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摘要 
 

在很多實際情形, 製程或產品品質可以透過反應變數與一個以上解釋變數兩者

間的關係來表現更為合適，而所蒐集的樣本資料點形成曲線形式，稱為剖面資料。

本篇論文探討監控第一階段非線性剖面資料的管制圖方法。 

我們對第一階段剖面資料建立非線性迴歸模型，且為了改善偵測離群點的能力，

提出利用 Minimum Covariance Determinant (MCD) 穩健估計量及結合近年來生物統

計界盛行的 False Discovery Rate (FDR)方法來改良 管制圖。 2T

我們以大量模擬方法得到這兩種不同方法的製程偵測力，且將所提出的方法應用

在 Kang and Albin (2000)的人工蔗糖例子。結果顯示我們所提出的新方法表現得相當

良好，且也給了一些針對製程的各種偏移情形應使用何種方法做監控的建議。相信

未來許多產品考量的變數會越趨複雜，所以曲線型產品特性之評估也將受到重視，

而我們所提出的管制方法相信在對於相關產品上的監控可以達到一定的效果。 
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ABSTRACT 

 
In this paper, we propose a control chart for process monitoring when the quality of a 

product is characterized by a nonlinear function (or profile). In the Phase I analysis of 

historical data, in order to improve the ability of detecting multiple outliers, we propose 

using a Hotelling  chart based on Minimum Covariance Determinant (MCD) 

estimators, which are robust estimators of multivariate location and scale, in conjugation 

with the False Discovery Rate (FDR), which is a relatively new statistical procedure that 

bounds the number of mistakes made when performing multiple hypothesis tests. We 

apply the proposed method to a nonlinear profile example presented in Kang and Albin 

(2000). Simulation studies show that our methods are effective in detecting any 

reasonable number of outliers.
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1 Introduction

In most statistical process control (SPC) applications, it is assumed that the quality of

a process or a product can be adequately represented by the distribution of a univariate

quality characteristic or by the multivariate distribution of a vector consisting of several

possibly correlated quality characteristics. In many practical situations, however, the quality

of process or product is better characterized and summarized by a relationship between a

response variable and one or more explanatory variables. Thus, for a sample, one observes

a collection of data points that can be represented by a curve (or profile). In the literature,

linear and nonlinear profiles are treated separately. Linear profiles are first fitted by a simple

linear regression model and the estimated model parameters are used for process monitoring.

In particular, most of studies conducted in monitoring linear profiles have been motivated

by calibration applications. The monitoring of linear profiles is a broad topic and can be

applied for a wide variety of applications. However, very little work has been done to address

the monitoring of nonlinear profiles. Nonlinear profiles are often sampled and represented as

high dimensional data vectors and analyzed by nonparametric regression methods, such as

wavelets, splines, principle component analysis (PCA), and independent component analysis

(ICA), as well as parametric methods, such us nonlinear regression analysis.

In Phase I analysis, historical observations are examined to determine whether the

process was in control, to understand the variation in a process, and to estimate the in-

control parameters of the process. In contrast, the analysis of Phase II is to quickly detect

shifts or changes. The vast majority of the research on control charting is on Phase II. For

more discussions regarding the differences between analyses of Phase I and Phase II, one is

referred to Mahmoud and Woodall (2004) and Sullivan (2002). We focus on Phase I analysis

in this paper.
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This article investigates a strategy for Phase I analysis of nonlinear profile data.

Based on the prescribed nonlinear regression model, a straightforward and classical method

for process monitoring is to use a Hotelling T 2 statistic of the estimated regression parameters

to construct a T 2 control chart for profiles. However, classic estimation methods will not

yield appropriate control limits if there are unusual data points in the Phase I data. Robust

estimation methods have a distinct advantage over classical methods in that the estimates

are not unduly influenced by unusual data points. Consequently, they are more effective

in detecting unusual data points, hence, the control limits constructed with these robust

estimates would be more reliable. Unfortunately, robust estimation for multivariate data or

profiles are not as straightforward nor as easily implemented.

Robust estimation methods have been widely used in the regression context but they

have only recently been introduced to multivariate quality control applications. However, it

is still not clear which robust estimators to use from previous studies (Wismowski, Simpson,

and Montgomery (2002), Vargas (2003)). Some robust estimation methods, such as the

minimum volume ellipsoid estimator (MVE) proposed initially by Riusseeuw (1984) and the

minimum covariance determinant (MCD) estimater of Rousseuw and Van Driessen (1999),

also proposed in Rousseeuw (1984), are well suited for detecting multivariate outliers or

clusters of multivariate outliers because of their high breakdown points. The general idea

of the breakdown point is “the smallest proportion of the observations which can render an

estimator meaningless” ( Rousseuw and Leroy (1987)). In other words, the breakdown point

refers to the amount of “bad” data that can be present before the estimator is no longer

accurate for the “good” data. The “good” data simply refers to the data that is in the

majority and the “bad” data refers to the data in the minority. It is desirable to accurately

determine which data are bad, if any.

In this paper we propose a new robust method for Phase I analysis of nonlinear

2



profile data. For monitoring the regression parameters simultaneously, we propose using a

T 2 chart based on the MCD estimator in conjugation with the FDR procedure proposed by

Benjamini and Hochberg (1995). The FDR procedure is a relatively new statistical procedure

that bounds the number of mistakes by controlling a so-called False Discovery Rate (FDR)

when performing multiple hypothesis tests. We give a brief overview of the robust estimation

methods based on the MCD for Phase I application. We apply the proposed method to a

nonlinear profile example given in Kang and Albin (2000).

The remaining of this paper is organized as follows. Section 2 gives a literature re-

view on the linear profile monitoring, nonlinear profile monitoring, and robust estimation

in multivariate control charts. Section 3 presents the nonlinear regression for profiles, de-

scribes the T 2 statistic based on the MCD estimators, and sketches our example. Section 4

describes the proposed approach in details. Section 5 compares the performance of the pro-

posed MCD/FDR method with an MCD-based control chart through a simulation study for

multivariate normal data. Section 6 repeats the work in Section 5 for profile data. Section

7 concludes the paper with a brief summary and some discussions.
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2 Literature Review

In an increasing number of cases, the quality of a product or process cannot adequately be

represented by the distribution of a univariate quality variable or the multivariate distribu-

tion of a vector of quality variables. Rather, a series of measurements are taken across some

continuum, such as time or space, to create a profile. The profile determines the product

quality at that sampling period. Woodall, Montgomery, and Gupta (2004) provided a good

introduction to the concept of profile monitoring and examples of its application.

2.1 Linear Profiles

Assume that m random profile samples are available. For the jth random sample collected

over time, we have the observations (xi, yij), j = 1, 2, · · · , n and i = 1, 2, · · · ,m. For each

sample, we assume that the linear regression model relating the independent variable X to

the response Y is

yij = A0j + A1jxi + εij, j = 1, 2, . . . , n and i = 1, 2 . . . , m, (2.1)

where εij’s are independent and identically distributed (i.i.d) normal random variables with

mean zero and variance σ2
j . When the process is in statistical control, A0j = A0, A1j = A1,

and σ2
j =σ2, j = 1, 2, · · · ,m. For simplicity, we assume that the X values are fixed and take

the same set of values for each sample. But this assumption is not necessary. In Phase

I analysis, the in-control values of the parameters, A0, A1, and σ2 in (2.1), are unknown.

To ensure an effective Phase II on-line monitoring of the process, we need to obtain good

in-control regression parameter estimates in Phase I analysis.

Kang and Albin (2000) proposed two control chart methods for Phase II monitoring

of linear profiles. Their first approach is a T 2 chart based on the successive vectors of

the least squares estimates of the Y intercept and slope. The other approach treats the

4



n deviations of the sample line from the in-control line as a rational subgroup and use

a combination of the exponentially weighted moving average (EWMA) chart to monitor

the average deviation and a range (R-) chart to monitor the variation of the deviations.

Furthermore, Kang and Albin (2000) recommended their Phase II methods be used in Phase

I with estimates substituted for the values of the unknown parameters. However, Kim et

al. (2003) commented that this EWMA chart approach, is not appropriate in Phase I. The

advantages of the EWMA chart regarding its statistical performance in Phase II to detect

sustained shifts in a parameter do not apply in Phase I in which other types of shifts are

often of interest. Also, quick detection is not an issue in Phase I because one is working with

a fixed set of baseline data, all of which should be used in the analysis. Kang and Albin

(2000) also presented two applications for which the product is characterized by a linear

profile, including a semiconductor manufacturing application in which a linear calibration

function is of interest.

Kim, Mahmoud, and Woodall (2003) proposed some alternative control charts for

monitoring in Phase II. They recommended coding the X-values to make the least squares

estimators of the Y -intercept and slope independent of each other so that the Y -intercept

and slope can be monitored separately. They also recommended replacing the R chart of

Kang and Albin (2000) by an EWMA chart for monitoring the process standard deviation

σ. The first step of their Phase I method is to code the X values so that the average coded

value is 0. Coding the X values in this way yields another form of the model (2.1), that is,

yij = B0j + B1jx
′
i + εij, j = 1, 2, . . . , n and i = 1, 2 . . . ,m, (2.2)

where B0j = A0j + A1jx̄, B1j = A1j, and x′j = xj − x̄. The second step of their method is to

apply a separate EWMA control chart for each parameter in (2.2). A signal is produced as

soon as any one of the three EWMA charts (for the Y -intercept, the slope, and the variation

5



about the regression line) produces an out-of-control signal. This method provides easier

interpretation of an out-of-control signal than most of other methods, because each parameter

in the model is monitored using a separate control chart. This Phase II approach also leads to

better average run length (ARL) performance. Furthermore, the authors also recommended

applying their Phase II method in Phase I, with the three EWMA charts replaced by three

Shewhart charts for monitoring the Y intercept, slope, and process standard deviation.

However, they did not study the performance of this method.

Woodall and Mahmoud (2004) proposed a Phase I method based on the standard

approach of testing collinearity using indicator variables for each profile in a multiple re-

gression model. If the process appears unstable by an F test, then they recommended using

individual control charts based on the sample slope and Y intercept to diagnose the source of

the instability. The performances of several competing methods were compared for various

sizes of shift in the regression parameters. They showed that the Phase I methods proposed

by Brill (2001) and Mestek et al. (1994) are ineffective in detecting shifts of the process

parameters due to the ways in which the vectors of estimators were pooled to estimate the

variance-covariance matrix. In particular, they illustrated several of the Phase I methods

using a calibration dataset given in Mestek et al. (1994).

There are more literature on linear profile monitoring and its application. For exam-

ple, see Mestek, Pavlik, and Suchanek (1994), Stover and Brill (1998), Lawless, Mackay, and

Robinson (1999), Wang and Tsung (2005), and Jensen, Birch, and Woodall (2006a).

2.2 Nonlinear Profiles

Profiles that cannot be adequately represented by a linear model are generally labeled as

nonlinear profiles. As such, monitoring nonlinear profiles can be considered as a particular

application of multivariate process control problems. Little research work has been done on

6



monitoring nonlinear profiles.

Walker and Wright (2002) proposed a nonparametric approach to comparing profiles

using additive models to represent the curves of interest in the monitoring of vertical density

profiles (VDP) of particleboard, although they did not consider the time order of the profiles.

Ding, Zeng, and Zhou (2006) proposed using nonparametric procedures to perform Phase I

analysis for multivariate nonlinear profiles. The authors mentioned that the high dimension-

ality of profile data and data contamination present a challenge to the Phase I analysis of

nonlinear profiles. The presented Phase I analysis procedure constitutes two major compo-

nents: (i) a data reduction component that projects the original data into a subspace of lower

dimension while preserving the data clustering structure (can be realized by the method of

independent component analysis (ICA)) and (ii) a data separation technique that can de-

tect single and multiple shifts as well as outliers in the data (can be realized by the change

point detection algorithm described in Sullivan (2002)). Such models do not have a specific

functional form and have no model parameters to estimate, but rather one employs smooth-

ing techniques such as local polynomial regression or spline smoothing to model a profile.

Nonparametric regression techniques provide great flexibility in modeling the response. One

disadvantage of nonparametric smoothing methods is that the subject-specific interpreta-

tion of the estimated nonparametric curve may be more difficult, and may not lead the user

to discover assignable causes for an out-of-control signal as easily as parametric regression

methods.

Often, however, scientific theory or subject-matter knowledge leads to a natural non-

linear function that well describes the profiles. Hence, an alternative method is to model

each profile by a nonlinear regression function. Assume that we have m profiles of data, each

of which has k measurements. Let yij refer to the jth measurement for the ith profile. We

can then fit a nonlinear regression model to each profile. A nonlinear profile of an item can

7



be modeled by the nonlinear regression model given generally by

yij = f(xij, βi) + εij, j = 1, 2, . . . , n and i = 1, 2 . . . , m, (2.3)

where xij is the k × 1 vector of regressors for the jth observation of the ith profile, εij is the

random error, βi is the p×1 vector of parameters for profile i, and f(·) is a function which is

nonlinear in the parameter vector βi. The random errors εij are assumed to be i.i.d. normal

random variables with mean zero and variance σ2. In many applications, there is only one

regressor (k = 1), but there are multiple parameters to monitor (p > 1).

Williams, Woodall, and Birch (2003) studied the use of T 2 control charts to monitor

the coefficients, βi, of the nonlinear regression fits to the successive sets of profile data. They

gave four general approaches to the formulation of the T 2 statistics and the determination

of the associated upper control limits for Phase I applications. Assume that β̂i are the

parameter estimators of βi, for i = 1, · · · ,m. The four approaches are as in the following:

• Approach 1: Based on the sample covariance matrix.

T 2
p,i = (β̂i − β̂)′S−1

p (β̂i − β̂), i = 1, . . . ,m, (2.4)

where β̂ = 1
m

∑m
i=1β̂i. and Sp = 1

m−1

∑m
i=1(β̂i − β̂)(β̂i − β̂)′.

• Approach 2: Based on the successive-difference vector, vi = β̂i+1−β̂i, i = 1, . . . ,m−1,

which was proposed originally by Hawkins and Merriam (1974) and later discussed by

Holmes and Mergen (1993).

T 2
D,i = (β̂i − β̂)′S−1

D (β̂i − β̂), i = 1, . . . , m, (2.5)

where SD = 1
2(m−1)

∑m−1
i=1 vivi

′.
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• Approach 3: Based on intra-profile pooling (IPP). Assume that ˆV ar(β̂i) are the esti-

mators of the variance of β̂i, V ar(β̂i).

T 2
IPP,i = (β̂i − β̂)′S−1

IPP (β̂i − β̂), i = 1, . . . , m, (2.6)

where SIPP = 1
m

∑m
i=1

ˆV ar(β̂i).

• Approach 4: Based on the MVE estimators. Denote the MVE estimators of the coef-

ficient vector and the covariance matrix by β̂mve and Smve, respectively,

T 2
mve,i = (β̂i − β̂mve)

′S−1
mve(β̂i − β̂mve), i = 1, . . . , m. (2.7)

The choice of methods primarily depends on the extent of the between-profile variation in-

cluded in the common-cause variation for the application under study. The above-mentioned

approaches were illustrated using the VDP profile data provided by Walker and Wright

(2002). Williams, Woodall, and Ferry (2006) gave an application of nonlinear profile moni-

toring to dose-response data.

Jensen and Birch (2006) proposed using a nonlinear mixed model to model profiles

in order to account for the correlation structure within a profile. They discussed situations

where the nonlinear mixed model approach is superior to the nonlinear approach in detecting

changes by simulation. They also proposed a method that supplements the approach of

Williams, Woodall, and Birch (2003) with a nonlinear mixed model to improve the control

chart procedure and demonstrated their method with the VDP data of Walker and Wright

(2002).

2.3 Robust Estimation in Multivariate Control Chart

In most regression problems, the parameter estimators are correlated. Thus a popular

procedure in the retrospective Phase I is the T 2 control chart, which is a tool to detect

9



multivariate outliers and shifts. To construct the T 2 chart, we need to estimate the mean

vector and covariance matrix from a set of historical data. However, the presence of multiple

outliers may go undetected due to their biasing effect on the estimators, which is known as

the masking effect. Efforts to address this problem have focused on the robust estimation

in the presence of multiple outliers, especially for the covariance matrix. A number of

different researchers have studied the robust estimation in multivariate settings, for example,

Rousseeuw (1984) and Rousseeuw and Leroy (1987).

The T 2 statistics based on the usual sample variance-covariance matrix estimator (de-

noted by T 2
usu) and the successive-difference variance-covariance matrix estimator (denoted

by T 2
dif ) are most commonly used for multivariate control charts. Sullivan and Woodall

(1996) showed that T 2
usu and T 2

dif are not effective in detecting more than a very small num-

ber of outliers. Sullivan and Woodall (1996) and Vargas (2003) both showed that T 2
dif is

effective in detecting both sustained step and ramp shifts in the mean vector. Sullivan and

Woodall (1996) found not only that T 2
usu is less effective in detecting a shift in the mean

vector, but also that the power to detect the shift decreases as the magnitude of the shift

increases. They found that T 2
usu has the effect of “pooling” the data all together such that

a large step shift “inflates” the variance, thus making detection of the shift difficult.

Vargas (2003) and Jensen, Birch, and Woodall (2005) studied that the T 2 statistics

based on high-breakdown estimators, such as the MVE and MCD methods of Rousseeuw

(1984) (denoted respectively by T 2
mve and T 2

mcd), are excellent in detecting multiple outliers

for Phase I. Jensen, Birch, and Woodall (2005) further investigated the more advantageous

situations of the MVE and MCD estimators for certain combinations of the sample size and

the number of outliers present for multivariate Phase I applications. The MVE estimator

is preferred for smaller sample sizes and a smaller percentage of outliers while the MCD

estimator is preferred for larger sample sizes and/or large percentages of outliers. The
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simulations and generated control limits presented there give useful guidelines about the

situations for which the high-breakdown approach is most appropriate. Jensen, Birch, and

Woodall (2005) discussed some properties of the MVE and MCD methods along with their

computing algorithms.

The distributions of the exact MCD and MVE estimators of location and scale are

not known in closed form. However, the asymptotic distributions of the MVE and MCD

estimators can be derived. Davies (1992) showed that the exact MVE estimators of location

and scale are consistent for the mean vector and covariance matrix respectively provided

that the random error vectors are i.i.d. Similar results were given in Butler, Davies, and

Jhun (1993) for the exact MCD estimators. However, the MCD estimators converge to their

population counterparts at a rate of n−1/2 while the MVE estimators converge at a slower

rate of n−1/3, thus the MCD estimators are more efficient. In addition, the distribution of

the MCD estimator of location converges to a normal distribution, which is not necessarily

the case for the MVE estimator of location. Thus, the asymptotic properties of the MCD

estimators are superior to those of the MVE estimators. Davies (1997) and Butler, Davies,

and Jhun (1993) also indicated that the asymptotic distributions of the T 2
mve and T 2

mcd statis-

tics converge in distribution to a χ2
p distribution for i = 1, . . . , m. Hardin and Rocke (2005)

provided an improved F approximation of the MCD estimator that gives accurate outlier

rejection points for various sample sizes. So it may be useful to study the use of approximate

control limits which are much simpler to obtain than those obtained via simulation. They

believed that it is likely that large sample sizes are needed for the χ2
p approximation to be

sufficiently accurate.

The hybrid algorithm of Rocke and Woodruff (1996) is a combination of the data

partitioning methods of Woodruff and Rocke (1994), the FSA algorithm involving the MCD

from Hawkins (1994), and M-estimation. This hybrid algorithm is very effective in detecting
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a larger percentage of outliers. Rousseeuw and Van Driessen (1999) proposed an algorithm,

which they called the FAST-MCD, that is based on an iterative scheme and the MCD

estimators. The FAST-MCD method is able to handle large data sets within a reasonable

amount of time.

In Section 4, we give a brief overview of various robust estimation methods based

on the MCD method for multivariate Phase I application. In addition to using the MCD

estimators in the T 2 statistic, with an attempt to enhance the detecting power of the control

chart, we use the FDR procedure proposed by Benjamini and Hochberg (1995) for determing

outliers in the data set. The proposed scheme is compared with the MCD-based T 2 control

chart in Sections 5 and 6.
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3 Modeling Nonlinear Profiles

3.1 Nonlinear Regression Model

Assume that there are sample profiles in the historical data for Phase I analysis. For each

sample i we observe the response variable yij and a set of predictor variables xij (k = 1),

j = 1, · · · , n, i = 1, · · · ,m. We present the nonlinear regression model (2.3) in matrix form

as follows by placing the observations {(yij, xij), j = 1, · · · , n} in rows. Let the response

matrix be

Y =




y′
1

y′
2

...

y′
m




=




y11 y12 . . . y1n

y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn




(3.1)

and the covariate matrix be

X =




x′
1

x′
2

...

x′
m




=




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn




. (3.2)

Also,

β =




β′
1

β′
2

...

β′
m




=




β11 β12 . . . β1p

β21 β22 . . . β2p

...
...

. . .
...

βm1 βm2 . . . βmp




(3.3)

is the parameter matrix, where βi is the p× 1 vector to be estimated for profile i, and

ε =




ε′
1

ε′
2

...

ε′
m




=




ε11 ε12 . . . ε1n

ε21 ε22 . . . ε2n

...
...

. . .
...

εm1 εm2 . . . εmn




(3.4)

is the random error matrix, where εij are assumed to be i.i.d normal random variables with

mean zero and variance σ2.
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To simplicity notation, we rewrite the form in (2.3) by stacking the n observations

within each profile as yi = (yi1, yi2, · · · , yin)′, f(xi, βi) = (f(xi1,βi), f(xi2,βi), · · · , f(xin,βi))
′,

and εi = (εi1, εi2, · · · , εin)′. The vector form is then given by

yi = f(xi,βi) + εi, i = 1, 2, . . . ,m. (3.5)

For the nonlinear regression model given in (3,5), we first must obtain the estimate of

βi for each profile. This is usually accomplished by employing the Gauss-Newton procedure

and iterating until convergence to obtain the least squares estimates. Define the n×p matrix

of the derivatives of f(xi,βi) with respect to βi as

F (βi)(= F i) =
∂f(xi,βi)

∂βi

=




∂f(xi1,βi)
∂βi1

∂f(xi1,βi)
∂βi2

. . . ∂f(xi1,βi)
∂βip

∂f(xi2,βi)
∂βi1

∂f(xi2,βi)
∂βi2

. . . ∂f(xi2,βi)
∂βip

...
...

. . .
...

∂f(xin,βi)
∂βi1

∂f(xin,βi)
∂βi2

. . . ∂f(xin,βi)
∂βip




. (3.6)

Let f(xi, β̂
(a)

i ) = (f(xi1, β̂
(a)

i ), f(xi2, β̂
(a)

i ), · · · , f(xin, β̂
(a)

i ))′, where β̂
(a)

i is the estimator

of βi at iteration a, and let F
(a)
i be the matrix of derivatives given in (3.6) evaluated at β̂

(a)

i .

Then an iterative solution for β̂i is given by

β̂
(a+1)

i = β̂
(a)

i + (F̂
′(a)

i F̂
(a)

i )−1F̂
′(a)

i (yi − f(xi, β̂
(a)

i )). (3.7)

See Myers (1990, Chapter 9) or Schabenberger and Pierce (2002, Chapter 5) for a concise

discussion of nonlinear regression model estimation. A more detailed treatment can be found

in Gallant (1987) or Seber and Wild (2003).

Unlike linear regression, the small-sample distribution of parameter estimators in non-

linear regression is unobtainable, even when the errors εij are assumed to be i.i.d. normal

random variables. Let F (β̂i)(=F̂ i) be the derivative matrix in (3.6) evaluated at the param-

eter vector estimate β̂i. Seber and Wild (2003, Chapter 12) gave the asymptotic distribution
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of β̂i as well as the necessary assumptions and regularity conditions needed for it. Since the

following assumptions and regularity conditions

1. The εij are i.i.d. with mean zero and variance σ2.

2. For each i, f(xi,β
∗
i ) is a continuous function of β∗i for β∗i ∈ B, where B is a closed,

bounded subset of Rp .

3. βi is an interior point of B. Let B∗ be an open neighborhood of B.

4. The first and second derivatives,
∂f (xi,β

∗
i )

∂β∗ir
and

∂2f (xi,β
∗
i )

∂β∗ir∂β∗is
(r, s = 1, 2, . . . , p), exist and

are continuous for β∗i for all β∗i ∈ B∗.

5. n−1F (β∗i )
′F (β∗i ) converges to some matrix Ω(β∗i ) uniformly in β∗i for β∗i ∈ B∗.

6. n−1∑n
i=1

[
∂2f (xi,β

∗
i )

∂β∗ir∂β∗is

]2

converges uniformly in β∗i for β∗i ∈ B∗.

7. Ωi=Ω(βi) is nonsingular.

hold, the asymptotic distribution of β̂i is given by

√
n(β̂i − βi) −→ Np(0, σ2Ω−1

i ). (3.8)

Also n−1F̂
′
iF̂ i is a strongly consistent estimator of Ωi. For practical purposes, the distri-

bution given by (3.8) can not be calculated since the matrix Ωi is unknown. Instead, the

following approximate asymptotic distribution of β̂i is commonly used:

β̂i ≈ Np(βi, σ
2(F ′

iF i)
−1). (3.9)

For the “in-control” case, we have βi = β for all m samples, where β is the in-control

parameter vector. Accordingly, the Ωi (and F i) matrices are the same for all m profiles if

all profiles have the same underlying function, f , the same x-values, and the same values of

βi. However, the F̂ i matrices are not equal since the β̂i values vary from profile to profile.
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3.2 Constructing the T 2
mcd Statistic

In order to develop the methodology for monitoring nonlinear profiles, we first consider

the general framework of the Hotelling T 2 statistic. Given a sample of m independent

observation vectors, wi (i = 1, · · · ,m), each of dimension p, and assuming that each of

the wi vectors follows a multivariate normal distribution with common mean vector µ and

covariance matrix Σ, the general form of the T 2 statistic is

T 2
i = (wi − µ)′Σ−1(wi − µ), i = 1, . . . , m. (3.10)

Because µ and Σ are not known, they are replaced with appropriate estimators in (3.10).

We then can plot the T 2
i statistics, i = 1, · · · ,m, against i in a T 2 control chart, and out-

of-control signals will be given for any T 2
i value exceeding the upper control limit (UCL)

(Mason and Young (2002), Chapter 2).

In the nonlinear regression model (3.5), βi is a p× 1 vector of parameters that deter-

mines the curve f(xi, βi). For the purpose of checking the assumption βi = β, i = 1, , · · · ,m,

we can utilize the T 2 statistic to assess the stability of the p parameters simultaneously. Note

that we cannot monitor each parameter separately since the components of β̂i are usually

correlated in nonlinear regression. We remark that statistics (2.4)-(2.7) are all in form of

(3.10).

The robust version of the T 2 statistics considered in the paper are based on the MCD

estimator. The main reason we choose the MCD method is because the MCD estimateors

outperform the others in terms of statistical efficiency and computing speed. See, for ex-

ample, Rouesseeuw and Driessen (1999), Rouesseeuw, Aelst, Driessen, and Agullo (2004),

Jensen, Birch, and Woodall (2005), and Hardin and Rocke (2005). Another reason is that

the MCD algorithm can deal with large sample sizes. The MCD-based T 2 statistic for the
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ith profile is

T 2
mcd,i = (β̂i − µ̂mcd)

′S−1
mcd(β̂i − µ̂mcd), i = 1, . . . ,m, (3.11)

where µ̂mcd is the MCD location estimator and Smcd is the MCD estimator of the covariance

matrix. In the next section we discuss the MCD estimators in more detail and describe how

to calculate them.

3.3 Aspartame Example

We use the aspartame example presented in Kang and Albin (2000) to study the proposed

method. We model each profile by a three-parameters nonlinear model as follows. Let x

values be 0.56, 0.64, . . . , 3.92 (n = 43) and all m samples have the same x values. When the

process is in statistical control, the underlying model is

yij = f(xj,βi) + εij

= Ii + Mie
−Ni(xj−1)2 + εij, j = 1, 2, . . . , 43, i = 1, 2, . . . , m ,

(3.12)

where βi =




Ii

Mi

Ni


 has the mean vector




1

15

1.5


 and the covariance matrix




0.3 0 0

0 0.5 0

0 0 0.3


,

and εij are i.i.d normal random variables with mean zero and variance 1.
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4 Methodologies

In this paper, we propose a profile monitoring scheme which involves first a preprocessing

step of the nonlinear regression estimation, then use the parameter estimates to compute a

robust T 2 statistic, and finally apply the FDR procedure to identify out-of-control samples.

To avoid the estimation error get in the way of understanding the effectiveness of the outlier-

identification steps, we only consider multivariate data instead of profile data in Sections 4

and 5.

4.1 The T 2
mcd Control Chart

Consider a dataset Z(m) = {z1,z2, · · · ,zm} of p-variate observations. Intuitively, by

its name, an outlier should lie outside of the majority of the samples. To prevent outliers

from skewing the estimators, the MCD estimator is computed from the closest samples of

size h. To prevent outliers from skewing the estimators, the MCD method looks for a subset

of Z(m) with size h, say Z(h), whose covariance matrix has the smallest determinant, where

[m/2] ≤ h ≤ m. The MCD estimator of location is then the average of these h points,

µ̂full = 1
h

∑h
j=1 zj, and the MCD estimator of scale is the sample covariance matrix, defined

by Sfull = 1
h

∑h
j=1(zj − µ̂full)(zj − µ̂full)

′.

The value of h is chosen in order to ensure that the h samples selected by the

MCD method will not contain any outliers. Thus, we need only check the remaining m− h

samples, called the outlying group by Hardin and Rocke (2005), to identify the outliers.

Let m1 = m − h. Then the m1 outlying T 2
mcd statistics are computed with µ̂mcd and Smcd

estimated from the h selected samples. Later, we also use the m1 outlying T 2
mcd statistics

to calculate the corresponding p-values for the FDR method. Two common choices for h

are h = [(m + p + 1)/2] ≈ m/2, which yields the highest possible breakdown value, and
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h ≈ 3m/4. We will compare these two choices in our simulation study.

Rousseeuw and Van Driessen (1999) proposed an improved algorithm called the FAST-

MCD algorithm. Its basic ideas are an inequality involving order statistics and determinants,

and techniques which they called selective iteration and nested extensions. For small datasets,

the FAST-MCD algorithm typically finds the exact MCD, whereas for larger datasets it

gives more accurate results than existing algorithms and is faster by orders of magnitude.

Moreover, the FAST-MCD algorithm has been implemented and is available in MATLAB.

We study the following three types of the MCD estimators:

1. The original estimators:

µ̂mcd1 = µ̂full, Smcd1 = Sfull. (4.1)

2. Since Sfull is biased (Croux and Haesbroeck (1999) and Rousseeuw and Van Deiessen

(1999)), consider the following bias-corrected estimators:

µ̂mcd2 = µ̂full, Smcd2 =
d

2(γ)

(µ̂full,Sfull)

χ2
p,γ

Sfull, (4.2)

where d
2(γ)

(µ̂full,Sfull)
is the γth sample quantile of {(zi − µ̂full)

′S−1
full(zi − µ̂full), i =

1, 2, . . . , m} and χ2
p,γ is the γth quantile of the chi-square distribution with degree of

freedom p. Note that γ = h/m here. We remark that this de-biasing approach is

implemented in MATLAB for the MCD method.

3. The MCD estimators defined by Croux and Haesbroeck (1999):

µ̂mcd3 = µ̂full, Smcd3 = cγSfull, (4.3)

where cγ is a constant, which can be chosen in such a way that consistency will be

obtained at the specified model Fµ,Σ with density fµ,Σ(z) = g((z−µ)′Σ−1
(z−µ))√

(det(Σ))
. The
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function g is assumed to be known and to have a negative derivative g′, so that Fµ,Σ

belongs to a parametric class of elliptically symmetric, unimodal distributions. They

have shown that for this distribution the MCD-problem has a unique solution given

by the ellipsoid A(Fµ,Σ) = {z ∈ Rp|(z − µ)′Σ−1(z − µ) ≤ qγ}, where Z = F0,I ,

qγ = G−1(1−γ) and G(t) = PF0, I
(Z ′Z ≤ t) to obtain cγ. To obtain Fisher-consistency

at this model, it suffices to set

cγ = (1− γ)

[
πp/2

Γ(p/2 + 1)

∫ √
qγ

0
rp+1g(r2)dr

]−1

. (4.4)

Table 1 gives several values of the constants cγ for different values of p and γ at the

normal model and also can be used in this paper.

The purpose of the constants cγ is to make the MCD estimators consistent. In fact,

the MCD method based on any of the MCD estimators that only differ by a constant behaves

exactly the same in terms of selecting the subset of size h for the robustness purpose. Thus

Smcd3 has the same effect as Smcd1 in detecting the outliers with our methods. We use the

Smcd1 and Smcd2 for the simulation studies in the paper.

Jensen, Birch, and Woodall (2005) showed the distribution of T 2
mcd converges in

distribution to a χ2
p distribution as m → ∞. However, the asymptotic convergence is very

slow, and using χ2
p,α as the cutoff point will often lead to identifying too many points as

outliers. In Sections 5, a comprehensive simulation study allows us to determine a suitable

control limit for the T 2
mcd control chart.

4.2 The FDR Procedure

Considering Phase I analysis as a multiple testing problem, we can employ the FDR

procedure to select outliers, with an attempt to have better detecting power.

The FDR, suggested by Benjamini and Hochberg (1995), is a new and different view
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Table 1: Particular Values of cγ at the Normal Model from Croux and Haesbroeck (1998)

γ p = 2 p = 3 p = 5

0.5 3.259 2.457 1.912

0.75 1.859 1.609 1.412

Table 2: Possible outcomes from m hypothesis tests

Accept null Reject null Total

Null true m0 −R0 R0 m0

Alternative true m1 −R1 R1 m1

Total m−R R m

of how the errors in multiple testing could be considered. Table 2 summaries the numbers

of four possible outcomes in m hypothesis tests.

The proportion of errors committed by falsely rejecting null hypotheses can be viewed

through the random variable Q = R0/R, i.e., the proportion of the rejected null hypotheses

which are erroneously rejected. Naturally, define Q = 0 when R0 + R1 = 0, as no error of

false rejection can be committed. Define the FDR to be E(Q), the expected proportion of

erroneous rejections among all rejections.

The FDR procedure in Benjamini and Hochberg (1995) works as follows. Assume

that, of the m hypotheses tested {H0
1 , H

0
2 , . . . , H

0
m}, m0 are true null hypotheses, but the

number and identity of which are unknown. The other m1 hypotheses are false. Denote the

corresponding m test statistics by {T1, T2, . . . , Tm} and their p-values under null hypothesis

by {p1, p2, . . . , pm}. Let p(1) ≤ p(2) ≤ . . . ≤ p(m) be the ordered observed p-value. Define

k = max{i : p(i) ≤ i
m

α} . Reject the null hypotheses corresponding to the p(1), . . . , p(k), if k

exists. If no p-values satisfy this inequality, reject no hypothesis.

Benjamini and Hochberg (1995) proved that for independent test statistics and any

21



configuration of false null hypotheses, the above procedure controls the false discovery rate

E(Q) at α. They also remarked that the independence of the test statistics corresponding

to the false null hypotheses is not needed for the proof of the Theorem (See Benjamini and

Hochberg (1995)).

Recall the MCD method has divided the m samples into a likely-in-control group of

size h and an outlying group of size m− h that may contain all outliers. Thus, for practical

implementation, we need only apply the FDR procedure to the group containing outliers. In

the next section, we describe and compare two monitoring schemes, one based on the T 2
mcd

control chart and the other based on the FDR procedure.
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5 Monitoring Schemes

To study and compare the FDR method and the T 2
mcd control chart. We generate βi

directly from the multivariate normal distribution so that the estimation error of the non-

linear regression will not get in the way. For the profile monitoring, we leave it to Section

6.

All the computations are conducted in the MATLAB 7 environment, because the

MCD method and the nonlinear regression have been incorporated into MATLAB 7.

5.1 Control Limit

If the sample size of the Phase I data is large that we may simply construct the control

limits by the asymptotic distribution of T 2
mcd. However, the sample size is usually not large

enough and the exact distributions are not available, so we will construct the control limits

by Monte Carlo simulation. For this purpose, without loss of generality, we can assume that

the in-control distribution of β̂i is the standard multivariate normal distribution Np(0,I).

Generate 200, 000 sets of random samples of size m from Np(0,I). Apply the MCD method

to each set of m samples, compute the T 2
mcd statistic for each sample in the set and record

the maximum value attained. For controlling the overall false-alarm rate of the dataset at,

say, 5% level, set the control limit at the 95th percentile of the 200, 000 maximum values.

Due to the invariance of the T 2
mcd statistic, the control limit constructed as above can

be applicable for any value of µ and Σ. The MCD estimators, Smcd1 and Smcd2, described

in Subsection 4.1 are considered. As an example, Table 3 gives the T 2
mcd control limits for

p = 3, m = 30, 50, 100, and h = 0.75m, 0.5m.
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Table 3: T 2
mcd Control Limits for p = 3 when the overall false-alarm rate is set at 0.05 level.

h m Smcd1 Smcd2

30 45.8104 112.5561

0.75m 50 27.2573 66.9208

100 17.0788 41.9627

30 27.5203 44.2802

0.5m 50 20.3215 32.2496

100 16.2190 26.0964

Table 4: The overall false-alarm rate of the FDR method and the T 2
mcd control chart (esti-

mated with 10,000 replications).

Smcd1 Smcd2

h m FDR T 2
mcd FDR T 2

mcd

30 0.0493 0.0522 0.0474 0.512

0.75m 50 0.0484 0.0497 0.0493 0.486

100 0.0550 0.0563 0.0517 0.0533

30 0.0428 0.0503 0.0413 0.0485

0.5m 50 0.0420 0.0463 0.0409 0.0503

100 0.0447 0.0492 0.0473 0.0485

Table 4 gives the estimated overall false-alarm rates for the two control schemes based

on 10, 000 replications. Note that these values are fairly close to the nominal value 0.05,

except for the values of the FDR method under h = 0.5m where the FDR method produces

fewer false alarms than it is designed to. Thus, h = 0.5m is not recommended for the FDR

method. Using Smcd1 or Smcd2 does not show much difference. We choose Smcd2 for the

subsequent simulations in this study simply because the computer program is conveniently

available in MATLAB.
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5.2 Data Generation

For our simulation study, we consider the case of p = 3 in correspondence with the

nonlinear regression model that we use for the aspartame example. Once the control limits

is set, generate m random samples from the 3-variate normal distribution,

βi ∼ N3(µ,Σ), i = 1, 2, 3, . . . ,m.

Among the m samples, k random samples are generated from the out-of-control distribution,

while the other (m−k) samples are generated from the in-control distribution. The in-control

distribution is a multivariate normal with µ = 0 and Σ = I. The out-of-control distribution

has the same variance-covariance matrix but the mean vector is from µ to µ1. The size of

the shift can be quantified by the non-centrality parameter (ncp) defined by

(µ1 − µ)′Σ−1(µ1 − µ). (5.1)

Consider k = 1, 3, 5, 7, and 10 outliers. The k outliers are assigned to the (3 × i)th

sample for i from 1 to k. For example, when k = 3, we put outliers at the 3th, 6th, 9th samples.

We generate 10,000 sets of m random samples for each combination of k = 1, 3, 5, 7, 10

and m = 30, 50, 100.

5.3 P-value of the Sample

For each combination of k and m as given above, 200,000 datasets are generated from the

in-control distribution Np(0, I). Each set of data is divided into the likely-in-control group

of m0 samples and the outlying group of m1 samples. Since we only check the m1 samples

in the outlying group selected by the MCD method for outlier screening in Phase I analysis,

it is more natural to pool the m1 × 200, 000 samples to approximate the population of the

T 2
mcd statistic. Since the p-value of any observed T 2

mcd statistic is simply the probability that
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the random variable T 2
mcd exceeds the observed T 2

mcd value, the p-value of any observed T 2
mcd

is estimated by the proportion of the m1 × 200, 000 T 2
mcd values greater than the observed

T 2
mcd.

5.4 The Signal Probability

In order to evaluate the performance of the methods, an extensive simulation study is

conducted. The evaluation criterion commonly used in the literature is the signal probabili-

ties , which is defined as the probability that at least a sample signals out-of-control among

the m samples. That is, the signal probability is defined as P (R ≥ 1). As shown in Sullivan

and Woodall (1996), the larger the value of the non-centrality parameter (ncp) is, the more

extreme the outliers are. To estimate the signal probability, for each control scheme, we

generate 10,000 independent datasets of m random samples for each situation considered.

The proportion of the datasets that have at least one T 2
mcd statistic greater than the control

limit. Similarly, the signal probability of the FDR approach is estimated by the proportion

of the datasets that have at least one sample rejected by the FDR procedure.

5.5 False-Rejection Rate and Correct-Rejection Rate

One of the goals of Phase I monitoring is to identify in-control samples so that the

estimated control limits are sufficiently accurate for Phase II monitoring. However, the signal

probability cannot distinguish a control scheme that can detect more outliers or commit less

false alarms from other schemes. Let R1 be the number of the outliers detected in the k

outliers and R0 be the number of the falsely rejected samples in the m−k in-control samples.

Define the false-rejection rate by

FRR = E(
R0

m− k
) (5.2)

26



and the correct-rejection rate by

CRR = E(
R1

k
). (5.3)

Note that FRR is similar to the Type I error probability and CRR is similar to the power

of the hypothesis testing.

We estimate the FRR and CRR by averaging their sample counterparts of the simu-

lated 10,000 datasets.

5.6 Results

Table 5 gives the results for all combinations of m, k and ncp. “FRRFDR”, “CRRFDR”,

and “SPFDR” denotes respectively the estimates of FRR, CRR, and the signal probability

of the FDR method. If the values are obtained with the T 2
mcd control chart, replace the

subscript “FDR” by “UCL”. “∆” denotes the difference of the values between the FDR

method and the T 2
mcd control chart.

From Table 5, when there are outliers, we see that the detecting power (CRR) of the

FDR procedure is better than that of the T 2
mcd control chart, while the false-alarm proportion

(FRR) of the FDR procedure is slightly larger than that of the T 2
mcd control chart. When

there are no outliers, the false-alarm proportion of the FDR procedure is smaller than that

of the T 2
mcd control chart.

The simulation results with βi generated directly from the multivariate normal dis-

tribution are given in Table 6 for m=30, 50, 100 under p = 3 and ncp = 49. We find the

FDR method is better than the T 2
mcd control chart in terms of the CRR value and the signal

probability, and the advantage increases as the number outliers increases, especially for the

CRR value. The CRR values for k = 1, 3, 5, 7, 10 are shown in Figures 2-4, in which the

differences are evident. In the figures, the symbols “ + ” and “* ” denote 0.75m and 0.5m,

respectively, and the solid line is for the FDR method and the dotted line is for the T 2
mcd
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control chart.

From the simulation results, we also find that when choosing h = 0.75m to calculate

the T 2
mcd statistics, the control schemes not only are more powerful (CRR) but also have

fewer false alarms (FRR) than when choosing h = 0.5m. But when the number of outliers is

larger than 0.75m, choosing 0.75m is worse than choosing 0.5m because the MCD estimators

are contaminated by outliers. For example, from Figure 2, the CRR value of 0.75m is worse

than that of 0.5m when the number of outliers k is larger than 7.
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6 Profile Monitoring – Aspartame Example

6.1 A Simulation Study

In this section, to study the effectiveness of two methods with profiles, we analyze the

hypothetical aspartame example with model (3.12) given in Subsection 3.3. Figure 1 shows

four aspartame profiles generated from model (3.12). The in-control mean vector and the

covariance matrix of βi in the model (3.12) is

βi ∼ N3(




1

15

1.5


 ,




σ2
I 0 0

0 σ2
M 0

0 0 σ2
N


 =




0.3 0 0

0 0.5 0

0 0 0.3


).

Based on model (3.12), we generate the m − k in-control profiles with βi from the

in-control multivariate normal distribution. The k out-control profiles are generated from

the out-of-control multivariate normal distribution, where the mean vector µ is shifted to

consider the µI , µM or µN . Consider µI = (1 + 5σI , 15, 1.5)′ with ncp = 25 or (1 +

7σI , 15, 1.5)′ with ncp = 49, µM = (1, 15 + 5σM , 1.5)′ with ncp = 25 or (1, 15 + 7σM , 1.5)′

with ncp = 49, and µN = (1, 15, 1.5 + 5σN)′ with ncp = 25 or (1, 15, 1.5 + 7σN)′ with

ncp = 49.

Our strategy is first to estimate for each profile data the parameter vector in the

nonlinear regression model (3.12) with MATLAB. Second, we use the FDR method and the

T 2
mcd control chart to monitor the estimates as discussed in the last section. We choose an

overall false-alarm probability α = 0.05, for which the control limits have been provided in

Section 5.1.

From Table 5, we observe that the FRR values are very small for both monitoring

schemes, which indicates that both methods seldom reject in-control samples. To save space,

the FRR values of the simulation results are omitted. Table 6 compares the FDR method

with T 2
mcd control chart in terms of CRR and the signal probability for the case in which βi,

29



i = 1, 2, . . . , m are generated directly from the multivariate normal distribution. We present

in Tables 7-12 the CRR values and the signal probabilities of the FDR method and the T 2
mcd

control chart for all combinations of k = 1, 3, 5, 7, 10 and m = 30, 50, 100 with three shifted

mean vectors, µI , µM , and µN (two shift sizes each), respectively.

6.2 Results

Comparing the results in Tables 10-12 (ncp = 49) with that in Table 6, we observe that the

CRR values with βi estimated from profiles are both larger than the values with βi generated

directly from the multivariate normal distribution. This indicates that the methods become

more sensitive in rejecting samples, i.e., higher detecting power but higher false-alarm rate

as well. This may be caused by the estimation error incurred in the non-linear regression.

From Tables 6-12, we see that the power of the FDR method are uniformly better

than that of the T 2
mcd control chart in terms of the CRR or SP values. Also, we recommend

choosing h = 0.75m to estimate Smcd for the T 2
mcd statistics as long as the percentage of the

outliers is less than 25%. We also observe that the advantage of using the FDR procedure

increases as the number of the outliers k outliers increases (with the restriction that k should

not exceed the (1− k/m) level).

Figures 5-22 summarize the CRR results for the various combinations of h, m, k, and

the shifted mean vectors µI , µM and µN , with which we can compare the performance of the

FDR method and the T 2
mcd control chart easily. They also show that the difference between

the two monitoring schemes are eminent.
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7 Conclusions

Profile monitoring is a rich and promising area of research. In this paper, we propose

a monitoring scheme for nonlinear profiles based on a robust T 2 statistic and the FDR

procedure. We consider a nonlinear regression model for profiles with random parameter

vector βi. First, we use the nonlinear regression procedure implemented in MATLAB to

estimate the parameter vector of the model for each profile. Then, the estimated parameter

vectors can be monitored using the T 2
mcd control chart, a robust T 2 chart. To improve the

detecting power, the FDR procedure can be employed. Simulation studies show that the

proposed FDR scheme outperforms the T 2
mcd control chart.

The estimator vector β̂i follows approximately a multivariate normal distribution.

So, skipping the nonlinear regression estimation step, we first study the performance of the

T 2
mcd control chart and the FDR procedure with βi generated directly from a multivariate

normal distribution. We investigate the effects of m, h, k, and ncp on the performance of the

methods. The effects of m and ncp is as expected in the intuitive sense. As expected, the

advantage of the FDR procedure increases as k increases, except that k can not exceed the

number of samples in the outlying group designed in the MCD procedure. As to h, choosing

0.75m is better than choosing 0.5m with the FDR method and the T 2
mcd control chart, when

the dataset contains less than 25% outliers, h = 0.75m may be a good compromise between

the breakdown value and the statistical efficiency.

As to profile monitoring, we apply the monitoring schemes to a hypothetical example

mimicing the aspartame example given Kang and Albin (2000). We shift the nonlinear

parameter mean vectors to µI , µM , and µN with various shift sizes. The conclusions about

the proposed methods are similar to that for monitoring multivariate quality characteristic

as described above. We also compare the β̂i estimated from profiles to the parameter vector
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βi generated directly from the multivariate normal distribution with the same monitoring

schemes proposed in this paper. The monitoring schemes tend to reject more samples when

βi is estimated by nonlinear regression.

This study extends the framework of statistical process control to more applications.

The idea of controlling the False Discovery Rate can be used in the Phase I control chart or

any applications involving multiple tests. We believe it can be useful in many applications.
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Table 5: Estimated false-rejection rate(FRR) and correct-rejection rate (CRR) of the FDR
method and the T 2

mcd control chart for various values of m, h, k, and ncp.

(k, ncp) (0,0) (3,9) (3,25) (3,49) (5,9) (5,25) (5,49)

m = 30

(0.75m) FRRFDR 0.0022 0.0010 0.0009 0.0011 0.0006 0.0003 0.0002

FRRUCL 0.0080 0.0007 0.0003 0.0002 0.0005 0.0001 0.0001

CRRFDR 0.0000 0.0618 0.3901 0.8512 0.0224 0.2277 0.9107

CRRUCL 0.0000 0.0529 0.3090 0.7568 0.0016 0.1708 0.8461

(0.5m) FRRFDR 0.0025 0.0018 0.0019 0.0017 0.0011 0.0008 0.0012

FRRUCL 0.0143 0.0011 0.0006 0.0005 0.0008 0.0002 0.0002

CRRFDR 0.0000 0.0398 0.2072 0.4983 0.0241 0.1680 0.5759

CRRUCL 0.0000 0.0356 0.1734 0.4286 0.0175 0.1135 0.4970

m = 50

(0.75m) FRRFDR 0.0012 0.0008 0.0009 0.0015 0.0004 0.0007 0.0012

FRRUCL 0.0072 0.0005 0.0002 0.0003 0.0003 0.0001 0.0002

CRRFDR 0.0000 0.0809 0.5414 0.9475 0.0486 0.5213 0.9643

CRRUCL 0.0000 0.0704 0.4481 0.8929 0.0371 0.3635 0.8815

(0.5m) FRRFDR 0.0014 0.0012 0.0013 0.0017 0.0007 0.0011 0.0017

FRRUCL 0.0141 0.0007 0.0005 0.0005 0.0004 0.0003 0.0003

CRRFDR 0.0000 0.0463 0.2754 0.6376 0.0359 0.2798 0.6838

CRRFDR 0.0000 0.0423 0.2339 0.5616 0.0280 0.1985 0.5220

m = 100

(0.75m) FRRFDR 0.0006 0.0006 0.0012 0.0012 0.0004 0.0011 0.0016

FRRUCL 0.0070 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002

CRRFDR 0.0000 0.1013 0.6745 0.9863 0.0807 0.7003 0.9915

CRRUCL 0.0000 0.0875 0.5844 0.9675 0.0649 0.5466 0.9649

(0.5m) DRRFDR 0.0007 0.0008 0.0011 0.0014 0.0006 0.0011 0.0017

FRRUCL 0.0138 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003

CRRFDR 0.0000 0.0555 0.3864 0.8198 0.0510 0.4073 0.8675

CRRUCL 0.0000 0.0496 0.3320 0.7473 0.0403 0.3091 0.7498
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Table 6: Comparing the FDR method and the T 2
mcd Control Chart with ncp = 49 when β

follows the multivariate normal distribution.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.8198 0.4646 0.9178 0.5846 0.9760 0.7598

CRRUCL 0.8284 0.4930 0.9218 0.6034 0.9760 0.7716

∆CRR (-0.0086) (-0.0274) (-0.0040) (-0.0188) (0.0000) (-0.0004)

SPFDR 0.8218 0.4720 0.9188 0.5896 0.9768 0.7666

SPUCL 0.8316 0.5026 0.9234 0.6122 0.9772 0.7820

∆SP (-0.0098) (-0.0306) (-0.0046) (-0.0226) (-0.0004) (-0.0154)

3 CRRFDR 0.8512 0.4983 0.9475 0.6376 0.9863 0.8198

CRRUCL 0.7658 0.4286 0.7658 0.5616 0.9675 0.7473

∆CRR (0.0540) (0.0697) (0.0546) (0.0960) (0.0188) (0.0725)

SPFDR 0.9201 0.5784 0.9859 0.7373 0.9993 0.9146

SPUCL 0.9118 0.5815 0.9832 0.7368 0.9993 0.5815

∆SP (-0.0031) (0.0027) (0.0005) (0.0000) (0.0012)

5 CRRFDR 0.8017 0.4787 0.9566 0.6861 0.9915 0.8675

CRRUCL 0.6034 0.3415 0.8604 0.5390 0.9649 0.7498

∆CRR (0.1983) (0.1372) (0.0962) (0.1471) (0.0266) (0.1177)

SPFDR 0.8965 0.5730 0.9920 0.8045 1.0000 0.9569

SPUCL 0.8590 0.5550 0.9890 0.7892 0.8590 0.9134

∆SP ∆SP (0.0345) (0.0180) (0.0030) (0.0153) (0.0000) (0.0090)

7 CRRFDR 0.5479 0.4141 0.9468 0.6733 0.9919 0.8981

CRRUCL 0.2807 0.2743 0.7949 0.4769 0.9507 0.7129

∆CRR (0.2672) (0.1768) (0.1519) (0.1964) (0.0412) (0.1624)

SPFDR 0.6766 0.4976 0.9912 0.7912 1.0000 0.9658

SPUCL 0.5916 0.4572 0.9852 0.7652 1.0000 0.9546

∆SP (0.0850) (0.0404) (0.0060) (0.0260) (0.0000) (0.0112)

10 CRRFDR 0.0020 0.2651 0.8930 0.6480 0.9918 0.8981

CRRUCL 0.0017 0.0918 0.5942 0.3914 0.9320 0.6922

∆CRR (0.0003) (0.1733) (0.2992) (0.2566) ()0.0598 (0.2059)

SPFDR 0.0344 0.3318 0.9760 0.7640 1.0000 0.9752

SPUCL 0.0372 0.2608 0.9466 0.7140 1.0000 0.9604

∆SP (0.0028) (0.0710) (0.0294) (0.0500) (0.0000) (0.0148)
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Table 7: Comparing the FDR method and the T 2
mcd control chart with I shift (ncp = 25) for

aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.7455 0.5877 0.8605 0.7778 0.9473 0.9365

CRRUCL 0.7473 0.5833 0.8468 0.7308 0.9170 0.8748

∆CRR (0.0112) (0.0044) (0.0147) (0.0470) (0.0303) (0.0617)

SPFDR 0.7578 0.6450 0.8785 0.8430 0.9755 0.9490

SPUCL 0.7655 0.6640 0.8775 0.8435 0.9763 0.9445

∆SP (-0.0077) (-0.0190) (0.0010) (-0.0005) (0.0000) (0.0005)

3 CRRFDR 0.7623 0.6055 0.8986 0.8163 0.9521 0.9507

CRRUCL 0.6564 0.5255 0.8205 0.7077 0.9001 0.8632

∆CRR (0.1079) (0.0800) (0.0781) (0.1086) (0.0520) (0.0875)

SPFDR 0.8990 0.7540 0.9878 0.9406 0.9988 0.9972

SPUCL 0.8896 0.7624 0.9842 0.9354 0.9988 0.9958

∆SP (0.0094) (-0.0076) (0.0036) (0.0052) (0.0000) (0.0014)

5 CRRFDR 0.7002 0.5782 0.9086 0.8267 0.9613 0.9634

CRRUCL 0.5056 0.4434 0.7782 0.6720 0.8922 0.8587

∆CRR (0.1951) (0.1348) (0.1244) (0.1547) (0.0691) (0.1047)

SPFDR 0.8866 0.7482 0.9952 0.9590 1.0000 1.0000

SPUCL 0.8630 0.7404 0.9918 0.9506 1.0000 0.9999

∆SP (0.0236) (0.0078) (0.0034) (0.0084) (0.0000) (0.0001)

7 CRRFDR 0.4639 0.5319 0.8865 0.8294 0.9697 0.9610

CRRUCL 0.2538 0.3416 0.7067 0.6350 0.8932 0.8535

∆CRR (0.2101) (0.1903) (0.1798) (0.1944) (0.0765) (0.1075)

SPFDR 0.6882 0.7132 0.9922 0.9684 0.9998 0.9992

SPUCL 0.6428 0.6852 0.9870 0.9576 0.9996 0.9990

∆SP (0.0454) (0.0180) (0.0052) (0.0108) (0.0002) (0.0002)

10 CRRFDR 0.0102 0.3820 0.8192 0.8225 0.9621 0.9475

CRRUCL 0.0084 0.1772 0.5380 0.5666 0.8236 0.8175

∆CRR (0.0016) (0.2048) (0.2812) (0.2559) (0.1385) (0.1330)

SPFDR 0.1389 0.5870 0.9738 0.9663 0.9998 0.9995

SPUCL 0.1440 0.5433 0.9600 0.9470 0.9998 0.9990

∆SP (-0.0051) (0.0437) (0.0138) (0.0193) (0.0000) (0.0005)
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Table 8: Comparing the FDR method and the T 2
mcd control chart with M shift (ncp = 25)

for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.6785 0.5605 0.8217 0.7562 0.9385 0.9340

CRRUCL 0.6757 0.5563 0.8055 0.7067 0.8942 0.8602

∆CRR (0.0028) (0.0042) (0.0162) (0.0495) (0.0443) (0.0738)

SPFDR 0.7003 0.6165 0.8462 0.8237 0.9375 0.9683

SPUCL 0.7053 0.6400 0.8458 0.8260 0.9327 0.9597

∆SP (-0.0050) (-0.0235) (0.0004) (-0.0023) (0.0048) (0.0086)

3 CRRFDR 0.6785 0.5623 0.8468 0.7758 0.9469 0.9376

CRRUCL 0.5717 0.4813 0.7622 0.6699 0.8779 0.8510

∆CRR (0.1068) (0.0910) (0.0846) (0.1056) (0.0690) (0.0875)

SPFDR 0.8305 0.7123 0.9633 0.9140 0.9985 0.9982

SPUCL 0.8203 0.7143 0.9573 0.9100 0.9982 0.9940

∆SP (0.0102) (-0.0002) (0.0070) (0.0040) (0.0003) (0.0042)

5 CRRFDR 0.6099 0.5522 0.8559 0.7960 0.9656 0.9563

CRRUCL 0.4304 0.4130 0.7105 0.6499 0.8657 0.8496

∆CRR (0.1795) (0.1392) (0.1454) (0.1461) (0.0999) (0.1087)

SPFDR 0.8075 0.7272 0.9778 0.9375 1.0000 0.9988

SPUCL 0.7788 0.7188 0.9705 0.9233 1.0000 0.9978

∆SP (0.0287) (0.0084) (0.0070) (0.0040) (0.0003) (0.0042)

7 CRRFDR 0.3170 0.4708 0.8220 0.7861 0.9587 0.9464

CRRUCL 0.1677 0.3018 0.6214 0.5496 0.8456 0.8350

∆CRR (0.1503) (0.1690) (0.2006) (0.1915) (0.1008) (0.1114)

SPFDR 0.5327 0.6613 0.9732 0.9355 0.9998 0.9995

SPUCL 0.4938 0.6452 0.9613 0.9233 0.9988 0.9990

∆SP (0.0389) (0.0161) (0.0119) (0.0122) (0.0005) (0.0010)

10 CRRFDR 0.0102 0.3125 0.7821 0.7133 0.9578 0.9463

CRRUCL 0.0008 0.1409 0.5376 0.5276 0.8171 0.8087

∆CRR (0.0092) (0.1716) (0.2475) (0.2607) (0.1407) (0.1376)

SPFDR 0.1368 0.5327 0.9420 0.9325 1.0000 0.9990

SPUCL 0.1388 0.4955 0.9275 0.9058 1.000 0.9982

∆SP (-0.0020) (0.0372) (0.0145) (0.0267) (0.0000) (0.0008)
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Table 9: Comparing the FDR method and the T 2
mcd control chart with N shift (ncp = 25)

for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.6813 0.5630 0.8350 0.7755 0.9325 0.9193

CRRUCL 0.6810 0.5565 0.8275 0.7208 0.9008 0.8658

∆CRR (0.0003) (0.0065) (0.0075) (0.0547) (0.0317) (0.0535)

SPFDR 0.7015 0.6150 0.8562 0.8403 0.9683 0.9383

SPUCL 0.7110 0.6378 0.8575 0.8395 0.9633 0.9340

∆SP (-0.0095) (-0.0228) (-0.0013) (0.0008) (0.0050) (0.0043)

3 CRRFDR 0.6898 0.5807 0.8552 0.7818 0.9567 0.9487

CRRUCL 0.5849 0.5008 0.7640 0.6785 0.8808 0.8553

∆CRR (0.1049) (0.0779) (0.0912) (0.1033) (0.0759) (0.0934)

SPFDR 0.8393 0.7298 0.9655 0.9223 0.9968 0.9970

SPUCL 0.8337 0.7530 0.9607 0.9150 0.9962 0.9940

∆SP (0.0057) (-0.0052) (0.0048) (0.0073) (0.0005) (0.0003)

5 CRRFDR 0.5988 0.5403 0.8497 0.7865 0.9557 0.9518

CRRUCL 0.4233 0.4057 0.7058 0.6374 0.8526 0.8477

∆CRR (0.1755) (0.1346) (0.1439) (0.1491) (0.0932) (0.1041)

SPFDR 0.8023 0.7138 0.9782 0.9385 0.9992 0.9992

SPUCL 0.7748 0.7105 0.9708 0.9307 0.9985 0.9985

∆SP (0.0275) (0.0033) (0.0074) (0.0078) (0.0007) (0.0007)

7 CRRFDR 0.3235 0.4855 0.8349 0.8049 0.9600 0.9510

CRRUCL 0.1689 0.3126 0.6345 0.6202 0.8507 0.8406

∆CRR (0.1546) (0.1729) (0.2004) (0.1847) (0.1093) (0.1104)

SPFDR 0.5435 0.6667 0.9808 0.9840 0.9998 0.9982

SPUCL 0.5058 0.6438 0.9695 0.9327 0.9989 0.9982

∆SP (0.0377) (0.0219) (0.0113) (0.0513) (0.0009) (0.0000)

10 CRRFDR 0.0087 0.3182 0.7766 0.7060 0.9633 0.9486

CRRUCL 0.0074 0.1424 0.5365 0.4218 0.8263 0.8193

∆CRR (0.0073) 0.01758 (0.5401) (0.2842) (0.1370) (0.1293)

SPFDR 0.1290 0.5335 0.9363 0.9285 0.9998 0.9998

SPUCL 0.1340 0.4948 0.9173 0.8992 0.9995 0.9992

∆SP (-0.0050) (0.0387) (0.0190) (0.0293) (0.0003) (0.0006)
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Table 10: Comparing the FDR method and the T 2
mcd control chart with I shift (ncp = 49)

for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.9755 0.8630 0.9968 0.9675 0.9995 0.9990

CRRUCL 0.9752 0.8622 0.9958 0.9533 0.9995 0.9972

∆CRR (0.0003) (0.0008) (0.0010) (0.0142) (0.0000) (0.0018)

SPFDR 0.9762 0.8792 0.9972 0.9715 0.9995 0.9990

SPUCL 0.9780 0.8938 0.9978 0.9722 0.9995 0.9992

∆SP (-0.0018) (-0.0146) (-0.0006) (-0.0007) (0.0000) (-0.0002)

3 CRRFDR 0.9868 0.8911 0.9978 0.9852 0.9998 0.9993

CRRUCL 0.9584 0.8262 0.9943 0.9492 0.9991 0.9949

∆CRR (0.0284) (0.0649) (0.0035) (0.0360) (0.0007) (0.0049)

SPFDR 0.9981 0.9447 1.0000 0.9970 1.0000 1.0000

SPUCL 0.9965 0.9407 1.0000 0.9952 1.0000 1.0000

∆SP (0.0016) (0.0040) (0.0000) (0.0018) (0.0000) (0.0000)

5 CRRFDR 0.9810 0.9003 0.9912 0.9986 0.9999 0.9997

CRRUCL 0.9212 0.7778 0.9849 0.9414 0.9987 0.99940

∆CRR (0.0629) (0.1225) (0.0073) (0.0572) (0.0012) (0.0057)

SPFDR 0.9982 0.9530 1.0000 0.9988 1.0000 1.0000

SPUCL 0.9972 0.9413 1.0000 0.9970 1.0000 1.0000

∆SP (0.0010) (0.0117) (0.0000) (0.0018) (0.0000) (0.0000)

7 CRRFDR 0.9317 0.8945 0.9988 0.9911 0.9999 0.9997

CRRUCL 0.7476 0.7710 0.9838 0.9366 0.9984 0.9941

∆CRR (0.1841) (0.1235) (0.0149) (0.00545) (0.0015) (0.0056)

SPFDR 0.9768 0.9505 1.0000 1.0000 1.0000 1.0000

SPUCL 0.9650 0.9267 1.0000 0.9985 1.0000 1.0000

∆SP (0.0118) (0.0238) (0.0000) (0.0015) (0.0000) (0.0000)

10 CRRFDR 0.0095 0.8418 0.9969 0.9927 0.9998 0.9998

CRRUCL 0.0073 0.5283 0.9548 0.9142 0.9978 0.9925

∆CRR (0.0022) (0.3135) (0.0421) (0.0785) (0.0020) (0.0073)

SPFDR 0.1455 0.9080 1.0000 0.9992 1.0000 1.0000

SPUCL 0.1480 0.8590 1.0000 0.9975 1.0000 1.0000

∆SP (-0.0025) (0.0490) (0.0000) (0.0017) (0.0000) (0.0000)
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Table 11: Comparing the FDR method and the T 2
mcd control chart with M shift (ncp = 49)

for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.9610 0.8253 0.9900 0.9565 0.9988 0.9965

CRRUCL 0.9597 0.8225 0.9890 0.9397 0.9981 0.9910

∆CRR (0.0013) (0.0028) (0.0010) (0.0168) (0.0007) (0.0055)

SPFDR 0.9630 0.8435 0.9905 0.9678 0.9990 0.9978

SPUCL 0.9625 0.8492 0.9908 0.9665 0.9985 0.9975

∆SP (-0.0005) (-0.0157) (-0.0003) (-0.0013) (0.0005) (0.0003)

3 CRRFDR 0.9687 0.8571 0.9965 0.9760 0.9991 0.9991

CRRUCL 0.9263 0.7853 0.9871 0.9330 0.9976 0.9915

∆CRR (0.0424) (0.0718) (0.0094) (0.0430) (0.0015) (0.0076)

SPFDR 0.9915 0.9155 1.0000 0.9960 1.0000 1.0000

SPUCL 0.9885 0.9173 1.0000 0.9940 1.0000 1.0000

∆SP (0.0030) (0.0137) (0.0000) (0.0020) (0.0000) (0.0000)

5 CRRFDR 0.9842 0.9025 0.9970 0.9776 0.9996 0.9993

CRRUCL 0.9230 0.7823 0.9804 0.9182 0.9972 0.9915

∆CRR (0.0612) (0.1242) (0.0166) (0.0594) (0.0024) (0.0078)

SPFDR 0.9985 0.9597 1.0000 0.9960 1.0000 1.0000

SPUCL 0.9972 0.9460 1.0000 0.9940 1.0000 1.0000

∆SP (0.0013) (0.0137) (0.0000) (0.0023) (0.0000) (0.0000)

7 CRRFDR 0.8481 0.8480 0.9965 0.9831 0.9995 0.9997

CRRUCL 0.6061 0.6564 0.9665 0.9168 0.9971 0.9903

∆CRR (0.2465) (0.1916) (0.0300) (0.0663) (0.0026) (0.0093)

SPFDR 0.9310 0.9173 1.0000 0.9965 1.0000 1.0000

SPUCL 0.8958 0.8900 1.0000 0.9952 1.0000 1.0000

∆SP (0.0352) (0.0273) (0.0000) (0.0013) (0.0000) (0.0000)

10 CRRFDR 0.0104 0.7636 0.9969 0.9936 0.9995 0.9997

CRRUCL 0.0081 0.4535 0.9526 0.9133 0.9950 0.9890

∆CRR (0.0023) (0.3081) (0.0443) (0.08030) (0.0047) (0.0107)

SPFDR 0.1440 0.8510 1.0000 0.9995 1.0000 1.0000

SPUCL 0.1447 0.7865 0.9998 0.9995 1.0000 1.0000

∆SP (-0.0007) (0.06445) (0.0002) (0.0000) (0.0000) (0.0000)
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Table 12: Comparing the FDR method and the T 2
mcd control chart with N shift (ncp = 49)

for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRFDR 0.9527 0.8265 0.9935 0.9605 0.9998 0.9990

CRRUCL 0.9527 0.8253 0.9932 0.9405 0.9995 0.9918

∆CRR (0.0000) (0.0012) (0.0003) (0.0200) (0.0003) (0.0012)

SPFDR 0.9547 0.8460 0.9940 0.9705 0.9990 0.9992

SPUCL 0.9565 0.8582 0.9945 0.9708 0.9990 0.9980

∆SP (-0.0018) (-0.0118) (-0.0005) (-0.0003) (0.0000) (0.0012)

3 CRRFDR 0.9705 0.8594 0.9958 0.9730 0.9994 0.9993

CRRUCL 0.9267 0.7900 0.9842 0.9310 0.9985 0.9928

∆CRR (0.0438) (0.694) (0.0116) (0.0420) (0.0009) (0.0065)

SPFDR 0.9912 0.9190 1.0000 0.9935 1.0000 1.0000

SPUCL 0.9898 0.9157 0.9998 0.9912 1.000 1.0000

∆SP (0.0014) (0.0033) (0.0002) (0.0023) (0.0000) (0.0000)

5 CRRFDR 0.9607 0.8583 0.9957 0.9831 0.9997 0.9995

CRRUCL 0.8616 0.7300 0.9822 0.9248 0.9978 0.9919

∆CRR (0.0991) (0.1283) (0.0148) (0.0570) (0.0019) (0.0076)

SPFDR 0.9918 0.9253 1.0000 0.9980 1.0000 1.0000

SPUCL 0.9855 0.9123 1.0000 0.9965 1.0000 1.0000

∆SP (0.0063) (0.0130) (0.0000) (0.0015) (0.0000) (0.0000)

7 CRRFDR 0.8475 0.8488 0.9957 0.9831 0.9996 0.9994

CRRUCL 0.6040 0.6581 0.9642 0.9062 0.9966 0.9910

∆CRR (0.2435) (0.3109) (0.0315) (0.0769) (0.0030) (0.0084)

SPFDR 0.9297 0.9163 1.0000 0.9980 1.0000 1.0000

SPUCL 0.8955 0.8952 1.0000 0.9962 1.0000 1.0000

∆SP (0.0342) (0.0211) (0.0000) (0.0018) (0.0000) (0.0000)

10 CRRFDR 0.0103 0.7650 0.9902 0.9829 0.9997 0.9997

CRRUCL 0.0082 0.4541 0.9007 0.8848 0.9950 0.9893

∆CRR (0.0021) (0.3109) (0.0895) (0.0981) (0.0047) (0.0104)

SPFDR 0.1435 0.8510 0.9998 0.9985 1.0000 1.0000

SPUCL 0.1475 0.7830 0.9988 0.9962 1.0000 1.0000

∆SP (-0.0040) (0.0680) (0.0010) (0.0023) (0.0000) (0.0000)
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Figure 1: Four hypothetical profiles of aspartame example.
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Figure 2: The correct-rejection rate when βi are generated from a multivariate normal
distribution with m = 30 and ncp = 49.
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Figure 3: The correct-rejection rate when βi are generated from a multivariate normal
nistribution with m = 50 and ncp = 49.
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Figure 4: The correct-rejection rate when βi are generated from a multivariate normal
distribution with m = 100 and ncp = 49.
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Figure 5: The correct-rejection rate for the aspartame example with m = 30, I shift, and
ncp = 49.
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Figure 6: The correct-rejection rate for the aspartame example with m = 50, I shift, and
ncp = 49.
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Figure 7: The correct-rejection rate for the aspartame example with m = 100, I shift, and
ncp = 49.
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Figure 8: The correct-rejection rate for the aspartame example with m = 30, M shift, and
ncp = 49.
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Figure 9: The correct-rejection rate for the aspartame example with m = 50, M shift, and
ncp = 49.

50



1 2 3 4 5 6 7 8 9 10
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

k outliers

co
rr

ec
t−

re
je

ct
io

n 
ra

te

FDR with h=0.75m

UCL with h=0.75m

FDR with h=0.5m

UCL with h=0.5m

Figure 10: The correct-rejection rate for the aspartame example with m = 100, M shift, and
ncp = 49.
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Figure 11: The correct-rejection rate for the aspartame example with m = 30, N shift, and
ncp = 49.
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Figure 12: The correct-rejection rate for the aspartame example with m = 50, N shift, and
ncp = 49.
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Figure 13: The correct-rejection rate for the aspartame example with m = 100, N shift, and
ncp = 49.
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Figure 14: The correct-rejection rate for the aspartame example with m = 30, I shift, and
ncp = 25.
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Figure 15: The correct-rejection rate for the aspartame example with m = 50, I shift, and
ncp = 25.
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Figure 16: The correct-rejection rate for the aspartame example with m = 100, I shift, and
ncp = 25.
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Figure 17: The correct-rejection rate for the aspartame example with m = 30, M shift, and
ncp = 25.
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Figure 18: The correct-rejection rate for the aspartame example with m = 50, M shift, and
ncp = 25.
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Figure 19: The correct-rejection rate for the aspartame example with m = 100, M shift, and
ncp = 25.

55



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k outliers

co
rr

ec
t−

re
je

ct
io

n 
ra

te

FDR with h=0.75m

UCL with h=0.75m

FDR with h=0.5m

UCL with h=0.5m

Figure 20: The correct-rejection rate for the aspartame example with m = 30, N shift, and
ncp = 25.
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Figure 21: The correct-rejection rate for the aspartame example with m = 50, N shift, and
ncp = 25
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Figure 22: The correct-rejection rate for the aspartame example with m = 100, N shift, and
ncp = 25.
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