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摘 要 
 

    在生物學上，穩定表現型(endophenotype)和疾病有著相同的

遺傳路徑，但穩定表現型卻比診斷上的表現型(phenotype)更為接

近其相關的基因，這也顯示穩定表現型在複雜疾病上基因研究的

重要性，在這篇報告裡，針對一個由穩定表現型所發展的指標，

即穩定表現型的遺傳解釋比例，我們透過模擬提供其相關意義，

同時，我們也提供此指標的信賴區間，藉此執行統計檢定和統計

推論，除外，透過信賴區間和模擬的結果，建構一些準則，以幫

助我們找尋有用的穩定表現型。 

 

 

關鍵字：穩定表現型；遺傳率；基因分析 
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Abstract 
 

Endophenotypes, which involve the same biological pathways as 

diseases but presumably are closer to the relevant gene action than 

diagnostic phenotypes, have emerged as an important concept in the 

genetic studies of complex diseases. In this report, we give some 

patterns about the developed index, the proportion of heritability 

explained (PHE) by the endophenotypes for validating 

endophenotypes. Besides, we provide a relevant confidence interval 

of PHE to perform a statistical test and to make some statistical 

inference. Using the relevant confidence interval of PHE, we 

construct some criteria to help us search a useful endophenotype.  
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1 INTRODUCTION

In diseases with classic or Mendelian genetics as their distal causes, genotypes are usually

indicative of phenotypes. However, this degree of genetic certainty does not exist for complex

disease [Gottesman and Gould, 2003]. These “complex” diseases are influenced by multiple

genes, environmental factors and their interactions on phenotypes. It leads the direct relation-

ship between phenotype and genotype disrupted because that the same genotype may give rise

to different phenotypes or the same phenotype may have arisen from different genotypes. To

facilitate the identification of influential genetic markers of complex diseases, the endopheno-

type approach has been advocated. Other synonymies of endophenotype, such as intermediate

phenotype, biological marker, sub-clinical trait, vulnerability marker, and phenotypic uncer-

tainty, have been used interchangeably with slightly different implications. Gottesman and

Gould [2003] provided a means of endophenotyps for identifying the “downstream” traits or

facets of clinical phenotypes, as well as the “upstream” consequences of genes, and suggested

the following five useful criteria for identification of endophenotypes:

1. The endophenotype is associated with illness in the population.

2. The endophenotype is heritable.

3. The endophenotype is primarily state-independent (manifests in an individual whether

or not illness is active).

4. Within families, endophenotype and illness co-segregate.

5. The endophenotype found in affected family members is found in non-affected family

members at a higher rate than in the general population.

Hence, the endophenotype is closer to the underlying gene than the phenotype in the course

of disease’s natural history. Endophenotype-based genetic analysis is more likely to succeed

than phenotype-based one in terms of search for the susceptibility genes; nevertheless, there

are emerging needs of systematic statistical methods for endophenotype-based analysis.
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On the other hand, surrogate endpoints have been frequently utilized in clinical research,

especially in chronic diseases, when the primary endpoint is costly or time-consuming to

obtain. A good deal of statistical research in the evaluation of surrogate endpoints have

been undertaken for decades. Prentice [1989] presented a landmark definition of surrogate

endpoints. Freedman et al. [1992] introduced “the proportion of treatment effect on the

primary endpoint explained”(PTE) by the surrogate to supplement Prentice’s criteria.

Conceptually, an endophenotypes is a “downstream” biomarker for detection of heritable

biological underpinning and a surrogate endpoint is an “upstream” biomarker for evaluation

of treatment effect as illustrated in Figure 1. Noticeably, the causal pathway of intervention-

surrogate endpoint-primary endpoint in surrogate analysis can be seen as an analogy of the

pathway of genotype-endophenotype-phenotype in endophenotypes-based analysis. Both en-

dophenotypes and surrogate endpoints lie in a biological pathway, but with two important

differences: (i) the endophenotype is expected to be closer to the upstream genotype to in-

crease the chance of identifying it, though the surrogate endpoint intends to substitute the

downstream primary endpoint, and (ii) when the purpose of the study is to identify responsi-

ble genes for the phenotype, genotype information is usually unknown, whereas treatment in

validating a surrogate is known.

Huang et al. [2005] defined an endophenotype to be “a trait for which a test of null

hypothesis of no genetic heritability implies the corresponding null hypothesis based on the

phenotype of interest” and developed a formal statistical methodology for accessing the util-

ity of endophenotypes, motivated by the conditioning strategy used for surrogate endpoints

commonly seen in clinical research. The methodology is especially useful for the situation

where underlying genotype is unknown in that researchers use endophenotypes to increase

opportunities of finding susceptible disease genes, not to verify whether a specific gene is the

cause of disease. Similar to validating surrogate endpoints, various indices can be provided to

use to validate endophenotypes. One of the indices is the proportion of heritability explained

(PHE) by the endophenotype, similar to PTE introduced by Freedman et al. [1992].

Several authors had pointed out the major difficulty of using PTE: the confidence interval

of PTE is generally too wide to convey any useful information. That is, the true PTE might
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be anywhere from zero to well over 100% or be negative. To avoid the confidence interval

of PHE far too wide to be of practical relevance, we provided a relevant confidence interval

of PHE. Futhermore, for PHE, we perform a statistical test or to establish some criteria

for determining whether there is an endophenotye. Also, extensive simulation studies were

performed to verify the usefulness of PHE.

2 LITERATURE REVIEW

2.1 STATISTICAL VALIDATION OF SURROGATE ENDPOINTS

In most clinical researches, the primary endpoint is too difficult or costly or time-consuming

to obtain, particularly in chronic diseases. It may force the investigators to use a substitute

or “surrogate”, instead of true endpoint. Surrogate endpoints have been of clinical interest for

decades, but it was not until Prentice published a seminal paper in 1989 that formal statistical

investigation started. Prentice defined a surrogate endpoint to be “a response variable for

which a test of null hypothesis of no relationship to the treatment groups under comparison

is also a valid test of the corresponding null hypothesis based on the true (clinical) endpoint”.

Prentice’s definition can be written as

f (S | X) = f (S)⇐⇒ f (T | X) = f (T ) (1)

where T denotes the status of a primary endpoint, S denotes the status of a surrogate end-

point, X is the treatment variable, f(S) is the distribution of S, and f(S|X) is the conditional

distribution of S given X. Validation of Prentice’s definition involves the following two criteria:

f (T | S) 6= f (T ) and f (T | S,X) = f (T | S) (2)

[Prentice, 1989; Freedman et al., 1992; Buyse and Molenberghs, 1998]. The first criterion

states that the surrogate endpoint must be correlated with the primary clinical endpoint, and

the second criterion is that the surrogate endpoint should fully capture the treatment effect

on the primary endpoint.
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The surrogate endpoint described by Prentice mediates all of the effect of treatment on

the primary endpoint, that is

X → S → T

A more complex, but more likely, situation arises when treatment has a direct effect on the

primary endpoint that is not mediated through the surrogate [De Gruttola et al., 2001]:

X → S → T
  

Freedman et al.[1992] proposed to focus on the proportion of the treatment effect mediated

through the surrogate. A good surrogate is one that explains a large proportion of that effect.

The proposal can be made in the content of generalized linear models [McCullagh et al., 1989].

The net effect of X on T can be assessed through the regression coefficient βT in the generalized

linear model

g [E (T )] = αT + βTX (3)

where g (•) is the link function connecting the mean response and covariates, and the effect of

X on T after inclusion of S is the regression coefficient βTS in the following generalized linear

model

g [E (T )] = αTS + βTSX + γTSS (4)

The proportion of the treatment effect (on the primary endpoint) explained (PTE) by the

surrogate is given by

PTE = 1− βTS
βT

(5)

The 100 (1− α)% confidence limits of PTE can be calculated using Fieller’s theorem or the

delta method [Buyse and Molenberghs, 1998]. Using Fieller’s theorem is generally preferable

the 100 (1− α)% confidence limits of PTE [Herson, 1975].

2.2 STATISTICAL FRAMEWORK IN GENETIC EPIDEMIOLOGY

First, consider a genetic locus defined by two alleles. If we assume two allelic variants,

Q and q with frequencies of pQ and (1− pQ) at a given quantitative-trait locus(QTL), the
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genotype-specific means are given by μQQ = μ+a, μQq = μ+d, and μqq = μ−a. The genotypic

mean values can be reparameterized in terms of μ0QQ = a, μ0Qq = d, and μ0qq = −a, so that

the mean, μ0, is p2Qa+ 2pQ (1− pQ) d+ (1− pQ)
2 (−a) and the variance about the mean, σ2g,

is p2Q
¡
μ0QQ − μ0

¢2
+ 2pQ (1− pQ)

¡
μ0Qq − μ0

¢2
+(1− pQ)

2 ¡μ0qq − μ0
¢2
. The variance about mean

can be decomposed as

σ2g = σ2a + σ2d (6)

where

σ2a = 2pQ (1− pQ)
£
pQμ

0
QQ + (1− 2pQ)μ0Qq − (1− pQ)μ

0
qq

¤2
(7)

= 2pQ (1− pQ) [a+ d (1− 2pQ)]2

is called the additive component of variance, and

σ2d =
©
pQ (1− pQ)

£
μ0QQ − 2μ0Qq + μ0qq

¤ª2
(8)

= [2pQ (1− pQ) d]

is called the dominance component of variance [Duggirala et al., 1997].

Let Gi and Gj represent the genotype of two individuals i and j. In general, under Hardy-

Weinberg equilibrium and no inbreeding, the genetic covariance can be expressed as

cov (Gi, Gj) = 2φijσ
2
a +∆ijσ

2
d (9)

where, φij , the coefficient of kinship ,or coefficient of coancestry, is defined as the probability

of randomly drawing a single allele in individual i that is identical by decent (ibd) to a single

allele at the same locus randomly drawn from individual j, and ∆ij , the fraternity coefficient,

is defined as the probability that both alleles at a locus are shared ibd by individuals i and j

[Duggirala et al.,1997].

After all, it is not very realistic. The involvement of several loci in the determination of

the trait may be considered. Assume that there are m QTLs to influence the actual trait. If

5



the effects of single loci are independent, the covariance can be written as

cov (Xi, Xj) = 2φijσ
2
A +∆ijσ

2
D (10)

where Xi andXj represent, respectively, the actual trait of individuals i and j, σ2A =
Pm

k=1 σ
2
ak

is the total additive genetic variance, σ2D =
Pm

k=1 σ
2
dk is the total dominance genetic variance

and σ2ak and σ2dk , are the additive and dominance genetic variance due to the kth locus,

respectively [Iachine, 2004].

Besides, to describe the residual variation of the trait when the genotype is fixed, the so-

called environmental effects may be introduced. Suppose the effects of genes and environment

are additive. Under the additional assumption of independence between genotypic effects and

environmental effects, the covariance can be written as

cov (Xi,Xj) = 2φijσ
2
A +∆ijσ

2
D + V ar (XE,ij) (11)

where XE,ij is environmental effect between individual i and individual j [Iachine, 2004].

In particular, this implies the following structure of the trait variance:

V ar (Xi) = σ2A + σ2D + V ar (XE,i) (12)

where XE,i is environmental effect of individual i. If we further assume, that we have the

same the environmental variance V ar (XE) and total variance σ2 for all family members, the

structure of the trait variance can be written as

σ2 = σ2A + σ2D + V ar (XE) (13)

A study point for many scientists investigating disease aetiology has often been to study the

heritability of a particular trait. Formally, the heritability of a continuous trait is defined as

the proportion of its total variance (σ2) that is attributable to genetic factors in a particu-

lar population. Narrow-sense heritability is defined as σ2A/σ
2 and broad-sense heritability as
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(σ2A + σ2D) /σ
2. Usually, it is of interest to know the broad-sense heritability because its value

can be used to predict the effect of searching for genes [Iachine, 2004; Burton and Tobin,

2003]. Let us decompose V ar (XE) into σ2C and σ2E ,where σ
2
C is called the shared environ-

mental component of variance and σ2E is called the non-shared environmental component of

variance,i.e.

σ2 = σ2A + σ2D + σ2C + σ2E (14)

In some practical problems, it is often assumed that the dominance component of variance is

negligible(i.e. σ2D = 0), leading to the so-called ACE model.

As in mainstream epidemiology, many of the relevant models may helpfully be viewed as

being generalized linear mixed models [Breslow and Clayton, 1993.]. Here,we will consider the

structure of one such GLMM.

A general model with wide applicability may be written as

g
¡
μij
¢
= ηij = α+ βTzij + ξij, (15)

Yij ∼ f
¡
μij,

¢
ξij ∼ N

¡
0,
£
σ2A + σ2D + σ2C

¤¢
cov

¡
ξij, ξik

¢
[j 6= k] = 2φij,ikσ

2
A +∆ij,ikσ

2
D + λij,ikσ

2
C

where Yij is the observed phenotype in the jth member of the ith family, μij is the its expected

value, and f (•) denotes an error distribution which may incorporate a nuisance parameter

denoted [Burton and Tobin, 2003]. The expected value of the phenotype is predicted via a

link function g (•) applied to a linear predictor
¡
ηij
¢
comprising a baseline mean (α), a vector

of observed covariates (zij), a corresponding vector of unknown regression parameters (β) and

subject-specific random effects ξij with an appropriate covariance structure. The components

σ2A, σ
2
D and σ2C represent, respectively, the variances arising from polygenic additive effects,

polygenic dominance effects and shared environmental effects [Hopper, 2002]. The terms

φij,ik and ∆ij,ik denotes, respectively, the kinship coefficient and fraternity coefficient between

individuals ij and ik. Table 1 details the φij,ik and ∆ij,ik values for selected relative pairs and
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the total genetic variances that these imply [Burton and Tobin, 2003].

Table 1. Genetic components of variance assuming mating

Relationship φ ∆ Genetic covariance

Same person 1
2

1 σ2A + σ2D

Parent-child 1
4

0 1
2
σ2A

Full sibling 1
4

1
4

1
2
σ2A +

1
4
σ2D

Half sibling 1
8

0 1
4
σ2A

Monozygous twins 1
2

1 σ2A + σ2D

Grandparent-grandchild 1
8

0 1
4
σ2A

Uncle/aunt-nephew/niece 1
8

0 1
4
σ2A

First cousins 1
16

0 1
8
σ2A

Double first cousins 1
8

1
16

1
4
σ2A +

1
16
σ2D

Spoused 0 0 0

In many situations, the elements, λij,ik , is simply binary indicator denoting whether two

individuals live together (λij,ik = 1) or apart (λij,ik = 0). However, the effect of shared envi-

ronment may be modelled in a more sophisticated manner by adding some factors related to

length of cohabitation and to time spent living apart [Hopper, 2002].

Furthermore, we are generally interested in examination of one or a few QTLs at a time.

Having established the presence of genetic effects on the trait, we would like to investigate how

much of this genetic variation can be attributed to genetic variation at a specific chromosome.

That is, genetic effects are due to a specific locus and residual genetic effects. Assume that the

quantitative trait X is influenced by the genetic loci L1,L2,¦ ¦ ¦,Lm located on this chromosome.

For example, if we are focusing on the analysis of the qth QTL,we can absorb the effects of all

of the remaining QTLs in residual components of covariance. The covariance can be expressed

as

cov (Xi,Xj) = πqσ
2
aq + k2qσ

2
dq + 2φijσ

2
A∗ +∆ijσ

2
D∗ + V ar (XE,ij) (16)
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where πq is the probability of a random allele being ibd at the qth QTL, k2q is the probability

that both alleles at a locus are shared ibd at the qth QTL,σ2A∗ represents the residual additive

genetic variance, σ2D∗ represents the residual dominance genetic variance, and XE,ij is envi-

ronmental effect between individual i and individual j. For any given chromosome location,

π and k2 can be estimated from genetic marker data and information on the genetic map

[Almasy and Blangero, 1998]. Similarly,it implies the following structure of the trait variance:

V ar (Xi) = σ2aq + σ2dq + σ2A∗ + σ2D∗ + σ2C + σ2E (17)

where σ2C is environmental component of variance and σ2E is non-shared environmental com-

ponent of variance.

In linkage analysis, there is a tradition for using LOD-score from the null hypothesis H0

of no linkage. This so-called LOD-score is defined as

LOD = − log10
L
³bθ2´

L
³bθ1´ (18)

where bθ2 is the parameter estimate corresponding to the smaller model ( σ2A , σ2D , σ2C , σ2E be
estimated in (14) ) and bθ1 is the parameter estimate corresponding to the larger model ( σ2aq ,
σ2dq , σ

2
A∗ , σ

2
D∗ , σ

2
C , σ

2
E be estimated in (17) ). Usually, the values of the LOD-score larger

than 3 are interpreted as evidence of linkage.

3 Method

3.1 MODEL

Endophenotypes are useful for theorizing about clinical phenotypes and can mark the path

between the genotype and the phenotype. Verification of existence of the pathway genotype-

endophenotype-phenotype is the key of validating endophenotypes. Analogous to Prentice’s

definition [1989] that surrogate endpoint to be “a response variable for which a test of null

hypothesis of no relationship to the treatment groups under comparison is also a valid test

9



of the corresponding null hypothesis based on the true (clinical) endpoint”, Huang et al.

[2005] define an endophenotype to be “a trait for which a test of null hypothesis of no genetic

heritability implies the corresponding null hypothesis based on the phenotype of interest”.

More specifically, suppose P is the phenotype of interest, E is the selected endophenotype,

and G represents an underlying genetic structure that fulfills the specified assumptions in

calculating heritability, then the proposed definition is:

f (E | G) = f (E)⇒ f (P | G) = f (P ) . (19)

The definition has two important features [Huang et al. 2005]. First, “imply” replaces “if and

only if” statement in Prentice’s definition of surrogate endpoints in avoidance of a problematic

implication arisen in Begg and Leung [2000]. This change places endophenotype in higher

upstream of the pathway from genotype to phenotype, instead of in the position that keeps

the same distance with genotype as with phenotype. Second, genetic heritability is used as

the measure of association with an underlying genetic structure. Heritability represents the

proportion of variability attributable to genetic factors and can be obtained in a variance

component approach [Hopper, 2002]. This is a perfect fit to our situation since it does not

require knowledge of specific culprit genes and allows the likelihood of multiple gene influences.

The following is development of obtaining operational criteria of the proposal definition

[Huang et al. 2005]. By definition, we have

f (P | G) =
Z

f (P,E | G) dE =
Z

f (P | E,G) f (E | G) dE (20)

By (19), since f (E | G) = f (E) ,we can obtain

f (P | G) =
Z

f (P | E,G) f (E) dE (21)

If the condition

f (P | E,G) = f (P | E) (22)

10



holds, then

f (P | G) =
Z

f (P | E) f (E) dE = f (P ) (23)

In pursuing a feasible approach, Huang et al. [2005] take (22) in a variance component

model as the operational criterion for proposed endophenotype definition. It then requires

heritability of phenotype becomes null, conditioning on candidate endophenotype, and implies

genetic heritability of phenotype is captured by endophenotype.

Given a phenotype of continuous measurements, significance of (22) can be judged through

the following variance component analysis for quantitative traits [Almasy and Blangero,1998

and Huang et al. 2005]:

Pij = αH + γHEij + τHZij +Gij + ij, (24)

ij ∼ Normal
¡
0, σ2R

¢
Gij ∼ Normal

¡
0,
£
σ2A + σ2D + σ2C

¤¢
cov (Gij, Gik) = 2φij,ikσ

2
A +∆ij,ikσ

2
D + λij,ikσ

2
C , j 6= k

where Pij is the observed phenotype in the jth member of the ith family, Eij is his/her corre-

sponding specified endophenotye, Zij is his/her other covariates. ij is the residual error term

representing the effect of non-family factors. Gij is the random effect for the underlying genetic

structure. The components σ2A , σ
2
D and σ2C represent the variance arising from polygenic ad-

ditive effects, polygenic dominance effects and shared environmental effects, respectively. The

(broad sense) heritability of Pij , conditional on Eij is

h =
σ2A + σ2D

σ2A + σ2D + σ2C + σ2R
(25)

The significance of rejecting the hypothesis h = 0 indicates the fulfillment of (22).

For a discrete phenotype of ordinal scale, the liability threshold model can be used in

the preceding variance component setting[13][14]. The model postulates the existence of an

unobserved continuous trait (i.e., liability Lij), and a set of thresholds t1, t2, . . . , tK−1 that

11



partition the liability distribution into intervals corresponding to distinct phenotypic states:

Pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if Lij < t1

2, if t1 < Lij < t2
...

...

K, if tK−1 < Lij

The liability Lij is then assumed to follow the same distribution as the Pij in model (24) and

heritability can be obtained based on the liability.

The endophenotype described above mediates all of the effect of genotype on phenotype,

that is

G→ E → P

This situation rarely happens. Amore complex, but more likely, situation arises when genotype

has a direct effect on phenotype that is not mediated through endophenotype:

G→ E → P
  

If the more complex situation happens, (22) might be difficult to be satisfied in practice.

This situation arises for most diseases. Huang et al. [2005] have provided some indices to

evaluate the validation of endophenotypes. One of the important indices is the proportion of

heritability explained (PHE) by the endophenotype defined as

PHE = 1− h

hNE
(26)

where hNE is the heritability calculated from the variance component analysis (24) without

including the endophenotype Eij with any other covariates. A good endophenotype is one

that explains a large proportion of heritability, thus, the greater the PHE value, the more

likely Eij an endophenotype.

12



3.2 ESTIMATION

Variance component analysis (24) can be performed using the SOLAR computer package

[Almasy and Blangero, 1998]. As a result, PHE (26)can be estimated, that the estimators by

of h and hNE were obtained from the results of using the SOLAR computer package. Hence, we

will focus on deriving the confidence limits of PHE or the estimator of the standard deviation

of PHE. First, we we redefine (25) as

h ≡ h
(1)
A + h

(1)
D

where

h
(1)
A =

σ2A
σ2A + σ2D + σ2C + σ2R

, h(1)D =
σ2D

σ2A + σ2D + σ2C + σ2R

Similarly, we redefine

hNE ≡ h
(2)
A + h

(2)
D

PHE being the ratio of two parameter, its confidence limits can be calculated using Fieller’s

theorem or the delta method [Buyse and Molenberghs, 1998]:

Method1(Fieller0s theorem [Buyse and Molenberghs,1998])

Using Fieller’s Theorem, the 100 (1− α)% confidence limits of
µ
1− h

hNE

¶
are given by

1− A±
√
A2 −BC

B

where

A = h · hNE − Z2αCov (h, hNE)

= h · hNE − Z2αCov
³
h
(1)
A + h

(1)
D , h

(2)
A + h

(2)
D

´
= h · hNE − Z2α

n
Cov

³
h
(1)
A , h

(2)
A

´
+ Cov

³
h
(1)
A , h

(2)
D

´
+Cov

³
h
(1)
D , h

(2)
A

´
+ Cov

³
h
(1)
D , h

(2)
D

´o
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B = h2NE − Z2αV ar (hNE)

= h2NE − Z2αV ar
³
h
(2)
A + h

(2)
D

´
= h2NE − Z2α

n
V ar

³
h
(2)
A

´
+ V ar

³
h
(2)
D

´
+ 2Cov

³
h
(2)
A , h

(2)
D

´o

C = h2 − Z2αV ar (h)

= h2 − Z2αV ar
³
h
(1)
A + h

(1)
D

´
= h2 − Z2α

n
V ar

³
h
(1)
A

´
+ V ar

³
h
(1)
D

´
+ 2Cov

³
h
(1)
A , h

(1)
D

´o

and Zα is the 100×
³
1− α

2

´
percentile of the normal distribution (or, if sample numbers ,n

,were not large, of the student’s t-distribution with n-1 degrees of freedom).

Method2(delta method [Casella and Berger, 2001.])

The first-order Taylor approximations give

V ar

µ
1− h

hNE

¶
= V ar

µ
h

hNE

¶
≈ 1

μ2hNE

V ar (h) +
μ2h
μ4hNE

V ar (hNE)− 2
μh
μ3hNE

Cov (h, hNE)

≈ 1

μ2hNE

n
V ar

³
h
(1)
A

´
+ V ar

³
h
(1)
D

´
+ 2Cov

³
h
(1)
A , h

(1)
D

´o
+

μ2h
μ4hNE

n
V ar

³
h
(2)
A

´
+ V ar

³
h
(2)
D

´
+ 2Cov

³
h
(2)
A , h

(2)
D

´o
−2 μh

μ3hNE

n
Cov

³
h
(1)
A , h

(2)
A

´
+ Cov

³
h
(1)
A , h

(2)
D

´
+Cov

³
h
(1)
D , h

(2)
A

´
+ Cov

³
h
(1)
D , h

(2)
D

´o

We can use ĥ
(1)
A + ĥ

(1)
D to estimate h in Method1 or μh in Method2 and use ĥ

(2)
A +

ĥ
(2)
D to estimate hNE in Method1 or μhNE

in Method2. It is easy to estimate ĥ
(1)
A , ĥ

(1)
D ,

ĥ
(2)
A , and ĥ

(2)
D by using the SOLAR computer package. But in both Method1 and Method2,

we need V ar
³
ĥ
(1)
A

´
, V ar

³
ĥ
(1)
D

´
, V ar

³
ĥ
(2)
A

´
, V ar

³
ĥ
(2)
D

´
, Cov

³
ĥ
(1)
A , ĥ

(1)
D

´
, Cov

³
ĥ
(2)
A , ĥ

(2)
D

´
,
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Cov
³
ĥ
(1)
A , ĥ

(2)
A

´
, Cov

³
ĥ
(1)
A , ĥ

(2)
D

´
, Cov

³
ĥ
(1)
D , ĥ

(2)
A

´
, Cov

³
ĥ
(1)
D , ĥ

(2)
D

´
to estimate the remaining

terms. Next, we will focus on deriving the estimator of the remaining terms.

Performing the above estimations involves h(k)A and h
(k)
D ,where k = 1, 2, that are related

with σ2A, σ
2
D, σ

2
C and σ2R. To construct their relationship exactly, we let

h1 =
σ2A

σ2A + σ2D + σ2C + σ2R
(= hA)

h2 =
σ2D

σ2A + σ2D + σ2C + σ2R
(= hD)

h3 =
σ2c

σ2A + σ2D + σ2C + σ2R

h4 = σ2A + σ2D + σ2C + σ2R

, i.e.

σ2A = h1h4, σ2D = h2h4, σ2C = h3h4, σ2R = (1− h1 − h2 − h3)h4

In other words, we make the 1-1 transformation between his and σ2A, σ
2
D, σ

2
C and σ2R.

The following table shows the covariance components for relative pairs (Table 2):

Table 2. The covariance components for relative pairs

Relationship Covariance V=Covariance after transformation

Same person σ2A + σ2D + λσ2C + σ2R h1h4 + h2h4 + λh3h4 + (1− h1 − h2 − h3)h4

Parent-child 1
2
σ2A + λσ2C

1
2
h1h4 + λh3h4

Full sibling 1
2
σ2A +

1
4
σ2D + λσ2C

1
2
h1h4 +

1
4
h2h4 + λh3h4

Half sibling 1
4
σ2A + λσ2C

1
4
h1h4 + λh3h4

Monozygous twins σ2A + σ2D + λσ2C h1h4 + h2h4 + λh3h4

Grandparent-grandchild 1
4
σ2A + λσ2C

1
4
h1h4 + λh3h4

Uncle/aunt-nephew/niece 1
4
σ2A + λσ2C

1
4
h1h4 + λh3h4

First cousins 1
8
σ2A + λσ2C

1
8
h1h4 + λh3h4

Double first cousins 1
4
σ2A +

1
16
σ2D + λσ2C

1
4
h1h4 +

1
16
h2h4 + λh3h4

Spoused λσ2C λh3h4
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Theorem 1 Suppose two models are Pij = x
0(1)
ij β(1) +G

(1)
ij + ε

(1)
ij and Pij = x

0(2)
ij β(2) +G

(2)
ij +

ε
(2)
ij ,respectively, where ε

(t)
ij ∼ N

³
0, (σ2R)

(t)
´
≡ N

³
0,
³
1− h

(t)
1 − h

(t)
2 − h

(t)
3

´
h
(t)
4

´
, G(t)

ij ∼

N
³
0, (σ2A + σ2D + σ2C)

(t)
´
≡ N

³
0, h

(t)
1 h

(t)
4 + h

(t)
2 h

(t)
4 + h

(t)
3 h

(t)
4

´
,and Cov (Gij, Gik) [j 6= k] =¡

2φij,ikσ
2
A +∆ij,ikσ

2
D + λij,ikσ

2
C

¢t ≡ 2φij,ikh(t)1 h
(t)
4 +∆ij,ikh

(t)
2 h

(t)
4 + λij,ikh

(t)
3 h

(t)
4 . And Pij is the

observed value in the jth member of the ith family, xij is his/her corresponding covariate

vector. Assumed R is the total number of family and there are ni members in the ith family.

Let h(t) =
³
h
(t)
1 , h(t)2 , h(t)3 , h(t)4

´
, then we have

Cov
³bh(t)q ,bh(t∗)q∗

´
≈

"
RX
r=1

(Ã
∂V

(t)
r

∂h
(t)
q

!0Ã
W

−1(t)∂W
(t)

∂h
(t)
q

W
−1(t)

!³bS(t)r − bV (t)
r

´
+

Ã
∂V

(t)
r

∂h
(t)
q

!0
W

−1(k)

Ã
∂V

(t)
r

∂h
(t)
q

!)#

×
"

RX
r=1

(Ã
∂V

(t)
r

∂h
(t)
q

!0
W

−1(t)
³bS(t)r − bV (t)

r

´³bS(t∗)r − bV (t∗)
r

´0
W

−1(t∗)

Ã
∂V

(t∗)
r

∂h
(t∗)
q∗

!)#

×
"

RX
i=1

(Ã
∂V

(t∗)
r

∂h
(t∗)
q∗

!0Ã
W

−1(t∗)∂W
(t∗)

∂h
(t∗)
q∗

W
−1(t∗)

!³bS(t∗)r − bV (t∗)
r

´
+

Ã
∂V

(t∗)
r

∂h
(t∗)
q∗

!0
W

−1(t∗)

Ã
∂V

(t∗)
r

∂h
(t∗)
q∗

!)#

q = 1, 2, 3, 4 q∗ = 1, 2, 3, 4 t = 1, 2 t∗ = 1, 2

where

S(t)r =
³
r
(t)
r1 r

(t)
r1 , r

(t)
r1 r

(t)
r2 , · · · , r

(t)
r1 r

(t)
rnr , · · · , r

(t)
rnrr

(t)
rnr

´0
,

r
(t)
rj = Prj − x

(t)
rj β

(t),

V (t)
r = E

³
S(t)r ; β

(t), h(t)
´
as given by Covariance after transformation in table I,

W
(t)
r×r =

⎧⎪⎨⎪⎩ 2σ
(t)2
ij for the i, jth and l,mth pairs

σ
(t)
il σ

(t)
im + σ

(t)
imσ

(t)
jl for the i, jth and l,mth pairs

,
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and
∂W (t)

∂h(t)
=

⎧⎪⎨⎪⎩
4σij

∂σij
∂h

for the i, jth and l,mth pairs
∂σil
∂h

σjm + σil
∂σjm
∂h

+
∂σim
∂h

σjl + σim
∂σjl
∂h

for the i, jth and l,mth pairs

In the theorem, both S
(t)
r and V

(t)
r are vectors which their length are

h³nr
2

´
+ nr

i
, and

W
(t)
r×r is a

h³nr
2

´
+ nr

i
×
h³nr
2

´
+ nr

i
matrix.

Proof. See Appendix. In the procedure, we have used Generalized Estimating Equations

(GEE) method [Zeger and Liang, 1992; Amos, 1994], Taylor’s expansion and some matrix

operation [Harville, 1997].

In our situation, W (t) , W (t∗) and
∂W (t)

∂h
(t)
q

need to estimate. We estimate them with cW (t) ,

cW (t∗) and
\∂W (t)

∂h
(t)
q

, where cW (t) , cW (t∗) and
\∂W (t)

∂h
(t)
q

are combination of bh1 , bh2 , bh3 and bh4 .
h1 and h2 are of our interest, so we only focus on the derivative of covariance components,

related h1 and h2., for relative pairs. The following table shows the interested derivative of

covariance components for relative pairs (Table 3):

Table 3. The derivative of covariance components for relative pairs

Relationship ∂V
∂h1

∂V
∂h2

∂ eV
∂h1

∂ eV
∂h2

Same person 0 0 0 0

Parent-child 1
2
h4 0 1

2
0

Full sibling 1
2
h4

1
4
h4

1
2

1
4

Half sibling 1
4
h4 0 1

4
0

Monozygous twins h4 h4 1 1

Grandparent-grandchild 1
4
h4 0 1

4
0

Uncle/aunt-nephew/niece 1
4
h4 0 1

4
0

First cousins 1
8
h4 0 1

8
0

Double first cousins 1
4
h4

1
16
h4

1
4

1
16

Spoused 0 0 0 0
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Corollary 2 Based on table 3, we can express the result of theorem 1 as follow:

Cov
³bh(t)q ,bh(t∗)q∗

´
≈

"
RX
r=1

(bh(t)4
Ã
∂eV (t)

r

∂h
(t)
q

!0Ã
W

−1(t)∂W
(t)

∂h
(t)
q

W
−1(t)

!³bS(t)r − bV (t)
r

´
+ bh(t)4

Ã
∂eV (t)

r

∂h
(t)
q

!0
W

−1(k)

Ã
∂eV (t)

r

∂h
(t)
q

!bh(t)4
)#

×
"

RX
r=1

(bh(t)4
Ã
∂eV (t)

r

∂h
(t)
q

!0
W

−1(t)
³bS(t)r − bV (t)

r

´³bS(t∗)r − bV (t∗)
r

´0
W

−1(t∗)

Ã
∂eV (t∗)

r

∂h
(t∗)
q∗

!bh(t∗)4

)#

×
"

RX
i=1

(bh(t∗)4

Ã
∂eV (t∗)

r

∂h
(t∗)
q∗

!0Ã
W

−1(t∗)∂W
(t∗)

∂h
(t∗)
q∗

W
−1(t∗)

!³bS(t∗)r − bV (t∗)
r

´
+ bh(t∗)4

Ã
∂eV (t∗)

r

∂h
(t∗)
q∗

!0
W

−1(t∗)

Ã
∂ eV (t∗)

r

∂h
(t∗)
q∗

!bh(t∗)4

)#

q = 1, 2, 3, 4 q∗ = 1, 2, 3, 4 t = 1, 2 t∗ = 1, 2

In our case,

Ã
∂eV (t)

r

∂h
(t)
q

!
=

Ã
∂eV (t∗)

r

∂h
(t∗)
q∗

!
when q = q∗ , where t = 1, 2; t∗ = 1, 2.

Corollary2 is almost same with Theorem1 in its form. But one of the advantage of Corol-

lary2 is that the time of performing the program in the computer is less than Theorem1.

Now, let two models be

Pij = αH + γHEij + τHZij +Gij + ≡ x
0(1)
ij β(1) +G

(1)
ij + ε

(1)
ij

and

Pij = αH + τHZij +Gij + ≡ x
0(2)
ij β(2) +G

(2)
ij + ε

(2)
ij

Under the same assumptions, we can apply above Theorem1 or Corollary2 to compute some

needful estimators for using Fieller’s theorem or delta method. Moreover, we can obtain the

confidence limits of PHE or the estimator of deviation of PHE to perform a statistical test

or to establish some criteria for determining whether E is an endophenotye.
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3.3 HYPOTHESIS TEST

For having more statistical meanings of PHE, we utilize the confidence interval to get

more informations about PHE. We hope to find a value that it means there exist a useful

endophenotype when PHE value is larger than the value. That is, do one-sided confidence

interval, corresponding to such test,

⎧⎪⎨⎪⎩ H0 : PHE = a

H1 : PHE > a

Under significance α, we reject H0 if the lower bound of one-sided confidence interval of PHE,

\PHE − Z1−α × s.e.
³
\PHE

´
, is larger than a. However, we get the 100 (1− α)% confidence

limits of PHE when Fieller’s Theorem was used. So we take the lower bound of confidence

limits of 100 (1− 2α)% as the lower bound of 100 (1− α)% one-sided confidence interval.

In our following simulation, we considered some different values of the cutpoint, a. Under

α=0.05, we calculated the proportion that (\PHE − 1.645× \s.e (PHE)delta) is larger than 0,

0.25, 0.50 and 0.75 respectively, where \s.e (PHE)delta is the estimator of s.e.
³
\PHE

´
by using

delta method, and the proportion that the lower bound of 95% one-sided confidence interval

with using Fieller theorem is larger than 0, 0.25, 0.50 and 0.75 respectively. Based on different

values of the cutpoint in our simulation, we hope to construct some criteria to help us validate

useful endophenotypes.

4 SIMULATION STUDIES

4.1 STUDY DESIGN

The simulation studies evaluate the utility of the proposed index, PHE, under two different

scenarios (Figure 2). In Scenario I, the disease gene has a direct effect on phenotype and

endophenotype. Scenario II allows multiple disease genes. At the same time, we try to show

the relationship between the PHE values and the LOD-score curve. The study design is as

follows. There are five markers, each marker has five allele, each allele has population frequency
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0.2, and they are on the same chromosome with each of the four intervals between adjacent

markers being 10 cM. The disease gene is located at the midpoint of the second interval and

has two alleles. The population frequency of most common allele was 0.9. With SIMULATE

[Ott 2002], that is a computer program originally written by Joseph Terwilliger, the loci of

the markers and the disease gene were simulated based on above description.

Our simulations assumed both endophenotype and phenotype to be continuous measure-

ments. The quantitative trait y and genes that influence it were assumed to have a linear

relation as described in Almasy and Blangero [1998]:

y = μ+
nX
i=1

ηi + ,

where μ was the grand mean, ηi was the random effect of the ith disease gene, and rep-

resented a random non-family deviation. ηi and were assumed to be normally distributed

and uncorrelated. For these simulations, dominance effects and shared environmental effects

were not included, and therefore var(ηi) = σ2Ai . For scenario I, each of E (endophenotype)

and P (phenotype) was generated to have the single-gene contribution from G (disease gene)

simulated by SIMULATE. The non-family deviation of E ( E) and the non-family deviation of

P ( P ) were assumed to have a correlation ρ . The multiple gene effect in scenario II included

the action of gene G1 (disease gene) on E and P , the single-gene action of G2 on E and the

single-gene action of G3 on P .

The simulated data contained either 200 or 500 unclear families, and two sibships were

generated for each family. In scenario I, the heritability of P due to G was assumed to be

0.42, and the heritability of E due to G allowed being 0, 0.15, 0.42 or 0.74. The correlation

between non-family deviations of E and P , ρ , was 0, or 0.5. In scenario II, there are two

situations under our consideration. One is that the total heritability of P is larger than the

total heritability of E, the other is, on the contrary, the total heritability of P is smaller than
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the total heritability of E. The parameter values were shown as the following tables:

Table 4. the total heritability of P > the total heritability of E

situations

the heritability of E due to G1 0 0.15 0.42 0.51 0.74 0.74 0.79

the heritability of P due to G1 0.42 0.42 0.42 0.42 0.42 0.42 0.42

G2 (other heritability of E) 0.3 0.25 0.12 0.04 0.05 0.08 0.02

G3 (other heritability of P ) 0.17 0.17 0.17 0.17 0.41 0.41 0.41

the total heritability of E 0.3 0.4 0.52 0.55 0.79 0.82 0.81

the total heritability of P 0.59 0.59 0.59 0.59 0.83 0.83 0.83

Table 5. the total heritability of P < the total heritability of E

situations

the heritability of E due to G1 0 0.15 0.42 0.62 0.74 0.74

the heritability of P due to G1 0.42 0.42 0.42 0.42 0.42 0.42

G2 (other heritability of E) 0.7 0.59 0.23 0.23 0.08 0.21

G3 (other heritability of P ) 0.17 0.17 0.17 0.17 0.17 0.17

the total heritability of E 0.7 0.74 0.65 0.85 0.82 0.95

the total heritability of P 0.59 0.59 0.59 0.59 0.59 0.59

The correlation between non-family deviations of E and P , ρ , was the same as scenario I. Two

hundred replications were performed for each specified situation. For simplicity, we denote the

coordinates, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters in each

situation, where fam means the numbers of family members, h(G1E) means the heritability of

E due to G1, h(G1P ) means the heritability of P due to G1, h(G2E) means other heritability

of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation

between non-family deviations of E and P . We can find scenario I is a special case of scenario

II if h(G1) = G , h(G2E) = 0 , and h(G3p) = 0 in the coordinates’ expression, where G is a

single-gene (disease gene) in scenario I.
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The computer package SOLAR (Sequential Oligogenic Linkage Analysis Routines) [Blangero

et al, 2004; Almasy and Blangero, 1998] was used. The SOLAR command “simqtl” was used

to simulate the data following two scenarios. The variance component analysis (24) was

performed using the SOLAR command “polymod”. Besides, we use the SOLAR command

“multipoint” to create the LOD-score. Before using the SOLAR command “multipoint”, we

must set chromosome information about our markers. We set 0cM, 10cM, 20cM, 30cM and

40cM as the positions of the markers in the chromosome respectively, that is, we hoped that

there is a high LOD-score peak at 15cM to find the disease gene. Also, the estimates of the

standard error of PHE was calculated by using R software. And we plot the mean LOD-score

curve according as the results from 200 replications.

4.2 Result

Table 6-9 contain results under scenario I. Table 10-13 contain results under scenario II

with the total heritability of P > the total heritability of E and Table 14-17 contain results

under scenario II with the total heritability of P < the total heritability of E.

4.2.1 PHE

Table 6 and Table 7 contain results under the ideal causal relation (scenario I). The her-

itability of P due to G was fixed. The higher the heritability of E due to G, the lower the

heritability of P conditional on E and the closer the PHE values to 1. No matter that we

chose the correlation between non-family deviations of E and P is either 0 or 0.5, the trend

is still kept.

Table 10 and Table 11 show the results when there exist multiple disease genes under

scenario II with the total heritability of P > the total heritability of E. When the heritability

of P due to G1 were fixed as 0.42 and the heritability of P due to G3 were fixed as 0.17 or

0.41, the trend, that the higher the heritability of E due to G1, the higher the PHE values,

is consistent with scenario I. Under scenario II with the total heritability of P < the total

heritability of E, Table 14 and Table 15 show a similar trend between the heritability of E

due to G1 and PHE. However, we can find these values, the heritability of P due to G3 and
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the heritability of E due to G2, also influence the PHE values. The higher the heritability

of P due to G3 or the heritability of E due to G2, the lower the PHE values. Besides,

the involvement of ρ = 0.5 leads the PHE values to be disrupted. That is, it reduces the

efficiency to use the PHE values for searching a useful endophenotype.

4.2.2 THE ACCURACY OF THE ESTIMAOERS OF THE STANDARD ERROR

OF PHE

To check the accuracy of the estimators of the standard error of PHE calculated according

to the delta method or the Fieller’s theorem and our provided theorem or corollary, we compare

the standard error of proportion of heritability explained by endophenotype(s.e) that was

simulated with s.e(delta) and s.e(Fieller), where s.e(delta) is the mean of estimator of s.e by

using delta method and s.e(Fieller) is the mean of the range of 95% confidence limits of PHE,

used by Fieller method, divided by 2 × 1.96. Table 6, Table 7, Table 10, Table 11, Table 14

and Table 15 contain these results under scenario I and scenario II. Let us regard the standard

error of proportion of heritability explained by endophenotype(s.e), that was simulated, as

the true standard deviation of proportion of heritability explained by endophenotype. We can

find that, when the heritability of E due to the disease gene is lower than the heritability of

P due to the shared gene, s.e(delta) and s.e(Fieller) tend to be overestimated. And s.e(delta)

and s.e(Fieller) tend to be underestimated when the heritability of E due to the disease gene

is higher than the heritability of P due to the shared gene. Also, we find that the relative

error of the overestimators is larger than the relative error of the underestimators. But both

the absolute error of the overestimators and the underestimators are small. That is, these

estimators of the standard error of PHE are closer the true standard error of PHE. However,

using these estimators calculated by either delta method or Fieller theorem don’t have too

wide confidence interval of PHE to make some statistical inferences. In other words, these

estimators can be allowed.
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4.2.3 TEST OF PHE

For using normal distribution to perform statistical tests or establish a confidence interval

of PHE, we used Shapiro-Wilk statistic to test the normality of PHE. Table 6, Table 7, Table

10, Table 11, Table 14 and Table 15 also shows these p-values of using Shapiro-Wilk test under

scenario I and scenario II. The histograms of PHE values under different situations are shown

in Figure 3-14. Under scenario I, the normality of PHE doesn’t hold in most situations. But

the normality of PHE holds in most situations under scenario II. In other words, although

using normal distribution is not good , it isn’t too bad. Briefly, using normal distribution can

be acceptable with a lower standard..

We first describe the information about the mean LOD-score curve under both scenario I

and scenario II (Figure 15-26). The LOD-score in our simulation was found to be related to the

number of families and the heritability of the trait due to the common disease gene, where the

trait may be a phenotype or an endophenotype. When the heritability of the endophenotype

due to the common disease gene is larger than the heritability of the phenotype due to the

common disease gene, the endophenotype is useful to search the disease gene. We except that

the heritability of the endophenotype due to the common disease gene isn’t smaller than the

heritability of the phenotype due to the disease gene. These results were consistent to the

results from other papers [Almasy and Blangero, 1998; Williams et al., 1999].

Table 8 and Table 9 contain results under scenario I. At the same time, Figure 15, Figure

16, Figure 17 and Figure 18 show the mean LOD-score curve under scenario I. Based on these

figures, when the heritability of P due G was assumed to be 0.42 and the heritability of E

due to G allowed being 0 and 0.15, we find that using endophenotype to search for the disease

gene is worse than using phenotype because the mean LOD-score of P was higher than the

mean LOD-score of E. That is, we don’t hope that these are endophenotypes. On the other

hand, when the heritability of P due to G was assumed to be 0.42 and the heritability of

E due to G was assumed to be 0.74, endophenotype-based genetic analysis is more likely to

succeed than one in terms of search for the disease gene (i.e. the mean LOD-score of E is

higher than the one of P ). Besides, when the heritability of P due to G was assumed to be

0.42 and the heritability of E due to G was assumed to be 0.42, the phenotype-based effect
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and the endophenotype-based effect are same. Altogether, when the heritability of P due to

G was assumed to be 0.42 and the heritability of E due to G was assumed to be 0.42 or 0.74,

the endophenotype-based effect isn’t worse than the phenotype-based effect. As a result of

above descriptions about mean LOD-score curve, based on Table A3 and Table A4, we view

it endophenotype candidate if lower bound of 95% one-sided confidence interval is larger than

0.25 or 0.50. The criterion that lower bound of 95% one-sided confidence interval is larger

than 0.50 can be seen as a stronger evidence and the criterion that lower bound of 95% one-

sided confidence interval is larger than 0.25 is also a suitable frame of reference. With another

viewpoint, using two cutpoints, 0.25 and 0.50, the power, that the probability of rejecting H0

when H1 holds, will exceed 0.7 or 0.8 except for the situation where the heritability of P due

to G was assumed to be 0.42, the heritability of E due to G was assumed to be 0.42, ρ was

assumed to be 0, and cutpoint is set as 0.50. It implies that endophenotype-based effect isn’t

worse than the phenotype-based effect. If it is desired that there is a higher power such as 0.9,

0 may be an applicable cutpoint no matter ρ was either 0 or 0.5. But it also leads the result

,that endophenotype-based effect is worse than the phenotype-based effect, happen, such as

the situation where the heritability of P due G was assumed to be 0.42 and the heritability

of E due to G allowed being 0.15.

In scenario II, on account of disrupted PHE values with the heritability of P due to G3

and the heritability of E due to G2, the criteria under scenario I may become improper. Based

on Table 12, Table 13, Table 16 and Table 17, we downscale the standard of these criteria for

searching the endophenotype successfully. The criterion that lower bound of 95% one-sided

confidence interval is larger than 0.25 is still a suitable one. But many useful endophenotypes

will be missed. So, we find that the criterion that lower bound of 95% one-sided confidence

interval is larger than 0 should be seen as the criterion that search the potential candidate

of endophenotype. Furthermore, if we want to let the higher power be kept for the goal that

endophenotype-based effect isn’t worse than the phenotype-based effect, considered cutpoint

may be 0. However, if ρ was assumed to be 0.5, the chosen cutpoint, 0, is not sufficient

because of the lower power.

In summary, three criteria are provided as follows. The first criterion that lower bound of
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95% one-sided confidence interval is larger than 0 is the potential evidence for searching the

endophenotype. The second criterion that lower bound of 95% one-sided confidence interval

is larger than 0.25 is the moderate evidence for searching the endophenotype. And the third

criterion that lower bound of 95% one-sided confidence interval is larger than 0.50 is the

stronger evidence for searching the endophenotype. However, you can choose some different

criteria depended on the different goals of different cases or use lower bound of 95% one-sided

confidence interval directly as the evidence for searching the endophenotype.

In another aspect, using the viewpoint of "power", we try to construct some steps to help

us determine the desired endophenotype. The process of our construction is as follows. At the

first step, check if ρ is 0 because it brings different information about use of the PHE values.

If it doesn’t hold, we are careful with use of PHE values because there is a lower power of

detecting the useful endophenotypes if ρ is 0.5 even when the cutpoint is set as 0. That is, the

involvement of ρ 6= 0 leads much uncertainty to use PHE values. Furthermore, if ρ become

larger, using the PHE values may loss much useful information of the endophenotypes. In

other words, If the lower bound of 95% one-sided confidence interval isn’t larger than 0 when

ρ is larger than 0, it doesn’t imply that the endophenotype is helpless. If ρ is 0, we will

perform the second step.

At the second step, check if the lower bound of 95% one-sided confidence interval is larger

than 0.25. If it holds, it implies two possibilities : (1) there is the single disease gene to lead

a direct effect on phenotype and endophenotype such as Scenario I and endophenotype-based

effect isn’t worse than the phenotype-based effect; (2) it implies that both the influences of

other genes on phenotype and endophenotype can be small, relative to the influences of the

shared genes on phenotype and endophenotype such as Scenario II and endophenotype-based

effect is better than the phenotype-based effect. If the lower bound of 95% one-sided confidence

interval isn’t larger than 0.25, we will proceed to perform the third step.

At the third step, check if the lower bound of 95% one-sided confidence interval is larger

than 0. If it holds, there exists two possible situations : (1) there is the single disease gene to

lead a direct effect on phenotype and endophenotype such as scenario I and endophenotype-

based effect isn’t better than the phenotype-based effect. It is out of our desire; (2) the
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influence of other genes of either phenotype or endophenotype can be large relatively to the

influence of the shared genes of either phenotype or endophenotype respectively such as sce-

nario II and endophenotype-based effect isn’t worse than the phenotype-based effect. If the

lower bound of 95% one-sided confidence interval isn’t larger than 0 when ρ is 0, it means

there is a high probability that it isn’t a useful endophonotype. In sum, using three steps is

helpful to search a useful endophenotype.

5 DISCUSSION

Based on definition of an endophenotype proposed by Huang et al. [2005], we have at-

tempted to provide criteria that can be used to validate an endophenotype. Huang et al.,2005

had shown that the proposed index, PHE, is useful in validating endophenotypes. In our re-

port, we use PHE proposed by Huang et al. [2005] as the index for evaluating endophenotypes

to provide more clear informations, three criteria and three steps, through the one-sided con-

fidence interval or the statistical test. However, we can find that the more the total numbers

of family members, the more efficiency of detecting a useful endophenotype.

As discussed in corresponding index for validating surrogate endpoints such as PTE, con-

fidence intervals of PTE can be calculated using Fieller’s theorem [Buyse and Molenberghs,

1998], however, they are usually too wide to be useful. With our proposed theorem or corol-

lary, we use Fieller’s theorem or delta method to calculate confidence intervals of PHE. Our

simulation results show that the estimators of standard error of PHE values’ estimators are

near “true” standard errors of these indices’ estimators. That is, they are quite reasonable to

avoid too wide confidence interval to be useful. However, although they may be overestimated

or underestimated , they are helpful to detect the useful endophenotype easily. This is be-

cause that it tends to have a underestimator of standard error of PHE estimator for the good

endophenotype and it leads the lower bound of 95% one-sided confidence interval to be easily

larger than our set cutpoint. Otherwise, the lower bound of 95% one-sided confidence interval

tend to be smaller than our set cutpoint for the useless endophenotype. In other words, it isn’t

too serious for using these overestimated or underestimated estimators of standard error of
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PHE values’ estimators to construct a reasonable one-sided confidence interval and to search

a useful endophenotype.

Besides, our simulation results show that the multiple gene effect lowers PHE values to

lead it confused for evaluating endophenotypes. We provide three criteria and three steps to

help us understand the pattern of PHE values versus the relationship between endophenotype

and phenotype. If you aren’t interested in the relationship between PHE values and the

heritabilities caused by different genes, the second step can be omitted. However, among

three steps, we need to check that ρ is 0. The SOLAR command "polygenic" can be used to

calculate ρ . If ρ is near 0, we can view it 0 to use three criteria and three steps safely for

searching a useful endophenotype. Furthermore, at the third step, we will face the situation

that the influence of other genes of either phenotype or endophenotype can be large relatively

to the influence of the shared genes of either phenotype or endophenotype respectively such

as Scenario II. For the influence of other genes of phenotype or endophenotype, we can use

linkage analysis to determine which heritability is relatively large. If the heritability of other

genes of phenotype is relatively large to the heritability of the found disease gene of phenotype,

it means that only using an endophenotype may be sufficient. We must to search more than

one endophenotype to capture a complete feature of the specified phenotype. The following

model can be tried to be considered.

P = αH + γ1HE1 + γ2HE2 + τHZ +G+ ,

where E1 is assumed to being a found endophenotype and E2 is assumed to being a new

or interested endophenotype. And we calculate the PHE value, 1 − hE1E2
hNE

, directly and its

lower bound of 95% one-sided confidence interval, where hE1E2 is the heritability calculated

from the variance component analysis (24) including the endophenotypes, E1 and E2, with

any other covariates. To avoid to get same information or to find similar endophonotypes, we

also calculate the partial proportion of heritability explained (PPHE) by the endophenotype

defined as

PPHE = 1− hE1E2
hE1
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where hE1E2 is the heritability calculated from the variance component analysis (24) including

the endophenotypes, E1 and E2, with any other covariates and hE1 is the heritability cal-

culated from the variance component analysis (24) without including the endophenotype E2

with any other covariates. A good and new endophenotype is one that explains a large pro-

portion of heritability given a found endophenotype E1, thus, the greater the PPHE value,

the more likely E2 an desired endophenotype.

In the future, to make it clear for using the PHE values, especially when ρ 6= 0, we should

simulate with ρ < 0 and ρ >> 0. The information of the PHE values involved with negative

ρ is a loss of our report. However, the much higher ρ is considered to help us understand

the efficiency of using the PHE values to detect a useful endophenotype clearly in a bad

situation. If the power of using the PHE values to detect useful endophenotype candidates

isn’t too low when ρ is a much larger value, PHE values will be very useful index to search

a useful endophenotype to increase opportunities of finding susceptible disease genes.
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Since W (t) and W (t∗) are symmetric matrices, W
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−1(t∗) are also symmetric ma-

trices. Above equation can be written as
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TABLE 6. Simulation results based on scenario I (1)

No. of families hP
a haE ρb hc PHEd s.ee s.e(delta)f s.e(Fieller)g S.W − pvalueh

200 0.42 0 0 0.405 −0.002 0.009 0.025 0.029 < 0.001

0.5 0.473 −0.201 0.138 0.215 0.271 < 0.001

0.15 0 0.337 0.202 0.079 0.128 0.154 < 0.001

0.5 0.269 0.322 0.158 0.151 0.234 0.039

0.42 0 0.183 0.562 0.138 0.107 0.204 0.698

0.5 0.075 0.816 0.149 0.087 0.118 < 0.001

0.74 0 0.053 0.875 0.125 0.084 0.094 < 0.001

0.5 0.028 0.937 0.093 0.075 0.088 < 0.001

ahP=heritability of P due to G; hE= heritability of E due to G

bρ =correlation between non-family deviations of E and P

ch=mean of heritability of P, conditional on E

dPHE=mean of proportion of heritability explained by endophenotype

es.e=standard deviation of proportion of heritability explained by endophenotype

fs.e(delta)=mean of estimator of s.e by delta method

gs.e(Fieller)=mean of ( 1
2×1.96× the range of confidence limits of PHE) by Fieller theorem

hS.W − pvalue=p value of using Shapiro-Wilk Test

37



TABLE 7. Simulation results based on scenario I (2)

No. of families hP
a haE ρb hc PHEd s.ee s.e(delta)f s.e(Fieller)g S.W − pvalueh

500 0.42 0 0 0.422 −0.0004 0.002 0.007 0.008 < 0.001

0.5 0.481 −0.173 0.071 0.117 0.122 < 0.001

0.15 0 0.339 0.189 0.042 0.074 0.076 0.001

0.5 0.282 0.331 0.081 0.084 0.088 0.282

0.42 0 0.187 0.552 0.084 0.066 0.068 0.012

0.5 0.076 0.817 0.092 0.050 0.052 0.003

0.74 0 0.048 0.889 0.079 0.048 0.049 < 0.001

0.5 0.017 0.959 0.053 0.045 0.046 < 0.001

ahP=heritability of P due to G; hE= heritability of E due to G

bρ =correlation between non-family deviations of E and P

ch=mean of heritability of P, conditional on E

dPHE=mean of proportion of heritability explained by endophenotype

es.e=standard deviation of proportion of heritability explained by endophenotype

fs.e(delta)=mean of estimator of s.e by delta method

gs.e(Fieller)=mean of ( 1
2×1.96× the range of confidence limits of PHE) by Fieller theorem

hS.W − pvalue=p value of using Shapiro-Wilk Test
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TABLE 8. Simulation results based on scenario I (3)

delta method Fieller theorem

No. of families haP haE ρb D0.00c D0.25c D0.50c D0.75c F0.00d F0.25d F0.50d F0.75d

200 0.42 0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0.01 0.005 0 0

0.15 0 0.55 0 0 0 0.395 0.01 0.01 0.01

0.5 0.715 0.195 0.01 0 0.56 0.115 0.01 0

0.42 0 0.99 0.815 0.255 0 0.95 0.71 0.19 0

0.5 0.995 0.98 0.825 0.365 0.99 0.945 0.8 0.34

0.74 0 1 1 0.945 0.52 1 0.995 0.9 0.515

0.5 1 1 0.99 0.78 0.995 0.99 0.99 0.765

ahP=heritability of P due to G; hE= heritability of E due to G

bρ =correlation between non-family deviations of E and P

cDx=the porportion that (\PHE-1.645 × \s.e(PHE)delta
e) is larger than x;

dFx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

e \s.e(PHE)delta=the estimator of s.e by delta method
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TABLE 9. Simulation results based on scenario I (4)

delta method Fieller theorem

No. of families haP haE ρb D0.00c D0.25c D0.50c D0.75c F0.00d F0.25d F0.50d F0.75d

500 0.42 0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.15 0 0.935 0 0 0 0.89 0 0 0

0.5 0.975 0.28 0 0 0.945 0.24 0 0

0.42 0 1 0.985 0.26 0.005 1 0.98 0.22 0.005

0.5 1 1 0.995 0.4 1 1 0.985 0.39

0.74 0 1 1 1 0.74 1 1 1 0.725

0.5 1 1 1 0.97 1 1 1 0.965

ahP=heritability of P due to G; hE= heritability of E due to G

bρ =correlation between non-family deviations of E and P

cDx=the porportion that (\PHE-1.645 × \s.e(PHE)delta
e) is larger than x;

dFx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;;

e \s.e(PHE)delta=the estimator of s.e by delta method
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TABLE 10. Simulation results based on scenario II with P>E (1)

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc hc PHEd s.ee s.e(delta)f s.e(Fieller)f S.W − pvalueg

200 0/0.42 0.3/0.17 0 0.580 −0.0009 0.0051 0.0116 0.0119 < 0.001

0.5 0.653 −0.138 0.065 0.101 0.106 < 0.001

0.15/0.42 0.25/0.17 0 0.530 0.093 0.040 0.077 0.080 0.300

0.5 0.581 −0.004 0.095 0.113 0.118 < 0.001

0.42/0.42 0.12/0.17 0 0.424 0.273 0.087 0.089 0.093 0.004

0.5 0.463 0.193 0.112 0.105 0.109 0.047

0.51/0.42 0.04/0.17 0 0.380 0.344 0.101 0.087 0.090 0.124

0.5 0.412 0.285 0.122 0.099 0.103 0.081

0.74/0.42 0.05/0.41 0 0.674 0.181 0.057 0.053 0.054 0.033

0.5 0.762 0.069 0.074 0.058 0.057 0.146

0.74/0.42 0.08/0.41 0 0.682 0.174 0.069 0.053 0.053 0.777

0.5 0.769 0.057 0.072 0.057 0.057 0.020

0.79/0.42 0.08/0.41 0 0.660 0.191 0.063 0.055 0.056 0.537

0.5 0.758 0.076 0.071 0.056 0.057 0.271

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E

dPHE=mean of proportion of heritability explained by endophenotype

es.e=standard deviation of proportion of heritability explained by endophenotype

fs.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of ( 1
2×1.96× the range of confidence limits of PHE) by Fieller theorem

gS.W − pvalue=p value of using Shapiro-Wilk Test
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TABLE 11. Simulation results based on scenario II with P>E (2)

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc hc PHEd s.ee s.e(delta)f s.e(Fieller)f S.W − pvalueg

500 0/0.42 0.3/0.17 0 0.595 −0.0003 0.0017 0.0039 0.0039 < 0.001

0.5 0.659 −0.127 0.038 0.058 0.059 < 0.001

0.15/0.42 0.25/0.17 0 0.539 0.091 0.025 0.046 0.046 < 0.001

0.5 0.588 −0.003 0.054 0.069 0.070 0.108

0.42/0.42 0.12/0.17 0 0.432 0.267 0.051 0.055 0.056 0.367

0.5 0.471 0.202 0.068 0.063 0.064 0.186

0.51/0.42 0.04/0.17 0 0.388 0.344 0.053 0.053 0.054 0.084

0.5 0.418 0.287 0.073 0.060 0.061 0.170

0.74/0.42 0.05/0.41 0 0.672 0.185 0.038 0.034 0.034 0.805

0.5 0.762 0.074 0.044 0.035 0.035 0.394

0.74/0.42 0.08/0.41 0 0.681 0.175 0.038 0.033 0.034 0.495

0.5 0.770 0.067 0.044 0.035 0.035 0.206

0.79/0.42 0.08/0.41 0 0.664 0.192 0.041 0.034 0.034 0.681

0.5 0.755 0.075 0.048 0.036 0.036 0.034

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E

dPHE=mean of proportion of heritability explained by endophenotype

es.e=standard deviation of proportion of heritability explained by endophenotype

fs.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of ( 1
2×1.96× the range of confidence limits of PHE) by Fieller theorem

gS.W − pvalue=p value of using Shapiro-Wilk Test
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TABLE 12. Simulation results based on scenario II with P>E (3)

delta method Fieller theorem

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc D0.00d D0.25d D0.50d D0.75d F0.00e F0.25e F0.50e F0.75e

200 0/0.42 0.3/0.17 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.25/0.17 0 0.275 0 0 0 0.2 0 0 0

0.5 0.04 0 0 0 0.02 0 0 0

0.42/0.42 0.12/0.17 0 0.9 0.09 0 0 0.85 0.065 0 0

0.5 0.585 0.025 0 0 0.515 0.025 0 0

0.51/0.42 0.04/0.17 0 0.95 0.35 0.01 0 0.93 0.29 0.01 0

0.5 0.805 0.2 0.01 0 0.755 0.16 0.01 0

0.74/0.42 0.05/0.41 0 0.945 0.01 0 0 0.925 0.01 0 0

0.5 0.41 0 0 0 0.38 0 0 0

0.74/0.42 0.08/0.41 0 0.87 0.01 0 0 0.855 0.01 0 0

0.5 0.35 0 0 0 0.335 0 0 0

0.79/0.42 0.02/0.41 0 0.925 0.01 0 0 0.91 0.01 0 0

0.5 0.415 0 0 0 0.39 0 0 0

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P;

dDx=the porportion that (\PHE-1.645 × \s.e(PHE)delta
f) is larger than x;

eFx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

f \s.e(PHE)delta=the estimator of s.e by delta method
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TABLE 13. Simulation results based on scenario II with P>E (4)

delta method Fieller theorem

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc D0.00d D0.25d D0.50d D0.75d F0.00e F0.25e F0.50e F0.75e

500 0/0.42 0.3/0.17 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.25/0.17 0 0.71 0 0 0 0.665 0 0 0

0.5 0.02 0 0 0 0.015 0 0 0

0.42/0.42 0.12/0.17 0 1 0.09 0 0 1 0.085 0 0

0.5 0.905 0.03 0 0 0.885 0.03 0 0

0.51/0.42 0.04/0.17 0 1 0.53 0 0 1 0.5 0 0

0.5 0.985 0.24 0 0 0.985 0.22 0 0

0.74/0.42 0.05/0.41 0 1 0 0 0 1 0 0 0

0.5 0.6 0 0 0 0.585 0 0 0

0.74/0.42 0.08/0.41 0 1 0 0 0 1 0 0 0

0.5 0.59 0 0 0 0.565 0 0 0

0.79/0.42 0.02/0.41 0 0.995 0 0 0 0.995 0 0 0

0.5 0.67 0 0 0 0.645 0 0 0

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P;

dDx=the porportion that (\PHE-1.645 × \s.e(PHE)delta
f) is larger than x;

eFx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

f \s.e(PHE)delta=the estimator of s.e by delta method
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TABLE 14. Simulation results based on scenario II with P<E (1)

No. of families h(G1E)/h(G1p)
a h(G2E)/h(G3p)

b ρc hc PHEd s.ee s.e(delta)f s.e(Fieller)f S.W − pvalueg

200 0/0.42 0.7/0.17 0 0.582 −0.00009 0.0055 0.012 0.012 < 0.001

0.5 0.639 −0.096 0.047 0.079 0.082 < 0.001

0.15/0.42 0.59/0.17 0 0.536 0.073 0.041 0.082 0.086 < 0.001

0.5 0.613 −0.049 0.074 0.109 0.114 0.016

0.42/0.42 0.23/0.17 0 0.434 0.243 0.074 0.093 0.097 0.555

0.5 0.512 0.132 0.106 0.105 0.109 < 0.001

0.62/0.42 0.23/0.17 0 0.393 0.319 0.096 0.091 0.095 0.941

0.5 0.477 0.182 0.129 0.103 0.108 < 0.001

0.74/0.42 0.08/0.17 0 0.329 0.426 0.109 0.086 0.089 0.002

0.5 0.408 0.294 0.136 0.097 0.101 0.070

0.74/0.42 0.21/0.17 0 0.381 0.347 0.108 0.089 0.092 0.043

0.5 0.436 0.232 0.129 0.104 0.109 0.041

ah(G1E)=heritability of E due to G1; h(G1p)= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3p)= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E

dPHE=mean of proportion of heritability explained by endophenotype

es.e=standard deviation of proportion of heritability explained by endophenotype

fs.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of ( 1
2×1.96× the range of confidence limits of PHE) by Fieller theorem

gS.W − pvalue=p value of using Shapiro-Wilk Test
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TABLE 15. Simulation results based on scenario II with P<E (2)

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc hc PHEd s.ee s.e(delta)f s.e(Fieller)f S.W − pvalueg

500 0/0.42 0.7/0.17 0 0.589 −0.00003 0.0019 0.0043 0.0043 < 0.001

0.5 0.647 −0.091 0.028 0.046 0.046 < 0.001

0.15/0.42 0.59/0.17 0 0.553 0.069 0.025 0.047 0.048 0.170

0.5 0.616 −0.054 0.046 0.068 0.069 0.089

0.42/0.42 0.23/0.17 0 0.446 0.243 0.049 0.056 0.057 0.990

0.5 0.519 0.126 0.069 0.066 0.067 0.654

0.62/0.42 0.23/0.17 0 0.405 0.313 0.058 0.056 0.057 0.249

0.5 0.483 0.177 0.074 0.064 0.065 0.932

0.74/0.42 0.08/0.17 0 0.337 0.431 0.069 0.051 0.052 0.730

0.5 0.413 0.295 0.079 0.059 0.060 0.001

0.74/0.42 0.21/0.17 0 0.388 0.340 0.065 0.056 0.056 0.980

0.5 0.445 0.242 0.075 0.061 0.062 0.146

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P; h=mean of heritability of P, conditional on E

dPHE=mean of proportion of heritability explained by endophenotype

es.e=standard deviation of proportion of heritability explained by endophenotype

fs.e(delta)=mean of estimator of s.e by delta method; s.e(Fieller)=mean of ( 1
2×1.96× the range of confidence limits of PHE) by Fieller theorem

gS.W − pvalue=p value of using Shapiro-Wilk Test

46



TABLE 16. Simulation results based on scenario II with P<E (3)

delta method Fieller theorem

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc D0.00d D0.25d D0.50d D0.75d F0.00e F0.25e F0.50e F0.75e

200 0/0.42 0.7/0.17 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.59/0.17 0 0.12 0 0 0 0.09 0 0 0

0.5 0 0 0 0 0 0 0 0

0.42/0.42 0.23/0.17 0 0.845 0.015 0 0 0.75 0.015 0 0

0.5 0.415 0.02 0 0 0.315 0.015 0 0

0.62/0.42 0.23/0.17 0 0.91 0.25 0 0 0.865 0.22 0 0

0.5 0.585 0.03 0 0 0.545 0.03 0 0

0.74/0.42 0.08/0.17 0 0.97 0.645 0.04 0 0.955 0.575 0.04 0

0.5 0.805 0.225 0.015 0 0.775 0.23 0.01 0

0.74/0.42 0.21/0.17 0 0.945 0.295 0.005 0 0.925 0.275 0.05 0

0.5 0.67 0.12 0 0 0.61 0.085 0 0

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P;

dDx=the porportion that (\PHE-1.645 × \s.e(PHE)delta
f) is larger than x;

eFx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

f \s.e(PHE)delta=the estimator of s.e by delta method
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TABLE 17. Simulation results based on scenario II with P<E (4)

delta method Fieller theorem

No. of families h(G1E)/h(G1P )
a h(G2E)/h(G3P )

b ρc D0.00d D0.25d D0.50d D0.75d F0.00e F0.25e F0.50e F0.75e

500 0/0.42 0.7/0.17 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.15/0.42 0.59/0.17 0 0.4 0 0 0 0.32 0 0 0

0.5 0 0 0 0 0 0 0 0

0.42/0.42 0.23/0.17 0 0.99 0.03 0 0 0.99 0.02 0 0

0.5 0.575 0 0 0 0.54 0 0 0

0.62/0.42 0.23/0.17 0 1 0.32 0 0 1 0.345 0 0

0.5 0.805 0.015 0 0 0.76 0.01 0 0

0.74/0.42 0.08/0.17 0 1 0.895 0.02 0 1 0.86 0.01 0

0.5 0.97 0.31 0 0 0.96 0.27 0 0

0.74/0.42 0.21/0.17 0 1 0.515 0 0 1 0.47 0 0

0.5 0.93 0.075 0 0 0.9 0.075 0 0

ah(G1E)=heritability of E due to G1; h(G1P )= heritability of P due to G1;

bh(G2E)=heritability of E due to G2; h(G3P )= heritability of P due to G3;

cρ =correlation between non-family deviations of E and P;

dDx=the porportion that (\PHE-1.645 × \s.e(PHE)delta
f) is larger than x;

eFx=the porportion that the lower 95% confidence limits at one side using Fieller theorem is larger than x;

f \s.e(PHE)delta=the estimator of s.e by delta method
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Figure 1: A surrogate endpoint versus an endophenotype in the disease process
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Figure 2: Two scenarios verified in the simulation studies: endophenotype (E), phenotype (P ), underlying disease genes (G,G1, G2 and G3), random
non-family effects ( E and P ), h(G

0

E) means the heritability of E due to G0, h(G0P ) means the heritability of P due to G0, and correlation between
non-family effects (ρ ), where G0 may be G,G1, G2, or G3.
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Figure 3: Scenario I histogram with family 200 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters in each
situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due to
G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .

51



Figure 4: Scenario I histogram with family 500 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters in each
situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due to
G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .
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Figure 5: Scenario I histogram with family 200 & ρ = 0.5 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters
in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due
to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .
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Figure 6: Scenario I histogram with family 500 & ρ = 0.5 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters
in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due
to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .
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Figure 7: Scenario II histogram with family 200 & P>E The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters
in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due
to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .
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Figure 8: Scenario II histogram with family 500 & P>E The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters
in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due
to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .

56



Figure 9: Scenario II histogram with family 200 & P>E & ρ = 0.5 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 10: Scenario II histogram with family 500 & P>E & ρ = 0.5 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 11: Scenario II histogram with family 200 & P<E The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters
in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due
to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .
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Figure 12: Scenario II histogram with family 500 & P<E The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express these parameters
in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the heritability of P due
to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation between non-family
deviations of E and P .
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Figure 13: Scenario II histogram with family 200 & P<E & ρ = 0.5 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 14: Scenario II histogram with family 500 & P<E & ρ = 0.5 The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 15: Scenario I mean LOD-score curve with family 200 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line is
LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 16: Scenario I mean LOD-score curve with family 500 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line is
LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 17: Scenario I mean LOD-score curve with family 200 & ρ = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted
line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 18: Scenario I mean LOD-score curve with family 500 & ρ = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal dotted
line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .

66



Figure 19: Scenario II mean LOD-score curve with family 200 & P>E , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 20: Scenario II mean LOD-score curve with family 500 & P>E , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 21: Scenario II mean LOD-score curve with family 200 & P>E & ρ = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ),
to express these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P )
means the heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the
correlation between non-family deviations of E and P .
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Figure 22: Scenario II mean LOD-score curve with family 500 & P>E & ρ = 0.5 , where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ),
to express these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P )
means the heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the
correlation between non-family deviations of E and P .
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Figure 23: Scenario II mean LOD-score curve with family 200 & P<E , where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 24: Scenario II mean LOD-score curve with family 500 & P<E, where solid line is phenotype, dashed line is endophonotype, horizontal dotted line
is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ), to express
these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P ) means the
heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the correlation
between non-family deviations of E and P .
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Figure 25: Scenario II mean LOD-score curve with family 200 & P<E & ρ = 0.5, where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ),
to express these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P )
means the heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the
correlation between non-family deviations of E and P .

73



Figure 26: Scenario II mean LOD-score curve with family 500 & P<E & ρ = 0.5, where solid line is phenotype, dashed line is endophonotype, horizontal
dotted line is LOD-score=3, and vertical dotted line is the position of disease gene. The title in each figure, (fam, h(G1E), h(G1P ), h(G2E), h(G3P ), ρ ),
to express these parameters in each situation, where fam means the numbers of family members, h(G1E) means the heritability of E due to G1, h(G1P )
means the heritability of P due to G1, h(G2E) means other heritability of E due to G2, h(G2E) means other heritability of P due to G3, and ρ means the
correlation between non-family deviations of E and P .
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