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A New Robust Method for Phase | Monitoring of
Nonlinear Profiles

Student : Yao-Wain Feng Advisors : Dr. Jyh-Jen Horng Shiau

Institute of Statistic
National Chiao Tung University

ABSTRACT

In this paper, we propose a‘centrolichartfor process monitoring when the quality of a
product is characterized by a nonlinear. funetion (or profile). In the Phase | analysis of
historical data, in order to improve the ability of detecting multiple outliers, we propose
using a Hotelling T? chart based on Minimum Covariance Determinant (MCD)
estimators, which are robust estimators of multivariate location and scale, in conjugation
with the False Discovery Rate (FDR), which is a relatively new statistical procedure that
bounds the number of mistakes made when performing multiple hypothesis tests. We
apply the proposed method to a nonlinear profile example presented in Kang and Albin
(2000). Simulation studies show that our methods are effective in detecting any

reasonable number of outliers.
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1 Introduction

In most statistical process control (SPC) applications, it is assumed that the quality of
a process or a product can be adequately represented by the distribution of a univariate
quality characteristic or by the multivariate distribution of a vector consisting of several
possibly correlated quality characteristics. In many practical situations, however, the quality
of process or product is better characterized and summarized by a relationship between a
response variable and one or more explanatory variables. Thus, for a sample, one observes
a collection of data points that can be represented by a curve (or profile). In the literature,
linear and nonlinear profiles are treated separately. Linear profiles are first fitted by a simple
linear regression model and the estimated model parameters are used for process monitoring.
In particular, most of studies conducted in monitoring linear profiles have been motivated
by calibration applications. The monitoring of linear profiles is a broad topic and can be
applied for a wide variety of applic¢ations. Howeyer; very little work has been done to address
the monitoring of nonlinear profiles. Nonlmear profiles are often sampled and represented as
high dimensional data vectors and analyzed by nonparametric regression methods, such as
wavelets, splines, principle component analysis (PCA), and independent component analysis
(ICA), as well as parametric methods, such us nonlinear regression analysis.

In Phase I analysis, historical observations are examined to determine whether the
process was in control, to understand the variation in a process, and to estimate the in-
control parameters of the process. In contrast, the analysis of Phase II is to quickly detect
shifts or changes. The vast majority of the research on control charting is on Phase II. For
more discussions regarding the differences between analyses of Phase I and Phase II, one is
referred to Mahmoud and Woodall (2004) and Sullivan (2002). We focus on Phase I analysis

in this paper.



This article investigates a strategy for Phase I analysis of nonlinear profile data.
Based on the prescribed nonlinear regression model, a straightforward and classical method
for process monitoring is to use a Hotelling 7 statistic of the estimated regression parameters
to construct a T2 control chart for profiles. However, classic estimation methods will not
yield appropriate control limits if there are unusual data points in the Phase I data. Robust
estimation methods have a distinct advantage over classical methods in that the estimates
are not unduly influenced by unusual data points. Consequently, they are more effective
in detecting unusual data points, hence, the control limits constructed with these robust
estimates would be more reliable. Unfortunately, robust estimation for multivariate data or
profiles are not as straightforward nor as easily implemented.

Robust estimation methods have been widely used in the regression context but they
have only recently been introduced to multivariate quality control applications. However, it
is still not clear which robust estimators to usefrom previous studies (Wismowski, Simpson,
and Montgomery (2002), Vargas-(2003)). Some robust estimation methods, such as the
minimum volume ellipsoid estimator (MVE) proposed initially by Riusseeuw (1984) and the
minimum covariance determinant (MCD) estimater of Rousseuw and Van Driessen (1999),
also proposed in Rousseeuw (1984), are well suited for detecting multivariate outliers or
clusters of multivariate outliers because of their high breakdown points. The general idea
of the breakdown point is “the smallest proportion of the observations which can render an
estimator meaningless” ( Rousseuw and Leroy (1987)). In other words, the breakdown point
refers to the amount of “bad” data that can be present before the estimator is no longer
accurate for the “good” data. The “good” data simply refers to the data that is in the
majority and the “bad” data refers to the data in the minority. It is desirable to accurately
determine which data are bad, if any.

In this paper we propose a new robust method for Phase I analysis of nonlinear



profile data. For monitoring the regression parameters simultaneously, we propose using a
T? chart based on the MCD estimator in conjugation with the FDR procedure proposed by
Benjamini and Hochberg (1995). The FDR procedure is a relatively new statistical procedure
that bounds the number of mistakes by controlling a so-called False Discovery Rate (FDR)
when performing multiple hypothesis tests. We give a brief overview of the robust estimation
methods based on the MCD for Phase I application. We apply the proposed method to a
nonlinear profile example given in Kang and Albin (2000).

The remaining of this paper is organized as follows. Section 2 gives a literature re-
view on the linear profile monitoring, nonlinear profile monitoring, and robust estimation
in multivariate control charts. Section 3 presents the nonlinear regression for profiles, de-
scribes the T? statistic based on the MCD estimators, and sketches our example. Section 4
describes the proposed approach in details: ‘Seetion 5 compares the performance of the pro-
posed MCD/FDR method with an=MCD=based ¢ontrol chart through a simulation study for
multivariate normal data. Section 6 repeatsthe work-in Section 5 for profile data. Section

7 concludes the paper with a brief.summary-and some discussions.



2 Literature Review

In an increasing number of cases, the quality of a product or process cannot adequately be
represented by the distribution of a univariate quality variable or the multivariate distribu-
tion of a vector of quality variables. Rather, a series of measurements are taken across some
continuum, such as time or space, to create a profile. The profile determines the product
quality at that sampling period. Woodall, Montgomery, and Gupta (2004) provided a good

introduction to the concept of profile monitoring and examples of its application.

2.1 Linear Profiles

Assume that m random profile samples are available. For the jth random sample collected
over time, we have the observations (x;,v;;), j = 1,2,---,n and ¢ = 1,2,---,m. For each
sample, we assume that the linear regréssion model relating the independent variable X to

the response Y is
Yij = A()j +A1in+6iJ‘, ] — 1,2,...,n and 1 = 1,2...,m, (21)

where ¢;;’s are independent and identically distributed (i.i.d) normal random variables with
mean zero and variance sz. When the process is in statistical control, Ay; = Ay, A1; = Ay,
and UJQ-:O'Q, j=1,2,--- m. For simplicity, we assume that the X values are fixed and take
the same set of values for each sample. But this assumption is not necessary. In Phase
[ analysis, the in-control values of the parameters, Ay, A;, and % in (2.1), are unknown.
To ensure an effective Phase II on-line monitoring of the process, we need to obtain good
in-control regression parameter estimates in Phase I analysis.

Kang and Albin (2000) proposed two control chart methods for Phase IT monitoring
of linear profiles. Their first approach is a 72 chart based on the successive vectors of

the least squares estimates of the Y intercept and slope. The other approach treats the
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n deviations of the sample line from the in-control line as a rational subgroup and use
a combination of the exponentially weighted moving average (EWMA) chart to monitor
the average deviation and a range (R-) chart to monitor the variation of the deviations.
Furthermore, Kang and Albin (2000) recommended their Phase II methods be used in Phase
I with estimates substituted for the values of the unknown parameters. However, Kim et
al. (2003) commented that this EWMA chart approach, is not appropriate in Phase I. The
advantages of the EWMA chart regarding its statistical performance in Phase II to detect
sustained shifts in a parameter do not apply in Phase I in which other types of shifts are
often of interest. Also, quick detection is not an issue in Phase I because one is working with
a fixed set of baseline data, all of which should be used in the analysis. Kang and Albin
(2000) also presented two applications for which the product is characterized by a linear
profile, including a semiconductor manufacturing application in which a linear calibration
function is of interest.

Kim, Mahmoud, and Woodall (2003) proposed some alternative control charts for
monitoring in Phase II. They recommended coding the X-values to make the least squares
estimators of the Y-intercept and slope independent of each other so that the Y-intercept
and slope can be monitored separately. They also recommended replacing the R chart of
Kang and Albin (2000) by an EWMA chart for monitoring the process standard deviation
0. The first step of their Phase I method is to code the X values so that the average coded

value is 0. Coding the X values in this way yields another form of the model (2.1), that is,
Yij = B()j‘i‘Bljx,/i‘i‘Q’j, j = 1,2,...,n and 1 = 1,2...,m, (22)

where By; = Ag; + A1;Z, B1j = Ayj, and 3:; = x; — . The second step of their method is to
apply a separate EWMA control chart for each parameter in (2.2). A signal is produced as

soon as any one of the three EWMA charts (for the Y-intercept, the slope, and the variation



about the regression line) produces an out-of-control signal. This method provides easier
interpretation of an out-of-control signal than most of other methods, because each parameter
in the model is monitored using a separate control chart. This Phase II approach also leads to
better average run length (ARL) performance. Furthermore, the authors also recommended
applying their Phase II method in Phase I, with the three EWMA charts replaced by three
Shewhart charts for monitoring the Y intercept, slope, and process standard deviation.
However, they did not study the performance of this method.

Woodall and Mahmoud (2004) proposed a Phase I method based on the standard
approach of testing collinearity using indicator variables for each profile in a multiple re-
gression model. If the process appears unstable by an F' test, then they recommended using
individual control charts based on the sample slope and Y intercept to diagnose the source of
the instability. The performances of several competing methods were compared for various
sizes of shift in the regression parametersy They showed that the Phase I methods proposed
by Brill (2001) and Mestek et ali (1994) are ineffective in detecting shifts of the process
parameters due to the ways in which thé vectors of estimators were pooled to estimate the
variance-covariance matrix. In particalarythey illustrated several of the Phase I methods
using a calibration dataset given in Mestek et al. (1994).

There are more literature on linear profile monitoring and its application. For exam-
ple, see Mestek, Pavlik, and Suchanek (1994), Stover and Brill (1998), Lawless, Mackay, and

Robinson (1999), Wang and Tsung (2005), and Jensen, Birch, and Woodall (2006a).

2.2 Nonlinear Profiles

Profiles that cannot be adequately represented by a linear model are generally labeled as
nonlinear profiles. As such, monitoring nonlinear profiles can be considered as a particular

application of multivariate process control problems. Little research work has been done on



monitoring nonlinear profiles.

Walker and Wright (2002) proposed a nonparametric approach to comparing profiles
using additive models to represent the curves of interest in the monitoring of vertical density
profiles (VDP) of particleboard, although they did not consider the time order of the profiles.
Ding, Zeng, and Zhou (2006) proposed using nonparametric procedures to perform Phase I
analysis for multivariate nonlinear profiles. The authors mentioned that the high dimension-
ality of profile data and data contamination present a challenge to the Phase I analysis of
nonlinear profiles. The presented Phase I analysis procedure constitutes two major compo-
nents: (i) a data reduction component that projects the original data into a subspace of lower
dimension while preserving the data clustering structure (can be realized by the method of
independent component analysis (ICA)) and (i7) a data separation technique that can de-
tect single and multiple shifts as well aswoutliers in the data (can be realized by the change
point detection algorithm described in Sullivan (2002)). Such models do not have a specific
functional form and have no model parameters to estiinate, but rather one employs smooth-
ing techniques such as local polynomial regression ‘or spline smoothing to model a profile.
Nonparametric regression techniques provide great flexibility in modeling the response. One
disadvantage of nonparametric smoothing methods is that the subject-specific interpreta-
tion of the estimated nonparametric curve may be more difficult, and may not lead the user
to discover assignable causes for an out-of-control signal as easily as parametric regression
methods.

Often, however, scientific theory or subject-matter knowledge leads to a natural non-
linear function that well describes the profiles. Hence, an alternative method is to model
each profile by a nonlinear regression function. Assume that we have m profiles of data, each
of which has k measurements. Let y;; refer to the j¥ measurement for the i profile. We

can then fit a nonlinear regression model to each profile. A nonlinear profile of an item can



be modeled by the nonlinear regression model given generally by
yij = f(a:,j,ﬁz) —f—Eij, ] = 1,2,...,n and i = 1,2...,m, (23)

where x;; is the k x 1 vector of regressors for the j™ observation of the i" profile, ¢;; is the
random error, 3, is the p x 1 vector of parameters for profile i, and f(-) is a function which is
nonlinear in the parameter vector 3,. The random errors ¢;; are assumed to be ¢.7.d. normal
random variables with mean zero and variance o2?. In many applications, there is only one
regressor (k = 1), but there are multiple parameters to monitor (p > 1).

Williams, Woodall, and Birch (2003) studied the use of T2 control charts to monitor
the coefficients, 3,, of the nonlinear regression fits to the successive sets of profile data. They
gave four general approaches to the formulation of the T2 statistics and the determination
of the associated upper control limits forr Phase I applications. Assume that Bl are the

parameter estimators of 3,, for ¢+ =1, ,--ym. The four approaches are as in the following:

e Approach 1: Based on the sample covariance matrix.

Tp2,i = (Bz - B)/S;I(Bi -

@)

), i=1,....m, (2.4)

where E = % ;Zl,@AZ and S, = ﬁ 7;1(131 - E)(Bz - B).

e Approach 2: Based on the successive-difference vector, v; = Bl =B i=1,...,m—1,
which was proposed originally by Hawkins and Merriam (1974) and later discussed by
Holmes and Mergen (1993).

T3, = (B:—B)S, (B, —B), i=1,...,m, (2.5)

1 m—1 !
where SD = m i—=1 UiU;.



e Approach 3: Based on intra-profile pooling (IPP). Assume that VACLT(,éi) are the esti-

mators of the variance of 3;, Var(3;).

~

TI2PP,Z': (Bz_IBySI_I}'P(/BZ_ﬁ)’ 1= 17"‘7m7 (26)
where S;pp = % >y V&T(Bi).

e Approach 4: Based on the MVE estimators. Denote the MVE estimators of the coef-

ficient vector and the covariance matrix by B and S,,,e, respectively,

muve

Trvei = (Bi = Buwe) Smse(Bi = Bue)y i =1,...,m. (2.7)
The choice of methods primarily depends on the extent of the between-profile variation in-
cluded in the common-cause variation for the application under study. The above-mentioned
approaches were illustrated using the VDP profile data provided by Walker and Wright
(2002). Williams, Woodall, and Ferry (2006):gave an-application of nonlinear profile moni-
toring to dose-response data.

Jensen and Birch (2006) prépesed using a nonlinear mixed model to model profiles
in order to account for the correlation structure within a profile. They discussed situations
where the nonlinear mixed model approach is superior to the nonlinear approach in detecting
changes by simulation. They also proposed a method that supplements the approach of
Williams, Woodall, and Birch (2003) with a nonlinear mixed model to improve the control
chart procedure and demonstrated their method with the VDP data of Walker and Wright

(2002).
2.3 Robust Estimation in Multivariate Control Chart

In most regression problems, the parameter estimators are correlated. Thus a popular

procedure in the retrospective Phase I is the T2 control chart, which is a tool to detect

9



multivariate outliers and shifts. To construct the T2 chart, we need to estimate the mean
vector and covariance matrix from a set of historical data. However, the presence of multiple
outliers may go undetected due to their biasing effect on the estimators, which is known as
the masking effect. Efforts to address this problem have focused on the robust estimation
in the presence of multiple outliers, especially for the covariance matrix. A number of
different researchers have studied the robust estimation in multivariate settings, for example,
Rousseeuw (1984) and Rousseeuw and Leroy (1987).

The T2 statistics based on the usual sample variance-covariance matrix estimator (de-
noted by T?2,,) and the successive-difference variance-covariance matrix estimator (denoted
by T7;) are most commonly used for multivariate control charts. Sullivan and Woodall
(1996) showed that T3, and T7;; are not effective in detecting more than a very small num-
ber of outliers. Sullivan and Woodall (1996)rand Vargas (2003) both showed that T, is
effective in detecting both sustained steprand famp shifts in the mean vector. Sullivan and
Woodall (1996) found not only that T3, is-less effective in detecting a shift in the mean
vector, but also that the power ta deteet the shift decreases as the magnitude of the shift
increases. They found that T2, has the effect of “pooling” the data all together such that
a large step shift “inflates” the variance, thus making detection of the shift difficult.

Vargas (2003) and Jensen, Birch, and Woodall (2005) studied that the T2 statistics
based on high-breakdown estimators, such as the MVE and MCD methods of Rousseeuw
(1984) (denoted respectively by T2,. and T?2 ), are excellent in detecting multiple outliers
for Phase I. Jensen, Birch, and Woodall (2005) further investigated the more advantageous
situations of the MVE and MCD estimators for certain combinations of the sample size and
the number of outliers present for multivariate Phase 1 applications. The MVE estimator

is preferred for smaller sample sizes and a smaller percentage of outliers while the MCD

estimator is preferred for larger sample sizes and/or large percentages of outliers. The

10



simulations and generated control limits presented there give useful guidelines about the
situations for which the high-breakdown approach is most appropriate. Jensen, Birch, and
Woodall (2005) discussed some properties of the MVE and MCD methods along with their
computing algorithms.

The distributions of the exact MCD and MVE estimators of location and scale are
not known in closed form. However, the asymptotic distributions of the MVE and MCD
estimators can be derived. Davies (1992) showed that the exact MVE estimators of location
and scale are consistent for the mean vector and covariance matrix respectively provided
that the random error vectors are i.i.d. Similar results were given in Butler, Davies, and
Jhun (1993) for the exact MCD estimators. However, the MCD estimators converge to their
population counterparts at a rate of n~'/? while the MVE estimators converge at a slower
rate of n='/3, thus the MCD estimatorssaré anore efficient. In addition, the distribution of
the MCD estimator of location converges to amormal distribution, which is not necessarily
the case for the MVE estimator of location.”Thus, the asymptotic properties of the MCD
estimators are superior to those of the:MVE-estimators. Davies (1997) and Butler, Davies,
and Jhun (1993) also indicated that the‘agympfotic distributions of the T2 _ and T?_, statis-
tics converge in distribution to a X;Q; distribution for ¢ = 1,...,m. Hardin and Rocke (2005)
provided an improved F' approximation of the MCD estimator that gives accurate outlier
rejection points for various sample sizes. So it may be useful to study the use of approximate
control limits which are much simpler to obtain than those obtained via simulation. They
believed that it is likely that large sample sizes are needed for the X;Q; approximation to be
sufficiently accurate.

The hybrid algorithm of Rocke and Woodruff (1996) is a combination of the data
partitioning methods of Woodruff and Rocke (1994), the FSA algorithm involving the MCD

from Hawkins (1994), and M-estimation. This hybrid algorithm is very effective in detecting

11



a larger percentage of outliers. Rousseeuw and Van Driessen (1999) proposed an algorithm,
which they called the FAST-MCD, that is based on an iterative scheme and the MCD
estimators. The FAST-MCD method is able to handle large data sets within a reasonable
amount of time.

In Section 4, we give a brief overview of various robust estimation methods based
on the MCD method for multivariate Phase I application. In addition to using the MCD
estimators in the T2 statistic, with an attempt to enhance the detecting power of the control
chart, we use the FDR procedure proposed by Benjamini and Hochberg (1995) for determing
outliers in the data set. The proposed scheme is compared with the MCD-based T control

chart in Sections 5 and 6.
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3 Modeling Nonlinear P

rofiles

3.1 Nonlinear Regression Model

Assume that there are sample profiles in the historical data for Phase I analysis. For each

sample i we observe the response variable y;; and a set of predictor variables z;; (k = 1),

j=1,---,n,i=1,---,m. We present the nonlinear regression model (2.3) in matrix form
as follows by placing the observations {(v;;,z;;), j = 1,---,n} in rows. Let the response
matrix be
Y] Y11 Y12 Yin
y y; _ 'y21 Z'Uzz 'y2n (3.1)
Y, Ym1  Ymo Yumn

and the covariate matrix be

8 8
WS =S

8

Also,

B

B,

B,

is the parameter matrix, where 3, is the p
€
€

E€E =

’

em

L1174 T12 T1n
Lo, T22 Lon ( 3 2)
e T |
B Bo By |
.521 .522 'ﬁQp (3.3)
i .ﬁml .ﬁmQ bmp 1
x 1 vector to be estimated for profile ¢, and
[ €11 €12 €1in
€21 €22 €2n ( 3 4)
€ml  €m2 Emn

is the random error matrix, where ¢;; are assumed to be 7.7.d normal random variables with

mean zero and variance o2.
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To simplicity notation, we rewrite the form in (2.3) by stacking the n observations

within each proﬁle asY; = (yila Yiz, - - 7yin)/7 f(il:z, 131) = (f(mih /Bz)a f(xi% /81>’ e 7f(win7 /31'))/7

and €; = (€1, €2, €)". The vector form is then given by

vy, = f(x:,8,) +€, i=1,2...,m. (3.5)

For the nonlinear regression model given in (3,5), we first must obtain the estimate of
B, for each profile. This is usually accomplished by employing the Gauss-Newton procedure
and iterating until convergence to obtain the least squares estimates. Define the n x p matrix

of the derivatives of f(x;,3;) with respect to 3, as

Of (x41,6:)  Of (x41,54) Of (x41,8:)
OfemB) OfaB)  0fes)
0f (z:, 8:) e e
Of(@inisB:)  Of(xin,Bi) Of (%in,0:)
0Bi1 0Bi2 T 9Bip
G N ~ (a) (@) (@), ~(a) . .
Let f(xi, B, ) = (f(za, B Vaf @iz:B; Vo s f (@, 3; ), where 3, is the estimator

of B, at iteration a, and let F ) be théumabrix-of derivatives given in (3.6) evaluated at B

Then an iterative solution for B@ is given. by

B =Y (FEE (g, - f(2B7)). (3.7)

See Myers (1990, Chapter 9) or Schabenberger and Pierce (2002, Chapter 5) for a concise
discussion of nonlinear regression model estimation. A more detailed treatment can be found
in Gallant (1987) or Seber and Wild (2003).

Unlike linear regression, the small-sample distribution of parameter estimators in non-
linear regression is unobtainable, even when the errors ¢;; are assumed to be 7.i.d. normal
random variables. Let F(3;)(=F;) be the derivative matrix in (3.6) evaluated at the param-

eter vector estimate BZ Seber and Wild (2003, Chapter 12) gave the asymptotic distribution

14



of Bl as well as the necessary assumptions and regularity conditions needed for it. Since the

following assumptions and regularity conditions

1. The €;; are i.i.d. with mean zero and variance 0.

2. For each i, f(x;, B;) is a continuous function of B} for 3] € B, where B is a closed,

bounded subset of R” .

3. B, is an interior point of B. Let B™ be an open neighborhood of B.

of @B, 4

4. The first and second derivatives, o5 55" 05"

o f(@.,3;) (r,s =1,2,...,p), exist and

are continuous for 3; for all 3] € B™.

ot

. n YF(8;) F(B;) converges to some matrix Q(3;) uniformly in 3} for 3; € B*.

(=)

—1yn {821‘3(%[33)

2
VY } converges aiformly in 37 for 37 € B”.

7. ,=8(3;) is nonsingular.

hold, the asymptotic distribution of BZ is given by

~

V(B; = BYFT N, (0,07 7). (3.8)

Also nilpgf?i is a strongly consistent estimator of €2;. For practical purposes, the distri-
bution given by (3.8) can not be calculated since the matrix €2; is unknown. Instead, the

following approximate asymptotic distribution of BZ is commonly used:

~

B; ~ Np( 0 (FiF)™). (3.9)

For the “in-control” case, we have 3, = B for all m samples, where 3 is the in-control
parameter vector. Accordingly, the €; (and F';) matrices are the same for all m profiles if
all profiles have the same underlying function, f, the same z-values, and the same values of

B,;. However, the F; matrices are not equal since the BZ values vary from profile to profile.
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3.2 Constructing the T?_, Statistic

In order to develop the methodology for monitoring nonlinear profiles, we first consider
the general framework of the Hotelling 72 statistic. Given a sample of m independent
observation vectors, w; (i = 1,---,m), each of dimension p, and assuming that each of
the w; vectors follows a multivariate normal distribution with common mean vector p and

covariance matrix X, the general form of the T2 statistic is

T2 = (w; — p)S Hw; —p), i=1,...,m. (3.10)

)

Because p and 3 are not known, they are replaced with appropriate estimators in (3.10).
We then can plot the T? statistics, 7 = 1,---,m, against ¢ in a T? control chart, and out-
of-control signals will be given for any 77 value exceeding the upper control limit (UCL)
(Mason and Young (2002), Chapter 2):

In the nonlinear regression model (3:5); B;4is ap x 1 vector of parameters that deter-
mines the curve f(x;, 3,;). For thepurpose ef checking the assumption 3, = 8,i=1,,---,m,
we can utilize the T2 statistic to assess the stabilityof the p parameters simultaneously. Note
that we cannot monitor each parameter separately since the components of ,él are usually
correlated in nonlinear regression. We remark that statistics (2.4)-(2.7) are all in form of
(3.10).

The robust version of the 77 statistics considered in the paper are based on the MCD
estimator. The main reason we choose the MCD method is because the MCD estimateors
outperform the others in terms of statistical efficiency and computing speed. See, for ex-
ample, Rouesseeuw and Driessen (1999), Rouesseeuw, Aelst, Driessen, and Agullo (2004),
Jensen, Birch, and Woodall (2005), and Hardin and Rocke (2005). Another reason is that

the MCD algorithm can deal with large sample sizes. The MCD-based T? statistic for the
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ith profile is

T??Lcd,i = <IBZ - ﬂmcd)lsgmlchBi - ﬂmcd)? 1= ]'7 RN (31]‘)

where ft,,.; is the MCD location estimator and S,,,.q is the MCD estimator of the covariance

matrix. In the next section we discuss the MCD estimators in more detail and describe how

to calculate them.

3.3 Aspartame Example

We use the aspartame example presented in Kang and Albin (2000) to study the proposed
method. We model each profile by a three-parameters nonlinear model as follows. Let x
values be 0.56,0.64, ...,3.92 (n = 43) and all m samples have the same x values. When the

process is in statistical control, the underlying model is

yij = f(x5,8;) + €

(3.12)
= [+ Me Ni@st® g dbl S 0% 43 i=1,2,...,m,
I; 1 03 0 0
where 3, = | M, | hasthe mean vector'| 15 | and the covariancematrix | 0 0.5 0
N; 1.5 0 0 0.3

and ¢;; are i.7.d normal random variables with mean zero and variance 1.
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4 Methodologies

In this paper, we propose a profile monitoring scheme which involves first a preprocessing
step of the nonlinear regression estimation, then use the parameter estimates to compute a
robust T2 statistic, and finally apply the FDR procedure to identify out-of-control samples.
To avoid the estimation error get in the way of understanding the effectiveness of the outlier-
identification steps, we only consider multivariate data instead of profile data in Sections 4

and 5.

4.1 The T? ., Control Chart

Consider a dataset Z™ = {2, 2,,---,2m} of p-variate observations. Intuitively, by
its name, an outlier should lie outside of the majority of the samples. To prevent outliers
from skewing the estimators, the MCDlestimator, is computed from the closest samples of
size h. To prevent outliers from skewing the estimators, the MCD method looks for a subset
of Z'™ with size h, say Z (") whose covariance matrix has the smallest determinant, where
m/2] < h < m. The MCD estimator+of location.is then the average of these h points,
By = %2?21 z;, and the MCD estimator of scale is the sample covariance matrix, defined
by S pun = %Z?:1<zj = Bpa) (25 — Brpan)

The value of h is chosen in order to ensure that the A samples selected by the
MCD method will not contain any outliers. Thus, we need only check the remaining m — h
samples, called the outlying group by Hardin and Rocke (2005), to identify the outliers.
Let m; = m — h. Then the m; outlying T2, statistics are computed with fi,,., and Sycq
estimated from the h selected samples. Later, we also use the m; outlying T2 , statistics
to calculate the corresponding p-values for the FDR method. Two common choices for h

are h = [(m + p+ 1)/2] & m/2, which yields the highest possible breakdown value, and
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h =~ 3m/4. We will compare these two choices in our simulation study.

Rousseeuw and Van Driessen (1999) proposed an improved algorithm called the FAST-
MCD algorithm. Its basic ideas are an inequality involving order statistics and determinants,
and techniques which they called selective iteration and nested extensions. For small datasets,
the FAST-MCD algorithm typically finds the exact MCD, whereas for larger datasets it
gives more accurate results than existing algorithms and is faster by orders of magnitude.
Moreover, the FAST-MCD algorithm has been implemented and is available in MATLAB.

We study the following three types of the MCD estimators:

1. The original estimators:
ﬂmcdl = ﬂfulla Smcdl - Sfull- (41)

2. Since S,y is biased (Croux and Haesbroeck#(1999) and Rousseeuw and Van Deiessen

(1999)), consider the following bias-cortected estimators:

d2(:Y) S
~ A~ (l‘l’ wll™ fu )
Forncas =5 Bfuis Smed2 = #Smu, (4.2)
Xp,’y
Where d?ﬁ;u”,sfu”) is the 7" sample quantile of {(z; — ﬂfuu)lsfz}u(zi — Pepan)st =

1,2,...,m} and Xzzm is the " quantile of the chi-square distribution with degree of
freedom p. Note that v = h/m here. We remark that this de-biasing approach is

implemented in MATLAB for the MCD method.

3. The MCD estimators defined by Croux and Haesbroeck (1999):

Foeas = 1 fulls Sincas = 075 fulls (4.3)

where ¢, is a constant, which can be chosen in such a way that consistency will be

. : : , _ ez Yz )
obtained at the specified model F' .3 With density f uz(z) = e . The
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function ¢ is assumed to be known and to have a negative derivative ¢’, so that F’ 75>
belongs to a parametric class of elliptically symmetric, unimodal distributions. They
have shown that for this distribution the MCD-problem has a unique solution given
by the ellipsoid A(FN,E) ={z € R|(z—p)S ' (z— ) < ¢}, where Z = For
¢y = G '(1—v) and G(t) = Pg, ,(Z'Z < t) to obtain ¢,. To obtain Fisher-consistency

at this model, it suffices to set

¢y =(1-7) [F(p?/rg/j—l)/oﬁ rpHg(r?)dT] _1. (4.4)

Table 1 gives several values of the constants ¢, for different values of p and v at the

normal model and also can be used in this paper.

The purpose of the constants c, is to make the MCD estimators consistent. In fact,
the MCD method based on any of the MCD estimators that only differ by a constant behaves
exactly the same in terms of selecting the subset of size h for the robustness purpose. Thus
S.neas has the same effect as S, in detecting the otitliers with our methods. We use the
Snear and 8,40 for the simulation’studies in the paper.

Jensen, Birch, and Woodall (2005) showed the distribution of T, converges in
distribution to a X;Z; distribution as m — oo. However, the asymptotic convergence is very
slow, and using Xfm as the cutoff point will often lead to identifying too many points as
outliers. In Sections 5, a comprehensive simulation study allows us to determine a suitable

control limit for the 7?2, control chart.

4.2 The FDR Procedure

Considering Phase I analysis as a multiple testing problem, we can employ the FDR
procedure to select outliers, with an attempt to have better detecting power.

The FDR, suggested by Benjamini and Hochberg (1995), is a new and different view
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Table 1: Particular Values of ¢, at the Normal Model from Croux and Haesbroeck (1998)

v p=2 p=3 p=>5
0.5 3.259 2457 1.912
0.75 1.859 1.609 1.412

Table 2: Possible outcomes from m hypothesis tests

Accept null | Reject null | Total
Null true mo — Ry Ry myo
Alternative true | my; — R; R; my
Total m— R R m

of how the errors in multiple testing could be considered. Table 2 summaries the numbers
of four possible outcomes in m hypothesis tests.

The proportion of errors comimitted'by falsely rejecting null hypotheses can be viewed
through the random variable ) = Ry /R, i.e.,-the proportion of the rejected null hypotheses
which are erroneously rejected. Naturally, défine () = 0 when Ry + R; = 0, as no error of
false rejection can be committed. Defing:thesFDR to be E(Q), the expected proportion of
erroneous rejections among all rejections.

The FDR procedure in Benjamini and Hochberg (1995) works as follows. Assume
that, of the m hypotheses tested {HY, HY,..., H2}, my are true null hypotheses, but the
number and identity of which are unknown. The other m; hypotheses are false. Denote the
corresponding m test statistics by {71, T3, ..., T, } and their p-values under null hypothesis
by {p1,p2,...,pm}. Let pay < pe)y < ... < Damy be the ordered observed p-value. Define
k=max{i:pu < éa} . Reject the null hypotheses corresponding to the pqy,...,pw), if k
exists. If no p-values satisfy this inequality, reject no hypothesis.

Benjamini and Hochberg (1995) proved that for independent test statistics and any
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configuration of false null hypotheses, the above procedure controls the false discovery rate
E(Q) at a. They also remarked that the independence of the test statistics corresponding
to the false null hypotheses is not needed for the proof of the Theorem (See Benjamini and
Hochberg (1995)).

Recall the MCD method has divided the m samples into a likely-in-control group of
size h and an outlying group of size m — h that may contain all outliers. Thus, for practical
implementation, we need only apply the FDR procedure to the group containing outliers. In
the next section, we describe and compare two monitoring schemes, one based on the T2

control chart and the other based on the FDR procedure.
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5 Monitoring Schemes

To study and compare the FDR method and the T2, control chart. We generate 3;
directly from the multivariate normal distribution so that the estimation error of the non-
linear regression will not get in the way. For the profile monitoring, we leave it to Section
6.

All the computations are conducted in the MATLAB 7 environment, because the

MCD method and the nonlinear regression have been incorporated into MATLAB 7.

5.1 Control Limit

If the sample size of the Phase I data is large that we may simply construct the control

limits by the asymptotic distribution of T2 ,. However, the sample size is usually not large

med-
enough and the exact distributions are hot available, so we will construct the control limits
by Monte Carlo simulation. For this purpose, without loss of generality, we can assume that
the in-control distribution of 3, is the standard multivariate normal distribution N,(0,I).
Generate 200,000 sets of random samples of size na from N,(0,I). Apply the MCD method
to each set of m samples, compute the T2 j statistic for each sample in the set and record
the maximum value attained. For controlling the overall false-alarm rate of the dataset at,
say, 5% level, set the control limit at the 95" percentile of the 200, 000 maximum values.
Due to the invariance of the T, statistic, the control limit constructed as above can
be applicable for any value of g and 3. The MCD estimators, S,,.q1 and S,,.q42, described

in Subsection 4.1 are considered. As an example, Table 3 gives the T2 _, control limits for

p =3, m = 30, 50, 100, and h = 0.75m, 0.5m.
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Table 3: T2

= .q Control Limits for p = 3 when the overall false-alarm rate is set at 0.05 level.

h m  Smedl Shed?
30 45.8104 112.5561
0.75m 50  27.2573 66.9208
100 17.0788 41.9627
30  27.5203 44.2802
0.6m 50  20.3215 32.2496
100 16.2190 26.0964

Table 4: The overall false-alarm rate of the FDR method and the T, control chart (esti-
mated with 10,000 replications).

Smed Smed2
h m FDR T2, FDR 12,
30  0.04930.0522 0.0474 0.512
0.75m 50 % 0.04847920.0497+, 0.0493 0.486
100 _0.0550-0.0563  ~0.0517 0.0533
30= | 0.0428-0.0503 ' -0.0413 0.0485
0.5m 50+ :0.0420.-0.0463 -*0.0409 0.0503

100 "0.0447 0.0492 0.0473 0.0485

Table 4 gives the estimated overall false-alarm rates for the two control schemes based
on 10,000 replications. Note that these values are fairly close to the nominal value 0.05,
except for the values of the FDR method under h = 0.5m where the FDR method produces
fewer false alarms than it is designed to. Thus, A = 0.5m is not recommended for the FDR
method. Using S,,cq1 or Spcq2 does not show much difference. We choose S,.q2 for the

subsequent simulations in this study simply because the computer program is conveniently

available in MATLAB.
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5.2 Data Generation

For our simulation study, we consider the case of p = 3 in correspondence with the
nonlinear regression model that we use for the aspartame example. Once the control limits

is set, generate m random samples from the 3-variate normal distribution,
Bi~ N3(pu, %), i=1,2,3,...,m.

Among the m samples, £ random samples are generated from the out-of-control distribution,
while the other (m—k) samples are generated from the in-control distribution. The in-control
distribution is a multivariate normal with g = 0 and ¥ = I. The out-of-control distribution
has the same variance-covariance matrix but the mean vector is from p to p;. The size of

the shift can be quantified by the non-centrality parameter (ncp) defined by

(1 — ) S (= p). (5.1)

Consider k = 1,3,5,7, and 10 outliets. The k-outliers are assigned to the (3 x 7)™
sample for 7 from 1 to k. For example, when & = 3, .we put outliers at the 3!, 6, 9" samples.

We generate 10,000 sets of m random samples for each combination of £ = 1,3,5,7, 10

and m = 30, 50, 100.
5.3 P-value of the Sample

For each combination of £ and m as given above, 200,000 datasets are generated from the
in-control distribution N,(0,I). Each set of data is divided into the likely-in-control group
of my samples and the outlying group of m; samples. Since we only check the m; samples
in the outlying group selected by the MCD method for outlier screening in Phase I analysis,
it is more natural to pool the m; x 200,000 samples to approximate the population of the

T2 ., statistic. Since the p-value of any observed T72_, statistic is simply the probability that
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the random variable T2, exceeds the observed T2 _, value, the p-value of any observed T2 ,
is estimated by the proportion of the m; x 200,000 T2, values greater than the observed

Tnz@cd'
5.4 The Signal Probability

In order to evaluate the performance of the methods, an extensive simulation study is
conducted. The evaluation criterion commonly used in the literature is the signal probabili-
ties , which is defined as the probability that at least a sample signals out-of-control among
the m samples. That is, the signal probability is defined as P(R > 1). As shown in Sullivan
and Woodall (1996), the larger the value of the non-centrality parameter (ncp) is, the more
extreme the outliers are. To estimate the signal probability, for each control scheme, we
generate 10,000 independent datasets of m random samples for each situation considered.
The proportion of the datasets that*have at,least one T2, statistic greater than the control
limit. Similarly, the signal probability of the FDR approach is estimated by the proportion

of the datasets that have at least -one sample-rejected by the FDR procedure.

5.5 False-Rejection Rate and Correct-Rejection Rate

One of the goals of Phase I monitoring is to identify in-control samples so that the
estimated control limits are sufficiently accurate for Phase I monitoring. However, the signal
probability cannot distinguish a control scheme that can detect more outliers or commit less
false alarms from other schemes. Let R; be the number of the outliers detected in the &
outliers and Ry be the number of the falsely rejected samples in the m — k in-control samples.

Define the false-rejection rate by
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and the correct-rejection rate by

CRR = E(il). (5.3)

Note that FRR is similar to the Type I error probability and CRR is similar to the power
of the hypothesis testing.
We estimate the FRR and CRR by averaging their sample counterparts of the simu-

lated 10,000 datasets.

5.6 Results

Table 5 gives the results for all combinations of m, k and ncp. “FRRppr”, “CRRppr”,
and “SPrpr” denotes respectively the estimates of FRR, CRR, and the signal probability
of the FDR method. If the values are obtained with the T, control chart, replace the
subscript “FDR” by “UCL”. “A” denotes:the.difference of the values between the FDR
method and the T2, control chart.

From Table 5, when there are outliers; we see that the detecting power (CRR) of the
FDR procedure is better than that-of the T2, control chart, while the false-alarm proportion
(FRR) of the FDR procedure is slightly: larger, than that of the T2, control chart. When
there are no outliers, the false-alarm proportion of the FDR procedure is smaller than that
of the T?_, control chart.

The simulation results with 3, generated directly from the multivariate normal dis-
tribution are given in Table 6 for m=30, 50, 100 under p = 3 and ncp = 49. We find the
FDR method is better than the T2, control chart in terms of the CRR value and the signal
probability, and the advantage increases as the number outliers increases, especially for the
CRR value. The CRR values for £ = 1,3,5,7,10 are shown in Figures 2-4, in which the
differences are evident. In the figures, the symbols “ + 7 and “* ” denote 0.75m and 0.5m,

respectively, and the solid line is for the FDR method and the dotted line is for the T2,
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control chart.

From the simulation results, we also find that when choosing h = 0.75m to calculate
the T2, statistics, the control schemes not only are more powerful (CRR) but also have
fewer false alarms (FRR) than when choosing A = 0.5m. But when the number of outliers is
larger than 0.75m, choosing 0.75m is worse than choosing 0.5m because the MCD estimators
are contaminated by outliers. For example, from Figure 2, the CRR value of 0.75m is worse

than that of 0.5m when the number of outliers k is larger than 7.
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6 Profile Monitoring — Aspartame Example

6.1 A Simulation Study

In this section, to study the effectiveness of two methods with profiles, we analyze the
hypothetical aspartame example with model (3.12) given in Subsection 3.3. Figure 1 shows
four aspartame profiles generated from model (3.12). The in-control mean vector and the

covariance matrix of 3, in the model (3.12) is

1 o2 0 0 0.3 0 0
B;~Ns(| 15 |, | 0 o2 0|=| 0 05 0]).
1.5 00 o% 0 0 03

Based on model (3.12), we generate the m — k in-control profiles with 3, from the
in-control multivariate normal distribution. The & out-control profiles are generated from
the out-of-control multivariate normal distribution, where the mean vector p is shifted to
consider the p;, p), or py. Consider uy = (1 +:507, 15, 1.5)" with ncp = 25 or (1 +
7o, 15, 1.5)" with nep = 49, p,, = (1,15 £50,, 1.5)F with nep = 25 or (1, 15+ 7oy, 1.5)
with nep = 49, and py = (1, 155 1.5 % Beyx)with- ncp = 25 or (1, 15, 1.5 + 7oy)" with
necp = 49.

Our strategy is first to estimate for each profile data the parameter vector in the
nonlinear regression model (3.12) with MATLAB. Second, we use the FDR method and the
T?2 ., control chart to monitor the estimates as discussed in the last section. We choose an
overall false-alarm probability o = 0.05, for which the control limits have been provided in
Section 5.1.

From Table 5, we observe that the FRR values are very small for both monitoring
schemes, which indicates that both methods seldom reject in-control samples. To save space,
the FRR values of the simulation results are omitted. Table 6 compares the FDR method

with T2, control chart in terms of CRR and the signal probability for the case in which 3,
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1=1,2,...,m are generated directly from the multivariate normal distribution. We present
in Tables 7-12 the CRR values and the signal probabilities of the FDR method and the T2,
control chart for all combinations of £ = 1,3,5,7,10 and m = 30,50, 100 with three shifted

mean vectors, p;, t,s, and gy (two shift sizes each), respectively.

6.2 Results

Comparing the results in Tables 10-12 (ncp = 49) with that in Table 6, we observe that the
CRR values with 3, estimated from profiles are both larger than the values with 3, generated
directly from the multivariate normal distribution. This indicates that the methods become
more sensitive in rejecting samples, i.e., higher detecting power but higher false-alarm rate
as well. This may be caused by the estimation error incurred in the non-linear regression.

From Tables 6-12, we see that the power of the FDR method are uniformly better
than that of the T2, control chart,jn termas of the CRR or SP values. Also, we recommend
choosing h = 0.75m to estimate Sy, for the 77 ,; statistics as long as the percentage of the
outliers is less than 25%. We also observe-that-the advantage of using the FDR procedure
increases as the number of the outliers k-outliersdncreases (with the restriction that k should
not exceed the (1 — k/m) level).

Figures 5-22 summarize the CRR results for the various combinations of h, m, k, and
the shifted mean vectors p;, p,, and p,, with which we can compare the performance of the
FDR method and the T2, control chart easily. They also show that the difference between

the two monitoring schemes are eminent.
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7 Conclusions

Profile monitoring is a rich and promising area of research. In this paper, we propose
a monitoring scheme for nonlinear profiles based on a robust 72 statistic and the FDR
procedure. We consider a nonlinear regression model for profiles with random parameter
vector 3,. First, we use the nonlinear regression procedure implemented in MATLAB to
estimate the parameter vector of the model for each profile. Then, the estimated parameter
vectors can be monitored using the T2, control chart, a robust 72 chart. To improve the
detecting power, the FDR procedure can be employed. Simulation studies show that the
proposed FDR scheme outperforms the T2, control chart.

The estimator vector Bz follows approximately a multivariate normal distribution.
So, skipping the nonlinear regression estimation step, we first study the performance of the
T?2 ., control chart and the FDR prodedure with 3; generated directly from a multivariate
normal distribution. We investigate the effécts of m, k;, k, and ncp on the performance of the
methods. The effects of m and nep is as-expected in=the intuitive sense. As expected, the
advantage of the FDR procedure inereases as k increases, except that k£ can not exceed the
number of samples in the outlying group designed in the MCD procedure. As to h, choosing
0.75m is better than choosing 0.5m with the FDR method and the T2, control chart, when
the dataset contains less than 25% outliers, h = 0.75m may be a good compromise between
the breakdown value and the statistical efficiency.

As to profile monitoring, we apply the monitoring schemes to a hypothetical example
mimicing the aspartame example given Kang and Albin (2000). We shift the nonlinear
parameter mean vectors to gy, pys, and p with various shift sizes. The conclusions about
the proposed methods are similar to that for monitoring multivariate quality characteristic

as described above. We also compare the ﬁz estimated from profiles to the parameter vector
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B, generated directly from the multivariate normal distribution with the same monitoring
schemes proposed in this paper. The monitoring schemes tend to reject more samples when
B, is estimated by nonlinear regression.

This study extends the framework of statistical process control to more applications.
The idea of controlling the False Discovery Rate can be used in the Phase I control chart or

any applications involving multiple tests. We believe it can be useful in many applications.
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Table 5: Estimated false-rejection rate(FRR) and correct-rejection rate (CRR) of the FDR
method and the 7?2, control chart for various values of m, h, k, and ncp.

(k,ncp) (0,0) (3,9) (3,25)  (3,49) (5,9) (5,25)  (5,49)
m = 30
(0.75m) FRRppr 0.0022 0.0010 0.0009 0.0011 0.0006 0.0003 0.0002
FRRycrp 0.0080 0.0007 0.0003 0.0002 0.0005 0.0001 0.0001
CRRppr 0.0000 0.0618 0.3901 0.8512 0.0224 0.2277 0.9107
CRRycr,  0.0000 0.0529 0.3090 0.7568 0.0016 0.1708 0.8461
(0.5m) FRRppg 0.0025 0.0018 0.0019 0.0017 0.0011 0.0008 0.0012
FRRycp 0.0143 0.0011 0.0006 0.0005 0.0008 0.0002 0.0002
CRRppr 0.0000 0.0398 0.2072 0.4983 0.0241 0.1680 0.5759
CRRyecr  0.0000 0.0356 0.1734 0.4286 0.0175 0.1135 0.4970
m = 50
(0.75m) FRRppr 0.0012 0,0008 0.0009 0.0015 0.0004 0.0007 0.0012
FRRycrp 0.0072 50:00057:0.0002+,0.0003 0.0003 0.0001 0.0002
CRRppr 0.0000: 0.0809 “0.5414 7 0.9475 0.0486 0.5213 0.9643
CRRycr  0.0000 0.0704--0.4481 0.8929 0.0371 0.3635 0.8815
(0.5m) FRRppg 0.0014%.0.0012 70.0013/0.0017 0.0007 0.0011 0.0017
FRRycp 0.0141 0.0007 0.0005 0.0005 0.0004 0.0003 0.0003
CRRppr 0.0000 0.0463 " 0.2754 0.6376 0.0359 0.2798 0.6838
CRRppr 0.0000 0.0423 0.2339 0.5616 0.0280 0.1985 0.5220
m = 100
(0.75m) FRRppr 0.0006 0.0006 0.0012 0.0012 0.0004 0.0011 0.0016
FRRycrp 0.0070 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002
CRRppr 0.0000 0.1013 0.6745 0.9863 0.0807 0.7003 0.9915
CRRycr,  0.0000 0.0875 0.5844 0.9675 0.0649 0.5466 0.9649
(0.5m) DRRgpr 0.0007 0.0008 0.0011 0.0014 0.0006 0.0011 0.0017
FRRycp 0.0138 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003
CRRppr 0.0000 0.0555 0.3864 0.8198 0.0510 0.4073 0.8675
CRRycr  0.0000 0.0496 0.3320 0.7473 0.0403 0.3091 0.7498
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Table 6: Comparing the FDR method and the T, Control Chart with ncp = 49 when 3
follows the multivariate normal distribution.

m = 30 m = 50 m = 100
E\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m
1 CRRppr  0.8198 0.4646 0.9178 0.5846 0.9760 0.7598
CRRycL 0.8284 0.4930 0.9218 0.6034 0.9760 0.7716

ACRR (-0.0086) (-0.0274) (-0.0040) (-0.0188) (0.0000)  (-0.0004)
SPrpr 0.8218  0.4720 09188  0.5896  0.9768  0.7666
SPycr 0.8316 05026  0.9234  0.6122  0.9772  0.7820
ASP (-0.0098) (-0.0306) (-0.0046) (-0.0226) (-0.0004) (-0.0154)

3 CRRppr 0.8512 0.4983 0.9475 0.6376 0.9863 0.8198
CRRycr 0.7658 0.4286 0.7658 0.5616 0.9675 0.7473

ACRR (0.0540)  (0.0697)  (0.0546)  (0.0960)  (0.0188)  (0.0725)
SPrpr 0.9201  0.5784  0.9859  0.7373  0.9993  0.9146
SPyct 09118 05815 09832  0.7368  0.9993  0.5815
ASP (-0.0031)  (0.0027)245(0.0005)  (0.0000)  (0.0012)

5 CRRppr 0.8017 04787 0:9566 0.6861 0.9915 0.8675
CRRyctL 0.6034 0.3415 (0.8604 0.5390 0.9649 0.7498

ACRR (0.1983) = (0.1372)~ (0.0962) (0.1471) (0.0266) (0.1177)
SPrpr 0.8965  =0.57307r0:9920- 0.8045  1.0000  0.9569
SPycr 0.8590 05550  0.9890  0.7892  0.8590  0.9134

ASP ASP (0.0345) (0.0180)""/(0.0030) (0.0153)  (0.0000)  (0.0090)
7 CRRppr 05479 04141 09468  0.6733  0.9919  0.8981
CRRycp 02807 02743  0.7949 04769  0.9507  0.7129
ACRR (0.2672)  (0.1768)  (0.1519)  (0.1964)  (0.0412)  (0.1624)

SPrpr 0.6766  0.4976  0.9912  0.7912  1.0000  0.9658
SPyct 0.5916  0.4572 09852  0.7652  1.0000  0.9546
ASP (0.0850)  (0.0404)  (0.0060)  (0.0260)  (0.0000)  (0.0112)

10  CRRppr 0.0020 0.2651 0.8930 0.6480 0.9918 0.8981
CRRycr 0.0017 0.0918 0.5942 0.3914 0.9320 0.6922

ACRR (0.0003)  (0.1733)  (0.2992)  (0.2566) ()0.0598  (0.2059)
SPrpr 0.0344 03318 09760  0.7640  1.0000  0.9752
SPyct 0.0372 02608  0.9466  0.7140  1.0000  0.9604
ASP (0.0028)  (0.0710)  (0.0294)  (0.0500)  (0.0000)  (0.0148)
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Table 7: Comparing the FDR method and the T, control chart with I shift (ncp = 25) for
aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRppr 0.7455 0.5877 0.8605  0.7778 0.9473  0.9365
CRRycp, 0.7473 0.5833 0.8468  0.7308 0.9170  0.8748
ACRR (0.0112)  (0.0044)  (0.0147) (0.0470)  (0.0303) (0.0617)
SPrpr 0.7578 0.6450 0.8785  0.8430 0.9755  0.9490
SPycr 0.7655 0.6640 0.8775  0.8435 0.9763  0.9445
ASP (-0.0077) (-0.0190) (0.0010) (-0.0005) (0.0000) (0.0005)

3 CRRppr 0.7623 0.6055 0.8986  0.8163 0.9521  0.9507
CRRycr  0.6564 0.5255 0.8205  0.7077 0.9001  0.8632
ACRR (0.1079)  (0.0800)  (0.0781) (0.1086)  (0.0520) (0.0875)
SPrpr 0.8990 0.7540 0.9878  0.9406 0.9988  0.9972
SPyer 0.8896 0.7624 0.9842  0.9354 0.9988  0.9958
ASP (0.0094)  (-0.0076)(0.0036) (0.0052)  (0.0000) (0.0014)

5 CRRppr 0.7002 0.5782 0:9086,  0.8267 0.9613  0.9634
CRRycr,  0.5056 0.4434 0.7782 -~ 0.6720 0.8922  0.8587
ACRR (0.1951) = (0.1348)~ (0.1244) (0.1547) (0.0691) (0.1047)
SPrpr 0.8866 0.7482 09952  0.9590 1.0000  1.0000
SPycor 0.8630 0:7404 0.9918  0.9506 1.0000  0.9999
ASP (0.0236)  (0.0078)""°(0.0034) (0.0084)  (0.0000) (0.0001)

7 CRRppr 0.4639 0.5319 0.8865  0.8294 0.9697  0.9610
CRRycr,  0.2538 0.3416 0.7067  0.6350 0.8932  0.8535
ACRR (0.2101)  (0.1903)  (0.1798) (0.1944) (0.0765) (0.1075)
SPrpr 0.6882 0.7132 0.9922  0.9684 0.9998  0.9992
SPyor 0.6428 0.6852 0.9870  0.9576 0.9996  0.9990
ASP (0.0454)  (0.0180)  (0.0052) (0.0108)  (0.0002) (0.0002)

10 CRRppr 0.0102 0.3820 0.8192  0.8225 0.9621  0.9475
CRRycr  0.0084 0.1772 0.5380  0.5666 0.8236  0.8175
ACRR (0.0016)  (0.2048)  (0.2812) (0.2559)  (0.1385) (0.1330)
SPrpr 0.1389 0.5870 0.9738  0.9663 0.9998  0.9995
SPyor 0.1440 0.5433 0.9600  0.9470 0.9998  0.9990
ASP (-0.0051) (0.0437)  (0.0138) (0.0193) (0.0000) (0.0005)
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Table 8: Comparing the FDR method and the T2 _; control chart with M shift (ncp = 25)
for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRppr 0.6785 0.5605 0.8217  0.7562 0.9385  0.9340
CRRycr  0.6757 0.5563 0.8055  0.7067 0.8942  0.8602
AcRR (0.0028) (0.0042) (0.0162) (0.0495) (0.0443) (0.0738)
SPrpr 0.7003 0.6165 0.8462  0.8237 0.9375  0.9683
SPyer 0.7053 0.6400 0.8458  0.8260 0.9327  0.9597
ASP (-0.0050) (-0.0235) (0.0004) (-0.0023) (0.0048) (0.0086)

3 CRRppr 0.6785 0.5623 0.8468  0.7758 0.9469  0.9376
CRRycr 0.5717 0.4813 0.7622  0.6699 0.8779  0.8510
AcRR (0.1068)  (0.0910)  (0.0846) (0.1056)  (0.0690) (0.0875)
SPrpr 0.8305 0.7123 0.9633  0.9140 0.9985  0.9982
SPyer 0.8203 0.7143 0.9573  0.9100 0.9982  0.9940
ASP (0.0102)  (-0.0002)(0.0070) (0.0040)  (0.0003) (0.0042)

5 CRRppr 0.6099 0.5522 0:8559,  0.7960 0.9656  0.9563
CRRycr  0.4304 0.4130 0.7105 - 0.6499 0.8657  0.8496
AcRR (0.1795) = (0.1392)~ (0.1454) (0.1461) (0.0999) (0.1087)
SPrpr 0.8075 0.7272 09778 0.9375 1.0000  0.9988
SPycor 0.7788 0:7188 0.9705  0.9233 1.0000  0.9978
ASP (0.0287)  (0.0084)"""(0.0070) (0.0040)  (0.0003) (0.0042)

7 CRRppr 0.3170 0.4708 0.8220  0.7861 0.9587  0.9464
CRRycr,  0.1677 0.3018 0.6214  0.5496 0.8456  0.8350
AcRR (0.1503)  (0.1690)  (0.2006) (0.1915)  (0.1008) (0.1114)
SPrpr 0.5327 0.6613 0.9732  0.9355 0.9998  0.9995
SPyor 0.4938 0.6452 0.9613  0.9233 0.9988  0.9990
ASP (0.0389)  (0.0161) (0.0119) (0.0122) (0.0005) (0.0010)

10 CRRppr 0.0102 0.3125 0.7821  0.7133 0.9578  0.9463
CRRycr,  0.0008 0.1409 0.5376  0.5276 0.8171  0.8087
AcRR (0.0092) (0.1716)  (0.2475) (0.2607)  (0.1407) (0.1376)
SPrpr 0.1368 0.5327 0.9420  0.9325 1.0000  0.9990
SPyor 0.1388 0.4955 0.9275  0.9058 1.000 0.9982
ASP (-0.0020) (0.0372)  (0.0145) (0.0267) (0.0000) (0.0008)
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Table 9: Comparing the FDR method and the T2, control chart with N shift (ncp = 25)
for aspartame example.

m = 30 m = 50 m = 100

k\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRppr 0.6813 0.5630 0.8350 0.7755  0.9325  0.9193
CRRycr, 0.6810 0.5565 0.8275 0.7208  0.9008  0.8658
ACRR (0.0003)  (0.0065)  (0.0075)  (0.0547) (0.0317) (0.0535)
SPrpr 0.7015 0.6150 0.8562 0.8403  0.9683  0.9383
SPyer 0.7110 0.6378 0.8575 0.8395  0.9633  0.9340
ASP (-0.0095) (-0.0228) (-0.0013) (0.0008) (0.0050) (0.0043)

3 CRRppr 0.6898 0.5807 0.8552 0.7818  0.9567  0.9487
CRRycr 0.5849 0.5008 0.7640 0.6785  0.8808  0.8553
ACRR (0.1049)  (0.0779)  (0.0912)  (0.1033) (0.0759) (0.0934)
SPrpr 0.8393 0.7298 0.9655 0.9223  0.9968  0.9970
SPycr 0.8337 0.7530 0.9607 0.9150  0.9962  0.9940
ASP (0.0057)  (-0.0052)(0.0048)  (0.0073) (0.0005) (0.0003)

5 CRRppr 0.5988 0.5403 0:8497 0.7865  0.9557  0.9518
CRRycr, 0.4233 0.4057 0.7058 0.6374  0.8526  0.8477
ACRR (0.1755) = (0.1346)~ (0.1439) (0.1491) (0.0932) (0.1041)
SPrpr 0.8023 0.7138 0.9782 0.9385  0.9992  0.9992
SPycor 0.7748 07105 0.9708 0.9307  0.9985  0.9985
ASP (0.0275)  (0.0033)"""(0.0074)  (0.0078) (0.0007) (0.0007)

7 CRRppr 0.3235 0.4855 0.8349 0.8049  0.9600  0.9510
CRRycr,  0.1689 0.3126 0.6345 0.6202  0.8507  0.8406
ACRR (0.1546)  (0.1729)  (0.2004)  (0.1847) (0.1093) (0.1104)
SPrpr 0.5435 0.6667 0.9808 0.9840  0.9998  0.9982
SPyor 0.5058 0.6438 0.9695 0.9327  0.9989  0.9982
ASP (0.0377)  (0.0219) (0.0113) (0.0513) (0.0009) (0.0000)

10 CRRppr 0.0087 0.3182 0.7766 0.7060  0.9633  0.9486
CRRycr  0.0074 0.1424 0.5365 0.4218  0.8263  0.8193
ACRR (0.0073) 0.01758  (0.5401) (0.2842) (0.1370) (0.1293)
SPrpr 0.1290 0.5335 0.9363 0.9285  0.9998  0.9998
SPyor 0.1340 0.4948 0.9173 0.8992  0.9995  0.9992
ASP (-0.0050) (0.0387)  (0.0190)  (0.0293) (0.0003) (0.0006)
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Table 10: Comparing the FDR method and the T?2_, control chart with I shift (ncp = 49)
for aspartame example.

m = 30 m = 50 m = 100
kE\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m
1 CRRppr 0.9755 0.8630 0.9968 0.9675 0.9995  0.9990
CRRycr 0.9752 0.8622 0.9958 0.9533 0.9995  0.9972
ACRR (0.0003)  (0.0008) (0.0010) (0.0142)  (0.0000) (0.0018)
SPrpr 0.9762 0.8792 0.9972 0.9715 0.9995  0.9990
SPycr 0.9780 0.8938 0.9978 0.9722 0.9995  0.9992
ASP (-0.0018) (-0.0146) (-0.0006) (-0.0007) (0.0000) (-0.0002)
3 CRRppr 0.9868 0.8911 0.9978 0.9852 0.9998  0.9993
CRRycr  0.9584 0.8262 0.9943 0.9492 0.9991  0.9949
ACRR (0.0284)  (0.0649)  (0.0035)  (0.0360)  (0.0007) (0.0049)
SPrpr 0.9981 0.9447 1.0000 0.9970 1.0000  1.0000
SPyer, 0.9965 0.9407 1.0000 0.9952 1.0000  1.0000
ASP (0.0016)  (0.0040)"(0:0000) (0.0018)  (0.0000) (0.0000)
5 CRRppr 0.9810 0:9003 0:9912 0.9986 0.9999  0.9997
CRRycr 09212 0.7778 0.9849 0.9414 0.9987  0.99940
ACRR (0.0629) +(0.1225)%(0.0073)= (0.0572)  (0.0012) (0.0057)
SPrpr 0.9982 0.9530 110000 0.9988 1.0000  1.0000
SPyer 0.9972 0.9413 1.0000 0.9970 1.0000  1.0000
ASP (0.0010)  (0.0117)"""(0.0000)  (0.0018)  (0.0000) (0.0000)
7 CRRppr 0.9317 0.8945 0.9988 0.9911 0.9999  0.9997
CRRycr,  0.7476 0.7710 0.9838 0.9366 0.9984  0.9941
ACRR (0.1841)  (0.1235)  (0.0149)  (0.00545) (0.0015) (0.0056)
SPrpr 0.9768 0.9505 1.0000 1.0000 1.0000  1.0000
SPyer 0.9650 0.9267 1.0000 0.9985 1.0000  1.0000
ASP (0.0118)  (0.0238)  (0.0000)  (0.0015)  (0.0000) (0.0000)
10 CRRppr 0.0095 0.8418 0.9969 0.9927 0.9998  0.9998
CRRycr,  0.0073 0.5283 0.9548 0.9142 0.9978  0.9925
ACRR (0.0022)  (0.3135)  (0.0421) (0.0785)  (0.0020) (0.0073)
SPrpr 0.1455 0.9080 1.0000 0.9992 1.0000  1.0000
SPyer 0.1480 0.8590 1.0000 0.9975 1.0000  1.0000
ASP (-0.0025) (0.0490)  (0.0000)  (0.0017)  (0.0000) (0.0000)
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Table 11: Comparing the FDR method and the T?_; control chart with M shift (ncp = 49)
for aspartame example.

m = 30 m = 50 m = 100

kE\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRppr 0.9610 0.8253 0.9900 0.9565 0.9988  0.9965
CRRycr  0.9597 0.8225 0.9890 0.9397 0.9981  0.9910
ACRR (0.0013)  (0.0028)  (0.0010) (0.0168)  (0.0007) (0.0055)
SPrpr 0.9630 0.8435 0.9905 0.9678 0.9990  0.9978
SPyer, 0.9625 0.8492 0.9908 0.9665 0.9985  0.9975
ASP (-0.0005) (-0.0157) (-0.0003) (-0.0013) (0.0005) (0.0003)

3 CRRppr 0.9687 0.8571 0.9965 0.9760 0.9991  0.9991
CRRycr  0.9263 0.7853 0.9871 0.9330 0.9976  0.9915
ACRR (0.0424)  (0.0718)  (0.0094) (0.0430)  (0.0015) (0.0076)
SPrpr 0.9915 0.9155 1.0000 0.9960 1.0000  1.0000
SPyer, 0.9885 0.9173 1.0000 0.9940 1.0000  1.0000
ASP (0.0030)  (0.0487)(0:0000)  (0.0020)  (0.0000) (0.0000)

5 CRRppr 0.9842 0:9025 0:9970 0.9776 0.9996  0.9993
CRRycr  0.9230 0.7823 0.9804 0.9182 0.9972  0.9915
ACRR (0.0612) =(0.1242)~ (0.0166): (0.0594)  (0.0024) (0.0078)
SPrpr 0.9985 0:9597 1:0000 0.9960 1.0000  1.0000
SPyer 0.9972 0:9460 1.0000 0.9940 1.0000  1.0000
ASP (0.0013)  (0.0137)"""(0.0000) (0.0023)  (0.0000) (0.0000)

7 CRRppr 0.8481 0.8480 0.9965 0.9831 0.9995  0.9997
CRRycr  0.6061 0.6564 0.9665 0.9168 0.9971  0.9903
ACRR (0.2465)  (0.1916)  (0.0300)  (0.0663)  (0.0026) (0.0093)
SPrpr 0.9310 0.9173 1.0000 0.9965 1.0000  1.0000
SPyer 0.8958 0.8900 1.0000 0.9952 1.0000  1.0000
ASP (0.0352)  (0.0273)  (0.0000) (0.0013)  (0.0000) (0.0000)

10 CRRppr 0.0104 0.7636 0.9969 0.9936 0.9995  0.9997
CRRycr,  0.0081 0.4535 0.9526 0.9133 0.9950  0.9890
ACRR (0.0023)  (0.3081)  (0.0443) (0.08030) (0.0047) (0.0107)
SPrpr 0.1440 0.8510 1.0000 0.9995 1.0000  1.0000
SPyer 0.1447 0.7865 0.9998 0.9995 1.0000  1.0000
ASP (-0.0007) (0.06445) (0.0002)  (0.0000)  (0.0000) (0.0000)
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Table 12: Comparing the FDR method and the T, control chart with N shift (ncp = 49)
for aspartame example.

m = 30 m = 50 m = 100

E\h 0.75m 0.5m 0.75m 0.5m 0.75m 0.5m

1 CRRppr 0.9527 0.8265 0.9935 0.9605 0.9998  0.9990
CRRycr  0.9527 0.8253 0.9932 0.9405 0.9995  0.9918
ACRR (0.0000)  (0.0012)  (0.0003)  (0.0200)  (0.0003) (0.0012)
SPrpr 0.9547 0.8460 0.9940 0.9705 0.9990  0.9992
SPyer 0.9565 0.8582 0.9945 0.9708 0.9990  0.9980
ASP (-0.0018) (-0.0118) (-0.0005) (-0.0003) (0.0000) (0.0012)

3 CRRppr 0.9705 0.8594 0.9958 0.9730 0.9994  0.9993
CRRycr  0.9267 0.7900 0.9842 0.9310 0.9985  0.9928
ACRR (0.0438)  (0.694) (0.0116)  (0.0420)  (0.0009) (0.0065)
SPrpr 0.9912 0.9190 1.0000 0.9935 1.0000  1.0000
SPyer 0.9898 0.9157 0.9998 0.9912 1.000 1.0000
ASP (0.0014)  (0.0083)(0:0002)  (0.0023)  (0.0000) (0.0000)

5 CRRppr 0.9607 0.8583 0.9957 0.9831 0.9997  0.9995
CRRycr, 0.8616 0.7300 0.9822 0.9248 0.9978  0.9919
ACRR (0.0991) =(0.1283)- (0.0148): (0.0570) (0.0019) (0.0076)
SPrpr 0.9918 0.9253 1:0000 0.9980 1.0000  1.0000
SPyer 0.9855 09123 1.0000 0.9965 1.0000  1.0000
ASP (0.0063)  (0.0130) " (0.0000)  (0.0015)  (0.0000) (0.0000)

7 CRRppr 0.8475 0.8488 0.9957 0.9831 0.9996  0.9994
CRRycr,  0.6040 0.6581 0.9642 0.9062 0.9966  0.9910
ACRR (0.2435)  (0.3109)  (0.0315)  (0.0769)  (0.0030) (0.0084)
SPrpr 0.9297 0.9163 1.0000 0.9980 1.0000  1.0000
SPyer 0.8955 0.8952 1.0000 0.9962 1.0000  1.0000
ASP (0.0342)  (0.0211)  (0.0000) (0.0018)  (0.0000) (0.0000)

10 CRRgpr 0.0103 0.7650 0.9902 0.9829 0.9997  0.9997
CRRycr,  0.0082 0.4541 0.9007 0.8848 0.9950  0.9893
ACRR (0.0021)  (0.3109)  (0.0895)  (0.0981) (0.0047) (0.0104)
SPrpr 0.1435 0.8510 0.9998 0.9985 1.0000  1.0000
SPyer 0.1475 0.7830 0.9988 0.9962 1.0000  1.0000
ASP (-0.0040) (0.0680)  (0.0010)  (0.0023)  (0.0000) (0.0000)
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Figure 1: Four hypothetical profiles of aspartame example.
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Figure 2: The correct-rejection rate awhen @jrare
distribution with m = 30 and ncp =49.
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Figure 4: The correct-rejection rate awhen @jrare generated from a multivariate normal
distribution with m = 100 and ncp.=49.
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Figure 5: The correct-rejection rate for the aspartame example with m = 30, I shift, and
nep = 49.
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nep = 49.
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Figure 7: The correct-rejection rate for the aspartame example with m = 100, I shift, and
nep = 49.
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Figure 8: The correct-rejection rate forithe aspartame example with m = 30, M shift, and

nep = 49.

Figure 9: The correct-rejection rate for the aspartame example with m = 50, M shift, and

nep = 49.

correct-rejection rate

correct-rejection rate

1
——<___._______ .
0.9f .
N
N
E N
L = - AN |
08 el . .
~ o 3
N
0.7 ~N\ i
N~
NN
N\ S
0.6 +« ~\o i
\ ~ .
\ ~ -
\ ~
05F N ~ A
N *
\
04f \ .
\
\
\
03f . J
——+—— FDR with h=0.75m N
02F | — —+ — - UCL with h=0.75m AN 1
——%—— FDR with h=0.5m AN
O1r | — — % — - UCL with h=0.5m N\
A\
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
k outliers

0.95} ——+—— FDR with h=0.75m T
— — 4+ — - UCL with h=0.75m
0.94% ——— FDR with h=0.5m i
R — — % — - UCL with h=0.5m
~
0.93F ~ o i
> ~
<
<
0.92F > i
*—;______*“““
e
0.91 L I I I I L | !
1 2 3 4 5 6 7 8 9 10
k outliers

20



1.002

0.9981 |
@ -
g T
5 0.996 ST~ |
5 —  + FDRwith h=0.75m T~
T
I — — + — - UCL with h=0.75m
) I ]
g 0.994 ——%—— FDR with h=0.5m
© — — % — - UCL with h=0.5m
0.992} i
- - e *~ =
* — - - =~ ~
T
0.99| - |
T4
0.988 . ! y 1 . 1 : :
h ; 3 7 5 p 7 8 9 10
k outliers

Figure 10: The correct-rejection rate forthe aspartame example with m = 100, M shift, and
nep = 49.
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Figure 11: The correct-rejection rate for the aspartame example with m = 30, N shift, and
nep = 49.
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Figure 12: The correct-rejection rate for'the agpartame example with m = 50, N shift, and
nep = 49.
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Figure 13: The correct-rejection rate for the aspartame example with m = 100, N shift, and
nep = 49.
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Figure 14: The correct-rejection rate_for the agpartame example with m = 30, I shift, and
nep = 25.
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Figure 15: The correct-rejection rate for the aspartame example with m = 50, I shift, and
nep = 25.
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Figure 16: The correct-rejection rate for'the aspartame example

nep = 25.
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Figure 17: The correct-rejection rate for the aspartame example with m = 30, M shift, and

nep = 25.
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Figure 18: The correct-rejection rate for'the aspartame example with m = 50, M shift, and
nep = 25.
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Figure 19: The correct-rejection rate for the aspartame example with m = 100, M shift, and
nep = 25.
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Figure 20: The correct-rejection rate for'the agpartame example with m = 30, N shift, and

nep = 25.
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Figure 21: The correct-rejection rate for the aspartame example with m = 50, N shift, and
nep = 25
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Figure 22: The correct-rejection rate for the aspartame example with m = 100, N shift, and
nep = 25.
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