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Student : Chin-Chiang Hsieh Advisor : Dr.Guan-Hua Huang
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National Chiao Tung University

Abstract

Endophenotypes, which involve the same biological pathways as
diseases but presumably are closer to-the relevant gene action than
diagnostic phenotypes, have emerged as-an important concept in the
genetic studies of complex diseases. In this report, we give some
patterns about the developed index, the proportion of heritability
explained (PHE) by the endophenotypes for validating
endophenotypes. Besides, we provide a relevant confidence interval
of PHE to perform a statistical test and to make some statistical
inference. Using the relevant confidence interval of PHE, we

construct some criteria to help us search a useful endophenotype.

KEY WORDS : endophenotype ; heritability ; genetic analysis



VR EBR O AN R iy X pF o £ H

E

:
S EERE O R REE #Fl EARH  RAE E T FREE R A B

F_&.
AN

Bl A AT B Y

P
>0

Gt o b TERHE R B30 Frdh o d TR e e o B S

» 2

3
9
—_\;x_”\—

4 B (M A E MLl A X ) Ar BEFLAL LEEH R
{

S
&
&%

Vb RAEH- HREOEEL S FEE) L A RH AT 0 FFIIEFE
A €§5‘\‘. F2N T E g A o

l"i-l,”‘ ) f;it]',{ 1,LL % %ﬂ; < )§J< ‘{:.;f_x;"ﬁ\l I\ Ipp 4 iFg R E&ﬁ#j’f,’? fFB .



CONTENTS

ABSTRACT(in Chinese) 1

ABSTRACT(in English) 11
ACKNOWLEDGEMENTS(in Chinese) il
CONTENTS v

LIST OF TABLES v
LIST OF FIGURES vi

I Introduction.........ooeiiiiii e 1

P2 D11 7<) 21008 (S 150 (o) 3

2.1 Statistical validation of surrogate endpoints....................... 3

2.2 Statistical framework in geneticiepidemiology.................... 4

3 Method....coooeiii s e e e 9

31 Model....oovvvevn . SETTTE. AN ..o, 9

3.2 Estimation.........c.coooii ittt e, 13

3.3 Hypothesis Test.......ccoooo e 19

4 Simulation Studies...........cooviiiiiiii e 19

4.1 Study desi@n....o.eeiiii i 19

4.2 ReSUlt. ... e 22
421 PHE. ... 22

4.2.2 The accuracy of the estimators of the standard error of

PHE. ..o, 23

423 Testof PHE.... ..o 24

S DASCUSSION. ..ttt ettt e et e e e e e e e 27

APPENAIX . .ttt e 30

Reference. ..o 34

v



LIST OF TABLES

Table 1.Genetic components of variance assuming mating........... 8
Table 2.The covariance compnonts for relative pairs....................15

Table 3.The derivative of covariance compnonts for relative pairs..17

Table 4.Parameter setting under scenario II (1)........................ 21
Table 5.Parameter setting under scenario II (2)........................ 21
Table 6.Simulation results based on scenario I (1)..................... 37
Table 7.Simulation results based on scenario I (2)..................... 38
Table 8.Simulation results based-on;scenario 1 (3)..................... 39
Table 9.Simulation results based on scenario.l (4)......................40

Table 10.Simulation results based on seenario 1l with P>E (1)...... 41
Table 11.Simulation results based on scenario II with P>E (2)...... 42
Table 12.Simulation results based on scenario II with P>E (3)...... 43
Table 13.Simulation results based on scenario II with P>E (4)...... 44
Table 14.Simulation results based on scenario II with P<E (1)...... 45
Table 15.Simulation results based on scenario II with P<E (2)...... 46
Table 16.Simulation results based on scenario II with P<E (3)...... 47

Table 17.Simulation results based on scenario II with P<E (4)...... 58



LIST OF FIGURES

Figure 1.A surrogate endpoint versus an endophenotype in the disease

PLOCESS . - vt tee ettt et ettt e e e e e e e e e e e eee e e aaaeans 49
Figure 2. Two scenarios verified in the simulation studies............. 50
Figure 3.Scenario I histogram with family 200.......................... 51
Figure 4.Scenario I histogram with family 500.......................... 52
Figure 5.Scenario I histogram with family 200 & p=0.5.............. 53
Figure 6.Scenario I histogram with family 500 & p.=0.5.............. 54
Figure 7.Scenario II histogram with family. 200 & P>E ............... 55
Figure 8.Scenario II histogram with family 500 & P>E ............... 56

Figure 9.Scenario II histogram with family 200°& P>E & p.=0.5...57
Figure 10.Scenario II histogram with family 500 & P>E & p.=0.5..58
Figure 11.Scenario II histogram with family 200 & P<E ............. 59
Figure 12.Scenario II histogram with family 500 & P<E ............. 60
Figure 13.Scenario II histogram with family 200 & P<E & p=0.5...61
Figure 14.Scenario II histogram with family 500 & P<E & p=0.5...62
Figure 15.Scenario I mean LOD-score curve with family 200........ 63
Figure 16.Scenario I mean LOD-score curve with family 500........ 64

Figure 17.Scenario I mean LOD-score curve with family 200 &
P05 65

vi



Figure 18.Scenario I mean LOD-score curve with family 500 &
Pe=0. 66

Figure 19.Scenario I mean LOD-score curve with family 200 &

Figure 21.Scenario I mean LOD-score curve with family 200 &
P>E & pe=0.5. o 69

Figure 22.Scenario I mean LOD-score curve with family 500 &
P>E & pe=0.5 oo 70

Figure 23.Scenario I mean LOD-score curve with family 200 &

Figure 25.Scenario I mean LOD-score curve with family 200 &
P<E & p=0.5. oo it 73

Figure 26.Scenario I mean LOD-score curve with family 500 &
P<E & pe=0.5. oo 74

vii



1 INTRODUCTION

In diseases with classic or Mendelian genetics as their distal causes, genotypes are usually
indicative of phenotypes. However, this degree of genetic certainty does not exist for complex
disease [Gottesman and Gould, 2003]. These “complex” diseases are influenced by multiple
genes, environmental factors and their interactions on phenotypes. It leads the direct relation-
ship between phenotype and genotype disrupted because that the same genotype may give rise
to different phenotypes or the same phenotype may have arisen from different genotypes. To
facilitate the identification of influential genetic markers of complex diseases, the endopheno-
type approach has been advocated. Other synonymies of endophenotype, such as intermediate
phenotype, biological marker, sub-clinical trait, vulnerability marker, and phenotypic uncer-
tainty, have been used interchangeably with slightly different implications. Gottesman and
Gould [2003] provided a means of endophenotyps for identifying the “downstream” traits or
facets of clinical phenotypes, as well as the “upstream’. consequences of genes, and suggested

the following five useful criteria for identification.of endephenotypes:

1. The endophenotype is associated with illness in 'the population.
2. The endophenotype is heritable.

3. The endophenotype is primarily state-independent (manifests in an individual whether

or not illness is active).
4. Within families, endophenotype and illness co-segregate.

5. The endophenotype found in affected family members is found in non-affected family

members at a higher rate than in the general population.

Hence, the endophenotype is closer to the underlying gene than the phenotype in the course
of disease’s natural history. Endophenotype-based genetic analysis is more likely to succeed
than phenotype-based one in terms of search for the susceptibility genes; nevertheless, there

are emerging needs of systematic statistical methods for endophenotype-based analysis.



On the other hand, surrogate endpoints have been frequently utilized in clinical research,
especially in chronic diseases, when the primary endpoint is costly or time-consuming to
obtain. A good deal of statistical research in the evaluation of surrogate endpoints have
been undertaken for decades. Prentice [1989] presented a landmark definition of surrogate
endpoints. Freedman et al. [1992] introduced “the proportion of treatment effect on the
primary endpoint explained” (PTE) by the surrogate to supplement Prentice’s criteria.

Conceptually, an endophenotypes is a “downstream” biomarker for detection of heritable
biological underpinning and a surrogate endpoint is an “upstream” biomarker for evaluation
of treatment effect as illustrated in Figure 1. Noticeably, the causal pathway of intervention-
surrogate endpoint-primary endpoint in surrogate analysis can be seen as an analogy of the
pathway of genotype-endophenotype-phenotype in endophenotypes-based analysis. Both en-
dophenotypes and surrogate endpoints lie in a biological pathway, but with two important
differences: (i) the endophenotype is expécted t6be closer to the upstream genotype to in-
crease the chance of identifying it, though [the surrogate endpoint intends to substitute the
downstream primary endpoint, and(ii) when the purpose of the study is to identify responsi-
ble genes for the phenotype, genotype information is usually unknown, whereas treatment in
validating a surrogate is known.

Huang et al. [2005] defined an endophenotype to be “a trait for which a test of null
hypothesis of no genetic heritability implies the corresponding null hypothesis based on the
phenotype of interest” and developed a formal statistical methodology for accessing the util-
ity of endophenotypes, motivated by the conditioning strategy used for surrogate endpoints
commonly seen in clinical research. The methodology is especially useful for the situation
where underlying genotype is unknown in that researchers use endophenotypes to increase
opportunities of finding susceptible disease genes, not to verify whether a specific gene is the
cause of disease. Similar to validating surrogate endpoints, various indices can be provided to
use to validate endophenotypes. One of the indices is the proportion of heritability explained
(PHE) by the endophenotype, similar to PT'E introduced by Freedman et al. [1992].

Several authors had pointed out the major difficulty of using PTE: the confidence interval

of PTE is generally too wide to convey any useful information. That is, the true PTE might



be anywhere from zero to well over 100% or be negative. To avoid the confidence interval
of PHE far too wide to be of practical relevance, we provided a relevant confidence interval
of PHE. Futhermore, for PHE, we perform a statistical test or to establish some criteria
for determining whether there is an endophenotye. Also, extensive simulation studies were

performed to verify the usefulness of PHE.

2 LITERATURE REVIEW

2.1 STATISTICAL VALIDATION OF SURROGATE ENDPOINTS

In most clinical researches, the primary endpoint is too difficult or costly or time-consuming
to obtain, particularly in chronic diseases. It may force the investigators to use a substitute
or “surrogate”, instead of true endpoint. Surrogate endpoints have been of clinical interest for
decades, but it was not until Prentice published a seminal paper in 1989 that formal statistical
investigation started. Prentice defined a surrogate.endpoint to be “a response variable for
which a test of null hypothesis of no relationship to the.treatment groups under comparison
is also a valid test of the corresponding null hypothesis.based on the true (clinical) endpoint”.

Prentice’s definition can be written as

FS1X)=f(8) <= F(T]X)=f(T) (1)

where T denotes the status of a primary endpoint, S denotes the status of a surrogate end-
point, X is the treatment variable, f(S) is the distribution of S, and f(S|X) is the conditional

distribution of S given X. Validation of Prentice’s definition involves the following two criteria:

F(T[8)# f(T) and f(T'|S,X)=f(T]5) (2)

[Prentice, 1989; Freedman et al., 1992; Buyse and Molenberghs, 1998]. The first criterion
states that the surrogate endpoint must be correlated with the primary clinical endpoint, and
the second criterion is that the surrogate endpoint should fully capture the treatment effect

on the primary endpoint.



The surrogate endpoint described by Prentice mediates all of the effect of treatment on
the primary endpoint, that is
X—-8—->T

A more complex, but more likely, situation arises when treatment has a direct effect on the

primary endpoint that is not mediated through the surrogate [De Gruttola et al., 2001]:

X—-5—-T
\/

Freedman et al.[1992] proposed to focus on the proportion of the treatment effect mediated
through the surrogate. A good surrogate is one that explains a large proportion of that effect.
The proposal can be made in the content of generalized linear models [McCullagh et al., 1989].
The net effect of X on T can be assessed through the regression coefficient 3, in the generalized

linear model

g (D} =ars X (3)

where g (e) is the link function connecting the mean response and covariates, and the effect of
X on T after inclusion of S is the regtession coefficient 5,4 in the following generalized linear

model

glE(T)] = ars + BrsX +v7rsS (4)

The proportion of the treatment effect (on the primary endpoint) explained (PTFE) by the
surrogate is given by

_1_ Brs
PTE = 5 (5)

T
The 100 (1 — ) % confidence limits of PT'E can be calculated using Fieller’s theorem or the
delta method [Buyse and Molenberghs, 1998]. Using Fieller’s theorem is generally preferable
the 100 (1 — &) % confidence limits of PTE [Herson, 1975].

2.2 STATISTICAL FRAMEWORK IN GENETIC EPIDEMIOLOGY

First, consider a genetic locus defined by two alleles. If we assume two allelic variants,

() and ¢ with frequencies of pg and (1 — pg) at a given quantitative-trait locus(Q7T'L), the



genotype-specific means are given by ioq = p+a, jig, = p+d, and p,, = p—a. The genotypic
mean values can be reparameterized in terms of ,u’QQ = a, u’Qq = d, and ji;, = —a, so that
the mean, 1/, is pja + 2pq (1 — pg)d+ (1 — po)” (—a) and the variance about the mean, o7,
is pg (H/QQ — u’)2 + 2po (1 —pg) (,u’Qq — ,u’)2+(1 —po)” (u;q — ,u’)2. The variance about mean
can be decomposed as

o =040, (6)

where

[\

2
o = 2pq(1—pq) [Porog + (1 —2p0) o, — (1 — po) ki, (7)

= 20 (1—po)a+d(1—2po)

is called the additive component of variance, and

o3 = {pgll Lpg) o' 2o, + 11.,]} 8)

= [2pg (1 —pg)d|

is called the dominance component of variange [Duggirala et al., 1997].
Let G; and G represent the genotype of two individuals 7 and j. In general, under Hardy-
Weinberg equilibrium and no inbreeding, the genetic covariance can be expressed as

cov (G, Gj) = 2¢ij02 + Aija?j 9)

a

where, ¢,; , the coefficient of kinship ,or coefficient of coancestry, is defined as the probability
of randomly drawing a single allele in individual ¢ that is identical by decent (ibd) to a single
allele at the same locus randomly drawn from individual j, and A;; , the fraternity coeflicient,
is defined as the probability that both alleles at a locus are shared ibd by individuals ¢ and j
[Duggirala et al.,1997].

After all, it is not very realistic. The involvement of several loci in the determination of

the trait may be considered. Assume that there are m Q7T Ls to influence the actual trait. If



the effects of single loci are independent, the covariance can be written as

cov (X;, Xj) = 2@%0124 + AUU% (10)

where X; and X represent, respectively, the actual trait of individuals ¢ and j, 04 = >",-, 02,

is the total additive genetic variance, 0%, = > /" | 0% is the total dominance genetic variance
and ¢%, and o2, , are the additive and dominance genetic variance due to the kth locus,
respectively [lachine, 2004].

Besides, to describe the residual variation of the trait when the genotype is fixed, the so-
called environmental effects may be introduced. Suppose the effects of genes and environment
are additive. Under the additional assumption of independence between genotypic effects and

environmental effects, the covariance can be written as
cov (X;, X;) = 2(%0124 4 Aija% + Var (Xg,)) (11)

where X, is environmental effect between individual 4-and individual j [Iachine, 2004].

In particular, this implies the following structure of the trait variance:
Var (X;) = 0% + 0% + Var (Xg;) (12)

where Xp; is environmental effect of individual . If we further assume, that we have the
same the environmental variance Var (Xg) and total variance o2 for all family members, the

structure of the trait variance can be written as
o? =04 + 0%+ Var (Xg) (13)

A study point for many scientists investigating disease aetiology has often been to study the
heritability of a particular trait. Formally, the heritability of a continuous trait is defined as
the proportion of its total variance (02) that is attributable to genetic factors in a particu-

lar population. Narrow-sense heritability is defined as 0% /02 and broad-sense heritability as



(0% + 0%) /o?. Usually, it is of interest to know the broad-sense heritability because its value
can be used to predict the effect of searching for genes [lachine, 2004; Burton and Tobin,
2003]. Let us decompose Var (Xg) into o2 and 0% ,where % is called the shared environ-
mental component of variance and ¢% is called the non-shared environmental component of
variance,i.e.

0?=0% + 0% +o05+ 0% (14)

In some practical problems, it is often assumed that the dominance component of variance is
negligible(i.e. 0% = 0), leading to the so-called ACE model.

As in mainstream epidemiology, many of the relevant models may helpfully be viewed as
being generalized linear mixed models [Breslow and Clayton, 1993.]. Here,we will consider the
structure of one such GLMM.

A general model with wide applicability may be written as

g (:uij) = HCIh N BT%J‘ + &5, (15)
¥ o f(lu’ijaw)
gij 2 N(07 [0124+02D+‘7%D

cov (E, &) T # K] = 205008 + DijiroDh + Nijino e

where Y; is the observed phenotype in the jth member of the ith family, y,; is the its expected
value, and f (o) denotes an error distribution which may incorporate a nuisance parameter
denoted w [Burton and Tobin, 2003]. The expected value of the phenotype is predicted via a
link function g (e) applied to a linear predictor (771‘3') comprising a baseline mean («), a vector
of observed covariates (z;;), a corresponding vector of unknown regression parameters (/) and
subject-specific random effects §;; with an appropriate covariance structure. The components
0%, 02, and o2 represent, respectively, the variances arising from polygenic additive effects,
polygenic dominance effects and shared environmental effects [Hopper, 2002]. The terms
&4 and A i denotes, respectively, the kinship coefficient and fraternity coefficient between

individuals ij and ¢k. Table 1 details the ¢;; ;, and A;; ;. values for selected relative pairs and



the total genetic variances that these imply [Burton and Tobin, 2003].

Table 1. Genetic components of variance assuming mating

Relationship o A Genetic covariance
Same person 1 o + 0%,
Parent-child : 0 $0%
Full sibling i1 304+ 30%
Half sibling £ 0 104
Monozygous twins : 1 o4 + o7,
Grandparent-grandchild ¢ 0 104
Uncle/aunt-nephew/niece ¢ 0 10%
First cousins = 0 20?4
Double first cousins Bilzs 104+ 0%,
Spoused 0 0

In many situations, the elements, Xjjx , is simply binary indicator denoting whether two
individuals live together (\;;;x = 1) or apart (\;;; = 0). However, the effect of shared envi-
ronment may be modelled in a more sophisticated manner by adding some factors related to
length of cohabitation and to time spent living apart [Hopper, 2002].

Furthermore, we are generally interested in examination of one or a few Q)T Ls at a time.
Having established the presence of genetic effects on the trait, we would like to investigate how
much of this genetic variation can be attributed to genetic variation at a specific chromosome.
That is, genetic effects are due to a specific locus and residual genetic effects. Assume that the
quantitative trait X is influenced by the genetic loci L1,Lo,44s,L,, located on this chromosome.
For example, if we are focusing on the analysis of the gth QT L,we can absorb the effects of all
of the remaining )T 'Ls in residual components of covariance. The covariance can be expressed
as

cov (X;, Xj) = Tq0ng + kg0, + 20,054 + Nijoh. + Var (Xg;) (16)



where 7, is the probability of a random allele being ibd at the gth QT'L, ks, is the probability
that both alleles at a locus are shared ibd at the qth QT L,0%. represents the residual additive
genetic variance, 0%, represents the residual dominance genetic variance, and Xp ;; is envi-
ronmental effect between individual ¢ and individual j. For any given chromosome location,
7 and ko can be estimated from genetic marker data and information on the genetic map

[Almasy and Blangero, 1998]. Similarly,it implies the following structure of the trait variance:
Var (X;) = 00y 4 05q + 0% + 0he + 04 + 0% (17)

where 0% is environmental component of variance and o7 is non-shared environmental com-
ponent of variance.

In linkage analysis, there is a tradition for using LOD-score from the null hypothesis H
of no linkage. This so-called LO D-score is defined as

L (%)
LEOD==logg =< (18)

()
where 0, is the parameter estimate corrésponding to the smaller model ( 02 , 02, , 0% , 0% be
estimated in (14) ) and @, is the parameter estimate corresponding to the larger model (o2,

0%y » 04 » Ope » Og , 0 be estimated in (17) ). Usually, the values of the LOD-score larger

than 3 are interpreted as evidence of linkage.

3 Method

3.1 MODEL

Endophenotypes are useful for theorizing about clinical phenotypes and can mark the path
between the genotype and the phenotype. Verification of existence of the pathway genotype-
endophenotype-phenotype is the key of validating endophenotypes. Analogous to Prentice’s
definition [1989] that surrogate endpoint to be “a response variable for which a test of null

hypothesis of no relationship to the treatment groups under comparison is also a valid test



of the corresponding null hypothesis based on the true (clinical) endpoint”, Huang et al.
[2005] define an endophenotype to be “a trait for which a test of null hypothesis of no genetic
heritability implies the corresponding null hypothesis based on the phenotype of interest”.
More specifically, suppose P is the phenotype of interest, F is the selected endophenotype,
and G represents an underlying genetic structure that fulfills the specified assumptions in

calculating heritability, then the proposed definition is:

F(ENG)=[f(E)= [f(P|G)=[(P). (19)

The definition has two important features [Huang et al. 2005]. First, “imply” replaces “if and
only if” statement in Prentice’s definition of surrogate endpoints in avoidance of a problematic
implication arisen in Begg and Leung [2000]. This change places endophenotype in higher
upstream of the pathway from genotype to.phenotype, instead of in the position that keeps
the same distance with genotype as with phenetype. ‘Second, genetic heritability is used as
the measure of association with an‘underlying génetic structure. Heritability represents the
proportion of variability attributable tolgenetic-factors and can be obtained in a variance
component approach [Hopper, 2002]. "This is a perfect fit to our situation since it does not
require knowledge of specific culprit genes and allows the likelihood of multiple gene influences.

The following is development of obtaining operational criteria of the proposal definition

[Huang et al. 2005]. By definition, we have

f<P|G>=/f<P,ErG>dE:/f<P|aG)f(E!G)dE (20)

By (19), since f (E | G) = f (F) ,we can obtain

f<P|G>=/f<P\E,G>f<E>dE (21)

If the condition

f(P|E,G) =[(P|E) (22)

10



holds, then
f(P\G)Z/f(P|E)f(E)dE=f(P) (23)

In pursuing a feasible approach, Huang et al. [2005] take (22) in a variance component
model as the operational criterion for proposed endophenotype definition. It then requires
heritability of phenotype becomes null, conditioning on candidate endophenotype, and implies
genetic heritability of phenotype is captured by endophenotype.

Given a phenotype of continuous measurements, significance of (22) can be judged through
the following variance component analysis for quantitative traits [Almasy and Blangero,1998

and Huang et al. 2005]:

Pij = g + ’YHEij + THZZ']' + Gl‘j + €3, (24)
e; ~ Normal (0,07)
Gy ~=Normal (0,40% + a7}, + 02])

cov (Gij, Gik) = 2¢@'j7iko—,24 7 Aij,z’k:0'2p + )\ij,ika% , JF#k

where P;; is the observed phenotype in the jth member of the ith family, E;; is his/her corre-
sponding specified endophenotye, Z;; is his/her other covariates. ¢;; is the residual error term
representing the effect of non-family factors. G;; is the random effect for the underlying genetic
structure. The components 0% , 0%, and o7 represent the variance arising from polygenic ad-
ditive effects, polygenic dominance effects and shared environmental effects, respectively. The
(broad sense) heritability of P; , conditional on E;; is

Ui—ka%
o4+ o5+ 0t +0%

h = (25)
The significance of rejecting the hypothesis h = 0 indicates the fulfillment of (22).
For a discrete phenotype of ordinal scale, the liability threshold model can be used in

(14]

the preceding variance component setting[lz)’} The model postulates the existence of an

unobserved continuous trait (i.e., liability L;;), and a set of thresholds ¢1,%s,...,tx_1 that

11



partition the liability distribution into intervals corresponding to distinct phenotypic states:

’

1, if Lz'j <t

2, ity <Ly <t
Pz-j _ < 1 7 2

K, iftK_l < Lij

\

The liability L;; is then assumed to follow the same distribution as the P,; in model (24) and
heritability can be obtained based on the liability.

The endophenotype described above mediates all of the effect of genotype on phenotype,
that is

G—-FEF—P

This situation rarely happens. A more complex;-hut more likely, situation arises when genotype

has a direct effect on phenotype that s not mediated through endophenotype:

G'=F—P
\/

If the more complex situation happens,(22)might be difficult to be satisfied in practice.
This situation arises for most diseases. Huang et al. [2005] have provided some indices to
evaluate the validation of endophenotypes. One of the important indices is the proportion of

heritability explained (PH E) by the endophenotype defined as

h
PHE=1- — (26)
hNE

where hyp is the heritability calculated from the variance component analysis (24) without
including the endophenotype E;; with any other covariates. A good endophenotype is one
that explains a large proportion of heritability, thus, the greater the PHFE value, the more

likely E;; an endophenotype.

12



3.2 ESTIMATION

Variance component analysis (24) can be performed using the SOLAR computer package
[Almasy and Blangero, 1998]. As a result, PHE (26)can be estimated, that the estimators by
of h and hy g were obtained from the results of using the SOLAR computer package. Hence, we
will focus on deriving the confidence limits of PH E or the estimator of the standard deviation

of PHE. First, we we redefine (25) as
h=nY +nY)

where

2 2
B _ 4 0 _ b
Ao toh ot +o P o4+ od o+ ok

Similarly, we redefine

P H FE being the ratio of two parameter, its confidence limits can be calculated using Fieller’s
theorem or the delta method [Buyserand: Molenbérghs, 1998]:
Method1(Fieller's theorem [Buyse and-Molenberghs,1998])

Using Fieller’s Theorem, the 100 (1 — «) % confidence limits of (1 — hl) are given by
NE

A+ A2 - BC
B

1—

where

A = thE —ZiCOU (h, hNE)
= h-hyp— Z2Cov (h(Al) + B @ hg>)
= h-hyg— 22 {C’ov (h h ® ) +Cov (hfj),hg))

+Cov (h ) + Cov (h hg))}
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B = hyp— Z>Var (hxg)
— W~ Z2Var (Y + 1))

o {Var (h(j)) Var (hg>> +2C0v (hf)’ h%))}

C = h*—ZVar(h)
= = Z2Var (B + 1))

=0 22 {Var (W) + Vr (WD) + 2000 (19 ))

and Z, is the 100 x (1 — %) percentile of the normal distribution (or, if sample numbers ,n
,were not large, of the student’s t-distribution with n-1 degrees of freedom).
Method2(delta method [Casella and Berger, 2001.])

The first-order Taylor approximations give

h h
Var (1 - — = Var
( hNE) (hNE>
1

~ Var (h) = Mh Var (hyg) — 2—"Couv (h, hxg)
hNE hNE hNE
~ Ml {Var (h ) + Var (h( )) + 2Cov (h Y h(l))}
hNE
+Mh {VCLT <h ) + Var (h ) +2Cov < 2) hg)}
-2 Mh {C’ov (hfj), h(j)) + Cov (h(l), hg))

uhNE

A
+Cov ( 5),h(j)> + Cov ( ,h( )}

We can use ﬁﬁ) + ﬁg) to estimate h in Methodl or p;, in Method2 and use ﬁf) +
ﬁg) to estimate hyp in Methodl or g, . in Method2. It is easy to estimate ES), BS),
ﬁf), and fzg)by using the SOLAR computer package. But in both Methodl and Method2,

we need Var @2)), Var (ﬁg)), Var (izf)), Var (ﬁ?), Cov (ﬁﬁ),ﬁg)), Cov (ﬁf),ﬁg)),
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Cov (ﬁfj), fzf?), Cov (ﬁfj), ﬁg)), Cov (ﬁg), ﬁi?), Cov (H(Dl), ﬁ(DQ)) to estimate the remaining
terms. Next, we will focus on deriving the estimator of the remaining terms.
Performing the above estimations involves h(:)and h%) ,where £ = 1,2, that are related

with 0%, 0%, 0% and 0%. To construct their relationship exactly, we let

hy = % (= ha)
oo tok oy
2
g
hy = D =h
2 ai—ka%—i—o%—i-a%( p)
2
hy = %e

o4+ 0% +0i+0%
hy =04 + 05+ 06+ 0%
, 1.e.
0% = hiha, 0% = hohgy ot =hshasop= (1 — hy — hy — h3) hy
In other words, we make the 1-1 transformation between h;s and 0%, 0%, 0% and 0%.

The following table shows the covariance components for relative pairs (Table 2):

Table 2. The covariance components for relative pairs

Relationship Covariance V=Covariance after transformation

Same person 0% + 0% + XoZ + 0% hihg + hohy + Ahghy + (1 — hy — hy — h3) hy
Parent-child %0?4 + /\0% %hl hg + Ahshy

Full sibling s0% + 309 + Aok, shihy + Thohy + Ahghy

Half sibling 104 + Ao Thihy + Ahghy

Monozygous twins o4+ 0% + AJQC hihg + hohy + Ahshy
Grandparent-grandchild 0% + Ao Thihg + Ahghy

Uncle/aunt-nephew/niece  10?% + A\o% thihy + Ahghy

First cousins %ai + )\JQC %h1h4 + Ahshy

Double first cousins %0?4 + %60% + A%, %hlhzl + %h2h4 + Ahshy

Spoused o2, Ahshy
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Theorem 1 Suppose two models are P;j = x;gl)ﬁ(l) + GS-) + 87%) and Py; = x;§2)5(2) + Gg-) +
5%2.) ,respectively, where 5%) ~ N (O, (J%)(t)) =N (O, (1 - hgt) — hg) — hét)) hff)) , GS) ~
N (O, (04 + 0% + 020)(t)> =N (O, hOnd + n R + hét)hff)> ,and Cov (G, Gi,) [J # k] =
(265;.,0% + Dijirod + Nijinod) = 26, 1 h VY + Ay ahy B + Ny ahy By . And By is the
observed value in the jth member of the ith family, x;; is his/her corresponding covariate

vector. Assumed R is the total number of family and there are n; members in the ith family.

Let h® = <h§t) R Rl hff)) , then we have

Cov </f;((1t) , /ﬁg:))
®\'
~ |3 ovr oW <§(t)_v<t)>
= |\ ony’ ohy’ '
oV /W*I(k) oV
RI% Rl

where

50 — ( 0,0 0.0 00 0 r(t))/,

TriTrl 5 Tr1iTr2 rl ' rn, 2 » Prng ' rny

Vr(t) =FE (Sﬁt); BY, h(t)> as giwen by Covariance after transformation in table I,
wo 20;;')2 for the i, jth and [, mth pairs
TXTr ,
o E?U EQL + 02202) for the i, jth and I, mth pairs
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80'1']'

oW ® 40— for the v, jth and I, mth pairs
and onh® 80-8h 00 Jdo; 0o
8_leajm + Uilﬁ + a—;zno—jl + Uimﬁ_fil for the v, jth and I, mth pairs

In the theorem, both S and V" are vectors which their length are [(%) + nr}, and

WT(QT is a [(%) + nr] X [(%) + nr] matrix.

Proof. See Appendix. In the procedure, we have used Generalized Estimating Equations
(GEE) method [Zeger and Liang, 1992; Amos, 1994], Taylor’s expansion and some matrix

operation [Harville, 1997]. =

. w® —
In our situation, W® | W) and 0 need to estimate. We estimate them with W® |
q
= ow® N ow® ~ o~ ~
W) and —, where W® W) and —— are combination of hy , hy , hy and hy .
onsy) onsy)

hy and hs are of our interest, so we only. focus on the derivative of covariance components,
related h; and hs., for relative pairs,sThe foelowing table shows the interested derivative of

covariance components for relative pairs (Table 3):

Table 3. The derivative of eovariance components for relative pairs

oV 9V 9V 9V

Relationship Shi ohs  Ohi  ohs
Same person 0 0 0 0
Parent-child %h4 0 % 0
Full sibling she tha 3 1
Half sibling %h4 0 i 0
Monozygous twins hy hy 1 1
Grandparent-grandchild ih4 0 i 0
Uncle/aunt-nephew/niece  1hy 0 10
First cousins %h4 0 é 0
Double first cousins ih4 %h;l i 1—16
Spoused 0 0 0 0
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Corollary 2 Based on table 3, we can express the result of theorem 1 as follow:

q q*

B (VO oW
DR A2 Gl (s W W (55“—‘775“)
ony ony
~ /

Cov (ﬁ(t) /f;(t*)>

Q

r=1

[ R ®\’ ()
~u [ OV - . e OV
y Z Ry - w (t) ( g W’) ( S e )) (t) - @)
Lr=1 9 q ahq*
[ R t / X
% Z Az(lt*) 8‘/; . W—l(t*) aW(i )W—l(t*) <§(t*) o V(t*)>
= on's only) ' '

g = 1,234 ¢=1,234 t=12 =12
aﬁ(ﬂ aﬁ;ﬂ(t*)
In our case, (ﬁ =\ =& when g =¢* ; where t = 1,2;t" =1, 2.
Ohg Oh
Corollary?2 is almost same with Theoreml in its form. But one of the advantage of Corol-

lary2 is that the time of performing the program in the computer is less than Theoreml.

Now, let two models be
Pj=ag+ypby+1uZi+ G+ e= xiﬁ”@‘” + GE}) + 55;)

and

Pj=ag+71uZij+Gij+e= 1:222)5(2) + GZ(]Q-) + Sg)

Under the same assumptions, we can apply above Theoreml or Corollary2 to compute some
needful estimators for using Fieller’s theorem or delta method. Moreover, we can obtain the
confidence limits of PHE or the estimator of deviation of PHFE to perform a statistical test

or to establish some criteria for determining whether E is an endophenotye.
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3.3 HYPOTHESIS TEST

For having more statistical meanings of PHFE, we utilize the confidence interval to get
more informations about PHE. We hope to find a value that it means there exist a useful
endophenotype when PHE value is larger than the value. That is, do one-sided confidence

interval, corresponding to such test,

Hy: PHE =a
H,: PHE > a

Under significance «, we reject Hy if the lower bound of one-sided confidence interval of PHF,
PHE — Z,_, x s.e. (@), is larger than a. However, we get the 100 (1 — «) % confidence
limits of PHE when Fieller’'s Theorem was used. So we take the lower bound of confidence
limits of 100 (1 — 2a) % as the lower bound. of, 100 (1 — «) % one-sided confidence interval.
In our following simulation, we considered seme.différent values of the cutpoint, a. Under

a=0.05, we calculated the proportion that (ﬁI\E — 1.645 x s.eﬁE) delta) 18 larger than 0,
0.25, 0.50 and 0.75 respectively, where s.eﬁE) aelta 15 the estimator of s.e. (P/Iﬁ> by using
delta method, and the proportion that‘the lower bound of 95% one-sided confidence interval
with using Fieller theorem is larger than 0, 0.25, 0.50 and 0.75 respectively. Based on different

values of the cutpoint in our simulation, we hope to construct some criteria to help us validate

useful endophenotypes.

4 SIMULATION STUDIES

4.1 STUDY DESIGN

The simulation studies evaluate the utility of the proposed index, PHE, under two different
scenarios (Figure 2). In Scenario I, the disease gene has a direct effect on phenotype and
endophenotype. Scenario II allows multiple disease genes. At the same time, we try to show
the relationship between the PHE values and the LOD-score curve. The study design is as

follows. There are five markers, each marker has five allele, each allele has population frequency

19



0.2, and they are on the same chromosome with each of the four intervals between adjacent
markers being 10 cM. The disease gene is located at the midpoint of the second interval and
has two alleles. The population frequency of most common allele was 0.9. With SIMULATE
[Ott 2002], that is a computer program originally written by Joseph Terwilliger, the loci of
the markers and the disease gene were simulated based on above description.

Our simulations assumed both endophenotype and phenotype to be continuous measure-
ments. The quantitative trait y and genes that influence it were assumed to have a linear

relation as described in Almasy and Blangero [1998]:

y=p+) m+e,

i=1

where ;o was the grand mean, 7, was the random effect of the ith disease gene, and € rep-
resented a random non-family deviation. 7, and e were assumed to be normally distributed
and uncorrelated. For these simulations, dominance effects and shared environmental effects
were not included, and therefore vdr(n;) = %; « For scenario I, each of £ (endophenotype)
and P (phenotype) was generated to have thesingle-gene contribution from G (disease gene)
simulated by SIMULATE. The non-family deviation of £ (¢g) and the non-family deviation of
P (ep) were assumed to have a correlation p.. The multiple gene effect in scenario IT included
the action of gene G'1 (disease gene) on E and P, the single-gene action of G2 on E and the
single-gene action of G3 on P.

The simulated data contained either 200 or 500 unclear families, and two sibships were
generated for each family. In scenario I, the heritability of P due to G was assumed to be
0.42, and the heritability of £ due to G allowed being 0, 0.15, 0.42 or 0.74. The correlation
between non-family deviations of £ and P, p., was 0, or 0.5. In scenario II, there are two
situations under our consideration. One is that the total heritability of P is larger than the

total heritability of E, the other is, on the contrary, the total heritability of P is smaller than
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the total heritability of . The parameter values were shown as the following tables:

Table 4. the total heritability of P > the total heritability of F

situations
the heritability of £ dueto G1 0 0.15 042 0.51 0.74 0.74 0.79
the heritability of P due to G1 0.42 0.42 042 0.42 042 042 0.42
G2 (other heritability of E) 0.3 0.25 0.12 0.04 0.05 0.08 0.02
(G3 (other heritability of P)  0.17 0.17 0.17 0.17 0.41 0.41 0.41
the total heritability of £ 0.3 0.4 052 055 0.79 0.82 0.81
the total heritability of P 0.59 0.59 0.59 0.59 0.83 0.83 0.83

Table 5. the total heritability of P < the total heritability of F

situations
the heritability of F due to G1 -~ 0/ - "0.15 :042 0.62 0.74 0.74
the heritability of P due to G1° 0.42 0.42 ©0.42 0.42 042 042
G2 (other heritability of E) 0.7770.59-0.23 023 0.08 0.21
(3 (other heritability of P) "“0:17"°0.17 0.17 0.17 0.17  0.17
the total heritability of £ 0.7 0.74 0.65 0.85 0.82 0.95
the total heritability of P 0.59 0.59 0.59 0.59 0.59  0.59

The correlation between non-family deviations of £ and P, p,., was the same as scenario I. Two
hundred replications were performed for each specified situation. For simplicity, we denote the
coordinates, (fam, h(Glg), h(Glp), h(G2g), h(G3p), p.), to express these parameters in each
situation, where fam means the numbers of family members, h(G1g) means the heritability of
E due to G1, h(G1p) means the heritability of P due to G1, h(G2g) means other heritability
of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of £ and P. We can find scenario I is a special case of scenario

ITif h(G1) = G, h(G2E) = 0, and h(G3,) = 0 in the coordinates’ expression, where G is a

single-gene (disease gene) in scenario 1.
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The computer package SOLAR (Sequential Oligogenic Linkage Analysis Routines) [Blangero
et al, 2004; Almasy and Blangero, 1998] was used. The SOLAR command “simqt]” was used
to simulate the data following two scenarios. The variance component analysis (24) was
performed using the SOLAR command “polymod”. Besides, we use the SOLAR command
“multipoint” to create the LOD-score. Before using the SOLAR command “multipoint”, we
must set chromosome information about our markers. We set 0cM, 10cM, 20cM, 30cM and
40cM as the positions of the markers in the chromosome respectively, that is, we hoped that
there is a high LOD-score peak at 15cM to find the disease gene. Also, the estimates of the
standard error of PHE was calculated by using R software. And we plot the mean LOD-score

curve according as the results from 200 replications.

4.2 Result

Table 6-9 contain results under scenatrio . Table 10-13 contain results under scenario II
with the total heritability of P > the total'heritability -of £ and Table 14-17 contain results

under scenario II with the total heritability of P < the total heritability of F.

4.2.1 PHE

Table 6 and Table 7 contain results under the ideal causal relation (scenario I). The her-
itability of P due to G was fixed. The higher the heritability of £ due to G, the lower the
heritability of P conditional on E and the closer the PHFE values to 1. No matter that we
chose the correlation between non-family deviations of £ and P is either 0 or 0.5, the trend
is still kept.

Table 10 and Table 11 show the results when there exist multiple disease genes under
scenario II with the total heritability of P > the total heritability of . When the heritability
of P due to GG1 were fixed as 0.42 and the heritability of P due to G3 were fixed as 0.17 or
0.41, the trend, that the higher the heritability of £ due to G1, the higher the PH E values,
is consistent with scenario I. Under scenario II with the total heritability of P < the total
heritability of F, Table 14 and Table 15 show a similar trend between the heritability of F

due to G1 and PHE. However, we can find these values, the heritability of P due to G3 and
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the heritability of £’ due to G2, also influence the PHE values. The higher the heritability
of P due to G3 or the heritability of £ due to G2, the lower the PHE values. Besides,
the involvement of p, = 0.5 leads the PHE values to be disrupted. That is, it reduces the

efficiency to use the PHE values for searching a useful endophenotype.

4.2.2 THE ACCURACY OF THE ESTIMAOERS OF THE STANDARD ERROR
OF PHE

To check the accuracy of the estimators of the standard error of PH E calculated according
to the delta method or the Fieller’s theorem and our provided theorem or corollary, we compare
the standard error of proportion of heritability explained by endophenotype(s.e) that was
simulated with s.e(delta) and s.e(Fieller), where s.e(delta) is the mean of estimator of s.e by
using delta method and s.e(Fieller) is the mean of the range of 95% confidence limits of PHE,
used by Fieller method, divided by 2 x 1.96. Table 6, Table 7, Table 10, Table 11, Table 14
and Table 15 contain these results under scenario I and scenario II. Let us regard the standard
error of proportion of heritability explained by endophenotype(s.e), that was simulated, as
the true standard deviation of proportion of heritability explained by endophenotype. We can
find that, when the heritability of E due forthewdisease gene is lower than the heritability of
P due to the shared gene, s.e(delta) and s.e(Fieller) tend to be overestimated. And s.e(delta)
and s.e(Fieller) tend to be underestimated when the heritability of £ due to the disease gene
is higher than the heritability of P due to the shared gene. Also, we find that the relative
error of the overestimators is larger than the relative error of the underestimators. But both
the absolute error of the overestimators and the underestimators are small. That is, these
estimators of the standard error of PH FE are closer the true standard error of PHE. However,
using these estimators calculated by either delta method or Fieller theorem don’t have too
wide confidence interval of PHE to make some statistical inferences. In other words, these

estimators can be allowed.
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4.2.3 TEST OF PHE

For using normal distribution to perform statistical tests or establish a confidence interval
of PHFE, we used Shapiro-Wilk statistic to test the normality of PH E. Table 6, Table 7, Table
10, Table 11, Table 14 and Table 15 also shows these p-values of using Shapiro-Wilk test under
scenario I and scenario II. The histograms of PHE values under different situations are shown
in Figure 3-14. Under scenario I, the normality of PHE doesn’t hold in most situations. But
the normality of PHFE holds in most situations under scenario II. In other words, although
using normal distribution is not good , it isn’t too bad. Briefly, using normal distribution can
be acceptable with a lower standard..

We first describe the information about the mean LOD-score curve under both scenario I
and scenario IT (Figure 15-26). The LOD-score in our simulation was found to be related to the
number of families and the heritability of the trait due to the common disease gene, where the
trait may be a phenotype or an endophenotype. When the heritability of the endophenotype
due to the common disease gene isdarger than 'the heritability of the phenotype due to the
common disease gene, the endopheniotype isuseful to search the disease gene. We except that
the heritability of the endophenotype’due to the common disease gene isn’t smaller than the
heritability of the phenotype due to the disease gene. These results were consistent to the
results from other papers [Almasy and Blangero, 1998; Williams et al., 1999].

Table 8 and Table 9 contain results under scenario I. At the same time, Figure 15, Figure
16, Figure 17 and Figure 18 show the mean LOD-score curve under scenario I. Based on these
figures, when the heritability of P due G was assumed to be 0.42 and the heritability of £
due to G allowed being 0 and 0.15, we find that using endophenotype to search for the disease
gene is worse than using phenotype because the mean LOD-score of P was higher than the
mean LOD-score of E. That is, we don’t hope that these are endophenotypes. On the other
hand, when the heritability of P due to G was assumed to be 0.42 and the heritability of
E due to G was assumed to be 0.74, endophenotype-based genetic analysis is more likely to
succeed than one in terms of search for the disease gene (i.e. the mean LOD-score of FE is
higher than the one of P). Besides, when the heritability of P due to G was assumed to be

0.42 and the heritability of £ due to G was assumed to be 0.42, the phenotype-based effect
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and the endophenotype-based effect are same. Altogether, when the heritability of P due to
G was assumed to be 0.42 and the heritability of £ due to G was assumed to be 0.42 or 0.74,
the endophenotype-based effect isn’t worse than the phenotype-based effect. As a result of
above descriptions about mean LOD-score curve, based on Table A3 and Table A4, we view
it endophenotype candidate if lower bound of 95% one-sided confidence interval is larger than
0.25 or 0.50. The criterion that lower bound of 95% one-sided confidence interval is larger
than 0.50 can be seen as a stronger evidence and the criterion that lower bound of 95% one-
sided confidence interval is larger than 0.25 is also a suitable frame of reference. With another
viewpoint, using two cutpoints, 0.25 and 0.50, the power, that the probability of rejecting H
when H; holds, will exceed 0.7 or 0.8 except for the situation where the heritability of P due
to G was assumed to be 0.42, the heritability of F due to G was assumed to be 0.42, p, was
assumed to be 0, and cutpoint is set as 0.50. It implies that endophenotype-based effect isn’t
worse than the phenotype-based effect. Ifiitis desired that there is a higher power such as 0.9,
0 may be an applicable cutpoint no matter jp.\was eithér 0 or 0.5. But it also leads the result
,that endophenotype-based effect is:worse than the phenotype-based effect, happen, such as
the situation where the heritability of P-due .G was assumed to be 0.42 and the heritability
of F due to G allowed being 0.15.

In scenario II, on account of disrupted PH E values with the heritability of P due to G3
and the heritability of F due to G2, the criteria under scenario I may become improper. Based
on Table 12, Table 13, Table 16 and Table 17, we downscale the standard of these criteria for
searching the endophenotype successfully. The criterion that lower bound of 95% one-sided
confidence interval is larger than 0.25 is still a suitable one. But many useful endophenotypes
will be missed. So, we find that the criterion that lower bound of 95% one-sided confidence
interval is larger than O should be seen as the criterion that search the potential candidate
of endophenotype. Furthermore, if we want to let the higher power be kept for the goal that
endophenotype-based effect isn’t worse than the phenotype-based effect, considered cutpoint
may be 0. However, if p, was assumed to be 0.5, the chosen cutpoint, 0, is not sufficient
because of the lower power.

In summary, three criteria are provided as follows. The first criterion that lower bound of
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95% one-sided confidence interval is larger than 0 is the potential evidence for searching the
endophenotype. The second criterion that lower bound of 95% one-sided confidence interval
is larger than 0.25 is the moderate evidence for searching the endophenotype. And the third
criterion that lower bound of 95% one-sided confidence interval is larger than 0.50 is the
stronger evidence for searching the endophenotype. However, you can choose some different
criteria depended on the different goals of different cases or use lower bound of 95% one-sided
confidence interval directly as the evidence for searching the endophenotype.

In another aspect, using the viewpoint of "power", we try to construct some steps to help
us determine the desired endophenotype. The process of our construction is as follows. At the
first step, check if p, is 0 because it brings different information about use of the PHE values.
If it doesn’t hold, we are careful with use of PHFE values because there is a lower power of
detecting the useful endophenotypes if p, is 0.5 even when the cutpoint is set as 0. That is, the
involvement of p, # 0 leads much uncertainty to use PHE values. Furthermore, if p. become
larger, using the PHE values may loss much useful information of the endophenotypes. In
other words, If the lower bound of 95% one-sidéd confidence interval isn’t larger than 0 when
p. is larger than 0, it doesn’t imply-that the endophenotype is helpless. If p, is 0, we will
perform the second step.

At the second step, check if the lower bound of 95% one-sided confidence interval is larger
than 0.25. If it holds, it implies two possibilities : (1) there is the single disease gene to lead
a direct effect on phenotype and endophenotype such as Scenario I and endophenotype-based
effect isn’t worse than the phenotype-based effect; (2) it implies that both the influences of
other genes on phenotype and endophenotype can be small, relative to the influences of the
shared genes on phenotype and endophenotype such as Scenario II and endophenotype-based
effect is better than the phenotype-based effect. If the lower bound of 95% one-sided confidence
interval isn’t larger than 0.25, we will proceed to perform the third step.

At the third step, check if the lower bound of 95% one-sided confidence interval is larger
than 0. If it holds, there exists two possible situations : (1) there is the single disease gene to
lead a direct effect on phenotype and endophenotype such as scenario I and endophenotype-

based effect isn’t better than the phenotype-based effect. It is out of our desire; (2) the
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influence of other genes of either phenotype or endophenotype can be large relatively to the
influence of the shared genes of either phenotype or endophenotype respectively such as sce-
nario II and endophenotype-based effect isn’t worse than the phenotype-based effect. If the
lower bound of 95% one-sided confidence interval isn’t larger than 0 when p, is 0, it means
there is a high probability that it isn’t a useful endophonotype. In sum, using three steps is

helpful to search a useful endophenotype.

5 DISCUSSION

Based on definition of an endophenotype proposed by Huang et al. [2005], we have at-
tempted to provide criteria that can be used to validate an endophenotype. Huang et al.,2005
had shown that the proposed index, PH F, is useful in validating endophenotypes. In our re-
port, we use PH FE proposed by Huang et al«12005] as the index for evaluating endophenotypes
to provide more clear informations, three critériasand three steps, through the one-sided con-
fidence interval or the statistical test. However,we can find that the more the total numbers
of family members, the more efficieriey of detectinga useful endophenotype.

As discussed in corresponding index for-validating surrogate endpoints such as PTFE, con-
fidence intervals of PT'E can be calculated using Fieller’s theorem [Buyse and Molenberghs,
1998], however, they are usually too wide to be useful. With our proposed theorem or corol-
lary, we use Fieller’s theorem or delta method to calculate confidence intervals of PHE. Our
simulation results show that the estimators of standard error of PHE values’ estimators are
near “true” standard errors of these indices’ estimators. That is, they are quite reasonable to
avoid too wide confidence interval to be useful. However, although they may be overestimated
or underestimated , they are helpful to detect the useful endophenotype easily. This is be-
cause that it tends to have a underestimator of standard error of PH F estimator for the good
endophenotype and it leads the lower bound of 95% one-sided confidence interval to be easily
larger than our set cutpoint. Otherwise, the lower bound of 95% one-sided confidence interval
tend to be smaller than our set cutpoint for the useless endophenotype. In other words, it isn’t

too serious for using these overestimated or underestimated estimators of standard error of
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PHE values’ estimators to construct a reasonable one-sided confidence interval and to search
a useful endophenotype.

Besides, our simulation results show that the multiple gene effect lowers PHE values to
lead it confused for evaluating endophenotypes. We provide three criteria and three steps to
help us understand the pattern of PH E values versus the relationship between endophenotype
and phenotype. If you aren’t interested in the relationship between PHE values and the
heritabilities caused by different genes, the second step can be omitted. However, among
three steps, we need to check that p, is 0. The SOLAR command "polygenic" can be used to
calculate p.. If p, is near 0, we can view it 0 to use three criteria and three steps safely for
searching a useful endophenotype. Furthermore, at the third step, we will face the situation
that the influence of other genes of either phenotype or endophenotype can be large relatively
to the influence of the shared genes of either phenotype or endophenotype respectively such
as Scenario II. For the influence of other’genes of phenotype or endophenotype, we can use
linkage analysis to determine which heritability-is relatively large. If the heritability of other
genes of phenotype is relatively large tothe heritability of the found disease gene of phenotype,
it means that only using an endophénotype may-be sufficient. We must to search more than
one endophenotype to capture a complete.feature of the specified phenotype. The following

model can be tried to be considered.

P=oag+vpgEl+7vyE2+715Z + G +¢,

where F1 is assumed to being a found endophenotype and E2 is assumed to being a new
or interested endophenotype. And we calculate the PHFE value, 1 — %, directly and its
lower bound of 95% one-sided confidence interval, where hgigs is the heritability calculated
from the variance component analysis (24) including the endophenotypes, F'1 and E2, with
any other covariates. To avoid to get same information or to find similar endophonotypes, we

also calculate the partial proportion of heritability explained (PP HE) by the endophenotype
defined as

hE1E2

PPHE =1 —
El
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where hg1go is the heritability calculated from the variance component analysis (24) including
the endophenotypes, F'1 and E2, with any other covariates and hg; is the heritability cal-
culated from the variance component analysis (24) without including the endophenotype E2
with any other covariates. A good and new endophenotype is one that explains a large pro-
portion of heritability given a found endophenotype E1, thus, the greater the PPH FE value,
the more likely £2 an desired endophenotype.

In the future, to make it clear for using the PH E values, especially when p, # 0, we should
simulate with p, < 0 and p, >> 0. The information of the PH E values involved with negative
p. is a loss of our report. However, the much higher p, is considered to help us understand
the efficiency of using the PHFE values to detect a useful endophenotype clearly in a bad
situation. If the power of using the PH FE values to detect useful endophenotype candidates
isn’t too low when p, is a much larger value, PH E values will be very useful index to search

a useful endophenotype to increase opportunities of finding susceptible disease genes.
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Appendix:

Let modell: P;; = x;gl)ﬁ(l) + GS-) + 51(»;) and model2: P;; = x;?)ﬁ(g) + G,(JQ») +e® where

ij
O LN (07 (a%)(t)> — N (07 (1 B hgt) B hgt) B hg)) hit))

GY ~ N (0.(0% +0h+02)") = N (0.0 + KON + )

Cov (Gij, Gar) i A K] = (204074 + Dijiro s + Nijaros)'

2¢ij,ikhgt)h4(1t) + Aij,ikhg)hz(lt) + )\ij,ikh:gt) hff)

t = 1,2

By GEE [Zeger and Liang, 1992; Amos, 1994],
R ® )\’
Xy
S (5(t),h(t)> = Z <M> Cov=! (P,) (PT — X,(,t)ﬁ(t)> =0

!/
where P, = (Pyy, -+ , Pn,.)', and x0= (x(t) S x%» .

rl

The correlation parameter A may be estimated by simultaneously solving

SB(” (B(t)7 h(t)) =0

and

where

S = ( ®,.0 ©.0 NONO)

/
- - (t) (1)
Trl Trl 9 Trl Tr2 ’ y frl trn, ’ Trnrrrnr ’
) _ 1) ot
T = Py —x,; BY.

TJ

r

[ARIS ) <S,,§t); BY. h(t)) as given by Covariance after transformation in table I,
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202?2 for the i, jth and [, mth pairs

and WT(QT =

az(lt)ag% + OEZJ%) for the ¢, jth and [, mth pairs
Since /
R (t)
oV, 1
® 1)) — Zrr ®) (qgt) _1/®
and
92 T(t)
o(n0)?
we have
S (B9, h®)
Oh®
R T @\’ -1 ®\' (t)
— Z oV: ow (S(t) _ V(t)) + oy W’l(t) _8‘/}
— Oh® Oh® " " Oh® Oh®
R [/ a®\’ : O\’ 0)
aV, L1y OW® 5] aV, 1 aV,
- Zr _ Wz~ __ ) (O y/@) Zr (N A
a Z_; (ah@) ( NTOE >(ST L) <8h<t>> v ( amw)
where
Gaij .o .
oW ® 40”% for the 7, jth and [, mth pairs
ORt?) a;}il Ojm + 04 agzm + ag;Lm o+ aim% for the 7, jth and [, mth pairs

Using Taylor’s expansion, we have

0 _

R o\’ ) ®
_ <Z (%) (_W “)%V]Zt)w <t)) (S — v0)
r=1
I -1
0 0
oh® Oh®)
R Y\’
(E ()i
r=1

According to above equation, we can obtain
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Y\’

(a%w> <4vlmawg%vlm)(yw_vw»

Oh Oh ' '

+ oV lw*l(t) _aVT(t)

®) ®

Ohy o,

a‘/;’(t*) / —1 (4% 8W(t*) —1 (4% * *
(Eﬁ?g7> —w “)j;;FTVV ) ) (8 — v

q q
>1

)\’ (t*)
—I— aV;« Wfl(t*) _a‘/;'
ontt) ont?)

q

Note that

®\' ®\' 0
oV WY (50 O) 4 (V) e (2
ony) ony ony’ ony’

r=1

;

a‘/r(t*) / —1 (4% aW(t*) —1 (4% * * a‘[/‘(t*) / —1 (4% a‘/r(t*)
— —Ww @) G W) (Sﬁt ) _ |78 )) + & w @) [ &
Onll on't onll onll

q

>

and

> )

r=1

are 1 x 1 matrices.

Besides, for simplicity, we can replace them with

R @\’ " i
Z av@) - aW(S) W (gﬁt) - ‘Z»(t)> + asz) W —‘aVZt)
=LA Ohs dhy Ohg

and

)

VN [ W\ e e VN e [ ov)
ah(t*) —w ah(t*) W <S7E - VT( )> + ah(t*) U ah(t*)
q* * * *

q q

>

r=1

)
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then

0\’
aVrt w0 WY (ggu@w)
onYy) onYy)

®\’ (t)
N oV, () oV,
ony’ ony

R (t*) .
> (avr(t*)> (Wl(t*)aw(it)) 1(t*)> (sﬁm Q(t*))
— |\ ol onll

/ -1
(t) (t")
(D) e (2
ony) onl\)
q a

Since W® and W) are symmetric matrices, Wi ®. and W ') are also symmetric ma-

trices. Above equation can be written as

B Cav O\ o)
S L2 ) w0 (8O — v, 8¢ — vy we) [
ah((;) r ro o Mr r

)\’ *
(—avzt*)> (Wl(t*)aw(i)) Wl(t*)) (gg*) _ ‘7;@*)
on'! on'!

r=1 q
* / -1
(TN e (20
on') on')
We estimate Cov (Sﬁt) VT(t),Sﬁt*) — Vr(t*)) with (Aﬁt) — ‘A/T(t)) (§ﬁt*) — Ar(t*)> , then we
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obtain
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TABLE 6. Simulation results based on scenario I (1)

No. of families hp® hi  pP h¢ PHEY s se(delta)  s.e(Fieller)s S.W — pvalue®

200 0.42 0 0 0405 -0.002 0.009 0.025 0.029 < 0.001
0.5 0473 —0.201 0.138 0.215 0.271 < 0.001
0.15 0 0.337 0.202 0.079 0.128 0.154 < 0.001

0.5 0.269 0.322 0.158 0.151 0.234 0.039

042 0 0.183 0.562 0.138 0.107 0.204 0.698
0.5 0.075 0.816 0.149 0.087 0.118 < 0.001
074 0 0.063 0875 0.125 0.084 0.094 < 0.001
0.5 0.028 0937 0.093 0.075 0.088 < 0.001

2hp=heritability of P due to G; hgy= heritability of E due to G

b p.=correlation between non-family deviations of E and P

¢h=mean of heritability of P, conditional on E
4 PH E=mean of proportion of heritability explained by endophénetype
¢s.e=standard deviation of proportion of heritability explained by endophenotype
fs.e(delta)=mean of estimator of s.e by delta method

1

¢s.e(Fieller)=mean of (53155 X the range of confidence limits of PHE) by Fieller theorem

h S W — pvalue=p value of using Shapiro-Wilk Test
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TABLE 7. Simulation results based on scenario I (2)

No. of families hp® hi  pP h¢ PHE! s.e®  s.e(delta)  s.e(Fieller)® S.W — pvalue®
500 0.42 0 0 0422 —0.0004 0.002 0.007 0.008 < 0.001
0.5 0481 —-0.173 0.071 0.117 0.122 < 0.001
0.15 0 0.339 0.189 0.042 0.074 0.076 0.001
0.5 0.282 0.331 0.081 0.084 0.088 0.282
0.42 0 0.187 0.552 0.084 0.066 0.068 0.012
0.5 0.076  0.817  0.092 0.050 0.052 0.003
074 0 0.048 0.889  0.079 0.048 0.049 < 0.001
0.5 0.017 0959  0.053 0.045 0.046 < 0.001
2hp=heritability of P due to G; hgy= heritability of E due to G

b p.=correlation between non-family deviations of E and P

¢h=mean of heritability of P, conditional on E
4 PH E=mean of proportion of heritability explained by endophénetype
¢s.e=standard deviation of proportion of heritability explained by endophenotype
fs.e(delta)=mean of estimator of s.e by delta method

1

¢s.e(Fieller)=mean of (53155 X the range of confidence limits of PHE) by Fieller theorem

h S W — pvalue=p value of using Shapiro-Wilk Test
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TABLE 8. Simulation results based on scenario I (3)

delta method

Fieller theorem

No. of families h% k% pb  D0.00° D0.25¢ DO0.50¢  D0.75¢ F0.00¢  F0.25¢  F0.50¢  F0.75
200 042 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0.0l 0.005 0 0

015 0 055 0 0 0 0.395  0.01 0.01 0.01

05 0715 0195  0.01 0 056 0115  0.01 0

042 0 099 0815 0.255 0 0.95 0.71 0.19 0

0.5 0995 098 0825  0.365 0.99  0.945 0.8 0.34

0.74 0 1 1 0.945  0.52 1 0.995 0.9 0.515

0.5 1 1 d:99 0:78 0:995  0.99 0.99  0.765

2hp=heritability of P due to G; hg= heritability of E due to-G

b

p.=correlation between non-family deviations of E and P

¢ Dx=the porportion that (]TH\E'—1.645 X S'G@E)delm ¢) is larger:than z;

d Fx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

o —

°s.e(PHE),.;;,=the estimator of s.e by delta method
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TABLE 9. Simulation results based on scenario I (4)

delta method Fieller theorem

No. of families h% k% pb  D0.00° D0.25¢ DO0.50¢  D0.75¢ F0.00¢  F0.25¢  F0.50¢  F0.75

500 0.42 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0
0.15 0 0.935 0 0 0 0.89 0 0 0
0.5 0975 0.28 0 0 0.945 0.24 0 0
042 0 1 0.985 0.26 0.005 1 0.98 0.22 0.005
0.5 1 1 0.995 0.4 1 1 0.985 0.39
074 0 1 1 1 0.74 1 1 1 0.725
0.5 1 1 1 0:97 1 1 1 0.965

2hp=heritability of P due to G; hg= heritability of E due to-G

b p.=correlation between non-family deviations of E and P
¢ Dx=the porportion that (]TH\E'—1.645 X S'G@E)delm ¢) is larger:than z;

4 Fx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than z;;

o —

°s.e(PHE),.;;,=the estimator of s.e by delta method
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TABLE 10. Simulation results based on scenario IT with P>E (1)

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)> p¢ h¢ PHE! s.e®  s.e(delta)! s.e(Fieller)! SW — pvalue®

200 0/0.42 0.3/0.17 0 0.580 —0.0009 0.0051 0.0116 0.0119 < 0.001
0.5 0.653 —0.138  0.065 0.101 0.106 < 0.001
0.15/0.42 0.25/0.17 0 0.530 0.093 0.040 0.077 0.080 0.300
0.5 0.581 —0.004  0.095 0.113 0.118 < 0.001
0.42/0.42 0.12/0.17 0 0.424 0.273 0.087 0.089 0.093 0.004
0.5 0.463 0.193 0.112 0.105 0.109 0.047
0.51/0.42 0.04/0.17 0 0.380 0.344 0.101 0.087 0.090 0.124
0.5+ 0:412 0.285 0.122 0.099 0.103 0.081
0.74/0.42 0.05/0.41 0 0.674 0.181 0.057 0.053 0.054 0.033
0.5 0.762 0.069 0.074 0.058 0.057 0.146
0.74/0.42 0.08/0.41 0. 0.682 0:174 0.069 0.053 0.053 0.777
0.5 740:769 0:057 0.072 0.057 0.057 0.020
0.79/0.42 0.08/0.41 0 0.660 0.191 0.063 0.055 0.056 0.537
0.5 0.758 0.076 0.071 0.056 0.057 0.271

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to G1;

Y h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;

¢p.=correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E

4 PHE=mean of proportion of heritability explained by endophenotype

¢s.e=standard deviation of proportion of heritability explained by endophenotype

's.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of (gz75z X the range of confidence limits of PHE) by Fieller theorem

8S.W — pvalue=p value of using Shapiro-Wilk Test
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TABLE 11. Simulation results based on scenario IT with P>E (2)

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)> p¢ h¢ PHE! s.e®  s.e(delta)! s.e(Fieller)! SW — pvalue®

500 0/0.42 0.3/0.17 0 0.595 —0.0003 0.0017 0.0039 0.0039 < 0.001
0.5 0.659 —0.127  0.038 0.058 0.059 < 0.001
0.15/0.42 0.25/0.17 0 0.539 0.091 0.025 0.046 0.046 < 0.001
0.5 0.588 —0.003 0.054 0.069 0.070 0.108
0.42/0.42 0.12/0.17 0 0.432 0.267 0.051 0.055 0.056 0.367
0.5 0471 0.202 0.068 0.063 0.064 0.186
0.51/0.42 0.04/0.17 0 0.388 0.344 0.053 0.053 0.054 0.084
0.5+ 0:418 0.287 0.073 0.060 0.061 0.170
0.74/0.42 0.05/0.41 0 0672 0.185 0.038 0.034 0.034 0.805
0.5 0.762 0.074 0.044 0.035 0.035 0.394
0.74/0.42 0.08/0.41 0. 0,681 0:175 0.038 0.033 0.034 0.495
0.5 740:770 0:067 0.044 0.035 0.035 0.206
0.79/0.42 0.08/0.41 0 0.664 0.192 0.041 0.034 0.034 0.681
0.5 0.755 0.075 0.048 0.036 0.036 0.034

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to G1;

Y h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;

¢p.=correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E

4 PHE=mean of proportion of heritability explained by endophenotype

¢s.e=standard deviation of proportion of heritability explained by endophenotype

's.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of (gz75z X the range of confidence limits of PHE) by Fieller theorem

8S.W — pvalue=p value of using Shapiro-Wilk Test
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TABLE 12. Simulation results based on scenario IT with P>E (3)

delta method

Fieller theorem

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)* p¢ D0.00¢ D0.25¢ D0.50¢ DO0.75¢ F0.00°  F0.25° F0.50° F0.75°

200 0/0.42 0.3/0.17 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.25/0.17 0 0275 0 0 0 0.2 0 0 0

0.5  0.04 0 0 0 0.02 0 0 0

0.42/0.42 0.12/0.17 0 0.9 0.09 0 0 0.85  0.065 0 0

0.5 0.585 . 0.025 0 0 0.515  0.025 0 0

0.51/0.42 0.04/0.17 0.4 095 0.35 0.0 0 0.93 0.29 0.01 0

d:5 0805 0:2 0.0 0 0.755  0.16 0.01 0

0.74/0.42 0.05/0.41 0 0945 0.01 0 0 0.925  0.01 0 0

0.5 041 0 0 0 0.38 0 0 0

0.74/0.42 0.08/0.41 0 1087 0.01 0 0 0.855  0.01 0 0

0.5 0.35 0 0 0 0.335 0 0 0

0.79/0.42 0.02/0.41 0 0925 0.01 0 0 0.91 0.01 0 0

0.5 0415 0 0 0 0.39 0 0 0

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to G1;
Y h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;
¢p.=correlation between non-family deviations of E and P;

4 Dr=the porportion that (@—1.645 X s.e@E)delm f) is larger than x;

¢ Fx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

-

's.e(PHE),,;;,=the estimator of s.e by delta method
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TABLE 13. Simulation results based on scenario IT with P>E (4)

delta method

Fieller theorem

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)* p¢ D0.00¢ D0.25¢ D0.50¢ DO0.75¢ F0.00°  F0.25° F0.50° F0.75°

500 0/0.42 0.3/0.17 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.25/0.17 0 071 0 0 0 0.665 0 0 0

0.5  0.02 0 0 0 0.015 0 0 0

0.42/0.42 0.12/0.17 0 1 0.09 0 0 1 0.085 0 0

0.5  0.905 0.03 0 0 0.885  0.03 0 0

0.51/0.42 0.04/0.17 0 1 0.53 0 0 1 0.5 0 0

0:5 | 0.985 0.24 0 0 0.985  0.22 0 0

0.74/0.42 0.05/0.41 0 1 0 0 0 1 0 0 0

o NUE 0 0 0 0.585 0 0

0.74/0.42 0.08/0.41 0 1 0 0 0 1 0 0 0

0.5  0.59 0 0 0 0.565 0 0 0

0.79/0.42 0.02/0.41 0 0995 0 0 0 0.995 0 0 0

0.5  0.67 0 0 0 0.645 0 0 0

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to G1;
Y h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;
¢p.=correlation between non-family deviations of E and P;

4 Dr=the porportion that (@—1.645 X s.e@E)delm f) is larger than x;

¢ Fx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

-

's.e(PHE),,;;,=the estimator of s.e by delta method
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TABLE 14. Simulation results based on scenario IT with P<E (1)

No. of families h(Glg)/h(G1,)* h(G2g)/h(G3,)®  p¢ h¢ PHE! s.e®  s.e(delta)! s.e(Fieller)! SW — pvalue®

200 0/0.42 0.7/0.17 0 0.582 —0.00009 0.0055 0.012 0.012 < 0.001
0.5 0.639 —0.096 0.047 0.079 0.082 < 0.001
0.15/0.42 0.59/0.17 0 0.536 0.073 0.041 0.082 0.086 < 0.001
0.5 0.613 —0.049 0.074 0.109 0.114 0.016
0.42/0.42 0.23/0.17 0 0.434 0.243 0.074 0.093 0.097 0.555
0.5 0.512 0.132 0.106 0.105 0.109 < 0.001
0.62/0.42 0.23/0.17 0 0.393 0.319 0.096 0.091 0.095 0.941
0.5 0477 0.182 0.129 0.103 0.108 < 0.001
0.74/0.42 0.08/0.17 g 0329 0.426 0.109 0.086 0.089 0.002
0.5 0408 0.294 0.136 0.097 0.101 0.070
0.74/0.42 0.21/0.17 0= .. 0.381 0.347 0.108 0.089 0.092 0.043
0.5 "0.436 0.232 0.129 0.104 0.109 0.041

2h(G1g)=heritability of E due to G1; h(G1,)= heritability of P due to GI;
Ph(G2g)=heritability of E due to G2; h(G3,)= heritability of P due to G3;
¢p.=correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E
4 PH E=mean of proportion of heritability explained by endophenotype
¢s.e=standard deviation of proportion of heritability explained by endophenotype
1

's.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of (gz75z X the range of confidence limits of PHE) by Fieller theorem

8S.W — pvalue=p value of using Shapiro-Wilk Test
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TABLE 15. Simulation results based on scenario IT with P<E (2)

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)> p¢ h¢ PHE! s.e®  s.e(delta)! s.e(Fieller)! S.W — pvalue®

500 0/0.42 0.7/0.17 0 0.589 —0.00003 0.0019 0.0043 0.0043 < 0.001
0.5 0.647 —0.091 0.028 0.046 0.046 < 0.001

0.15/0.42 0.59/0.17 0 0.553 0.069 0.025 0.047 0.048 0.170
0.5 0.616 —0.054 0.046 0.068 0.069 0.089

0.42/0.42 0.23/0.17 0 0.446 0.243 0.049 0.056 0.057 0.990
0.5 0.519 0.126 0.069 0.066 0.067 0.654

0.62/0.42 0.23/0.17 0 0405 0.313 0.058 0.056 0.057 0.249
0.5 0:483 0.177 0.074 0.064 0.065 0.932

0.74/0.42 0.08/0.17 0 0337 0.431 0.069 0.051 0.052 0.730
0.5 0.413 0.295 0.079 0.059 0.060 0.001

0.74/0.42 0.21/0.17 0. 0,388 0.340 0.065 0.056 0.056 0.980
0.5 740445 0.242 0.075 0.061 0.062 0.146

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to GI;
P h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;
¢p.=correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E
4 PH E=mean of proportion of heritability explained by endophenotype
¢s.e=standard deviation of proportion of heritability explained by endophenotype
1

's.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of (gz75z X the range of confidence limits of PHE) by Fieller theorem

8S.W — pvalue=p value of using Shapiro-Wilk Test
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TABLE 16. Simulation results based on scenario IT with P<E (3)

delta method

Fieller theorem

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)* p¢ D0.00¢ D0.25¢ D0.50¢ DO0.75¢ F0.00°  F0.25° F0.50° F0.75°

200 0/0.42 0.7/0.17 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.59/0.17 0 012 0 0 0 0.09 0 0 0

0.5 0 0 0 0 0 0 0 0

0.42/0.42 0.23/0.17 0 0845  0.015 0 0 0.75  0.015 0 0

0.5 0415 0.02 0 0 0.315  0.015 0 0

0.62/0.42 0.23/0.17 0.4 091 0.25 0 0 0.865  0.22 0 0

0:5 0585 0.03 0 0 0.545  0.03 0 0

0.74/0.42 0.08/0.17 0 097 0645 0.04 0 0.955  0.575  0.04 0

0.5 -0.805/--10225 © 0.015 0 0.775  0.23 0.01 0

0.74/0.42 0.21/0.17 0 “010:945 0295  0.005 0 0.925  0.275  0.05 0

0.5  0.67 0.12 0 0 0.61  0.085 0 0

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to G1;
Y h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;
¢p.=correlation between non-family deviations of E and P;

4 Dr=the porportion that (@—1.645 X s.e(/P-EE)delm ) is larger than z;

¢ Fx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

—

's.e(PHE),,;;,=the estimator of s.e by delta method
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TABLE 17. Simulation results based on scenario IT with P<E (4)

delta method

Fieller theorem

No. of families h(Glg)/h(G1p)* h(G2g)/h(G3p)* p¢ D0.00¢ D0.25¢ D0.50¢ DO0.75¢ F0.00°  F0.25° F0.50° F0.75°

500 0/0.42 0.7/0.17 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.59/0.17 0 0.4 0 0 0 0.32 0 0 0

0.5 0 0 0 0 0 0 0 0

0.42/0.42 0.23/0.17 0  0.99 0.03 0 0 0.99 0.02 0 0

0.5 0.575 0 0 0 0.54 0 0 0

0.62/0.42 0.23/0.17 0 1 0.32 0 0 1 0.345 0 0

0:5 0805 0 0.015 0 0 0.76 0.01 0 0

0.74/0.42 0.08/0.17 0 1 0.895 0.0 0 1 0.86 0.0 0

0.5 097 0:31 0 0 0.96 0.27 0 0

0.74/0.42 0.21/0.17 0 1 0515 0 0 1 0.47 0 0

0.5  0.93 0.075 0 0 0.9 0.075 0 0

2h(G1g)=heritability of E due to G1; h(G1p)= heritability of P due to G1;
Y h(G2g)=heritability of E due to G2; h(G3p)= heritability of P due to G3;
¢p.=correlation between non-family deviations of E and P;

d Dx=the porportion that (@—1.645 X S'e@E)delm f) is larger than x;

¢ Fx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

—

's.e(PHE),,;;,=the estimator of s.e by delta method
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Figure 1: A surrogate endpoint versus an endophenotype in the disease process
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G Gs Glp G3p
G2c G1le
G G2 Gl G3
Scenario | Scenario 1l

Figure 2: Two scenarios verified in the simulation studies: endophenotype (E), phenotype (P), underlying disease genes (G,G1,G2 and G3), random
non-family effects ( eg and ep), h(G) means the heritability of E due to G’, h(G’s) means the heritability of P due to G’, and correlation between
non-family effects (p.), where G/ may be G, G1, G2, or G3.
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Histogram of PHE (200,0,0.42,0,0,0) Histogram of PHE (200,0.15,0.42,0,0,0)
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Figure 3: Scenario I histogram with family 200 The title in each figure, (fam, h(G1g), h(G1p), h(G2E), h(G3p), p.), to express these parameters in each
situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due to
G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family
deviations of E and P.
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3 - Histagram of PHE (500,0,0.42,0,0,0) Histogram of PHE (500,0.15,0.42,0,0,0)
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Figure 4: Scenario I histogram with family 500 The title in each figure, (fam, h(G1g), h(G1p), h(G2Eg), h(G3p), p.), to express these parameters in each
situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due to
G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family
deviations of E and P.
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Histogram of PHE (200,0,0.42,0,0,0.5)
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Figure 5: Scenario I histogram with family 200 & p. = 0.5 The title in each figure, (fam, h(G1g), h(G1p), h(G2E), h(G3p), p.), to express these parameters
in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due
to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family

deviations of E and P.



Histogram of PHE (500,0,0.42,0,0,0.5)
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Figure 6: Scenario I histogram with family 500 & p. = 0.5 The title in each figure, (fam, h(G1g), h(G1p), h(G2E), h(G3p), p.), to express these parameters
in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due
to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family

deviations of E and P.



Histogram of PHE (200,0,0.42,0.3,0.17,0)
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Figure 7: Scenario IT histogram with family 200 & P>E The title in each figure, (fam, h(G1lg), h(G1lp), h(G2g), h(G3p), p.), to express these parameters
in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due
to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family
deviations of E and P.
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Figure 8: Scenario II histogram with family 500 & P>E The title in each figure, (fam, h(Glg), h(G1lp), h(G2E), h(G3p), p.), to express these parameters
in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due
to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family
deviations of E and P.
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Hiztogram of PHE (200,0,0.42,0.3,0.17,0.5)
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Figure 9: Scenario II histogram with family 200 & P>E & p, = 0.5 The title in each figure, (fam, h(Glg),h(G1lp), h(G2g), h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1lg) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of £ and P.
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Figure 10: Scenario II histogram with family 500 & P>E & p, = 0.5 The title in each figure, (fam, h(Glg), h(Glp), h(G2E), h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1lg) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of £ and P.
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Histogram of PHE (200,0,0.42,0.7,0.17,0) Histogram of PHE (200,0.15,0.42,0.598,0.17,0)

B 7 g 4
8 - E
r -
e i
i it F
N " L
(=R (=R L
Ll T T T T T 1 I ] T T T T L
-0z oo 0.E 0.4 0.8 0.8 1.0 ] oo oz 04 D& o1 1.0
FHE FHE
. Histogram of PHE (200,0.42,0.42,0.23,0.17,0) Histogram of PHE (200,0.62,0.42,0.23,0.17,0)
= — 3 - —
Ea =g
a4 iR
g_- il E’ =
2+ =
o = (=
I T T T T T 1 I ] ) T L T L
-0z oo n.E 0.4 0.6 0.8 1.0 0z o0 oz o4 0E ne 1.0
FHE FHE
Histogram of PHE (200,0.74,0.42,0.08,0.17,0) Histogram of PHE (200,0.74,0.42,0.21,0.17,0)
8 - ] B
o Z o
r )
F e P e
a5 A
o - V_l_l_ o - I |
F T T T T T 1 r T T T T T L
-0z oo 0.z 0.4 0.8 0.8 1.0 ] L] 0z o4 D& oe 1.0
FHE FHE

Figure 11: Scenario IT histogram with family 200 & P<E The title in each figure, (fam, h(G1lg), h(G1lp), h(G2g), h(G3p), p.), to express these parameters
in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due
to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family
deviations of E and P.
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Histogram of PHE (500,0,0.42,0.7,0.17,0) Histogram of PHE (500,0.15,0.42,0.598,0.17,0)
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Figure 12: Scenario IT histogram with family 500 & P<E The title in each figure, (fam, h(G1lg), h(G1lp), h(G2g), h(G3p), p.), to express these parameters
in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the heritability of P due
to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation between non-family
deviations of E and P.
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5 Histogram of PHE (200,0,0.42,0.7,0.17,0.5) Histogram of PHE {200,0.15,0.42,0.58,0.17,0.5)
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Figure 13: Scenario II histogram with family 200 & P<E & p, = 0.5 The title in each figure, (fam, h(Glg), h(Glp), h(G2E), h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of £ and P.
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Figure 14: Scenario II histogram with family 500 & P<E & p, = 0.5 The title in each figure, (fam, h(Glg), h(Glp), h(G2g), h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of £ and P.
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Figure 15: Scenario I mean LOD-score curve with family 200 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line is
LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1lg), h(G1p), h(G2E),h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. 63
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Figure 16: Scenario I mean LOD-score curve with family 500 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line is
LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1lg), h(G1p), h(G2E),h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. 64
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Figure 17: Scenario I mean LOD-score curve with family 200 & p, = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted
line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1g), h(G1p), h(G2E), h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. 65
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Figure 18: Scenario I mean LOD-score curve with family 500 & p, = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted
line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1g), h(G1p), h(G2E), h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. 66
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Figure 19: Scenario II mean LOD-score curve with family 200 & P>E , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(Glg), h(G1lp), h(G2E),h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P.
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Figure 20: Scenario II mean LOD-score curve with family 500 & P>E , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(Glg), h(G1lp), h(G2E),h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. 68
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Figure 21: Scenario II mean LOD-score curve with family 200 & P>E & p, = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1lg), h(Glp), h(G2g), h(G3p), p.),
to express these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1lp)
means the heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the
correlation between non-family deviations of £ and P.
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Figure 22: Scenario II mean LOD-score curve with family 500 & P>E & p, = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1lg), h(Glp), h(G2g), h(G3p), p.),
to express these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1lp)
means the heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the
correlation between non-family deviations of £ and P.
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Figure 23: Scenario I mean LOD-score curve with family 200 & P<E , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(Glg), h(G1lp), h(G2E),h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. -



LOD-score curve (500,0.0.42.0.7,0.17.0) LOD—-score curve (500,0.15,0.42,0.58.0.17,0)

A A
o a
[ L]
E o
2 S o2
A B
- -
= o -
g ad smmmmmmem e e T T
Ll 1 T ) 1 1 T I T T
o 1a 20 =0 40 a ] 20 a0 ao
Shromasorma Pasitianjch) Chromosome PosbonichT|
LOD—score curve (500,042,042 0.23,0.17.0) LOD—score curve (500,0.62,0.42,0.23.0.17,0)
R A i
o 2 4 3
] ] i
i . [ i
BT g - I
a4 | e . pka
W a7 : -.____“"__
o o - :
L 1 T ) T ) T Ll T ¥
o 1a 20 ] 40 a ] =0 an ao
Chromasoma Postiaonjohd) Chromosame PosHon{ofT)
LOD-score curve (500,0.74.0.42 0.08.0.17.0) LOD—-score curve (500,0.74,0.42,0.21.0.17,0)
& R LT
W o Ty
- - .- - - M - El *a
- - i
g1 .- G
A - L - b - .
W e, - o - N
(=T (=T
T T T T 1 ] T L 1 ¥
o 1a 20 =0 40 a ] =0 30 ao
Shromasorma Pasilianjch) Chromosome PosbonichT|

Figure 24: Scenario II mean LOD-score curve with family 500 & P<E, where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(Glg), h(G1lp), h(G2E),h(G3p), p.), to express
these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1p) means the
heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the correlation
between non-family deviations of F and P. -
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Figure 25: Scenario II mean LOD-score curve with family 200 & P<E & p, = 0.5, where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1lg), h(Glp), h(G2g), h(G3p), p.),
to express these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1lp)
means the heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the
correlation between non-family deviations of £ and P. -
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Figure 26: Scenario II mean LOD-score curve with family 500 & P<E & p, = 0.5, where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1lg), h(Glp), h(G2g), h(G3p), p.),
to express these parameters in each situation, where fam means the numbers of family members, h(G1g) means the heritability of E due to G1, h(G1lp)
means the heritability of P due to G1, h(G2g) means other heritability of E due to G2, h(G2g) means other heritability of P due to G3, and p, means the
correlation between non-family deviations of £ and P. 4





