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Abstract 
 
 

This thesis proposes a new method for the estimation of mean reversion effect in 

diffusion processes from discrete observations. The idea is based on simulating 

augmented data as high frequency data to cover the inadequacy of discrete observations. 

The simulation of augmented data is based on Markov-chain Monte Carlo methodology 

and the estimation of parameters is based on EM algorithm. We implement the Vasicek 

model as an illustration and the simulation result will be provided. The result 

demonstrates that the degree of augmentation is quite helpful for the accurate estimation 

especially when the mean reversion strength is large. 
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摘要 

 

本論文的目的在於針對離散時間觀察到的擴散過程(Diffusion Process)樣本，提

出一個新的方法來估計回歸平均的效果。這構想主要是以模擬出增廣樣本當作高頻

資料，以彌補離散時間樣本在估計上的不足。此模擬的程序主要利用馬可夫鏈蒙地

卡羅方法(MCMC)，而參數估計則是以 EM演算法為基礎。我們以 Vasicek 模型當作

例子來測試此方法的可行性。最後可以從模擬結果中發現，當增廣資料的維度提高

時，可以在回歸平均強度較大時，得到較好的估計。 
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1. Introduction 
 

1.1 Diffusion Process 
 

Diffusion processes have become the standard tool for modeling prices in financial 

markets for derivative and risk management purposes. Consider an Ito stochastic process 

that satisfies a stochastic differential equation (SDE) of the form 

( ) { ( ), , } { ( ), , } ( )dy t a y t t dt b y t t dW tθ θ= +              (1.1) 

where { ( ), , }a y t t θ and { ( ), , }b y t t θ  are the non-anticipative drift and volatility function 

respectively, depending on y(t), time t, and an unknown parameter vector θ , and ( )dW t  

is increment of standard Wiener process. Although such continuous time process offer 

analytic tractability, the parameter that govern their dynamics are often difficult to 

estimate from discrete time data. In a nutshell, estimation is problematic because the 

model is formulated in continuous time, while sample data are naturally only available at 

discrete frequencies. This implies that estimates obtained by naive discretizations of 

diffusion processes can be subject to discretization bias. Since the direct discretization of 

diffusion processes will cause estimation bias, the estimation scheme of parameter from 

discrete observations of y at time-points 0= 0 1 nt t t< < ⋅⋅⋅ < , a number of methods have 

been proposed to estimate diffusion process. 

    Among all kinds of continuous time model, however, one cannot derive a simple 

analytic transition density of the process in all cases. If the transition densities 

1( | , )t tf y y θ− of y are known, we can use the log- likelihood function  

1
1

( ) log( ( | , ))
n

t t
t

L f y yθ θ−
=

= ∑                        (1.2) 

to estimate θ . The corresponding maximum likelihood estimator n̂θ  is known to have 

the usual good properties. In the case of time-equidistant observations ( ,it i= ∆ 0,1...i n=  

for some fixed∆>0), many papers have proved the consistent and asymptotic normality 

of n̂θ  as n→ ∞ . It is only natural that the number of observations must be large enough 

for any estimator to be close to the true value, and from a practical point of view it is an 

important property that ensures the estimator to be close to the true value. Unfortunately, 
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the transition densities of the continuous time diffusion process are, with the exception of 

a few special cases, generally unknown or unavailable in closed form so that the 

conventional likelihood-based inference is often inapplicable. 

     Traditionally, to overcome the difficulties when the transition densities of y are 

unknown, the usual alternative is using ( )nL θ  to approximate log-likelihood function 

based on discrete observations of y. Unless 1 1max | |i n i it t≤ ≤ −−  is “small”, nevertheless, in 

the case of time-equidistant observations, Florens-Zmirou (1989) actually show that 

estimator based on maximizing ( )nL θ  is consistent. Pederson (1995) derived a sequence 

( )
1{ ( )}N

n Nl θ ∞
=  of approximations to ( )L θ , that gives a connection between ( )nL θ  and 

( )L θ . The idea is to approximate the (unknown) transition densities 1( | , )t tf y y θ−  by a 

sequence of transition densities ( )
1( | , )N

t tf y y θ−  of approximating Markov process that 

converge to 1( | , )t tf y y θ−  as N →∞ . In the following sections, we will base on this 

method to discover some estimation problem of special broadly-applied diffusion process 

in finance.  

 

1.2 Mean Reversion 
 

     When using diffusion process as a tool for financial modeling, many researchers 

may add some components to non-anticipative drift term or volatility function for the 

purpose of explaining specific phenomenon in financial market, for examples, mean 

reversion effect or volatility cluster effect. Mean reversion is a tendency for a stochastic 

process to remain near, or tend to return over time to a long-run average value. Mean 

reversion effect has been observed in interest rate market, especially in short-term market. 

In contrast, this behavior is not so obvious in stock market. Vasicek (1977) propose an 

interest rate model for treasury debt pricing through a mean reversion type stochastic 

differential equation: 

( )t t tdy y dt dWκ µ σ= − − + ⋅                 (1.3) 

where κ  is the constant strength of mean reversion, µ  is the equilibrium level, σ  is 

the volatility and tW  is the standard Brownian motion. 
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        Figure 1: Simulated Data for Comparison of Different Mean Reversion Strength 

 

Such models that incorporate mean reversion effect are also named as mean-reverted 

process. To be more precise, a process is mean reverted if increments over disjoint 

intervals are negatively correlated. This is an important property of mean-reverted 

process because it represents that there is an invisible strength leading the prices back to 

its equilibrium. Thus asset prices tend to fall (rise) after hitting a maximum (minimum). 

 

1.3 Motivation 

 

Once we had observed such phenomenon in a certain market, a more crucial 

question comes immediately – how large is the mean reversion strength? That is, even if 

we can expect the prices will return to the mean, how long does the market need? Many 

financial practitioners are concerned about this issue. For instance, typically a mean 

reverted model is used to suggest that an un-hedged long equity position needs less 

capital than implied in a non-mean reverted model. However, what if we use a mean 
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reverted model with unknown transition densities? Shall we simply count on discrete 

observations to make inferences? 
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 Figure 2: Discretely Observed Data and High Frequency Data 

 

In Figure 2, the dash line and solid line denote 11 discretely observed data and 100 

high frequency data respectively, the dash-dot line has the mean of 0.2. If the only 

information we can obtain is discretely observed data, as we can see in the above figure, 

this process seems to revert to the mean between the fourth and fifth discrete observations 

for the first time. Actually, the whole process had reverted to the mean for several times 

before the discrete observations did. Similar situation also occurs later. With discrete 

observations barely available, mean reversion strength was under-evaluated in this 

process. In this thesis, we will show that based on certain process simulating more 

“augmented data” as high frequency data will improve the estimation merely from 

discretely observed data. This principle is referred to as “Data Augmentation”. The 

simulating procedure is based on Markov chain Monte Carlo (MCMC) method. The 

simulated augmented data and discretely observed data together can be called as 
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complete data so that we can formulate the complete data likelihood function. Simulated 

likelihood function can be derived after integrating augmented data out of the complete 

data likelihood function. All the estimation and inference can be conducted through the 

simulated likelihood function. From the maximum likelihood estimation results, we find 

that when the degree of augmentation increases, the estimation result can be improved to 

a certain extent but this depends on the strength of the mean reversion. This corresponds 

to our claim for the inadequacy of discrete observations for continuous time diffusion 

process. In fact, the data augmentation is the implementation of the idea of approximate 

likelihood.  
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2. Literature Review 
 

2.1 Calibration of Diffusion Process 
 

Based on Ornstein-Uhlenbeck process, Vasicek (1977) proposed a mean reverted 

process: 

( )t t tdy y dt dWκ µ σ= − − +                (1.3) 
Cox, Ingersoll, Ross (1985), well-known as CIR model, generalized Vasicek model to 

reflect the effect that volatility changes with the process: 

      ( )t t t tdy y dt y dWκ µ σ= − − +              (2.1) 
These two models are widely-used because the transition densities are unknown. A 

number of methods have been proposed to estimate diffusion parameters. Working with 

the difference equation resulting from a Euler discretization of the process can give rise 

to quasi maximum likelihood or moment-based estimators (e.g., Chan, Karolyi, Longstaff, 

and Sanders 1992). Naive discretizations, however, give estimates subject to the 

discretization bias just mentioned if sampling times are infrequent. Yoshida (1992), and 

Kessler (1997) proposed estimators converging to the true parameter more rapidly as the 

data are sampled more frequently. An alternative strategy that relies on discretizations of 

the continuous time likelihood function was given by Liptser and Shiryayev (1977) and 

Aase (1987), among others. Other analytic methods include those of Sørensen (1995), 

Bibby and Sørensen (1996) (estimating functions), and Ait-Sahalia (1998) (analytic 

approximation to the likelihood function), while generalized method of moments 

(GMM)-based estimators were discussed by Hansen and Scheinkman (1995), and Conley, 

Hansen, Luttmer, and Scheinkman (1997), among others. Nonparametric methods were 

proposed by Ait-Sahalia (1996a,b), Jiang and Knight (1997), and Stanton (1997). 

Previously, simulation-based methods have been proposed for estimating diffusions by 

the method of simulated moments (Duffie and Singleton 1993), indirect inference 

methods (Gourieroux, Monfort, and Renault 1993), and the efficient method of moments 

(EMM) (Gallant and Tauchen 1996), among others. The advantage of simulation-based 

methods is that they typically apply to more general processes than the analytic methods. 

For instance, Andersen and Lund (1997) applied EMM in estimation of two- and 

three-factor nonlinear interest-rate models with unobserved factors.  
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2.2 Data Augmentation 

 
   Pederson (1995) suggested an approximate likelihood function method based on 

simulating auxiliary variables directly from Euler discretization likelihood function. 

Elerian, Chib, Shepard (2001) inherited the concepts of approximate likelihood and 

revised the Euler discretization likelihood simulation to Markov chain Mote Carlo 

(MCMC) based simulation method. They took CIR model as an illustration to validate 

the advantages of MCMC simulation method. Eraker (2001) generalized the CIR model 

to a two-factor constant elasticity of variance model (CEV) with stochastic volatility 

model. Eraker (2001) believed that MCMC simulations conditioned on more information 

than Euler discretization simulations recommended by Pederson (1995) because MCMC 

method conditioned on the whole observations and interpolates a certain number of 

augmented data into each pairs of observations. Both Elerian, Chib, Shepard (2001) and 

Eraker (2001) used Bayesian approaches to estimate diffusion parameters but the former 

used informative priors and the other exploited non-informative priors. Niu and Lee 

(2006) proposed the GARCH based simulated likelihood approximations for continuous 

time stochastic volatility models and applied this method to option pricing.  
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3. Methodology 

 
   In this paper we try to validate the advantage of augmented variables by declaring 

that the approximate log-likelihood function will converge to the transition densities as 

the degree of augmentation increases. By taking augmented variables as the 

high-frequency data, we can improve the calibration of model because the incorporation 

of high-frequency data together with observed data are denser in some specific time 

interval. Especially for the strength of mean reversionκ , it is usually difficult to observe 

its level in a system with big fluctuation. When strength of mean reversion κ  is weak, 

the path of observed data tends to be smoother and requires a longer period to return to its 

equilibrium. In contrast, when κ  is strong, the path may exhibit more feature and fast 

mean-reverted, so it may be naïve if we merely use low frequency data to catch the 

structure. For this reason, we first assume a continuous time model and simulate 

augmented variables which follow this model. However, it is difficult to handle the case 

with unknown transition densities. As a result, we use a simple Ornstein-Ulenbeck 

process, modified by Vasicek in 1997 with the incorporation of mean reversion effect 

since the close form solution can be easily obtained. Here we simulate observed data 

from Vasicek model instead of using real time data because the true dynamics of data are 

unobservable.  

We assume that asset dynamics follow equation (1.3), which is the well-known 

Vasicek interest rate model. To begin with, consider the Euler approximation of the SDE 

1 1( ) ( )t t t t ty y y W Wκ µ σ+ +− = − − ∆ + −                   (3.1) 

, under which the transitional density is  

),)(|()|( 2
11 ∆∆−−= ++ σθκφ ttttt yyyyyf                (3.2) 

, where ),|( ba⋅φ denotes the normal density with mean a and variance b. Although this is 

the simplest discrete time approximation of the SDE, however, it is normally too coarse 

to approximate the true transition density adequately. Hence we want to propose an 

improved method through the utilization of auxiliary variables together with the 

discretely observed data to approximate the continuous time financial model.  

Here we shall use the famous Markov Chain Monte Carlo method to simulate auxiliary 
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variables and the elaborate EM algorithm to estimate parameters. Now let us denote Y *  

as the auxiliary variables we simulated in each sub-interval of observed data Y.  Thus, 

our simulation procedure in general can be summarized as follows: 

 

General sampling scheme 

1. Initialize Y*,θ . 

2. Update *
ty  from *

1| , ,t t ty y y θ+ , for t=1,2,…,T-1 

3. Update θ  from *| ,Y Yθ . 

4. Record the value of θ  and go to step 2. Repeat for a large number of times. 

 

3.1 MCMC method 

 

In recent years statisticians have been increasingly drawn to Markov chain Monte 

Carlo (MCMC) methods to simulate complex, nonstandard multivariate distribution. The 

Gibbs sampling algorithm is one of the best known of the methods (see Casella and 

George(1992) ). The Gibbs sampler is a technique for generating random variables from a 

(marginal) distribution indirectly, without having to calculate the density. In this paper we 

mainly use the Gibbs sampler to simulate the auxiliary variables instead of 

Metropolis-Hasting (M-H) algorithm since the conditional distribution of auxiliary 

variables on discretely observed data can be formulated in a simple close form. Through 

the use of techniques like Gibbs sampler, we are able to avoid difficult calculations, 

replacing them with a sequence of easier calculations.  

Markov chain Monte Carlo sampling fromθ , * |Y Y  is achieved by sampling in 

turn the full conditional distributions * | ,Y Y θ  and *| ,Y Yθ . One iteration of the 

Markov chain is completed by revising both Y* and θ  from these two distributions. A 

simple calculation (based on the Markov property of the diffusion) show that the full 

conditional distribution can be expressed as  
1 1

* * *
1 1

1 1

( , | , ) ( | , )
T M

t t
t j

f Y Y y f y yθ θ
− +

−
= =

=∏∏                   (3.3) 

due to the fact that the augmented data *
ty  is conditionally independent of the remaining 
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augmented data, given 1( , , )t ty y θ+ . This is done by generating a “Gibbs sequence” of 

random variables: 
* * *
,1 ,2 , (1)( , , , )t t t My y y⋅ ⋅ ⋅ , 1, 2, , 1t T= ⋅⋅⋅ −  

. 

. 

. 
* * *
,1 ,2 , ( )( , , , )t t t M Ky y y⋅ ⋅ ⋅ , 1, 2, , 1t T= ⋅⋅⋅ −                  (3.4) 

Note that the initial values * * *
,1 ,2 , (1)( , , , )t t t My y y⋅ ⋅ ⋅  need to be specified, the rest of all is 

obtained iteratively by alternatively generating values as  

 
* * *
,1 ,2 , (2)( , , , )t t t My y y⋅ ⋅ ⋅  ~ * *

(2) 1 (1)( | , , ; )t t t tf y y y y θ+  

. 

. 
* * *
,1 ,2 , ( )( , , , )t t t M Ky y y⋅ ⋅ ⋅  ~ * *

( ) 1 ( 1)( | , , ; )t K t t t Kf y y y y θ+ −               (3.5) 

In short, at the i-th iteration of Gibbs sampler, we draw 
*( )
,

i
t jy  ~ * *( ) *( 1)

, , 1 , 1( | , ; )i i
t j t j t jf y y y θ−

− +                     (3.6) 

where j=1,2,...,M. Since the information *( )
, 1

i
t jy +  is not available at the current iteration, we 

should condition on the last iteration result *( 1)
, 1

i
t jy −

+ . 

   We refer to this generation as Gibbs sampling. It turns out that under reasonably 

general conditions, the distribution of Y *  converges to the approximate likelihood 

functions.  
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3.2 Example 

 

Vasicek model can be solved explicitly and represented as  
2 2

1
(1 )~ ( (1 ), )

2t t
ey N y e e

κ
κ κ σµ

κ

−
− −

−
−

+ −                  (3.7) 

By the above equation we can obtain the true transition probability )|( 1 tt yyg + . 

 Now consider the detail of simulating auxiliary data Y* between each pair of 

discretely observed data Y, conditioning on these discretely observed data we can obtain 
1

*
1

1

( * | , ) ( | , , )
T

t t t
t

f Y Y f y y y θ
−

+
=

Θ =∏                    (3.8) 

where *
ty = ( *

,
*

2,
*

1, ......,,........., Mttt yyy ), and *
1( | , , )t t tf y y y θ+ is the density from Euler 

approximation.  

Since ),,|( 11 θ+− ttt yyyf  is proportional to ),|(),|( 11 θθ −+ tttt yyfyyf , thus we 

can derive the conditional distribution  

 

11,| +− ttt yyy ,θ ~ 
2

2 2
1 12 2

1( [ ( ) ], )
1 1t tN y y σρ κ µ

ρ ρ− +
∆

+ + ∆
+ +

       (3.9) 

,where 1ρ κ= − ∆  , t=1,2,……,T-1 

 

If we simulate M equally-spaced auxiliary variables in each period and interpolate 

those into the proper interval of discretely observed data, then the available size of data 

can be augmented from T to (T-1)(M+1) + 1. Now let *
,t jy  denote the j-th auxiliary 

variable in the t-th interval of discretely observed data, as an analogy, the transition 

probability can be written as  

       

     * * *
, , 1 , 1| ,t j t j t jy y y− + ,θ ~ 

2 *
* * 2 * 2

, 1 , 12 2

1( [ ( ) ( ) ], )
1 1t j t jN y y σρ κ µ

ρ ρ− +
∆

+ + ∆
+ +

   (3.10) 

t=1,2,……,T-1, j=1,2,…….,M, and note that tt yy =*
0, , 1

*
1, ++ = tMt yy , *

1M
∆

∆ =
+

. 

This sampling procedure should be conducted through Gibbs sampler because for each  
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*
,t jy  conditioned on *

, 1t jy −  and *
, 1t jy + , when *

, 1t jy +  is still unknown so that we need 

to guess initial value to run the algorithm. If the algorithm is implemented for only one 

time, such a rough method may cause a fatal error. As a result, it is better to iterate the 

algorithm for a large number of times until convergence.     

 

With the utilization of auxiliary variables, the transition density under Euler 

approximation is 

  ),)(|(),|( 2**
1,

*
1,

*
,

*
1,

*
, ∆⋅∆−−= −−− σµκφθ jtjtjtjtjt yyyyyf .         (3.11) 

So the complete data likelihood function can be formulated as  

∏∏
−

=

+

=
−=

1

1

1

1

*
1,

*
,1

* ),|(),|,(
T

t

M

j
jtjt yyfyYYf θθ                 (3.12) 

Based on the complete data likelihood function, we can obtain an improved maximum 

likelihood estimator (MLE), which is better than the one derived from the Euler 

approximation of SDE. 

 

3.3 EM Algorithm 

 

The EM algorithm is a general method of finding the maximum likelihood estimate 

of the parameters of an underlying distribution from a given data set when the data is 

incomplete or has missing value. There are two main applications of the EM algorithm. 
The first occurs when the data indeed has missing values, due to problems with 

limitations of the observation process. The second occurs when optimizing the likelihood 

function can be simplified by assuming the existence of additional but missing data. The 

later application is more common in the computational pattern recognition community. In 

our case, we assume the data Y is discretely observed and is generated from some 

distribution. We call Y the incomplete data and Y* (auxiliary variables we simulated) the 

missing data. We assume that a complete data set Z = (Y, Y*) and also assume a joint 

density function: 
* *( | ) ( , | ) ( | , ) ( | )p z p Y Y p Y Y p YΘ = Θ = Θ Θ               (3.13) 

With this new density function, we can define a new likelihood function, 
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*( | ) ( , | )L Z p Y YΘ = Θ , called the complete-data likelihood. Note that this function is in 

fact a random variable since the missing information Y* is unknown and presumably 

governed by an underlying distribution. The original likelihood function ( | )L YΘ  is 

referred to as the incomplete-data likelihood function. 

      The EM algorithm first finds the expected value of the complete-data 

log-likelihood *log ( , | )p Y Y Θ  with respect to the unknown data Y* given the observed 

data Y and the current parameter estimates. That is, we define: 
( 1) * ( 1)( , ) [log ( , | ) | , ]i iQ E P Y Y Y− −Θ Θ = Θ Θ                (3.14) 

where ( 1)i−Θ  are the current parameters estimates that we used to evaluate the 

expectation and Θ  are the new parameters that we optimize to increase Q. The key 

element to understand is that Y and ( 1)i−Θ  are constants, Θ  is a normal variable that 

we wish to adjust, and Y* is a random variable governed by the distribution 

),|*( 1−Θ iYyf . The right side of the above equation can be represented as  

       * ( 1) * * ( 1) *

*

[log ( , | ) | , ] log ( , | ) ( | , )i i

y

E P Y Y Y p y y f y y dy− −Θ Θ = Θ Θ∫      (3.15) 

Note that ),|*( 1−Θ iYyf  is the marginal distribution of the unobserved data Y* and is 

dependent on both the observed data Y and ( 1)i−Θ . In the best of cases, this marginal 

distribution is a simple analytical expression of the assumed parameters ( 1)i−Θ  and 

perhaps the data. In the worst of the cases, this density might be very hard to obtain due 

to the high dimensionality of augmented variables. So we must use the numerical method 

to approximate the true expectation. Our approach is based on the idea of Monte Carlo 

integration, i.e., to simulation R identically and independently distributed paths of 

augmented data conditioned on discretely observed data.  
1 1

* ( 1) *( ) *( )
, , 1

1 1 1

1[log ( , | ) | , ] log( ( | , )
T MR

i r r
t j t j

r t j

E P Y Y Y f y y
R

− +
−

−
= = =

Θ Θ ≈ Θ∑ ∏∏    (3.16) 

Note that *( )
,

r
t jy  is one of the augmented data from r-th path conditioned on ( 1)i−Θ  and 

Y . 



 - 18 -

 
Figure 3: 7 Observed Data and 20 Simulated Paths 

 

The evaluation of this expectation is called the E-step of the algorithm. Notice the 

meaning of the two arguments in the function ( 1)( , )iQ −Θ Θ .The first argument Θ  

corresponds to the parameters that ultimately will be optimized in an attempt to maximize 

the likelihood function. The second argument ( 1)i−Θ  corresponds to the parameters that 

we use to evaluate the expectation.     

    The second step of the EM algorithm, also called M-step, is to maximize the 

expectation we computed in the first step. That is, we find: 
( ) 1argmax ( , )i iQ −

Θ
Θ = Θ Θ                       (3.17) 

   These two steps are repeated as necessary. The advantage of the EM algorithm 

guaranteed that each iteration increases log-likelihood and will finally converge to a local 

maximum of the log-likelihood function. There are many rate-of-convergence papers but 

we will not discuss this issue here. A complete procedure to get a convergent maximum 

likelihood estimate is to simulate R independent paths conditioned on (0)Θ  and then 

numerically search for a steady estimate. Conditioned on the new estimate (1)Θ , 

simulating R independent paths again to acquire a new estimate (2)Θ . Repeat these steps 
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until estimates converge. 

As presented above, we basically introduce the EM algorithm and so the algorithm is 

presented in its most general form. So far, it is still not clear how we “code up” the EM 

algorithm applied to our case. Now, based on the transition probability of Vasicek model, 

we propose our estimation algorithm as follows: 

 

1. For i =1, conditioned on ( 1)i−Θ and discretely observed data Y, simulate Y* by 

MCMC method. 

2. (E-step)  
( 1) * ( 1)( , ) [log ( , | ) | , ]i iQ E P Y Y Y− −Θ Θ = Θ Θ , here the close form for ( 1)( , )iQ −Θ Θ  is 

difficult to obtain, therefore we need the help of Monte Carlo approximation. Let 
*( )rY  denote r-th path of latent data, r=1, 2,….., R. 

As R is large, ( 1)( , )iQ −Θ Θ = 

*( )

1

1 log( , | )
R

r

r
Y Y

R =

Θ∑  = 
1 1

*( ) *( )
, , 1

1 1 1

1 log( ( | , )
T MR

r r
t j t j

r t j

f y y
R

− +

−
= = =

Θ∑ ∏∏ .      (3.18) 

Note that *( )
,

r
t jy  is sampled from *( ) *( ) *( ) ( 1)

, , 1 , 1( | , , )r r r i
t j t j t jf y y y −

− + Θ . 

3. (M-step) 

Let ( )iΘ = ( 1)( , )iMaxQ −

Θ
Θ Θ = *( )

1

1 log( , | )
R

r

r
Max Y Y

RΘ =

Θ∑         (3.19) 

4. i = i+1, and then go to step 1. 
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4. Simulation Result 
 

In this section, we present estimates of the parameters in the Vasicek model with 

different κ . M denotes the degree of augmentation, which means the number of 

augmented data interpolated into each pair of observed data. The discretely observed data 

length is 200. Here we uses M=1, 2, 4, 6, 8, and κ =0.1, 0.5, 1. µ  and σ  in 3 cases of 

κ  are fixed at 0.2 and 0.05 respectively. Our main goal is to validate that different κ  

also have different sensitivities to the degree of augmentation. For the sake of validating 

our method, we first simulate 100 sets of observed data from Vasicek model as the 

observed data instead of real time data. For each set we simulate large numbers of 

augmented data and do simulated maximum likelihood estimation to obtain one set of 

estimate (κ ,µ ,σ ). Note that when implementing EM algorithm, we take the maximum 

likelihood estimation from true Vasicek transition densities as the initial value. Hence 

there are 100 sets of parameter estimates which can be used to calculate mean, bias, 

standard deviation (SD), mean square error (MSE), and mean absolute relative error 

(MARE).  
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Figure 4: Mean of kappa Estimates 
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    In Figure 4, we can see that when κ =0.1, the advantage of utilizing data 

augmentation is insignificant. While in the case of κ =0.5, the estimates κ  have 

begun to slowly improve. In the largest case of κ =1, the estimates converge to the true 

value after a certain number of augmented data were interpolated. When M=1, the 

estimates have strong biases because the mean only attained to 0.78. This corresponds to 

our initial guess that infrequently observed data will give rise to discretization bias, 

especially when the mean reversion strength κ  is large. The dash line is the result of 

maximum likelihood estimation from the true transition densities of Vasicek model. All 

the estimation results from data augmentation will eventually converge to the maximum 

likelihood estimation from the true transition densities. 

     From the view points of mean square error (MSE), Figure 5 also provides a 

persuasive result. When κ =1, MSE declines fast as the degree of augmentation 

increases. 
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Figure 5: Mean Square Error of kappa and note that the result is MSE times 100 
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The last indicator is the percentage mean absolute error (MARE). One may suspect 

that large κ  leads to a large magnitude of revision in value. If we do not check the 

MARE we may probably over-evaluate the effectiveness of data augmentation method. In 

Figure 6, MARE will indicate that this result is not a coincidence.  
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Figure 6: Mean Absolute Relative Error Plot, MARE =
( )

1
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−∑ , N=100 

 
Obviously, when κ =0.1 the MARE is larger than another two cases uniformly. 

This is a powerful evidence that the improvement of data augmentation at κ =1 

andκ =0.5 is not from its larger magnitude in value but truly from its bias. When M≥ 4, 

the MARE ofκ =1 is smaller than that of κ =0.5, hence in this measurement we clearly 

see that data augmentation method is quite helpful for large κ  cases.  

    The following three tables list all the estimates of (κ ,µ ,σ ). Amazingly, among all 

three parameters κ  is the most sensitive one to the degree of augmentation. While µ  

is the least one, actually numerous literature have shown that the estimation of drift term 

seldom cause a big trouble.  
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Simulation Result (κ =0.1) 

 Mean Bias s.d. MSE*N MARE 
(κ =0.1)      

M=1 0.1218 0.0218 0.0382 0.1903 0.3339 
M=2 0.1170 0.0170 0.0364 0.1588 0.3093 
M=4 0.1171 0.0170 0.0365 0.1596 0.3281 
M=6 0.1181 0.0181 0.0370 0.1671 0.3163 
M=8 0.1208 0.0208 0.0377 0.1827 0.3104 
MLE 0.1197 0.0197 0.0382 0.1822 0.3280 

(µ =0.2) 
M=1 

 
0.1993 

 
-0.0006 

 
0.0325 

 
0.1036 

 
0.1237 

M=2 0.1993 -0.0006 0.0325 0.1036 0.1236 
M=4 0.1993 -0.0006 0.0325 0.1035 0.1236 
M=6 0.1993 -0.0006 0.0325 0.1037 0.1237 
M=8 0.1993 -0.0006 0.0325 0.1036 0.1236 
MLE 0.1993 -0.0006 0.0325 0.1036 0.1236 

(σ =0.05) 
M=1 

 
0.0489 

 
-0.0010 

 
0.0024 

 
0.0007 

 
0.0319 

M=2 0.0489 -0.0010 0.0024 0.0007 0.0429 
M=4 0.0493 -0.0006 0.0023 0.0006 0.0340 
M=6 0.0500  0.0000 0.0021 0.0004 0.0385 
M=8 0.0502  0.0002 0.0020 0.0004 0.0426 
MLE 0.0500    0.0000 0.0025 0.0006 0.0382 

Table 1: The simulation result is based on Vasicek model. N=100 sets of data, each set has length of 

discrete observations T=200, and iterates 50 times for Gibbs sampling to be stationary, and R=100 

independent paths to approximate log-likelihood expectation. MSE*N represents 2

1

ˆ( )
N

i true
i

θ θ
=

−∑ , 

N=100. 
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Simulation Result (κ =0.5) 
 Mean Bias s.d. MSE*N MARE 

(κ =0.5)      
M=1 0.4564 -0.0436 0.0788 0.7971 0.1454 
M=2 0.4768 -0.0231 0.0858 0.7761 0.1390 
M=4 0.4931 -0.0068 0.0882 0.7684 0.1350 
M=6 0.5084  0.0084 0.0871 0.7513 0.1313 
M=8 0.5129  0.0129 0.0855 0.7343 0.1294 
MLE 0.5211  0.0210 0.1046 0.8692 0.1452 

(µ =0.2) 
M=1 

 
0.1989 

 
-0.0010 

 
0.0077 

 
0.0059 

 
0.0306 

M=2 0.1989 -0.0010 0.0077 0.0060 0.0307 
M=4 0.1989 -0.0010 0.0077 0.0060 0.0306 
M=6 0.1989 -0.0010 0.0077 0.0060 0.0306 
M=8 0.1989 -0.0010 0.0077 0.0060 0.0307 
MLE 0.1988 -0.0011 0.0077 0.0060 0.0309 

(σ =0.05) 
M=1 

 
0.0442 

 
-0.0057 

 
0.0026 

 
0.0039 

 
0.1164 

M=2 0.0460 -0.0039 0.0028 0.0023 0.0841 
M=4 0.0476 -0.0023 0.0028 0.0013 0.0617 
M=6 0.0487 -0.0012 0.0026 0.0008 0.0472 
M=8 0.0492 -0.0007 0.0024 0.0006 0.0410 
MLE 0.0503  0.0003 0.0037 0.0012 0.0558 

Table 2: The simulation result is based on Vasicek model. 100 sets of data, each set has length of 

discrete observations T=200, and iterates 50 times for Gibbs sampling to be stationary, and R=100 

independent paths to approximate log-likelihood expectation. MSE*N represents 2

1

ˆ( )
N

i true
i

θ θ
=

−∑ , 

N=100. 
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Simulation Result (κ =1) 
 Mean Bias s.d. MSE*N MARE 

(κ =1)      
M=1 0.7896 -0.2104 0.0947 5.2604 0.2103 
M=2 0.8541 -0.1458 0.1094 3.2807 0.1566 
M=4 0.9126 -0.0873 0.1188 2.1393 0.1228 
M=6 0.9466 -0.0534 0.1187 1.6625 0.1078 
M=8 0.9939 -0.0061 0.1191 1.3940 0.0953 
MLE 1.0107  0.0106 0.1592 2.4960 0.1290 

(µ =0.2) 
M=1 

 
0.2003 

 
0.0003 

 
0.0037 

 
0.0013 

 
0.0143 

M=2 0.2002 0.0002 0.0037 0.0013 0.0144 
M=4 0.2002 0.0002 0.0037 0.0013 0.0142 
M=6 0.2002 0.0002 0.0037 0.0013 0.0143 
M=8 0.2002 0.0002 0.0037 0.0013 0.0143 
MLE 0.2002 0.0002 0.0037 0.0013 0.0143 

(σ =0.05) 
M=1 

 
0.0397 

 
-0.0102 

 
0.0021 

 
0.0107 

 
0.2045 

M=2 0.0427 -0.0072 0.0023 0.0057 0.1452 
M=4 0.0455 -0.0045 0.0022 0.0025 0.0914 
M=6 0.0469 -0.0030 0.0020 0.0013 0.0634 
M=8 0.0487 -0.0012 0.0018 0.0004 0.0353 
MLE 0.0503  0.0003 0.0035 0.0012 0.0560 

Table 3: The simulation result is based on Vasicek model. 100 sets of data, each set has length of 

discrete observations T=200, and iterates 50 times for Gibbs sampling to be stationary, and R=100 

independent paths to approximate log-likelihood expectation. MSE*N represents 2

1

ˆ( )
N

i true
i

θ θ
=

−∑ , 

N=100. 
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Simulation Results 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Table 4: Comparison of Mean, MSE, MARE at different κ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 κ =0.1 κ =0.5 κ =1 
(Mean)    

M=1 0.1218 0.4564 0.7896 
M=2 0.1170 0.4768 0.8541 
M=4 0.1171 0.4931 0.9126 
M=6 0.1181 0.5084 0.9466 
M=8 0.1208 0.5129 0.9939 
MLE 0.1197 0.5211 1.0107 

(MSE*N) 
M=1 

 
0.1903 

 
0.7971 

 
5.2604 

M=2 0.1588 0.7761 3.2807 
M=4 0.1596 0.7684 2.1393 
M=6 0.1671 0.7513 1.6625 
M=8 0.1827 0.7343 1.3940 
MLE 0.1822 0.8692 2.4960 

(MARE) 
M=1 

 
0.1454 

 
0.1454 

 
0.2045 

M=2 0.1390 0.1390 0.1452 
M=4 0.1350 0.1350 0.0914 
M=6 0.1313 0.1313 0.0634 
M=8 0.1294 0.1294 0.0353 
MLE 0.1452 0.1452 0.0560 



 - 27 -

5. Conclusions 
 

So far, unlike mean and volatility, there is no existing universal measure of mean 

reversion. Investment professionals have observed this phenomenon but still could not 

develop an effective way to quantify it. Our effort in this thesis does not represent that we 

have developed a simple method to measure mean reversion. In past years many people 

had tried but this issue still remained inconclusive. What we want to provide is an 

effective and reliable procedure to estimate mean reversion strength. Though we only 

take the Vasicek model as an illustration, in fact this method can be applied to all models 

without analytic transition densities. Especially, the data augmentation method deals with 

a frequently-ignored question – different difficulties in the estimation while mean 

reversion strength is big or small. In the simulation result we have shown that when mean 

reversion speed is slow the estimation result does not improve much as the degree of data 

augmentation increases. However if mean reversion speed is fast, the estimation result 

greatly improves as the degree of data augmentation increases. Meanwhile, the entire 

procedure was based on standard statistical tools, like MCMC sampling and EM 

algorithm for maximum likelihood estimation. Thus the canonical statistical inference can 

be applied. 
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