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摘要 

潛在類別迴歸( latent class regression ) 模型被廣泛利用在先前的許多文

獻裡，這種模型能將多重指標的共同特徵整合成基本的類別變數。這篇論文

中我們將提出ㄧ個潛在類別迴歸模型的適合度檢定，此檢定的基礎是由所有

可能回答的選項以及相伴變數分群所組成的列聯表，這個概念是由 Hosmer

與 Lemeshow 在邏輯斯迴歸中所提出來的。而當列聯表有稀少情形發生時，

我們將用一階和二階邊際來取代並且修正檢定統計量。我們在不同的條件下

作模擬，來測試所提出的適合度檢定表現。 
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ABSTRACT 
 
   Latent class regression (LCR) models have been utilized previously in 
many literatures. Such models can summarize shared features of the multiple 
indicators as an underlying categorical variable. In this paper, we propose a 
goodness-of-fit for the LCR model. The basis of the proposed test is a 
contingency table, which groups the population through all possible response 
patterns and concomitant covariates. The idea is from Hosmer-Lemeshow 
statistic for the multiple logistic regression model. When the contingency 
table is sparse, we replace it with the first- and second-order marginals and 
modify the test statistic. A simulation study is carried out to examine the 
behavior of the proposed goodness-of-fit test under different situations. 
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1 Introduction

In recent years, questions of psychosocial and medical research investigate

the relationship between multiple categorical outcome variables and continu-

ous predictor variables. These relationships may be unobserved, hence valid

surrogates are necessary. Latent class regression (LCR) models (Huang and

Bandeen-Roche 2004) are useful tools for assessing association of measured

indicators. The LCR model allow both the distribution of the underlying

class variable and the within-class distributions of measured indicators to be

functionally related to individual-level independent variables. Hence, LCR

model may mitigate errors in measurement and can give well-summarized

inference between multiple indicators and covariates of interest. However,

we do not observe the true class membership of individuals. So we should

carefully do model checking.

When no covariates, the population can be grouped by all possible re-

sponse patterns. Pearson χ2 test and log likelihood ratio test statistic (LRT)

(Doodman 1974, Bartholomew 1987, Formann 1992) can be applied for eval-

uating overall model fit. However, when there are continuous covariates,

Pearson χ2 test is invalid because the degree of freedom increases when sam-

ple size increases.

In this paper, we apply the idea of the Hosmer-Lemeshow statistic (Hos-

mer and Lemeshow 1980) to our LCR model. We extend the outcome variable

into not only binary but category and each individual has multiple outcome

variables. Therefore, an adequate chi-square test statistic can be used to

assess to our LCR model. Sometimes, when response patterns are large and
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sample size is moderate or small, some cells of the contingency table formed

by the all response patterns will be sparse. In this situation, the chi-square

test is also not valid. When sparseness occurs, informal remedies such as

combining cells are often recommended. Here, we substitute the first-order

and second-order marginal frequencies (Reiser and Lin 1999) for the original

contingency table, and then we modify the chi-square test statistic which is

mentioned above.

In section 2, we review four parts: 1.The LCR model and some assump-

tions which complete the model; 2.The goodness-of-fit of the multiple logistic

regression model; 3.Theorem5.1 in Moore and Spruill (1975) and its required

regularity conditions, which is applied to prove the asymptotic distribution

of the proposed goodness-of-fit test; 4.The approach of second-order mar-

ginal frequencies. In section 3, we propose the goodness-of-fit of our LCR

model and propose another test statistic when sparseness occurs. Section

4 presents the results of a simulation study and power of the test statistic.

Some discussions and recommendation are presented in section 5.
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2 Literature Review

2.1 Latent class regression model

To describe the latent class regression (LCR) model (Hung and Bandeen-

Roche 2004), let Yi = (Yi1,. . . , YiM)T represent the M×1 response vector

for the ith individual in a study sample of N persons. Yim can take value

{1,. . . , Km}, where Km ≥ 2, m = 1,. . . ,M . And let (xi, zi) be the concomi-

tant covariates of the ith person, where xi = (1, xi1,. . . , xip)
T are primary

predictors for latent class membership Si, Si can take values {1,. . . , J}, and

zi = (zi1,. . . , ziM) with zim = (zim1,. . . , zimL)T , m = 1,. . . ,M , are secondary

covariates used for Pr(Yim = k|Si = j). These covariates may include any

combination of continuous and discrete measures, and they may be mutually

exclusive or overlapped. Then the LCR model can be represented as

Pr(Yi1 = y1, . . . , YiM = ym|xi, zi) =
J∑

j=1

{ηj(xi)
M∏

m=1

Km∏

k=1

[pmkj(zim)]ymk}. (1)

with ηj(xi) and pmkj(zim) as in the generalized linear framework (McCullagh

and Nelder 1989). Here, ymk = I(ym = k) = 1 if ym = k ; otherwise. Various

link functions could be chosen like probit, ordinal, or etc. We specifically

propose to use the generalized logit link function (Agresti 1984) :

log

[
ηj(xi)

ηJ(xi)

]
= β0j + β1jxi1 + . . . + βpjxip = xT

i βj, (2)

and

log

[
pmkj′(zim)

pmKmj′(zim)

]
= γmkj′ + α1mkzim1 + . . . + αLmkzimL = γmkj′ + zT

imαmk, (3)

for i = 1,. . . , N ;m = 1,. . . ,M ;k = 1,. . . , Km−1;j = 1,. . . , J−1;j′ = 1,. . . , J .
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Parameters, γmkj, αmk and βj can be estimated by Expectation-Maximization

(EM) algorithm (Dempster, Laird and Rubin 1977). EM algorithm is an it-

erative approach which is usually for computing maximum likelihood when

model includes missing data.

Adding following three assumptions can complete the model (1) :

1. Latent class membership probabilities are associated with only :

Pr(Si = j|xi, zi) = Pr(Si = j|xi) =
exp(xT

i βj)

1 +
∑J−1

l=1 exp(xT
i βl)

, j = 1, . . . , J−1

2. Conditioning on class membership, measured responses are associated

with zi :

Pr(Yi1 = y1, . . . , YiM = ym|Si,xi, zi, ) = Pr(Yi1 = y1, . . . , YiM = ym|Si, zi)

with Pr(YiM = k|Si = j′, zi) =
exp(γmkj′ + zT

imαmk)

1 +
∑Km−1

s=1 exp(γmsj′ + zT
imαms)

,

for m = 1, . . . , M ; k = 1, . . . , Km − 1; j′ = 1, . . . , J.

3. The multiple measurements are conditionally independent given class

membership and zi :

Pr(Yi1 = y1, . . . , YiM = ym|Si, zi) =
M∏

m=1

Pr(Yim = ym|Si, zi)

2.2 Goodness-of-fit test for logistic regression

Hosmer and Lemeshow (1980) proposed a goodness-of-fit test, which de-

termines the adequacy of the fitted multiple logistic regression model. The

logistic regression model will be stated as follows :
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Let Yi= 0 or 1 be outcome variables and xT
i = (xi1,. . . , xip) be the indepen-

dent variables. Let π(xi) = Pr(Yi = 1|xi) = exp(β0 + βT xi)/(1 + exp(β0 +

βT xi)) where βT = (β1, . . . , βp). Under these assumptions, the likelihood

function is :

L(y;x, β0,β) =
n∏

i=1

πyi

i (1− πi)
1−yi , where πi = π(xi), for i = 1, . . . , n.

From log of L(y;x, β0,β), the maximum likelihood estimates β̂0 and β̂

by solving (p + 1) likelihood equations. The basis of Hosmer-Lemeshow

statistic builds on a 2×g contingency table. To obtain the table, let π̂i =

π(xi)|
(β0,β)=(β̂0,

ˆβ)
and define a random variable W where wi = j if cj−1 ≤

π̂i < cj , for j = 1,. . . , g ; i = 1,. . . , n . The cj
′s are known constants such

that 0 = c0 < c1 <. . .< cg−1 < cg = 1 .Denote the counts in the cell of table

as nkj where nkj is the frequency of occurrence of the pair (yi = k, wi = j) in

the sample, k = 0, 1 and j = 1,. . . , g. Notationally the observed frequencies

may tabulated as Table 1.

A choice of forming c0,. . . , cg in the 2×g contingency table is to make the

distribution of W to be uniform. That is, the cut points c0,. . . , cg depend

on the data and hence are no longer fixed constants. So there will be n/g

value of in each interval. Let’s define π̂(1) ≤ π̂(2) ≤ . . . ≤ π̂(n) as the ordered

values of π̂ and let ĉj = π̂[jn/g], where
[

jn
g

]
represents the largest integer less

than or equal to jn
g

, j = 0,. . . , g. Let ŵi = j if ĉj−1 ≤ π̂i < ĉj. Define

n̂kj as the observed frequency of the pair (yi = k, ŵi = j) in the sample. If

Ĵj = {i : ĉj−1 ≤ π̂i < ĉj} then the test statistic is

Cg =

g∑
j=1

{
(n̂1j −

∑
r∈Ĵj

π̂r)
2

∑
r∈Ĵj

π̂r

+

[
n̂0j −

∑
r∈Ĵj

(1− π̂r)
]2

∑
r∈Ĵj

(1− π̂r)
} (4)

5



There are two problems for the application of the usual theory used for

chi-square goodness-of-fit test to the distribution of Cg.

1. Parameter estimates are determined using likelihood functions for ”un-

grouped” data.

2. The frequencies, n̂kj in the 2 × g contingency table depend on the

estimated parameters, namely the cells are random not fixed.

Chernoff and Lehmann (1954) first mention a chi-square test under prob-

lem 1 and then Watson (1959). Moore(1971) and Moore and Spruill (1975)

considered the distribution of the chi-square goodness of fit statistic under

both problems 1 and 2. They extended Watson’s results to the case of random

rectangular cells. Drust (1979) generalized these results to include random

cells other than rectangles. By results of Moor and Spruill (1975) and Drust

(1979), the asymptotic distribution of Cg can be obtained as follows.

Theorem Under distributional assumptions, the distribution of Cg will be

asymptotically (N →∞)

χ2(2g − g − (p + 1)) +

p+1∑
i=1

λiχ
2
i (1)

where 0 < λi ≤ 1, i = 1,. . . , (p + 1), and λ′is are eigenvalues of some matrix.

The detailed statement of the matrix can see Theorem 1 in 3.1.

2.3 General chi-squared statistic for individual likeli-

hood and random cells

The proof of the above theorem follows from verifying that the regularity

conditions necessary for the proof of theorem 4.2, lemma 5.1 and theorem

6



5.1 in Moore and Spruill (1975) are satisfied.

Before describing these results, the notations are defined as follows. Let

F (y|θ, η) be the cdf of {Y1,. . . ,Yn}. The parameter θ ranges over an open

set Ω1 in Rm, while η ranges over a neighborhood of a point η0 in Rp. The cells

for the following χ2 tests are rectangles in Rk. They are functions of a variable

ϕ defined on Ω2 in Rr. The resulting cells are denoted by Iσ(ϕ). Here, the

null hypothesis (H0) is that Yi have a cdf F (y|θ, η0). We will explore the

large-sample behavior of tests for the null hypothesis under the sequences of

parameter values (θ0, ηn) where θ0 ∈ Ω1 and ηn = η0 + n−1/2γ for fixed γ in

Rp. H0 is the special case γ = 0. θ is estimated by θn = θn(Y1,. . . ,Yn).

The cells are chosen by ϕn = ϕn(Y1,. . . ,Yn). We will assume that under

(θ0, ηn), ϕn − ϕ0 = op(1) for some ϕ0 and θn − θ0 = op(1). We will suppress

arguments θ, ϕ, η whenever they take the values θ0, ϕ0, η0 respectively.

The number of Y1,. . . ,YN falling in the cell Iσ(ϕ) will be denoted by

Nnσ(ϕ). The cell probabilities are denoted by pσ(θ, η, ϕ) where σ = 1, 2,. . . , p×
g and pσ(θ, η, ϕ) =

∫
Iσ(ϕ)

dF (x|θ, η).

The regularity conditions for the following theorem are as :

A1. Under (θ0, ηn), θn − θ0 = Op(n
−1/2) and ϕn − ϕ0 = op(1). Every vertex

x(ϕ) of every cell Iσ(ϕ) is a continuous Rk-valued function of ϕ in a

neighborhood of ϕ0.

A2. For each σ, pσ(θ, η, ϕ) is continuous in (θ, η, ϕ) and continuously differ-

entiable in (θ, η) in a neighborhood of (θ0, η0, ϕ0). Moreover,
∑M

1 pσ =

1 and pσ > 0 for each σ.

7



A3. F (x) = F (x|θ0, η0) is continuous at every vertex x(ϕ0) of every cell

Iσ(ϕ0). As n →∞, supx|F (x|ηn)− F (x)| → 0.

A4. K(θ, ϕ) = S(θ, ϕ)S(θ, ϕ)T for an M ×M matrix S(θ, ϕ) with entries

continuous in (θ, ϕ) at (θ0, ϕ0).

A5. Under (θ0, ηN)

n1/2(θn − θ0) = n−1/2

N∑
i=1

h(Yi, ηn) + Aγ + op(1)

for some m×p matrix A and measurable function h(x, η) from Rk×Rp

to Rm satisfying

E [h(Y, ηn)|(θ0, ηn)] = 0

E
[
h(Y, ηn)h(Y, ηn)T |(θ0, ηn)

]
= L(ηn)

where L(ηn) is a m × m matrix converging to the finite and matrix

L = E
[
h(Y)h(Y)T

]
as n →∞

Theorem 4.2 in Moore and Spruill (1975)

Let Vn(θn, ϕn) be a M × 1 vector with σth component

vnσ(θn, ϕn) =
Nnσ(ϕn)− npσ(θn, η0, ϕn)

[npσ(θn, η0, ϕn)]1/2

Define also,

qT = (p
1
2
1 ,. . . , p

1
2
M)

B is a M ×m matrix and has (i, j)th entry p
−1/2
i

∂pi

∂θj
.

J = E
[
(∂logf

∂θ
)(∂logf

∂θ
)T

]

∑
= IM − qqT + BLBT −BE

[
h(Y )W (Y )T

]− E
[
W (Y )h(Y )T

]
BT

8



∑
0 = ST

∑
S

If A1,. . ., A5 hold, V T
n (θn, ϕn)k(θn, ϕn)Vn(θn, ϕn) has limiting distribution

M∑
j=1

λjχ
2
1j under (θ0, η0)

Where λ′js are eigenvalues of
∑

0

One more regularity condition is needed for the following lemma :

C1. m ≤ M and the matrix with entries ∂pi/∂θj has rank m.

Lemma 5.1 in Moore and Spruill (1975)

When C1 regularity condition holds

1.
[
P T qqT Pe

]
j
= 0 j = 1,. . . ,M − 1

[
P T qqT Pe

]
j
= 1 j = M

2.
[
P T CPe

]
j
= 0 j = 1,. . . ,M −m− 1,M

[
P T CPe

]
j
= 1 j = M −m,. . . ,M − 1

3.
[
P T BJ−1BT Pe

]
j
= 0 j = 1,. . . ,M −m− 1,M

[
P T BJ−1BT Pe

]
j
= 1− λj j = M −m,. . . ,M − 1

where P is an orthogonal matrix which simultaneously diagonalizes qqT , C

and BJ−1BT . C = B(BT B)−1BT .

More regularity conditions are needed for the following theorem :

C2. logf(x|θ, η) is differentiable with respect to (θ, η) at (θ0, η0). The ma-

trix J is pd and J12 is finite. (∂/∂θ)F (x|θ) may be evaluated by differ-

entiating f(x|θ) under the integral sign for all x and θ = θ0.

9



C3. n1/2(θ̂n − θ0) = n−1/2
∑n

i=1 J−1 ∂logf(Yi|ηn)
∂θ

+ J−1J12γ + op(1). Here J is

the information matrix for F (x|θ) at θ0.

J = E

[
(
∂logf

∂θ
)(

∂logf

∂θ
)T

]
,

J12 is the m× p matrix

J12 = E

[
(
∂logf

∂θ
)(

∂logf

∂η
)T

]
.

C4. J −BT B is pd.

Theorem 5.1 in Moore and Spruill (1975)

When A1,. . ., A5 and C1,. . ., C4 regularity conditions hold, ‖ Vn(θ̂n, ϕn) ‖2

has limiting distribution

χ2
M−m−1 +

M−1∑
j=M−m

λjχ
2
1j under (θ0, η0)

and λM−m,. . . , λM−1 are the m roots of the determinantal equation

|BT B − (1− λ)J | = 0

2.4 First and second-order marginals

In practice, when response patterns are large and the sample size, n, is

moderate or small, some response patterns of Y ′
i s are usually less than 5

even to 0. This kind of contingency table is said to be sparse (Agresti and

Yang 1987). However, the chi-square approximation for the test distribution

may not be valid. So when sparseness occurs, informal remedies such as

combining cells or adding a small constant like 0.5 to each cell are sometimes

10



recommended. One kind of combining method is first order and second-order

marginals (Reiser and Lin 1999). The advantage of it is that the frequencies

are almost always substantially larger than zero, even with small samples.

The combing technique states as follows :

To make the presentation clear, we assume dichotomous response cases.

Let Yi= 0 or 1 be outcome variables, for i = 1,. . . , k. The response patter is

a k-dimensional vector of zeros and 1’s. A set of T response patterns can be

generated by varying the index of the kth variable most rapidly, the k− 1th

variable next, etc. Let πs(β) represent probability of response pattern s and

wis represent element i of response pattern s. Under the model, the first

order and second-order marginal proportion for variable Yi and Yj can be

defined as

Pi(1|β) = P (Yi = 1|β) =
∑

s

wisπs(β) ,

Pij(1, 1|β) = P (Yi = 1, Yj = 1|β) =
∑

s

wiswjsπs(β) ,

The summation across the frequencies associated with the response pat-

terns to obtain the marginal proportions represents a transformation of the

frequencies in the multinomial vector πT = (π1, π2,. . . , πT ), which can be

implemented via multiplication by matrix H where for j = 1,. . . , k; i =

j, j + 1,. . . , k; s = 1,. . . , T ; and l = (j − 1)k − 0.5j(j − 1) + i, element (l, s)

of H is given by

hls =





1 if wis=wjs=1

0 otherwise

Using matrix H

Pij(1, 1|β) = P (Yi = 1, Yj = 1|β) = hT
l π(β),

11



where hT
l is row l of matrix H.

3 Methodologies

3.1 Goodness-of-fit test of LCR model

We imitate the Hosmer-Lemeshow goodness-of-fit to create the test statis-

tic for LCR model. Let the joint probability of the ith individual be

Pr(Yi = yh; φ) = Pr{(Yi1, . . . , YiM) = (yh1, . . . , yhM); φ} = πih(φ) (5)

Where i = 1,. . . , N ;h = 1,. . . , K∗;K∗ =
∏M

m=1 Km and φ = (γmj, αm, β)

is the vector of parameters. Here {y1,. . . ,yK∗} represent the all possible

multiple outcomes. The basis of the goodness-of-fit test statistic of our LCR

model is a K∗ × g contingency table as shown in Table 2.

In Kuo (2004), she defined a random variable W to form the contingency

table, where Wi = j if cj−1 < π̂i1 < cj , for j = 1,. . . , g ; i = 1,. . . , n .

The cj
′s are known constants such that 0 = c0 < c1 <. . .< cg−1 < cg = 1,

and π̂i1 is the estimated probability of the ith individual at the first response

pattern.

We choose another different method to group the population. Here, We

apply two partition methods in the R package cluster, clara and fanny, to

group the population into g groups depending on the covariates associated

with conditional probabilities and latent prevalence. We explain the main

difference between the clara method and the fanny method first. In clara

method, if we assume that one person belongs to group 3, then the proba-

bility of his falling into group 3 would be one. While the probability of his

12



fallying into other groups would be zero. In the same case, if we apply the

fanny method, the probabilities of his falling into other groups would be all

larger than zero, but smaller than the probability of falling into group 3. The

number of groups, g, is constant and it is determined by the highest average

silhouette width which calls the silhouette coefficient (SC). SC is defined as

the average of the s(i). The detailed statements of s(i) can see Appendix

A. Experience has led to the subjective interpretation of the (SC) as listed

in Table 3. The K∗ × g contingency table is obtained by defining a random

variable W, where Wi = j if ith person fall in the jth group, j = 1,. . . , g.

Under the hypothesis of LCR model holds, the goodness-of-fit test statistic

will be obtained by comparing ”observed” frequencies O′
hjs to versus ”ex-

pected” frequencies E ′
hjs. Hence, we will discuss under three situations of

Ohj and Ehj.

Situation 1 : Ohj and Ehj from clara method are denoted as follows :

Denote Ohj is the observed frequency of occurrence of the pair (Y = yh,W =

j) in the sample, where h = 1,. . . , K∗; K∗ =
∏M

m=1 Km; j = 1,. . . , g. The

total observed frequencies may show as Table 2. Denote the expected fre-

quency Ehj in the hth response pattern and jth group. The expression is

obtained as Ehj =
∑

r∈Ij
πrh(φ̂), where Ij = {i : Wi = j}, j = 1,. . . , g, and

πrh(φ̂) = πrh(φ)|
φ=φ̂

.

Situation 2 : Ohj and Ehj from fanny method are denoted as follows :

The denotation of Ohj is the same as situation 1. Denote the expected fre-

quency Ehj as the hth group response pattern and jth group. The expression

is obtained as Ehj =
∑n

i=1 πih(φ̂)×ρij, where ρij is the estimated probability

of the ith individual falling into the jth group. i = 1,. . . , n, j = 1,. . . , g.

13



Situation 3 : Another Ohj and Ehj obtaining from fanny method are denoted

as follows :

Denote Ohj =
∑n

i=1 I(Yi = yh)× ρij . And the denotation of Ehj is the same

in situation 2. Notationally set-up of the frequencies in LCR model may

tabulated as Table 2.

Then, the statistic is

T1 =
K∗∑

h=1

g∑
j=1

(Ohj − Ehj)
2

Ehj

(6)

The large sample distribution of T1 is following the following theorem.

Theorem 1 Under LCR assumptions (1), (2), and (3), the distribution of

T1 will be asymptotically (N →∞)

K∗g∑
i=1

λiχ
2
1i

where λ′is are the eigenvalues of the matrix
∑

(T1) = I − qqT − BJ−1BT ;

i = 1,. . . , K∗ × g. I is a K∗g× (number of parameter) identity matrix. q

is a K∗g × 1 vector with elements
√

Phj, h = 1,. . . , K∗, j = 1,. . . , g, where

Phj = Pr(Y = yh,W = j) = 1
N

Ehj . B is a K∗g × K∗g matrix and has

a general element given by 1√
Phj

∂Phj

∂φl
, φ = (β, γ,α). J−1 is the asymptotic

variance covariance matrix of estimates φ̂ .

Proof The proof of this theorem follows from verifying that the regularity

conditions necessary for the proof of theorem 4.2 in Moore and Spruill (1975)

are satisfied. For details, see Appendix B.

In order to estimate the asymptotic large sample distribution of T1 , we

must calculate the eigenvalues of the matrix
∑

(T1). Here, we substitute

14



∑̂
(T1) = I − q̂q̂T − B̂Ĵ−1B̂T for

∑
(T1) and calculate the eigenvalues of the

matrix
∑̂

(T1), where q̂, B̂ and Ĵ−1 are estimators of q, B and J−1. Then,

the nominal asymptotic distribution will be
∑K∗g

i=1 λ̂iχ
2
1i by substituting φ̂ for

φ.

Here, we propose another two test statistics.

T2 = V T
n (IK∗g− qqT −BJ−1BT )−1Vn and T3 = V T

n (IK∗g−BJ−1BT )−1Vn.

Where Vn is a K∗g × 1 vector with elements Vhj =
Ohj−Ehj√

Ehj

, for h =

1,. . . , k∗,j = 1,. . . , g.

It is easy to show that the asymptotic distribution of T2 is χk∗g. Because

qqT is usually very small, we can ignore it. (Lemma 5.1 (1) of Moore and

Spruill(1975)). The asymptotic distribution of T3 is also χk∗g.

3.2 First- and second-order marginals of LCR model

when sparseness occurs, we substitute the second-order marginal frequen-

cies for original contingency table. Then, if the LCR model is rejected based

on the use of the first- and second-order marginals, it could be concluded

that the model does not hold in the joint frequencies either. Notationally

set-up of the frequencies of the first- and second-order marginals may tabu-

lated as Table 4. The rows of Table 4 are constituted by the following first-

and second-order marginals :




Pr(Yij = s ; φ) for j = k

Pr(Yij = s, Yik = t ; φ) for j 6= k

where k = 1,. . . ,m; j = k,. . . ,m ; s = 1,. . . , Kk − 1 ; t = 1,. . . , Kj − 1;

φ = (β,γ, α).
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The summation across the frequencies associated with the response pat-

terns to obtain the marginal proportions represents a transformation of the

frequencies in the multinomial vector π = (π1, π2,. . . , πk∗), which can be

implemented via multiplication by a matrix H.

The new Ohj and Ehj of three situations are as follows :

By matrix H, We can transform the original observed frequency table into

new observed frequency table for each situation. Then, O∗
hj is hth row and

jth column of new observed frequency table. In the same way, We can

transform the original expected frequency table into new expected frequency

table for each situation. And E∗
hj is hth row and jth column of new expected

frequency table.

Hence, the new test statistic is

T ∗
1 =

K∗∗∗∑

h=1

g∑
j=1

(O∗
hj − E∗

hj)
2

E∗
hj

(7)

where K∗∗∗ =
∑M

m=1(Km − 1) +
∑M−1

m=1

[
(Km − 1)×∑M

m′=m+1(Km′ − 1)
]

is

the total number of response pattern of the first- and second-order marginals.

Similar to the Theorem 1, we rewrite the theorem as follows :

Theorem 2 Under LCR assumptions (1), (2), and (3), the distribution of

T ∗
1 will be asymptotically (N →∞)

K∗∗∗g∑
i=1

λ∗i χ
2
1i

where λ∗
′

i s are the eigenvalues of the matrix
∑

(T ∗
1 ) = ZT

NHST
N

∑
(T1)SNHT ZT

N ;

i = 1,. . . , K∗ × g. Here,
∑

(T1) is mentioned in section 3.1. ZN is a

K∗∗∗g × K∗∗∗g diagonal matrix with elements 1√
E∗hj

, for h = 1,. . . , k∗∗∗,

j = 1,. . . , g. SN is a K∗g ×K∗g diagonal matrix with elements
√

Ehj , for
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h = 1,. . . , k∗, j = 1,. . . , g. The detailed proof of Theorem 2 can be found in

Appendix C.

In order to estimate the large sample distribution of T ∗
1 , we must cal-

culate the eigenvalues of the matrix
∑

(T ∗
1 ). Here, we substitute

∑̂
(T ∗

1 ) =

ẐT
NHŜT

N

∑̂
(T1)ŜNHT ẐT

N for
∑

(T ∗
1 ) and calculate the eigenvalues of the ma-

trix
∑̂

(T ∗
1 ). Then, the nominal distribution will be

∑K∗∗∗g
i=1 λ̂∗i χ

2
1i , where λ̂∗

′
i s

are eigenvalues of
∑̂

(T ∗
1 ) .

Under sparse situation, we rewrite test statistic T2 and T3 as follow:

T ∗
2 = W ∗

n

[
ZT

n HST
n (IK∗g − qqT −BJ−1BT )−1SnH

T Zn

]−1
W ∗

n

and

T ∗
3 = W ∗

n

[
ZT

n HST
n (IK∗g −BJ−1BT )−1SnHT Zn

]−1
W ∗

n

Where Wn is a K∗∗∗g × 1 vector with elements Whj =
O∗hj−E∗hj√

E∗hj

, for h =

1,. . . , k∗∗∗, j = 1,. . . , g. The asymptotic distributions to T ∗
2 and T ∗

3 are

χk∗∗∗g.
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4 Simulation Studies

4.1 Generated data from the LCR model

Here, we are going to simulate two major situations to discuss. One is

”balance” and the other is ”unbalance”. ”Balance” means the contingency

table is not sparse and ”unbalance” means contingency table is sparse.

In balanced case, we simulate three-class LCR with five-two level mea-

sured indicator, two covariates associated with conditional probabilities, two

covariates associated with latent prevalence and sample size is 2500 (i.e., J =

3,M = 5, K1 =. . .= K5 = 2, P = L = 2, N = 2500). Then, βpj , which are

the model parameters, can be determined randomly by setting βpj = k1Uj

, Uj ∼ U(0, 1) , for each p ∈ {0, 1,. . . , P}; j = 1,. . . , (J − 1). k1 is con-

stant such that
∑P

p=1

∑J−1
j=1 βpj equal the preselected total. Similarly, we

can use the same way to determine {γjmk, j = 1,. . . , (J − 1)} for all m,

k and {αqmk,m = 1,. . . ,M ; k = 1,. . . , (Km − 1)} for all q. Here, we

set the parametric values of
∑L

l=1

∑M
m=1 αlm and

∑m
i=1

∑J
j=1 α0 as 1 and

of
∑P

p=1

∑J−1
j=1 βpj and

∑J−1
j=1 β0 as 0.6. And observable Y ′

i s are generated

with 100 replications. Table 5 shows the values of α0 and αlm. Table 6 shows

the values of β0 and βpj.

The covariates associated with conditional probabilities (zim1, zim2), m =

1,. . . , 5 and latent prevalences (xi1, xi2) are generated as follows:

For each m

zim1 ∼ Bernoulli(0.4), zim2 ∼ Normal(50, 5) i = 1 ∼ 500

zim1 ∼ Poisson(20), zim2 ∼ Gamma(4, 3) i = 501 ∼ 1000
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zim1 ∼ Binomial(14, 0.6), zim2 ∼ Uniform(1, 10) i = 1001 ∼ 1500

zim1 ∼ Binomial(6, 0.4), zim2 ∼ Exponential(6) i = 1501 ∼ 2000

zim1 ∼ Poisson(3), zim2 ∼ Unifotm(20, 30) i = 2001 ∼ 2500

and covariates associated with latent prevalences are generated as

xi1 ∼ Bernoulli(0.6), xi2 ∼ Normal(0, 1) i = 1,. . . , 2500

In unbalanced case, we simulate five-class LCR with six-two level mea-

sured indicator, two covariates associated with conditional probabilities, two

covariates associated with latent prevalence and sample size is 2500 (i.e., J =

5,M = 6, K1 =. . .= K6 = 2, P = L = 2, N = 2500, g = 5). Here, we set

the parametric values of
∑L

l=1

∑M
m=1 αlm and

∑m
i=1

∑J
j=1 α0 as 1.5 and of

∑P
p=1

∑J−1
j=1 βpj and

∑J−1
j=1 β0 as 0.8. Table 7 shows the values of α0 and

αlm. Table 8 shows the values of β0 and βpj. Then, the covariates associated

with conditional probabilities (zim1, zim2), m = 1,. . . , 5 and latent prevalences

(xi1, xi2) are generated by the same ways in balanced case. Table 9 is the

averaged O’s over 100 simulations in the contingency table forming by all

response patterns in balanced case and Table 10 is the averaged O’s over 100

simulations in unbalanced case. Table 11 is table 10 after combining as first-

and second order marginals.

The simulation results are represented from Table 12 to Table 17. Ac-

cording to the results of balanced case, test statistics of fanny are well ap-

proximated to nominal distribution. Nevertheless, behaviors of three test

statistics of clara are not as good as behaviors of fanny, because the values

of clara are obviously lower than nominal distribution.

On the other hand, according to the results of unbalanced case, the values
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of test statistics of fanny are higher than nominal distribution. While the

values of test statistics of clara are lower than nominal distribution.

4.2 Assess power of the proposed test statistics

The simulations considered thus far have demonstrated that the test sta-

tistic have well defined distributions under the null hypotheses that the LCR

model holds. To examine the power of the proposed test statistics, data were

generated the same as section 4.1. Then, we use a simpler model to fit the

data which were generated from a complicated model.

The selected sample size is 2500 and Y ′
i s are generated with 100 replica-

tion. In balanced case, we use two-class LCR with five-two level measured

indicator, one covariate associated with conditional probabilities, one covari-

ates associated with latent prevalence (i.e., J = 2,M = 5, K1 =. . .= K5 =

2, P = L = 1) and divide the population into three groups to fit alter-

native model. The covariates associated with conditional probabilities zim1

,m = 1,. . . , 5 and latent prevalences xi1 are generated as follows :

For each m

zim2 ∼ Normal(20, 5) i = 1 ∼ 800

zim2 ∼ Gamma(4, 2) i = 801 ∼ 1600

zim2 ∼ Poisson(15) i = 1601 ∼ 2500

and covariates associated with latent prevalences are generated as

xi2 ∼ Normal(0, 1) i = 1,. . . , 2500

In unbalanced case, we use three-class LCR with six-two level measured

indicator, one covariate associated with conditional probabilities, one covari-
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ates associated with latent prevalence(i.e., J = 3,M = 6, K1 =. . .= K6 =

2, P = L = 1) and divide the population into three groups to fit alter-

native model. The covariates associated with conditional probabilities zim1

,m = 1,. . . , 6 and latent prevalences xi1 are generated as the same in balanced

case.

Table 18 presents the results of clara method in balanced case. Three

test statistics virtually have no power. This method seems to cluster the

population unsuitably under the balanced situation. Table 19 and Table 20

present the results of fanny method in balanced case. In Table 19, T1 and

T3 have higher power in detecting the difference between fitted model and

alternative model. While T2 have comparably lower power. In Table 20,

power of T1 is lower than powers of T2 and T3. Table 21, Table 22 and Table

23 present the results of clara and fanny method in unbalanced case. The

conclusions are similar to balanced case.
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5 Discussion

In this paper, we use the latent class regression model to fit the relationship

between a latent class outcome and latent factor predictors. We propose the

goodness-of-fit test statistic to assess the adequacy of the model. The number

of the group is determined before forming the contingency table. Then, we

use two clustering methods, clara and fanny, to cluster the population.

The fanny method is a good approach for our grouping the population of

the LCR model. Under fanny method, situation 2 is well than situation 3.

So we suggest using method of situation 2. But fanny method is sensitive to

covariates which are selected to do the clustering. There is a serious influence

on the results of the cluster. Therefore, when we select covariates to do the

clustering, we should select carefully to avoid the inappropriate results.
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Appendix A: Silhouette coefficient

For each object i, we denote A the cluster to which it belongs, and compute

a(i) :=
1

|A| − 1

∑

j∈A,j 6=i

d(i, j)

It is the average dissimilarity of i to all other objects of A.

Here, d(i, j) is defined as

d(i, j) =

∑p
f=1 δ

(f)
ij d

(f)
ij∑p

f=1 δ
(f)
ij

∈ [0, 1]

where

d
(f)
ij = contribution of variable f to d(i, j), which depends on its type :

1. f binary or nominal : d
(f)
ij = 0 if xif = xjf , and d

(f)
ij = 1 otherwise,

2. f interval-scaled : d
(f)
ij =

|xif−xjf |
maxh xhf−minh xhf

,

3. f ordinal or ratio-scaled : compute ranks rif and zif =
rif−1

maxh rhf−1
and

treat these zif as interval-scaled,

and

δ
(f)
ij = weight of variable f :

1. δ
(f)
ij = 0 if xif or xjf is missing,

2. δ
(f)
ij = 0 if xif = xjf = 0 and variable f is asymmetric binary,

3. δ
(f)
ij = 1 otherwise.

and p is number of variables.

Now consider any cluster C different from A and put

d(i, C) :=
1

|C|
∑
j∈C

d(i, j)
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It is the average dissimilarity of i to all other objects of C.

After computing d(i, C) for all clusters C 6= A we take the smallest of those:

b(i) := min
C 6=A

d(i, C).

The cluster B which attains this minimum [that is, d(i, B) = b(i)] is called

the neighbor of object i. This is the second-best cluster for object i.

The silhouette value s(i) of the object i is defined as

s(i) :=
b(i)− a(i)

max{a(i), b(i)} .

clearly s(i) always lies between -1 and 1.
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Appendix B: Proof of theorem 1

Then regular conditions of theorem 4.2 in Moor and Spruill are satisfied

as follows :

1. Under (φN , ϕ), φN − φ0 = oK∗∗(1) and ϕn = ϕ(x, z). Every vertex

y(φ) of every cell Iσ(φ) is a continuous RM -valued function of φ in a

neighborhood of φ0.

2. For each σ, Pσ(φ, ϕ) is continuous in (φ, ϕ) and continuously differen-

tiable in (φ) in a neighborhood of (φ0, ϕ0). Moreover,
∑K∗∗g

σ=1 Pσ = 1

and Pσ > 0 for each σ.

3. F (y) = F (y|φ0) is continuous at every vertex y(φ0) of every cell Iσ(φ0).

As N →∞, supy|F (y|φN)− F (y)| → 0.

4. K(φ) = S(φ)S(φ)T for an K∗∗g ×K∗∗g matrix S(φ) with entries con-

tinuous in φ at φ0.

5. Under φN

N1/2(φN − φ0) = N−1/2

N∑
i=1

h(Yi, φN) + Aγ + oK∗∗(1)

for some g×K∗∗ matrix A and measurable function h(y, φ) from RM×
RK∗∗

to Rg satisfying

E [h(Y, φN)|φN ] = 0

E
[
h(Y, φN)h(Y, φN)T |φN

]
= L(φN)

where L(φN) is a g × g matrix converging to the finite and matrix

L = E
[
h(Y)h(Y)T

]
as N →∞
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6. g ≤ K∗g and the matrix with entries ∂pi/∂φj has rank g.

7. logf(y|φ) is differentiable with respect to φ at φ0. The matrix J is pd

and J12 is finite. (∂/∂φ)F (y|φ) may be evaluated by differentiating

f(y|φ) under the integral sign for all y and φ = φ0.

8. n1/2(φ̂n − φ0) = n−1/2
∑n

i=1 J−1 ∂logf(Yi|ηn)
∂φ

+ J−1J12γ + op(1). Here J is

the information matrix for F (y|φ) at φ0.

J = E

[
(
∂logf

∂φ
)(

∂logf

∂φ
)T

]
,

J12 is the m× p matrix

J12 = E

[
(
∂logf

∂φ
)(

∂logf

∂η
)T

]
.

9. J −BT B is pd, where matrix B has (i, j)th entry p
−1/2
i

∂pi

∂φj
.
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Appendix C: Distributions of test statistic T ∗
1 , T ∗

2 and T ∗
3

N = total number of individuals

h = 1, 2,. . . , K∗, where K∗ =
∏M

m=1 km

j = 1, 2,. . . , g, where g = number of groups

VN = K∗g × 1 vector

VN =




v11

...

v1g

...

...

vK∗1

...

vK∗g




, where vhj =
Ohj − Ehj√

Ehj

Ehj = expected number of observation in (h, j)

TN = V T
N KNVN =‖ ST

NVN ‖2=
∑K∗

h=1

∑g
j=1(Ohj − Ehj)

2

where KN =




E11

. . . 0

E1g

. . .

. . .

EK∗1

0
. . .

EK∗g



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and KN = SNST
N

So SN =




√
E11

. . . 0
√

E1g

. . .

. . .
√

EK∗1

0
. . .

√
EK∗g




By theorem 4.2 in Moore & Spruill

ST
NVN

d→ N(µ, Σ0) where Σ0 = ST
N(IK∗g − qqT −BJ−1BT )SN


 ··· ‖ ST

NVN ‖2= V T
N SNVN

d→ ΣK∗g
i=1 λiχ

2
1i

where λ′is are eigenvalues of Σ0




Let K∗∗∗ =
∑M

m=1(Km − 1) +
∑M

i6=j=1(Ki − 1)(Kj − 1)

WN = K∗∗∗ × 1 vector

WN =




w11

...

w1g

...

...

wK∗∗∗1

...

wK∗∗∗g




, where wsj =
O∗

sj − E∗
sj√

E∗
sj
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O∗
sj = number of observation in (s, j) after combining.

E∗
sj = expected number of observation in (s, j) after combining.

Let WN = H∗ST
NVN

H∗
K∗∗∗g×K∗∗∗g =




H 0

. . .

0 H


 ,

where H is matrix which is mentioned in second-order.

So

WN = H∗ST
NVN

d→ N(H∗µ,H∗Σ0H
∗T

)

and

H∗Σ0H
∗T

= H∗ST
N(IK∗g − qqT −BJ−1BT )SNH∗T

Let W ∗
N = ZT

NWN , where ZN is a K∗∗∗g ×K∗∗∗g matrix.

ZN =




1/
√

E∗
11

. . . 0

1/
√

E∗
1g

. . .

. . .

1/
√

E∗
K∗∗∗1

0
. . .

1/
√

E∗
K∗∗∗g




So W ∗
N = ZT

NWN
d→ N(ZT

NH∗µ, ZT
NH∗Σ0H

∗T
ZN)

⇒ W ∗T

N W ∗
N =

∑K∗∗∗
s=1

∑g
j=1

(O∗sj−E∗sj)
2

E∗sj
∼ ∑K∗∗∗

i=1 λ∗i χ
2
1i

where λ∗
′

i s is eigenvalues of Σ∗ = ZT
NΣZN
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Table 1: Notational set-up of the frequencies in logistic regression model

1 2 . . . g Total

y=0 n01 n12 . . . n1g n0

y=1 n11 n12 . . . n2g n1

Total n.1 n.2 . . . n.g n

Table 2: Notational set-up of the frequencies in LCR model

1 2 . . . g

(y1 = 1, y2 = 1,. . . , ym = 1) O11 O12 . . . O1g

(y1 = 1, y2 = 1,. . . , ym = 2) O21 O22 . . . O2g

...
...

...
...

(y1 = 1, y2 = 1,. . . , ym = km) Om1 Om2 . . . Omg

...
...

...
...

(y1 = k1, y2 = k2,. . . , ym = km) Ok∗1 OK∗2 . . . OK∗g

n1 n2 . . . ng

Table 3: Interpretation of the silhouette coefficient for partitioning method

SC Proposed Interpretation

0.71-1.00 A strong structure has been found.

0.51-0.70 A reasonable structure has been found

0.26-0.50 The structure is weak and could be artificial, try additional method

≤ 0.25 No substantial structure has been found
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Table 4: Notational set-up of the frequencies of first- and second-order mar-

ginals

1 2 . . . g

(y1 = 1) O11 O12 . . . O1g

...
...

...
...

(y1 = k1 − 1) Oh11 Oh12 . . . Oh1g

(y2 = 1) Oh21 Oh22 . . . Oh2g

...
...

...
...

(y2 = k2 − 1) Oh31 Oh32 . . . Oh3g

...
...

...
...

(yM = 1) Oh41 Oh42 . . . Oh4g

...
...

...
...

(yM = kM − 1) Oh51 Oh52 . . . Oh5g

(y1 = 1, y2 = 1) Oh61 Oh62 . . . Oh6g

(y1 = 1, y2 = 2) Oh71 Oh72 . . . Oh7g

...
...

...
...

(y1 = 1, y2 = k2 − 1) Oh81 Oh82 . . . Oh8g

(y1 = 2, y2 = 1) Oh91 Oh92 . . . Oh9g

...
...

...
...

(y1 = k1 − 1, y2 = k2 − 1) Oh101 Oh102 . . . Oh10g

...
...

...
...

(yM−1 = 1, yM = 1) Oh111 Oh112 . . . Oh11g

...
...

...
...

(yM−1 = kM−1 − 1, yM = kM − 1) Ok∗∗∗1 OK∗∗∗2 . . . OK∗∗∗g

n1 n2 . . . ng

Note:

h1 = k1 − 1, h2 = (k1 − 1) + 1, h3 =
∑2

i=1(ki − 1)

h4 =
[∑M−1

i=1 (ki − 1)
]

+ 1, h5 =
∑M

i=1(ki − 1), h6 =
[∑M

i=1(ki − 1)
]

+ 1

h7 =
[∑M

i=1(ki − 1)
]

+ 2, h8 =
[∑M

i=1(ki − 1)
]

+ (k2 − 1), h9 =
[∑M

i=1(ki − 1)
]

+ k2

h10 =
[∑M

i=1(ki − 1)
]

+ (k1 − 1)(k2 − 1)

h11 =
[∑M

i=1(ki − 1)
]

+
[∑M−1

i6=j,i<j(ki − 1)(kj − 1)
]

+ 1
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Table 5: Values of α0 and αLm in balanced case

α0

item 1 item 2 item 3 item 4 item 5
class 1 -0.6012 0.6358 0.2786 -0.3152 0.5294
class 2 0.1289 0.3371 0.1878 0.3102 0.3829
class 3 0.2698 0.0271 -0.5336 0.3746 -0.3508

αlm

z1m -0.1741 -0.1904 0.1923 0.2254 0.2177
z2m 0.1984 0.2835 0.2014 -0.2836 0.1674

Table 6: Values of β0 and βPj in balanced case

β0

class 1 vs. class 3 class 2 vs. class 3
0.2731 0.3269

βpj

xi1 -0.2170 0.3830
xi2 0.4760 0.1240

Table 7: Values of α0 and αLm in unbalanced case

α0

item 1 item 2 item 3 item 4 item 5 item 6
class 1 0.2797 0.4434 -0.4717 0.5080 0.5683 0.2855
class 2 0.2323 0.2686 0.3412 0.1323 0.4963 -0.2234
class 3 0.6281 -0.0856 0.0781 0.1472 0.6396 -0.4206
class 4 0.3330 0.4659 -0.2854 -0.1591 0.2062 0.1081
class 5 0.0268 0.2366 0.3235 0.5534 0.0693 0.4623

αlm

z1m -0.2050 0.2243 0.2265 0.2655 0.2564 0.3224
z2m -0.1052 0.4443 0.7867 0.2103 0.3878 -0.0902

Table 8: Values of β0 and βPj in unbalanced case

β0

class 1 vs. class 5 class 2 vs. class 5 class 3 vs. class 5 class 4 vs. class5
0.2510 0.3041 0.0413 0.2035

βpj

xi1 0.1655 -0.2943 0.1719 0.3683
xi2 0.0251 0.1850 0.4911 0.2988
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Table 9: Observed contingency table of balanced case, averaging over 100

simulations

Response Group

pattern 1 2 3 4 5

(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 1) 18.22 19.03 27.87 27.66 29.21

(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 2) 9.35 10.27 16.27 16.99 18.88

(y1 = 1, y2 = 1, y3 = 1, y4 = 2, y5 = 1) 21.72 22.51 17.38 18.77 20.99

(y1 = 1, y2 = 1, y3 = 1, y4 = 2, y5 = 2) 12.33 11.51 10.89 11.65 14.09

(y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 1) 12.43 12.59 20.24 19.35 23.73

(y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 2) 6.82 6.63 12.42 12.89 17.13

(y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 1) 14.53 15.16 13.32 14.13 16.77

(y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 2) 7.63 7.63 7.69 8.64 11.51

(y1 = 1, y2 = 2, y3 = 1, y4 = 1, y5 = 1) 10.82 11.68 22.88 22.18 23.63

(y1 = 1, y2 = 2, y3 = 1, y4 = 1, y5 = 2) 5.68 5.81 13.36 14.39 16.16

(y1 = 1, y2 = 2, y3 = 1, y4 = 2, y5 = 1) 12.61 13.13 15.24 15.73 15.62

(y1 = 1, y2 = 2, y3 = 1, y4 = 2, y5 = 2) 6.81 7.29 8.99 8.61 10.46

(y1 = 1, y2 = 2, y3 = 2, y4 = 1, y5 = 1) 7.15 8.01 16.34 16.21 19.19

(y1 = 1, y2 = 2, y3 = 2, y4 = 1, y5 = 2) 4.03 3.95 9.34 10.07 14.02

(y1 = 1, y2 = 2, y3 = 2, y4 = 2, y5 = 1) 8.93 8.82 10.72 11.22 13.26

(y1 = 1, y2 = 2, y3 = 2, y4 = 2, y5 = 2) 4.72 4.23 6.78 6.74 9.61

(y1 = 2, y2 = 1, y3 = 1, y4 = 1, y5 = 1) 36.65 38.49 27.67 28.68 32.02

(y1 = 2, y2 = 1, y3 = 1, y4 = 1, y5 = 2) 18.89 20.14 16.32 16.41 21.21

(y1 = 2, y2 = 1, y3 = 1, y4 = 2, y5 = 1) 43.55 45.03 18.61 19.09 24.91

(y1 = 2, y2 = 1, y3 = 1, y4 = 2, y5 = 2) 23.61 23.09 11.00 11.46 14.87

(y1 = 2, y2 = 1, y3 = 2, y4 = 1, y5 = 1) 11.28 12.27 13.77 13.80 16.16

(y1 = 2, y2 = 1, y3 = 2, y4 = 1, y5 = 2) 13.02 13.49 11.78 12.71 16.73

(y1 = 2, y2 = 1, y3 = 2, y4 = 2, y5 = 1) 29.85 30.07 12.98 14.88 18.42

(y1 = 2, y2 = 1, y3 = 2, y4 = 2, y5 = 2) 15.47 16.00 8.31 8.86 12.37

(y1 = 2, y2 = 2, y3 = 1, y4 = 1, y5 = 1) 22.33 23.32 22.28 21.95 25.73

(y1 = 2, y2 = 2, y3 = 1, y4 = 1, y5 = 2) 11.28 12.27 13.77 13.80 16.16

(y1 = 2, y2 = 2, y3 = 1, y4 = 2, y5 = 1) 27.09 26.44 14.28 15.32 19.05

(y1 = 2, y2 = 2, y3 = 1, y4 = 2, y5 = 2) 13.78 14.14 8.48 8.84 11.61

(y1 = 2, y2 = 2, y3 = 2, y4 = 1, y5 = 1) 14.13 15.52 16.34 16.42 20.01

(y1 = 2, y2 = 2, y3 = 2, y4 = 1, y5 = 2) 8.09 7.96 9.52 11.07 14.34

(y1 = 2, y2 = 2, y3 = 2, y4 = 2, y5 = 1) 18.15 17.43 10.72 11.24 14.16

(y1 = 2, y2 = 2, y3 = 2, y4 = 2, y5 = 2) 8.77 9.78 6.46 7.16 9.49
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Table 10: Observed contingency table of unbalanced case, averaging over 100

simulations

Response Group

pattern 1 2 3 4 5

(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 1, y6 = 1) 15.44 15.48 13.09 13.01 18.91

(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 1, y6 = 2) 18.72 18.92 9.83 12.26 14.98

(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 2, y6 = 1) 7.05 6.93 9.13 8.32 11.27

(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 2, y6 = 2) 9.17 8.90 6.50 7.33 9.01

(y1 = 1, y2 = 1, y3 = 1, y4 = 2, y5 = 1, y6 = 1) 11.45 11.80 12.84 11.83 13.85

(y1 = 1, y2 = 1, y3 = 1, y4 = 2, y5 = 1, y6 = 2) 14.09 13.64 9.74 10.15 11.39

(y1 = 1, y2 = 1, y3 = 1, y4 = 2, y5 = 2, y6 = 1) 5.49 5.16 9.12 7.81 8.40

(y1 = 1, y2 = 1, y3 = 1, y4 = 2, y5 = 2, y6 = 2) 6.34 6.83 6.60 6.72 6.93

(y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 1, y6 = 1) 12.15 12.29 14.02 14.31 18.95

(y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 1, y6 = 2) 15.09 14.68 10.81 12.77 14.73

(y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 2, y6 = 1) 5.46 5.95 9.26 9.00 11.29

(y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 2, y6 = 2) 7.10 7.01 6.82 7.65 9.16

(y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 1, y6 = 1) 8.57 9.32 13.77 12.33 14.05

(y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 1, y6 = 2) 10.64 11.50 10.74 10.57 11.25

(y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 2, y6 = 1) 3.73 4.69 9.93 7.87 8.91

(y1 = 1, y2 = 1, y3 = 2, y4 = 2, y5 = 2, y6 = 2) 5.05 5.04 7.57 7.24 6.60

(y1 = 1, y2 = 2, y3 = 1, y4 = 1, y5 = 1, y6 = 1) 14.83 15.09 7.69 9.73 12.55

(y1 = 1, y2 = 2, y3 = 1, y4 = 1, y5 = 1, y6 = 2) 18.15 19.07 5.92 9.23 11.63

(y1 = 1, y2 = 2, y3 = 1, y4 = 1, y5 = 2, y6 = 1) 6.36 7.51 5.30 5.46 7.69

(y1 = 1, y2 = 2, y3 = 1, y4 = 1, y5 = 2, y6 = 2) 8.33 8.70 3.95 5.44 7.44

(y1 = 1, y2 = 2, y3 = 1, y4 = 2, y5 = 1, y6 = 1) 10.79 11.38 7.05 7.90 9.67

(y1 = 1, y2 = 2, y3 = 1, y4 = 2, y5 = 1, y6 = 2) 13.85 14.08 5.36 7.63 8.37

(y1 = 1, y2 = 2, y3 = 1, y4 = 2, y5 = 2, y6 = 1) 4.60 5.35 4.75 5.05 5.68

(y1 = 1, y2 = 2, y3 = 1, y4 = 2, y5 = 2, y6 = 2) 6.29 6.66 3.70 4.27 4.75

(y1 = 1, y2 = 2, y3 = 2, y4 = 1, y5 = 1, y6 = 1) 12.11 11.92 8.03 9.41 12.20

(y1 = 1, y2 = 2, y3 = 2, y4 = 1, y5 = 1, y6 = 2) 15.47 14.55 6.27 9.77 10.46

(y1 = 1, y2 = 2, y3 = 2, y4 = 1, y5 = 2, y6 = 1) 5.28 5.97 5.37 6.06 7.89

(y1 = 1, y2 = 2, y3 = 2, y4 = 1, y5 = 2, y6 = 2) 6.98 7.01 4.33 4.86 5.82

(y1 = 1, y2 = 2, y3 = 2, y4 = 2, y5 = 1, y6 = 1) 8.44 8.36 7.82 8.87 9.03

(y1 = 1, y2 = 2, y3 = 2, y4 = 2, y5 = 1, y6 = 2) 11.22 10.49 5.85 7.67 7.72

(y1 = 1, y2 = 2, y3 = 2, y4 = 2, y5 = 2, y6 = 1) 4.29 4.33 5.59 5.33 4.94

(y1 = 1, y2 = 2, y3 = 2, y4 = 2, y5 = 2, y6 = 2) 5.08 5.22 4.33 4.58 4.49
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Response Group

pattern 1 2 3 4 5

(y1 = 2, y2 = 1, y3 = 1, y4 = 1, y5 = 1, y6 = 1) 9.01 9.66 11.17 10.43 15.26

(y1 = 2, y2 = 1, y3 = 1, y4 = 1, y5 = 1, y6 = 2) 11.23 11.75 8.26 8.44 11.51

(y1 = 2, y2 = 1, y3 = 1, y4 = 1, y5 = 2, y6 = 1) 4.51 4.58 7.26 6.72 9.62

(y1 = 2, y2 = 1, y3 = 1, y4 = 1, y5 = 2, y6 = 2) 5.49 5.70 5.44 5.76 6.74

(y1 = 2, y2 = 1, y3 = 1, y4 = 2, y5 = 1, y6 = 1) 6.75 7.12 10.20 8.85 11.20

(y1 = 2, y2 = 1, y3 = 1, y4 = 2, y5 = 1, y6 = 2) 8.18 8.78 7.77 7.69 9.00

(y1 = 2, y2 = 1, y3 = 1, y4 = 2, y5 = 2, y6 = 1) 3.23 3.06 6.83 5.97 7.04

(y1 = 2, y2 = 1, y3 = 1, y4 = 2, y5 = 2, y6 = 2) 4.12 4.12 5.48 4.81 5.27

(y1 = 2, y2 = 1, y3 = 2, y4 = 1, y5 = 1, y6 = 1) 7.00 7.00 12.23 11.38 15.34

(y1 = 2, y2 = 1, y3 = 2, y4 = 1, y5 = 1, y6 = 2) 9.17 9.09 8.22 9.15 11.60

(y1 = 2, y2 = 1, y3 = 2, y4 = 1, y5 = 2, y6 = 1) 3.30 3.81 8.26 7.25 9.63

(y1 = 2, y2 = 1, y3 = 2, y4 = 1, y5 = 2, y6 = 2) 4.39 4.21 5.67 5.44 7.44

(y1 = 2, y2 = 1, y3 = 2, y4 = 2, y5 = 1, y6 = 1) 5.41 5.75 11.05 10.03 10.72

(y1 = 2, y2 = 1, y3 = 2, y4 = 2, y5 = 1, y6 = 2) 7.56 6.82 8.74 8.39 8.98

(y1 = 2, y2 = 1, y3 = 2, y4 = 2, y5 = 2, y6 = 1) 2.37 2.38 8.61 6.58 7.00

(y1 = 2, y2 = 1, y3 = 2, y4 = 2, y5 = 2, y6 = 2) 2.91 3.56 6.18 5.16 5.26

(y1 = 2, y2 = 2, y3 = 1, y4 = 1, y5 = 1, y6 = 1) 9.07 9.53 6.23 6.47 9.71

(y1 = 2, y2 = 2, y3 = 1, y4 = 1, y5 = 1, y6 = 2) 10.97 11.75 4.43 6.16 8.27

(y1 = 2, y2 = 2, y3 = 1, y4 = 1, y5 = 2, y6 = 1) 3.86 4.44 4.37 4.02 6.37

(y1 = 2, y2 = 2, y3 = 1, y4 = 1, y5 = 2, y6 = 2) 5.25 5.35 3.33 3.84 4.82

(y1 = 2, y2 = 2, y3 = 1, y4 = 2, y5 = 1, y6 = 1) 6.47 6.54 5.90 5.83 7.37

(y1 = 2, y2 = 2, y3 = 1, y4 = 2, y5 = 1, y6 = 2) 8.04 9.00 4.54 5.62 6.07

(y1 = 2, y2 = 2, y3 = 1, y4 = 2, y5 = 2, y6 = 1) 3.08 3.06 4.30 4.11 4.64

(y1 = 2, y2 = 2, y3 = 1, y4 = 2, y5 = 2, y6 = 2) 3.68 3.91 3.21 3.73 3.89

(y1 = 2, y2 = 2, y3 = 2, y4 = 1, y5 = 1, y6 = 1) 7.04 7.49 6.43 6.93 9.60

(y1 = 2, y2 = 2, y3 = 2, y4 = 1, y5 = 1, y6 = 2) 8.58 9.04 4.65 6.24 8.12

(y1 = 2, y2 = 2, y3 = 2, y4 = 1, y5 = 2, y6 = 1) 2.96 2.85 4.61 4.96 5.87

(y1 = 2, y2 = 2, y3 = 2, y4 = 1, y5 = 2, y6 = 2) 4.25 4.05 3.49 3.91 4.75

(y1 = 2, y2 = 2, y3 = 2, y4 = 2, y5 = 1, y6 = 1) 5.04 5.26 6.49 6.11 6.67

(y1 = 2, y2 = 2, y3 = 2, y4 = 2, y5 = 1, y6 = 2) 7.08 6.73 4.99 5.78 5.95

(y1 = 2, y2 = 2, y3 = 2, y4 = 2, y5 = 2, y6 = 1) 2.46 2.46 4.23 4.29 4.49

(y1 = 2, y2 = 2, y3 = 2, y4 = 2, y5 = 2, y6 = 2) 2.93 3.32 3.35 3.52 3.38
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Table 11: Observed contingency table of first- and second-order marginals,

averaging over 100 simulations

Response Group

pattern 1 2 3 4 5

(y1 = 1) 307.61 313.83 251.08 270.43 318.42

(y2 = 1) 250.17 255.53 291.14 281.22 341.29

(y3 = 1) 273.89 283.85 219.29 230.59 287.71

(y4 = 1) 283.77 290.28 230.37 251.71 327.04

(y5 = 1) 337.61 343.88 270.13 290.94 355.11

(y6 = 1) 217.60 226.52 260.93 252.22 315.81

(y1 = 1, y2 = 1) 155.54 158.14 159.77 159.17 189.68

(y1 = 1, y3 = 1) 170.95 175.50 120.57 132.14 160.93

(y1 = 1, y4 = 1) 177.69 179.98 126.32 144.61 182.39

(y1 = 1, y5 = 1) 211.01 212.57 148.83 167.44 199.74

(y1 = 1, y6 = 1) 136.04 141.53 142.76 142.29 175.28

(y2 = 1, y3 = 1) 140.27 142.43 139.26 136.10 170.38

(y2 = 1, y4 = 1) 144.28 145.96 145.97 149.22 195.44

(y2 = 1, y5 = 1) 170.46 173.60 172.48 171.59 211.72

(y2 = 1, y6 = 1) 110.92 114.98 166.77 151.69 191.44

(y3 = 1, y4 = 1) 157.44 163.36 111.90 122.62 164.19

(y3 = 1, y5 = 1) 187.04 193.59 130.02 141.23 179.74

(y3 = 1, y6 = 1) 121.99 126.69 125.23 121.51 159.23

(y4 = 1, y5 = 1) 194.03 197.31 137.28 155.69 203.82

(y4 = 1, y6 = 1) 125.43 130.50 132.45 133.46 182.15

(y5 = 1, y6 = 1) 149.57 153.99 154.01 153.42 195.08
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Table 12: Simulation results of ”situation 1” in balanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T1 5 140.419 381.386 165.298 168.832 184.317

T2 5 140.419 381.387 165.298 168.833 184.318

T3 5 140.420 381.387 165.298 168.833 184.318

Nominal asymptotic

distribution

T1 5 159.229 345.390 186.458 191.088 199.370

T2 5 159 318 182.234 189.424 203.399

T3 5 159 318 182.234 189.424 203.399

Table 13: Simulation results of ”situation 2” in balanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T1 5 162.180 339.864 188.266 191.263 202.460

T2 5 159.509 338.743 183.911 188.962 199.383

T3 5 162.184 339.870 188.272 191.266 202.465

Nominal asymptotic

distribution

T1 5 159.230 345.391 186.460 190.090 199.370

T2 5 159 318 182.234 189.424 203.399

T3 5 159 318 182.234 189.424 203.399

40



Table 14: Simulation results of ”situation 3” in balanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T1 5 166.843 569.964 202.338 206.251 212.555

T2 5 159.508 338.742 183.912 188.962 199.972

T3 5 162.184 339.870 188.272 191.266 202.464

Nominal asymptotic

distribution

T1 5 159.230 345.391 186.460 190.090 199.370

T2 5 159 318 182.234 189.424 203.399

T3 5 159 318 182.234 189.424 203.399

Table 15: Simulation results of ”situation 1” in unbalanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T1 5 31.753 74.620 41.902 45.463 54.409

T2 5 65.096 97.559 77.240 83.331 85.622

T3 5 65.506 98.267 77.480 83.333 85.622

Nominal asymptotic

distribution

T1 5 93.825 796.756 134.624 150.099 155.742

T2 5 105 210 123.947 129.918 141.620

T3 5 105 210 123.947 129.918 141.620
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Table 16: Simulation results of ”situation 2” in unbalanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T1 5 112.617 463.602 140.582 150.719 166.195

T2 5 82.007 119.623 97.725 102.131 109.548

T3 5 85.545 114.977 100.786 106.047 111.311

Nominal asymptotic

distribution

T1 5 93.827 796.468 134.776 150.026 156.049

T2 5 105 210 123.947 129.918 141.620

T3 5 105 210 123.947 129.918 141.620

Table 17: Simulation results of ”situation 3” in unbalanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T1 5 129.527 806.741 173.690 181.156 185.074

T2 5 82.010 119.623 97.730 102.130 109.550

T3 5 85.544 114.980 100.790 106.046 111.310

Nominal asymptotic

distribution

T1 5 93.827 796.468 134.776 150.026 156.049

T2 5 105 210 123.947 129.918 141.620

T3 5 105 210 123.947 129.918 141.620
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Table 18: Power of ”situation 1” in balanced case

α = 0.05

test statistic no.group mean variance power

T1 3 86.642 206.920 0.01

T2 3 86.643 206.921 0

T3 3 86.643 206.921 0

Table 19: Power of ”situation 2” in balanced case

α = 0.05

test statistic no.group mean variance power

T1 3 131.240 224.264 0.79

T2 3 115.122 219.229 0.46

T3 3 131.447 224.234 0.76

Table 20: Power of ”situation 3” in balanced case

α = 0.05

test statistic no.group mean variance power

T1 3 50.653 85.886 0

T2 3 115.122 219.230 0.46

T3 3 131.450 224.234 0.76
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Table 21: Power of ”situation 1” in unbalanced case

α = 0.05

test statistic no.group mean variance power

T1 3 28.918 158.416 0.01

T2 3 46.668 257.740 0.01

T3 3 44.542 102.021 0

Table 22: Power of ”situation 2” in unbalanced case

α = 0.05

test statistic no.group mean variance power

T1 3 347.980 1094.687 1

T2 3 143.270 726.348 0.98

T3 3 86.203 122.648 0.65

Table 23: Power of ”situation 3” in unbalanced case

α = 0.05

test statistic no.group mean variance power

T1 3 11.245 19.834 0

T2 3 143.270 726.348 0.98

T3 3 86.202 122.647 0.65
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