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Abstract

An technique of developing approximate tolerance intervals is
established. Examples and real data analyses based on approximate
tolerance intervals for Weibull distribution and extreme value
distribution are provided. Furthermore, this technique is extended to

linear regression model.
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Approximate Tolerance Intervals

Hsiu-Hui Yang, Lin-An Chen and Hung-Chia Chen

Institute of Statistics, National Chiao Tung University,

Hsinchu, Taiwan.

Abstract
A technique for developing approximate tolerance intervals is established.
Examples and real data analyses based on approximate tolerance intervals
for Weibull distribution and extreme value distributions are provided. Fur-

thermore, this technique is extended to a linear regression model.

Key words: Confidence interval; coverage interval; tolerance interval;

1. Introduction

Statistical theory of interval estimationdeals mostly with the confidence
interval to contain a parameéter-6. In many-applications, we require an
interval to contain the future-randontvariable (r:v.), which is a prediction
problem. Among the alternatives, intervalsin the form of tolerance intervals
are widely used in quality control and related prediction problems to monitor
manufacturing processes, detect changes in such processes, ensure product
compliance with specifications, etc.

In manufacturing industries, specification limits for a characteristic such
as thickness or volume, say LSL and USL, define the boundaries of accept-
able quality for a manufactured item (component). Consider the manufac-
turer of a mass-production item. The manufacturer is interested in an inter-
val that contains a specified (usually large) percentage of the product and he
knows that unless 90% of his production is acceptable in the sense that the
item’s characteristic falls in the limits, he will lose money in this production.

For this purpose, having a random sample X4,..., X,, from a distribution
with probability density function (pdf) f(z,0), Wilks (1941) established the

Typeset by ApS-TEX



tolerance interval by saying that (T1,7%) = (t1(X1,..., Xpn),t2(X1, ..., X3))

is a y-content tolerance interval with confidence 1 — «v if it satisfies
Po{P% (T, Ty)] >~} >1—aforfcO (1.1)

where © is the parameter space.

A vast literature on tolerance intervals has been developed (see for ex-
ample Wilks (1941), Wald (1943), Paulson (1943), Guttman (1970) and
a recent review in Patel (1986)). As noted by Bucchianico, Einmahl and
Mushkudiani (2001), both the mathematically and the engineering oriented
statistics textbooks hardly deal with this topic explicitly; and if they do, the
treatment is often confined to tolerance intervals for the normal distribution.
This is partly because tolerance intervals can be difficult to construct for
particular distributions (although nonparametric tolerance intervals based
on order statistics can be obtained for particular values of the content) and,
perhaps, partly because as Carroll and Ruppert (1991) suggest, the idea of
conditional coverage probability of (1.1)"is ¢ensidered to be too difficult for
beginning students.

We consider a further problem that tolerance ifitervals for many distribu-
tions are still waiting to be developed.”This is because when the tolerance
intervals appear in the literature, they are generally constructed through
some appropriate pivotal quantities.. However, this design may not be avail-
able for many distributions useful in reliability and lifetime data models.
Hence, it is desirable to solve this problem by approximation technique.

The idea for this research comes from an extension of the technique of
confidence interval of coverage interval in Chen, Huang and Welsh (2005).
We establish theories based on asymptotically normal quantile estimators to
establish approximate tolerance intervals. An advantage of this techniques
is that the explicit form of the interval may be formulated. For specific, we
construct these approximate tolerance intervals for a Weibull distribution
and extreme value distribution where large sample properties of the maxi-
mum likelihood estimators of the unknown parameters are emplyed in this

setting. Real data analyses for these two approximate tolerance intervals
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are also provided. Finally, we extend this technique to the construction of
nonparametric regression tolerance interval by using the regression quantile

of Koenker and Bassett (1978).
2. Theoretical Basis for Approximate Tolerance Interval

Let X, ..., X,, be a random sample from a distribution with distribution
function Fp where € is an unknown parameter. We also denote (T1,T>) =
(t1(X1, ey Xp), t2(X1, ..., X;n)) as arandom interval. We say that (a(f), b(0))
is a v coverage interval for the underlying distribution if v = P%[(a(8), b(0))]
for & € ©. It is interesting and desirable to compute the exact tolerance
interval when possible. However, in general, the calculations are intractable
and we have to resort to approximations. One way to construct an approxi-
mate tolerance interval is through the use of approximate confidence interval

of a coverage interval.

Theorem 2.1. Let (a(f),b(0)) be a 7 coverage interval. If (T7,T%) is an
approximate 100(1 — a))% confidence interval of (a(6),b(9)), then (T, Ts) is
an approximate y-content tolerance interval at’confidence 1 — a.

Proof.

Py{PY((T1, T)] 20V SRR ER(T) = Fo(T1) > )
= Py{Fy(Ts) — Fs (T} Ealb(@)) — Fa(al0))}

> Py{Fy(T1) < Fo(a(0)) < Fy(b(0)) < Fy(T3)}

> Py{Ty < a(h) < b(0) < T}

as Fy is nondecreasing. Then

limy, 00 Po{ P%[(T1, T2)] > 7}
> limn_)ooPg{Tl < CL(Q) < b(g) < T2}
=1—a. O

In all theorems introduced in this paper, approximate one sided tolerance

intervals of the forms (—oo0,T3) and (T}, 00), respectively, corresponding
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with 7 coverage one sided intervals (—oo, b(f)) and (a(0), o) are our special
situations.

In the application of Theorem 2.1, to establish an approximate tolerance
interval we need to decide a parameter v coverage interval and a confidence
interval for it. At this point, we presume that we have (a(0),b(#)) and then
we consider asymptotic normal estimators of a(f) and b(f) to construct

approximate confidence intervals for this v coverage interval.

Theorem 2.2. Let a(0) with standard error s, (#) and b(#) with standard
error s,(0) be asymptotically normal estimators of a(f) and b(6) respectively
so that n'/2(a(0) — a(0))/se 5 N(0,1) and n2/2(b(0) — b(0))/sp = N(0,1).
Suppose we want to set a 100(1 — a)% confidence interval for the interval
[a(0), b(#)]. Then

S ~

, b(0) + Z1-g (2.1)

is an approximate 100(1 — «)% confidencerinterval for [a(f), b(0)].
Proof.

1_pH{M 221—2}_139{% g—zl_%}

—1- P {a(e) . zl_%% . a(e)} P {B(e) +2is L < b(e)}

SO

l—a < lim Py {&(9) — 21_%3\/—2 < a(f) and b(0) < b(H) + zi_a O
n

Sh
n—00 \/ﬁ ’
When (a(0),b(0)) is a v coverage interval, the random interval in (2.1) is an
approximate y-content tolerance interval with confidence 1 — «. To choose

coverage interval (a(f),b(#)), we restrict it on a quantile interval.



The general class of v quantile coverage intervals is
{IFy (), F ' (v+a)]:0<a<1—q}). (2.2)

The simplest general v coverage intervals for the underlying distribution are
the v median coverage intervals given by Ciea(v) = [F; 1 {(1—7)/2}, F; H{(1+
v)/2}] and one sided ones (—oco, F; '(v)] and (F, '(1—7), 00). However, the

shortest coverage interval
Crmoa(7) = [Fy (o), Fy (v + )],

is also very interesting where a* = argomingca<i—{F,; " (y+a)—F,; *(a)}.
We tentatively consider the general coverage interval C(v) = [F, *(a1), F; *(az)]
where o and as are known. Given an estimator 6 of 6 and by letting
ﬁ’g_l(al) = Fé_l(al) and Fg_l(az) = Fé_l(az), then we can estimate the ~y

coverage interval by

~

Cly) = [Egian), Egt(as))-

We restrict 6 as the maximum likelihood estimator for the convenience of

using its large sample properties.

Theorem 2.3. Suppose that 0 is the maximum likelihood estimator of 6.
Suppose that F' is continuously differentlable and the regularity conditions
hold. We also let s2 = (8F"a (a)> I7(6) (8F9 (a)> ,0 < a < 1. For any
aq, g with ag —ay =7,

A~

Fy (o) () iy (2.3)

—21——\/— F, +Z1__\/—

is an approximate y-content tolerance interval at confidence coefficient 1 — .
Proof. This is to use Fj; (1) and F, '(az) to construct an approximate
100(1 — )% confidence interval for quantile interval (Fj; *(ay), F, H(a2)).
We can write

/

Fy o)~ By o) = (12 ) (-0



and

i o) - o) = (P )Y ),

—1 / —1 —1 !/
By letting 02 = (81?9879@2)) I=1(0) (8}79879(“2)) and o} = (81?9879(0‘2)> I-1(0)

(WJT(G*)) , it follows that

V(B (on)=Fy (00)) 5 N(0,02) and v (Ey (o) Fy  (02)) 5 N(0,07).

From the fact that so, = 0, and s., — 03, the interval in (2.3) is an ap-
proximate 100(1 — )% confidence interval for (F; (), F; ' (a)) following
from the Slutsky theorem and Theorem 2.2. [

In this paper, we do not consider which type of the coverage interval is
appropriate to use (see Chen, Huang and Welsh (2005) for an argument).
However, the median (two sided) type and one sided lower covergae intervals

will be used as examples.

Corollary 2.4. Let the regularity conditions hold. Then based on the

median vy coverage interval,

Bt () — 21y MDA o R )
is an approximate y-content tolerance interval at confidence coefficient 1— .

Owen (1964) argued that most tolerance intervals developed for normal
distribution are set up for controlling the center part so that the percentage
nondefective is controlled 100v%, and hence the defectiveness could be all be
in one tail. Then he consider a normal tolerance interval such that no more
than the proportion 1_77 is below the lower tolerance limit and no more than
the proportion 1_77 is above the upper tolerance limit. Extending from his
idea, we may expect an approximate 7y-content tolerance interval (77, T5)
with confidence 1 — « that satisfies

. 1-
litny 0 Po{ P[00, T1)] < — -

and P%[(T, 00)] < 1_T7} >1-a.
(2.5)
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Theorem 2.5. Having chosen the median 7 coverage interval, then the
approximate y-content tolerance interval of (2.4) at confidence 1— « satisfies
Owen’s requirement (2.5).

Proof. First, we see that

A 1—*}/
Po{P%[(—00, F I(T) B

S(147)/2 -
) g = LB o) < )

ST e’ S(1—)/2 S
= Py{Fy(Fy 1(T) ~Al-5 T;) < Fy(Fy )) and
p1 1t S(147)/2 —
L= Fy(Fy (=) +z1_%72) <1 - Fo(Fy (=)}

. 1= S(1— 1=
= B{Fy(Fy () — sy 2 < By () and
~ 1 14y S(14v)/2
) < Fp(Fy () + 215 %)}

1+v

Fy( 5

1+
Fy(FyH (——

S el Sa/z o por b=y g Lty
1 Y 1 1
= Poiky (T)_Zl‘%TS% (T)<F9 (T)S
~ 1, L+ 5(147)/2
1 Y
F, (—2 )+z1_%7\/ﬁ }.

Then, following from Theorem 2.2,

. .1 §(1L 1—
limy, o0 P { P4 [(— 00, Fy (A Ly St Uen)/2y) o > 7 and PY[(

2 > _d/n
A 1 2 g
Fg_l(ﬂ) +21_%M,OO)] < T} >1—a. O

2 vn

Before introducing examples of approximate tolerance intervals, we should

verify if the proposed approximation technique has an appropriate efficiency.
We will simulate one example to compare an exact tolerance interval and
an approximate one in terms of their difference in confidence.

Suppose that we have a random sample X1, ..., X,, drawn from the expo-

nential distribution with pdf
f(z,0) =0e % 2> 0.

The Ath quantile function of this distribution is F; ' (\) = —071log(1 — )

for 0 < A < 1. One sided tolerance intervals are derived by Goodman
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and Madansky (1962) and the two sided one with explicit form have been
presented in Chen, Huang and Welsh (2005). Based on 7 coverage interval

1+v

C() = (0 Hog (), —0 o (=),

the following

(2T Kilog (L4 2)/2) 250 Xilog(=2/D)) 50

X1—a/2 Xa/2

is a y-content tolerance interval with confidence 1 — . It is known that
the maximum likelihood estimator of § is X!, the maximum likelihood

estimator of the y-content coverage interval is

A . 1+ _ 1—
Cly) = (_Xlog(—fy), —Xlog(Tfy),
Because /n(X — %) is approximately normal with mean zero and variance
o7, we have the following
1+ _ 14 d log((1 +~)/2))2
V(- Klog( ) - (—omuap TN o, L0 927)/ i
1 —v = =l Xy log((1—17)/2))?
Vn(=Xlog(—— 5 ) — (-6 1l0g(T))) < N0, (log (( - )/2)) )
Then we have that the random interval
= 147 = =log((L47)/2) 1—~
-X —_— ) — _aX _X
(—Xlog( 9 ) — 21-a n log(—— 5 )

—log((1 —7)/2)
NG

is an approximate y-content tolerance interval with confidence 1 — a.

+ Zl_gX

) (2.7)

It is of interest to compare the exact tolerance interval of (2.6) and the
approximate one of (2.7) in simulation. With replication m = 100, 000, every
time we select sample of size n randomly from the exponential distribution
for a fixed 6. We let (£, #]) represents the sample tolerance interval of (2.6)

or (2.7) for the jth sample. The simulated confidence may be defined as

Conf = — ZI Fp(th) — Fo(t]) > )
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where Fjy is the true distribution function for the exponential distribution.
We also consider that v = 0.9,0.95,0.99, 1 — a = 0.9,0.95,0.99 and n =
10, 30,50. Let Confapp and Confey, represent the simulated confidences
for, respectively, the approximate and exact tolerance intervals. We then

display the absolute values of confidence differences as
|Con fopp — Confegal

in Table 1.

Table 1. Confidence differences for two tolerance interval when the distri-

bution is exponential

1—a=09 1—a=0.95 1—a=0.99

v=20.9

n =10 0.0012 0.0117 0.005
n = 30 0.004 0.0026 0.0016
n = 50 0.0059 0.0093 0.0055
v =0.95

n =10 0.0029 0.0033 0.0203
n = 30 0.0082 0.0037 0.0119
n = 50 0.0065 0.0071 0.0003
v =0.99

n =10 0.0015 0.0041 0.015
n = 30 0.0031 0.0094 0.0084
n = 50 0.0095 0.0085 0.0069

Since the confidences are all equal or above 0.9, the differences displayed in
Table 1 are quite insignificant. This indicates that an approximate tolerance

interval is appropriate as a choice when an exact one is not attainable.

3. Approximate Tolerance Intervals for Weibull Distributions
Location-scale and log-location-scale distributions are the most widely
used for parametric reliability and lifetime data models. This section presents
approximate tolerance intervals for a Weibull distribution. Consider the
random variable with Weibull distribution that has a probablity density

function of the form

flx, A\, B) = )\Ba:ﬁ_le_mﬁ,x >0 (3.1)
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for some A > 0,8 > 0. The population quantile function is F~!(a) =
[~A"log(1 — «)]'/P. With this, there are available explicit quantile inter-
vals serving as coverage intervals. However, without appropriate pivotal
quantities, there is difficulty developing exact tolerance intervals.

Let’s denote

(—log(m))*/# £y (m, N)
N2/B32 Uy(N)

52,6i(1M, By A) =

wet

where

li(m, ) =1+ 27‘(’ — 106 + 562 + 10log(A\) (=1 + 68) + 5log(A\)? — 2(1 — § — log(N))

tog (22 {19y ()

and
5

ly(A) = 671'2 + 8(—=6 — log(A) + log(N)) + 4(62 + log(A\)?)
and where ¢ is the Euler’s constant, with'd&=,— [~ log(z)e~%dz = 0.57722....
We present an approximate tolerance intierval for Weibull distribution where

its proof is listed in the Appendix.

Theorem 3.1. Suppose that we.have a random sample drawn from the
Weibull distribution of (3.1). Then, with maximum likelihood estimators
and B,

(A Mog(LE 20— gy Pl fﬁm’ By

Swei (1 - %/2,/1 Ny 5

is an approximated y-content tolerance interval with confidence 1 — o« and

. 1— 5
[~A"Mog(— )M + 21y

1_77375‘)
\/ﬁ

S 3 Swei
(0, [~ og (1 — )]/ 4 2y, Sweil

)

and A
Swei (77 Bv )‘)
Voo

(=AY og(v)]'/? = z1_4

o0) (3.3)
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are respectively approximated one sided -content tolerance intervals with
confidence 1 — a.

We use real data analysis to explain these approximate tolerance inter-
vals. The complete data set of n = 23 ball bearing failure times (originally
discussed by Lieblein and Zelen (1956)) to test the endurance of deep groove
ball bearings has been extensively studied. An ordered set of failure times
measured in 108 revolutions is displayed in Leemis (1995, p190) with a data
analysis. From an attempt to study the confidence interval for survival func-
tion, Leemis shows that the Weibull distribution is significantly better than
the exponential distribution in fitting this data set. In fact, it is known
that a Weibull distribution always provides a better fit than an exponential
one since it is a generalization of the exponential distribution. We display
the approximate one sided lower tolerance interval of (3.3) in the following
table.

Table 2. Approximate Weibull tolerance interval for ball bearing data

1—a =100 0.95 0.99

~v=09 (24.491, o0) (23.476, c0) (21573, 0)
v =0.95 (17.369, 50) (16.644, c0) (15.286, c0)
v = 0.99 (7.971, 50) (7.632, 00) (6.996, c0)

To evaluate the performance of'the approximate Weibull tolerance inter-
val in case of this data set, we compare it. with other tolerance intervals.
The exponential distribution has an exact lower y-content tolerance interval
with confidence 1 — « as

—2nlog(v)
(mXa 00). (3.4)

Basically the lower tolerance intervals are confidence intervals of the survival
function S(t) = P(X > t) and then they are expected to have the same

pattern performed by the empirical survival function
1 n
Sp(t) = — I(X; >1t),t>0. 3.5
0= LIz 00 (35)

Without knowing the true distribution in a real data analysis, this view of

interval-like estimations being compared with an empirical distribution has
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been presented by Leemis (1995). Following Leemis’s setting, we consider
the survival function v = S,,(¢) as a function of ¢ and Weibull lower tolerance
limits t = [—X‘llog(v)]l/ﬁ — zl_aMJE’B’:\) and exponential lower tolerance
%;ﬁ as functions of . In Figure 1, we present the pictures

of empirical survival function and one sided lower exponential and Weibull

limits ¢t =

tolerance intervals for the ball bearing data:
Figure 1 here

With confidence 1 — a > 0.5, a lower one-sided tolerance interval is ex-
pected to be under the sample survival function and also parallel to it. From
this point, the tolerance interval based on Weibull distribution does achieves
this aim appropriately. However, it is quite not appropriate for it based on
exponential distribution since it is too low on its left part and too high on
its right part.

Next, we compare the two sided tolerance interval for this ball bearing
data with the log-normal tolerance interval., The log-normal distribution
is another popularly means for menitoring lifetime data. Suppose that the
logarithm of the ball bearing random variable follows the normal distribution
N (1, 0?), using the technique-of Chén; Huang and:Welsh (2005), a y-content

log-normal tolerance interval with confidence 1.— « is

1)
(3.6)

where X7 and St represent the sample mean and sample standard deviation

of logarithms log(X4),log(Xs),...,log(X,). The two sided tolerance inter-

vals are confidence intervals of two-sided quantile intervals (F~1(15), F~1(1£2))

and so are expected to have the same pattern performed by its empirical

function, when n = 2k,

Si) = (ST > 0,0 3 IX <)), (3.7)
i=1 i=k+1

with X7 = X5y,i = 1, ...,k and X}* = X(5),= k + 1, ..., 2k where X;),i =
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1,...,2k are the order statistics of Xy, ..., X,, and, when n = 2k 4 1,

|kl | 2kl
SZ(x)Z(k—HZT(XZ‘Zx),k—H Z I(X* <)) (3-8)
i=1 i=k+1

with X7 = X3y,i = 1,.., k+ 1 and X** = X(5),i = k + 1,..., 2k + 1. Now,
we consider a two sided empirical function of (3.8), the two sided Weibull
toleance limits functions in (3.2) and two sided log-normal toleance limits

functions in (3.6) and plot them in Figure 2.
Figure 2 here

Basically two distributions both caught the right shape in interpreting
the two sided sample cumulative distribution. However, the Weibull one fits
the data better. Let’s see this. Consider the 0.9-content tolerance interval
with confidence 0.9. The Weibull and log-normal ones have sample tolerance

intervals, respectively,
(15.7150, 163.3858) and (18.1581,221.8032)

with lengths 147.67 and 203.65. Thisyindicates that in this example the
approximate Weibull tolerance intervalis significantly shorter than the exact

log-normal tolerance interval;

4. Approximate Tolerance‘Intervals for Extreme Value Distribu-
tion

The next application of approximate tolerance interval is considered the
extreme value distribution. This distribution is another example widely
used in lifetime data and reliability analyses which has a pdf

(@, b) = %6%&_6%

for some b > 0 and p € R. The ath quantile function for this distribution
is F=Y(a) = p+blog(—log(1l — a)).

Let’s denote 52, (7y) = b2(—%+%2)_1[1—%+%2—25+52—2log(— log(y))+
26log(—1og(v)) + [log(—1log(¥))]?]. With the proof presented in the Ap-

pendix, we display its corresponding approximate tolerance interval in the

,x €ER (4.1)

following theorem.
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Theorem 4.1. Suppose that we have a random sample drawn from the
extreme value distribution of (4.1). Then, with maximum likelihood esti-

mators fi and 13,

(14 b log(~log(+51)) - 21y 2L,

it b log(—log(l_Tfy)) +21-2 Sewt((l\/_ﬁy)ﬂ)) (4.2)

is an approximate y-content tolerance interval with coefficient 1 — o and

Semt(l - ’Y))

vn

(0, 1+ b log(—log(1 = 7)) + z1—a

and

(i + b log(—log(7)) — 21_a S@jg) 00) (4.3)

are respectively approximate one sided 7y-content tolerance intervals with
coefficient 1 — a.

Consider the analysis of a failure voltage for a type of cable. Data for
voltage levels at which failures occurred in two types of electrical cable
insulation when specimens were: subjected tor.an increasing voltage stress
in a laboratory test may besseen in Lawless (2003, p240). Engineering
experience (Stone and Lawless (1979)) suggests that the log failure voltage
of cable are adequately represented: by-extreme valued distribution.

We display the empirical survival function et (3.5), extreme value toler-
ance limit curve of (4.3) and exponential tolerance limit curve of (3.4) in
Figure 3.

Figure 3 here

This data analysis reveals that an extreme value tolerance interval performs
better in analyzing this data set than the exponential distribution since the
exponential tolerance limit curve is too low on the left part and too high on
the right part.

We now further dispaly the two sided empirical distribution function of
(3.7), two sided extreme value tolerance limit functions of (4.2) and log-

normal tolerance limit functions of (3.6) in Figure 4.

Figure 4 here
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Although the log-normal is popularly used in analyze the lifetime data,
however, in this case, the extreme value tolerance interval also performs
better than the log-normal tolerance interval.

Two real data analyses in two sections confirm the effectiveness of using
approximate tolerance intervals because that uses more general distribu-

tions.

5. Approximate Regression Tolerance Interval

A series of articles by Goodman and Madansky (1962), Liman and Thomas
(1988) and Mee, Eberhardt and Reeve (1991) deals with tolerance intervals
for regression with normal errors model. However, we can sometimes only
make minimal assumptions on the shape of the family of distributions gen-
erating the regression data. Hence in this situation, we need to consider a
nonparametric technique to develop regression tolerance intervals. In this
situation, we have to resort to approximations. The quantile approach in
regression will solve our problem.

Suppose that we have a linear régression’model
yi =0+ €yt =1,%.1m (5.1)

where, for each 7, x; is a known ‘designrp=vector with value 1 in its first
element and ¢;,72 = 1,...,n are independent _and 1dentically distributed error
variables with distribution function F'."Let xo be a known vector. The inter-
est is to infer a random interval that includes at least a certain percentage
of distribution of future response variable yo with confidence 1 —a. The ath

conditional quantile of the variable yo given xq is 7y + F~1(a),0 < a < 1

—1
which can be expressed as z(;(«) with f(a) =+ <F O(Oé) ), where 0 is
the (p—1)-vector of zeros and (3(«) is called the population regression quan-
tile. A nonparametric method for developing regression tolerance interval is

through a consistent estimator of population quantile.

Theorem 5.1. Let regression quantile estimators 3(1_77) and B(HT”) be

asymptotically normal. Suppose that there are standard errors s, and s

so that n'/2(zp3(157) — 24f(15))/sa < N(0,1) and n'/(zpH(H7) -
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2y B(1£2)) /s 5 N(0,1). Then

Al s A 1+ Sb
xBB(T) _zl—%\/—%v xBB(T)Jrh—%ﬁ

is an approximate two sided regression <y-content tolerance interval with

confidence 1 — a.

Proof.

L P{xﬁﬁ(%i/—\/f%ﬁﬂ(l%) > g} P{a:f) A(%Si/—\/fﬂﬁf)ﬁ(HTv)

— 1= Pl ) - sy e 2 85 ) - Pl )

+ a1y <apf )

< 1= Pl ) - g S 2 05 or st

+ a1y <af )

= P a1y T <) Hid b0 <

S

so the theorem is followed from Theorem 2.1 and the following
1—a< lim P{:L'{,B(l_—’y) — et < xgﬁ(l_—’y) and

5, 2 t 2

() < B ) + g ) O

—21-9}

Although there are several ways to construct consistent estimators of pop-

ulation regression quantile 3(«) (see Koenker and Bassett (1978), Ruppert
and Carroll (1980) and Chen and Chiang (1996)), however, the most pop-

ular method is that developed by Koenker and Bassett defining regression

~

quantile 3(a) as the solution for the following minimization problem

n
minyere Y palyi — Tib),
=1
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where po(u) = utho(u), o(u) = a — I(u < 0) with I(A) the indicator
function of the event A.

This regression quantile, besides its popularity, it has been considered
as the most natural extension of a sample quantile since it satisfies several
properties of equivariance in location, scale and reparameterization of de-
sign. Furthermore, this regression quantile has been widely used to construct
robust estimators; see, for example, Ruppert and Carroll (1980), Koenker
and Portnoy (1987) and Chen and Portnoy (1996). Under some standard as-
sumptions (see Ruppert and Carroll (1980) and Chen and Portnoy (1996)),
the regression quantile /n(fB(c) — B()) has an asymptotic normal dis-
tribution with mean 3(«) and covariance matrix o (1 — o) f~2(F~1(a))Q ™!
where Q = lim,,_,oon "' X' X. Further references such as Koenker and d’Orey
(1987), Ruppert and Carroll (1980) and Lai, Chen and Chang (2004) may
help in the estimation of regression quantiles and their standard errors for
constructing regression tolerance interval. However, we leave it for further

investigation to examine its performance.

6. Appendix
Proof of Theorem 3.1: The uth quantile of'the Weibull distribution

is F~'(u) = [-A"tog(1 — u)J4P = We'have partial derivatives aF:(u,) =
g
1/8 1 _ 4B
(—log(1—wu)) (__1 _log(—log(l—u)/)\)) and dlog f(t) _ bY
BXL/B X B % + log(t) — A(log(t))

°(3)

With some calculations of integration, we may see that, with
1 2, 9 o 2
Cop = ?(1 + 50° + it + 100log(X) 4+ 5(log(A))* — 10(d + log(N)),

we have

100, p) = p(2og 1) Dlog 1), _ [ = L(1—6—log(\)

/(5) 2 (3)
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This shows that, from (3.2),
OF(5)

aF—l(l—Tv)_ s 147

7 I_l()‘vﬂ)i - Swei( )
'(3) (3) 2
OF () i 20PN (5 5, 1y
and WI (Aaﬂ)w = Sei 5 'y).

The theorem is followed from Theorem 2.3.

Proof of Theorem 4.1:
We consider the y-content coverage interval C(y) = (F~(152), F~1(112))
with

I+y

1= 1+ _
P~ (—) = ptblog(~log(—)) and F~'(—

. ) = kb log(~log (15 ).

This indicates

W ~ lnt-tanciz ) 248 32(%)) = (st )

We also have that the Fisher information-matrix is

1[ 1 1-6
I(M’b)_b_Z{l—é %z—g+52—25+1]'

We denote s2,,(7) = b2(— % + )71 — T 4 & 2§+ 62 — 2log(— log(7)) +
26log(—1log(y)) + [log(—log(7))]?]. We then see that

ol (1gY) L aFTMITY) 144

11ty ~1( 1ty _
and S o P < (),
3(6) 3<ﬂ>

The theorem is followed from Theorem 2.3.
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Figure 1. Lower Weibull and exponential tolerance intervals
for ball bearing data
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Figure 2. Two sided Weibull and Log-normal tolerance intervals
for ball bearing data
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Figure 3. Lower extreme-value and exponential tolerance
intervals for electrical cable insulation data
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Figure 4. Two sided Extreme Value and Log-normal tolerance
intervals for electrical cable insulation data
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