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ABSTRACT

Latent class regression (LCR) models-have been utilized previously in
many literatures. Such models can summarize shared features of the multiple
indicators as an underlying categorical variable. In this paper, we propose a
goodness-of-fit for the LCR model. The basis of the proposed test is a
contingency table, which groups the population through all possible response
patterns and concomitant covariates. The idea is from Hosmer-Lemeshow
statistic for the multiple logistic regression model. When the contingency
table is sparse, we replace it with the first- and second-order marginals and
modify the test statistic. A simulation study is carried out to examine the
behavior of the proposed goodness-of-fit test under different situations.
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1 Introduction

In recent years, questions of psychosocial and medical research investigate
the relationship between multiple categorical outcome variables and continu-
ous predictor variables. These relationships may be unobserved, hence valid
surrogates are necessary. Latent class regression (LCR) models (Huang and
Bandeen-Roche 2004) are useful tools for assessing association of measured
indicators. The LCR model allow both the distribution of the underlying
class variable and the within-class distributions of measured indicators to be
functionally related to individual-level independent variables. Hence, LCR
model may mitigate errors in measurement and can give well-summarized
inference between multiple indicators and Gevariates of interest. However,
we do not observe the true-class membership of individuals. So we should

carefully do model checking.

When no covariates, the population can*be grouped by all possible re-
sponse patterns. Pearson x? test and log likelihood ratio test statistic (LRT)
(Doodman 1974, Bartholomew 1987, Formann 1992) can be applied for eval-
uating overall model fit. However, when there are continuous covariates,
Pearson y? test is invalid because the degree of freedom increases when sam-

ple size increases.

In this paper, we apply the idea of the Hosmer-Lemeshow statistic (Hos-
mer and Lemeshow 1980) to our LCR model. We extend the outcome variable
into not only binary but category and each individual has multiple outcome
variables. Therefore, an adequate chi-square test statistic can be used to

assess to our LCR model. Sometimes, when response patterns are large and



sample size is moderate or small, some cells of the contingency table formed
by the all response patterns will be sparse. In this situation, the chi-square
test is also not valid. When sparseness occurs, informal remedies such as
combining cells are often recommended. Here, we substitute the first-order
and second-order marginal frequencies (Reiser and Lin 1999) for the original
contingency table, and then we modify the chi-square test statistic which is

mentioned above.

In section 2, we review four parts: 1.The LCR model and some assump-
tions which complete the model; 2.The goodness-of-fit of the multiple logistic
regression model; 3. Theoremb.1 in Moore and Spruill (1975) and its required
regularity conditions, which is«applied to pteve the asymptotic distribution
of the proposed goodness-of-fit [test:= 4./The. approach of second-order mar-
ginal frequencies. In section 3, we ptopose the'goodness-of-fit of our LCR
model and propose another fest statistic when sparseness occurs. Section
4 presents the results of a simulation study and power of the test statistic.

Some discussions and recommendation are presented in section 5.



2 Literature Review

2.1 Latent class regression model

To describe the latent class regression (LCR) model (Hung and Bandeen-
Roche 2004), let Y; = (Yi1,...,Yin)? represent the Mx1 response vector
for the ith individual in a study sample of N persons. Y;,, can take value

{1,..., K}, where K,,, > 2, m =1,..., M. And let (x;,2;) be the concomi-

tant covariates of the ith person, where x; = (1, x;1,...,2;,)" are primary
predictors for latent class membership S;, S; can take values {1,...,J}, and
z; = (2i1,- - - Zing) With Zi, = (Zimiy- - - Zimp)?, m = 1,..., M, are secondary

covariates used for Pr(Y;, = k|Sp=1j)isThese covariates may include any
combination of continuous and discréte measures, and they may be mutually

exclusive or overlapped. Then the LCR model ¢an be represented as

5] M Kp
PriYo =y1,...,Yin = Ym|Xiy2i) = Z{nj(xi) H H [Pk (Zim)]"™ }. (1)
gi==1l m=1 k=1

with 7;(x;) and pp;(zin) as in the generalized linear framework (McCullagh
and Nelder 1989). Here, yx = (Y, = k) = 1 if y,,, = k ; otherwise. Various
link functions could be chosen like probit, ordinal, or etc. We specifically

propose to use the generalized logit link function (Agresti 1984) :

09 [%} = Boj + Brjxin + ... + Bpjip = XlTBj’ (2)

and

Pmkj' \Zim
log {#] = Yok + QUumkZim1 + - -+ CLmkZimL = Ymkj' + Ziy ks (3)
PmK,.j (sz>

fori=1,...Nnm=1,... M;k=1,...,K,,—1;j=1,...,J—1;5'=1,...,J.



Parameters, v, i and (3, can be estimated by Expectation-Maximization
(EM) algorithm (Dempster, Laird and Rubin 1977). EM algorithm is an it-
erative approach which is usually for computing maximum likelihood when

model includes missing data.

Adding following three assumptions can complete the model (1) :

1. Latent class membership probabilities are associated with only :

eXP(X?IBj)

Pr(S; = jlxi,z;) = Pr(S; = jlx;) = -
I+ 227211 exp(x] 3)

j=1,...,J-1

2. Conditioning on class membership, measured responses are associated

with z; :

PT(}/;I = yla"'a}/;'M :ym|Si7Xi7Zia) T PT(EI = ylv"'a}/;'M = ym|Slyzz)

exXp(Ymkjr + 22, Qi)
4 35t exp(Ymsyr + 25, 0tns)
for m=1.. " Mik=1+."K,—1;57/=1,...,J

with  Pr(Yiy = k|Si = /s 2:) =

3. The multiple measurements are conditionally independent given class

membership and z; :

PT(Yh:yl,---,Yz‘M:ymwz‘,Zi) = PT’(YQm:ym‘SMZz')

1=

2.2 Goodness-of-fit test for logistic regression

Hosmer and Lemeshow (1980) proposed a goodness-of-fit test, which de-
termines the adequacy of the fitted multiple logistic regression model. The

logistic regression model will be stated as follows :



Let Y;= 0 or 1 be outcome variables and xiT = (Zi1,. . ., Tip) be the indepen-
dent variables. Let 7(z;) = Pr(Y; = 1|z;) = exp(Bo + B x) /(1 + exp(Fy +
Bh2;)) where BT = (4, .., Bp). Under these assumptions, the likelihood

function is :

n

L(y;x,00,3) = Hﬂf’i(l — 7)Y where m; = w(x;), fori=1,...,n.

i=1

From log of L(y;x,[,3), the maximum likelihood estimates BO and B
by solving (p + 1) likelihood equations. The basis of Hosmer-Lemeshow
statistic builds on a 2xg contingency table. To obtain the table, let 7; =
W(I‘i>|(ﬁ0”3):(30”8) and define a random variable W where w; = j if ¢;_; <
7 <c,forj=1...,9;i=1,..,n. The ¢;//s are known constants such
that 0 = ¢y < ¢ <...< ¢4-1 <€, =1 .Denote the counts in the cell of table
as ny; where ny; is the frequency of oeeurrence of the pair (y; = k,w; = j) in

the sample, £ = 0,1 and 7 =1,.. ., g Notationally the observed frequencies

may tabulated as Table 1.

A choice of forming cy,. .., ¢, in the 2xg contingency table is to make the
distribution of W to be uniform. That is, the cut points cy,...,c, depend
on the data and hence are no longer fixed constants. So there will be n/g
value of in each interval. Let’s define () < p) < ... < 7, as the ordered
values of 7 and let ¢; = 7 in

in/g)» Where [?} represents the largest integer less

than or equal to j?" ,

J=0,...,9. Let w; = jif ¢;_1 < m; < ¢;. Define
ny; as the observed frequency of the pair (y; = k,w; = j) in the sample. If
J; = {i: ¢ <7, <&} then the test statistic is
) 92
c, - i{ (M1 — Zrej]. 7r)? N Noj — Zrejj(l - 7) | )
> e, e 2ored, (1= 77)




There are two problems for the application of the usual theory used for

chi-square goodness-of-fit test to the distribution of Cj.

1. Parameter estimates are determined using likelihood functions for ”un-

grouped” data.

2. The frequencies, ny; in the 2 x g contingency table depend on the

estimated parameters, namely the cells are random not fixed.

Chernoff and Lehmann (1954) first mention a chi-square test under prob-
lem 1 and then Watson (1959). Moore(1971) and Moore and Spruill (1975)
considered the distribution of the chi-square goodness of fit statistic under
both problems 1 and 2. They extended Watson’s results to the case of random
rectangular cells. Drust (1979) generalized these results to include random
cells other than rectangles. "By results of Moor and Spruill (1975) and Drust

(1979), the asymptotic distribution ef C; €anbe obtained as follows.

Theorem Under distributional‘assumptions, the distribution of C, will be

asymptotically (N — o)

(29 —g—(p+1) + Z Aix; (1)

where 0 < \; <1,i=1,...,(p+ 1), and A.s are eigenvalues of some matrix.

The detailed statement of the matrix can see Theorem 1 in 3.1.

2.3 General chi-squared statistic for individual likeli-

hood and random cells

The proof of the above theorem follows from verifying that the regularity

conditions necessary for the proof of theorem 4.2, lemma 5.1 and theorem
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5.1 in Moore and Spruill (1975) are satisfied.

Before describing these results, the notations are defined as follows. Let
F(y|0,n) be the cdf of {Y1,...,Y,}. The parameter 6 ranges over an open
set 21 in R™, while n ranges over a neighborhood of a point 79 in RP. The cells
for the following x? tests are rectangles in R*. They are functions of a variable
¢ defined on Qs in R". The resulting cells are denoted by I,(¢). Here, the
null hypothesis (Hp) is that Y; have a cdf F(y|0,n0). We will explore the
large-sample behavior of tests for the null hypothesis under the sequences of
parameter values (6, 7,) where 6y € Q; and 7, = 19 +n~/?y for fixed v in
RP. Hy is the special case v = 0. 6 is estimated by 6, = 0,(Y1,...,Y,).
The cells are chosen by ¢, =4@,(Y1,..., ¥5). We will assume that under
(60, Mn)s on — o = 0,(1) for some g and Oy, =0, = 0,(1). We will suppress

arguments 6, ¢, 7 whenever they take the values 6y, g, 1y respectively.

The number of Yi,..., Yy falling in-the cell I,(p) will be denoted by

Nyuo(@). The cell probabilities are denoted by p, (6,7, ¢) where o = 1,2,...,pX

g and p, (60,1, ) f[ dF(x|0,n).

The regularity conditions for the following theorem are as :

A1l. Under (6p,m,), 0 — 0o = Op(nfl/z) and ¢, — po = 0p(1). Every vertex
x(p) of every cell I,(p) is a continuous R*-valued function of ¢ in a

neighborhood of .

A2. For each o, p, (0,1, ) is continuous in (6,7, ¢) and continuously differ-
entiable in (#,7) in a neighborhood of (6, 7y, @o). Moreover, 321 p, =

1 and p, > 0 for each o.



A3. F(z) = F(x|6y,no) is continuous at every vertex x(pg) of every cell

I,(v0). As n — oo, sup,|F(z|n,) — F(x)| — 0.

Ad. K(0,0) = S(0,0)S(0,p)" for an M x M matrix S(6, ) with entries

continuous in (0, ) at (6o, o).

A5. Under (6, ny)

N
n*2(0, — 60y) = n~1/? Z h(Yi 1) + Ay + 0p(1)
i=1

for some m x p matrix A and measurable function h(x,n) from R* x RP

to R™ satisfying

E [W(Y )| (60, 9)] = 0

E [h(Y5n.) WY ) |05, )] = L(ny)

where L(n,) is a m x m_ matrix comverging to the finite and matrix
L=F [h(Y)MY)T] asn — oo
Theorem 4.2 in Moore and Spruill (1975)

Let V,,(0,, ¢n) be a M x 1 vector with oth component

v (0 © ) _ NTLG(QDH) _”pcr(emnoyﬁpn)
e [npa(erun(); Son)]l/Q

Define also,
. 1 1
¢ = (pis-Py)
B is a M x m matrix and has (7, j)th entry pi—l/z%;; .

7 = B [(2st) ety
S = Iy — " + BLBT — BE [h(Y)W(Y)"] — E [W(Y)h(Y)"] BT

8
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If Al,..., A5 hold, V.I(0,, ) k(0n, ©n)Vi(0n, ) has limiting distribution

M
Z AjX%j under (6o, o)
j=1

Where \s are eigenvalues of )

One more regularity condition is needed for the following lemma :
Cl. m < M and the matrix with entries dp;/ 00; has rank m.

Lemma 5.1 in Moore and Spruill (1975)

When C1 regularity condition, holds

1. [PquTPe}jzo - M= F5i
[PquTPeL =1 7=M

2. [PTCPe]. =0 j=1,%M—m—14;M

J
[PTOPe]j=1 j=M-m,. .., M—1
3. [PTBJ”BTPeL =0 j=1,...M—m—-1,M
[PTBJ‘IBTPeL. =1-X j=M-m,..,M—1
where P is an orthogonal matrix which simultaneously diagonalizes qq”, C

and BJ~'BT. C = B(BTB)"'B”.
More regularity conditions are needed for the following theorem :

C2. logf(z]0,n) is differentiable with respect to (6,7n) at (6p,70). The ma-
trix J is pd and Jys is finite. (0/06)F(x|f) may be evaluated by differ-

entiating f(x|f) under the integral sign for all z and 6 = 6,.



C3. n'/2(0, — ) = n~1/2 Sy J‘lw + J 1 T2y + 0,(1). Here J is

the information matrix for F'(x|6) at 6.

B Ologf . Ologf
J12 is the m X p matrix
B dlogf . Ologf . 1
5= |CoEh ZEy]

C4. J— BTBis pd.

Theorem 5.1 in Moore and Spruill (1975)
When Al,..., A5 and C1.,..., €4 regularity’conditions hold, || V,(6,,¢n) |2

has limiting distribution

M1
Ximoa T Yo Xoxgrerunder (6o, 70)
j=M=m
and Ap/_pm,. .., Ay—1 are the m roots of the determinantal equation

|IBTB — (1 —-X\)J| =0

2.4 First and second-order marginals

In practice, when response patterns are large and the sample size, n, is
moderate or small, some response patterns of Y/s are usually less than 5
even to 0. This kind of contingency table is said to be sparse (Agresti and
Yang 1987). However, the chi-square approximation for the test distribution
may not be valid. So when sparseness occurs, informal remedies such as

combining cells or adding a small constant like 0.5 to each cell are sometimes

10



recommended. One kind of combining method is first order and second-order
marginals (Reiser and Lin 1999). The advantage of it is that the frequencies
are almost always substantially larger than zero, even with small samples.

The combing technique states as follows :

To make the presentation clear, we assume dichotomous response cases.
Let Y;= 0 or 1 be outcome variables, for ¢ = 1,..., k. The response patter is
a k-dimensional vector of zeros and 1’s. A set of T response patterns can be
generated by varying the index of the kth variable most rapidly, the £ — 1th
variable next, etc. Let m¢(3) represent probability of response pattern s and
w;s represent element ¢ of response pattern s. Under the model, the first
order and second-order marginal proportion. for variable ¥; and Y, can be

defined as

B(”:B) = B 1'/8 szsﬂ—s )

P;(1,118) = P(Y; = LY;=118) = Y wisw;om,(B) |

The summation across the frequencies associated with the response pat-

terns to obtain the marginal proportions represents a transformation of the

T = (71, ma,. .., mp), which can be

frequencies in the multinomial vector 7
implemented via multiplication by matrix H where for j = 1,...,k; i =
Jg+ 1. kys=1,...,T;and l = (j — 1)k — 0.55(j — 1) + 4, element (I, s)
of H is given by
1 it wi=wjs=1
Is

0 otherwise

Using matrix H

Py(1,1|8) = P(Y; = 1,Y; = 1|8) = b/ =(B),

11



where h} is row [ of matrix H.

3 Methodologies

3.1 Goodness-of-fit test of LCR model

We imitate the Hosmer-Lemeshow goodness-of-fit to create the test statis-

tic for LCR model. Let the joint probability of the ith individual be

PT(YZ = qub) = PT{(Y;'D cee 7Y;M) = (yhla cee 7th)7¢} = Wih(gb) (5)

Where i = 1,...,N;h = 1,..., K*;K* = H%lem and ¢ = (Ymj, m, 5)
is the vector of parameters. Here{y1}as., yx+} represent the all possible
multiple outcomes. The basis of,the goodness-of-fit test statistic of our LCR

model is a K* X g contingency table as'shown inn Table 2.

In Kuo (2004), she defined & random variable W to form the contingency
table, where W; = j if ¢;.1 < ' <lej, for j =1,...,9 ;¢ =1,...,n.
The ¢;’s are known constants such that 0 = ¢y < ¢ <...< ¢yu1 < ¢y =1,
and 7;; is the estimated probability of the ¢th individual at the first response

pattern.

We choose another different method to group the population. Here, We
apply two partition methods in the R package cluster, clara and fanny, to
group the population into g groups depending on the covariates associated
with conditional probabilities and latent prevalence. We explain the main
difference between the clara method and the fanny method first. In clara
method, if we assume that one person belongs to group 3, then the proba-

bility of his falling into group 3 would be one. While the probability of his

12



fallying into other groups would be zero. In the same case, if we apply the
fanny method, the probabilities of his falling into other groups would be all
larger than zero, but smaller than the probability of falling into group 3. The
number of groups, g, is constant and it is determined by the highest average
silhouette width which calls the silhouette coefficient (SC). SC is defined as
the average of the s(i). The detailed statements of s(i) can see Appendix
A. Experience has led to the subjective interpretation of the (SC) as listed
in Table 3. The K* x g contingency table is obtained by defining a random
variable W, where W, = j if ith person fall in the jth group, j = 1,...,9.
Under the hypothesis of LCR model holds, the goodness-of-fit test statistic
will be obtained by comparing ”observed” frequencies O;ljs to versus "ex-
pected” frequencies Ej s. Hence, we will, discuss under three situations of

Ohj and Ehj.

Situation 1 : Op; and Ej; frem élara method are denoted as follows :

Denote Op; is the observed frequency of occurrence of the pair (Y =y, W =
j) in the sample, where h = 1,..., K*; K* = Hnj\le Ky, j=1,...,9. The
total observed frequencies may show as Table 2. Denote the expected fre-
quency Fj; in the hth response pattern and jth group. The expression is
obtained as Ej; = Zrte th(é)’ where [, ={i : W, =j}, j=1,...,¢9, and

th(é) = 7Trh(¢)|¢:$ .

Situation 2 : Op; and Ej; from fanny method are denoted as follows :

The denotation of Oy; is the same as situation 1. Denote the expected fre-
quency E}; as the hth group response pattern and jth group. The expression
is obtained as Ej; = Z?:l Wih(qz’;) X pij, where p;; is the estimated probability

of the ¢th individual falling into the jth group. i =1,...,n, 7 =1,...,9.

13



Situation 3 : Another Oy; and Ej; obtaining from fanny method are denoted
as follows :

Denote Op; = > | I(Y; = yn) X p;; . And the denotation of Ej,; is the same
in situation 2. Notationally set-up of the frequencies in LCR model may

tabulated as Table 2.

Then, the statistic is
K* g
-y (Cu Q

The large sample distribution of 77 is following the following theorem.

Theorem 1 Under LCR assumptions'(L),, (2), and (3), the distribution of

T will be asymptotically (N:—o0)

K*g

Z Aixd;

=1
where \,s are the eigenvalues of thesmatrix > (7)) = I — q¢© — BJ'BT;
i=1,...,K*xg. Tisa K*¢x (number of parameter) identity matrix. ¢
is a K*g x 1 vector with elements \/ﬁj, h=1,..,K* j=1,...,g9, where
Py =Pr(Y =y, W =j) = %Ehj . Bis a K*¢g x K*g matrix and has

: 1 OF _
a general element given by T Tk, = (8,v,a). J

-1

is the asymptotic

variance covariance matrix of estimates ¢ .

Proof The proof of this theorem follows from verifying that the regularity
conditions necessary for the proof of theorem 4.2 in Moore and Spruill (1975)

are satisfied. For details, see Appendix B.

In order to estimate the asymptotic large sample distribution of 77 , we

must calculate the eigenvalues of the matrix » (77). Here, we substitute

14



—

SN (Ty) =1 — §G" — BJ'BT for Y(T1) and calculate the eigenvalues of the
matrix m, where ¢, B and J~! are estimators of ¢, B and J~!. Then,
the nominal asymptotic distribution will be Zf:lg /A\lxi by substituting ¢ for
.

Here, we propose another two test statistics.
Ty =V (Igg—qq" —BI BTV, and Ty =V (Ig-,— BJ 'B")"'V,.

Where V,, is a K*g x 1 vector with elements Vj; = %, for h =
1.,k g=1,....,g.
It is easy to show that the asymptotic distribution of T is x-,. Because

qq” is usually very small, we canighiorerit. (Lemma 5.1 (1) of Moore and

Spruill(1975)). The asymptotic distribution o<1 is also xj,.

3.2 First- and second-order marginals of LCR model

when sparseness occurs, we substitute the second-order marginal frequen-
cies for original contingency table. Then, if the LCR model is rejected based
on the use of the first- and second-order marginals, it could be concluded
that the model does not hold in the joint frequencies either. Notationally
set-up of the frequencies of the first- and second-order marginals may tabu-
lated as Table 4. The rows of Table 4 are constituted by the following first-
and second-order marginals :
Pr(Y,;, =s:¢) for j=k
Pr(Yy=sYy=1t;0) for j#k
where k = 1,....m; j=Fk,....m;s=1... K, —1;t=1,...,K; —1;
¢ = (8,7, ).

15



The summation across the frequencies associated with the response pat-
terns to obtain the marginal proportions represents a transformation of the
frequencies in the multinomial vector @ = (my,mo,..., mg+), which can be

implemented via multiplication by a matrix H.

The new Op; and FEj; of three situations are as follows :
By matrix H, We can transform the original observed frequency table into
new observed frequency table for each situation. Then, O} is hth row and
jth column of new observed frequency table. In the same way, We can
transform the original expected frequency table into new expected frequency
table for each situation. And Ej; is hth row and jth column of new expected
frequency table.

Hence, the new test statistic:is

e A
E . a1 = i (7)
=1 bj=1 hj

where K = M (K,, — 1) + SIVE [( xS (K — 1)] is

the total number of response pattern of the first- and second-order marginals.
Similar to the Theorem 1, we rewrite the theorem as follows :

Theorem 2 Under LCR assumptions (1), (2), and (3), the distribution of

T} will be asymptotically (N — o)

K***

Z )‘*Xlz
where \* s are the eigenvalues of the matrix > (T¥) = ZLHSL S (TV)SyHT Z%;
i = 1,...,K* x g. Here, > (T1) is mentioned in section 3.1. Zy is a
K**g x K***g diagonal matrix with elements \/_ for h = 1,... k™",

hj

j=1,...,9. Sy isa K*g x K*g diagonal matrix with elements /Ej; , for

16



h=1,..,k* 7=1,...,9. The detailed proof of Theorem 2 can be found in
Appendix C.

In order to estimate the large sample distribution of 77 , we must cal-
culate the eigenvalues of the matrix > (77). Here, we substitute iT\l*) =
Z}CHS’}GZTTT)SNHTZ}\; for Y °(77) and calculate the eigenvalues of the ma-
trix ﬁ) Then, the nominal distribution will be 325779 A*x2, | where \¥'s

are eigenvalues of iT\f‘) :
Under sparse situation, we rewrite test statistic 75 and T3 as follow:
Ty =W [ZPHST (Ixeg — q¢" — BJ'BT) 'S, H 2,] ' W

and

Ty = W [ZFHSE (Igeg — BB )=, H 7, W
O;‘LjfE;;j

...,k 7 = 1,...,9. The asymptotic"distributions to 73 and 7j are

Where W, is a K*™*g x 1 wvector. with-elements W),; = , for h =

17



4 Simulation Studies

4.1 Generated data from the LCR model

Here, we are going to simulate two major situations to discuss. One is
"balance” and the other is "unbalance”. ”Balance” means the contingency

table is not sparse and "unbalance” means contingency table is sparse.

In balanced case, we simulate three-class LCR with five-two level mea-
sured indicator, two covariates associated with conditional probabilities, two
covariates associated with latent prevalence and sample size is 2500 (i.e., J =
3,M =5K, =...= Ky =2,P=L =2, N = 2500). Then, 3,; , which are
the model parameters, can beidetermined randomly by setting 3,; = k1U;
, U; ~U(0,1) , for each pre {0, L:ii Phy = 1,...,(J —1). ky is con-
stant such that Z§=1 Z]J;II Bp; equal the presclected total. Similarly, we
can use the same way to determine {7;,0 = 1,...,(J — 1)} for all m,
k and {ogme,m = 1,...,M; k =100 (K, — 1)} for all q. Here, we
set the parametric values of Y1 ™™ ay,, and 37, ijl ap as 1 and
of 25:1 Zj;ll By; and Zj;ll Bo as 0.6. And observable Y/s are generated
with 100 replications. Table 5 shows the values of oy and ay,,. Table 6 shows

the values of 3y and 3,;.

The covariates associated with conditional probabilities (21, Zim2), m =

1,...,5 and latent prevalences (x;1,x;2) are generated as follows:

For each m
Zim1 ~ Bernoulli(0.4), Zima ~ Normal(50,5) i = 1 ~ 500

Zim1 ~ Poisson(20), zima ~ Gamma(4,3) i = 501 ~ 1000

18



Zim1 ~ Binomial(14,0.6), zima ~ Uniform(1,10) i = 1001 ~ 1500
Zim1 ~ Binomial(6,0.4), zime ~ Exponential(6) i = 1501 ~ 2000
Zim1 ~ Poisson(3), zime ~ Uni fotm(20,30) i = 2001 ~ 2500

and covariates associated with latent prevalences are generated as

xin ~ Bernoulli(0.6), ;o ~ Normal(0,1) i = 1,...,2500

In unbalanced case, we simulate five-class LCR with six-two level mea-
sured indicator, two covariates associated with conditional probabilities, two
covariates associated with latent prevalence and sample size is 2500 (i.e., J =
5M =6,K; =...= Kg = 2,P =L =2,N = 2500,g = 5). Here, we set
the parametric values of 31, S°M . ay,, and 37, Z;}:l ap as 1.5 and of
2521 Z;]:_II Bp; and Zj:ll Bowas 0.8mpTable 7 shows the values of ag and
aym,. Table 8 shows the valuesiof By and.3,;. Then, the covariates associated
with conditional probabiliti€s (2zimi5Zima)-m = 1i. . ., 5 and latent prevalences
(w1, x;2) are generated by thé same ways in balanced case. Table 9 is the
averaged O’s over 100 simulations in the contingency table forming by all
response patterns in balanced case and Table 10 is the averaged O’s over 100
simulations in unbalanced case. Table 11 is table 10 after combining as first-

and second order marginals.

The simulation results are represented from Table 12 to Table 17. Ac-
cording to the results of balanced case, test statistics of fanny are well ap-
proximated to nominal distribution. Nevertheless, behaviors of three test
statistics of clara are not as good as behaviors of fanny, because the values

of clara are obviously lower than nominal distribution.

On the other hand, according to the results of unbalanced case, the values
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of test statistics of fanny are higher than nominal distribution. While the

values of test statistics of clara are lower than nominal distribution.

4.2 Assess power of the proposed test statistics

The simulations considered thus far have demonstrated that the test sta-
tistic have well defined distributions under the null hypotheses that the LCR
model holds. To examine the power of the proposed test statistics, data were
generated the same as section 4.1. Then, we use a simpler model to fit the

data which were generated from a complicated model.

The selected sample size is 2500 and Y/'s are generated with 100 replica-
tion. In balanced case, we use two-class LOR with five-two level measured
indicator, one covariate assgciated with conditional probabilities, one covari-
ates associated with latent-prevalence (i.e., J =2, M =5 K, =...= K5 =
2,P = L = 1) and divide the population into three groups to fit alter-
native model. The covariates associated with conditional probabilities z;,,1

;,m=1,...,5 and latent prevalences x;; are generated as follows :

For each m
Zima ~ Normal(20,5) i = 1 ~ 800
Zimo ~ Gamma(4,2) i = 801 ~ 1600
Zima ~ Poisson(15) i = 1601 ~ 2500
and covariates associated with latent prevalences are generated as

xig ~ Normal(0,1) i = 1,...,2500

In unbalanced case, we use three-class LCR with six-two level measured

indicator, one covariate associated with conditional probabilities, one covari-
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ates associated with latent prevalence(i.e.,J = 3,M = 6,K; =...= Kg =
2,P = L = 1) and divide the population into three groups to fit alter-
native model. The covariates associated with conditional probabilities zj,,1
;m = 1,...,6 and latent prevalences x;; are generated as the same in balanced

case.

Table 18 presents the results of clara method in balanced case. Three
test statistics virtually have no power. This method seems to cluster the
population unsuitably under the balanced situation. Table 19 and Table 20
present the results of fanny method in balanced case. In Table 19, 77 and
T3 have higher power in detecting the difference between fitted model and
alternative model. While 75 Have comparably lower power. In Table 20,
power of T7 is lower than powers of 15 and.15. Table 21, Table 22 and Table
23 present the results of clara and fanny method in unbalanced case. The

conclusions are similar to balanced ‘case:.
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5 Discussion

In this paper, we use the latent class regression model to fit the relationship
between a latent class outcome and latent factor predictors. We propose the
goodness-of-fit test statistic to assess the adequacy of the model. The number
of the group is determined before forming the contingency table. Then, we

use two clustering methods, clara and fanny, to cluster the population.

The fanny method is a good approach for our grouping the population of
the LCR model. Under fanny method, situation 2 is well than situation 3.
So we suggest using method of situation 2. But fanny method is sensitive to
covariates which are selected to do theclustering. There is a serious influence
on the results of the cluster..Therefore; when'we select covariates to do the

clustering, we should select=carefully to-avoid the inappropriate results.
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Appendix A: Silhouette coefficient

For each object 7, we denote A the cluster to which it belongs, and compute

Zdzy

JEAjFi

a(i) := |A\—1

It is the average dissimilarity of ¢ to all other objects of A.

Here, d(i, j) is defined as

54
d(i,j) = fl—” € [0,1]
(5(f
f 1 7ig
where
dgjf ) = contribution of variable £4d d(i,4), which depends on its type :

1. f binary or nominal 1 d,f]f) = 0if'@;f = 257, and dg) = 1 otherwise,
2. f interval-scaled : dgjf A B S
maXp Tpf—MINp T, f

T'Z‘ffl

3. f ordinal or ratio-scaled : compute ranks 7;; and z;; = and

maxp rpf—1
treat these z;; as interval-scaled,

and

5(f)

ij

= weight of variable f :
1. (51.(;-() = 0 if z;5 or x;; is missing,
2. 51({) = 0if z;5 = ;5 = 0 and variable f is asymmetric binary,
3. 6fjf) = 1 otherwise.
and p is number of variables.
Now consider any cluster C different from A and put

1,C) = |C|Zd@j

jeC
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It is the average dissimilarity of ¢ to all other objects of C.

After computing d(i, C) for all clusters C' # A we take the smallest of those:

b(i) == min d(i, C).

The cluster B which attains this minimum [that is, d(i, B) = b(7)] is called
the neighbor of object i. This is the second-best cluster for object 7.

The silhouette value s(i) of the object i is defined as

L b(i) —ald)
s(1) = maz{a(i), b(i)}

clearly s(i) always lies between -1 and 1.
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Appendix B: Proof of theorem 1

Then regular conditions of theorem 4.2 in Moor and Spruill are satisfied

as follows :

1. Under (¢n,¢), ¢n — ¢o = ox*x(1) and ¢, = ¢(x,2z). Every vertex
y (@) of every cell I,(¢) is a continuous RM-valued function of ¢ in a

neighborhood of ¢,.

2. For each o, P,(¢, ) is continuous in (¢, ¢) and continuously differen-
tiable in (¢) in a neighborhood of (¢g, po). Moreover, Zf;g P, =1

and P, > 0 for each o.

3. F(y) = F(y|¢o) is continuous at every vertex y(¢o) of every cell 1,(¢p).
As N — oo, sup,|F(ylon) — E(y)|. 0.

4. K(¢) = S(¢)S(¢)T for an W gk g matrix S(¢) with entries con-

tinuous in ¢ at ¢q.

5. Under ¢y

N
N'2(¢n = ¢o) = N2 “h(Yi, én) + Ay + o= (1)

i=1
for some g x K** matrix A and measurable function h(y, ¢) from R x

RE™ to RY satisfying

E [h(Y7 ¢N)|<Z5N] =0

E[h(Y,on)h(Y,on)"|én] = L(on)

where L(¢y) is a g X g matrix converging to the finite and matrix

L=FE[hY)W(Y)T] as N — oo
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6. g < K*g and the matrix with entries dp;/0¢; has rank g.

7. logf(y|o) is differentiable with respect to ¢ at ¢y. The matrix J is pd
and Jio is finite. (9/0¢)F(y|¢) may be evaluated by differentiating

f(y|®) under the integral sign for all y and ¢ = ¢y.

8. /3 — o) = n V2L, J SR £ T iy +0,(1). Here J is

the information matrix for F(y|¢) at ¢o.

()1() 81() 1
J12 is the m x P matrix
(31() (91()

9. J — BT B is pd, where matrix B has (i,7)th entry pi—1/2% )
J
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Appendix C: Distributions of test statistic 77, 75 and 7%

N = total number of individuals

* * M
h=1,2,...,K* where K* =[] _; kn
7 =1,2,...,9, where ¢ = number of groups

Vn = K*g x 1 vector

U1
V1g
_ : _ Onj — By,
VN = , _where vy = ———=—
. Eh]
VKk#Aa
'I}K*g

E}; = expected number of observation in (h, j)

Ty = VEKNVy =] S5V 2= 0, Y01 (Onj — Eny)?

Ell

where Ky =

EK*I

Egg
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and KN = Ssti\;

Ell

So SN:

V Erg

By theorem 4.2 in Moore & Spruill
STV 5 N(u, o) where 53 =8% (Ig-, — q¢" — BJ'BT)Sy
“ ) SEVRIP= WESMA S0,

where \is are eigenvalues of X

Let K™ = Z%:l(Km - 1)+ Z?j&j:1(Ki - 1)(Kj - 1)

Wn = K7 x 1 vector

W11
wlg
: O*. — E*.
Wi = ,  where wg; = S]—*s]
. /Esj
’(UK** 1
wK***g
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O%; = number of observation in (s, j) after combining.
E}; = expected number of observation in (s, j) after combining.

Let WN == H*SJEVN

Hieunn g pooeng = . ,
0 H
where H is matrix which is mentioned in second-order.
So
Wy = H*SEVy 5 N(H*p, H*SoH)
and

H*SoH*" = H*Sh (I, — gV 2 BIEBT) Sy H"

Let W3 = ZE Wy, where Zy is a K*"¢ x K"y matrix.
1V EL

1/ Vi,

Zn

1/v/Eloery

1/\/Eeeg
So Wi = ZEWy % N(ZLH*u, ZLH*SoH" Zy)
(02, —E*

s

2
w1 % JRR* g i S‘J) R %. 92
=Wy Wy =21 2 5a — B, doim1 X
!/ . .
where \! s is eigenvalues of ¥* = ZL X7y
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Table 1: Notational set-up of the frequencies in logistic regression model

1 2 ... g Total
y=0 mnp niz ... ny No
y=1 ny nip ... ng ni
Total n; na ... ng, n

Table 2: Notational set-up of the frequencies in LCR model

1 2 g
(ylzl,ygzl,...,ymzl) 011 012 019
(ylzl,ygzl,...,ymZZ) 021 022 Ogg
(3/1 = ]_,yg = 1,. L Yme— km) Oml Omg Ce Omg
(yl = kl, Yo = kg,. ey Ym = km) Ok*l OK*Q RN OK*g
s N9 ce Ng

Table 3: Interpretation of the silhouette coefficient for partitioning method

SC Proposed Interpretation
0.71-1.00 A strong structure has been found.
0.51-0.70 A reasonable structure has been found

0.26-0.50 The structure is weak and could be artificial, try additional method

<0.25 No substantial structure has been found
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Table 4: Notational set-up of the frequencies of first- and second-order mar-

ginals
1 2 g
(y1=1) On O12 O1y4
(y1 =k — 1) Oni Onp2 Oh.g
(2 =1) Ohyt Opyo Ohayg
(yo = ko — 1) Ons1 Oggo Ohsyg
(yar = 1) Ong Onyo Ohag
(ymr = kpr — 1) Onsi Ong2 Ohsg
(i =1y2=1) Ons1 Ohg2 Ohgg
(y1 =1,y2 =2) Onnt. Onoo Ohrg
(yl = 1,12 = ky~ 1) Ohs1 Ohg2 Ohgg
(11 =2,y2 =1) Opsic Ohgo Ohog
=k =Ly, =ky — 1) Ohior Onyg2 Ohiog
(Z/Mfl =1lLyn = 1) Ohul Oh112 Ohug
(Yni—1 = ky—1 — Liysr = kayr — 1) | Opeesr - Ofeenny Ofreng
n Na n,
Note:
hl—k'l—l, hgz(k1—1)+1, h3:
ha= [SU = 1) + 1, hy = Y (k= 1),

hy = |
hio = [zfil(/@ . 1)] 4 (k= D)k — 1)
b = | (k= D] + [ S0 (b = Dk = 1) +1

34
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b

Zz?:l(ki - 1)
ho =[S (ki — 1)) +1

M
i=1
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Table 5: Values of oy and «y,, in balanced case

Qo
item1 item2 item3 item4 item 5
class 1 -0.6012 0.6358 0.2786 -0.3152 0.5294
class 2 0.1289 0.3371 0.1878 0.3102  0.3829
class 3 0.2698 0.0271 -0.5336 0.3746 -0.3508
A
Zim - -0.1741  -0.1904 0.1923  0.2254  0.2177
Zom, 0.1984 0.2835 0.2014 -0.2836 0.1674

Table 6: Values of 3, and Bp; in balanced case

Bo
class 1 vs. class 3 class 2 vs. class 3
0.2731 0.3269
ﬁpj
Ti -0.2170 0.3830
Tio 0.4760 0.1240

Table 7: Values of ag-and-azy in unbalanced case

€%
item1 item2 itemd3 item4 itemb5 item 6
class 1 0.2797 0.4434 -0.4717 0.5080 0.5683 0.2855
class 2 0.2323 0.2686 0.3412 0.1323 0.4963 -0.2234
class 3 0.6281 -0.0856 0.0781 0.1472 0.6396 -0.4206
class 4 0.3330 0.4659 -0.2854 -0.1591 0.2062 0.1081
class 5 0.0268 0.2366 0.3235 0.5534 0.0693 0.4623
A,
Z1m -0.2050 0.2243 0.2265 0.2655 0.2564 0.3224
Zom -0.1052 0.4443 0.7867 0.2103 0.3878 -0.0902

Table 8: Values of 3y and (p; in unbalanced case

Bo
class 1 vs. class 5 class 2 vs. class 5 class 3 vs. class 5 class 4 vs. classh
0.2510 0.3041 0.0413 0.2035
ﬁpj
Ti 0.1655 -0.2943 0.1719 0.3683
Tio 0.0251 0.1850 0.4911 0.2988
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Table 9: Observed contingency table of balanced case, averaging over 100

simulations

Response Group
pattern 1 2 3 4 5t

pi=lgp=Lys=lya= Ly =1) 1822 19.03 27.87 27.66 29.21
y1=Lyo=1ys=1,ys = 1,y5 = 2) 9.35 10.27 16.27 16.99 18.88
pi=lys=lys=1,u=2,y5=1) 2172 2251 17.38 1877 20.99
=1y =1lys=1,ya=24s=2) 1233 1151 10.89 11.65 14.09
p=Lyps=lys=2yu=1,ys=1) 1243 1259 2024 19.35 23.73
=Ly =1luys=2y=1u=2) 682 663 1242 1289 17.13
p=1lp=1lys=2=2ys=1) 1453 1516 13.32 14.13 16.77
y1=1Lyo=1y3 =2,ys = 2,y5 = 2) 763 7.63 7.69 864 11.51
yi=Lyp =2y =1l =1ys=1)., 1082 11.68 2288 2218 23.63
=1y =2y =1, =Ldp=2) 4568 58 13.36 1439 16.16
=Ly =2y3 =14y, =2,y = 1) 12,61 13.13 15.24 15.73 15.62
=1y =25 = 1,0 =205 =2) ~ 6SE 729 899 861 10.46
yn=1Ly=2y3=2,ys = 1,y; = 1) 7.15° 8.01 16.34 16.21 19.19
1= 1,ys = 2,y = 2,y0 =1, ys =2) 000403 395 9.34  10.07 14.02
y1 =1y =2,y3 = 2,94 = 2,y5.= 1) 893 882 10.72 11.22 13.26
=1y =2,y3 =2,y4s = 2,y5 = 2) 4.72  4.23 6.78 6.74 9.61

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

[\D

n=21p=Lys=1Ly=1y=1 36.65 38.49 27.67 28.68 32.02
n=2,y=1Lys=1y,=1y5 =2 18.89 20.14 16.32 16.41 21.21
n=2y0=1Lys=1y1=2,uy5 =1 43.55 45.03 18.61 19.09 24.91
n=2,y=1Lys=1,94=2,y; =2 23.61 23.09 11.00 11.46 14.87
n=2y=1Ly3s=2,y4=1,95=1 11.28 1227 13.77 13.80 16.16
n=2y=1Lys=2,y4=1,y; =2 13.02 1349 11.78 12.71 16.73
n=29=1Lys=2,y1=2,y; = 1 29.85 30.07 1298 14.88 18.42
n=2,y=1Lys =294 =2,y =2 1547 16.00 831 886 12.37
n=2,9=2y3=11y,=1y5 = 22.33 23.32 2228 21.95 25.73
n=2y2=2,y3=1,9y,=1,95 =2 11.28 12.27 13.77 13.80 16.16
n=2,9=2y3=11y1=2,uy5 = 1 27.09 26.44 14.28 15.32 19.05
=2,y =2,y3 = 1,94 =2, y5 = 2 13.78 14.14 848 884 11.61
Nn=2,9=2y3=2,y1=1y; =1 14.13 1552 16.34 16.42 20.01
=2,y =2,y3 =2,y = 1, ys =2 8.09 796  9.52 11.07 14.34
1 =2,Y =2,y3 =2,y = 2,y5 = 18.15 1743 10.72 11.24 14.16
Y1 =2,Ys =2,Y3 = 2,ys = 2,y5 = 2 8.77 9.78  6.46 7.16  9.49

—_

e e e s s s e s e e s s e e e s e ae e s s e e e s s ae an o o an s
=
—_
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Table 10: Observed contingency table of unbalanced case, averaging over 100

simulations

Response Group
pattern 1 2 3 4 )
(11 =1,y = =1lyu=1y=1ys=1) 1544 1548 13.09 13.01 1891
(y1 =1Ly, = =ly=1y=19y=2) 1872 1892 983 1226 14.98
(y1 = 1,40 = 1 s =1Ly =145 =2,y6 = 1) 7.05 693 913 832 11.27
(=1 =1Lys=Lyu= 1,95 = 2,56 = 2) 9.17 890 650 7.33  9.01
(i=1ypp=1lys=1yu=2ys=1,ys=1) 1145 11.80 12.84 11.83 13.85
(n=1lyp=1lys=1lys=2,ys=1,96=2) 1409 13.64 9.74 10.15 11.39
(11 =1,y = =1y =2,y5 =2,y6 = 1) 549 516 912 7.81 840
(11 =1,y = =1Ly =295 =2,y6 = 2) 6.34 683 6.60 672 6.93
(y1 =1,y2 = 3 s =2,y =1,ys = Lye=1) 1215 1229 14.02 14.31 18.95
=1y =1ys =240 = Lals = L,yg =2)  15.09 14.68 1081 12.77 14.73
(1 =1, = 1,3 = 2,94 =0, ys = 2lygi=.1) 546 595  9.26  9.00 11.29
(1 =100 = 1,45 = 2,44 = lytfs = 2, "= 2) 710 7.01 682 7.65 9.16
(1 =1L,y0 = =2,y =2, ys = Ailg = 1) 857 9.32 1377 12.33 14.05
(y1 =1,y2 = 3 Y3 = 2,1 =2, ys = Lggl=2) ~ 10.64 11.50 10.74 10.57 11.25
(1 =1,p =1, y3 = 2,94 = 2,5.= 2, Y6 = 1) 3.73 469 993 7.87 891
(=10 =15 =2, s = 2,95 = 2,44 = 2) 505 504 757 724  6.60
(1 =1, =2,43=1,ys=1,ys =L,yg=1) 1483 1509 7.69 9.73 12.55
(i=1yp=2ys=1lys=1,ys=1,96=2) 1815 19.07 592 923 11.63
(1 =1,y0 = =lys=1,ys=2,y6=1) 6.36 7.51 530 546 7.69
(11 =1,y = ). s =Ly =195 = 2,56 = 2) 833 870 395 544 7.44
(1 =1, =2,y3=L,ys =2,y5 = L,ye =1)  10.79 11.38 7.05 7.90 9.67
(=1 =23=1, =295 =1,ys=2)  13.85 14.08 536 7.63 8.37
(=10 =2ys=1,ys = 2,95 = 2,56 = 1) 460 535 475 505 5.68
(11 =1,y = =1Ly =2,ys =2,y6 = 2) 6.29 6.66 3.70 427 475
(y1 =1,y = =2y =1ys=1ys=1) 1211 11.92 803 9.41 12.20
(y1 = 1,y; = ). s =2,y =1,y =1L,y =2) 1547 1455 6.27  9.77 10.46
(1 =10 =2,03=2,9y4 = L,ys = 2,6 = 1) 528 597 537  6.06 7.89
(=12 =2,s=2, s = 1,95 = 2,96 = 2) 698 7.01 433 486 5.82
(=110 =23 =2, 44 = 2,95 = 1,46 = 1) 844 836 7.82 887 9.03
(1 =Ly, = =2 =2y =1ys=2) 11.22 1049 585 7.67 7.72
(=190 = =29 =2,ys =2,y = 1) 429 433 559 533 4.94
(y1 = 1,40 = ), s =200 = 2,y5 = 2,5 = 2) 508 522 433 458  4.49
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Response Group
pattern 1 2 3 4 )

=2p=1lys=Lyu=1,ys =L,ys = 1) 9.01 9.66 11.17 1043 15.26
— o=l =ly=1lys=1y5=2) 1123 1175 826 844 1151
— o=l =luy=1lys=2y5=1) 451 458 726 672 9.62
o =lys=lyu=1lys=2,ys=2) 549 570 544 576 6.74
— o=l =ly=2ys=1y5=1) 675 712 1020 885 11.20
=2 =Lys=1Lyu=2,y5 = 1,y6 = 2) 818 878 777 7.69 9.00
o =lys=lyu=2ys=2ys=1) 323 306 68 597 T.04
o=l =Ly =2ys =2,y5=2) 412 412 548 481 527
— o=l =2y=1ys=1y5=1) 700 700 1223 11.38 15.34
—o =Ly =2 =1ys=1y5=2) 917 909 822 915 1160
=2 =Lys=2,y4 =1,y =2,y = 1) 3.30 381 826 725 9.63
— o=l =2y =1,ys=2,y5=2) 439 421 567 544 7.44
=2y = 1ys = 2,00 = 2, &) 541 575 1105 10.03 10.72
=2,y = 1,y3 = 2, ys =2, ys =Wer= 2) 756 6.82 874 839 898
=20 =1,y3 = 2,94 = 2,45 = 2, Ys— L) 237 238 861 658 7.00
0 =Ly = 2,00 =2, 05 =206 =2) = 291 356 618 516 5.26
=2,y =2,y3 = L,yy =L, ys = 1lggi=1) 9.07 953 6.23  6.47 9.71
— =2y =Lys=lys=1,y5=2) 1097 11.75 443 6.16 827
0 =2 ys=lyu=1,us =2 =1) 386 444 437 402 6.37
— =2 =lyi=1ys=2y5=2) 525 535 333 3.84 482
=2 =2,y3 =Ly =2,y =1,y6 = 1) 6.47 654 590 583 7.37
2 =2y =Lyu=2ys=1,y5=2) 804 9.00 454 562 6.07
— =2 =Ly =2ys=2,y5=1) 308 306 430 411 4.64
=2 =2,y3 =L,y =2,y5 = 2,ys = 2) 3.68 391 321 373 3.89
=2,y =2,y3=2,ys = L,ys = 1,y6 = 1) 7.04 749 643 693 9.60
— =2 =2yi=1lys=1y5=2) 858 004 465 624 8.12
— 2 =2y =2y =lys =2y =1) 296 285 461 496 5.87
0 =2 s =2y =1,ys =245 =2) 425 405 349 391 475
=2 =2y =2ys=1y5=1) 504 526 649 6.11 6.67
=2, =2,ys =2,y1 =2,y5s = 1,ys = 2) 7.08 6.73 499 578 595
0 =2y =2 =25 =2,ys = 1) 246 246 423 429 449
=2,y =2,Y3 =2,Ys = 2,y5s = 2,ys = 2) 293 332 335 352 338
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Table 11: Observed contingency table of first- and second-order marginals,

averaging over 100 simulations

Response Group
pattern 1 2 3 4 5)
(hh =1) 307.61 313.83 251.08 270.43 318.42
(12 =1) 250.17 255.53 291.14 281.22 341.29
(y3=1) 273.89 283.85 219.29 230.59 287.71
(ya=1) 283.77 290.28 230.37 251.71 327.04
(ys =1) 337.61 343.88 270.13 290.94 355.11
(ys = 1) 217.607°226.52. . 260.93 252.22 315.81
(11 =1,y2=1) 155.54 #5814 159.77 159.17 189.68
(y1 =1,y3=1) 170.95  175.50 120.57 132.14 160.93
(1 =1,ys = 1) 177.69 179.98 '126.32 144.61 182.39
(11 =1,y5 =1) 211.01:°212:57 _148.83 167.44 199.74
(hh=1,y6 =1) 136:04+.141.53 7 142.76  142.29 175.28
(Yo =1,y3 =1) 140.27 142.43 139.26 136.10 170.38
(Yo =1,ya=1) 144.28 145.96 14597 149.22 195.44
(yo=1,y5=1) 17046 173.60 172.48 171.59 211.72
(yo=1,y6 = 1) 110.92 114.98 166.77 151.69 191.44
(y3=1,ys = 1) 157.44 163.36 111.90 122.62 164.19
(ys=1,y5=1) 187.04 193.59 130.02 141.23 179.74
(ys=1,y6 =1) 121.99 126.69 125.23 121.51 159.23
(lu=1y=1) 194.03 197.31 137.28 155.69 203.82
(ya=1,y6 = 1) 125.43 130.50 132.45 133.46 182.15
(ys=1,y6=1)  149.57 153.99 154.01 153.42 195.08
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Table 12: Simulation results of ”situation 1” in balanced case

% above % above % above
no. group mean variance 90th%-ile 95th%-ile 99th%-ile
T, 5 140.419 381.386  165.298 168.832 184.317
T 5) 140.419 381.387  165.298 168.833 184.318
T3 ) 140.420 381.387  165.298 168.833 184.318
Nominal asymptotic
distribution
T 5 159.229 345.390  186.458 191.088 199.370
T 5) 159 318 182.234 189.424 203.399
T3 ) 159 318 182.234 189.424 203.399
Table 13: Simulation-results of “situation 2” in balanced case
% above % above % above
no. group mean variance 90th%-ile 95th%-ile 99th%-ile
Ty ) 162.180 339.864  188.266 191.263 202.460
T 5) 159.509 338.743  183.911 188.962 199.383
T3 ) 162.184 339.870  188.272 191.266 202.465
Nominal asymptotic
distribution
T ) 159.230 345.391  186.460 190.090 199.370
T 5) 159 318 182.234 189.424 203.399
15 ) 159 318 182.234 189.424 203.399




Table 14: Simulation results of ”situation 3” in balanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

Ty 5 166.843  569.964  202.338 206.251 212.555
15 5 159.508 338.742  183.912 188.962 199.972
Ts 5 162.184 339.870  188.272 191.266 202.464
Nominal asymptotic
distribution
Ty 5 159.230 345.391  186.460 190.090 199.370
T, 5 159 318 182.234 189.424 203.399
T 5 159 318 182.234 189.424 203.399

Table 15: Simulation results ol situation 1” in unbalanced case

% above % above % above

no. group mean variance 90th%-ile 95th%-ile 99th%-ile

T, 5 31.753  74.620 41.902 45.463 54.409
15 5 65.096  97.559 77.240 83.331 85.622
T; 5 65.506  98.267 77.480 83.333 85.622

Nominal asymptotic

distribution
Ty 5 93.825 796.756  134.624 150.099 155.742
T 5 105 210 123.947 129.918 141.620
Ts 5 105 210 123.947 129.918 141.620
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Table 16: Simulation results of ”situation 2” in unbalanced case

% above % above % above
no. group mean variance 90th%-ile 95th%-ile 99th%-ile
Ty 5 112.617 463.602  140.582 150.719 166.195
15 5 82.007  119.623 97.725 102.131 109.548
Ts 5 85.545  114.977  100.786 106.047 111.311
Nominal asymptotic
distribution
Ty 5 93.827  796.468  134.776 150.026 156.049
15 5 105 210 123.947 129.918 141.620
Ts 5 105 210 123.947 129.918 141.620
Table 17: Simulation resultis-of “situation 3” in unbalanced case
% above % above % above
no. group mean variance 90th%-ile 95th%-ile 99th%-ile
Ty 5 129.527 806.741  173.690 181.156 185.074
T 5 82.010  119.623 97.730 102.130 109.550
T3 5 85.544  114.980  100.790 106.046 111.310
Nominal asymptotic
distribution
Ty 5 93.827  796.468  134.776 150.026 156.049
T 5 105 210 123.947 129.918 141.620
Ts 5 105 210 123.947 129.918 141.620
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Table 18: Power of ”situation 1”7 in balanced case

a=0.05

test statistic no.group mean variance power

Ty 3 86.642 206.920  0.01
T 3 86.643 206.921 0
15 3 86.643  206.921 0

Table 19: Power of "situation 2” in balanced case

a=0.05

test statistic 1no.group  In€an - variance power

Ty 3 131.240 /-224.264  0.79
15 3 115.122° 219.229  0.46
15 3 131.447 224.234  0.76

Table 20: Power of "situation 3” in balanced case

a=0.05

test statistic no.group ~mean  variance power

Ty 3 50.653 85.886 0
75 3 115.122  219.230  0.46
15 3 131.450 224.234  0.76
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Table 21: Power of ”situation 1”7 in unbalanced case

a=0.05

test statistic no.group mean variance power

Ty 3 28918 158.416  0.01
T 3 46.668 257.740  0.01
15 3 44.542  102.021 0

Table 22: Power of "situation 2” in unbalanced case

a=0.05

test statistic no.group  Inéan - variance power

Ty 3 347.980 £ 1094.687 1
15 3 143.270- 726.348  0.98
15 3 86.203  122.648  0.65

Table 23: Power of "situation 3” in unbalanced case

a=0.05

test statistic no.group ~mean  variance power

Ty 3 11.245 19.834 0
75 3 143.270  726.348  0.98
15 3 86.202  122.647  0.65
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