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and its applications
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ABSTRACT

A finite mixture model using the Student's t distribution has been
recognized as a robust extension‘of nermal mixtures. Recently, a mixture of
skew normal distributions has been found to be effective in the treatment of
heterogeneous data involving asymmetric behaviors across subclasses. In
this article, we propose a robust mixture framework based on the skew t
distribution to efficiently deal with heavy-tailedness, extra skewness and
multimodality in a wide range of settings. Statistical mixture modeling based
on normal, Student's t and skew normal distributions can be viewed as
special cases of the skew t mixture model. We present some analytically
simple EM-type algorithms for iteratively computing maximum likelihood
estimates. The proposed methodology is illustrated by analyzing a real data

example.
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Abstract

A finite mixture model using the'Student’s ¢ distribution has been recog-
nized as a robust extension of normal mixtures. Recently, a mixture of skew
normal distributions has been found to be effective in the treatment of hetero-
geneous data involving asymmetric behaviors across subclasses. In this article,
we propose a robust mixture framework based on the skew t distribution to
efficiently deal with heavy-tailedness, extra skewness and multimodality in a
wide range of settings. Statistical mixture modeling based on normal, Stu-
dent’s ¢ and skew normal distributions can be viewed as special cases of the
skew ¢ mixture model. We present some analytically simple EM-type algo-
rithms for iteratively computing maximum likelihood estimates. The proposed

methodology is illustrated by analyzing a real data example.

Key words: EM-type algorithms; Heterogeneity data; Maximum likelihood;

Outlying observations; Skew ¢t mixtures; Truncated normal.



1. INTRODUCTION

The normal mixture (NORMIX) model has been found to be one the most
popular model-based approaches to dealing with data in the presence of population
heterogeneity in the sense that data intrinsically consist of unlabelled observations,
each of which is thought to belong to one of g classes (or components). For a com-
prehensive list of applications and an abundant literature survey on this area, see
Titterington, Smith and Markov (1985), McLachlan and Basford (1988), McLachlan
and Peel (2000), and Fraley and Raftery (2002). It is well known that the ¢ distribu-
tion involves an additional turning parameter (the degrees of freedom) that is useful
for outlier accommodation. Over the past few years, there has been considerable
attention to a robust mixture context hased on the Student’s ¢ distribution, which
we call the ¢ mixture (TMIX} model. Recent developments about TMIX models in-
clude Peel and McLachlan (2000)3 Shoham-(2002), Shoham, Fellows, and Normann
(2003), Lin, Lee, and Ni (2004)and Wang et al. (2004), among others.

While NORMIX and TMIX models have been well recognized as useful in many
practical applications, data with varying degrees of extreme skewness among sub-
classes may not be well modeled. In attempting to appropriately model a set of data
arising from a class or several classes with asymmetric observations, Lin, Lee and
Yen (2006) recently introduced a new mixture model with each unseen component
following a skew normal distribution (Azzalini 1985, 1986). A skew normal mixture

(SNMIX) model for a continuous random variable Y is of the form

g

g
Y~ > wif(yls o7 ), wi 20, Y wi=1, (1)
=1

i=1



where ¢ is the number of components, w;’s are mixing probabilities and

(y—¢&;)
2 y—&)? AN x?
f(y|§za 0-1'27 AZ) - \/%O-‘ exp <—%) 3 o exp _5 dx

(2
is a skew normal density function with location parameter &; € R, scale parameter

0? > 0 and skewness parameter \; € R. As described in Lin, Lee and Yen (2006),
the SNMIX model (1) can be represented by a normal-truncated normal-multinomial
hierarchial structure. Such representation leads to a convenient implementation for
maximum likelihood (ML) estimation under a complete-data framework.

Although model (1) offers great flexibility in modeling data with varying asym-
metric behaviors, it may suffer from a lack of robustness regarding extreme outlying
observations. In general, the skewness parameters could be unduly affected by
observations that are atypical avithin compemnents in model (1) being fitted. This
motivates us to develop a wider class of mixture distributions to accommodate asym-
metry and long tails simultaneously.~In this paper, we are devoted to the fitting
of mixture of skew ¢ distributions, introdueed by Azzalini and Capitaino (2003),
allowing heavy tails in addition to skewness as a natural extension of Lin, Lee and
Yen (2006). With this skew ¢ mixture (STMIX) model approach, the NORMIX,
TMIX and SNMIX models can be treated as special cases in this family.

The rest of the paper is organized as follows. Section 2 briefly outlines some
preliminary properties of the skew t distribution. Section 3 presents the imple-
mentation of ML estimation for fitting the skew ¢ distribution via three simple
extensions/modifications of the EM algorithm (Dempster, Laird and Rubin 1977),
including the ECM algorithm (Meng and Rubin 1993), the ECME algorithm (Liu
and Rubin 1994), and the PX-EM algorithm (Liu, Rubin and Wu 1998). Section
4 discusses the STMIX model and presents the implementation of EM-type algo-

rithms for obtaining ML estimates of the parameters. Moreover, we offer a simple

3



way to calculate the information-based standard errors instead of using computation-
ally intensive resampling techniques. In Section 5, the application of the proposed
methodology is illustrated through real data of body mass indices measuring from

the U.S. male adults. Some concluding remarks are given in Section 6.

2. PRELIMINARIES

For computational ease and notational simplicity, throughout this paper we de-
note by ¢(-) and ®(-) respectively the probability density function (pdf) and the
cumulative distribution function (cdf) of the standard normal distribution and de-
note by ¢, () and T, (-) respectively the pdf and the cdf of the Student’s ¢ distribution
with degrees of freedom v. We start by.defining the skew ¢ distribution and its hi-
erarchical formulation and then introduee.some further properties.

A random variable Y is sdidito follow the skew.¢ distribution 87 (£, 02, \, v) with
location parameter ¢ € R, scale parameter-¢> € (0, 00), skewness parameter A\ € R

and degrees of freedom v € (0, 00):f it has.the following representation:

Y=§+J£, Z~SNN), 7~T(v/2,v/2), Z L, (2)
\/F

where SN (M) stands for the standard skew normal distribution, has a pdf given by
f(z) =2¢(2)®(\z2), z € R, I'(ev, B) is the gamma distribution with mean o/, and
the symbol ‘1’ indicates independence.

The following result, as provided by Azzalini and Capitanio (2003), is useful for

evaluating some integrals that we use in the rest of the paper:

Proposition 1. If 7 ~ I'(a, B), then for any a € R

E(@(a\/?)) = Th, (a %) .



By Proposition 1, integrating 7 from the joint density of (Y, 7) will lead to the

following marginal density of Y :

fly) = ;tu<n)Tu+l <An\/E) e ; S (3)

Note that as v — oo, 7 — 1 with probability 1 and Y = £ + ¢Z. Figure 1 shows

the plots of standard skew normal distributions superimposed the standard skew ¢
distributions with » =5 under A = 0, +1, £2, £3.

Standard algebraic manipulations yield the following:

E(Y) = ¢ +r((;(;—/12))/2)\/§5m (4)
o [1T((v—=2)/2) & (T((v—1)/2)
var(Y) = o ”{5 T(w/2) 71'( T(0/2) ) } )

o= %{m&(i&—éi)F(
—37r5kr( ) (’/—1> (2)e 0 3(221)3}
Lo () ) T o
o (o (”;3)f(”4;1)r<g>2
i (2 (2o 5
{Wr( 22)F<2)‘25§F(V;1) } 7)

where §y, = A/v/1+ A%, and vy and ky are the measures of skewness and kurtosis,

respectively. Figure 2 displays the vy and ky as a function of A for the standard
skew t distribution with v = 5. The sketch of the proofs of Eqs (4)-(7) are given in

Appendix A.
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Figure 2: The skewness and kurtosis plots versus A for the standard skew ¢ distrib-

ution with v = 5.



As shown by Azzalini (1986, p. 201) and Henze (1986, Theorem 1), a stochastic
representation of Z ~ SN(X) is Z = 0,|Us| + /1 — 63U, where 6, = A\/V1+ A2,
and U; and U, are independent N(0,1) random variables. This yields a further

hierarchical representation of (2) in the following:

1-6
Y|/}/7T ~ N 54’5/\’77 - o )

0.2

vyl ~ TN (O, — [0,00)) ., T~T(v/2,v/2), (8)

where TN (u,0%; C) represents the truncated normal distribution with N(u,o?)
lying within a truncated interval C' C R.

From (8), the joint pdf of Y, ~, 7 is given by

flrmy) = — ﬂl_—d(, (r(/2/)2) exp ( - ﬁ"ﬁ e (- 5v)
X exp ( 3o 12;2\)02 + i _7(%)02&(9 - 5)) (9)
Integrating out v in (9), we get
flry) = \/%%Tfl ;V(f/);) CXp ( - %(772 + V)><1><M7\/F>- (10)

Dividing (9) by (10) gives

FO 1 mg) = == &exp(f(é@(_y(;fﬁfwﬁ1(Anﬁ). (11)

It follows from (11) that the conditional distribution of v given 7 and Y is

T

VY ~ TN (m—o,m;(a,w)). (12)

From (10), applying Proposition 1 yields the conditional density of 7 given Y

e 1) = e (= D ) ) 13

2 (v+1)/2 -1
n°+v v+1 v+1
b= r T, A 14
( 2 ) { (2) +1<n n2+V)} )

is the normalizing constant.

where




Proposition 2. Given the hierarchical representation (8), we have the following:

(a) The conditional expectation of T given Y =y is

E(rly) = (V+ ! ) T, (M,/25)

n*+v Ty (M) ’
_ v+1
where M = A\n, | e
(b) The conditional expectation of yT givenY =1y is

s VI=3( @ ~/ey
Blrh) =0 - OBl + B (T v1)

(c) The conditional expectation of v*1 given Y =y is

E(y'tly) = o3 (g Bl Y.+ (1 - 03)0”

+5A(?J —&)\/1-62 (U( n’ . 1) *(V/2+1).

7 fy(y) 1-63)

(d) The conditional expectation of loglr) given Y =y is

E(log(7)|y)

= DG v+1 1 (772+V)_|_u+1 Tu+3<M Z—ﬁ’) 1
— 2 0og 2 772_'_1/ Ty+1 (M)
A2 —=1)  tp (M) 1 /M
+ G0 (2)ty 41 () da,
\/(V+1)(V+772)3Ty+1 (M) Tu+1(M) - ( ) +1( )
and
v+2 v+ 2
gu(x) = DG( . )—DG( . )—log<1+ +1)
V—|—1)$2—y—1
NOE ST D) (15)

where DG(z) = I"(z)/T'(x) is the digamma function.

Proof. See Appendix B.



3. ML ESTIMATION OF THE SKEW ¢ DISTRIBUTION

In this section, we demonstrate how to employ the EM-type algorithms for ML
estimation of the skew ¢ distribution, which can be viewed as a single component
skew t mixture model that we shall discuss in the next section. From the represen-

tation (8), n independent observations from ST (£,0%, X, 7) can be expressed by

ind - 5§\ 2
Y} |7j77j ~ N 5+§>\’Yja = o 5
J
ind 02
Tj
ind

7 o~ D(v/2,v/2) (j=1,...,n).

Letting y = (y1,---,Yn), ¥ = (V1,---,7) and 7 = (71,...,7,), the complete

data log-likelihood function ofi@ = (¢,0% Ajw) given (y,~,T), ignoring additive

constant terms, is given by

(0 ]y,v,7)
_ V . 05T - O\i7Y4 T - it
- 5 G o) 2 G )

—nlogo? — glog(l —83) + % log (g) — nlogF(%) + g jzllogTj,

where 7; = (y; — §) /0.
~(k - -
By Proposition 2, given the current estimate 9( ) (£, 52" A®), 7)) at the
kth iteration, the expected complete data log-likelihood function (or the Q-function

as asserted in Dempster Laird, and Rubin 1977) is

A (B)
QO16)

n (k)

_ () 72 I S
= ——Z Z ( 13_]52 > + ; ((1 _]5/2\30) B ; <2(1 —]53)02>

n nv v v V
—nlogo? — 5 log(1 — 63) + 5 log <§> — nlogF<§> + 5 Z §§’;), (16)
j=1



where

~(k ~ (k)
s = Blrly;.07)

k ~ (k)
8 = B(ymly;,0)

_ 52(k> f]2<k) — () /241)
(K 2 ~(k ]
= - 2 () T

k " (k)
mfi5 ) AP0 =3

- (k)
85, = E(ymily;,0)

(k) (k)
= 03"y, 5““)31] +(1 -85

0\ (y; — EW)y /1 - &3 2 (1 /241)
42 a ( 1 + 1) , - (19)
AP (

- So(k)
™y, (@)’ D1 =)

and

~(k NG
s = B(logly. 0™

H‘ . L R k I;
ba <z><k‘> + 1> Pl + 1 Tz><k>+3(M§ : %ﬁ’ ) .
9 ﬁjz(k) + k) Tho .y (Mj(k))

14

~9(k)

(k)

Coe (it )
10g< 2 * - 2(k)\3
VW + 10 4+ 720

N N ~9(k) k
AW (2 1) (w)ﬂ(M; >>>
Ty (MF)

| ;"
b / 9ot ()0 11 (2)de, (20)
Ttk 41 (M(k)) e

J
with

~

NCTEE Tk S C R IR A

nj = gk) AT /—1_'_5\2(1@’ J 1 ﬁ]z(k)‘{'ﬁ(k)’

~(k 2 (k ~r(k
135 w3) = Sagto (1)) Tow 2 (V1]7).

Our proposed ECM algorithm for the skew ¢ distribution consists of an EM-step

and four CM-steps as described below:



~ (k
E-step: Given 6 = 0( ), compute §§];), sgj), §é’;) and §E[§> in Eqs (17)-(20) for

j=1...,n.
CM-step 1: Update £€*) by maximizing (16) over £, which leads to

n A(k) (k)
g(k+1) _ E] 1 51; Y; — 0y Z] 1525
n k :
Zj:l ng)

CM-step 2: Fix & = &) update 52" by maximizing (16) over o, which gives

n (k) ¢ 5(k)
e _ 2l (81505 — 0072 = 28950y, — £040) 147
2n(1 —5§<’“>) '

CM-step 3: Fix ¢ = *+D and 02 = 62“*", obtain A*+D as the solution of
Sy, — kD)2

nox(1 — 5/\ =0, ( Z 1] &2(k+1) + Z A2(k+1)>

ak) (o E (k1)
+(1+5§)Z$27 =" ) =0.

~ 2(k+1)
J=1

(k1)

CM-step 4: Fix ¢ = ¢kt 52 =05 and A = A#D obtain 2+ as the

solution of

n

1
ck) sk
log<2>+1—DG( >+ﬁ (s4j—31j)—0.

j=1

Note that the CM-Steps 3 and 4 require a one-dimensional search for the root of
A and v, respectively, which can be easily achieved by using the ‘uniroot’ function
built in R. As pointed out by Liu and Rubin (1994), the one-dimensional search
involved in CM-steps 3 and 4 can be very slow in some situations. To circumvent
this obstacle, one may use a more efficient ECME algorithm, which refers to some
conditional maximization (CM) steps of the ECM algorithm replaced by steps that

maximize a restricted actual log-likelihood function, called the ‘CML-step’. With

11



the simple modifications, the ECME algorithm for fitting the skew ¢ distribution
can be performed by changing CM-steps 3 and 4 of the above ECM algorithm to a

single CML-step as follows:

CML-step: Update A*) and v®) by optimizing the following constrained actual

log-likelihood function:

n

ol k1 v+1
()\(kJrl)’ V(k“)) = argmaXZlog {L‘V(TI](- * ))Tu+1 )\UJ(' v TotktD) | }
AV j=1 T]j +v

Another strategy for speeding up convergence rate is to use the PX-EM algorithm
of Liu, Rubin and Wu (1998), which can be simply done by replacing the CM-steps

2 and 4 in the previous ECM algorithm with the following two PX.CM steps:

PX.CM-step 2:

sy Y 25058, - E) + )
2= 52%) s b '

j=1515

~2(k+1)
0_2

PX.CM-step 4:

n

1
g <_> AN o

n ~(k
2 Zj:l ng) j=1

Assuming that the regularity conditions in Zacks (1971, Chap. 5) hold, these

guarantee that asymptotic covariance of the ML estimates can be estimated by the

~

inverse of the observed information matriz, 1,(0;y) = Z;;l '&,j’&;r, where

o = Qe fly)|
! 00 0-6

is the score vector corresponding to the single observation y; evaluated at 6 = 6.

12



Expressions for the elements of the score vector with respect to &, o2, X and v

are given by

Olog fy;) _ @(er)_g v+ 1ty (M)
¢ o\ni+v/ o\ (i +v)P T (M)

dlog f(y;) _ Z(n? - 1) _Avn; v+1 t,1 (M)
Oo o\n; +v o (nf +v)3 Typ1 (M)’

dlog f(y;) - v+ 1t (M)
O\ I 7]J2»+VT1,+1 (Mj>,

2 2
| -1

ov

4. THE SKEW ¢t MIXTURE MODEL

We consider a g-component mixture; model (¢ > 1) in which a set of random
sample Y7, ... Y, arises from a mixture of skew ¢ distributions, given by
g g
Oy | ©) = wif(y; | & o7 Avws), w20, Y wi =1, (21)
i=1 =1
where ©® = (04,...,0,) with 0, = (w;,&, 02, \;,v;) denoting the unknown para-
meters of component ¢, and w;’s being the mixing probabilities. In the mixture
context, it naturally provides a flexible framework for modeling unobserved popula-

tion heterogeneity in the collected sample. With this phenomenon, for each Y}, it

is convenient to introduce a set of zero-one indicator variables Z; = (Zj, ..., Z,)"
(j = 1,...,n) to describe the unknown population membership. Each Z; is a
multinomial random vector with 1 trial and cell probabilities wy, ..., w,, denoted as

13



Z; ~ M(1; wy,...,w,). Note that the rth element Z,;, = 1if Y; arises from the com-
ponent r. With the inclusion of indicator variables Z ]’-s, a hierarchical representation

of (21) is given by

1 -4,
}/J|7]77-j7zl]:1 ~ N(fz+5Az’7y7T—)\ZUz2>7

j
o2

Vil Tz =1 ~ TN(Qf} (O,OO)),
j

Tz =1 ~ T(vi/2,v:/2),
Z; ~ M(Liw,w,,...,wy,). (22)

It follows from the hierarchical structure (22) on the basis of the observed data
y and latent variables 7, 7 and Z;’s that the complete data log-likelihood function
of ®, ignoring constants, is

n g 2 2

ViTj T "lig O Mg Vi T VT

0.(©) = Z::4 1 - 1 e J g i'lg lgly J '
© = > 2> J{ ‘T 2(1—5/2\i)+(1—5/2\i)0i 2(1 — 62 )02

=1 i=1

1 Vig. Y Vi Vi
—5 log(1 — 63.) =loge; -+ EIOgE —log (F(E» + ElogTj}, (23)

where n;; = (y; — &) /0 and dy, = \;/y/1 + A2
Let 25 = B(Zyly;, ©"), s = E(Zy7ly;, ©

14j

(k)y Ak ~ (k)
), 8% = B(Zijvmily;, ©)
A(K) 2 A (F) A(K) A () .
83 = E(Zijyimily;, © ) and 345 = E(Z;log(7;)|y;, © ) be the necessary condi-

4ij

tional expectations of (23) for obtaining the @-function at the kth iteration. These

expressions, for i =1,...,gand j = 1,...,n, are given by

k k) o) (k) (k

o wf (| 67,0 AP )
Zij = ~ (k) ) (24)

U(y;1©7)
(k) [543

o [0 ) Tde ( K ““)“) 25

Mij + v T *) 41 (Mij )

14



/1 — §2® oK) —® j241)
F(R) a(R) | 2(k) Ai i
)4 (ﬁ( I + 1> ,(26)

5 Ty =& + 2 -
21 1 S1ij
’ ’ T fye, W3108) \ 0" (1 — 627
. 2o(k) k ~(k (k) \ A o(k)
) = B0y E0p {0800
§O(y — O 60 241)
+ i _ i ( - Z] + 1> }’ (27)
Thre il AP (1 -8
and
VIR e )
(k) (k) o 41 o1 [ Lot <M oM+
Si; = %5 DG 5 + Agm ND) ~ k) -1
My TV Ty, (M;57)
. . (k)
_ log ( 'sz(k) + Vz(k)) + )\( )nz(]k) (771] - 1) tﬁfk)-i-l (M”LJ )
R or(k)
2 | \/( <k)+1)( B s Too, (M)
1 ) ‘
+ - G0 (2 )t (x)dx} (28)
(k) j 7o | b R
T, 44 (Mij ) il ]
with
£ (k) 3 (k) ‘ A(k)
a0 Ui & O, 2 N — 300 +1
v & k) Ai \/w7 ij v g 772(k) N V-( )
i 3 iJ i
. ~ (k
Yi G(k) is ¥(y;|®) in (21) with © replaced by G)( : and g, (x) is g, (z) in (15
j j 3

with v replaced by ﬁi(k) The ECM algorithm for the skew t mixture model is as

follows:
, compute ijk), §§]:J), §gf]), 33” and § 841]- in Eqgs (24)-(28) for

E-step: Given@z@
t=1,...,9and 7 =1,....,n

(1) _ g ()
CM-step 1: Calculate w; ' =n"'3" %

CM-step 2: Calculate
(k)

n ~(k S(k n
Zj:l Sgi;yi - 5,(\3 Zj:l 52ij
n Ak '
Zj:l ng])

2(k+1
g =
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CM-step 3: Calculate

n ~(k k+1) k+1)
204D _ Zj:l (5513(?4 fz( ) 25,\ 32”(% f( )+ éz})
i = — )
2(1 - 53\1- ) Zj:l Zz(j)

CM-step 4: Obtain S\Ekﬂ) as the solution of

) sl = 6N sl
2 2 1j\J? i 1j
) I Y )

j=1 j=1 i j=1 i
n o ak) (k+1)
SQi‘(yj - & )
+1+63) ) o =0.
j=1 i

CM-step 5: Obtain ﬁi(kﬂ) as the solution of

n ~(k) ~(k)
A — 8.5
log ( 2) +1- DG( ) 2int <n4”A(k) ) _ 0.
Z] 1 z]

If the degrees of freedom-are assumed to be identical, i.e. vy =--- =y, = v, we

suggest that the CM-step 5 of the above-lCM algorithm be switched to a simple

CML step as follows:

CML-step: Update v to

pl+1) — argmaleog (Z k+1)f Yyj | ka 62-2(k+1), )\l(-kﬂ), 1/))

v j=1 i=1

Following similar ideas as Liu, Rubin and Wu (1998), the PX-EM algorithm
for the STMIX model can be obtained by replacing the CM-steps 3 and 5 in the

previous ECM algorithm with the following two PX.CM steps:

PX.CM-step 3:

n A(k » (k+1) (k+1 A(k

O_AIQ(}C_H) . Z] 1 11]( 61 ) - 26 Z] 1 SZZ] (y] Z ) Z] 1 31]
g o 2(k) n Ak
21 -6 )X 8
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PX.CM-step 5:

n (k) n (k)
log <Vi Zj:l Zij ) D (Vz) n Zj:l S4ij —0.

25,41 2/ )

Besides being simple in implementation while maintaining the simplicity and
stability properties of the EM algorithm, the PX-EM algorithm is desirable since its
convergence is always faster and often much faster than the original algorithm. Some
additional remarks and explanations regarding the PX-EM algorithm are given in
Appendix C.

The iterations of the above algorithm are repeated until a suitable convergence
rule is satisfied, e.g., [|@* ) — @W| is sufficiently small. An oft-voiced criticism is
that the EM-type procedure tends tergetsstuck in local modes. A convenient way to
circumvent such limitations is.to try several.EM.iterations with a variety of starting
values that are representative of the parameter space. If there exist several modes,
one can find the global mode by comaparmg their relative masses and log-likelihood
values.

Under general regularity conditions, we also provide an information-based method
to obtain the asymptotic covariance of ML estimates of mixture model parameters.
By a similar argument as noted earlier, we define by I,(©;y) = > i '&j'&,jT the
observed information matrix, where u; = 0y (y,|®)/00© is the complete-data score
statistic corresponding to the single observation y; (j =1,...,n).

Corresponding to the vector of all 5g — 1 unknown parameters in O, let @; be a

vector containing

. N . A N A A A . N
(uj:w17 s Uy Uggys oo s Ugggy Ujiory - ooy Ujiogs Ujngs - o5 Ujdgs Wiy s - - 7uj:1/g> .
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The elements of u; are given by

G = i w
o W, Wy
g = i ZELy L At fort1 <M”'>
]vg’l‘ a.r 7’,72 + 197' ) N ~9 N TA M ) ’
" (o + 1)(77rj + ) Ty, 41 Tj

i o érj I)T(ﬁgg - 1) 77 ArAr ﬁr +1 tl)TJrl (MTJ')
e o | gt D Coo NG+, (Mm) |
[t taen (1)
Ujx. = Zrjlrjq| =3 : NN
Ty T Vr T, 41 <Mrj>

Ar' A’!‘ 1 Ar ﬁT—i_Ag‘ Ag_l
- %{DG(”+ )-DG(%)—bg( )

2 Uy Tej + Ur
Mgl = 1) (i),
= - j = A ~ / 9o, (%)t5,41(x;)d; |
O+ 0+ 5 T, (o n (M) Joc

where 2., = . f(y; | &,825A, o) [bly; |-©) for = 1,...,g. If the degrees of

freedom are assumed to be eqtaly say v) = -+4= v, = v, we have 4;, = Y 7_, Uj,,.
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5. AN ILLUSTRATIVE EXAMPLE

Obesity is one of the key factors for many chronic diseases and the trend in the
prevalence of obesity in the U.S. continues to increase (Flegal at al., 2002). Body
mass index (BMI; kg/m?), calculated by the ratio of body weight in kilograms and
body height in meters squared, has become the medical standard used to measure
overweight and obesity. For adults, overweight is defined as a BMI value between
25 t0 29.9, and obesity is defined as a BMI value greater than or equal to 30.

In America, the National Center for Health Statistics (NCHS) of the Center for
Disease Control (CDC) has conducted a national health and nutrition examination
survey (NHANES) annually since 1999. The survey data are released in a two-year
cycle.

For illustration, we consider the BMI for men aged 18 to 80 years in the two recent
releases NHANES 1999-2000-and NHANES 2001-2002. There are 4,579 participants
(adult men) with a BMI record.. Ofithese participants, the correlation between BMI
and body weight is 0.914, indicatingthey are highly correlated. To explore a mixture
pattern of BMI arising from two intrinsic groups of body weights, participants with
weights ranging between 70.1(kg) to 95.0(kg) were dropped in our analyses. The
remaining data, namely bmimen, consist of 1,069 and 1,054 participants with body
weights lying within [39.50kg, 70.00kg] and [95.01kg, 196.80kg], respectively.

For comparison purposes, we fit the data with a two-component mixture model
using normal, Student’ ¢, skew normal, and skew ¢ as component densities, while the
degrees of freedom are assumed to be equal. To be more specific, a two-component

STMIX model with equal degrees of freedom can be written as
¢(?J|®) = Wf(y|€1, 0%7 /\17 V) + (1 - W)f(y|§2, 0-37 >‘27 V)' (29)
Of course, model (29) will include NORMIX (A; = Ay = 0; v = 00), TMIX (A =
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Ao = 0), and SNMIX (v = 00) as special cases.

log-likelihood
-6910 -6905
1 1

-6915

-6920
|

5 10 15 20 25 30 35

degrees of freedom

Figure 3: Plot of the profile log-likelihoodof the:degrees of freedom v for fitting the
bmimen data with a two compenent STMIX maodel with equal degrees of freedom

(1 =19 =v).

For comparing the fitting results, the ML estimates and the associated information-
based standard errors together with the log-likelihood, and AIC and BIC values for
NORMIX, TMIX, SNMIX and STMIX models are summarized in Table 1. When
comparing these fitted models, we notice that the smaller the AIC and BIC values,
the better the fit. It is evidently seen that the STMIX model has the best fitting
result. Comparing STMIX with SNMIX, we see that using a heavy-tailed ¢ distribu-
tion will reduce the skewness effects. In Figure 3, we plot the profile log-likelihood of
the degrees of freedom v for the STMIX model to illustrate that the SNMIX model
is not favorable for this data set since the profile log-likelihood has a significant drop
at the peak value of 8.5.

We further consider density estimations using the fitting results of four nested

20



Table 1: ML estimation results for fitting various mixture models on the BMI adult

men example.

NORMIX TMIX SNMIX STMIX
Parameter
mle se mle se mle se mle se
w 0.397 0.0188 0.438 0.017 0.531 0.013 0.539 0.017
& 21.443 0.0465 21.591 0.089 19.567 0.036 19.672 0.330
& 32.565 0.1845 33.030 0.264 28.760 0.009 29.173 0.182
o1 2.021 0.0866 1.956 0.083 3.731 0.288 3.482 0.350
P 6.422 0.1584 5.006 0.242 7.960 0.159 6.679 0.232
A1 — — — — 1.834 0.344 1.782  0.257
A2 — — — — 10.184 2.615 5912  1.400
v — — 7.075 1.314 — — 8.502  1.441
m 5 o AGLE ., 7 8
() —6958.37 &7, 698460 L —6916.26 —6903.51
AIC 13926.74 = 123‘8;8j1‘.38 - 13846.52 13823.02

BIC 13955.04 21 o [2391534 = 13886.14 13868.30

AIC=—2({(®) — m); BIC=—2({(©) =0.5m log(n)”), and m is number of parameters.

mixture models and display them on a single set of coordinate axes in Figure 4.
Based on the graphical visualization, we found that the STMIX fitted density is
best followed by the SNMIX fitted density. Both NORMIX and TMIX densities
do not fit this data set adequately. For further comparison between the two best
models, we display the fitted cdfs for both models along with the empirical cdf of
the data set in Figure 5. Again, STMIX provides a closer fit to the data since the

fitted STMIX cdf tracks the empirical cdf more closely than does the fitted SNMIX.
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Figure 4: Histogram of the brr}if:llén d?’iﬁ with olx}eﬂaid four ML-fitted two component

mixture densities (normal, Student’s t, ‘sﬁew .ndfmal and skew t).
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Figure 5: Empirical cdf of the bmimen data together with two superimposed cdfs
from the ML-fitted two component SNMIX and STMIX models.
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6. CONCLUDING REMARKS

We have proposed a robust approach to a finite mixture model based on the skew
t distribution, called the STMIX model, which accommodates both asymmetry and
heavy tails jointly that allows practitioners for analyzing data in a wide variety of
considerations. We have described a normal-truncated normal-gamma-multinomial
hierarchy for the STMIX model and presented some modern EM-type algorithms for
ML estimation in a flexible complete-data framework. We demonstrate our approach
with a real data set and show that the STMIX model has better performance than
the other competitors.

Due to recent advances in computational technology, it is worthwhile to carry
out Bayesian treatments via Markov chain Monte Carlo (MCMC) sampling methods
in the context of STMIX model. The basie idea is to explore the joint posterior
distributions of the model parameters together with latent variables v and 7, and
allocation variables Z when mformative priors.are employed. Other extensions of
the current work include, for example, a generalization of STMIX to multivariate
settings (Azzalini and Capitanio 2003; Jones and Faddy 2003) and determination of
the number of components in skew ¢ mixtures via reversible jump MCMC (Green

1995; Richardson and Green 1997; Zhang et al. 2004).
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APPENDIX

A. Proofs of Eqgs. (4), (5), (6) and (7)

Suppose Y~ ST (£,02,\, ), where Z ~ SN'()), it has following representation:
Z
Y=¢(+0—, Z~SN(), 7~T(v/2,v/2), Z L
N

The condition distribution of Y given 7 is
Y|r ~ SN 0%/7,)).

We then have the following result:

ny = n(’//z)y/Q v/2—1_—v/2r
E(r") = /0 T—F(V/Q)T/ e /¥ dr
(V/Z)V/2 OOT(I/ 2n)/2—1 ,—v/27 1
Toha !
['(v+2n)/2) (v\ -
T(v/2) (5) ' (A1)

The first four moments of Z are

E(Z) = \/g@, BE(Z%) =1,

E(Z%) = @@(3 -6, E(z%)=3. (A.2)

Applying the double expectation trick, in conjunction of (A.1) and (A.2), we

have

E(Y) = E(E(Y\r))

= B+ %%%)

D -1/2) [7,
“TTToR) \/;5*
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It is easy to verify

var(Y) = E(Y — EY)?

_ E<02ZT_25A02\/§F((FV<;/12))/2>%+5§02%(F(<;(;/12>>/2)>2)
Y S T TV

2 I'(v/2) T I'(v/2)
Similarly,
E(Y -EY)® = 03@(%5)\(3 _ 5§>F(<;(;/Z)>/2)
3. D((v—1)/2)0((r—2)/2) | 2 4/T[(v—1)/2]\3
R L(y/2)? +2 8 (5t )
and ‘

3T((m=4)/2) T((v=1)/2)T((» = 3)/2)

4% T (w/2) ['(v/2)?

(D72 T(v2£2)/2) 5154<IY(V'-]J/2)>4>
I'(v/2)3 w22\ T(v/2) '

Let vy and ky denote the skewness and kurtosis, respectively. We have

E(Y —EY)" = &ﬂ( —%&@—ﬁ)

3,0
252
+7T \

E(Y — EY)?
(E(Y — EY)?)
)

_ 1 _ 52 v—-3 A%
__2{mﬂ3 @r( 2)r<ﬁ
. _

3/2
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and
E(Y — EY)*
(B(Y - BY)?)”

= {oer (“57) (g)f‘_sn(sj@—é?)r(”;3>F(:§1)F(§)2
) ()
A ()@ e () |

B. Proof of Proposition 2

(a) Standard calculation of conditional expectation yields
Brly) = [ rf|gdr
0
- [ el s
0
1) &
_ +3 n*+v
- b<@)(u+3>/2/0 7(“ 2 2 ) (v7)ar,
2
where v(+|a, 3) denotes the density‘of I'(«, 5) and b is given in (14).

By Proposition 1, it suffices to show

E(r|y) = (VH ) ;Hg <An ”2+”>.

n”*+v

(b) We first need to show the following:

ol
el

_ (MvT) f(r) o
‘/f N

’//2)1//2 = (v/241)—1 T( 1
7ol (v/2)f ()X/O ’ P 2(1—5§+”) dr

1 772 —(v/2+41)
- bt 7" ) (B-1)
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From (12), the expectation of a truncated normal distribution is given by

By 4:7) = day — €) + iii%g L (B2)

Applying the double expectation trick and using (B.1) and (B.2), we get

E(yrly) = E(TE(vly,T)ly)

_ @@—fﬂ%Tww+w1—&aEQﬁ§%3§%wy>
2 2 —(v/2+1)
— Gy - OB(rly) + Y %( L +1) .

mf(y) \v(l—43)

(c) Similarly, it is easy to verify that

(1—62)0? 1— 02 (A7)
T CD(/\n\/F) '

Using (B.1) and (B.3), and the'double expectation trick as before gives

E® |y, 1) =0y—&*+ +00x(y — &) (B.3)

E(v’t |y) =205 =6 E(rly) & (1 — 63)0”

L Tad (. +1)‘(”/“”.

WfY(y) u(l—éi)

(d) From (13), it is true that

—/ f(r = /OOO br =D/ exp (—%(772 + V)) O(Any/T)dT =

By Leibnitz’s rule, we can get

2 M
ntv v+1Y\ v+l 1 /
log ( 2 ) + (7]2 =+ y) DG( 2 ) TI/+1 (M) - gy(w)tz/+1 (-T)dl'

PR+ BllogT )~ B(r ) =0,

FAW A+ D)2 = 1) +v) 72
Hence

E(log(T)ly)

_ DG(V;_l)—log(nz;—V)—F v+1 (Tu+3<M u_+1>1)

n+v Tyt (M)

gu(T)t,11(x)dx.

M@ =1)  t, (M) 1 M
Jr\/(V + 1) (v + 1n?)? Tosr (M) " T, 41(M) /

o0
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C. The PX-EM Algorithm

The method of parameter-expansion EM, PX-EM, introduced by Liu, Rubin
and Wu (1998), shares the simplicity and stability of ordinary EM, but has a faster
rate of convergence. PX-EM algorithm accelerates EM algorithm since its E-step
execute a more efficient analysis. PX-EM is to perform a covariance adjustment to
correct the analysis of the M step, capitalizing on extra information captured in the
imputed complete data.

PX-EM expands the complete data model f(ycom|@) to alarger model, fx (Ycom|®),
with © = {0,,a}, and « is an auxiliary scale parameter whose value is fixed at ag
in the original model. If the auxiliary parameter o equal to 1, {8} = {6.}.

And then, we want to compare,EECMralgorithm with PX-EM algorithm for ML
estimation of skew ¢ distribution.

Model O:

1= 63 -,
Y|,777— ~ N 5"’5/\’77 > o 5

2

vl ~ TN(O,%;[O,OO)), 7~ T(v/2,0/2),

and @ = (£,0%, \,v) is the parameter of the stew ¢ distribution in ECM algorithm.
The results of ECM algorithm are referred to Section 3.

We now derive this modified ECM using PX-EM, and want to adjust current
estimates by expanding the parameter:

Model X:

1—-6 ,
Y|77T ~ N £*+5)\’Y7TO-* )

0.2 X2
vir o~ TN (0 Z00)) . 7 =0l T2

v

and © = (&, 02, \, v, a) is the parameter of stew ¢ distribution in PX-EM algorithm.
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And
(57027>‘7 V) = R{(f*agf,)v v, a)} = ( *70-3/057/\77/)

where R is the reduction function from the expanded parameter space to the original
parameter space.
Applying routine algebraic manipulations leads to the following CM-step for

updating «
n
G+ — -1 Z §§1;)
j=1

the application of the reduction function in the PX-EM algorithm leads to adjust-
ments in the estimates of o?and v, which can be obtained by replacing the CM-steps
2 and 4 in the previous EM algorithm with the following two PX.CM steps:
PX.CM-step2:

n (ke ] k (K
IR B (S =R B85 () — €4+0) + sé})
g o 2(1 52<k)) S k) :
j=1°1j

PX.CM-step4:
nv v ] — (k)
2 Zj:l ng) 2 N
In the same way, under stew ¢ mixture model, applying routine algebraic manip-

ulations leads to the following CM-step for updating «;

A(kJFl Zslz]/zz

the application of the reduction function in the PX-EM algorithm leads to adjust-
ments in the estimates of o2and v;, which can be obtained by replacing the CM-step
3 and 5 in the previous EM algorithm with the following two PX.CM step:
PX.CM-step3:

n Ak o (k+1), 9 ¢ (F) ) (kr+1 30

OA_'Q(]C+1) _ Zj:l Slij)' (y] - SZ ) - 26@ z; 1 52i5 (y] Z ) + Z] 1 3’Lj
' ¢ 2(k) n Ak
201-6) X 81
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PX.CM-step5:
n (k) n (k)
Vi Zj:l ij ) B DG(Z) n 23:1 Saij _ 0
n n Ak '

2 Zj:l S1ij 2j=1 Zz(j)
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