For illustration of the proposed methodology, the first component prior para-
metric family is chosen as the family of all beta/Dirichlet distributions because
it is a conjugate family of binomial /multinomial distributions. The second com-
ponent prior parametric family is chosen as the family of all transformed normal
distributions (defined below) because it is a rich family of distributions, offering
important distribution shapes that cannot be achieved within the family of all

beta/Dirichlet distributions. See, e.g., O’Hagan and Forster (2004, Chapter 12).

4.1 The First Component Prior Parametric Family

Let the first component prior . parametric, family {Fi,: A1 € A;} denote
the family of all beta/Dirichlét distributions, where A; = (Ai1,... Ap1)? (=

(M1, - Aig)T), Ay = RFL and 'F y, has'p.d.f.

TS expA)] 55 o
m1(Bih) = La(0)) et AL T oot
Hi:l F[eXp()‘liﬂ i1

| [lexp(Aig)]
lo(6:) Hfill [lexp(Ay;)]

k+1

. H eliﬁzip()\li)—l (33)
i=1

with 1¢(0;) = 1 for 8, € O and 0 otherwise. Since {Fix,: A1 € Ay} is cho-
sen as a conjugate family of binomial /multinomial distributions, all of fi(y:; A1),

fia (ve5 A1), and f; x, a7 (¥e; A1) have closed-form formulae for A; € Ay as follows:
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For A; € Ay, it follows from Johnson et al. (1997, pages 80 and 81) that

fi(ye; A1)
ng—1 . k+1 yit_l N
j+1 } { jt+1 }
— 1 - X lO -~ ~ .| — 10 (Y. L s ’
Yny (Yt) p { jzo g {exp()\m) +j zzl jZO & eXp(/\li) +

(34)

For A\; € Ay, set exp(A;) = (exp(A11),---,exp(Axs1))?. Then, for A; € A; and

Yt € Vn,, we have

‘ 0 _ _ fiays )
Si(Aye) = O Gi( A ye) = iy
y1¢—1 yk+1,t—1 T
_ Z eXp()\n) Z eXpO\l,kH)
— exp(Api) 50 s, — exp(Ai 1) +J
j= =
nt—l 1
— — " exp(A
[; eXp()\1o)+] P( 1)
and
0 f ,>\1>\1T(Yt3>\1)
S Any) = _WSI(M;}%) = S1(A15y1) SlT(Aﬁyt) B 1f1<}’t;>\1)

y1e—1 . Yr+1,6—1 .
. j - exp(Anr) - exp(Ais1)
= d1ag{z }2,..., Z ]2

= lexp(Au) +J = [exp(Arprr)

TLt—l 1
1Y
Lgo exp(A1p) +

ng—1 1 T
_{E% [expw)ﬂ?} e

- diag {exp (A1) ;. .., exp(Aik+1)}
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Thus, for y; € V,, and A\; € Ay,

f1,>\1(Yt;)\1) = filyss A1) - Si( A ye) (35)

and

fl,AIAIT(Yt;)\l) = fl(Yt§ >\1) : [51()\1;}’15) S1T()\1;Yt) - J1<>\1§Yt>] . (36)

4.2 The Second Component Prior Parametric Family

Let the second component prior parametric family {Fsx,: A2 € Ay} de-

note the family of all transformed noermal, distributions defined as follows: Set

(log(01¢/Or+1): - - -, 1og(Ore/Ora))! SM(E Mgy - - M) 7). Then, fori € {1,...,
kY, 0 = exp(n;,)/[1 + 5, expl@g)]. Let N(j1,%) denote the k-variate normal
distribution with mean vectorip (= (ugrrrmp,)t) € R* and k x k positive def-
inite covariance matrix ¥ (= (X;#))s Set. BT1'= (27) and R = (X7 /V/Xii 5i'7)

(= (pir)). Then

>t o= diag{\/ﬁ,...,\/W}Rdiag{@,...,\/W}.

Set

Ay = (NT, log (le) ,...,log (Ekk) , log (M) ,...,log (M) ,

(1 +pk1,k>>T
oo dog | ———=
1_pk71,k

= (Ao,-- -, >\2,k(k+3)/2)T = (M1, )\QqQ)T € Ay,



where Ay = {Xy: € RF and X is a k x k positive definite covariance matrix}.
Then A, is an open subset of R%. For Ay € As, let ¢(-; Ag) and Py, denote, re-
spectively, the p.d.f. and the c.d.f. of the N(u,¥) distribution. For Ay € Ay,
set D0(:; A2) /0Ny = @x, (5 X2) and P¢(+5 X2)/OX0A; = Pp,a1r (5 A2).  When
n, ~ N(p,X), we say that 6, is distributed as the transformed-normal(p, 32)

distribution, denoted by 6; ~ F5 ,, with p.d.f.

on
det (80;) '

= 1e(6,)- ! - exp {—1 (M=) E " (n,— )| (37)

7T2(9t§ /\2> = ¢(77t5 /\2)

(2m)*/2 B2 T 0y 2
where
on, , { 1 ] } 1
— = diag< uiieataly, | g 17
00} & 01t Ore Orv1 ot T
with 15, denoting the k x 1 vector (1,..5 )%
For A\, € A, we obtain
k-1
Blyid) = 1y, (.- H’““ / VEREND
i=1 it'

7! / exp(yt "7t)
— 1 L dd . (38
2 3) [T vl Jre 1+ 55, epOp)lm ). (39

f2,)\2 (Yt; >\2)

k+1
= 1 (y ) . —nt! . / ﬁ gYit . 7T2,)\2(0t;A2) dF. (0 )
e W HkH w! Je i T2(01; A2) 222t

i=1 Y i=1

n! exp(y{ 1) Ox, (145 A2)

k—&-; / T— = .t)\ d®x, (1),
[T wa! Jre (14200 exp(n )] @145 A2)

(39)

= 1y, (ye) -
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and

fz,AQAZT (5 A2)

k1
ng! . Tl (015 A2)

- 1 S gyt | . 222 dFs 5, (0

Y /@@Il ) S WEE

ny! / exp(yl'n,) . PaoAT (145 X2)
RE [

ddy (77 )
| T 1+ 0 exp(n)]m 6(n4; Ao) o

(40)

= 1y, (y¢)-

Note that, for 8; € © and Ay € A,,

—W;:Eé?t):‘;) = —qbg(f:t/\:;) = —%-%\Q(m—ufﬁ Y- p) o (41)
and
72,A2A§(9t3>‘2) = ¢>\2X§(77t;)\2)
T2(04; A2) O35 A2)
© 3 g S )+ Pult Q) e

Since none of fa(y:;A2), fox, (Y5 A2), and fy 5,a7(¥4; A2) has a closed-form
formula, we may numerically evaluate all of them as follows: First simulate an
i.i.d. sample {9%2’1), .., 0™ of size R, e.g., R = 50000, from the prior c.d.f. F x,

and then numerically evaluate fa(y:; A2), fox, (Yi5 A2), and fo 5,47 (45 A2) by

0,=6>"

) ! | B[k
Lo(yXe) = 1y, Vo) =07 — 5 03
‘ Hfill Yit! R r=1 111
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f2,)\2 (¥4 A2)

PRy 0 ol [y PR EACLY) "
A s T I - it | Ty :
H?ill Yit! R —1 Pl t Wz(et,AQ) 6u_(2")
and
fz,AQAZT (yi; A2)
R k41
! 1 - Tl (04 Az)
= b0 =1 R o | - (45)
Hfill ya! A ; }_[1 ' m2(0; Az) 0,=0>"
respectively.

An alternative way to numerically evaluate all of fa(y:; A2), fax, (¥ A2), and
foxoar (Y25 A2) is to utilize the multivariate Gauss-Hermite quadrature, e.g., see
Fahrmeir and Tutz (2001, pages 447-449). All of nodes and weights of the Hermite
polynomial of 32 degrees are shown inthe appendix for the multivariate Gauss-
Hermite quadrature.

In the paper, a simulation study is' conducted for the following four cases where

exp(w?) 1
F = F G - R
A? 1 + exp(w?) 1A g +exp(w?) ~* A3
k=1, T = 300, and n; = ... = np = 300 with A = (W%, X AT (=

(W, Al Alas Agrs Ag)T)-

Case 1: A° = (log(1/5),1og(85),log(15), —0.716,log[1/(0.214)?))”. In particu-
lar, exp(w°)/[1+exp(w®)] = 1/6, F} o is the beta(85, 15) distribution, and F, 5g is
the transformed-normal(—0.716, (0.214)?) distribution.

Case 2: A’ = (log(1), log(80),log(20), —0.410, log[1/(0.205)?])T. In particular,

exp(w’)/[1 4+ exp(w®)] = 1/2, F} 5o is the beta(80,20) distribution,and F; 5g is the

23



transformed-normal(—0.410, (0.205)?) distribution.

Case 3: A° = (log(1),10g(60),1log(40), —1.405, log[1/(0.253)%))T. In particular,
exp(w’)/[1+exp(w’)] = 1/2, F, 5o is the beta(60,40) distribution, and F, 5g is the
transformed-normal(—1.405, (0.253)?) distribution.

Case 4: X? = (log(5),10g(73),1log(27), —0.203, log[1/(0.202)3]))”. In particular,
exp(w’)/[1+exp(w®)] = 5/6, F, 5o is the beta(73,27) distribution, and F, g is the

transformed-normal(—0.203, (0.202)?) distribution.

5 GOODNESS OF FIT

In this section, the goodness of fit of the proposed model for a set of available

historical in-control response vectors, {yi,.-+4yr}, generated in a manufacturing

process is discussed. Recall that @ =-(87,.5.,00)", y = (yI,...,.y)", YV =

Yoy X o+ X Yy, and F' is thesin-control prior c.d.f:

Consider the null hypothesis Hy:#01,.."., 05 SN {Fx: XA € A} versus the

alternative Hy: 0,,...,07 " F ¢ {Fx:'X'€ A}. Let F(O) denote the set of all
prior c.d.f.’s on © and let {(F';y) denote the log-likelihood function of F' given y.

Then

(F;y) = log [H [y F)

t=1

= Zlog[f(yt;F)} = ZK(FQQ),

where

f(Yt;F) = /@f(YtWt)dF(et)'

Let Wr(y) denote the corresponding likelihood ratio (LR) statistic given y.
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Then

Wr(y) = 2| sup ((F;y)—sup{( A;y)] = 2 [ﬁ (ﬁ;y> — ¢ (X;yﬂ , (46)
FeF(O) AeA

where F' is the non-parametric MLE of F' given y under H; and A is the parametric
MLE of A under Hy. Since it takes too much time to calculate the critical point
for performing the LR test, an alternative goodness-of-fit test is proposed in the
paper as follows:

Note that the empirical prior c.d.f. F with p.m.f. 71 - Z;‘le l;g,) converges
to F' in distribution as 7' — oo and that, for t € {1,...,T}, the MLE y;/n; of 6,
given y; converges to 8, as n, — oo. Since 64, ..., O are unobserved, the empirical
prior c.d.f. F is unavailable. Thus, we.utilize the estimated empirical prior c¢.d.f. F*
with p.m.f. T-!- 23:1 l{y,/n,} to estimate F. When all of n,...,ny, and T tend
to 0o, F* converges to F' in distribution.

In the paper, consider the goodness-of=fitsstatistic

Wily) = 2 K(F;Y)IF:F*%(X;}')} = 2[€(F*;y)—€(5\;y)]' (47)

One way to calculate the critical point for performing the goodness-of-fit test
is as follows: First simulate an i.i.d. sample {y"), ..., y®}, e.g., R = 50000, from
the estimated in-control marginal c.d.f. Fy yolyo_5 (= Fy.5)- Let (yay,---,¥n)
be a permutation of (y,...,y®) such that Wj(yu)) < ... < Wi(ym). Let
a be a known constant with 0 < a < 1, e.g., 0.05. An approximate size 1 — «

goodness-of-fit test is to reject Hy if and only if Wi(y) > Wi(y(r@-a))), Where

[R (1 — )] is the largest integer less than or equal to R (1 — «).
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The corresponding values of Wi (y(r(1—a)))’s for Cases 1-4 in Section 4 are
shown in Table 1, where £k = 1, T' = 300, n;y = ... = np = 300, R = 50000,
and o = 0.05. And the empirical c.d.f.’s of Wi (y)’s for Cases 1-4 in Section 4 are

shown in Figures 1, where £ =1, T' = 300, n; = ... = np = 300, R = 50 000.

Table 1: The values of W;(y(ra-a))’s for Cases 1-4, where k = 1, T' = 300,
ny=...=npr=n; =300, R =50000, and o = 0.05.

Case 1 | Case 2 | Case 3 | Case 4

Wi(y(ra-ap) | 181 | 490 | 12.7 | 1.78

Figure 1: The empirical c.d.f.’s of Wj;’s for Case 1-4, where £k = 1, T" = 300,

ny =...=ny =n; =300, and R.=50000.
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6 SIMPLIFICATION

In this section, the simplification of the two-components mixture prior para-
metric family to either the first or the second component prior parametric family is

discussed if the null hypothesis of the previous goodness-of-fit test is not rejected.

Let u € {1,2} be fixed. Consider the null hypothesis H,o: 01, ...,07 e

{Fux,: Au € Ay} versus the alternative Hyy: 04,...,07 g e {Fx: XA € A}

Let W, r(y) denote the LR statistic given y, where

T

Wur(ly) = 2 [€ (X;y) — sup Zﬁu(ku;yt)]

A€l

2 {6 (5\; y) — sup Lu(Ay; y)} = 2 [€ (5\; y) — Ly (Xu; y)} (48)
Au€Ay

with A, denoting the MLE of A, *given yyunder the uth component prior parametric
family.

One way to calculate the critical.peint-fer-performing the LR test is as follows:
First simulate {y™V, ... y®®} &g, R =50000, from the estimated in-control

(u)

5.)- Let (Yo, YR

(@b, ..., y®®) such that War(y (“))) < < Wurly

constant with 0 < a < 1, e.g., 0.05. An approximate size 1 — a LR test is to

marginal c.d.f. Fy., yolyo_5, (= F ) be a permutation of

(u)
Yt Ay (R
(u
Y(r

)
))) Let a be a known

reject Hyo if and only if W, r(y) > WuvT(yEEgu—a)]))v where [R (1 — «)] is the
largest integer less than or equal to R (1 — «).

When both Hyy and Hsy are rejected, the proposed two-components mixture
prior parametric family for the in-control prior distribution is selected. The cor-

responding monitoring technique is developed in the following section.

When Hig is not rejected but Hyg is rejected, the first component prior para-
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metric family for the in-control prior distribution is selected. The corresponding
monitoring technique is developed in Chen et al. (2004).

When Hyj is rejected but Hyq is not rejected, the second component prior para-
metric family for the in-control prior distribution is selected. The corresponding
monitoring technique is developed in Chen et al. (2005).

When neither Hyy nor Hyq is rejected, the model selection technique developed
in Chen and Liu (2005) can be utilized. The corresponding monitoring technique
is developed in either Chen et al. (2004) or Chen et al. (2005).

The corresponding values of Wu,T(yEE‘%( jy)'s for Cases 1-4 in Section 4 are

11—«
shown in Table 2, where u € {1,2}, k = 1, T = 300, n; = ... = np = 300,
R = 50000, and o = 0.05. And the empirical c.d.f.’s of Wj r(y)’s and War(y)’s

for Cases 1-4 in Section 4 are shown'in Figures 2 and 3, where £k = 1, T" = 300,

ny =...=ny =300, R = 50000.

Table 2: The values of W%T(ygﬁ)z(l_a)]))’s for Cages 1-4, where v € {1,2}, k =1,
T =300,n; =...=np=mn; =300, R = 50000,~and o = 0.05.

Case 1 | Case 2 | Case 3 | Case 4

Wir(Y{ihaay) | 2146 | 1762 | 0.566 | 1.284

War (¥ haay) | 1:035 | 0653 | 1.789 | 0.335
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Figure 2: The empirical c.d.f.’s of Wj r’s for Case 1-4, where £ = 1, T" = 300,
ny =...=np=mn; =300, R = 50000.
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Figure 3: The empirical c.d.f’s jof Wg,T’Srfor Case 1-4, where £k = 1, T" = 300,
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7 A PROCESS MONITORING SCHEME

Let P;, denote the false-alarm rate, i.e., the probability that an out-of-control
signal occurs when the manufacturing process is in control. Conventionally, P;, is
taken to be 2®(—3) (~ 0.0026998), where & is the c.d.f. of the standard normal
distribution. In this section, utilizing the LR method, a Bayesian (or an empirical
Bayes) monitoring scheme for the manufacturing process is proposed when F' =
Fyo € {Fx: X € A} for some known (or unknown) A’ € A. The main reason for
using the LR test is that it often has a higher power than other tests when the
alternative hypothesis is true, which corresponds to a better detecting power in
monitoring the process when the process is out of control.

In order to monitor the manufacturing process at time ¢ (> 7T'), suppose that
the response vector y; is observed. Then we are interested in testing whether or
not the manufacturing process:is in control.at time ¢. Recall that Fjp, is the prior

c.d.f. of 8; and that F(©) is the set lof‘all e.d.f.’s/on ©.

7.1 A BAYESIAN MONITORING SCHEME

In this subsection, consider the case where F' = Fyo € {Fy: A € A} for some
known A’ € A. To monitor the manufacturing process at time ¢, the null hypothesis
Hy: Fy, = Fyo versus the alternative Hy: Fp, # Fyo, i.e., Fp, € F(O)\{Fyo}, is
tested.

Ve }, where

List all the elements of the sample space ), of y; by {y,gl)7 o ,yt(
| Vnil (= (ng + k)!/(ni!k!)) is the number of elements in ),,. Regard Fj, as the
unknown parameter of interest in F(©). Then the unknown parameter of inter-

est is non-parametric. Let ((Fp,;y;) (= log[f(y:; Fa,)]) denote the log-likelihood
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function of Fj, given y;. Note that

AEmyozzlwﬂl;ﬂmwad%xmﬂ < kgLLsm»ﬂmWOd%x&ﬂ

6:co

= o | [ £05000) oy, AP0 (0] = 10 [13180,y, 1]

where the binomial /multinomial likelihood f(y;|@;) for 6, given y, attains its max-

imum at 6, = y;/n;. Thus, the MLE th of Fp, given y, has p.m.f. 15y,/,,) and

sup U(Fo;y1) = (Fo;yi)lmy—rp, = K(Fat;yt) = log [f(y:l0:)lo.=y:/ni] -
thG}—(@)

Let W, yo(y:) denote the corresponding LR statistic, where

Wt,)\o (Yt) = 2 {log [f(ytlet”@t:)'t/nt] — (AO; Yt)} (49)

with P({0 < W, yo(y:) < oo} H,.x0) =1

The size P;, LR test and a control chart of monitoring the LR statistic W, yo(y)
can be constructed as follows: Let (y¢,(1), - - ¥t,(v.,))) be a permutation of S
ygy"t‘)) such that W, yo(y:1) < ... < W, xo(¥e,(y,p))- Note that W, yo(y;) is a dis-
crete random variable. If a deterministic upper control limit is used, a pre-specified
false-alarm rate P, (€ (0,1)), e.g., 2®(—3), is nearly impossible to attain. How-
ever, there is no problem to attain any pre-specified false-alarm rate based on
the concept of a randomized-upper-control-limit approach proposed in Shiau et

al. (2005). To find the randomized upper control limit (= RUCLyo), we start ac-

cumulating the right tail probability from W, yo(y4,(y,,))) until we reach the first r
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such that P({W; xo(y:) > W, x0(¥i,))}; Fy,a0) = Pin. Denote this r by my, i.e.,

my = max {r: P ({W,xo(yt) > W0 (ye) } i Fyune) = Pin} - (50)

If PAWix0(yt) > Wi x0(¥t,(my0)) s Fyiix0) = Pin, which is nearly impossible, then
there is no need for randomization and W, yo(y+,(m,,)) is the upper control limit (=
UCLyo). It P{Wyxo(ye) 2 Wixo(¥eimy0)) 15 Fyia0) > Piny then Wy so(¥imyo)) =
RUCLyo. Note that there may be more than one y, () such that W, yo(y ) =
RUCLyo. Let myo ;,, myoy € {1,...,|Vn,|} such that

Wt,AO (ytz(m)\O’Lfl)) < Wt,)\o <yt7(m)\O’L)) = RUCLAO = Wt,AO (yt,(on’U))

< Wt,)\o <yt7(m)‘0,U+1)) )

where W, yo(y,0)) = 0 and W yo(¥e(wn,ita)) = 00. Then the randomization is

done by signaling an out-of-control alarm with prebability

P Py — P({Wixalye) > RUC Lo }; Fy, x0)
AL RUCL P({{W, xo(y:) = RUCLyo}; Fyt;)\o)
Yny
Poy = 3370 o1 PAWa0(70) = Wi (7e.00) i Fyno)

D:A%ZO,L P({Wt,AO(Yt) = Wt,)\o (Yt,(r))}§Fyt;>\°)

This leads to

Py = P ({W,xo(y) > RUCLyo} ; Fy,.z0)

+Pin,)\0,RUCL - P ({Wt)\o (yi) = RUCL,\O} §Fyt;>\0)
and 0 < P, yo pyer, < 1. When P, yo pyer, = 1, there is no need for randomiza-
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tion.

The monitoring scheme is as follows: If W, yo(y;) > RUCLyo, then the null
hypothesis Hy: Fy, = Fyo is rejected and the manufacturing process is declared
to be out of control at time t; if W, yo(y:) < RUC Lyo, then the null hypothesis
Hy: Fy, = Fyo is not rejected and the manufacturing process is declared to be
in control at time t; if W, yo(y;) = RUCLyo, then, with probability P, yo rpcr,
the null hypothesis Hy: Fp, = Fyo is rejected and the manufacturing process is
declared to be out of control at time ¢.

The corresponding values of RUC Lyo’s and Py, yo gyycy,’s for Cases 1-4 in Sec-
tion 4 are shown in Table 3, where £ = 1, T' = 300, ny = ... = np = n; = 300,

and Py, = 2®(—3) (~ 0.0026998).

Table 3: The values of RUC Lyg’s and P, o pyicr’s for Cases 1-4 in Section 4,
where k£ = 1, T = 300, ny = ... = ny = n, = 300, and P, = 2P(-3) (=
0.002699 8).

Case T'[iCase 2 | Case 3 | Case 4

RUC Lyo 10.5 10.4 10.5 10.6

Pyxorver | 0547 | 0537 | 0.765 | 0.120

(2

7.2 AN EMPIRICAL BAYES MONITORING SCHEME

In this subsection, consider the case where F' = Fyo € {F\: A € A} for some
unknown A” € A. To monitor the manufacturing process at time ¢ (> 7T'), the null

hypothesis Hy: Fp, = Fyo versus the alternative Hy: Fp, # F)o is tested.
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The LR statistic W, xo(y:) proposed in Section 7.1 for known A” can be esti-
mated by W, yo(yt)|yo_s (= W, 5(yt)), where A is the MLE of X given y and

Woily) = 2 {log L[ (v¢100)|6:=y:/n: ] —f(ﬁ;yt)} (52)

with P({0 < W, s(y:) < oo}; Fy,»0) = 1. Note that A=A+ 0,(1/VT) as
T — oo, which implies that W, 5 (y:) = W, xo(y:) + 0,(1/VT) as T — oc.

An empirical Bayes monitoring scheme can be constructed by replacing the
unknown A° by X in the Bayesian monitoring scheme described in Section 7.1,
where RUC Lyo and P, yo prrey, are estimated by RUCLyo|yo_5 (= RUCLy) and
Py x0 rverlao—a (= P ruer)s respectively.

To see how the additional estimation error resulting from the empirical Bayes
approach affects the performance of the,monitoting scheme, the Kullback-Leibler
divergence d(Fyo, Fy) betweernt Fyo and Fy can be uised as a measure of how close

Fj is to Fyo, where Fy = Fi\| 5 and

0 2
d(Fy,F5) = / log {M] (04 A)|xxo dO;
(015 X) 5=
0 0
= / log | 05 A) - 7(6,; \°) d6,. (53)
S 77(9,5, A)
When there is no closed-form formula for d(Fyo, F), it can be numerically
evaluated as follows: First simulate an i.i.d. sample {0&1), . ,eﬁRl)} of size Ry,

e.g., Ry = 50000, from the in-control prior c.d.f. Fo and then numerically evalu-
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ate d(Fyo, Fy) by

Ry

d(Fyo,Fy) = L Zlog[M]

Ry - (04 A) (54)

0,=6'"

One way to numerically evaluate the 7 quantile of d(Fyo, Fy) for 7 € (0,1)
is as follows: First simulate an i.i.d. sample {y®" ...,y eg., R = 50000,
from the in-control marginal c.d.f. Fy yo. Let (yq),...,yx) be a permutation

of (y,...,y") such that CZ(F}\O,FX < .. < d(FAo,FS\ Then the

(Y(R)))'
where [R7] is the

(y(1)))

7 quantile of d(Fyo, F5) can be estimated by CZ(FAO, Fj\(y([R ])))’

largest integer less than or equal to R 7.

The corresponding values of RUC'L Ay D)’s and P, rucy s for Cases

i AY((R )

1-4 in Section 4 are shown in Tablediwhiere £k = 1, T' = 300, n; = ... = np =

n; = 300, R = Ry = 50000, and’r € {0:170:350.5,0.7,0.9}.

Table 4: RUC’LX(y([R D)’s and P, Lt D)RUCL7S for Case 1-4, where k£ = 1,
2T k 2 T]) /)
T =300, ngy = ng = ... ="ag. = ny, = 300, R = Ry = 50000, and 7 €
{0.1,0.3,0.5,0.7,0.9}.
Case 1 7=01|7=03|7=05|7=07|7=09
RUCL;\(y([RT])) 10.6 10.5 10.9 10.2 10.5

Py siyonmrven | 0257 | 0.0513 | 0552 | 0.00126 | 0.261

Case 2 7=01|7=03|7=05|7=07|7=0.9

RUCL;,

Y(R+))

Py siyomoprver | 0954 | 0.807 | 0216 | 0566 | 0.587
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Case 3 7=01]7=03|7=05|7=07|7=0.9
RUOLX(y([RT])) 10.5 10.3 10.3 10.5 10.6
Pin,X(y([RT])),RUCL 0.688 | 0.0511 | 0.433 0.840 0.602
Case 4 7=01|7=03|7=05|7=07|7=0.9
RUCLX(.V([RT])) 10.5 104 10.7 10.5 10.3
Pm,ﬁ\(y([RT])),RUCL 0.346 0.506 0.353 0.449 0.553
From Tables 3 and 4, it is easily seen that all of RU C’L;\(y([R D)’s are close

to RUCLyo, but P, ) ruct’S are not necessarily close to Py, yo pyey for

(Y(r)
Cases 1-4.

8 AVERAGE RUN LENGTH BEHAVIOR

In this section, the performance of-the-proposed process monitoring scheme
is studied in terms of the average run length: Let ARLy denote the average run
length for an out-of-control signal to occur when the manufacturing process is in
control. Recall that P, is the false-alarm rate, i.e., the probability that an out-of-
control signal occurs when the manufacturing process is in control. Then ARLy =
1/P;,. When P, =2®(—3) (= 0.0026998), ARLy = 1/[2®(—3)] (=~ 370.40). Let
ARL; denote the average run length for an out-of-control signal to occur when the
manufacturing process is out of control. Let P, denote the correct-alarm rate,
i.e., the probability that an out-of-control signal occurs when the manufacturing

process is out of control. Similarly, ARL; = 1/P,.
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8.1 A BAYESIAN APPROACH

In this subsection, consider the case where F' = Fyo € {Fx: XA € A} for some
known A’ € A. To monitor the manufacturing process at time ¢, the monitoring
scheme proposed in Section 7.1 is used for the null hypothesis Hy: Fy, = Fyo
versus the alternative Hy: Fy, # Fyo.

Set ARLy = ARLq xo, Pin = Py, x0, ARLy = ARL, o , , and Poyy = Py x0 1, -
When P, yo is pre-specified to be 2 ®(—3) (= 0.0026998),

1 1
ARLyy = - A~ 370.40. 55
0,° Py 2P (—3) (55)

]

When Fp, # Fo,

Poinor,, = P{Wine(y) mRUCES} ; Fy,)

o

+Pin,>\0,RUCL - P ({Wt,AO () = RUCLAO} ; FYt) ) (56)

where all of W, yo(y:), RUCLyo, and P, yxozror, are defined in Section 7.1 and
Fy, is defined in Section 3.

The corresponding values of P, yo. F,,; S, and ARL; o F. S for Cases 1-4 in
Section 4 are shown in Tables 5 and 6, where k =1, T' =300, ny = ... = np =
ny = 300, and i € {1,2,3}.

Case 1: X' = (log(1/4), 1og(80), log(20), —2.210,10g[1/(0.210)?])", A* = (log(1/
9),10g(90), log(10), —1.552,1og[1/(0.220)2])", and A* = (log(4/21), log(80), log(20),
—0.503,log[1/(0.216)%])7".

Case 2: A' = (log(9/11), log(85),log(15), —0.510, log[1/(0.210)?))", A* =
(log(11/9),log(72),log(18), —2.030, log[1/(0.210)?])T, and A* = (log(14/11), log(80),
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log(20), —0.203, log[1/(0.202)2]).

Case 3: A = (log(2/3), log(65), log(35), —0.110, log[1/(0.210)2])”, A2 = (log(1),
log(70), log(30), —2.005, log[1/(0.253)2))7, and A* = (log(3/2), log(60), 1og(40), —0.2
03, log[1/(0.202)2))".

Case 4: A! = (log(4), log(70), log(20), —1.510, log[1/(0.210)2])7, A? = (log(3),
log(88), log(22), —1.203, log[1/(0.220)2))7, and A* = (log(83/17), log(80), log(20), —
1.203, log[1/(0.041)2))7.

Table 5: The values of Poutx0 1, ’s for Cases 1-4, where k = 1,7 =300, n; = ... =
nr =ny, = 300, and 7 € {1,2,3}.

Case 1 | Case 2 | Case 3 | Case 4

P r,, | 0.0568|0.02444.0.0487 | 0.0434

o

o

Py p,, | 0:0153-] 006523 0:0929 | 0.0492

P xo g, | 0.0169 100140 | 0.0135 | 0.0590

o

Table 6: The values of ARLL)\O’F)\Z_’S for Cases 1-4, where &k = 1, T' = 300, n; =
...=nr=n; =300, and i € {1,2,3}.

Case 1 | Case 2 | Case 3 | Case 4

ARLyyop, | 176 | 412 | 205 | 231

ARLyyop, | 653 | 153 | 108 | 203

ARLyyop, | 591 | 716 | T42 | 16.9
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8.2 AN EMPIRICAL BAYES APPROACH

In this subsection, consider the case where F' = Fyo € {Fx: XA € A} for some
unknown A° € A. To monitor the manufacturing process at time ¢, the monitoring
scheme proposed in Section 7.2 is used for the null hypothesis Hy: Fy, = Fyo
versus the alternative Hy: Fy, # Fyo.

Set ARLy = ARLOAOA, P = Py yo s ARL, = ARLl,)\O,)A\,th’ and P, =
B0 A, Fo," When XA = A°, which is nearly impossible, we have P, x5 = Pinxo

and P, yo 5. Fo, = P, Fo,» where both P, yo and P, xo. Fp, BT€ defined in Sec-

tion 8.1. When A £ A’ we have

Posis = P({Wislve) > RUCLy } Fy0)

+Pm,5\,RUCL = ({Wt,j\(ylt) = RUCLS\} ) Fyt;A°> (57)

and

Pout,)\o,j\,th = P ({Wt,X(Yt) > RUCLS\} ; Fyt)

+Pysnver P ({Wialv) = RUCL )R (69)

where all of W, 5(y:), RUCLj, and P, 5 gy, are defined in Section 7.2 and both
F,, xo and Fy, are defined in Section 3.

To see how the additional estimation error resulting from the empirical Bayes
approach affects the performance of the average run length, the Kullback-Leibler
divergence d(Fyo, F5) between Fyo and Fy defined in Section 7.2 can be used as a
measure of how close Fj is to Fyo. See Section 7.2 for details.

The corresponding values of Pm,}\o,j\( )’s and ARLOAO’;\(YGRT]))’S for Cases

Y([r )
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1-4 in Section 4 are shown in Table 7, where k = 1, T'= 300, n; = ... = np =

n; = 300, R = R; = 50000, and 7 € {0.1,0.3,0.5,0.7,0.9}.

Table 7: The values of P, xos 's and ARL[L O, X(y([RT]))’S for Cases 1-4, where

(¥ (1R 1))

k=1,T =300, ny = ... =np = ny = 3000 R = R; = 50000, and 7 €
{0.1,0.3,0.5,0.7,0.9}.

Case 1 7T=01|7=03|7=05|7=07|7=0.9
Pin)\“A(y([RT])) 0.00169 | 0.00334 | 0.00123 | 0.00374 | 0.00132
ARLO,AO,X(y([RTD) 590.7 299.8 812.9 267.5 759.5
Case 2 7T=01|7=03|7=05|7=07|7=0.9
Pm,AO,S\(y([RT])) 0.00281.410:00320- 0.00204 | 0.00332 | 0.00372
ARLO,AO,X(y([RTD) 356 313 490 301 269
Case 3 7=014{7=0347=05|7=07|7=0.9
Pm)\oj(y([m])) 0.00324+.0.00202 40:00373 | 0.00247 | 0.00146
ARLO,AO,X(y([RTD) 309 495 268 406 685
Case 4 7=01|7=03|7=05|7=07|7=0.9
Pm,z\o,ﬂ(y([m])) 0.00282 | 0.00445 | 0.00162 | 0.00279 | 0.00569
ARLO7A075\(y([RT]>) 355.1 225.0 615.6 358.9 175.7
The corresponding values of P, ; yo AW (). F}\i’S and ARL; yo. A () Fa ’s for

Cases 1-4 in Section 4 are shown in Tables 8-10, where k =1, T =300, ny = ... =
nr =ny; = 300, R = Ry = 50000, 7 € {0.1,0.3,0.5,0.7,0.9}, and i € {1, 2, 3}.

Table 8: The values of Pout,)ﬁ,ﬁ\ 1’s and ARLLAO’X( ’s for Cases

(y([RT]))aF)\ Y([RT]))7FA1
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7 € {0.1,0.3,0.5,0.7, 0.9}.

1-4, where £ = 1, T' = 300, ny = ...

=np = n, = 300, R = R; = 50000, and

7€ {0.1,0.3,0.5,0.7,0.9}.

1-4, where £k = 1, T' = 300, n, = ...

Case 1 7=01|7=03|7=05|7=07|7=0.9
Pouw\o75\(},([}%]))’1;Al 0.0409 | 0.0763 | 0.0192 | 0.0999 | 0.0318
ARLy 3o synmis | 244 | 131 | 520 | 100 | 314
Case 2 7=01|7=03|7=05|7=07|7=0.9
Poumo75\(3,([}%]))’FAl 0.0296 | 0.0288 | 0.0130 | 0.0199 | 0.0401
ARLL)\O}‘(Y([RT])):F)\I 33.7 34.8 77.0 50.2 25.0
Case 3 7=01|7=03|7=05|7=07|7=0.9
POUtv)‘Ovi(Y([RT]))aF)\l 0.0647 | 0.0327+. 0.0365 | 0.0606 | 0.0451
ARLMO,X(y([RT]>)7FA1 15.5 30.5 27.4 16.5 22.2
Case 4 7=011 7 =03|7=05|7=07|7=0.9
Pout,A°75\(y([RT]))7FA1 0.0463+.0.0520" " 0.0190 | 0.0520 | 0.0268
ARLy 3o sy, | 216 | 192 | 526 | 192 | 373
Table 9: The values of Pout,koi(y([m])),Fﬂ’S and ARL17>\O’5\(y([RT]))7FA2’S for Cases

=ny = n;, = 300, R = Ry = 50000, and

Case 1 7=01|7=03|7=05|7=07]|7=09
Pouw‘o’5\(),([]%]))Jm)\2 0.0126 | 0.0184 | 0.00802 | 0.0218 | 0.0108
ARLl,AO,X(y([RT]))vF,\z 79.5 54.4 125 46.0 92.8
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Case 2 7=01|7=03|7=05|7=07|7=0.9

P

out, \° A(y (1 ), Fx2

ARL17>\075\(Y([RT]>)7F>\2

Case 3 7=01|7=03|7=05|7=07]|7=0.9

P 0.0776 | 0.0938 | 0.136 | 0.0497 | 0.0371

out,AO,S\(y([R T]))7F>\2

ARLy yo sty ommie | 129 | 107 | 736 | 201 | 269
Case 4 7=01|7=03|7=05|7=07|7=0.9
PDUt’}‘O’j‘(Y([RT]))vFAZ 0.0525 | 0.0586 | 0.0223 | 0.0586 | 0.0310
ARLL)\O75\(},(“%7]))71?A2 19.1 17.1 44.8 17.1 32.2
Table 10: The values of Pout7A075\(y([RT]))7FA3’S and ARleAoaj‘(Y([Rr]))7F)\3,S for Cases
1-4, where £ = 1, T' = 300, n{s =|.. 0= np = ni. = 300, R = R; = 50000, and
7€ {0.1,0.3,0.5,0.7,0.9}.
Case 1 7=01l7=031"7=05|7=07|7=09
Pout,AOA(y([RT])),FAs 0.0108 | 0.0181 | 0.0113 | 0.0157 | 0.00902
ARLL/\O,X(y([RT])),FAs 92.6 55.4 88.9 63.5 110.9
Case 2 7=01|7=03|7=05|7=07|7=0.9
Pout,AO,X(y([RTD),FAg 0.0121 | 0.0152 | 0.0139 | 0.0195 | 0.0120
ARLy 3o syoni | 828 | 659 | 721 | 513 | 832
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Case 3 7=01]7=03|7=05|7=07|7=09
Poutyko,ﬁ(y([RT])),FAa 0.0199 | 0.00786 | 0.00911 | 0.0182 | 0.0121
ARLl,AO,X(y([RT])),Fﬂ 50.3 127 109 55.1 82.6
Case 4 7=01|7=03|7=05|7=07|7=0.9
Pout,AO,X(y([RT])%FAg 0.0627 | 0.0695 | 0.0282 | 0.0695 | 0.0383
ARLy 3o sty | 160 | 144 | 355 | 144 | 261

From Tables 8-10, there is no pattern that the values of By xo s and P, PUBW
for Case 1-Case 4 increase as the Kullback-Leibler divergence d(Fyo, F}) increases,
where £ = 1, T' = 300, n; = ... = nyr = n, = 300, R = Ry = 50000, and

ie€{1,2,3}.

9 CONCLUSIONS

In the paper, first, a two-compeonents mixture prior parametric family for the
in-control prior distribution is proposed in a manufacturing process. Then an em-
pirical Bayes approach is proposed when there are available in-control categorical
data generated from the manufacturing process. As an illustration, an example
of the proposed empirical Bayes model is introduced. For the purpose of model
building, the goodness of fit and the simplification of the proposed model are dis-
cussed. Utilizing the likelihood ratio method, both Bayesian and empirical Bayes
monitoring techniques are proposed as the main purpose of the paper. Finally, the
performance of the proposed process monitoring scheme is studied in terms of the

average run length to show the robustness of the methodology.
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APPENDIX

All of nodes and weights of the Hermite polynomial of 32 degrees are shown in

the following table. This table is obtained from the following website:

http://www.efunda.com/math/num __integration/findgausshermite.cfm

No. 1 abscissas x; weights w;
1 —7.12581390983 | 7.31067642754 x 10~
2 —6.40949814928 | 9.23173653482 x 10~
3 —5.81222594946 | 1.19734401957 x 10715
4 —5.27555098664, | 4.21501019491 x 10~13
5 —4.77716450334, .5.93329148347 x 10711
6 —4.30554795347 | .4.09883215841 x 107
7 —3.85375548542 | 1.57416779440 x 1077
8 —3.41716749282 | 3.65058512533 x 1076
9 —2.99249082501 | 5.41658405999 x 10~°
10 | —2.57724953773 | 5.36268365495 x 104
11 | —2.16949918361 | 3.65489032677 x 1073
12 | —1.76765410946 | 1.75534288315 x 1072
13 | —1.37037641095 | 6.04581309559 x 102
14 | —0.97650046359 | 1.51269734077 x 10!
15 | —0.58497876544 | 2.77458142303 x 10!
16 | —0.19484074157 | 3.75238352593 x 10~*
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No. abscissas x; weights w;
17 | 0.19484074157 | 3.75238352593 x 10!
18 | 0.58497876544 | 2.77458142303 x 10!
19 | 0.97650046359 | 1.51269734077 x 10!
20 | 1.37037641095 | 6.04581309559 x 102
21 | 1.76765410946 | 1.75534288315 x 102
22 | 2.16949918361 | 3.65489032677 x 1073
23 | 2.57724953773 | 5.36268365495 x 1074
24 | 2.99249082501 | 5.41658405999 x 10~°
25 | 3.41716749282 | 3.65058512533 x 1076
26 | 3.85375548542 | 1.57416779440 x 1077
27 | 4.30554795347 | 4.09883215841 x 107°
28 | 4.77716450334 5.93329148347 x 10~
29 | 5.27555098664 4.21501019491 x 1013
30 | 5.81222594946 | 1.19734401957 x 10~1°
31 | 6.40949814928 | 9.23173653482 x 10~
32 | 7.12581390983 | 7.31067642754 x 1023
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