PR AR Y ) R S il 1T 02

R R e A

Estimation Bias for Mean Reversion with Simulated
Likelihood Approximation under Continuous Time
Stochastic Process

SIS
g Emsh L



i gl § ST RS UL = -3 CATIS SR Ut

A 2 Ll e 1

Estimation Bias for Mean Reversion with Simulated Likelihood
Approximation under Continuous Time
Stochastic Process

SRR 1 Student :  Shih-yao Zhou

R FR% Advisor : Dr. Jack C. Lee

ffu%"’%ﬁﬂi’—"%

AT~

A Thesis
Submitted to Institute of Statistics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Statistics
June 2006

Hsin-chu, Taiwan, Republic of China

PEARAL LT ESD



Abstract

This thesis proposes a new method for the estimation of mean reversion effect in
diffusion processes from discrete observations. The idea is based on simulating
augmented data as high frequency data to cover the inadequacy of discrete observations.
The simulation of augmented data is based on Markov-chain Monte Carlo methodology
and the estimation of parameters is based on EM algorithm. We implement the Vasicek
model as an illustration and the simulation result will be provided. The result
demonstrates that the degree of augmentation is quite helpful for the accurate estimation

especially when the mean reversion strength is large.
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1. Introduction

1.1 Diffusion Process

Diffusion processes have become the standard tool for modeling prices in financial
markets for derivative and risk management purposes. Consider an Ito stochastic process
that satisfies a stochastic differential equation (SDE) of the form

dy(t) = a{y(t),t, 3t + b{y(t),t, O}dW (t) (1.1)
where a{y(t),t,d}and b{y(t),t,6} are the non-anticipative drift and volatility function
respectively, depending on y(t), time t, and an unknown parameter vector &, and dW (t)
is increment of standard Wiener process. Although such continuous time process offer
analytic tractability, the parameter that govern their dynamics are often difficult to
estimate from discrete time data. In a nutshell, estimation is problematic because the
model is formulated in continuous time, while sample data are naturally only available at
discrete frequencies. This implies.that estimates obtained by naive discretizations of
diffusion processes can be subject to discretization.bias. Since the direct discretization of
diffusion processes will cause estimation bias, the estimation scheme of parameter from
discrete observations of y at time-points 0=ty <t <. <t , a number of methods have
been proposed to estimate diffusion process:

Among all kinds of continuous time model, however, one cannot derive a simple
analytic transition density of the process in all cases. If the transition densities

f(y, |y, 6)ofy are known, we can use the log- likelihood function
L(0) =D log(f (¥, |Y.1,0)) (1.2)
t=1

to estimate &. The corresponding maximum likelihood estimator én is known to have
the usual good properties. In the case of time-equidistant observations (t, =iA, i=0,1...n
for some fixed A>0), many papers have proved the consistent and asymptotic normality
of én as n— oo. It is only natural that the number of observations must be large enough

for any estimator to be close to the true value, and from a practical point of view it is an

important property that ensures the estimator to be close to the true value. Unfortunately,



the transition densities of the continuous time diffusion process are, with the exception of
a few special cases, generally unknown or unavailable in closed form so that the
conventional likelihood-based inference is often inapplicable.

Traditionally, to overcome the difficulties when the transition densities of y are

unknown, the usual alternative is using L (6) to approximate log-likelinood function
based on discrete observations of y. Unless max,_... |t —t._,| is “small”, nevertheless, in
the case of time-equidistant observations, Florens-Zmirou (1989) actually show that
estimator based on maximizing L (6) is consistent. Pederson (1995) derived a sequence
{1 (6)};_, of approximations to L(#), that gives a connection between L (¢) and
L(€). The idea is to approximate the (unknown) transition densities f(y,|y,,,6) by a
sequence of transition densities f " (y, |y, ,,8) of approximating Markov process that
converge to f(y,|y,,,0) as N —oo. In the following sections, we will base on this

method to discover some estimation:problem of special broadly-applied diffusion process

in finance.

1.2 Mean Reversion

When using diffusion process as ‘a"tool"for financial modeling, many researchers
may add some components to non-anticipative drift term or volatility function for the
purpose of explaining specific phenomenon in financial market, for examples, mean
reversion effect or volatility cluster effect. Mean reversion is a tendency for a stochastic
process to remain near, or tend to return over time to a long-run average value. Mean
reversion effect has been observed in interest rate market, especially in short-term market.
In contrast, this behavior is not so obvious in stock market. Vasicek (1977) propose an
interest rate model for treasury debt pricing through a mean reversion type stochastic

differential equation:
dy, =—«x(y, — u)dt + o -dW, (1.3)
where «x is the constant strength of mean reversion, g is the equilibrium level, o is

the volatility and W, is the standard Brownian motion.
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Figure 1: Simulated Data for Comparison of Different Mean Reversion Strength

Such models that incorporate mean reversion effect are also named as mean-reverted
process. To be more precise, a process IS mean reverted if increments over disjoint
intervals are negatively correlated. This is an important property of mean-reverted
process because it represents that there is an invisible strength leading the prices back to

its equilibrium. Thus asset prices tend to fall (rise) after hitting a maximum (minimum).
1.3 Motivation

Once we had observed such phenomenon in a certain market, a more crucial
question comes immediately — how large is the mean reversion strength? That is, even if
we can expect the prices will return to the mean, how long does the market need? Many
financial practitioners are concerned about this issue. For instance, typically a mean
reverted model is used to suggest that an un-hedged long equity position needs less

capital than implied in a non-mean reverted model. However, what if we use a mean



reverted model with unknown transition densities? Shall we simply count on discrete

observations to make inferences?
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Figure 2: Discretely Observed-Data and High Frequency Data

In Figure 2, the dash line and solid line denote 11 discretely observed data and 100
high frequency data respectively, the dash-dot line has the mean of 0.2. If the only
information we can obtain is discretely observed data, as we can see in the above figure,
this process seems to revert to the mean between the fourth and fifth discrete observations
for the first time. Actually, the whole process had reverted to the mean for several times
before the discrete observations did. Similar situation also occurs later. With discrete
observations barely available, mean reversion strength was under-evaluated in this
process. In this thesis, we will show that based on certain process simulating more
“augmented data” as high frequency data will improve the estimation merely from
discretely observed data. This principle is referred to as “Data Augmentation”. The
simulating procedure is based on Markov chain Monte Carlo (MCMC) method. The

simulated augmented data and discretely observed data together can be called as



complete data so that we can formulate the complete data likelihood function. Simulated
likelihood function can be derived after integrating augmented data out of the complete
data likelihood function. All the estimation and inference can be conducted through the
simulated likelihood function. From the maximum likelihood estimation results, we find
that when the degree of augmentation increases, the estimation result can be improved to
a certain extent but this depends on the strength of the mean reversion. This corresponds
to our claim for the inadequacy of discrete observations for continuous time diffusion
process. In fact, the data augmentation is the implementation of the idea of approximate
likelihood.



2. Literature Review
2.1 Calibration of Diffusion Process

Based on Ornstein-Uhlenbeck process, Vasicek (1977) proposed a mean reverted
process:

dy, = —x(y, — p)dt + cdW, (1.3)
Cox, Ingersoll, Ross (1985), well-known as CIR model, generalized Vasicek model to

reflect the effect that volatility changes with the process:
dy, = —x(y, — p)dt+ oy, dW, (2.1)
These two models are widely-used because the transition densities are unknown. A
number of methods have been proposed to estimate diffusion parameters. Working with
the difference equation resulting from a Euler discretization of the process can give rise
to quasi maximum likelihood or moment-based estimators (e.g., Chan, Karolyi, Longstaff,
and Sanders 1992). Naive discretizations, ‘however, give estimates subject to the
discretization bias just mentioned.if sampling-times-are infrequent. Yoshida (1992), and
Kessler (1997) proposed estimators.converging-to the true parameter more rapidly as the
data are sampled more frequently. An alternative strategy that relies on discretizations of
the continuous time likelihood function“was given by Liptser and Shiryayev (1977) and
Aase (1987), among others. Other analytic methods include those of Sgrensen (1995),
Bibby and Sgrensen (1996) (estimating functions), and Ait-Sahalia (1998) (analytic
approximation to the likelihood function), while generalized method of moments
(GMM)-based estimators were discussed by Hansen and Scheinkman (1995), and Conley,
Hansen, Luttmer, and Scheinkman (1997), among others. Nonparametric methods were
proposed by Ait-Sahalia (1996a,b), Jiang and Knight (1997), and Stanton (1997).
Previously, simulation-based methods have been proposed for estimating diffusions by
the method of simulated moments (Duffie and Singleton 1993), indirect inference
methods (Gourieroux, Monfort, and Renault 1993), and the efficient method of moments
(EMM) (Gallant and Tauchen 1996), among others. The advantage of simulation-based
methods is that they typically apply to more general processes than the analytic methods.
For instance, Andersen and Lund (1997) applied EMM in estimation of two- and

three-factor nonlinear interest-rate models with unobserved factors.
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2.2 Data Augmentation

Pederson (1995) suggested an approximate likelihood function method based on
simulating auxiliary variables directly from Euler discretization likelihood function.
Elerian, Chib, Shepard (2001) inherited the concepts of approximate likelihood and
revised the Euler discretization likelihood simulation to Markov chain Mote Carlo
(MCMC) based simulation method. They took CIR model as an illustration to validate
the advantages of MCMC simulation method. Eraker (2001) generalized the CIR model
to a two-factor constant elasticity of variance model (CEV) with stochastic volatility
model. Eraker (2001) believed that MCMC simulations conditioned on more information
than Euler discretization simulations recommended by Pederson (1995) because MCMC
method conditioned on the whole observations and interpolates a certain number of
augmented data into each pairs of observations. Both Elerian, Chib, Shepard (2001) and
Eraker (2001) used Bayesian approachés to estimate diffusion parameters but the former
used informative priors and the:other -exploited non-informative priors. Niu and Lee
(2006) proposed the GARCH based simulated likelihood approximations for continuous
time stochastic volatility models and applied this‘method to option pricing.

-11 -



3. Methodology

In this paper we try to validate the advantage of augmented variables by declaring
that the approximate log-likelihood function will converge to the transition densities as
the degree of augmentation increases. By taking augmented variables as the
high-frequency data, we can improve the calibration of model because the incorporation
of high-frequency data together with observed data are denser in some specific time
interval. Especially for the strength of mean reversion «, it is usually difficult to observe
its level in a system with big fluctuation. When strength of mean reversion x is weak,
the path of observed data tends to be smoother and requires a longer period to return to its
equilibrium. In contrast, when x is strong, the path may exhibit more feature and fast
mean-reverted, so it may be naive if we merely use low frequency data to catch the
structure. For this reason, we first assumesa continuous time model and simulate
augmented variables which follow:this model.. However, it is difficult to handle the case
with unknown transition densities. As a result, we use a simple Ornstein-Ulenbeck
process, modified by Vasicek in:1997 with the incorporation of mean reversion effect
since the close form solution can.be “eastly-obtained. Here we simulate observed data
from Vasicek model instead of using real time data because the true dynamics of data are
unobservable.

We assume that asset dynamics follow equation (1.3), which is the well-known

Vasicek interest rate model. To begin with, consider the Euler approximation of the SDE

Yo — Yo =—x(Y, —)A+ oW, —W,) (3.1)
, under which the transitional density is
f(yt+1 | yt) = ¢(yt+1 | Yi _K(yt _Q)AaO-ZA) (32)

, Where ¢(- | a,b) denotes the normal density with mean a and variance b. Although this is

the simplest discrete time approximation of the SDE, however, it is normally too coarse
to approximate the true transition density adequately. Hence we want to propose an
improved method through the utilization of auxiliary variables together with the
discretely observed data to approximate the continuous time financial model.

Here we shall use the famous Markov Chain Monte Carlo method to simulate auxiliary

-12 -



variables and the elaborate EM algorithm to estimate parameters. Now let us denote Y~
as the auxiliary variables we simulated in each sub-interval of observed data Y. Thus,

our simulation procedure in general can be summarized as follows:

General sampling scheme
1. Initialize Y*,6.

2. Update y, from y;|y,Y,, @, fort=12,...T-1
3. Update 6 from @|Y",Y.

4. Record the value of 6 and go to step 2. Repeat for a large number of times.
3.1 MCMC method

In recent years statisticians have been.increasingly drawn to Markov chain Monte
Carlo (MCMC) methods to simulate complex, nonstandard multivariate distribution. The
Gibbs sampling algorithm is one of ithe best known-of the methods (see Casella and
George(1992) ). The Gibbs sampler is a technique for generating random variables from a
(marginal) distribution indirectly, without'having to calculate the density. In this paper we
mainly use the Gibbs sampler to “simulate " the auxiliary variables instead of
Metropolis-Hasting (M-H) algorithm since the conditional distribution of auxiliary
variables on discretely observed data can be formulated in a simple close form. Through
the use of techniques like Gibbs sampler, we are able to avoid difficult calculations,
replacing them with a sequence of easier calculations.

Markov chain Monte Carlo sampling fromé, Y*|Y is achieved by sampling in

turn the full conditional distributions Y*|Y,# and @|Y",Y . One iteration of the

Markov chain is completed by revising both Y* and & from these two distributions. A
simple calculation (based on the Markov property of the diffusion) show that the full

conditional distribution can be expressed as

FCY 1) =TT fO0 1Y) (33)

t=1 j=1

due to the fact that the augmented data y; is conditionally independent of the remaining

-13 -



augmented data, given (y,,Y,.;,6). This is done by generating a “Gibbs sequence” of
random variables:

(Y:,p yt2 y:M )(1)’ t=12---T-1

(y:,yyt*,zy"" yt*,M )(K)’ t=12,--T-1 (3-4)
Note that the initial values (Y;,,Y;,. - Y;w)q Need to be specified, the rest of all is

obtained iteratively by alternatively generating values as

(yt*,l’ yt*,z"“’ yt*,M )(2) ~ f(yt*(Z) | Vi Vears yt*(l);g)

(Yor Yeor o Yomdo = B0 F¥, Vi Vi 7€) (35)

In short, at the i-th iteration of Gibbs sampler, we draw
AU O RARE ) (3.6)
where j=1,2,...,M. Since the information 'y, 9, "is not available at the current iteration, we

should condition on the last iteration result y;(' 7.
We refer to this generation as Gibbs sampling. It turns out that under reasonably

general conditions, the distribution of Y~ converges to the approximate likelihood

functions.

-14 -



3.2 Example

Vasicek model can be solved explicitly and represented as
. . o_2 1_e—21<
Yo~ Ny e+ ati-e ), TS @37)

By the above equation we can obtain the true transition probability g(y,., | V,) -

Now consider the detail of simulating auxiliary data Y* between each pair of

discretely observed data Y, conditioning on these discretely observed data we can obtain

T-1
FOY,0) =TT fO 1Y ¥ 0) (3.8)
t=1
where Yi = (Yig, Yogreemeen Ve ) and f(Y7 Y, Ve, 6) is the density from Euler

approximation.

since (¥, | Yy Vs 8) s proportional to (., |Y,.60)f(y,|Y,,.6), thus we
can derive the conditional distribution
oA

[p(yt—l + yt+1) + KZAZ,U]: m) (3.9)

1
1+ p

Yi | ytfl7yt+l’9 R N(

Wwhere p=1-xA ,t=12,...... T-1

If we simulate M equally-spaced auxiliary variables in each period and interpolate
those into the proper interval of discretely observed data, then the available size of data

can be augmented from T to (T-1)(M+1) + 1. Now let y:j denote the j-th auxiliary

variable in the t-th interval of discretely observed data, as an analogy, the transition

probability can be written as

- . 1 . . . o’
Yij |y viv Y@ ~ N (1+,02 [o(y tjaty t,j+1) +x(A )zﬂ]vm) (3.10)
t=1,2 T-1,j=1,2 M,and note that vy, , =V,, Vi =Yy, A = a
2, T-1,i=1,.2,....... M, 0 =Yer Yoma =VYoir T

This sampling procedure should be conducted through Gibbs sampler because for each
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y,; conditioned on y",, and y’ ,,, when y' ., is still unknown so that we need

j+l
to guess initial value to run the algorithm. If the algorithm is implemented for only one
time, such a rough method may cause a fatal error. As a result, it is better to iterate the

algorithm for a large number of times until convergence.

With the utilization of auxiliary variables, the transition density under Euler

approximation is
f (yt*,j | yt*,j—l’e) = ¢(yt*,j | yt*,j—l —K(y:,,-_l _,U)A*’O'Z “A). (3.11)

So the complete data likelihood function can be formulated as
. T-1 M+1 . .
FOOY 1y ) =TT F (e 1 Yes6) 3.12)
t=1 j=1
Based on the complete data likelihood function, we can obtain an improved maximum
likelihood estimator (MLE), which is. better, than the one derived from the Euler

approximation of SDE.
3.3 EM-AIlgorithm

The EM algorithm is a general method of finding the maximum likelihood estimate
of the parameters of an underlying distribution from a given data set when the data is
incomplete or has missing value. There are two main applications of the EM algorithm.
The first occurs when the data indeed has missing values, due to problems with
limitations of the observation process. The second occurs when optimizing the likelihood
function can be simplified by assuming the existence of additional but missing data. The
later application is more common in the computational pattern recognition community. In
our case, we assume the data Y is discretely observed and is generated from some
distribution. We call Y the incomplete data and Y* (auxiliary variables we simulated) the
missing data. We assume that a complete data set Z = (Y, Y*) and also assume a joint
density function:

p(z|©®)=p(Y,Y"|®)=p(Y |Y,®)p(Y |O) (3.13)

With this new density function, we can define a new likelihood function,

-16 -



L(®]|Z) = p(Y,Y |®), called the complete-data likelihood. Note that this function is in
fact a random variable since the missing information Y* is unknown and presumably
governed by an underlying distribution. The original likelihood function L(®|Y) is

referred to as the incomplete-data likelihood function.
The EM algorithm first finds the expected value of the complete-data

log-likelihood log p(Y,Y | ®) with respect to the unknown data Y* given the observed
data Y and the current parameter estimates. That is, we define:
Q0,0 =E[log P(Y,Y"|®)|Y,0% "] (3.14)

_]_)

where ©%® are the current parameters estimates that we used to evaluate the

expectation and ® are the new parameters that we optimize to increase Q. The key

element to understand is that Y and ©%™® are constants, ® is a normal variable that
we wish to adjust, and Y* is a random variable governed by the distribution

f(y*|Y,®'™). The right side of the above equation can be represented as

Ellog P(Y,Y"|©)|Y,0% 1=10g p(y, y1©) f (y'| y, 0" ?)dy’ (3.15)
y*

Note that f(y*|Y,®'") is the ‘marginal-distribution-of the unobserved data Y* and is

-1)

dependent on both the observed data:Y and ®%®". In the best of cases, this marginal

distribution is a simple analytical expression of the assumed parameters @ and
perhaps the data. In the worst of the cases, this density might be very hard to obtain due
to the high dimensionality of augmented variables. So we must use the numerical method
to approximate the true expectation. Our approach is based on the idea of Monte Carlo
integration, i.e., to simulation R identically and independently distributed paths of

augmented data conditioned on discretely observed data.

_ R T-1 M1
Eflog P(Y,Y*|©)[Y,00 9]~ %ng(HH FYO 1y 0,0)  (316)
] t=1 j41

Note that y;” is one of the augmented data from r-th path conditioned on ®“? and

Y.
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Figure 3: 7 Observed Data and20 Simulated Paths

The evaluation of this expectation is called the E-step of the algorithm. Notice the
meaning of the two arguments in ithe_function Q(®,0" ™) .The first argument ©
corresponds to the parameters that ultimately will-be optimized in an attempt to maximize
the likelihood function. The second argument @™ corresponds to the parameters that
we use to evaluate the expectation.

The second step of the EM algorithm, also called M-step, is to maximize the

expectation we computed in the first step. That is, we find:

0" =argmaxQ(®,0'") (3.17)
(C]

These two steps are repeated as necessary. The advantage of the EM algorithm
guaranteed that each iteration increases log-likelihood and will finally converge to a local
maximum of the log-likelihood function. There are many rate-of-convergence papers but

we will not discuss this issue here. A complete procedure to get a convergent maximum
likelihood estimate is to simulate R independent paths conditioned on ®© and then
numerically search for a steady estimate. Conditioned on the new estimate @,

simulating R independent paths again to acquire a new estimate ®® . Repeat these steps

-18 -



until estimates converge.

As presented above, we basically introduce the EM algorithm and so the algorithm is
presented in its most general form. So far, it is still not clear how we “code up” the EM
algorithm applied to our case. Now, based on the transition probability of VVasicek model,

we propose our estimation algorithm as follows:

1. For i =1, conditioned on ©“and discretely observed data Y, simulate Y* by
MCMC method.

2. (E-step)
Q(®,0 M) =E[logP(Y,Y"|®)]Y,®"™], here the close form for Q(®,0%™) is
difficult to obtain, therefore we need the help of Monte Carlo approximation. Let
Y™ denote r-th path of latent data, r=1, 2,....., R.
AsRis large, Q(®,0 )=

1 R . 1 R T-1 M+1 . N
= 1og(Y,Y O }@) == > Mog(T I T f v 1.1, 0) (3.18)
R r=1 R r=1 t=1 _j=1
Note that v, is sampled from f (y; 4y, v, (1007) .
3. (M-step)
i i 13 N
(i) = (DY = L Q)
Let © MaxQ(®,0" ™) M@axRélog(Y,Y |®) (3.19)

4.1 =i+1, and then go to step 1.
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4. Simulation Result

In this section, we present estimates of the parameters in the Vasicek model with
different & . M denotes the degree of augmentation, which means the number of
augmented data interpolated into each pair of observed data. The discretely observed data

length is 200. Here we uses M=1, 2,4, 6, 8,and x=0.1,0.5,1. # and o in 3 cases of

x are fixed at 0.2 and 0.05 respectively. Our main goal is to validate that different x
also have different sensitivities to the degree of augmentation. For the sake of validating
our method, we first simulate 100 sets of observed data from Vasicek model as the
observed data instead of real time data. For each set we simulate large numbers of
augmented data and do simulated maximum likelihood estimation to obtain one set of

estimate (x, i, 0 ). Note that when implementing EM algorithm, we take the maximum

likelihood estimation from true Vasicek transition densities as the initial value. Hence
there are 100 sets of parameter estimates which ,can be used to calculate mean, bias,
standard deviation (SD), mean square error (MSE); and mean absolute relative error
(MARE).
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° k201
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§ ool |
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Figure 4: Mean of kappa Estimates

-20 -



In Figure 4, we can see that when x =0.1, the advantage of utilizing data
augmentation is insignificant. While in the case of x =0.5, the estimates x have
begun to slowly improve. In the largest case of x =1, the estimates converge to the true
value after a certain number of augmented data were interpolated. When M=1, the
estimates have strong biases because the mean only attained to 0.78. This corresponds to
our initial guess that infrequently observed data will give rise to discretization bias,
especially when the mean reversion strength x is large. The dash line is the result of
maximum likelihood estimation from the true transition densities of Vasicek model. All
the estimation results from data augmentation will eventually converge to the maximum
likelihood estimation from the true transition densities.

From the view points of mean square error (MSE), Figure 5 also provides a
persuasive result. When x =1, MSE declines fast as the degree of augmentation

increases.
6 \
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Figure 5. Mean Square Error of kappa and note that the result is MSE times 100
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The last indicator is the percentage mean absolute error (MARE). One may suspect
that large x leads to a large magnitude of revision in value. If we do not check the
MARE we may probably over-evaluate the effectiveness of data augmentation method. In

Figure 6, MARE will indicate that this result is not a coincidence.
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Figure 6: Mean Absolute Relative Error Plot, MARE = —z | —/— |, N=100
i=1 K

Obviously, when x =0.1 the MARE is larger than another two cases uniformly.
This is a powerful evidence that the improvement of data augmentation at x =1
and x =0.5 is not from its larger magnitude in value but truly from its bias. When M > 4,
the MARE of k =1 is smaller than that of x =0.5, hence in this measurement we clearly
see that data augmentation method is quite helpful for large x cases.

The following three tables list all the estimates of («, i, o). Amazingly, among all
three parameters x is the most sensitive one to the degree of augmentation. While u

is the least one, actually numerous literature have shown that the estimation of drift term
seldom cause a big trouble.
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Simulation Result (x =0.1)

Mean Bias s.d. MSE*N MARE
(x=0.1)
M=1 0.1218 0.0218 0.0382 0.1903 0.3339
M=2 0.1170 0.0170 0.0364 0.1588 0.3093
M=4 0.1171 0.0170 0.0365 0.1596 0.3281
M=6 0.1181 0.0181 0.0370 0.1671 0.3163
M=8 0.1208 0.0208 0.0377 0.1827 0.3104
MLE 0.1197 0.0197 0.0382 0.1822 0.3280
(1=0.2)
M=1 0.1993 -0.0006 0.0325 0.1036 0.1237
M=2 0.1993 -0.0006 0.0325 0.1036 0.1236
M=4 0.1993 -0.0006 0.0325 0.1035 0.1236
M=6 0.1993 -0.0006 0.0325 0.1037 0.1237
M=8 0.1993 -0.0006 0.0325 0.1036 0.1236
MLE 0.1993 -0.0006 0.0325 0.1036 0.1236
(0 =0.05)

M=1 0.0489 -0.0010 0.0024 0.0007 0.0319
M=2 0.0489 -0.0010 0.0024 0.0007 0.0429
M=4 0.0493 -0.0006 0.0023 0.0006 0.0340
M=6 0.0500 0-0000 0.0021 0.0004 0.0385
M=8 0.0502 0.0002 0.0020 0.0004 0.0426
MLE 0.0500 0.0000 0.0025 0.0006 0.0382

Table 1: The simulation result is based'on Vasicek-model. N=100 sets of data, each set has length of

discrete observations T=200, and iterates 50 times for Gibbs sampling to be stationary, and R=100

. . . . . Noa 2

independent paths to approximate log-likelihood expectation. MSE*N represents 2(6’. —6?”“6) ,
i=1

N=100.
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Simulation Result (x =0.5)

Mean Bias s.d. MSE*N MARE
(x =0.5)
M=1 0.4564 -0.0436 0.0788 0.7971 0.1454
M=2 0.4768 -0.0231 0.0858 0.7761 0.1390
M=4 0.4931 -0.0068 0.0882 0.7684 0.1350
M=6 0.5084 0.0084 0.0871 0.7513 0.1313
M=8 0.5129 0.0129 0.0855 0.7343 0.1294
MLE 0.5211 0.0210 0.1046 0.8692 0.1452
(u=0.2)
M=1 0.1989 -0.0010 0.0077 0.0059 0.0306
M=2 0.1989 -0.0010 0.0077 0.0060 0.0307
M=4 0.1989 -0.0010 0.0077 0.0060 0.0306
M=6 0.1989 -0.0010 0.0077 0.0060 0.0306
M=8 0.1989 -0.0010 0.0077 0.0060 0.0307
MLE 0.1988 -0.0011 0.0077 0.0060 0.0309
(0 =0.05)
M=1 0.0442 -0.0057 0.0026 0.0039 0.1164
M=2 0.0460 -0.0039 0.0028 0.0023 0.0841
M=4 0.0476 -0.0023 0:0028 0.0013 0.0617
M=6 0.0487 -0.0012 0.0026 0.0008 0.0472
M=8 0.0492 -0:0007 0.0024 0.0006 0.0410
MLE 0.0503 0.0003 0:0037 0.0012 0.0558

Table 2: The simulation result is based onVasicek model. 100 sets of data, each set has length of

discrete observations T=200, and iterates 50 times-for Gibbs sampling to be stationary, and R=100

. . . 3 . Noa 2

independent paths to approximate log-likelihood expectation. MSE*N represents 2(6’. —6?”“6) ,
i=1

N=100.
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Simulation Result (x =1)

Mean Bias s.d. MSE*N MARE
(x=1)
M=1 0.7896 -0.2104 0.0947 5.2604 0.2103
M=2 0.8541 -0.1458 0.1094 3.2807 0.1566
M=4 0.9126 -0.0873 0.1188 2.1393 0.1228
M=6 0.9466 -0.0534 0.1187 1.6625 0.1078
M=8 0.9939 -0.0061 0.1191 1.3940 0.0953
MLE 1.0107 0.0106 0.1592 2.4960 0.1290
(u=0.2)
M=1 0.2003 0.0003 0.0037 0.0013 0.0143
M=2 0.2002 0.0002 0.0037 0.0013 0.0144
M=4 0.2002 0.0002 0.0037 0.0013 0.0142
M=6 0.2002 0.0002 0.0037 0.0013 0.0143
M=8 0.2002 0.0002 0.0037 0.0013 0.0143
MLE 0.2002 0.0002 0.0037 0.0013 0.0143
(0 =0.05)
M=1 0.0397 -0.0102 0.0021 0.0107 0.2045
M=2 0.0427 -0.0072 0.0023 0.0057 0.1452
M=4 0.0455 -0.0045 0.0022 0.0025 0.0914
M=6 0.0469 -0.0030 0.0020 0.0013 0.0634
M=8 0.0487 -0:0012 0.0018 0.0004 0.0353
MLE 0.0503 0.0003 0.0035 0.0012 0.0560

Table 3: The simulation result is based onVasicek model. 100 sets of data, each set has length of

discrete observations T=200, and iterates 50 times-for Gibbs sampling to be stationary, and R=100

. . . 3 . Noa 2

independent paths to approximate log-likelihood expectation. MSE*N represents 2(6’. —6?”“6) ,
i=1

N=100.
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Simulation Results

x=0.1 x =0.5 k=1
(Mean)
M=1 0.1218 0.4564 0.7896
M=2 0.1170 0.4768 0.8541
M=4 0.1171 0.4931 0.9126
M=6 0.1181 0.5084 0.9466
M=8 0.1208 0.5129 0.9939
MLE 0.1197 0.5211 1.0107
(MSE*N)
M=1 0.1903 0.7971 5.2604
M=2 0.1588 0.7761 3.2807
M=4 0.1596 0.7684 2.1393
M=6 0.1671 0.7513 1.6625
M=8 0.1827 0.7343 1.3940
MLE 0.1822 0.8692 2.4960
(MARE)
M=1 0.1454 0.1454 0.2045
M=2 0.1390 0.1390 0.1452
M=4 0.1350 0.2350 0.0914
M=6 0:1313 0.1313 0.0634
M=8 0,1294 0.1294 0.0353
MLE 0.1452 0.1452 0.0560

Table 4: Comparison‘of:Mean;-MSE, MARE at different K
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5. Conclusions

So far, unlike mean and volatility, there is no existing universal measure of mean
reversion. Investment professionals have observed this phenomenon but still could not
develop an effective way to quantify it. Our effort in this thesis does not represent that we
have developed a simple method to measure mean reversion. In past years many people
had tried but this issue still remained inconclusive. What we want to provide is an
effective and reliable procedure to estimate mean reversion strength. Though we only
take the Vasicek model as an illustration, in fact this method can be applied to all models
without analytic transition densities. Especially, the data augmentation method deals with
a frequently-ignored question — different difficulties in the estimation while mean
reversion strength is big or small. In the simulation result we have shown that when mean
reversion speed is slow the estimation result does not improve much as the degree of data
augmentation increases. However if mean reversion speed is fast, the estimation result
greatly improves as the degree of.data augmentation increases. Meanwhile, the entire
procedure was based on standard..statistical-tools, like MCMC sampling and EM
algorithm for maximum likelihood estimation. Thus the canonical statistical inference can

be applied.
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