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摘要 

 

逆高斯分配在分析全為正數且右偏的數據時是一個很好的模型，因

此在統計應用上很受重視。過去的研究中，在不假設干擾參數相等的情

況下比較兩個母體的平均值及尺度參數的推論還需要我們繼續研究。因

此在本論文中，我們利用廣義p值法對於一個及兩個逆高斯分配母體參

數尋求精確的檢定方法，並提出一個在使用上比過去更為便利的方法，

而這個方法是建立在廣義方法的觀念上，解決了在使用過去文獻中檢定

兩個母體平均值的比例和計算信賴區間時會遇到的困難，也就是統計量

中包含了干擾參數的問題，而且我們也得到了確切的解。藉由實際數據

的分析，我們發現我們的方法跟過去的方法比較起來可以得到長度最短

或是很接近最短的信賴區間長度。並且在模擬的研究中，我們可以看出

我們的方法所得出的覆蓋率與型I誤差都很接近我們所設定的水準。 

關鍵字：覆蓋率；期望長度；廣義信賴區間；廣義p值；型I誤差 
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ABSTRACT 
 

 The IG distribution has gotten intensive attentions in statistical 
application fields by reason of it is an ideal candidate for modeling positive, 
right-skewed data. The classical procedures have difficulties in analysis 
non-homogeneous IG data. Hence, the exact inferences on making 
inferences for two IG means and scales deserve further research. In this 
thesis, we present a convenient approach based on the generalized p-value 
and generalized confidence methods to perform the hypothesis testing and 
confidence intervals for mean and scale of one IG population as well as the 
ratio of means and scales of two independent IG populations. Illustrative 
examples show that the confidence lengths obtained by the generalized 
methods are the smallest or close to the smallest length. Furthermore, the 
simulation studies show that our coverage probabilities and type I error are 
very close to the nominal levels. 

Keywords: Coverage probability; Expected length; Generalized confidence; Generalized 
p-value; Type I error 
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Chapter 1 Introduction 

 For the last three decades, the inverse Gaussian (IG) distribution has gained 

tremendous attention in describing and analyzing right skewed data. IG distribution 

can accommodate data with a variety of shapes from highly skewed to almost normal 

and it is known that most of the data from applied fields are often positive and 

right-skewed, that is why IG distribution has gotten intensive attentions in statistical 

application fields. In 1915 Schrödinger introduced the probability distribution of the 

first passage time in Brownian motion, but we still are unaware of other references to 

the distribution until Tweedie (1945) proposed the name, IG distribution, for the first 

passage time distribution. Next, Wald (1947) derived the distribution as a limiting 

form for the distribution of sample size in a sequential probability ratio test. Because 

of this derivation, the distribution is also known as Wald’s distribution, particularly in 

the Russian literature. 

 In many areas of statistical applications, handling of skewed data is by no means 

an exception but a fact of life. Hence if possible, it is desirable to analyze the data as 

observed using statistical methods based on skewed distributions. However, standard 

statistical methods for the normal distribution are commonly used for the data analysis. 

This is primarily due to lack of alternative methods that are easily available and also 

easy to understand. Although Gamma, Weibull, and lognormal distributions enjoy 
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extensive use in certain special areas, none of them allow for a wide range of 

statistical methods comparable to those based on the normal distribution. 

Comparatively, IG can accommodate a variety of shapes from highly skewed to 

almost normal. See Chhikara and Folks (1989), Seshadri (1993, 1999) for more 

details of IG distribution analogies. 

 As the IG mean is inversely proportional to the drift of Brownian motion or the 

growth rate in Weiner process, it would be of some interest to compare two IG means 

if a comparison in the associated processes is desired. Chhikara (1975, 1989) derived 

UMP-unbiased tests for the equality of two inverse Gaussian population means, say 

1μ - 2μ , and constructed the confidence interval for the ratio of two means under the 

identical shape parameter λ  assumption. However, the situation that two IG  

populations have the identical shape parameter does not always happen. Afterward, 

Tian and Wilding (2005) adopt the directed likelihood ratio and modified directed 

likelihood ratio method (Barndorff-Nielsen, 1986) to provide an approximate 

approach for constructing a confidence interval of 1 2μ μ  of two IG  populations. 

Even so, exact inferences on the ratio of two IG  populations’ means when the scale 

parameters 1λ  and 2λ  are unknown and possible unequal still need to explore. 

Therefore in this thesis, we would like to propose exact inferences on 1 2μ μ  without 

making identical shape parameter assumption. We will develop significant tests and 
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confidence intervals for the general cases without the assumption of equal scale 

parameters based on the concepts of generalized p-values and generalized confidence 

intervals. The concepts of the generalized p-value and generalized confidence interval 

were introduced by Tsui and Weerahandi (1989) and Weerahandi (1993), respectively, 

to solve many statistical problems involving nuisance parameters. Typically, the 

generalized p-value and the generalized confidence interval were found to be fruitful 

for problems where conventional frequentist procedures were non-existent or were 

difficult to obtain (see the book by Weerahandi (1995) for a detailed discussion). The 

lack of exact confidence intervals in many applications can be attributed to the 

statistical problems involving nuisance parameters. Therefore, for these reasons, we 

will use the idea of a generalized p-values approach to construct a pivotal variable, so 

it can be used for both hypothesis testing and confidence region. 

 The rest of the thesis is organized as follows. In chapter 2, the properties of 

inverse Gaussian distribution and the concept of generalized p-value and generalized 

confidence interval is reviewed. For one IG population, our procedures and Chhikara 

and Folks’ (1976) methods for hypothesis testing and constructing the generalized 

confidence intervals about μ  and λ  are introduced in chapter 3. In chapter 4, we 

will present our procedures for hypothesis testing and constructing the generalized 

confidence intervals about 1

2

μ
μ

 and 1

2

λ
λ

 for two independent IG populations. The 
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methods presented by Chhikara and Folks (1975) and Tian and Wilding (2005) will be 

addressed in this chapter as well. We apply these results to four sets of data, and 

compare our procedure with other methods with respect to their confidence intervals 

and confidence widths in chapter 5. Three sets of simulation studies are also presented 

in chapter 5 to compare the coverage probabilities, expected lengths, type I error and 

power performances of these methods. Concluding remarks are summarized in 

chapter 6. 
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Chapter 2 Properties of IG Distribution and the Generalized 

   Methods 

 In this chapter we provide some of the properties that play a significant role in 

the development of statistical methods for the inverse Gaussian distribution and then 

briefly introduce the theories of the generalized p-value and the general confidence 

interval. 

 

2.1 Properties of Inverse Gaussian distribution 

 The probability density function of a random variable X  distributed as inverse 

Gaussian with parameters μ  and λ , denoted by ( )~ ,X IG μ λ , is given by 

1
3 22
2

2

( )( ; , ) exp{ }
2 2

xf x x
x

λ λ μμ λ
π μ

− −⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 0x > ,     (2.1) 

where 0μ >  and 0λ > . And the inverse Gaussian distribution function ( )F x  in 

terms of the normal distribution function, ( )xΦ , is given by 

( ) 21 1x xF x e
x x

λ μλ λ
μ μ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= Φ − + Φ − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
.     (2.2) 

The parameter μ  is the mean of ( ),IG μ λ  and λ  is the scale parameter. When 

1μ = , the distribution is often referred to as the standard Wald’s distribution.  
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 If ( )~ ,X IG μ λ , then the characteristic function, denoted by ( )XC t , is given 

by 

( )XC t
12
22exp{ [1 (1 ) ]}itλ μ

μ λ
= − − .        (2.3) 

Suppose that all positive and negative moments exist, the moment generating function 

is 

( )rXE ( )
( )

1

0

1 !
2

! 1 !

sr
r

s

r s
s r s

λμ
μ

−−

=

− + ⎛ ⎞
= ⎜ ⎟− − ⎝ ⎠

∑ ,       (2.4) 

which can be obtained by taking the r th derivative of ( )XC t  and evaluating it at 

0t = . Thus the mean and variance of ( ),IG μ λ  can be derived as ( )E X μ=  and 

( ) 3Var X μ λ= , respectively, through (2.4). 

 If 1 2, ,..., nX X X  is a random sample from ( ),IG μ λ , then 
1

n

i
i

X X n
=

=∑  and 

( )1 1

1

n

i
i

V X X n− −

=

= −∑  are the maximum likelihood estimates of μ  and 1λ− , 

respectively, with  

( )~ ,X IG nμ λ  and 2
1~ nn Vλ χ − ,        (2.5) 

where ( ),IG nμ λ  is the inverse Gaussian distribution and 2
1nχ −  is the chi-square 

distribution with n-1 degrees of freedom. We can show that both of them are 

statistically independent. The density function (2.1) is seen to be a member of the 

exponential family, and 
1 1

1( , )
n n

i
i i i

X
X= =

∑ ∑  is a complete sufficient statistic for inverse 
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Gaussian distribution. 

 By a simple characteristic function argument, it can be seen that if 

( )~ ,X IG μ λ  then ( )~ ,cX IG c cμ λ  for 0c > . So the family of inverse Gaussian 

distributions is closed under a change of scale. Because of the normal analogy it 

would be natural to hope that any linear combination of inverse Gaussian variables 

would also be inverse Gaussian. Unfortunately, the property of reproducibility does 

not hold with respect to a change of location. Although this hope is not satisfied, 

Chhikara (1972) and Shuster and Miura (1972) have shown that under the necessary 

condition, 2
i iλ μ ξ=  for all i , inverse Gaussian variables do enjoy a certain 

additive property. That is if ( )~ ,i i iX IG μ λ , 1, 2,...,i n= , independently, such that 

2
i iλ μ ξ=  for all i , then ( )( )2

~ ,i i iX IG μ ξ μ∑ ∑ ∑ .Therefore in order for the 

linear combination i ic X∑  of independent inverse Gaussian variables to be inverse 

Gaussian, 2
i i icλ μ  must be positive and constant, 1, 2,...,i n= . Hence the additive 

property of the inverse Gaussian is restricted by a required relationship between the 

two parameters. 

 Furthermore, it is worth to notice that  

( )2 2 2
1~X Xλ μ μ χ− .          (2.6) 

This useful property can be easily proved by finding the moment-generating function, 
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and we will show how to use the statistic for our generalized method in next chapter. 

 

2.2 Generalized p-value and generalized confidence interval 

 The concept of generalized p-value was first introduced by Tsui and Weerahandi 

(1989) to deal with the statistical testing problem in which nuisance parameters are 

present and it is difficult or impossible to obtain a nontrivial test with a fixed level of 

significance. The setup is as follows. Let X  be a random quantity having a density 

function ( )f X ζ , where ( ), θ=ζ η  is a vector of unknown parameters, θ  is the 

parameter of interest, and η  is a vector of nuisance parameters. Suppose we are 

interested in testing the null hypothesis  

0 0 1 0:  versus :H Hθ θ θ θ≤ > ,         (2.7) 

where 0θ  is a specified value. 

 Let x  denote the observed value of X  and consider the generalized test 

variable ( ); , R X ζx , which depends on the observed value x  and the parameters ζ , 

and satisfies the following requirements: 

(i) ( ); , ,obsr R θ= ηx x  does not depend on unknown parameters.  

(ii) For fixed x  and ( ), θ=ζ η , the distribution of ( ); , R X ζx  is independent of 
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the nuisance parameters η . 

(iii)For fixed x  and η , ( )( ); , P R r θ≥X ζx  is either increasing or  decreasing in 

θ  for any given r .            (2.8) 

Under the above conditions, if ( ); , R X ζx  is stochastically increasing in θ , then the 

generalized p-values for testing the hypothesis in (2.8) can be defined as 

( ){ } ( ){ }
0

0sup ; , , ; , , obs obsp P R r P R r
θ θ

θ θ
≤

= ≥ = ≥X η X ηx x    (2.9) 

where ( )0; , , obsr R θ= ηx x . 

 In the same setup, suppose ( )* ; , , R θX ηx  satisfies the following conditions: 

(i) For any fixed x , *R  has a probability distribution free of unknown parameters. 

(ii) If =X x , then ( )* * ; , , obsr R θ= ηx x  does not depend on η , the vector of 

nuisance parameters.            (2.10) 

Then, we say ( )* ; , , R θX ηx  is a generalized pivotal quantity. If 1r  and 2r  are 

such that 

( ){ }*
1 2; , , 1P r R rθ α≤ ≤ = −X ηx ,        (2.11) 

then, ( ){ }*
1 2: ; , , r R rθ θ≤ ≤ηx x  is a ( )100 1 %α−  generalized confidence interval 

for θ . Following that, ( ) ( ){ }* *; 2 , ; 1- 2R Rα αx x  is a ( )1 α−  confidence 

interval for θ , where ( )* ; R γx  stands for the thγ  quantile of ( )* ; , , R θX ηx . 
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 For further derails and for several applications based on the generalized p-value, 

we refer to the book by Weerahandi (1995). 
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Chapter 3 Inferences on one population of Inverse Gaussian 

 In this chapter, we will provide inference on parameters μ  and λ  of inverse 

Gaussian distribution based on a generalized test variable and generalized pivotal 

quantity. In addition, Chhikara and Folks’s (1989) method will be briefly introduced 

in this chapter as well. 

 

3.1  Methods based on the generalized test variable and generalized 

 pivotal quantity 

3.1.1 Inferences on μ  

 Suppose 1 2, ,..., nX X X  is a random sample from ( ),IG μ λ , where μ  and λ  

are unknown. The sufficient statistics  

 ( )
1

1 ~ ,
n

i
i

X X IG n
n

μ λ
=

= ∑  and 
2

1

1

1 1 1 ~
n

n

i i

V
n X X n

χ
λ
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑    (3.1) 

are independent.  

 Consider the problem of significance testing of hypotheses  

0 0:H μ μ=  versus 1 0:H μ μ≠         (3.2) 
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when λ  is unknown. Since a generalized test variable can be a function of all 

unknown parameters, we can construct the random variable ( ), ; , , ,R X V x v μ λ  based 

on the random independent quantities  

2
1~ nB n Vλ χ −=  and 

( )2

2
12 ~

n X
U

X
λ μ

χ
μ

−
=       (3.3) 

as mentioned in (2.5) and (2.6), respectively. For facilitation, we define U  as  

( )2 2

2 1
n X n XU

X X
λ μ λ
μ μ

− ⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
,        (3.4) 

which is chi-square distribution with 1 degree of freedom, then the generalized test 

variable for testing (3.2) can be deduced as following equation: 

2

1n X xvR
X n V
λ

μ λ
⎛ ⎞

= − ×⎜ ⎟
⎝ ⎠

 

= xvU
B

×  

1
xvF

n
= ×

−
,            (3.5) 

where x  and v  are the observed values of X  and V , respectively, and 2
1~U χ , 

2
1~ nB χ −  and 1, 1~ nF F − , the Snedecor’s F  distribution with 1 and n-1 degrees of 

freedom.  

 It is noted that the distribution of ( ), ; , , ,R X V x v μ λ  is free of the nuisance 

parameter λ , and the observed value ( )
2

, ; , , , 1obs
xr R x v x v μ λ
μ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 is not 
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dependent on λ . Besides, for fixed ,x v  and λ , ( ), ; , , ,P R X V x v rμ λ⎡ ⎤≥⎣ ⎦  is 

increasing in μ . Therefore, R  satisfies the three conditions in (2.8), R  is a 

generalized test variable which can be applied for testing the null hypothesis 

0 0:H μ μ=  versus 1 0:H μ μ≠ . The generalized p-value can be computed by 

( ) ( )0 0, ; , , , , ; , , ,p P R X V x v R x v x vμ λ μ λ⎡ ⎤= ≥⎣ ⎦  

2

1, 1
0

1
1n

xv xP F
n μ−

⎡ ⎤⎛ ⎞
⎢ ⎥= × ≥ −⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

,        (3.6) 

where R  is defined as (3.5), 1, 1nF −  is the Snedecor’s F  distribution with 1 and n-1 

degrees of freedom, and 0H  is rejected when p α< . 

 A generalized pivotal quantity in interval estimation can be treated as a 

counterpart of generalized test variable in significance testing of hypotheses. Because 

the distribution of ( ), ; , , ,R X V x v μ λ  does not depend on any unknown parameters 

and the observed value ( )
2

, ; , , , 1obs
xr R x v x v μ λ
μ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 does not depend on 

nuisance parameter λ , so R  is indeed a generalized pivotal quantity satisfying the 

conditions in (2.10). Therefore, we can construct the ( )100 1 %α−  confidence 

interval based on ( ), ; , , ,R X V x v μ λ .  

 Let ( ), ;R x v α  stand for the thα  quantile of ( ), ; , , ,R X V x v μ λ  such that 

( ) ( ), ; , , , , ;1 1P R X V x v R x vμ λ α α⎡ ⎤≤ − = −⎣ ⎦ . Then  

( ) ( ){ }: , ; , , , , ;1R x v x v R x vμ μ λ α≤ −   
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1 11 1
1 1

x x
xv xvF F

n nα α

μ

− −

⎧ ⎫
⎪ ⎪⎪ ⎪= ≤ ≤⎨ ⎬
⎪ ⎪+ −
⎪ ⎪− −⎩ ⎭

       (3.7) 

is a ( )100 1 %α−  generalized confidence interval of μ . For the fact that R  is 

distributed as 
1

xv F
n −

, where 1, 1~ nF F −  and Fα  stands for the thα  quantile of F  

distribution with 1, n-1 degrees of freedom. 

Thus  

1 1

,
1 1

1 1

x x
xv xvF F

n nα α− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
+ −⎜ ⎟− −⎝ ⎠

 if 11 0
1

xv F
n α−− >
−

  

or 

1

,
1

1

x
xv F

n α−

⎛ ⎞
⎜ ⎟
⎜ ⎟∞
⎜ ⎟
+⎜ ⎟−⎝ ⎠

 if 11 0
1

xv F
n α−− <
−

      (3.8) 

is a ( )100 1 %α−  confidence interval for μ . 

 

3.1.2 Inferences on λ  

 Now consider the significance test of the hypothesis 0 0:H λ λ=  versus 

1 0:H λ λ≠  when μ  is unknown. Since 2
1

1

1 1 ~
n

n
i iX X

χ λ−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ , we can construct 

the generalized test variable based on 

2
1~ nW Vλ χ −≡ ,           (3.9) 
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with 
1

1 1n

i i

V
X X=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  and 2

1nχ −  is chi-square distribution with n-1 degrees of 

freedom. Therefore, the test variable, ( ); ,T V v λ  can be defined as 

( ); , V WT V v
v v
λλ = = .          (3.10) 

For the fact that the distribution of random variable ( ); ,T V v λ  is free of nuisance 

parameter μ , the observed value ( ); ,obst T v v λ λ= =  is independent of μ , and 

[ ]P T t≥  is non-increasing in λ  for any given t , hence ( ); ,T V v λ  is a 

generalized test variable which satisfies the three conditions in (2.8). The generalized 

p-value for testing the null hypothesis 0 0:H λ λ=  versus 1 0:H λ λ≠  can be 

obtained through 

( ) ( ) ( ) ( ){ }0 0 0 02*min ; , ; , , ; , ; ,p P T V v T v v P T V v T v vλ λ λ λ= > >⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

2 2
1 1

0 02*min ,n nP P
v v
χ χλ λ− −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= > <⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

,      (3.11) 

where T  is defined as (3.10), 2
1nχ −  is chi-square distribution with n-1 degrees of 

freedom and 0H  is rejected when p α< .  

 On the other hand, if we are interested in constructing confidence interval of λ , 

( ); ,T V v λ  can be used as a generalized pivotal quantity. Because the observed value 

of ( ); ,T V v λ  is λ  and ( ); ,T V v λ  satisfies the two conditions in (2.10), the 

( )100 1 %α−  equal tail confidence interval for λ  is 

( ) ( ){ }; 2 , ;1 2T v T vα α− , 
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2 2
2 1 2( 1) ( 1)

,
n n
v v

α αχ χ −⎧ ⎫− −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

         (3.12) 

where ( );T v γ  stands for the thγ  quantile of ( ); ,T V v λ , and ( )2 1nγχ −  denotes 

the thγ  quantile of chi-square distribution with n-1 degrees of freedom. 

 

3.2  Methods based on Chhikara and Folks (1989) 

3.2.1 Inferences on μ  

 Suppose ( )1 2, ,..., nX X X=X  is from ( ),IG μ λ , the joint density function of 

X  is 

( ) ( ) ( )3 2 1

1 11

; , , exp
n n n

i i i i
i

f C x x x xμ λ θ ψ θ ψ− −

=

⎛ ⎞ ⎡ ⎤= × + +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
∑ ∑∏X , 

where ( )21 2θ λ μ−= − , 2ψ λ= − . Since ( ) ( )1; , ;1,f x f xμ λ μ μ λ μ−= , without 

loss of generality, assume 0 1μ = , the hypothesis 0 0:H μ μ=  versus 1 0:H μ μ≠  

when λ  is unknown can equivalently be stated as follow: 

'
0 : 0H θ =  versus '

1 : 0H θ ≠ .         (3.13) 

For a given level α  and let 
1

n

iU X=∑ , the UMP-unbiased critical region 

corresponds to 1U k< , or 2U k> , are determined by 

( )2

1
1

k

k
h u s du α= −∫  
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and 

( ) ( )2

1

1
k

k
uh u s du uh u s duα

∞

−∞
= −∫ ∫         (3.14) 

where ( )h u s  denotes the conditional density function of U  given s  with 

( ) ( ) ( )
( )
( )

( )3 22

3

1 1 ,
21 2, 1 2 2

n
u nnh u s

u s nB n u s n

−
⎡ ⎤−

= × −⎢ ⎥
−−⎡ ⎤ − ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )
( )

2

0 1
2

u n
u s n

−
< <

−
,  

B is a Beta function and ( )1
i is x x−= +∑ .  

Let  

( )1 1n X
W

XV

− −
=                                   (3.15)         

where ( )
1

1 1
n

iV X X n= −∑ , the critical region, U k> , in (3.14) corresponds to 

W C>  where C  is given by 

( )
( )

( )( )
2 2

2
, 1 , 1

2 4 2
2

n

t n t n
s nH C H n s n C
s n

α
−

− −
+⎛ ⎞− + − + + =⎜ ⎟−⎝ ⎠

   (3.16) 

and , 1t nH −  is the Student’s t distribution function with n-1 degrees of freedom and 

( )1
i is x x−= +∑ .  In the two-sided case for testing 0 0:H μ μ=  versus 1 0:H μ μ≠ , 

λ  unknown, a UMP-unbiased level α  test is obtained by replacing iX  by 0iX μ , 

1, 2,...,i n= , in (3.15), then the test statistics given by 

( )0

0

1n X

XV

μ

μ

− −
.           (3.17) 
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Moreover, this critical region is 

( )0
1 2

0

1n X
t

XV
α

μ

μ
−

− −
> ,          (3.18) 

where 1 2t α−  is the ( )100 1 2α−  percentage point of the Student’s t distribution with 

n-1 degrees of freedom. (Chhikara and Folks, 1976) 

 It is interesting to note that the critical region in (3.18) is equivalent to 

2

1, 1,1
0

( 1) 1 n
n X F
XV αμ − −

⎧ ⎫⎛ ⎞−⎪ ⎪− >⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 . The p-value is 
2

1, 1
0

( 1) 1n
n xp P F
xv μ−

⎡ ⎤⎛ ⎞−
⎢ ⎥= > −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

which is the same as our result in (3.6). Thus we can conclude that our procedure is 

easily applicable. 

 On the other hand, according to Chhikara and Folks (1989), the confidence 

intervals for the parameter μ  can be obtained by inverting the acceptance regions. 

Therefore, when λ  is unknown, it follows from (3.18) that the ( )100 1 α−  percent 

confidence interval for μ  is  

1 1

1 2 1 21 , 1
1 1

xv xvx t x t
n nα α

− −

− −

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟+ −⎢ ⎥ ⎢ ⎥⎜ ⎟− −⎣ ⎦ ⎣ ⎦⎝ ⎠

, if 1 21 0
1

xv t
n α−− >
−

 

and 
1

1 21 ,
1

xvx t
n α

−

−

⎛ ⎞⎡ ⎤
⎜ ⎟+ ∞⎢ ⎥⎜ ⎟−⎣ ⎦⎝ ⎠

, otherwise.       (3.19) 

It can be also found that (3.19) is equivalent to our result in (3.8).   
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3.2.2 Inferences on λ  

 Roy and Wasan (1968) derived the UMP-unbiased test for 0
0

1 1:H
λ λ
=  versus 

1
0

1 1:H
λ λ
≠  when μ  is unknown. The statistic ( )

1
1 1

n

iV X X= −∑  is distributed 

as 2
1nχ λ−  and the critical region given by 1V k≤  or 2V k≥  corresponds to 

1V Cλ ≤  or 2V Cλ ≥ , for a given level α  of the test. 1C  and 2C  are determined 

by  

( )2

1
1 1

C

nC
g t dt α− = −∫  and ( ) ( )2

1
1 1

C

nC
tg t dt n α− = −∫ ,    (3.20) 

where ( )1ng t−  denotes the density function of 2
1nχ − . For the fact that 

( ) ( )1 1n ntg t ng t− += , (3.20) can be written as 

( ) ( ) ( ) ( )2 2 2 2
1 1 1 1

2 1 2 1 1
n n n n

F C F C F C F C
χ χ χ χ

α
− − + +

− = − = −     (3.21) 

where 2
1n

F
χ −

 denotes the chi-square distribution function with n-1 degrees of freedom, 

and then 1C  and 2C  are uniquely determined from using tables of the chi-square 

distribution. Thus, for the equal tail test, 1C  and 2C  can be obtained by solving 

( ) ( )2 2
1 1

1 21
2n n

F C F C
χ χ

α
− −

= − = . Hence 2
2,11 αχ −= nC  and 2

21,12 αχ −−= nC , where 2
1,n γχ −  

is the rth quantile of chi-square distribution with n-1 degrees of freedom. Therefore 

the p-value is { }2 2
1 0 1 02*min ,n np P v P vχ λ χ λ− −⎡ ⎤ ⎡ ⎤= > <⎣ ⎦ ⎣ ⎦  and the ( )100 1 %α−  

confidence interval for λ  is { }1 2: C v Cλ λ< <  
2 2

2 1 2( 1) ( 1)n n
v v

α αχ χ
λ −⎧ ⎫− −⎪ ⎪= < <⎨ ⎬

⎪ ⎪⎩ ⎭
. 
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We note that these results are equivalent to our results in (3.11) and (3.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 - 21 -

Chapter 4 Inferences on two populations of Inverse    

   Gaussian 

 Although there has been a rapid growth in IG , the problem about making 

inference to the ratio of two IG  means still need to be investigated. As the scale 

parameters 1λ  and 2λ  of two independent populations are the same, i.e. 1 2λ λ= , 

the two-sided exact confidence interval of 1 2θ μ μ=  has been discussed by 

Chhikara and Folks (1989). However, it is not practical to expect two IG  

populations to have the identical scale parameter all the time. Recently, Tian and 

Wilding (2005) presented an approximate approach to construct the confidence 

interval of 1 2θ μ μ=  of two independent IG  populations based on the modified 

directed likelihood ratio method (Barndorff-Nielsen, 1986). Nevertheless, the exact 

property of 1 2θ μ μ=  deserves further study. Therefore, in this chapter  we will 

provide an exact and convenient method based on generalized p-value and 

generalized confidence interval to perform the hypothesis testing and then construct 

confidence intervals for 1 2θ μ μ=  and the ratio of two scale parameters 1 2δ λ λ= . 

In this chapter, we will also briefly introduce some methods in the literature which 

will be utilized to compare with our procedure in numerical examples and simulation 

studies. 
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4.1 Methods based on the generalized test variable and generalized 

pivotal quantity 

4.1.1 Inferences on 1 2μ μ  

 Let 
111 12 1, ,..., nX X X  and 

221 22 2, ,..., nX X X  be independent random samples 

from ( )1 1,IG μ λ  and ( )2 2,IG μ λ , respectively, where iμ  and iλ  are unknown and 

possible unequal with 1,2i = . The independent sufficient statistics are given by 

( )
1

1 ~ ,
in

i ij i i i
ji

X X IG n
n

μ λ
=

= ∑ , 
2

1

1

1 1 1 ~
i

i

n
n

i
ji ij i i i

V
n X X n

χ
λ
−

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , 1, 2i = . (4.1) 

Suppose we are interested in making inference in the parameter 1 2θ μ μ= , consider 

the following hypothesis testing: 

1
0 0

2

:H μ θ
μ

=  versus 1
1 0

2

:H μ θ
μ

≠ , 0 0θ > ,      (4.2) 

when iλ  are unknown and possible unequal with 1,2i = . Intuitively we may hope 

that the generalized test variable for two populations of inverse Gaussian is parallel 

that it for one population of IG  in (3.5). In fact, the generalized test variable (3.5) 

and its observed value  
2

1obs
xr
μ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

, can not be applied to the ratio 1 2μ μ . 

Therefore we find another more flexible generalized test variable 

( )1 2 1 2 1 2 1 2 1 2 1 2, , , ; , , , , , , ,G X X V V x x v v Gμ μ λ λ ≡  which is constructed by two 

independent statistics ( )1 1 1 1 1 1 1 1, ; , , ,G X V x v Gμ λ ≡  and ( )2 2 2 2 2 2 2 2, ; , , ,G X V x v Gμ λ ≡ . 
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 Above all we deliberate the statistic iG  based on the random independent 

quantities  

i i i iB n Vλ=  and 
( )2 2

2 1i i i i i i
i

i i i i

n X n XU
X X

λ μ λ
μ μ

− ⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
, 1, 2i = ,  (4.3) 

which has been mentioned in (2.5) and (2.6), respectively. Since 2
1~

ii nB χ −  and 

2
1~iU χ , then one part of the generalized test variable for testing (4.2) can be deduced 

as following equation: 

1

1 1i i i i i
i i

i i i i i

n X x vG x
X n V
λ

μ λ

−
⎡ ⎤⎛ ⎞

= − × +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

1

1i i
i i

i

x vx U
B

−
⎡ ⎤

= ± × +⎢ ⎥
⎣ ⎦

 

1

1i i
i i

i

x vx Z
B

−
⎡ ⎤

= × +⎢ ⎥
⎣ ⎦

 ( since i iZ Z− =  where ( )~ 0,1iZ N ) 

1

1
1

i i
i i

i

x vx T
n

−
⎡ ⎤

= × +⎢ ⎥−⎣ ⎦
         (4.4) 

with ix  and iv  being the observed values of iX  and iV , respectively, and 

2
1~iU χ , 2

1~
ii nB χ −  and 1~

ii nT t − , the Student’s t  distribution with 1in −  degrees 

of freedom for 1,2i = . It is worthy to note that the observed value of iG , ,i obsg , is 

iμ  which is the parameter we are interested in. There is no doubt that iG  can be also 

used as a generalized test variable in one population case and the result is equivalent 

to what we got in Chapter 3. 
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 Eventually, since 1G  and 2G  are independent generalized test quantities, the 

generalized test variable G  can be defined as follows: 

1 2G G G=  

1

1 1 1 1 1
1

1 1 1 1 1
1

2 2 2 2 2
2

2 2 2 2 2

1 1

1 1

n X x vx
X n V

n X x vx
X n V

λ
μ λ

λ
μ λ

−

−

⎡ ⎤⎛ ⎞
− × +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦=
⎡ ⎤⎛ ⎞

− × +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

1

1 1
1 1

1
1

2 2
2 2

2

1
1

1
1

x vx T
n

x vx T
n

−

−

⎡ ⎤
× +⎢ ⎥−⎣ ⎦=

⎡ ⎤
× +⎢ ⎥−⎣ ⎦

         (4.5) 

where 1 2 1 2,  ,  ,  x x v v  are observed values of 1 2 1 2,  ,  ,  X X V V , respectively, and 

1~
ii nT t −  , the Student’s t  distribution with 1in −  degrees of freedom for all i. It is 

noted that the distribution of G  is independent of the nuisance parameters 1λ  or 

2λ , and the observed value ( ) 1
1 2 1 2 1 2 1 2 1 2 1 2

2

, , , ; , , , , , , ,obsg G x x v v x x v v μμ μ λ λ
μ

= =  is 

free of 1λ  and 2λ . Besides, for fixed 1 2 1 2 1 2,  ,  ,  ,  , x x v v λ λ  and given any g , 

[ ]P G g≥  is monotonic in 1 2μ μ . Therefore, G  satisfies the three conditions in 

(2.8), G  is a generalized test variable which can be applied for testing the 

hypothesis 1
0 0

2

:H μ θ
μ

=  versus 1
1 0

2

:H μ θ
μ

≠ , 0 0θ > . The generalized p-value can 

be computed by 

[ ] [ ]{ }0 02*min | , |obs obsp P G g P G gθ θ θ θ= > = < =  
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1 1

1 1 1 1
1 1 1 1

1 1
0 01 1

2 2 2 2
2 2 2 2

2 2

1 1
1 1

2*min ,

1 1
1 1

x v x vx T x T
n n

P P
x v x vx T x T

n n

θ θ

− −

− −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥× + × +⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= > <⎨ ⎬⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥× + × +⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

 (4.6) 

where G  is defined as (4.5), 1T  and 2T  are the Student’s t distribution with 1 1n −  

and 2 1n −  degrees of freedom, respectively, and 0H  is rejected if p α< . 

 We next consider the problem of interval estimation for 1 2μ μ  based on 

generalized pivotal quantity. Since the observed value of G  is 1 2μ μ , the 

parameter of interest, and the properties of G fulfill the requirements in (2.10), thus 

G  in (4.5) is indeed a generalized pivotal quantity which can be used to construct a 

generalized confidence interval. Therefore the ( )100 1 %α−  equal tail confidence 

interval for 1 2μ μ  can be computed by 

1
2 1 2

2

G Gα α
μ
μ −

⎧ ⎫
< <⎨ ⎬

⎩ ⎭
          (4.7) 

where Gγ  stands for the thγ  quantile of G . 

 It is also noted that the statistics 1G  and 2G  can be utilized for testing the 

equality of 1μ  and 2μ  and constructing a confidence interval of 1 2μ μ−  if it is 

necessary. Since the property of IG  does not hold for the location change, it is hard 

to make inferences for the mean difference without any restriction. On the contrary, 

our procedure is readily applicable and easy to use to deal with mean difference 

problem without any restriction. 
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4.1.2 Inferences on 1 2λ λ  

 It is also an interesting problem concerning the parameter 1 2δ λ λ= . Consider 

the hypothesis  

1
0 0

2

:H λ δ
λ

=  versus 1
1 0

2

:H λ δ
λ

≠ ,        (4.8) 

when 1μ  and 2μ  are unknown and possible unequal. In this situation, the statistic 

( ); , V WT V v
v v
λλ = =  with ( )1 1

1

n

i
i

V X X− −

=

= −∑  and 2
1~ nW χ −  in (3.10) which is 

employed in one population case can be applied to the two populations’ case as well. 

 Similarly, since 
1

1 1in

i
j ij i

V
X X=

⎛ ⎞
≡ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  are sufficient statistics for iλ  and 

2
1~

ii n iV χ λ− , 1, 2i = , we can construct the generalized test variable based on 

2
1~

ii i i nW Vλ χ −≡            (4.9) 

where 2
1inχ −  is chi-square distribution with 1in −  degrees of freedom for 1, 2i = . 

Therefore the test variable ( )*
1 2 1 2, ; , ,T V V v v δ  can be defined as *

1 2T T T=  with 

i i i
i

i i

V WT
v v
λ

= = , then 

( )
( )

1 1* 1 1 1 1 1

2 2 2 2 2 2 2

1
1

n vV v W vT F
V v W v n v

λ
λ

−
= = =

−
       (4.10) 

where F  denotes the F distribution with 1 1n −  and 2 1n −  degrees of freedom and 

1v  and 2v  are the observed values of 1V  and 2V , respectively. For the fact that the 

distribution of random variable *T  is free of nuisance parameters, the observed value 
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( )* *
1 2 1 2, ; , ,obst T v v v v δ δ= =  is independent of nuisance parameters 1μ  and 2μ , and 

* *P T t⎡ ⎤≥⎣ ⎦  is non-increasing in δ , hence ( )*
1 2 1 2, ; , ,T V V v v δ  is a generalized test 

variable which satisfies the three conditions in (2.8). Therefore *T  is indeed a 

generalized test variable and can be used to test the hypothesis in (4.8). The 

generalized p-value for testing (4.8) can be computed by 

{ }* * * *
0 02*min ,obs obsp P T t P T tδ δ δ δ⎡ ⎤ ⎡ ⎤= > = < =⎣ ⎦ ⎣ ⎦  

1 1 1 1
0 0

2 2 2 2

2*min ,W v W vP P
W v W v

δ δ
⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= > <⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

( )
( )

( )
( )

1 1 1 1
0 0

2 2 2 2

1 1
2*min ,

1 1
n v n v

P F P F
n v n v

δ δ
⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎪ ⎪= > <⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

,   (4.11) 

where *T  is defined as (4.10), 
1

2
1 1~ nW χ − , 

2

2
2 1~ nW χ −  and 0H  is rejected when 

p α< .  

 Furthermore, in order to construct confidence interval of 1 2λ λ , 

( )*
1 2 1 2, ; , ,T V V v v δ  can be used as a generalized pivotal quantity as well. Because the 

observed value of *T  is 1 2λ λ  and *T  satisfies the two conditions in (2.10), the 

( )100 1 %α−  equal tail confidence interval for 1 2λ λ  is 

( ) ( ){ }* *
1 2 1 2, ; 2 , , ;1 2T v v T v vα α−  

1 1 1 1
2 1 2

2 2 2 2

( 1) ( 1),
( 1) ( 1)
n v n vF F
n v n vα α−

⎧ ⎫− −
= ⎨ ⎬− −⎩ ⎭

,       (4.12) 
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where ( )*
1 2, ;T v v γ  stands for the thγ  quantile of ( )*

1 2 1 2, ; , ,T V V v v ψ  which is 

defined in (4.10). 

 

4.2 Methods based on Chhikara and Folks (1989) 

4.2.1 Inferences on 1 2μ μ  

 Under the restriction of 1 2λ λ λ= =  and 1 2
2 2
1 2

λ λ ξ
μ μ

= = , ξ  is a constant, 

Chhikara and Folks (1989) derived a UMP-unbiased tests by constructing critical 

points of their rejection regions using percentage points of Student’s t  distribution. 

  For the significance size α  test of 0 1 2:H μ μ=  versus 1 1 2:H μ μ≠ , 

1 2λ λ λ= =  is unknown, the rejection region is given by 

( ) ( )

( ) ( ) ( )
1 2

1 2

1 2
1 2 1 2 1 2

1 2, 21 2

1 1 1 1
1 2 1 1 2 2 1 1 2 2

1 1

2
n n

n n

j j
j j

n n n n X X
t

X X n X n X X X X X
α− + −

− − − −

= =

+ − −⎡ ⎤⎣ ⎦ >
⎡ ⎤

+ − + −⎢ ⎥
⎣ ⎦
∑ ∑

, (4.13) 

where 1 2t α−  is the ( )100 1 2α−  percentage point of the Student’s t distribution with 

( )1 2 2n n+ −  degrees of freedom. And thus the p-value is 

( ) ( )

( ) ( ) ( )
1 2

1 2
1 2 1 2 1 2

1 21 2

1 1 1 1
1 2 1 1 2 2 1 1 2 2

1 1

2
Pr

n n

j j
j j

n n n n x x
p t

x x n x n x x x x x
α−

− − − −

= =

⎡ ⎤
⎢ ⎥

+ − −⎡ ⎤⎢ ⎥⎣ ⎦= >⎢ ⎥
⎡ ⎤⎢ ⎥+ − + −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑

. (4.14) 
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 The test can be extended to compare the two inverse Gaussian means in terms of 

their ratio. This follows because of the property that density function 

( ) ( )1; , ;1,f x f xμ λ μ λ μ−=  for ( )~ ,X IG μ λ . UMP-unbiased test of the 

hypotheses 1
0 0

2

:H μ θ
μ

=  versus 1
1 0

2

:H μ θ
μ

≠ , 0 0θ >  can be derived from (4.13) by 

replacing 2 jX  by 0 2 jXθ , 21, 2,...,j n= , provided the scale parameter of the 

distribution function of 2 jX  is assumed to be 0θ λ .  

 It is straightforward to express the UMP-unbiased test procedures in terms of 0θ  

obtained by inverting the acceptance regions of these tests at level α . When λ  is 

unknown, the confidence interval for 0θ  is given by 

[ ] [ ]( )
[ ]( )

2
1 1 1

'

, ,  1 0

0,           ,  otherwise           

A B C A B C X V d n

A B C

⎧ − + − >⎪
⎨

− +⎪⎩
,      (4.15) 

where 

1
21 1 1

2 1

1X X VA d
X n

−
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, 21 1 2 2

2 1

11
2

X V X VB d
n n

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
, 

1 22
21 1 2 2 1 1 2 2

1 2
1 2 1 2 2 1

1
4

X X X X X V X VC d V V d
n n n n n n

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= + + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

( ) 1 2
1 2 1 22d n n t α

−
−= + − , 

1
' 21 1 1

2 1

1X X VA d
X n

−
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠
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and ( )
1

1 1
1 1 1

1

n

j
j

V X X− −

=

= −∑  and ( )
2

1 1
2 2 2

1

n

j
j

V X X− −

=

= −∑ . 

 For more details, we refer to the paper and the book by Chhikara and Folks 

(1975, 1989), respectively. 

 

4.2.2 Inferences on 1 2λ λ  

 We now give a test for the ratio of two scale parameters 1λ  and 2λ  from two 

independent IG  populations, say ( ),i iIG μ λ , 1, 2i = . To test the hypothesis 

1
0 0

2

:H λ δ
λ

=  versus 1
1 0

2

:H λ δ
λ

≠ , take random samples of 1n  observations of 1X  

and 2n  observations of 2X . For the fact that 1 1Vλ  and 2 2Vλ  have independent 

chi-square distributions 
1

2
1nχ −  and 

2

2
1nχ − , respectively, where 

1

1 1in

i
j ij i

V
X X=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  for 

1, 2i = . Thus the test statistic can be written as 

( )
( )

1 1 1

2 2 2

1
1

V n
Q

V n
λ
λ

−
=

−
( )
( )

1

2

2
1 1

2
1 2

1
1

n

n

n
n

χ
χ

−

−

−
=

−
        (4.16) 

which is an F  distribution with 1 1n −  and 2 1n −  degrees of freedom. Therefore 

the p-value for this size α  test is computed by 

( )
( )

( )
( )

1 1 1 1 1 11 1
0 0

2 2 2 2 2 2 2 2

1 1
2*min ,

1 1
v n v n

p P Q P Q
v n v n

λ λλ λδ δ
λ λ λ λ

⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎪ ⎪= > = < =⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
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( )
( )

( )
( )1 2 1 2

1 1 1 1
1, 1 0 1, 1 0

2 2 2 2

1 1
2*min ,

1 1n n n n

v n v n
P F P F

v n v n
δ δ− − − −

⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎪ ⎪= > ⋅ < ⋅⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
, (4.17) 

where Q  is defined in (4.20) and 
1 21, 1n nF − −  denotes the F  distribution with 1 1n −  

and 2 1n −  degrees of freedom, and 0H  is rejected if p α< . 

   It is straightforward to construct a confidence interval for 1

2

λ
λ

 based on the 

statistic Q  given in (4.16). For the fact that 
1 2 1 2/ 2, 1, 1 1 / 2, 1, 1Pr n n n nF Q Fα α− − − − −⎡ ⎤< <⎣ ⎦  

1 α= − , where
1 2, 1, 1n nFγ − −  is the rth quantile of F  distribution with 1 1n −  and 2 1n −  

degrees of freedom. Let 
1 21 2, 1, 1n nq Fα − −=  and  

1 22 1 2, 1, 1n nq F α− − −= , a ( )100 1 %α−  

confidence interval for 1

2

λ
λ

 can be obtain through 

( )
( )

1 1 11
1 2

2 2 2 2

1
:

1
v n

q Q q
v n

λλ
λ λ

⎧ ⎫−⎪ ⎪< = <⎨ ⎬−⎪ ⎪⎩ ⎭
 

( )
( )

( )
( )

2 2 2 21
1 2

1 1 2 1 1

1 1
1 1

v n v n
q q

v n v n
λ
λ

⎧ ⎫− −⎪ ⎪= < <⎨ ⎬− −⎪ ⎪⎩ ⎭
.       (4.18) 

It is interesting to note that the result in (4.18) is the same as our result in (4.14). In 

our procedure, the pivotal quantity (4.10) of 1

2

λ
λ

 is 

1

1 2

2

2
1 1* 2 2

1, 12
1 2 1 1

/ ( 1)
/ ( 1)

n
n n

n

v v nT F
v v n

χ
χ

−
− −

−

−
= = ⋅

−
, the quantile points which satisfys 

*
1 2Pr 1C T C α⎡ ⎤< < = −⎣ ⎦  are ( )

( )
2 2

1 1
1 1

1
1

v n
C q

v n
−

=
−

 and ( )
( )

2 2
2 2

1 1

1
1

v n
C q

v n
−

=
−

, where  

1 21 2, 1, 1n nq Fα − −=  and  
1 22 1 2, 1, 1n nq F α− − −= .  Thus the ( )100 1 %α−  confidence interval 
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for 1

2

λ
λ

 is *1 1
1 2

2 2

: obsC T Cλ λ
λ λ

⎧ ⎫
< = <⎨ ⎬

⎩ ⎭
 which is the same as (4.18). 

 

4.3 Confidence intervals of  1 2μ μ  based on the directed likelihood 

ratio statistic 

   The signed log likelihood ratio has been discussed by many authors, McCullagh 

(1982), Petersen (1981), Pierce and Schafer (1986), and Barndorff-Nielsen (1986) 

etc., to obtain a statistic which is asymptotically standard normally distributed with 

error of order 3/ 2( )O n−  by repeated sampling. Tian and Wilding (2005) provided an 

estimating approach for constructing a confidence interval of 1 2μ μ  based on the 

directed likelihood ratio method. The procedure is as follows. 

   Suppose the ratio of the two means is the parameter of interest, that is 

1 2θ μ μ=  and the vector of nuisance parameters is ( )2 1 2, ,μ λ λ=η  and ( ),θ=ζ η . 

Let 1 ,  1,..., ;  1, 2ij ij iY X j n i= = = , then 1 jY  and 2 jY  are two independent samples 

from ( )1 1,RRIG μ λ  and ( )2 2,RRIG μ λ , respectively, where RRIG means the 

reciprocal root IG distribution. The log-likelihood function is  

( ) ( ) 1 2 1 1
1 2 1 2

2

2; log log log
2 22
n n nl x n n λζ λ λ

θμπ
⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

 

2 2 1 1 2 2
1 1 2 22 2 2

2 2 22 2 2 2
n T S T Sλ λ λ λ λ
μ ψ μ μ

+ − − − − ,     (4.19) 
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where 

2

1 1

i in n

i ij ij
j j

S y x−

= =

= =∑ ∑  and 2

1 1

1
i in n

i ij ij
j j

T y x
= =

= =∑ ∑ , 1, 2i = .           (4.20) 

The maximum likelihood estimates of the parameters of (4.19) are  

( ) ( )1 1 2 2S n S nθ =
)

, 2 2 2S nμ =) , ( )1 1 1 1 11 T n n Sλ = −
)

 and ( )2 2 2 2 21 T n n Sλ = −
)

. 

For a given value of θ , the constrained maximum likelihood estimates of the 

nuisance parameters ( )2 1 2, ,μ λ λ=η  can be obtained by solving 

( ) ( )2
2 1 1 2 2 1 1 2 2S S n nθ θ θ θ θμ λ ψ λ λ ψ λ= + +

) ) ) )) , 

( )2 2
1 1 1 1 2 1 22n T S nθ θ θλ θ μ θμ= + −
) ) ) , 

( )2
2 2 2 2 2 2 22n T S nθ θ θλ μ μ= + −
) ) ) ,        (4.21) 

simultaneously. The approximate 100(1 )%α−  confidence intervals of 1 2μ μ  based 

on the directed likelihood ratio statistic ( )r θ  is 

( ){ }/ 2: r Zαθ θ ≤         (4.22) 

with  

( ) ( ) ( ) ( )( ) 1 2
sgn 2 , ,r l l θθ θ θ θ θ⎡ ⎤= − −⎣ ⎦η η

) ) ) ) ,      (4.23) 

where ( )l θ  is the log-likelihood function in (4.19). 
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Chapter 5 Numerical Examples and Simulation Studies 

 Some IG data are given to compare our procedure with other methods with 

respect to their confidence intervals and confidence lengths. Several simulation 

studies are also presented to compare the performances of three methods, (1) 

Chhikara and Folks (2) Tian and Wilding (3) the generalized approaches, in terms of 

their coverage probabilities, expected lengths and the Type I error. 

 

5.1 Numerical examples 

Example 1. 

 Gacula and Kubala (1975) reported certain sensory failure data for two 

refrigerated food products, M and K as these were called, and studied their shelf life 

which fit the IG distribution well. The summary data are given in Table 1 and the 95% 

confidence intervals for three methods are presented in Table 2. 

Table 1. Summary data 

Product size μ̂  λ̂  

M 26 42.885 18.622 

K 17 56.941 14.881 
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Table 2. 95% confidence intervals and lengths for 1

2

μθ
μ

=  

Method θ̂  95% confidence interval length 

Chhikara 0.771 ( 0.635 , 0.905 ) 0.270  

Directed 0.753 ( 0.562 , 0.962 ) 0.400  

Generalized 0.755 ( 0.554 , 0.977 ) 0.422  

 

Example 2. 

 Four sets of IG data presented in Folks and Chhikara (1978) who judged that the 

data are very well described by the Inverse Gaussian distribution. The first set, data 

(1), gives fracture toughnesses of MIG welds. The second set, data (2), gives data of 

precipitation (inches) from Jug Bridge, Maryland. The third set, data (3), gives runoff 

amounts at Jug Bridge, Maryland. Additionally, Gacula and Kubala (1975) gave data 

(4) on shelf-life of a food product. The summary data for four sets of IG data are 

shown in Table 3. For investigating the ratio of means of two independent populations 

when the scale parameters are more different than those in Example 1, we will 

compare the means of these four data sets mutually and show the results in Table 4. 
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Table 3. The summary data for four data sets 

data size μ̂  λ̂  

( 1 ) 19  74.300  4924.070  

( 2 ) 25  2.160  8.080  

( 3 ) 25  0.800  1.440  

( 4 ) 26  42.885  484.253  

 

Table 4. 95% confidence intervals and lengths for 1

2

μθ
μ

=  

(2)/(1) θ̂  95% confidence interval length 

Chhikara 0.0303  ( 0.020 , 0.040 ) 0.020 

Directed 0.0290  ( 0.024 , 0.036 ) 0.012 

Generalized 0.0294  ( 0.024 , 0.037 ) 0.014 

 

(3)/(1) θ̂  95% confidence interval length 

Chhikara 0.0118  ( 0.006 , 0.017 ) 0.011 

Directed 0.0108  ( 0.008 , 0.016 ) 0.008 

Generalized 0.0111  ( 0.008 , 0.016 ) 0.008 

 

(4)/(1) θ̂  95% confidence interval length 

Chhikara 0.5857  ( 0.469 , 0.702 ) 0.233 

Directed 0.5771  ( 0.509 , 0.661 ) 0.152 

Generalized 0.5796  ( 0.505 , 0.667 ) 0.162 
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(3)/(2) θ̂  95% confidence interval length 

Chhikara 0.4046  ( 0.154 , 0.655 ) 0.501 

Directed 0.3726  ( 0.262 , 0.558 ) 0.296 

Generalized 0.3812  ( 0.258 , 0.564 ) 0.306 

 

(2)/(4) θ̂  95% confidence interval length 

Chhikara 0.0521  ( 0.034 , 0.070 ) 0.036 

Directed 0.0503  ( 0.040 , 0.066 ) 0.026 

Generalized 0.0509  ( 0.040 , 0.065 ) 0.025 

 

(3)/(4) θ̂  95% confidence interval length 

Chhikara 0.0201  ( 0.011 , 0.029 ) 0.018 

Directed 0.0187  ( 0.014 , 0.028 ) 0.014 

Generalized 0.0193  ( 0.014 , 0.028 ) 0.014 

 

 From Example 1 and Example 2, the results show that the confidence lengths 

obtained by the generalized methods are the smallest or close to the smallest 

confidence lengths no matter what the scale parameters perform when two IG 

populations are non-homogeneous. Some simulation studies are also worth to be 

inspected, and we will make discussion in next subsection. 
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5.2 Simulation studies 

 Some simulation studies are performed to compare the 95% coverage 

probabilities, expected lengths and type I errors of three procedures for the ratio of 

two means, 1 2θ μ μ= . We will choose different combinations of sample sizes 

( ) ( ) ( ) ( )1 2, 5,10 ,  10,5  and 10,10n n = , respectively, and various values of the ratio of 

scale parameters, 1 2λ λ , with 1,000 replicates for each combination. The results 

appear in Tables 5-9. In addition, we will present powers of the tests obtained by the 

generalized method in Table 10. 

Table 5. Coverage probabilities (CP) and expected lengths (length) of 95% confidence 

intervals of 1

2

μθ
μ

=  

0.2θ =    Generalized○1   Chhikara○2   Directed○3  

( n1 , n2 ) 1

2

λ
λ

  CP length CP length CP length 

( 5 , 10 ) 0.5 0.957  0.698  0.974 0.534  0.930  1.060 
 1 0.954  0.472  0.974 0.466  0.917  0.787 
 5 0.948  0.312  0.978 0.427  0.894  0.520 
 10 0.949  0.294  0.982 0.422  0.907  0.280 

( 10 , 5 ) 0.5 0.946  0.565  0.906 0.483  0.895  0.671 
 1 0.951  0.488  0.872 0.370  0.898  0.558 
 5 0.950  0.427  0.811 0.290  0.876  0.379 
 10 0.949  0.496  0.792 0.279  0.898  0.300 

( 10 , 10 ) 0.5 0.959  0.409  0.946 0.367  0.929  0.470 
 1 0.951  0.335  0.941 0.317  0.912  0.373 
 5 0.949  0.291  0.932 0.281  0.897  0.330 
 10 0.953  0.285 0.930 0.276 0.886  0.259 
○1 Generalized methods  ○2 Chhikara and Folks (1989) ○3 Directed likelihood ratio statistic 
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Table 6. Coverage probabilities (CP) and expected lengths (length) of 95% confidence 

intervals of 1

2

μθ
μ

=  

0.6θ =    Generalized○1   Chhikara○2   Directed○3  

( n1 , n2 ) 1

2

λ
λ

  CP length CP length CP length 

( 5 , 10 ) 0.5 0.955  3.889  0.906 5.231  0.932  3.589 
 1 0.957  2.651  0.962 2.023  0.902  2.602 
 5 0.952  1.067  0.977 1.346  0.892  0.869 
 10 0.950  0.974  0.976 1.295  0.895  0.721 

( 10 , 5 ) 0.5 0.956  2.891  0.934 6.967  0.938  2.536 
 1 0.953  1.987  0.926 2.027  0.903  1.658 
 5 0.955  1.370  0.846 0.989  0.893  0.866 
 10 0.950  1.321  0.823 0.896  0.906  0.863 

( 10 , 10 ) 0.5 0.955  2.482  0.944 2.489  0.929  2.395 
 1 0.952  1.536  0.948 1.281  0.933  1.563 
 5 0.955  0.943  0.937 0.896  0.902  0.715 
 10 0.949  0.881 0.931 0.856 0.902  0.661 
○1 Generalized methods  ○2 Chhikara and Folks (1989) ○3 Directed likelihood ratio statistic 
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Table 7. Coverage probabilities (CP) and expected lengths (length) of 95% confidence 

intervals of 1

2

μθ
μ

=  

1θ =    Generalized○1   Chhikara○2   Directed○3  

( n1 , n2 ) 1

2

λ
λ

 CP length CP length CP length 

( 5 , 10 ) 0.5 0.948  8.655  0.773 9.905  0.892  4.165 
 1 0.958  6.370  0.930 6.323  0.909  3.501 
 5 0.957  2.348  0.976 2.331  0.907  1.433 
 10 0.956  1.872  0.978 2.218  0.898  1.233 

( 10 , 5 ) 0.5 0.954  7.571  0.801 22.061  0.919  3.813 
 1 0.952  4.453  0.946 7.066  0.913  2.714 
 5 0.948  2.440  0.868 1.873  0.899  1.480 
 10 0.953  2.310  0.840 1.608  0.898  1.432 

( 10 , 10 ) 0.5 0.958  6.168  0.897 11.000  0.926  3.856 
 1 0.955  3.450  0.953 3.080  0.916  2.872 
 5 0.954  1.668  0.943 1.580  0.911  1.241 
  10 0.952  1.550 0.937 1.472 0.909  1.411 
○1 Generalized methods  ○2 Chhikara and Folks (1989) ○3 Directed likelihood ratio statistic 
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Table 8. Type I error for testing 0 0 1 0:  versus :H Hθ θ θ θ= ≠ , 1

2

μθ
μ

=  (α =0.05) 

0 0.4θ =    type I error 

( n1 , n2 ) 1

2

λ
λ

 Generalized○1 Chhikara○2  Directed○3  

( 5 , 10 ) 0.5 0.04 0.05 0.08 
 1 0.04 0.03 0.08 
 5 0.05 0.02 0.08  
 10 0.05 0.02 0.06  

( 10 , 10 ) 0.5 0.05  0.05 0.08 
 1 0.04 0.05 0.07  
 5 0.05 0.07 0.06 
 10 0.05  0.07 0.07  

( 15 , 10 ) 0.5 0.05 0.06 0.06 
 1 0.05 0.07 0.07 
 5 0.04  0.11  0.08  
 10 0.05  0.13 0.06  

○1 Generalized methods  ○2 Chhikara and Folks (1989) ○3 Directed likelihood ratio statistic 

Table 9. Type I error for testing 0 0 1 0:  versus :H Hθ θ θ θ= ≠ , 1

2

μθ
μ

=  (α =0.05) 

0 0.8θ =    type I error 

( n1 , n2 ) 1

2

λ
λ

 Generalized○1 Chhikara○2  Directed○3  

( 5 , 10 ) 0.5 0.05 0.17 0.09  
 1 0.04 0.05 0.08  
 5 0.04  0.02 0.09  
 10 0.05 0.02  0.10 

( 10 , 10 ) 0.5 0.04 0.07 0.08  
 1 0.05 0.05 0.09 
 5 0.05 0.06 0.09 
 10 0.05  0.07 0.10 

( 15 , 10 ) 0.5 0.05 0.04  0.08 
 1 0.05 0.06 0.08  
 5 0.05 0.10 0.08  
 10 0.05  0.11  0.08 

○1 Generalized methods  ○2 Chhikara and Folks (1989) ○3 Directed likelihood ratio statistic 
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Table 10. Simulated powers for testing 0 1: 1 versus : 1H Hθ θ= ≠ , 1

2

μθ
μ

=  (α =0.05) 

  θ       

( n1 , n2 ) 1

2

λ
λ

 0.2 0.4 0.6 0.8 1 1.2 

( 5 , 10 ) 0.5 0.763 0.245 0.128 0.061 0.053 0.051 
 1 0.911 0.391 0.112 0.053 0.043 0.041 
 5 0.998 0.726 0.210 0.077 0.045 0.047 
 10 1.000 0.825 0.310 0.074 0.047 0.070 

( 10 , 5 ) 0.5 0.902 0.306 0.092 0.047 0.046 0.047 
 1 0.957 0.381 0.120 0.050 0.048 0.051 
 5 0.979 0.532 0.174 0.061 0.052 0.072 
 10 0.983 0.556 0.201 0.072 0.054 0.079 

( 10 , 10 ) 0.5 0.971 0.397 0.136 0.065 0.042 0.042 
 1 0.998 0.627 0.176 0.063 0.048 0.057 
 5 1.000 0.865 0.335 0.080 0.045 0.069 
 10 1.000 0.884 0.368 0.095 0.044 0.081 

( 15 , 10 ) 0.5 0.995 0.542 0.150 0.066 0.045 0.043 
 1 1.000 0.722 0.349 0.057 0.044 0.071 
 5 1.000 0.867 0.407 0.091 0.053 0.061 
 10 1.000 0.889 0.386 0.099 0.046 0.080 

  

 From Table 5 to Table 10, we can conclude that the coverage probabilities 

obtained by generalized methods are very close to the nominal level 95% and the 

Type I error are exact or close to the nominal level 0.05. On the other hand, the 

coverage probabilities obtained by directed likelihood ratio are too small and the type 

I errors exceed the 5% in all cases. Besides, Chhikara and Folks (1989)’s procedure 

performs well under 1 2  λ λ=  and 2 ,  a constant, 1, 2i

i

iλ ξ
μ

= = , but its performance 
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becomes worse when the heteroscedasticity is increasing. In fact, the procedure based 

on generalized methods is readily applicable and easy to perform even under the 

sample sizes are quite small. The simulation results show that its results are better 

than the other two methods with respect to having almost exact coverage probabilities 

and the type I errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 - 44 -

References 

Barndorff-Nielsen, O. E. (1986). Inference on full and partial parameters based on the 

standardized signed log likelihood ratio. Biometrika, 73: 307-322. 

Chhikara, R. S. (1972). Statistical inference related to the inverse Gaussian 

distribution. Ph.D. Dissertation, Oklahoma State University, Stillwater. 

Chhikara, R. S. (1975). Optimum tests for the comparison of two inverse Gaussian 

distribution means. Austral. J. Statist., 17: 77-83. 

Chhikara, R. S., Folks, J. L. (1975). Statistical distributions related to the inverse 

Gaussian. Commun. Statist., 4: 1081-1091. 

Chhikara, R. S., Folks, J. L. (1976). Optimum tests procedures for the mean of first 

passage time in Brownian motion with positive drift (inverse Gaussian 

distribution). Technometrics, 18: 189-193. 

Chhikara, R. S., Folks, J. L. (1989). The Inverse Gaussian distribution. Marcel Dekker, 

New York. 

Folks, J. L., Chhikara, R. S. (1978). The Inverse Gaussian distribution and its 

statistical application-a review. J. R. Statist. Soc. B, 40: 263-289 

Gacula, M. C., Kubala, J. J. (1975). Statistical models for shelf life failures. J. Food 

Sci., 40: 404-409 

McCullagh, P. (1982). Discussion of paper by A. C. Atkinson. J. R. Statist. Soc. B, 44: 

29-30. 

Petersen, B. V. (1981). A comparison of the Eforn-Hinkley ancillary and the 

likelihood ratio ancillary in a particular example. Ann. Statist. 9: 1328-1333. 

Pierce, D. A., Schafer, D. W. (1986). Residuals in generalized linear models. J. Am. 

Statist. Assoc. 81: 977-986. 

Roy, L. K., Wasan, M. T. (1968a). The first passage time distribution of Brownian 

motion with positive drift. Math. Biosci., 3: 191-204. 



 

 - 45 -

Roy, L. K., Wasan, M. T. (1968b). Properties of the time distribution of standard 

Brownian motion. Trabajos Estadist., 19: 1-11. 

Roy, L. K., Wasan, M. T. (1968c). Some characteristic properties of the time 

distribution of standard Brownian motion. Recu en Mars, 29-38. 

Schrödinger, E. (1915). Zöur Theorie der Fall - und Steigversuche an Teilchenn mit 

Brownsche Bewegung. Phys. Zeit. 16: 289-295 

Seshardi, V. (1993). The Inverse Gaussian Distribution: A Case Study in Exponential 

Families. Clarendon Press, Oxford. 

Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and 

Applications. Springer, New York. 

Shuster, J. J., Miura, C. (1972). Two way analysis of reciprocals. Biometrika, 59: 

478-481. 

Tian, Lili, Wilding, Gregory E. (2005). Confidence intervals of the ratio of means of 

two independent inverse Gaussian distributions. Journal of Statistical Planing and 

Inference, 133: 381-386. 

Tsui, K. W., Weerahandi, S. (1989). Generalized P-values in significance testing of 

hypotheses in the presence of nuisance parameters. J. Amer. Statist. Assoc. 84: 

602-607. 

Tweedie, M. C. K. (1945). Inverse statistical variates. Nature, 155: 453. 

Wald, A. (1947). Sequential Analysis, Wiley, New York. 

Weerahandi, S. (1993). Generalized confidence intervals. J. Amer. Statist. Assoc. 88: 

899-905. 

Weerahandi, S. (1995). Exact Statistical Methods for Data Analysis. Springer, New 

York. 


	封面.pdf
	摘要 誌謝.pdf
	論文 ver5.pdf

