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ABSTRACT

Extending from the idea of Chen(2005), we proposed highest density
significance (HDS) test for composite null hypothesis. Existence and
optimality of this test are derived. Examples of HDS test for normal
parameters are provided. For problems that HDS tests are complicated

to derived, we propose the approximate HDS tests.
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Highest Density Significance Test for Composite Hypothesis

Abstract
Extending from the idea of Chen (2005), we proposed highest density significance
(HDS) test for composite null hypothesis. Existence and optimality of this test are
derived. Examples of HDS test for normal parameters are provided. For problems

that HDS tests are complicated to derive, we propose the approximate HDS tests.

Key words: Fisherian significance test; Hypothesis testing; significance test;

1. Introduction

In the hypothesis testing, there are two important categories of hypothesis specifica-
tion, the siginificance test and the Neyman-Pearson formulation. The Neyman-Pearson
formulation considers a decision problem that we want to choose one from the null hy-
pothesis Hy and an alternative hypothesis H;. On the other hand, the significance test
considers only one hypothesis, the null hypothesis H,. The significance test may occurs
that Hy is drawn from a scientificsguess and-we are vague about the alternative, and
cannot, easily parameterize them. Another ¢ase is that the model when Hj is true is
developed by a selection process on a subset and is to'be checked with new data. Then
the problem for significance test iSsmore general than the Neyman-Pearson formulation
in that when Hj is not true there are many possibilities for the true alternative.

Over 200 years of development of significance test, it has been used in many branches
of applied sicences. Some earliest use of significance test include that, for examples,
Armitage (1983) claims to have found the germ of the idea in a medical discussion
from 1662 and Arbuthnot (1710) observed that the male births exceeded female births
in Lonton for each of the past 82 years that violates the assumption of equal chance
of male birth. Some important significance tests latter developed include the Karl
Pearson’s (1900) chi-squares test and W. S. Gosset’s (1908) student paper that pro-
posed the first solution to the problem of small-sample tests. Significance tests were
given their modern justification and then popularized by Fisher that he derived most
of the test statistics that we now use, in a series of papers and books during 1920s
and 1930s. Traditionally the siginificance test is to examine how to decide whether or

not a given set of data is consistent with Hj it is conducted through several key steps:
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1. stimulating a suitable null hypothesis Hy, 2. choosing a test statistic 7" to rank
possible experimental outcomes, 3. determining the p-value which is the probability
of the set of values of T at least as extreme as the value observed when Hj is true.
4. Hj being accepted (rejected) if the p-value is large (small) enough. This classical
way that the user have to select a test statistic, although often been recommended a
sufficient statistic, to formulate the test is generally called the Fisherian significance

test since R. A. Fisher made the contribution on significance test the most.

Yes, over 200 years development, however, the concept and theory of Fisherian
significance test are now scarcely introduced in modern texts of statistical inferences.
There are some reasons reflecting this fact. (a) The Fisherian significance tests are
questioned about how to use test statistics and which test statistic to use under which
circumstances. For one specific hypothesis, there may have several test statistics for
use such as the Pearson’s (1900) chi-square test and the normal approximation method.
With this difficulty, people may be bothered for making decision when it is happened
that the null hypothesis Hy is rejected by using one test statistic inducing strong
evidence against Hy and accepted by.wsing -another test statistic inducing no real
evidence against Hy. (b) On thesother handy thére is also the problem of choosing
the one sided Fisherian significanice tiest or the'two sided Fisherian significance test.
In practice, it often depends only on practicer’s convenience. It is quite common that
if the distribution of the test statistic-is‘available and is symmetric then a two sided
Fisherian significance test is often implemented and a one sided Fisherian significance
test is implemented when it has an asymmetric distribution. However, if approximation
for the distribution of the test statistic such as the normal aprroximation and the
Pearsone’s chi-square test has been used then they usually implement a two sided one.
For example, for testing Hy : p = py with X obeying a binomial distribution, the
Fisherian significance test may be conducted by the two sided Pearson’s chi-square
and normal approximation tests and by choosing X as a test statistic for a one sided
test (see the latter one in Garthwaite et al. (2002)). For one hypothesis problem, a
two sided Fisherian significance test may have p-value approximated twice as it for
an one sided one. Without a fair justification in deciding a one sided or two sided
test, the conclusion based on p-value may be misleading. (c¢) There is absence of
a direct indication of any departure from H,. This happens mainly because that

Fisherian significance tests generall are constructed based on the sufficient statistic



of the parameter assumed in null hypothesis. (d) There is lack of desired optimal
property as a justification to support the calssically used Fisherian significance tests.
In the late 1920s, E. S. Pearson, son of Karl Pearson, approached Jerzy Neyman
with a question that bother him. If you test whether data fit a particular probability
distribution and the test statistic is not large enough to reject the distribution, how
do you know that this is the best that you could done? How do you know that
some other test statistics might not have rejected that probability distribution? The
resulting collaboration (see this in a series of papers collected in Neyman and Pearson
(1967)) between them produced the Neyman-Pearson formulation that requires tests
selecting one between the null hypothesis Hy and a well specified alternative hypothesis
H,. With Neyman-Pearson formulation, a mathematical theory of hypothesis testing
in which tests are derived as solutions of clearly stated optimum problems has been
developed. The optimal property does made the Neyman-Pearson theory popular in
statistical inferences.

In this paper, we consider the hypothesis Hy : # = 6y. By letting X = z¢ be the
observed sample, our approach of HDS testisets all x’s satisfying L(x,0y) < L(xg, 0)
as set of extreme points for computing p-value. 'hissetting of determining the extreme
points not, only gets rid off the difficulty of deciding a one sided or two sided test but
also automatically determine the test statistic. The' defects (a) and (b) ocuured for
the Fisherian significance test aré then selved:-Traditionally the chosen test statistic
used in Fisherian significance test involves. information only related to the parameter
considered in Hy which often is either a location or scale parameter. But, the likelihood
based HDS test classifies a point x if it is an extreme by measuring its corresponding
likelihood using all information involving the size of its likelihood. This often result
in a test statistic that involve information with amount bigger than that contained in
the traditionally used test statistic. Therefore, we may expect that likelihood function
for constructing a significance test definitely will gain some more advantages. First,
we will show that this new significance test has a desired property of optimality which
then does provide a justification for the use of this new test. The defect (d) for
Fisherian significance test is also overcomed. Second, often using extra information
often provides indication of departure from Hy. Furthermore, examples of HDS test
for both continuous distribution and discrete distribution will be provided associated

with discussion of comparison with the Fisherian significance tests.



2. Motivation for Highest Density Significance Test

Let X4,..., X,, be a random sample drawn from a distribution having a probability
density function (pdf) f(x,8) with parameter space 2. Consider the simple hypothesis
Hy : 0 = 0, for some 0y € Q. By letting vector X with X' = (Xq, ..., X,;) and sample
space A, let’s denote the join pdf of X as L(z,0), also called it the likelihood function.

What is generally done in classical approach for significance test when X = x( is
observed, particularly influenced by R. A. Fisher and being called the Fisherian signifi-
cance test, is to determine the extreme set based on the distribution (or approximated
distribution) of a test statistic. With a test statistic T = ¢(X), it then define the

p-value as

Pzo = Pa, (T at least as extreme as the value observed). (2.1)

While this approach is applicable in certain practical problems, it is scarcely of suf-
ficient generality to warrant trying to find necessary and sufficient conditions for its
applicability. There are several reasons for this point. First, as questioned from E. P.
Perason that, for given one observation &g, we may reject Hy for having small p-value
that provides evidence against Hg with one. testistatistic but accept Hy for having
large p-value that provides no real evidence against H, with another test statistic.
How can we decide to choose the test statistic? Seeond, the extreme set E in (2.1)
varies in choosing the one sided or two: sided Fisherian significance test. However, in
application, it often is decided basedon:practicer’s convenience where we should know
that the two sided Fisherian significance test may have p-value as large as twice the
p-value of the one sided Fisherian significance test. This increases the difficulty in
understanding the pvalue. Third, so far, there is no justification of desired optimal
property for this test-statistic based Fisherian significance test.

Suppose that we set out to order points in the sample space A according to the
amount of evidence they provide for Hy : # = 0y. We should naturally order them
according to the value of the probability L(z,0p); any 2 with small L(z,0y) revealing
evidence against Hy. Then, when X = z is observed and if we must choose subset of
possible observations which indicates that Hy is true, then it seems sensible to put into
this subset those z’s for which the probability L(z, 8y) is large - in other words to choose
a subset of the form {z : L(x,6y) > L(xo,60p)}. On the other hand, the subset which
indicates that Hy is not true seems sensible to be of the form {z : L(z,0y) < L(x,0)}.



With expectation that each extreme point has to be at least as extreme as the observed

value xq, this leads the following definition for defining a new type of significance test.

Consider the null hypothesis Hy : € = 63. The HDS test proposed by Chen defines

the p-value as

Dhd = / L(x,60p)dx.
L(w,OO)SL(wO,HO)

The method of highest density for significance test is obviously appealing for the
follwoing facts:
(1) Fisherian significance test chooses a test statistic T = ¢(X) that gives an ordering
of the sample points as evidence against Hy: t(z1) > t(z2) means that z; is stronger
than x4 as evidence against Hy. This evidence may varies in the chosen test statistic.
On the other hand, the ordering based on HDS test means that x; is stronger than x4
as evidence against Hy when it occurs L(x1,60p) < L(x2,6p).
(2) The inequality L(z,6y) < L(zo,6y) automatically decide two desirabilities: the
test statistic involving in the test and setting if it is a one sided or two sided test. This
solves the defects (a) and (b) occureéd in Fisherian significance test.
(3) For this test, we set the non-extreme set including the points z’s in sample space
the highest part of the joint density function L(r,#p); such a set includes relatively
more probable points when Hj is‘truel. On-the-other hand, this extreme set Epg = {x :
L(z,00) < L(x0,0p)} of the HDS test is weirder than its corresponding non-extreme set,
Eyg = {z : L(z,00) > L(x0,60))} in the sense that L(z1,0y) < L(xa,60p) for 1 € Fpg
and 25 € Epg. None of the traditional Fisherian significance tests has this appealing

in determining the extreme set for computing p-value of given observation z.

Definition 2.1. Consider the null hypothesis Hy : § € ©y. The HDS test defines the

p-value as

Dhd = SUDgco, / L(x,0)dx. (2.2)
L(x,0)<L(z0,0)

We classify the hypothesis testing problems whose level « MP, UMP, or UMPU
tests are proposed in the literature into the following three categories:
(A) Hy: 0 <0y versus Hy : 0 > 6y and Hy : 0 > 0y versus Hy : 6 < 6
(B) Hyo : 0 < 01 or 6 > 605 versus Hy : 01 < 6 < 3, where both #; and 03 are known

real-valued constants with 6; < 05
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(C) Hyp : 01 < 0 < 0 versus Hy : 0 < 0, or 6 > 05, where both #; and 0y are known
real-valued constants with 6; < 6,

(1) From any family of distributions with the monotone likelihood ratio property,
there exists a level & UMP test for any hypothesis testing problem belonging to Cat-
egory A. See, e.g., Lehmann (1986, Theorem 2 in Chapter 3).

(2) From any one-parameter exponential family, there exists a level « UMP test for
any hypothesis testing problem belonging to Category B. See, e.g., Lehmann (1986,
Theorem 6 in Chapter 3).

(3) From any one-parameter exponential family, there exists a level & UMPU test
for any hypothesis testing problem belonging to Category C. See, e.g., Lehmann (1986,
Section 4.2).

Theorem 2.2. Let X = (Xi,...,X,,) be a random sample from f(z,0) with an
observation X = z. Consider the hypothesis Hy : 0 = 0 € ©y and we assume that
the family of densities {f(x,0) : § € ©} has a monotone likelihood in the statistic
T =1t(X):

(a) If the monotone likelihood is nondeéreasingin a function ¢(z, ), then the test with

p-value

Phd = stuPgeo, Lo (6(X;0)< t(zo,0))

is a HDS test.

(b) If the monotone likelihood is nénincreasing.in‘t(z), then the test with p-value

Pha = Supgeo, Ps(t(X,0) > t(z,,0))

is a HDS test.
3. Existence and Optimality

Theorem 3.1. Let X1, ..., X,, be a random sample drawn from a distribution with pdf
f. Suppose that there exists a partition, Ay, Ay, ..., A, of the sample space of random
variable X such that Py, (X € Ap) = 0 and f is continuous on each A;. Further,
suppose there exist functions f1, ..., fx, defined on Ay, ..., Ay, respectively, satisfying
(i) f(z) = fi(x), for z € A;,

(ii) f; is monotone on A;,

(iii) the set B = {y : y = fi(z) for some z € A;} is the same for each i = 1,..., k, and



(iv) f;! has a continuous derivative on B, for each i = 1, ..., k.
Then, HDS test exists.

Proof. Conditions (i)-(iv) are set for variable transformation of continuous random
variable which provides a continuous pdf of new variable f(X;,0y) (see, for exam-
ple Cassella and Berger ( p53)). As the fact that L(X4,..., X,,0p) is a product of
f(Xi,600),i = 1,....,n, then P(L(Xy,...,X,,0p) < a) is a continuous and monotone

increasing function of a. Then, from the intermediate theorem,
P(L(X,0) < L(zo,0)) (3.1)

exists for § € 0y. The result is followed from the fact that the set of values of (3.1)

with 6 € 6y is bounded which indicating the existence of infimum. [

There are three remarks for this theorem:

(a) Most continuous type distributions appeared in literature fulfill the conditions (i)-
(iv) in the theorem and then the HDS tests exist for any level o. Example that this
theorem does not hold includes the uniform distribution.

(b) (i)-(iv) provide only a sufficien conditions and. this set is definitely not necessary
conditions and then the HDS tests for any level .« exist in a wider famimly of distri-
butions.

(c) We can ignore the exceptional setiAgsmee Py, (X € Ap) = 0. It is a technical
device that is used to handle endpoints of intervals. Example for this case includes
the double exponential distribution.

Most distributions of continuous type we have seen in literature are having pdf’s of
monotone cases or unimodels and they fullfill the conditions (i)-(iv) in Theorem 3.1
such that the HDS tests exist where the unimodels have ranges of the form (0, z,,04)
where Z,,.q4 1S the mode of the distribution.

From Theorem 3.1, the level @ HDS test has acceptance region {(x1,...,x,) :
L(z1,...,xpn,00) > an} where a, satisfies 1 — a = Py, (L(X1, ..., Xpn,00) > aq)). The
key of deriving the HDS test based on this theorem is that we need to know the dis-
tribution of the random form of the likelihood function under the assumption that

Hy: 0 =10y is true.

Theorem 3.2. Consider the hypothesis Hy : § € ©y where § may be a vector

parameters and suppose that the observation of the sample be xy. For any significance
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test with set of non-extreme points B(f), then for any 6 € ©g such that

/ L(z,0)dx = / L(x,0)dx, (3.2)
L(z,0)>L(z0,0) B(9)

then we have
volume({z : L(z,0) > L(xp,0)}) < volume(B(0)). (3.3)

Proof. Suppose taht (3.2) holds. Deleting the subset common to {z : L(z,0) >
L(zo,0)} and B(0) yields

/ L(:L',H)da::/ L(x,0)dx.
{z:L(2,0)>L(z0,6)}NB(0)° B(0)n{z:L(z,0)>L(20,0)}°
Now, for z, € {x : L(x,0) > L(x¢,0)}NB(#)° and x, € B(0)N{x : L(x,0) > L(x0,0)},

we have L(x,,0) > L(zp,0). Thus,

volume({z : L(z,0) > L(xo,0) and =z € B(0)°})
< volume({z : L(z,0) < L(xo,0) and = € B(#)}). (3.4)

So, adding the volume of {x : L(z, 0)> L(xy,0)} 1 B(#) to both sides of (3.4), we have
the theorem. [

4. Testing Hypothesis for Normal Parameters

Suppose that we are willing to accept as a fact that the outcome of the variable of
a random experiment has a normal distribiition with mean p and variance 2. Now,
let X1, ..., X,, be a random sample drawn from normal distribution N (u,o?). We first
consider the hypothesis about mean p with assuming that ¢ is known.
Case 1: 02 = 0y is known constant. Consider the null hypothesis Hy : u € ©,,. The

likelihood function is

Y @i-w?
Lz, p) = (2m02) ™"/ 2e 205

This is a monotone decreasing function in ", (z;—u)?. With the fact that L(X, ) <

L(wo, p) if and only if 3777, (X;—p)* > 320 (i —p)? and 330 (2 —p)? = 320 (@i —
7)2 +n(Z — p)?, the p-value for Hy is

Pha = supe, P(x*(n) > —Q[Z(l‘i —z)* +n(z — p)?).
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This p-value varies in observation xo = (21, ..., z,) and assumption on p. We list the

corresponding p-values associated with several hypotheses in Tables 1 and 2.

Table 1. p-values for some hypotheses Hy about normal mean

Hypothesis p-value ppq
POG(n) 2 EREETE) it < pg
H():'U/SPIO s (ZQ_M )2 .
P(x2(n) > Ealomml?y g s,
P(x%(n) > —ELI(:Q_“OV) if z < po
H():'U/Z/jl() 9 s (;_5)2 o
P(x2(n) > B2l i > g,
POC(n) > Bl s <
n (g, —7%)> .
Ho:po <p < P(%W)Z% if pro < p < i
n L 2
P(x*(n) > Z=25=00) it > g

Example 1. In a semiconductor ,manufaeturering'process CVD metal thickness was
measured on 30 wafers obtained over.approximately 2-weeks. A data of this experiment
has been given in Montgomery, Runger and Hubele (2004) where o = 1 is assumed to
be known and we have z = 15.99 and "> {(z;— 2)? = 29.107. We have the following
tests:

(a) If we test Hy: 15 < p < 17, the p-value is

Z?:l(l'i — )

: ) = 0.5119.
o

Phd = SUP(13,19)P(X2(30) >

(b) If we test Ho : 17 < p < 19, the p-value is

Yoo (z —T)? N 30(z — 17

)2
) = 0.00099.

Pha = sup(i7,19)P(x*(30) > 3 .

(c) If we test Hp: 13 < p < 15, the p-value is

Yo (z —7)? N 30(z — 15
2 2

2
Pha = sup(13,15) P (x> (30) > ) ) = 0.00139.

o (o

Table 2. p-values for some hypotheses Hy about normal mean
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Hypothesis p-value ppq

n 32 ()2
P(XQ(TL) 2 zi:l((;gl ) + ( 02/"0) )

Ho : p € (po, 1) U (p2, p3) itr s 0
>~ MO

P (n) > =)

4]

if o <& <y or pp <7 < g

n L =)\2 = 2
P((n) 2 &=ty k)
lfp,l Si’g[j,z with |.’I7—/j/1| S |i’—u2|

P2 (n) > 2t 1(521 z)® +n(90 p2)? )
if py <7 < pp with |a:—,u1|>|ar—,u2|

P(x*(n) > Blnlmt) | ne-u))

0

1f$2/t3

Table 3. p-values for some hypotheses Hy about normal mean

Hypothesis p-value ppq
n L =)\2 _
Ho @ pu < o or pu> ji P(x?(n) > Zi:lffgl i, ”(“”;3"0)2) if £ < o

n L =)2 _
P( (> Tty o))
o LT < py with |Z — po| <7 —

P(x*(n) > Blaalmt) | nEu))
if po < 7 < py with |a:—u0|>|a:—,u1|

P(x3(n) > Zimlp=D | o)’y i 5 sy,
0

0

5. Testing Hypothesis For Standard Deviation and For Both Mean and
Standard Deviation

Case 2: i = pg is known.

Table 4. p-values for some hypotheses Hy about normal variance
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Hypothesis

p-value ppq

.52 2
Hy:0° < oj

n Ti— 2
P(x*(n) > ===l

0

P(xz(n) > Z?:1(:2i—#0)2)

1

Table 5. p-values for some hypotheses Hy about normal mean and variance

Hypothesis

p-value ppq

Hy:p < po,08 <o?<o?

Ho:po < p<py,0f8 <o?<o?

PO (n) > B==2l) if 7 < g

P(x(n) > Zimlemtol) i 5 < gy

1

P(x(n) > By it g < <y

POC(m) > =00 i 5 > gy

1

6. Some Other Distributions

Let’s consider the testing hypothesis about the parameter in the following exponetial

distribution

f(z,0) =0e=%% 2> 0.

Table 5. p-values for some hypotheses Hy about exponential parameter

Hypothesis

p-value ppq

H()IQSQ()

Hy:0¢ (90, 91) U (02,03)

P(Gamma(n,1) > 2)

P(Gamma(n,1) > 2Z)

7. Approximate Highest Density Significance Test
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In statistical inferences for some distributions, approximate techniques are often
desirable. Sometimes there are due to that direct evaluation of exact statistical in-
ference is overwhemingly difficult and sometimes the approximations are cheaper and
quiker. For example, consider that we have a random sample X1, ..., X,, drawn from

the Gamma distribution with pdf

1
(o)

where «, 3 > 0 are parameters. We further assume that « is known constant and we

— R )
2 7B x>0

flz,a,f0) =

want to test the composite null hypothesis Hy : B € ©5. With this case the p-value
for the HDS test is

>
< (riym)* e T ) (6.1)

n a—1 —Z?:l X
Phd = Supgeo, Po{(mie Xi)* Te” 7

The p-value of (6.1) may be derived only if we have an explicit distribution of the

i=1 i

statistic 77, X;)* te™ " B under the distribution Pg. Howewver, this is compli-

cated to derive it. Then, an approximation technique for this topic of highest density
significance tests is needed.

The p-value of (2.2) for a highest density significance test may be reformulated as

Pha = supgee, A Mg (X)) Smiy f(wi,0)}

= supgeeoP{Zlnf(Xi, 9)< Zlnf(xi,e)}. (6.2)
i=1 i=1

The asymptotic theory may be applied on the statistic Y., Inf(X;,0) of (6.2) when
0 is true for this test due the fact that Inf(X;,0),i = 1,...,n are independent and iden-
tically distributed with further assumptions that its mean Ey[ln f(X,#)] and variance
Varglln f(X,0)] exist. With the central limit theorem, the p-value of an approximate

highest density significance test is

n~tY" In f(,0) — Eglln f(X,0)]
vV Warglln f(X,0)]

) (6.3)

DPhd.app = SUPHcO, (b(

where ® is the distribution function of the standard normal distribution.
It is interesting to see if the approximate highest density significance test is appro-

priate to use when the exact one is not available. We consider the appropriateness
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based on the efficiencies of the approximation technique. Let’s consider a simulation
when the underlying distribution is normal as an example. Suppose that now we have
a random sample Xy, ..., X,, from normal distribution N(u,0?) and we consider hy-
pothesis Hy : (i, 0) € ©g. To formulate the test in (6.3), the logarithm of normal pdf

1S

_ 1 2 (z — p)?
In f(x,p,0)= 2ln (2mo?) 502
which implies that E[ln f(X,0)] = —3in(270%) — 1 and Var[in f(X,0)] = . With

some arrangements, we have that the approximate p-value under the normal distribu-
tion is

n 2
N(p,0? _ Ty —
P = supgo e, ®(2n) 231 - T, (6.0
=1

For studying the efficiencies of the approximate p-value of formula (6.4), we further

assume that o is known to be value 1. Then the approximate p-value is reduced to

) = supyco,, ((2n) /2 iu ) (6.5)

hd.
app £ o2
We generate random sample of size n from mormal distribution N(p,1) and, from
this sample, we compute p-valugs from Table 1-and (6.5). This simulation is done
with replication 100,000 and we-compute the average p-values of the exact one and

approximate one. The following table-display ‘these-results.

Table 6. p-values for exact and approximate highest density significance tests when

Hj is not true

Sample size Exact test Appro. test Exact test Appro. test ‘
HO IS (—2, —1) HO IS (—1, 1)
n =10 2.47FE — 09 1.35F — 17 0.1216 0.1243
n = 20 2.62F — 18 7.39F — 50 0.0492 0.0467
n =30 6.60F — 28 3.48FE — 92 0.0204 0.0179
n = 50 1.44F — 42 1.70F — 149 0.0040 0.0031
n = 100 3.29F — 112 0.0000 0.0000 0.0000
Hy:pe(3,4) Hy: p e (5,6)
n =10 0.1202 0.1227 4.76E — 09 2.52FE — 15
n = 20 0.0479 0.0453 1.29F — 18 6.60F — 53
n = 30 0.0208 0.0182 5.03F — 30 4.33F — 105
n = 50 0.0044 0.0034 3.23F — 51 2.29F — 206
n = 100 0.0001 0.0000 2.71F — 110 0.0000
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Table 7. p-values for exact and approximate highest density significance tests when

Hy is true
Sample size Exact test Appro. test Exact test Appro. test ‘
Hy:pe(1,3) Hy:pe(0,4)
n =10 0.5688 0.5864 0.5666 0.5833
n = 20 0.5473 0.5606 0.5477 0.5609
n = 30 0.5347 0.5460 0.5381 0.5492
n = 50 0.5305 0.5398 0.5246 0.5337
n = 100 0.5157 0.5224 0.5214 0.5280

In the application of approximate highest density significance test, we first consider

the approximate p-value of (6.1) with random sample from Gamma distribution.

Theorem 6.1. The p-value of an approximate highest density significance test for the

Gamma distribution is

(a =)' 370 Ina; — (In(B) + PG[0,a])] — (7/6 — )
\/n_lVar[ln f(X,0)]

Gamma

ph,d,app = SUPBEG)B CI)(

)

L'(z)
I'(z)

where PG[n, 2] is the n'" derivative of'fhe digamma function ¢(z) = and

Var(ln f(X,8)] = of3(In B2 + 6ln BPG[00] + 3(PG[0,a])? + PG[1, o]
—2(PG[0,a))* — 2(In B)* = PG, @}~ 2a(cc = 1) PG[0, o + 1]
—2a(a—1)(In B —1)PG[0,a) Fala +1)3%" — (adn B)? + 202 PGI0, a.

Let’s consider a case for simulation. Suppose that we have known o = 2. In this
situation, we see that PG|[0,2] =1 —~, PG[1,2] = %2 — 1, PG[0,3] = 3 — v indicating
that Elln f(X,08)]=—-1—~—In B and Varlln f(X,0)] = %2 — 1. Then, the p-value

of the approximate highest density significance test is

n~IY " lnz, —T/B—InB+1+7y
(72/6 —1)/n

For comparison, we also consider the following two Fisherian significance tests with

Gamma __
phd,a,pp - SUPﬂeeg‘I’(

). (6.6)

p-values

Z?:l T
> =5 }
Z?ﬂ T

B

Pela,A = SUpgeo, P{Gamma(2n, 1)

}.

and cq,B = supgeo, P{Gamma(2n,1) <
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The following table displays the simulation results.

Table 7. p-values for exact and approximate highest density significance tests for

Hy:1.5<3<25

Sample size pfi’;@p’ga Dela, A Dcla,B
True =2
n =10 0.7255 0.7547 0.8297
n = 20 0.7912 0.8362 0.9065
n = 30 0.8372 0.8870 0.9406
n = 50 0.8973 0.9451 0.9784
n = 100 0.9611 0.9873 0.9976
True g =3
n =10 0.3218 0.2906 0.9833
n = 20 0.2338 0.2080 0.9989
n = 30 0.1846 0.1573 0.9999
n = 50 0.1188 0.0989 1
n = 100 0.0472 0.0335 1
True B =5
n =10 0.0160 0.0151 0.9999
n = 20 0.0017 0.0012 1
n = 30 8.260e¢ — 05 4.657e — 05 1
n = 50 4:231e — 08 4.199¢ — 08 1
n =100 3.248e — 24 2.201le — 14 1

In the next, we consider the ‘Weibull-cistribution which has been very useful in
monitoring the lifetime data. Consider that we have a random sample X1, ..., X,, from

the one parameter Weibull distribution with pdf of the form

f(z,p) = ﬁxﬂ_le_mﬁ,x > 0. (6.4)

Theorem 6.2. The p-value of an approximate highest density significance test for the
Weibull distribution of (6.4) is

pWeibull _ g0, (I)(\/ﬁ{(ﬂ D R I+ (v/B)] — It a - 1]})
hd.app BEBg ((/8_1)7"')2/(6B2)—2(,8—1)//84—1 .

where v = fooo In te~tdt is the Euler’s constant approximately equaled 0.57722.

Table 8. p-values for approximate highest density significance tests for Weibull dis-

tribution when true (3 is 2



16

Sample size Hy: (€ (2.5,3) Hy: p e (1.5,2.5)
n =10 0.7180 0.9673
n =20 0.8156 0.4696
n =30 1.4339E — 07 0.4596
n = 50 0.0001 0.3519
n = 100 8.1764F — 07 0.7988

In the next example we consider the extreme value distribution with pdf

flouf)= T e 7 zeR (6.5)

where parameters 4 € R and 8 > 0. We assume that we have a random sample
X1,..., X,, drawn from this distribution. We have p-value for an approximate highest

density significance test.

Theorem 6.3. The p-value for an approximate highest density significance test for

the extreme value distribution of (6.5) is

(Z—p)/B—n"tY 0 e@=m/B 4 157722
NCRIGIEY

Extreme __
phd.app - Sup(ﬂaﬁ)eeuﬁ@(

7. Appendix
Proof of Theorem 6.1. With density f(z, 8), we have

In f(x,f) = (a—1)ln x — % —adn B —in"F(a)

zin x

(In f(2,8)* = (a = Din 2]* = 2(a — 1)
x? aln B+ In T'(«a)
+ 42
g ( B
It is easy to check that F[X]| = af and El[ln X| = In 4+ PG[0,a] which indicates

that

—2(a—1)(adn B+ In T(a))in

)z + (adn B)% + 2In T'(a)adn B+ In T?(a).

Elln f(X,0)] = (a—1)(In g+ PG[0,a]) —a(l +In B) —In T'(a). (6.6)
Furthermore, we also have
Mla+?) .,
['(a) &
E[(In X)) = (In B+ PG[0,a])* + PG[1,q]
I'a+1)
[(a)

E[X? =

E[XIn X] = B(lng + PG[0,  + 1]).
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With the above results, we have

E[(in f(X,8))°] = (« = D{(In B + PG[0, a])” + PG[1, o]} (6.7)
INa+1)
I(a)

(In B+ PGI0,a]) +

—2(a—1) (Ing + +PG[0,a + 1]) = 2(a — 1)(adn B+ In I'(a))

I'a+2)
I(a)
Then Var[ln f(X, ()] is induced from (6.6) and (6.7) and then the theorem is fol-

lowed. [

Bt 4 2a(aln B+ In T'(a)) + (adn B)% + in T'(a)?.

Proof of Theorem 6.2. With pdf f(z,3) of (6.4), its logarithm is in f(z,5) =In B+
(8 — 1)In x — 2P, For obtaining the mean and variance of In f(X, 3), we may derive
the followings

EmmXﬂ:—%,EwuxyWﬂ:l%l,

6 2 2
AT E[XP] =1, E[X?] =2.
632

From the above results, we then have

Elin(X)?]

(8 =1y

A
B=rAdiy = 1
B (s

Imposing these results in (6.1), we then have the theorem.

Elin f(X,8)] =in (= -1,

2
)2%+1.

Var(ln f(X,8)] ==2

Proof of Theorem 6.3. The logarithm of the pdf is in f(x, u, 3) = "”B“ —In B — e F

we also have,

Elin £(X, 1, B)] = B ™)~ n § - Ble™"]

p
E[(ln f(X,u,0))%] = E[<Xﬁ_ “) | — 2ln BE]

+ 2In BE[e%] + E[ez(%)] + (In B)?

AU

2 _ —
where E[X72] = —0.57722,E[(%) | == 4 (0.57722)%, Ele 7| =1, B[*C7)] =

X—n

5] = 0.84557. Henceful, we have

2, E[2(F54)e

E[ln f(X,u,B)] = —0.57722 —In 3
2

Varling (X, . )] = & = 1.
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The theorem is followed with implementing the above results in (6.3). O
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