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摘        要  

 

 

延伸 Chen(2005)的想法，我們提出針對複合式虛無假設的高密度

顯著性檢定。且推導出這個檢定的存在性以及它的最佳化的性質，並

且針對常態分配的參數，將此方法應用於其上。對於一些較為複雜的

高密度顯著性檢定問題，我們利用近似性的高密度顯著性檢定加以解

決。 
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ABSTRACT 

 

Extending from the idea of Chen(2005), we proposed highest density 

significance (HDS) test  for composite null hypothesis. Existence and 

optimality of this test are derived. Examples of HDS test for normal 

parameters are provided. For problems that HDS tests are complicated 

to derived, we propose the approximate HDS tests. 
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Highest Density Signi�cance Test for Composite Hypothesis

A
�

bstract

Extending from the idea of Chen ������� we proposed highest density signi	cance

�HDS� test for composite null hypothesis
 Existence and optimality of this test are

derived
 Examples of HDS test for normal parameters are provided
 For problems

that HDS tests are complicated to derive� we propose the approximate HDS tests


Key words� Fisherian signi	cance test� Hypothesis testing� signi	cance test�

�� Introduction

In the hypothesis testing� there are two important categories of hypothesis speci	ca


tion� the sigini	cance test and the Neyman
Pearson formulation
 The Neyman
Pearson

formulation considers a decision problem that we want to choose one from the null hy


pothesis H� and an alternative hypothesis H�
 On the other hand� the signi	cance test

considers only one hypothesis� the null hypothesis H�
 The signi	cance test may occurs

that H� is drawn from a scienti	c guess and we are vague about the alternative� and

cannot easily parameterize them
 Another case is that the model when H� is true is

developed by a selection process on a subset and is to be checked with new data
 Then

the problem for signi	cance test is more general than the Neyman
Pearson formulation

in that when H� is not true there are many possibilities for the true alternative


Over ��� years of development of signi	cance test� it has been used in many branches

of applied sicences
 Some earliest use of signi	cance test include that� for examples�

Armitage ������ claims to have found the germ of the idea in a medical discussion

from ���� and Arbuthnot ������ observed that the male births exceeded female births

in Lonton for each of the past �� years that violates the assumption of equal chance

of male birth
 Some important signi	cance tests latter developed include the Karl

Pearson�s ������ chi
squares test and W
 S
 Gosset�s ������ student paper that pro


posed the 	rst solution to the problem of small
sample tests
 Signi	cance tests were

given their modern justi	cation and then popularized by Fisher that he derived most

of the test statistics that we now use� in a series of papers and books during ����s

and ����s
 Traditionally the sigini	cance test is to examine how to decide whether or

not a given set of data is consistent with H� it is conducted through several key steps�
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�

�
 stimulating a suitable null hypothesis H�� �
 choosing a test statistic T to rank

possible experimental outcomes� �
 determining the p
value which is the probability

of the set of values of T at least as extreme as the value observed when H� is true


�
 H� being accepted �rejected� if the p
value is large �small� enough
 This classical

way that the user have to select a test statistic� although often been recommended a

su�cient statistic� to formulate the test is generally called the Fisherian signi	cance

test since R
 A
 Fisher made the contribution on signi	cance test the most


Yes� over ��� years development� however� the concept and theory of Fisherian

signi	cance test are now scarcely introduced in modern texts of statistical inferences


There are some reasons re�ecting this fact
 �a� The Fisherian signi	cance tests are

questioned about how to use test statistics and which test statistic to use under which

circumstances
 For one speci	c hypothesis� there may have several test statistics for

use such as the Pearson�s ������ chi
square test and the normal approximation method


With this di�culty� people may be bothered for making decision when it is happened

that the null hypothesis H� is rejected by using one test statistic inducing strong

evidence against H� and accepted by using another test statistic inducing no real

evidence against H�
 �b� On the other hand� there is also the problem of choosing

the one sided Fisherian signi	cance test or the two sided Fisherian signi	cance test


In practice� it often depends only on practicer�s convenience
 It is quite common that

if the distribution of the test statistic is available and is symmetric then a two sided

Fisherian signi	cance test is often implemented and a one sided Fisherian signi	cance

test is implemented when it has an asymmetric distribution
 However� if approximation

for the distribution of the test statistic such as the normal aprroximation and the

Pearsone�s chi
square test has been used then they usually implement a two sided one


For example� for testing H� � p � p� with X obeying a binomial distribution� the

Fisherian signi	cance test may be conducted by the two sided Pearson�s chi
square

and normal approximation tests and by choosing X as a test statistic for a one sided

test �see the latter one in Garthwaite et al
 �������
 For one hypothesis problem� a

two sided Fisherian signi	cance test may have p
value approximated twice as it for

an one sided one
 Without a fair justi	cation in deciding a one sided or two sided

test� the conclusion based on p
value may be misleading
 �c� There is absence of

a direct indication of any departure from H�
 This happens mainly because that

Fisherian signi	cance tests generall are constructed based on the su�cient statistic



�

of the parameter assumed in null hypothesis
 �d� There is lack of desired optimal

property as a justi	cation to support the calssically used Fisherian signi	cance tests


In the late ����s� E
 S
 Pearson� son of Karl Pearson� approached Jerzy Neyman

with a question that bother him
 If you test whether data 	t a particular probability

distribution and the test statistic is not large enough to reject the distribution� how

do you know that this is the best that you could done� How do you know that

some other test statistics might not have rejected that probability distribution� The

resulting collaboration �see this in a series of papers collected in Neyman and Pearson

������� between them produced the Neyman
Pearson formulation that requires tests

selecting one between the null hypothesis H� and a well speci	ed alternative hypothesis

H�
 With Neyman
Pearson formulation� a mathematical theory of hypothesis testing

in which tests are derived as solutions of clearly stated optimum problems has been

developed
 The optimal property does made the Neyman
Pearson theory popular in

statistical inferences


In this paper� we consider the hypothesis H� � � � ��
 By letting X � x� be the

observed sample� our approach of HDS test sets all x�s satisfying L�x� ��� � L�x�� ���

as set of extreme points for computing p
value
 This setting of determining the extreme

points not only gets rid o� the di�culty of deciding a one sided or two sided test but

also automatically determine the test statistic
 The defects �a� and �b� ocuured for

the Fisherian signi	cance test are then solved
 Traditionally the chosen test statistic

used in Fisherian signi	cance test involves information only related to the parameter

considered in H� which often is either a location or scale parameter
 But� the likelihood

based HDS test classi	es a point x if it is an extreme by measuring its corresponding

likelihood using all information involving the size of its likelihood
 This often result

in a test statistic that involve information with amount bigger than that contained in

the traditionally used test statistic
 Therefore� we may expect that likelihood function

for constructing a signi	cance test de	nitely will gain some more advantages
 First�

we will show that this new signi	cance test has a desired property of optimality which

then does provide a justi	cation for the use of this new test
 The defect �d� for

Fisherian signi	cance test is also overcomed
 Second� often using extra information

often provides indication of departure from H�
 Furthermore� examples of HDS test

for both continuous distribution and discrete distribution will be provided associated

with discussion of comparison with the Fisherian signi	cance tests




�

�� Motivation for Highest Density Signi�cance Test

Let X�� ���� Xn be a random sample drawn from a distribution having a probability

density function �pdf� f�x� �� with parameter space �
 Consider the simple hypothesis

H� � � � �� for some �� � �
 By letting vector X with X � � �X�� ���� Xn� and sample

space �� let�s denote the join pdf of X as L�x� ��� also called it the likelihood function


What is generally done in classical approach for signi	cance test when X � x� is

observed� particularly in�uenced by R
 A
 Fisher and being called the Fisherian signi	


cance test� is to determine the extreme set based on the distribution �or approximated

distribution� of a test statistic
 With a test statistic T � t�X�� it then de	ne the

p
value as

px� � P���T at least as extreme as the value observed�� ��
��

While this approach is applicable in certain practical problems� it is scarcely of suf


	cient generality to warrant trying to 	nd necessary and su�cient conditions for its

applicability
 There are several reasons for this point
 First� as questioned from E
 P


Perason that� for given one observation x�� we may reject H� for having small p
value

that provides evidence against H� with one test statistic but accept H� for having

large p
value that provides no real evidence against H� with another test statistic


How can we decide to choose the test statistic� Second� the extreme set E in ��
��

varies in choosing the one sided or two sided Fisherian signi	cance test
 However� in

application� it often is decided based on practicer�s convenience where we should know

that the two sided Fisherian signi	cance test may have p
value as large as twice the

p
value of the one sided Fisherian signi	cance test
 This increases the di�culty in

understanding the pvalue
 Third� so far� there is no justi	cation of desired optimal

property for this test
statistic based Fisherian signi	cance test


Suppose that we set out to order points in the sample space � according to the

amount of evidence they provide for H� � � � ��
 We should naturally order them

according to the value of the probability L�x� ���� any x with small L�x� ��� revealing

evidence against H�
 Then� when X � x� is observed and if we must choose subset of

possible observations which indicates that H� is true� then it seems sensible to put into

this subset those x�s for which the probability L�x� ��� is large 
 in other words to choose

a subset of the form fx � L�x� ��� � L�x�� ���g
 On the other hand� the subset which

indicates that H� is not true seems sensible to be of the form fx � L�x� ��� � L�x�� ���g




�

With expectation that each extreme point has to be at least as extreme as the observed

value x�� this leads the following de	nition for de	ning a new type of signi	cance test


Consider the null hypothesis H� � � � ��
 The HDS test proposed by Chen de	nes

the p
value as

phd �

Z
L�x�����L�x�����

L�x� ���dx�

The method of highest density for signi	cance test is obviously appealing for the

follwoing facts�

��� Fisherian signi	cance test chooses a test statistic T � t�X� that gives an ordering

of the sample points as evidence against H�� t�x�� � t�x�� means that x� is stronger

than x� as evidence against H�
 This evidence may varies in the chosen test statistic


On the other hand� the ordering based on HDS test means that x� is stronger than x�

as evidence against H� when it occurs L�x�� ��� � L�x�� ���


��� The inequality L�x� ��� � L�x�� ��� automatically decide two desirabilities� the

test statistic involving in the test and setting if it is a one sided or two sided test
 This

solves the defects �a� and �b� occurred in Fisherian signi	cance test


��� For this test� we set the non
extreme set including the points x�s in sample space

the highest part of the joint density function L�x� ���� such a set includes relatively

more probable points when H� is true
 On the other hand� this extreme set Ehd � fx �

L�x� ��� � L�x�� ���g of the HDS test is weirder than its corresponding non
extreme set

�Ehd � fx � L�x� ��� � L�x�� ����g in the sense that L�x�� ��� � L�x�� ��� for x� � Ehd

and x� � �Ehd
 None of the traditional Fisherian signi	cance tests has this appealing

in determining the extreme set for computing p
value of given observation x


De�nition ���� Consider the null hypothesis H� � � � ��
 The HDS test de	nes the

p
value as

phd � sup����

Z
L�x����L�x����

L�x� ��dx� ��
��

We classify the hypothesis testing problems whose level � MP� UMP� or UMPU

tests are proposed in the literature into the following three categories�

�A� H� � � � �� versus H� � � � �� and H� � � � �� versus H� � � � ��

�B� H� � � � �� or � � �� versus H� � �� � � � ��� where both �� and �� are known

real
valued constants with �� � ��



�

�C� H� � �� � � � �� versus H� � � � �� or � � ��� where both �� and �� are known

real
valued constants with �� � ��

��� From any family of distributions with the monotone likelihood ratio property�

there exists a level � UMP test for any hypothesis testing problem belonging to Cat


egory A
 See� e
g
� Lehmann ������ Theorem � in Chapter ��


��� From any one
parameter exponential family� there exists a level � UMP test for

any hypothesis testing problem belonging to Category B
 See� e
g
� Lehmann ������

Theorem � in Chapter ��


��� From any one
parameter exponential family� there exists a level � UMPU test

for any hypothesis testing problem belonging to Category C
 See� e
g
� Lehmann ������

Section �
��


Theorem ���� Let X � �X�� ���� Xn� be a random sample from f�x� �� with an

observation X � x
 Consider the hypothesis H� � � � � � �� and we assume that

the family of densities ff�x� �� � � � �g has a monotone likelihood in the statistic

T � t�X��

�a� If the monotone likelihood is nondecreasing in a function t�x� ��� then the test with

p
value

phd � sup����
P��t�X� �� � t�x�� ���

is a HDS test


�b� If the monotone likelihood is nonincreasing in t�x�� then the test with p
value

phd � sup����
P��t�X� �� � t�x�� � ���

is a HDS test


�� Existence and Optimality

Theorem ���� Let X�� ���� Xn be a random sample drawn from a distribution with pdf

f 
 Suppose that there exists a partition� A�� A�� ���� Ak� of the sample space of random

variable X such that P���X � A�� � � and f is continuous on each Ai
 Further�

suppose there exist functions f�� ���� fk� de	ned on A�� ���� Ak� respectively� satisfying

�i� f�x� � fi�x�� for x � Ai�

�ii� fi is monotone on Ai�

�iii� the set B � fy � y � fi�x� for some x � Aig is the same for each i � �� ���� k� and



	

�iv� f��i has a continuous derivative on B� for each i � �� ���� k


Then� HDS test exists


Proof
 Conditions �i�
�iv� are set for variable transformation of continuous random

variable which provides a continuous pdf of new variable f�Xi� ��� �see� for exam


ple Cassella and Berger � p����
 As the fact that L�X�� ���� Xn� ��� is a product of

f�Xi� ���� i � �� ���� n� then P �L�X�� ���� Xn� ��� � a� is a continuous and monotone

increasing function of a
 Then� from the intermediate theorem�

P �L�X� �� � L�x�� ��� ��
��

exists for � � ��
 The result is followed from the fact that the set of values of ��
��

with � � �� is bounded which indicating the existence of in	mum
 �

There are three remarks for this theorem�

�a� Most continuous type distributions appeared in literature ful	ll the conditions �i�


�iv� in the theorem and then the HDS tests exist for any level �
 Example that this

theorem does not hold includes the uniform distribution


�b� �i�
�iv� provide only a su�cien conditions and this set is de	nitely not necessary

conditions and then the HDS tests for any level � exist in a wider famimly of distri


butions


�c� We can ignore the exceptional set A� since P���X � A�� � �
 It is a technical

device that is used to handle endpoints of intervals
 Example for this case includes

the double exponential distribution


Most distributions of continuous type we have seen in literature are having pdf�s of

monotone cases or unimodels and they full	ll the conditions �i�
�iv� in Theorem �
�

such that the HDS tests exist where the unimodels have ranges of the form ��� xmod�

where xmod is the mode of the distribution


From Theorem �
�� the level � HDS test has acceptance region f�x�� ���� xn� �

L�x�� ���� xn� ��� � a�g where a� satis	es � � � � P���L�X�� ���� Xn� ��� � a���
 The

key of deriving the HDS test based on this theorem is that we need to know the dis


tribution of the random form of the likelihood function under the assumption that

H� � � � �� is true


Theorem ���� Consider the hypothesis H� � � � �� where � may be a vector

parameters and suppose that the observation of the sample be x�
 For any signi	cance






test with set of non
extreme points B���� then for any � � �� such that
Z
L�x����L�x����

L�x� ��dx �

Z
B���

L�x� ��dx� ��
��

then we have

volume�fx � L�x� �� � L�x�� ��g� � volume�B����� ��
��

Proof
 Suppose taht ��
�� holds
 Deleting the subset common to fx � L�x� �� �
L�x�� ��g and B��� yields

Z
fx�L�x����L�x����g�B���c

L�x� ��dx �

Z
B����fx�L�x����L�x����gc

L�x� ��dx�

Now� for xa � fx � L�x� �� � L�x�� ��g�B���c and xb � B����fx � L�x� �� � L�x�� ��g�
we have L�xa� �� � L�xb� ��
 Thus�

volume�fx � L�x� �� � L�x�� �� and x � B���cg�
� volume�fx � L�x� �� � L�x�� �� and x � B���g�� ��
��

So� adding the volume of fx � L�x� �� � L�x�� ��g�B��� to both sides of ��
��� we have

the theorem
 �

�� Testing Hypothesis for Normal Parameters

Suppose that we are willing to accept as a fact that the outcome of the variable of

a random experiment has a normal distribution with mean � and variance 	�
 Now�

let X�� ���� Xn be a random sample drawn from normal distribution N��� 	��
 We 	rst

consider the hypothesis about mean � with assuming that 	 is known


Case �� 	� � 	� is known constant
 Consider the null hypothesis H� � � � ��
 The

likelihood function is

L�x� �� � ��
	����n��e
�

P
n
i��

�xi���
�

���
� �

This is a monotone decreasing function in
Pn

i���xi����
 With the fact that L�X��� �
L�x�� �� if and only if

Pn
i���Xi���� �Pn

i���xi���� and
Pn

i���xi���� �
Pn

i���xi�
�x�� � n��x� ���� the p
value for H� is

phd � sup��
P ����n� � �

	��
 
nX
i��

�xi � �x�� � n��x� ���!��



�

This p
value varies in observation x� � �x�� ���� xn� and assumption on �
 We list the

corresponding p
values associated with several hypotheses in Tables � and �


Table �� p
values for some hypotheses H� about normal mean

Hypothesis p
value phd

H� � � � ��

��
�

P ����n� �
Pn

i���xi�	x��

���
� if �x � ��

P ����n� �
Pn

i���xi����
�

���
� if �x � ��

H� � � � ��

��
�
P ����n� �

Pn
i���xi����

�

���
� if �x � ��

P ����n� �
Pn

i���xi�	x��

���
� if �x � ��

H� � �� � � � ��

����
���

P ����n� �
Pn

i���xi����
�

���
� if �x � ��

P ����n� �
Pn

i���xi�	x��

���
if �� � � � ��

P ����n� �
Pn

i���xi����
�

���
� if �x � ��

Example �� In a semiconductor manufacturering process CVD metal thickness was

measured on �� wafers obtained over approximately � weeks
 A data of this experiment

has been given in Montgomery� Runger and Hubele ������ where 	 � � is assumed to

be known and we have �x � ����� and
Pn

i���xi � �x�� � ������
 We have the following

tests�

�a� If we test H� � �� � � � ��� the p
value is

phd � sup��
����P ������� �
Pn

i���xi � �x��

	�
� � �������

�b� If we test H� � �� � � � ��� the p
value is

phd � sup�������P ������� �
Pn

i���xi � �x��

	�
�

����x� ����

	�
� � ��������

�c� If we test H� � �� � � � ��� the p
value is

phd � sup��
��
�P ������� �
Pn

i���xi � �x��

	�
�

����x� ����

	�
� � ��������

Table �� p
values for some hypotheses H� about normal mean



��

Hypothesis p
value phd

H� � � � ���� ��� � ���� �
�
P ����n� �

Pn
i���xi�	x��

���
� n�	x����

�

���
�

if �x � ��

P ����n� �
Pn

i���xi�	x��

���
�

if �� � �x � �� or �� � �x � �


P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
�

if �� � �x � �� with j�x� ��j � j�x� ��j

P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
�

if �� � �x � �� with j�x� ��j � j�x� ��j

P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
�

if �x � �


Table �� p
values for some hypotheses H� about normal mean

Hypothesis p
value phd

H� � � � �� or � � �� P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
� if �x � ��

P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
�

if �� � �x � �� with j�x� ��j � j�x� ��j

P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
�

if �� � �x � �� with j�x� ��j � j�x� ��j

P ����n� �
Pn

i���xi�	x��

���
� n�	x����

�

���
� if �x � ��

	� Testing Hypothesis For Standard Deviation and For Both Mean and

Standard Deviation

Case �� � � �� is known


Table �� p
values for some hypotheses H� about normal variance



��

Hypothesis p
value phd

H� � 	� � 	�� P ����n� �
Pn

i���xi����
�

���
�

H� � 	�� � 	� � 	�� P ����n� �
Pn

i���xi����
�

���
�

Table 	� p
values for some hypotheses H� about normal mean and variance

Hypothesis p
value phd

H� � � � ��� 	
�
� � 	� � 	�� P ����n� �

Pn
i���xi�	x��

���
� if �x � ��

P ����n� �
Pn

i���xi����
�

���
� if �x � ��

H� � �� � � � ��� 	
�
� � 	� � 	�� P ����n� �

Pn
i���xi����

�

���
� if �x � ��

P ����n� �
Pn

i���xi�	x��

���
� if �� � �x � ��

P ����n� �
Pn

i���xi����
�

���
� if �x � ��


� Some Other Distributions

Let�s consider the testing hypothesis about the parameter in the following exponetial

distribution

f�x� �� � �e��x� x � ��

Table 	� p
values for some hypotheses H� about exponential parameter

Hypothesis p
value phd

H� � � � �� P �Gamma�n� �� � n	x
��

�

H� � � � ���� ��� � ���� �
� P �Gamma�n� �� � n	x
��

�

�� Approximate Highest Density Signi�cance Test



��

In statistical inferences for some distributions� approximate techniques are often

desirable
 Sometimes there are due to that direct evaluation of exact statistical in


ference is overwhemingly di�cult and sometimes the approximations are cheaper and

quiker
 For example� consider that we have a random sample X�� ���� Xn drawn from

the Gamma distribution with pdf

f�x� �� �� �
�

"�����
x���e�

x
� � x � �

where �� � � � are parameters
 We further assume that � is known constant and we

want to test the composite null hypothesis H� � � � �� 
 With this case the p
value

for the HDS test is

phd � sup����
P�f�
ni��Xi�

���e�
P

n
i��

Xi
� � �
ni��xi�

���e�
P

n
i��

xi
� g� ��
��

The p
value of ��
�� may be derived only if we have an explicit distribution of the

statistic 
ni��Xi�
���e�

P
n
i��

Xi
� under the distribution P� 
 Howewver� this is compli


cated to derive it
 Then� an approximation technique for this topic of highest density

signi	cance tests is needed


The p
value of ��
�� for a highest density signi	cance test may be reformulated as

phd � sup����
Pf
ni��f�Xi� �� � 
ni��f�xi� ��g

� sup����
Pf

nX
i��

lnf�Xi� �� �
nX
i��

lnf�xi� ��g� ��
��

The asymptotic theory may be applied on the statistic
Pn

i�� lnf�Xi� �� of ��
�� when

� is true for this test due the fact that lnf�Xi� ��� i � �� ���� n are independent and iden


tically distributed with further assumptions that its mean E� ln f�X� ��! and variance

V ar� ln f�X� ��! exist
 With the central limit theorem� the p
value of an approximate

highest density signi	cance test is

phd	app � sup����
#�

n��
Pn

i�� ln f�xi� ��� E� ln f�X� ��!p
n��V ar� ln f�X� ��!

� ��
��

where # is the distribution function of the standard normal distribution


It is interesting to see if the approximate highest density signi	cance test is appro


priate to use when the exact one is not available
 We consider the appropriateness



��

based on the e�ciencies of the approximation technique
 Let�s consider a simulation

when the underlying distribution is normal as an example
 Suppose that now we have

a random sample X�� ���� Xn from normal distribution N��� 	�� and we consider hy


pothesis H� � ��� 	� � ��
 To formulate the test in ��
��� the logarithm of normal pdf

is

ln f�x� �� 	� � ��

�
ln ��
	��� �x� ���

�
	�

which implies that E ln f�X� ��! � ��
� ln��
	�� � �

� and V ar ln f�X� ��! � �
� 
 With

some arrangements� we have that the approximate p
value under the normal distribu


tion is

p
N������
hd	app � sup��������

#���n�����
nX
i��

 �� �xi � ���

	�
!�� ��
��

For studying the e�ciencies of the approximate p
value of formula ��
��� we further

assume that 	 is known to be value �
 Then the approximate p
value is reduced to

p
N������
hd	app � sup���mu

#���n�����
nX
i��

 �� �xi � ���

	��
!�� ��
��

We generate random sample of size n from normal distribution N��� �� and� from

this sample� we compute p
values from Table � and ��
��
 This simulation is done

with replication ���� ��� and we compute the average p
values of the exact one and

approximate one
 The following table display these results


Table 
� p
values for exact and approximate highest density signi	cance tests when

H� is not true

Sample size Exact test Appro
 test Exact test Appro
 test
H� � � � ������� H� � � � ���� ��

n � �� ����E � �� ����E � �� ������ ������
n � �� ����E � �� ����E � �� ������ ������
n � �� ����E � �� ����E � �� ������ ������
n � �� ����E � �� ����E � ��� ������ ������
n � ��� ����E � ��� ������ ������ ������

H� � � � ��� �� H� � � � ��� ��
n � �� ������ ������ ����E � �� ����E � ��
n � �� ������ ������ ����E � �� ����E � ��
n � �� ������ ������ ����E � �� ����E � ���
n � �� ������ ������ ����E � �� ����E � ���
n � ��� ������ ������ ����E � ��� ������



��

Table �� p
values for exact and approximate highest density signi	cance tests when

H� is true

Sample size Exact test Appro
 test Exact test Appro
 test
H� � � � ��� �� H� � � � ��� ��

n � �� ������ ������ ������ ������
n � �� ������ ������ ������ ������
n � �� ������ ������ ������ ������
n � �� ������ ������ ������ ������
n � ��� ������ ������ ������ ������

In the application of approximate highest density signi	cance test� we 	rst consider

the approximate p
value of ��
�� with random sample from Gamma distribution


Theorem 
��� The p
value of an approximate highest density signi	cance test for the

Gamma distribution is

pGamma
hd�app � sup����

#�
��� �� n��

Pn
i�� lnxi � �ln��� � PG �� �!�!� ��x
� � ��p

n��V ar ln f�X� ��!
�

where PG n� z! is the nth derivative of the digamma function ��z� � ���z�
��z� and

V ar ln f�X� ��! � � ��ln ��� � �ln �PG �� �! � ��PG �� �!�� � PG �� �!!

� ��PG �� �!�� � ��ln ��� � PG �� �!� ����� ��PG �� �� �!

� ����� ���ln � � ��PG �� �! � ��� � ������ � ��ln ��� � ���PG �� �!�

Let�s consider a case for simulation
 Suppose that we have known � � �
 In this

situation� we see that PG �� �! � �� �� PG �� �! � 
�

� � �� PG �� �! � 

� � � indicating

that E ln f�X� ��! � ��� � � ln � and V ar ln f�X� ��! � 
�

� � �
 Then� the p
value

of the approximate highest density signi	cance test is

pGamma
hd�app � sup����

#�
n��

Pn
i�� lnxi � �x
� � ln � � � � �p

�
�
�� ��
n
�� ��
��

For comparison� we also consider the following two Fisherian signi	cance tests with

p
values

pcla�A � sup����
PfGamma��n� �� �

Pn
i�� xi
�

g

and cla�B � sup����
PfGamma��n� �� �

Pn
i�� xi
�

g�



��

The following table displays the simulation results


Table �� p
values for exact and approximate highest density signi	cance tests for

H� � ��� � � � ���

Sample size pGamma
hd�app pcla�A pcla�B

True � � �
n � �� ������ ������ ������
n � �� ������ ������ ������
n � �� ������ ������ ������
n � �� ������ ������ ������
n � ��� ������ ������ ������

True � � �
n � �� ������ ������ ������
n � �� ������ ������ ������
n � �� ������ ������ ������
n � �� ������ ������ �
n � ��� ������ ������ �

True � � �
n � �� ������ ������ ������
n � �� ������ ������ �
n � �� �����e� �� �����e� �� �
n � �� �����e� �� �����e� �� �
n � ��� �����e� �� �����e� �� �

In the next� we consider the Weibull distribution which has been very useful in

monitoring the lifetime data
 Consider that we have a random sample X�� ���� Xn from

the one parameter Weibull distribution with pdf of the form

f�x� �� � �x���e�x
�

� x � �� ��
��

Theorem 
��� The p
value of an approximate highest density signi	cance test for the

Weibull distribution of ��
�� is

pWeibull
hd	app � sup����

#�

p
nf�� � �� n��

Pn
i�� ln xi � ��
��!�  n��

Pn
i�� x

�
i � �!g

��� � ��
��
������ ��� � ��
� � �
��

where � �
R�
� ln te�tdt is the Euler�s constant approximately equaled �������


Table �� p
values for approximate highest density signi	cance tests for Weibull dis


tribution when true � is �



��

Sample size H� � � � ����� �� H� � � � ����� ����
n � �� ������ ������
n � �� ������ ������
n � �� ������E � �� ������
n � �� ������ ������
n � ��� ������E � �� ������

In the next example we consider the extreme value distribution with pdf

f�x� �� �� �
�

�
e
x��
� e�e

x��
�
� x � R ��
��

where parameters � � R and � � �
 We assume that we have a random sample

X�� ���� Xn drawn from this distribution
 We have p
value for an approximate highest

density signi	cance test


Theorem 
��� The p
value for an approximate highest density signi	cance test for

the extreme value distribution of ��
�� is

pExtreme
hd	app � sup����������

#�
��x� ��
� � n��

Pn
i�� e

�xi����� � �������p
n���
�
�� ��

�

�� Appendix

Proof of Theorem �
�
 With density f�x� ��� we have

ln f�x� �� � ��� ��ln x� x

�
� �ln � � ln "���

�ln f�x� ���� � ��� �� ln x!� � ���� ��
xln x

�
� ���� ����ln � � ln "����ln x

�
x�

�
� ��

�ln � � ln "���

�
�x � ��ln ��� � �ln "����ln � � ln "�����

It is easy to check that E X! � �� and E ln X! � ln � � PG �� �! which indicates

that

E ln f�X� ��! � ��� ���ln � � PG �� �!�� ��� � ln ��� ln "���� ��
��

Furthermore� we also have

E X�! �
"�� � ��

"���
��

E �ln X��! � �ln � � PG �� �!�� � PG �� �!

E Xln X! �
"�� � ��

"���
��ln� � PG �� �� �!��



�	

With the above results� we have

E �ln f�X� ����! � ��� ��f�ln � � PG �� �!�� � PG �� �!g ��
��

� ���� ��
"�� � ��

"���
�ln� � �PG �� � � �!�� ���� ����ln � � ln "����

�ln � � PG �� �!� �
"�� � ��

"���
���� � ����ln � � ln "���� � ��ln ��� � ln "�����

Then V ar ln f�X� ��! is induced from ��
�� and ��
�� and then the theorem is fol


lowed
 �

Proof of Theorem �
�
 With pdf f�x� �� of ��
��� its logarithm is ln f�x� �� � ln � �

�� � ��ln x � x� 
 For obtaining the mean and variance of ln f�X� ��� we may derive

the followings

E ln�X�! � ��

�
� E ln�X�X�! �

�� �

�
�

E ln�X��! �
��� � 
�

���
� E X�! � �� E X��! � ��

From the above results� we then have

E ln f�X� ��! � ln � � �� � ���

�
� ��

V ar ln f�X� ��! � ��
� � �

�
� �

� � �

�
��

�

�
� ��

Imposing these results in ��
��� we then have the theorem


Proof of Theorem �
�
 The logarithm of the pdf is ln f�x� �� �� � x��
� � ln � � e

x��
� 


we also have�

E ln f�X��� ��! � E 
X � �

�
!� ln � � E e

X��
� !

E �ln f�X��� ����! � E 

�
X � �

�

��

!� �ln �E 
X � �

�
!� E ��

X � �

�
�e

X��
� !

� �ln �E e
X��
� ! � E e��

X��
�

�! � �ln ���

where E X��
�

! � ��������� E 
�
X��
�

	�
! � 
�

� � ����������� E e
X��
� ! � �� E e��

X��
�

�! �

�� E ��X��� �e
X��
� ! � �������� Henceful� we have

E ln f�X��� ��! � ��������� ln �

V ar lnf�X��� ��! �

�

�
� ��



�


The theorem is followed with implementing the above results in ��
��
 �

References

Arbuthnott� J
 ������
 An argument for Divine Providence� taken from the con


stant regularity observ�d in the birth of both sexes
 Philos� Trans� ��� ���
���


Reprinted in Kendall� M
 G
 and Plackett� R
 L
� Studies in the History of Statis�

tics and Probability� Vol II� London� Charles Gri�n� ����� ��
��


Armitage� P
 ������
 Trials and errors� the emergence of clinical statistics
 Journal of

the Royal Statistical Society A� ���� ���
���


Christensen� R
 ������
 Testing Fisher� Neyman� Pearson� and Bayes
 The American

Statistician
 ��� ���
���


Fisher� R
 A
 ������
 On the mathematical foundations of theoretical statistics
 Philos�

Trans� R� Soc� London A ���� ���
���


Fisher� R
 A
 ������
 Statistical Methods for Research Workers� Edinburg� Oliver and

Boyd


Garthwaite� P
 H
� Jolli�e� I
 T
 and Jones� B
 ������
 Statistical Inference
 Oxford

University Press� Oxford


Gossett� W
 ������
 The probable error of the mean
 Biometrika �� �
��


Lehmann� E
 L
 ������
 Testing Statistical Hypotheses� �nd ed
 John Wiley and Sons�

New York


Mood� A
 M
� Graybill� F
 A
 and Boes� D
 C
 ������
 Introduction to the Theory of

Statistics
 McGraw
Hill� Inc


Neyman� J
 and Pearson� E
 S
 ������
 Joint Statistical Papers
 Cambridge University

Press


Pearson� K
 ������
 On the criterion that a given system of deviations from the proba


ble in the case of a correlated system of variables is such that it can be reasonably

be supposed to have arisen from random sampling
 Philosophical Magazine ��

���
���


Welsh�A
 H
 ������
 Aspects of Statistical Inference� Wiley� New York



