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Generalized inferences on the means and scales of

two independent Inverse Gaussian populations

Student: Meng-Hua Lin Advisors: Dr. Jack C. Lee
Dr. Shu-Hui Lin

Institute of Statistics
National Chiao Tung University

ABSTRACT

The 1G distribution has gotten ‘intensive attentions in statistical
application fields by reason:of it'is an ideal candidate for modeling positive,
right-skewed data. The classical procedures. have difficulties in analysis
non-homogeneous IG data. Hence; the  exact inferences on making
inferences for two IG means and scales deserve further research. In this
thesis, we present a convenient approach based on the generalized p-value
and generalized confidence methods to perform the hypothesis testing and
confidence intervals for mean and scale of one IG population as well as the
ratio of means and scales of two independent IG populations. Illustrative
examples show that the confidence lengths obtained by the generalized
methods are the smallest or close to the smallest length. Furthermore, the
simulation studies show that our coverage probabilities and type | error are
very close to the nominal levels.

Keywords: Coverage probability; Expected length; Generalized confidence; Generalized
p-value; Type I error
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Chapter 1 Introduction

For the last three decades, the inverse Gaussian (IG) distribution has gained
tremendous attention in describing and analyzing right skewed data. 1G distribution
can accommodate data with a variety of shapes from highly skewed to almost normal
and it is known that most of the data from applied fields are often positive and
right-skewed, that is why IG distribution has gotten intensive attentions in statistical
application fields. In 1915 Schrédinger introduced the probability distribution of the
first passage time in Brownian motion, but we still are unaware of other references to
the distribution until Tweedie (1945) proposed. the:name, IG distribution, for the first
passage time distribution. Next, Wald (1947) derived the distribution as a limiting
form for the distribution of sample size in a sequential probability ratio test. Because
of this derivation, the distribution is also known as Wald’s distribution, particularly in

the Russian literature.

In many areas of statistical applications, handling of skewed data is by no means
an exception but a fact of life. Hence if possible, it is desirable to analyze the data as
observed using statistical methods based on skewed distributions. However, standard
statistical methods for the normal distribution are commonly used for the data analysis.
This is primarily due to lack of alternative methods that are easily available and also

easy to understand. Although Gamma, Weibull, and lognormal distributions enjoy
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extensive use in certain special areas, none of them allow for a wide range of
statistical methods comparable to those based on the normal distribution.
Comparatively, 1G can accommodate a variety of shapes from highly skewed to
almost normal. See Chhikara and Folks (1989), Seshadri (1993, 1999) for more

details of IG distribution analogies.

As the 1G mean is inversely proportional to the drift of Brownian motion or the
growth rate in Weiner process, it would be of some interest to compare two IG means
if a comparison in the associated processes is desired. Chhikara (1975, 1989) derived
UMP-unbiased tests for the equality of two.inverse Gaussian population means, say
M - 1, , and constructed the confidence interval for the ratio of two means under the
identical shape parameter A assumption. However, the situation that two IG
populations have the identical shape parameter does not always happen. Afterward,
Tian and Wilding (2005) adopt the directed likelihood ratio and modified directed
likelihood ratio method (Barndorff-Nielsen, 1986) to provide an approximate
approach for constructing a confidence interval of s /u, of two IG populations.
Even so, exact inferences on the ratio of two 1G populations’ means when the scale
parameters 4, and A, are unknown and possible unequal still need to explore.
Therefore in this thesis, we would like to propose exact inferences on z/u, without

making identical shape parameter assumption. We will develop significant tests and



confidence intervals for the general cases without the assumption of equal scale
parameters based on the concepts of generalized p-values and generalized confidence
intervals. The concepts of the generalized p-value and generalized confidence interval
were introduced by Tsui and Weerahandi (1989) and Weerahandi (1993), respectively,
to solve many statistical problems involving nuisance parameters. Typically, the
generalized p-value and the generalized confidence interval were found to be fruitful
for problems where conventional frequentist procedures were non-existent or were
difficult to obtain (see the book by Weerahandi (1995) for a detailed discussion). The
lack of exact confidence intervals:in many applications can be attributed to the
statistical problems involving nuisance parameters. Therefore, for these reasons, we
will use the idea of a generalized.p-valtes approach to construct a pivotal variable, so

it can be used for both hypothesis testing and confidence region.

The rest of the thesis is organized as follows. In chapter 2, the properties of
inverse Gaussian distribution and the concept of generalized p-value and generalized
confidence interval is reviewed. For one IG population, our procedures and Chhikara
and Folks” (1976) methods for hypothesis testing and constructing the generalized
confidence intervals about x and A are introduced in chapter 3. In chapter 4, we

will present our procedures for hypothesis testing and constructing the generalized

confidence intervals about 4 and A for two independent IG populations. The
Hy



methods presented by Chhikara and Folks (1975) and Tian and Wilding (2005) will be
addressed in this chapter as well. We apply these results to four sets of data, and
compare our procedure with other methods with respect to their confidence intervals
and confidence widths in chapter 5. Three sets of simulation studies are also presented
in chapter 5 to compare the coverage probabilities, expected lengths, type | error and
power performances of these methods. Concluding remarks are summarized in

chapter 6.



Chapter 2 Properties of IG Distribution and the Generalized

Methods

In this chapter we provide some of the properties that play a significant role in
the development of statistical methods for the inverse Gaussian distribution and then
briefly introduce the theories of the generalized p-value and the general confidence

interval.

2.1 Properties of Inverse Gaussian distribution

The probability density function of a randonr variable X distributed as inverse

Gaussian with parameters 4 and: 1, denotedby. X ~ I1G(x, 1), is given by

f(X; 1, A) =(%)2 x’g exp{—/u;ﬂ—_;l;)z}, x>0, (2.1)

where #>0 and A>0. And the inverse Gaussian distribution function F(x) in

terms of the normal distribution function, CD(X) , IS given by

F(x)zq{ %(2—1}}&”@{— %(%Hﬂ (2.2)

The parameter 4 is the mean of IG(u,A) and A is the scale parameter. When

u =1, the distribution is often referred to as the standard Wald’s distribution.



If X ~1G(u,4), then the characteristic function, denoted by C, (t), is given

by

2ity? 2

A 3
C. (1) =expf -0/, (2.3

Suppose that all positive and negative moments exist, the moment generating function

E(X f) = rlw(zij_s ' (2.4)

which can be obtained by taking the rth derivative of C, (t) and evaluating it at
t=0. Thus the mean and variance of IG(z;,4) ¢an be derived as E(X )= and

Var (X )= 4/, respectively, through (2:4).

is a random sample'from 1G(x,4), then X => X;/n and

i=1

If X, X, X,

V:;(Xi‘l—i‘l)/n are the maximum likelihood estimates of 4 and A7,

respectively, with
X ~1G(ux,nA) and nAv ~ yZ,, (2.5)

where 1G(u,na) is the inverse Gaussian distribution and 7, is the chi-square
distribution with n-1 degrees of freedom. We can show that both of them are

statistically independent. The density function (2.1) is seen to be a member of the

. . . o1 - - .
exponential family, and (Z Xi'ZY) is a complete sufficient statistic for inverse
i=1 i=1 \j



Gaussian distribution.

By a simple characteristic function argument, it can be seen that if
X ~1G(u,A) then cX ~1G(cu,ci) for ¢>0. So the family of inverse Gaussian
distributions is closed under a change of scale. Because of the normal analogy it
would be natural to hope that any linear combination of inverse Gaussian variables
would also be inverse Gaussian. Unfortunately, the property of reproducibility does
not hold with respect to a change of location. Although this hope is not satisfied,
Chhikara (1972) and Shuster and Miura (1972) have shown that under the necessary
condition, A /u?=¢& for all i inverse_Gaussian variables do enjoy a certain
additive property. That is if X; ~1G(,%), 1=12,...n, independently, such that
Afut=¢& forall i, then D Xi'= IG(ZM,QZ(ZM)2).Therefore in order for the
linear combination Zcixi of independent inverse Gaussian variables to be inverse
Gaussian, A /c,u’ must be positive and constant, i=1,2,..,n. Hence the additive
property of the inverse Gaussian is restricted by a required relationship between the

two parameters.
Furthermore, it is worth to notice that
2
AX =) [ 12X ~ 22 (2.6)

This useful property can be easily proved by finding the moment-generating function,



and we will show how to use the statistic for our generalized method in next chapter.

2.2 Generalized p-value and generalized confidence interval

The concept of generalized p-value was first introduced by Tsui and Weerahandi
(1989) to deal with the statistical testing problem in which nuisance parameters are
present and it is difficult or impossible to obtain a nontrivial test with a fixed level of
significance. The setup is as follows. Let X be a random quantity having a density
function f(X|§), where {=(6,n)_issarvector of unknown parameters, @ is the
parameter of interest, and n iS a vector of ‘nuisance parameters. Suppose we are

interested in testing the null hypothesis
H,:0<86, versusH,:60>6,, (2.7)
where 6, is a specified value.

Let x denote the observed value of X and consider the generalized test

variable R(X; X, g), which depends on the observed value x and the parameters ,

and satisfies the following requirements:
(i) res =R(X;x,6,m) does not depend on unknown parameters.

(ii) For fixed x and {=(6,n), the distribution of R(X;Xx,{) is independent of



the nuisance parameters 7.

(iii)For fixed x and nm, P(R(X;x,§)2r|9) is either increasing or decreasing in

¢ forany given r. (2.8)

Under the above conditions, if R(X; X, t;) is stochastically increasing in &, then the

generalized p-values for testing the hypothesis in (2.8) can be defined as

p=supP{R(X;x, 6, )21, }=P{R(X;X, 6, n) 21} (2.9)

0<0,

where 1, =R(X;X, 6,,n).
In the same setup, suppose R(X; x, @, 1) satisfies the following conditions:

(i) Foranyfixed x, R" has aprobability distribution free of unknown parameters.

(i) If X=x, then ry =R"(x;x, 6,n)" does not depend on n, the vector of

nuisance parameters. (2.10)

Then, we say R™(X;x, 6,7) is a generalized pivotal quantity. If r, and r, are

such that
P{r<R(X;x, 0,n)<n}=1-a, (2.12)

then, {H:rlsR*(x; X, 6,1n)< rz} isa 100(1-a)% generalized confidence interval
for 6 . Following that, {R*(x; a/2),R°(X; 1-a/2)} is a (1-a) confidence

interval for &, where R™(x; y) stands for the yth quantile of R"(X;x, 6, n).

-9-



For further derails and for several applications based on the generalized p-value,

we refer to the book by Weerahandi (1995).

-10 -



Chapter 3 Inferences on one population of Inverse Gaussian

In this chapter, we will provide inference on parameters «# and A of inverse
Gaussian distribution based on a generalized test variable and generalized pivotal
quantity. In addition, Chhikara and Folks’s (1989) method will be briefly introduced

in this chapter as well.

3.1 Methods based on the generalized test variable and generalized

pivotal quantity
3.1.1 Inferences on u

Suppose X, X,,..., X, is a fandom sample from 1G(x, 1), where x and A

n

are unknown. The sufficient statistics

%ZI:X ~1G(un4) and V %2(%_%}% (3.1)
are independent.
Consider the problem of significance testing of hypotheses
H,:u=p, versus H,:u#u, (3.2

-11 -



when A is unknown. Since a generalized test variable can be a function of all
unknown parameters, we can construct the random variable R()?,V;Y,v,,u,/l) based

on the random independent quantities

— 2
nA(X -
B=nAvV ~ »’, and U :(Z—X'u)~ 72 (3.3)
y7,

as mentioned in (2.5) and (2.6), respectively. For facilitation, we define U as

— 2 _ 2
nA(X —
U =M=E 1_1 , (3.4)
HoX X\ u
which is chi-square distribution with 1 degree of freedom, then the generalized test

variable for testing (3.2) can be deduced as following equation:

3.5
1 (3.5)
where X and v are the observed values of X and V , respectively, and U ~ 4/,

B~zZ, and F~F,,, the Snedecor’s F distribution with 1 and n-1 degrees of

freedom.

It is noted that the distribution of R(X,V;X,v,u,2) is free of the nuisance

_ 2
parameter A, and the observed value robs=R(7,v;7,v,y,/1)=[£—1j is not
7]

-12 -



dependent on 4. Besides, for fixed X,v and A, P[R()?,V;Y,v,y,/i)zq is
increasing in u . Therefore, R satisfies the three conditions in (2.8), R is a

generalized test variable which can be applied for testing the null hypothesis

H,:p=u, versus H,:u=# u,. The generalized p-value can be computed by

p= P[R()?,V;Y,v,yo,ﬂ)z R(Y,V;Y,V,,uo,/l)}

2
XV X
-P|F > —-1] |, 3.6
[ l'nflxn—l (ﬂo J] (3.6)

where R is defined as (3.5), F,,, isthe Snedecor’s F distribution with 1 and n-1

degrees of freedom, and H, is rejected,when p<«.

A generalized pivotal quantity in-|interval estimation can be treated as a
counterpart of generalized test variable in significance testing of hypotheses. Because

the distribution of R()?,V;Y,v,,u,}t) does not depend on any unknown parameters

_ 2
and the observed value robs=R(7,v;7,v,y,i)=[1—1j does not depend on
y7;

nuisance parameter A, so R is indeed a generalized pivotal quantity satisfying the
conditions in (2.10). Therefore, we can construct the 100(1-«)% confidence
interval based on R(X,V;X,v,u,1).
Let R(X,v;a) stand for the ath quantile of R()?,V;Y,v,y,ﬂ) such that
P[R(X,ViX,v,11,2) <R(X,V;l-a) | =1-a. Then
{R(XV; XV, 1, A) <R(X,vil- )}

-13 -



- f 3.7)
XV XV
n-1 n— 1
is a 100(1-«)% generalized confidence interval of . For the fact that R is

distributed as nF where F~F  , and F, standsforthe ath quantile of F

distribution with 1, n-1 degrees of freedom.

Thus
X — it 1- |V F_ >0
1 \/X\lpla 1_\/XV|:la N
n-— n-—
or | — X oo if1- R 20 (3.8)

— ! n—l —
1+ | M E
n-1

isa 100(1-a)% confidence intervalfor 4.

3.1.2 Inferences on 4

Now consider the significance test of the hypothesis H,:A=4, versus

H,:A# A4, when g is unknown. Since Z(Xi—%}~;(§l/ﬂ,, we can construct
i=1 i

the generalized test variable based on

W=V~ 42, (3.9)

-14 -



with V =Z(Xi—%j and yZ, is chi-square distribution with n-1 degrees of
=~ X,

freedom. Therefore, the test variable, T (V;v,4) can be defined as

T(V;v,i)zﬂzvl. (3.10)

vV oV
For the fact that the distribution of random variable T (V;v,/l) is free of nuisance
parameter 2, the observed value tobS:T(v;v,/l):/l is independent of x, and
P[T zt] is non-increasing in A for any given t, hence T(V;v,/1) is a
generalized test variable which satisfies the three conditions in (2.8). The generalized

p-value for testing the null hypothesis, H,:A=4, versus H,:4A#4, can be

obtained through

p :2*min{P[T (V;v,ﬂo)>T(v;v,/10)],P[T (V;V,ﬂo)>T(v;v,ﬂo)]}

:2*min{P{@>%]P[%<zo} (3.11)

\Y

where T is defined as (3.10), y’, is chi-square distribution with n-1 degrees of

freedomand H, isrejected when p<e.

On the other hand, if we are interested in constructing confidence interval of A,
T (V;v,/i) can be used as a generalized pivotal quantity. Because the observed value
of T(V;v,4) is 42 and T(V;v,4) satisfies the two conditions in (2.10), the
100(1-a)% equal tail confidence interval for 4 is

{T(v;a/2),T(v;1-a/2)},

-15-



(3.12)

_ {Zi/z (n-1 le—a/z (n _1)}

\' \"

where T(v;y) stands for the yth quantile of T(V;v,4), and y;(n-1) denotes

the yth quantile of chi-square distribution with n-1 degrees of freedom.

3.2 Methods based on Chhikara and Folks (1989)
3.2.1 Inferences on u
Suppose X =(X,, X,,...,X,) is from 1G(x, 1), the joint density function of
X is
f(X;,u,i)ZC(H,!//)[ﬁXi3/2Jxexp|:¢9ixi +wzn:(xi +xi1)]
i T T
where Hzi(l—y‘z)/Z, w=-24/2.Since f(xu,A)=p"f (X ;1,4 ), without

loss of generality, assume g, =1, the hypothesis H,:u =g, versus H,:u# pu,

when A is unknown can equivalently be stated as follow:
H,:0=0 versus H,:0=0. (3.13)

For a given level o and let U=2Xi, the UMP-unbiased critical region
1

correspondsto U <k, or U >k,, are determined by

jkz h(uls)du=1-«a

ky

-16 -



and
J:zuh(u|s)du :1—aj':uh(u|s)du (3.14)

where h(u|s) denotes the conditional density function of U given s with

n 1 (u-n)’ e (u-n)’
h(ufs)= B[]/Z,(n—l)/Z] \/u3(s—2n) x{l_u(s—Zn)] 0< u(s—2n) <b

B is a Beta function and s = Z(xi + xi’l) .

Let

\/n—l()?—l)
_ 3.
RN (3.15)

where V :2(1/Xi—]/)?)/n, the critical region, U >k, in (3.14) corresponds to
1

W >C where C isgiven by

(n-2)/2
Ht,n_l(—c)+(zi§:j Ht,n_l(—\/4n+(s+ 2n)C? ) —a (3.16)

and H,,, is the Student’s t distribution function with n-1 degrees of freedom and
S= Z(xi + xi’l). In the two-sided case for testing H,:u =g, versus H,:u# u,,
A unknown, a UMP-unbiased level « test is obtained by replacing X, by X;/s,,

i1=12,...,n,in (3.15), then the test statistics given by

n—1(X—,u0)l (317)
Hy Y

-17 -



Moreover, this critical region is

),
XV

(3.18)

where t,_,, isthe 100(1-«/2) percentage point of the Student’s t distribution with

n-1 degrees of freedom. (Chhikara and Folks, 1976)

It is interesting to note that the critical region in (3.18) is equivalent to

—_ 2 _ 2
{(n_l) (i—lj > F nlla} . The p-value is p= P[F1 ng > @(i—lj ]
XVt i v

which is the same as our result in (3.6)2Thus we can conclude that our procedure is

easily applicable.

On the other hand, according te' Chhikara:and Folks (1989), the confidence
intervals for the parameter x can be obtained by inverting the acceptance regions.
Therefore, when A is unknown, it follows from (3.18) that the 100(1-«) percent

confidence interval for x is

-1 -1
- Xv - Xv . Xv
[X |:1+ Etla/z:| , X |:1— Etla/z:| ] , if 1— Et,l_a/z >0
-1
- Xv .
and [x {1+ nti_a/z} ,ooJ , otherwise. (3.19)

It can be also found that (3.19) is equivalent to our result in (3.8).

-18 -



3.2.2 Inferences on A

Roy and Wasan (1968) derived the UMP-unbiased test for H, :%:% Versus

Hl:%;t% when u is unknown. The statistic V = (1/X;-1/X) is distributed
1

as ;gffl//i and the critical region given by V <k, or V >k, corresponds to

AV <C, or AV =>C,, for a given level o of the test. C, and C, are determined
by

C, Cy
Jo gna(thdt=1-a and [ “tg,,(t)dt=n(1-a), (3.20)

where g, ,(t) denotes the density.sfunction of 2, . For the fact that

tg,., (t)=ng,,,(t), (3.20) can be written as

Fe (C)=F: (C)=Fg (G)F, (C)=1-a (321)

where FZZ denotes the chi-square distribution function with n-1 degrees of freedom,

n-1

and then C, and C, are uniquely determined from using tables of the chi-square

distribution. Thus, for the equal tail test, C, and C, can be obtained by solving

F. (C)=1-F, (Cz):%. Hence C, =;(n2_1’a/2 and C, =;(n2_1’1_a/2, where 47,

Zn-1 Zn-1

is the rth quantile of chi-square distribution with n-1 degrees of freedom. Therefore

the p-value is p=2*min{P[z2,>Av],P[z2,<4v]| and the 100(1-a)%

confidence interval for 4 is {1:C, <Av<C,} :{
v v

2 2
Zep(0=D xl_a/z(n—l)}

-19 -



We note that these results are equivalent to our results in (3.11) and (3.12).

=20 -



Chapter 4 Inferences on two populations of Inverse

Gaussian

Although there has been a rapid growth in 1G, the problem about making
inference to the ratio of two 1G means still need to be investigated. As the scale
parameters 4, and A, of two independent populations are the same, i.e. A =A4,,
the two-sided exact confidence interval of &= .,/u, has been discussed by
Chhikara and Folks (1989). However, it is not practical to expect two IG
populations to have the identical scale parameter all the time. Recently, Tian and
Wilding (2005) presented an approximate. approach to construct the confidence
interval of 6=, /u, of two:independent IG populations based on the modified
directed likelihood ratio method (Barndorff-Nielsen, 1986). Nevertheless, the exact
property of 6= /u, deserves further study. Therefore, in this chapter we will
provide an exact and convenient method based on generalized p-value and
generalized confidence interval to perform the hypothesis testing and then construct
confidence intervals for 6=z, /4, and the ratio of two scale parameters &6 =1,/4, .
In this chapter, we will also briefly introduce some methods in the literature which
will be utilized to compare with our procedure in numerical examples and simulation

studies.

-21-



4.1 Methods based on the generalized test variable and generalized

pivotal quantity

4.1.1 Inferences on 1/ u,

Let Xy, Xy, Xy, @Nd Xy, Xgy,.0, Xy, be independent random  samples

from 1G(z4,4,) and 1G(u,,4,), respectively, where 4 and 4 are unknown and

possible unequal with i=1,2. The independent sufficient statistics are given by

n y 2
X =3 %, =16 (1n4), vi=12[i—i]~“*, i-12. (1)
n; = N = i

Suppose we are interested in making inference:in the parameter 6 =y /u,, consider

the following hypothesis testing:

Ho:ﬂ:HO Versus Hl:i:teo, 0, >0, (4.2)
H, H,

when A are unknown and possible unequal with 1=1,2. Intuitively we may hope

that the generalized test variable for two populations of inverse Gaussian is parallel

that it for one population of IG in (3.5). In fact, the generalized test variable (3.5)

_ 2

: X : .

and its observed value =(——1J , can not be applied to the ratio z/u, .
U

Therefore we find another more flexible generalized test variable
G (X, X,V Vi %, %, Vo Vg, 1y, 11, 44,4, ) =G which s constructed by two

independent statistics G, (X,,V;i X,V 24,4 ) =G, and G, (X,.V,i%,,V,, 115, 4,) =G,

-22 -



Above all we deliberate the statistic G, based on the random independent

quantities

— 2 — 2

nA (X — 1 _

B =nAV, and U, =— 1 2'_”') BUZIESER ) (4.3)
X Xi L4

which has been mentioned in (2.5) and (2.6), respectively. Since B, ~ Zri—l and

U, ~ 7, then one part of the generalized test variable for testing (4.2) can be deduced

as following equation:

= [%v, h
=X _Ti X m +1:| (44)

with X and v, being the observed values of X, and V., respectively, and
U~z B~y and T, ~t ,, the Student’s t distribution with n,—1 degrees
of freedom for i=1,2. It is worthy to note that the observed value of G,, g . IS
4 which is the parameter we are interested in. There is no doubt that G, can be also

used as a generalized test variable in one population case and the result is equivalent

to what we got in Chapter 3.
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Eventually, since G, and G, are independent generalized test quantities, the

generalized test variable G can be defined as follows:

=— — (4.5)

where X, X,, v, v, are observed values. of X, X,, V,, V,, respectively, and

T, ~t,, , the Student’s t distribution with™ n/—1 ‘degrees of freedom for all i. It is

noted that the distribution of G “dis.independent:of the nuisance parameters A, or

2, and the observed value g, =G (X, %, Voo Vyi K %o, Vi, Vy 14y, A, Ay ) = F1 s

H

free of A4, and A,. Besides, for fixed X, X,, v,, V,, 4,4, and given any @,
P[G=>g] is monotonic in /s . Therefore, G satisfies the three conditions in

(2.8), G is a generalized test variable which can be applied for testing the

hypothesis Ho:ﬂzé?0 versus Hl:ﬂieo, 6, >0. The generalized p-value can

Hy Hy

be computed by

p=2*min{P[G >0, |0=06,],P[G <0y |0=6,]
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- B oo B -
x| Tx [ 4 x| Tox [ 4
i n -1 n -1
=2*min{P| —= >0, |,P|—= - <6, (4.6)
X, V. X, V.
X, | T,x [—22 +1 X, | T,x [—22 +1
2_ 2 nz _1 j| 2_ 2 n2 _1 j|

where G is defined as (4.5), T, and T, are the Student’s t distribution with n, -1

and n,—1 degrees of freedom, respectively, and H, is rejected if p<ec.

We next consider the problem of interval estimation for z,/u, based on
generalized pivotal quantity. Since the observed value of G is g /u, , the
parameter of interest, and the properties of G fulfill the requirements in (2.10), thus
G in (4.5) is indeed a generalized pivotal quantity which can be used to construct a
generalized confidence interval: Therefore the. 100(1-« )% equal tail confidence

interval for 44 /u, can be computed.by

{GM < ﬂﬂ < Gla/z} (4.7)

2

where G, stands for the yth quantile of G.

It is also noted that the statistics G, and G, can be utilized for testing the
equality of x4 and g, and constructing a confidence interval of z4 —p, if it is
necessary. Since the property of IG does not hold for the location change, it is hard
to make inferences for the mean difference without any restriction. On the contrary,
our procedure is readily applicable and easy to use to deal with mean difference
problem without any restriction.
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4.1.2 Inferences on 4,/4,

It is also an interesting problem concerning the parameter & =4/, . Consider

the hypothesis

Ho:izd0 Versus Hl:i;«td), (4.8)
% 4

when 4, and g, are unknown and possible unequal. In this situation, the statistic

T(V;v,/i):%:% with v:i(xil—i*) and W ~ z2, in (3.10) which is

employed in one population case can be applied to the two populations’ case as well.

Similarly, since Vizzl“(xi—xé] are sufficient statistics for 4 and
i=L e Aj

ij i

V, ~ ;(fifl /ﬁ,, , 1=1,2, we can construct the generalized test variable based on

W, =4V, ~ Zri—l (4.9)
where zri—l is chi-square distribution with n, —1 degrees of freedom for i=12.

Therefore the test variable T (V,,V,;v,,v,,8) can be defined as T =T,/T, with

AW
Vi Vi
T" = ANV _ W, /vy -F (nl_l)/vl (4.10)

- ﬂ'zvz/vz _Wz/vz - (nz —l)/V2
where F denotes the F distribution with n,—1 and n,—-1 degrees of freedom and

v, and v, are the observed values of V, and V,, respectively. For the fact that the

distribution of random variable T~ is free of nuisance parameters, the observed value
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*

tos =T (V1 V,Vi,V,,8) =68 is independent of nuisance parameters x4 and s, and
P[T*zt*] is non-increasing in &, hence T"(V,,V,;v,,Vv,,8) is a generalized test
variable which satisfies the three conditions in (2.8). Therefore T~ is indeed a

generalized test variable and can be used to test the hypothesis in (4.8). The

generalized p-value for testing (4.8) can be computed by

p=2*min{P[T" >t |5=5,],P[T" <ti, |5 =5, ]}

obs

- 2*min{P_W1/V1 > 5 } P{Wl/vl <50}}

_W2 /V2 ’ W2 /V2

_oxmi (n-1)/v (n-1)/v
=2 mln{P meo]{lzmwo}}, (4.11)

where T~ is defined as (4.10), Wy~ 7.5, W, ~ %> , and H, is rejected when
p<a.

Furthermore, in order to construct confidence interval of 4/4, ,
T (V,,V,:v;,v,,8) can be used as a generalized pivotal quantity as well. Because the
observed value of T™ is 4 /4, and T  satisfies the two conditions in (2.10), the
100(1- )% equal tail confidence interval for 4,/4, is

T (W Vyi0/2), T (v Vyil-a/2))

_ (W‘DWl (W_DAQ
- {Fa/z R Fo o DN } , (4.12)
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where T7(v,v,;7) stands for the yth quantile of T7(V,,V,;v;,v,,%) which is

defined in (4.10).

4.2 Methods based on Chhikara and Folks (1989)
4.2.1 Inferences on 1/ u,

Under the restriction of 4 =4,=4 and %:%:5, £ is a constant,
2

Chhikara and Folks (1989) derived a UMP-unbiased tests by constructing critical

points of their rejection regions using percentagé points of Student’s t distribution.

For the significance size "o test of Hy:g =u, versus H, i #u, ,

A =14, =74 isunknown, the rejection region is.given by

. (4.13)

> tl—a/z,n1+n2—2

M _ Ny _ vz
XX, (n X, + nziz){Z(x;ﬁ— X+ DX, - x;l)}

where t,_,, isthe 100(1-a/2) percentage point of the Student’s t distribution with

(n,+n,—2) degrees of freedom. And thus the p-value is

y2 . _
p=Pr [nlnz(nln+n2—2)1 (Xin_XZ) 77| > bew2 | (4.14)
%X, (0% +1,%,) Z(xﬁ—fﬁ)i(xﬁ—le)}
— J:l 1:1 -
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The test can be extended to compare the two inverse Gaussian means in terms of
their ratio. This follows because of the property that density function
f(x;p,A)=puf(x04/u) for X ~1G(u,A) . UMP-unbiased test of the
hypotheses H, :ﬂﬂ: 6, versus H, :Iuﬂ;t 6,, 6,>0 can be derived from (4.13) by

2 2

replacing X,; by 6&X,;, j=12,.,n,, provided the scale parameter of the

distribution function of X, isassumed tobe 6,1.

It is straightforward to express the UMP-unbiased test procedures in terms of 6,

obtained by inverting the acceptance regions of these tests at level «. When A is

unknown, the confidence interval for 6, _is given by

{(A[B—C],A[B+C]) ,1—>?1V1d2/n1>01 (4.15)

(O, A [—B+C]) . otherwise

where

_ _ -1 _ _
A=Zi1-2ge | gl X X g2
X 2 n, n,

_ _ — _ _ 2 V2
X_+ﬁ)vl+(&+&jvﬁg(xlvl_xzvzj d2] |
nn n n, 4\ n, n,
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and vlzi(x;-iﬁ) and szi(xg}—iz’l).
1

j=1
For more details, we refer to the paper and the book by Chhikara and Folks

(1975, 1989), respectively.

4.2.2 Inferences on 4,/4,

We now give a test for the ratio of two scale parameters 4, and A, from two
independent IG populations, say IG(yi,/l,), i=12. To test the hypothesis

Ho:izd0 Versus Hl:ﬁ;«td), take randomi.samples of n, observations of X,
4 4

and n, observations of X,.For the fact-that* 4V, and AV, have independent

chi-square distributions Zm , and ;(n _,, respectively, where V, = Z(i—xi] for

j=1 ij i

i =1 2. Thus the test statistic can be written as

AVy/(n -1) _ Yo /(M —1)
ﬂzvz/(nz_l) Zri—l/(nz_l)

Q= (4.16)

which is an F distribution with n,—1 and n,—1 degrees of freedom. Therefore

the p-value for this size « test is computed by

ol S
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~2*mi /(1) w/(n-1)
=2 mln{P{Fnl_lvnz_l>50 vz/(nz—l)]P{Fnl_l’”2_1<5° vz/(nz—l)}}' (4.17)

where Q is defined in (4.20) and F,,, , denotes the F distribution with n, -1

and n, -1 degrees of freedom, and H, isrejected if p<a.

A

It is straightforward to construct a confidence interval for — based on the

statistic Q given in (4.16). For the fact that Pr[F /2,n1—1,n2—l<Q<Fl—alz,nl—l,nz—l:l

o

=1-a,whereF is the rth quantile of F distribution with n, -1 and n,-1

7,n-1n,-1

degrees of freedom. Let ¢, =F,,,,,, and q,=F_,,, ., a 100(1-a)%

A

confidence interval for — can be_ebtain through

o/l 4 v/(n, 1)
_{qlvl/(nl_l) 2 Vl/(nl—l)} (4.18)

It is interesting to note that the result in (4.18) is the same as our result in (4.14). In

our procedure, the pivotal quantity (4.10) of A §

Z

o HnalV _ Va(n, -1)

T = -
Zri—llvz o Vl(nl_l)

the quantile points which satisfys

Pr[Cl<T*<C2}:1—a are ClquM and szqzM where

v,/(n -1) v/(n-1)

& =Fonina and d,=F_,, ;.. Thusthe 100(1-a)% confidence interval
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obs

for L s {ﬁ:C1<T* =i<C2} which is the same as (4.18).
4 4 Z

4.3 Confidence intervals of p,/p, based on the directed likelihood

ratio statistic

The signed log likelihood ratio has been discussed by many authors, McCullagh
(1982), Petersen (1981), Pierce and Schafer (1986), and Barndorff-Nielsen (1986)
etc., to obtain a statistic which is asymptotically standard normally distributed with

error of order O(n™*'?

) by repeated sampling. Tian and Wilding (2005) provided an
estimating approach for constructing a confidence interval of x,/u, based on the

directed likelihood ratio method.The procedure is as follows.

Suppose the ratio of the two means is the parameter of interest, that is
0= /u, and the vector of nuisance parameters is m=(z,,4,4,) and {=(6,n).
Let Y; :]/ X J=1...,n; 1=12, then Y;; and Y,; are two independent samples
from RRIG(z4,4,) and RRIG(u,,4,), respectively, where RRIG means the

reciprocal root IG distribution. The log-likelihood function is

|(;;X)=(n1+n2)|09(%J+%|Ogﬂl+n—22|09/12 +21—21

2

+M_£T1_%Sl_ﬁ-r2_/l_zzsz’ (4.19)
M 2 2yt 2 " 2
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where

S =y2 =% and T,=y2=Y1x,, i=12. (4.20)
=1 i=1 j=1 =l
The maximum likelihood estimates of the parameters of (4.19) are

é:(sl/nl)/(SZ/nZ)’ [‘2:82/”21 21:]7/(1_1/”1_“1/81) and izzl/(Tz/nz_nz/Sz)-
For a given value of &, the constrained maximum likelihood estimates of the

nuisance parameters m=(4,,4,4,) can be obtained by solving
iy = (S0 + 72y, (s  + Foy).
dp =0/ (T, +8,/0° 15, =20, /Oy, ).
Doy =1,/ (T, + S,/ 2, =20, [ iy ) (4.21)

simultaneously. The approximate 100(1—«)% confidence intervals of s, /u, based

on the directed likelihood ratio statistic r(6) is
{0:]r(0)<2,,} (4.22)
with

r(9)=sgn(§—9)[2(| (é,ﬁ)—l(e,ﬁg))}m, (4.23)

where 1(8) is the log-likelihood function in (4.19).
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Chapter S Numerical Examples and Simulation Studies

Some IG data are given to compare our procedure with other methods with
respect to their confidence intervals and confidence lengths. Several simulation
studies are also presented to compare the performances of three methods, (1)
Chhikara and Folks (2) Tian and Wilding (3) the generalized approaches, in terms of

their coverage probabilities, expected lengths and the Type 1 error.

5.1 Numerical examples

Example 1.

Gacula and Kubala (1975) reported certain sensory failure data for two
refrigerated food products, M and K as these were called, and studied their shelf life
which fit the IG distribution well. The summary data are given in Table 1 and the 95%
confidence intervals for three methods are presented in Table 2.

Table 1. Summary data

Product size 1 2
M 26 47 885 18.622
K 17 56.941 14.881
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Table 2. 95% confidence intervals and lengths for 6 = a

H
Method é 95% confidence interval length
Chhikara 0.771 (0.635,0.905) 0.270
Directed 0.753 (0.562,0.962) 0.400
Generalized 0.755 (0.554,0977) 0.422

Example 2.

Four sets of 1G data presented in Folks and Chhikara (1978) who judged that the
data are very well described by the Inverse!Gaussian distribution. The first set, data
(1), gives fracture toughnesses of MIG welds. The 'second set, data (2), gives data of
precipitation (inches) from Jug Bridge, Maryland. The third set, data (3), gives runoff
amounts at Jug Bridge, Maryland. Additionally, Gacula and Kubala (1975) gave data
(4) on shelf-life of a food product. The summary data for four sets of IG data are
shown in Table 3. For investigating the ratio of means of two independent populations
when the scale parameters are more different than those in Example 1, we will

compare the means of these four data sets mutually and show the results in Table 4.
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Table 3. The summary data for four data sets

A A

data size Y2, A
(1) 19 74.300 4924.070
(2) 25 2.160 8.080
(3) 25 0.800 1.440
(4) 26 42.885 484.253
Table 4. 95% confidence intervals and lengths for 8= et
Hy
/(1) é 95% confidence interval length
Chhikara 0.0303 (0.020, 0.040) 0.020
Directed 0.0290 (0.024,0.036) 0.012
Generalized 0.0294 (0.024 ,0.037) 0.014
3D é 95% confidence interval length
Chhikara 0.0118 (0.006,0.017) 0.011
Directed 0.0108 (0.008,0.016) 0.008
Generalized 0.0111 (0.008 ,0.016) 0.008
(C3Y(eY) é 95% confidence interval length
Chhikara 0.5857 (0.469,0.702) 0.233
Directed 0.5771 (0.509, 0.661) 0.152
Generalized 0.5796 (0.505,0.667) 0.162
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3)2) J2] 95% confidence interval length

Chhikara 0.4046 (0.154,0.655) 0.501
Directed 0.3726 (0.262,0.558) 0.296
Generalized 0.3812 (0.258,0.564) 0.306
2)/4) é 95% confidence interval length
Chhikara 0.0521 (0.034,0.070) 0.036
Directed 0.0503 (0.040, 0.066) 0.026
Generalized 0.0509 (0.040, 0.065) 0.025
(3)/(4) é 95%.confidence interval length
Chhikara 0.0201 (0.011% 0.029) 0.018
Directed 0.0187 (0.014,0.028) 0.014
Generalized 0.0193 ¢0:014,0.028 ) 0.014

From Example 1 and Example 2, the results show that the confidence lengths

obtained by the generalized methods are the smallest or close to the smallest

confidence lengths no matter what the scale parameters perform when two IG

populations are non-homogeneous. Some simulation studies are also worth to be

inspected, and we will make discussion in next subsection.
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5.2 Simulation studies

Some simulation studies are performed to compare the 95% coverage
probabilities, expected lengths and type | errors of three procedures for the ratio of
two means, O@=y/u, . We will choose different combinations of sample sizes
(n,,n,)=(5,10), (10,5) and (10,10), respectively, and various values of the ratio of
scale parameters, 4 /A4,, with 1,000 replicates for each combination. The results
appear in Tables 5-9. In addition, we will present powers of the tests obtained by the
generalized method in Table 10.

Table 5. Coverage probabilities (CP) and_expected“lengths (length) of 95% confidence

intervals of 0= A

My
6=0.2 Generalized@® Chhikara® Directed(®

(n1,n2) % CP length CP length CP length
(5,10) 0.5 0.957 0.698 0974 0.534 0.930 1.060
1 0.954 0.472 0.974  0.466 0.917 0.787
0.948 0.312 0.978  0.427 0.894  0.520
10 0.949 0.294 0.982 0.422 0.907 0.280
(10,5) 0.5 0.946  0.565 0.906  0.483 0.895 0.671
1 0.951 0.488 0.872  0.370 0.898  0.558
5 0.950 0.427 0.811 0.290 0.876  0.379
10 0.949  0.496 0.792  0.279 0.898  0.300
(10,10) 05 0.959  0.409 0.946  0.367 0.929 0.470
0951 0.335 0941 0.317 0912 0.373
5 0949 0.291 0.932 0.281 0.897 0.330
10 0.953 0.285 0.930 0.276 0.886  0.259

OGeneralized methods @Chhikara and Folks (1989) 3 Directed likelihood ratio statistic
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Table 6. Coverage probabilities (CP) and expected lengths (length) of 95% confidence

intervals of 0= A

My
6=0.6 Generalized® Chhikara® Directed®

(n1,n2) % CP length CP length CP length
(5,10) 0.5 0.955 3.889 0.906 5.231 0.932 3.589
1 0.957 2.651 0.962 2.023 0.902 2.602
0.952  1.067 0977 1.346 0.892  0.869
10 0950 0.974 0976  1.295 0.895 0.721
(10,5) 0.5 0.956  2.891 0:934  6.967 0.938 2.536
1 0.953 1987 0:926*, 2.027 0.903 1.658
5 0.955 =1.370 0.846' - 0.989 0.893 0.866
10 0.950 =1.321 0.823, - 0.896 0.906  0.863
(10,10) 05 0.955  2.482 0944 2.489 0.929 2.395
0952 1.536 0948 1.281 0.933 1.563
5 0.955 0.943 0.937 0.896 0.902 0.715
10 0.949 0.881 0931 0.856 0.902 0.661

O Generalized methods @ Chhikara and Folks (1989) 3 Directed likelihood ratio statistic
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Table 7. Coverage probabilities (CP) and expected lengths (length) of 95% confidence

intervals of 0= A

My
0=1 Generalized® Chhikara®@ Directed®

(n1,n2) % CP length CP length CP length
(5,10) 0.5 0.948  8.655 0.773  9.905 0.892 4.165
0.958 6.370 0.930 6.323 0.909 3.501
0.957 2.348 0976 2.331 0.907 1.433
10 0.956 1.872 0978 2.218 0.898  1.233
(10,5) 0.5 0954 7571 0.801 22.061 0919 3.813
1 0.952 4453 0.946. 7.066 0913 2.714
5 0.948 :2.440 0.868 -~ 1.873 0.899  1.480
10 0.953 =2.310 0.840 - 1.608 0.898  1.432
(10,10) 05 0.958 '6.168 0:897 -~ 11.000 0.926  3.856
0.955 3.450 0953  3.080 0916 2.872
5 0.954 1.668 0.943 1.580 0911 1.241
10 0.952  1.550 0.937 1.472 0909 1411

DGeneralized methods @Chhikara and Folks (1989) 3 Directed likelihood ratio statistic
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Table 8. Type | error for testing H,:0=6, versusH,:0+=6,, 0= a (e =0.05)
y2;

6,=0.4 type | error
(n1,n2) % Generalized® Chhikara® Directed(®
(5,10) 0.5 0.04 0.05 0.08
1 0.04 0.03 0.08
0.05 0.02 0.08
10 0.05 0.02 0.06
(10,10) 0.5 0.05 0.05 0.08
1 0.04 0.05 0.07
5 0.05 0.07 0.06
10 0.05 0.07 0.07
(15,10) 0.5 0.05 0.06 0.06
1 0.05 0.07 0.07
5 0.04 0.11 0.08
10 0.05 0.13 0.06

OGeneralized methods @Chhikara and Folks (1989) 3 Directed likelihood ratio statistic

Table 9. Type | error for testing Hy:0 =6, versusH,:0£6,, 0= ot (=0.05)
y7i

6,=0.8 type | error
(nl1,n2) % Generalized® Chhikara® Directed®
(5,10) 0.5 0.05 0.17 0.09
1 0.04 0.05 0.08
0.04 0.02 0.09
10 0.05 0.02 0.10
(10,10) 0.5 0.04 0.07 0.08
1 0.05 0.05 0.09
5 0.05 0.06 0.09
10 0.05 0.07 0.10
(15,10) 0.5 0.05 0.04 0.08
1 0.05 0.06 0.08
5 0.05 0.10 0.08
10 0.05 0.11 0.08

OGeneralized methods @Chhikara and Folks (1989) 3 Directed likelihood ratio statistic
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Table 10. Simulated powers for testing H,:6=1versusH,: 0 #1, =11 (a=0.05)

H
0
A
(n,n2) 7 0.2 0.4 0.6 0.8 I 1.2
(5,10) 0.5 0.763 0.245 0.128 0.061 0.053 0.051
1 0.911 0.391 0.112 0.053 0.043 0.041

5 0.998 0.726 0.210 0.077 0.045 0.047

10 1.000 0.825 0.310 0.074 0.047 0.070

(10,5) 0.5 0.902 0.306 0.092 0.047 0.046 0.047
0.957 0.381 0.120 0.050 0.048 0.051
5 0.979 0.532 0.174 0.061 0.052 0.072

10 0.983 0.556 0.201 0.072 0.054 0.079

(10,10) 05 0.971 0.397 0.136 0.065 0.042 0.042
0.998 0.627 0.176 0.063 0.048 0.057
5 1.000 0:865 0.335 0.080 0.045 0.069

10 1.000 0.884 0.368 0.095 0.044 0.081

(15,10) 05 0.995 0.542 0.150 0.066 0.045 0.043
1.000 0.722 0.349 0.057 0.044 0.071
5 1.000 0.867 0.407 0.091 0.053 0.061
10 1.000 0.889 0.386 0.099 0.046 0.080

From Table 5 to Table 10, we can conclude that the coverage probabilities
obtained by generalized methods are very close to the nominal level 95% and the
Type | error are exact or close to the nominal level 0.05. On the other hand, the
coverage probabilities obtained by directed likelihood ratio are too small and the type

| errors exceed the 5% in all cases. Besides, Chhikara and Folks (1989)’s procedure

performs well under 4 =4, and i'zzf, aconstant, i =1,2, but its performance
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becomes worse when the heteroscedasticity is increasing. In fact, the procedure based

on generalized methods is readily applicable and easy to perform even under the

sample sizes are quite small. The simulation results show that its results are better

than the other two methods with respect to having almost exact coverage probabilities

and the type | errors.
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