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ABSTRACT

Traffic congestion is a ‘serious preblem in everybody's daily life.
Prediction of traffic flow is becoming the kernel of the traffic management
for oversaturated conditions. Our goal is to forecast the traffic flow,
especially predict the cumulative traffic flow. This thesis considers the
estimation of the parameters of censored data models with lagged dependent
variable. Two methods have been proposed. NR algorithm is supplied for
solving the Poisson regression dynamic Tobit model. The SML-GHK
simulator is another feasible method for the estimation of dynamic Tobit

model whose lagged dependent variable is latent.
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Abstract

Traffic congestion is a serious problem in everybody’s daily life. Prediction
of traffic flow is becoming the kernel of the traffic management for oversatu-
rated conditions. Our goal is to forecast the traffic flow, especially predict the
cumulative traffic flow. This thesis considers the estimation of the parameters
of censored data models with lagged dependent variable. Two methods have
been proposed. NR algorithm is supplied for solving the Poisson regression
dynamic Tobit model. The SML-GHK simulator is another feasible method
for the estimation of dynamic Tobit model whose lagged dependent variable

is latent.

Key words: Censoring; Dynamic Tobit model; Poisson regression; NR, algo-

rithm; GHK simulator; Simulated likelihood estimator
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1. Introduction

Traffic congestion is becoming a serious problem in everybody’s daily life. A
roadway system is operating in saturated and oversaturated conditions. However,
most of the existing control algorithms are developed for undersaturated conditions
and would lead to misleading results if they are used to control oversaturated con-
ditions. The appropriation traffic modeling and management procedures for over-
saturated conditions are required imminently and become even more pressing with
the deployment of more efficient traffic control systems within the intelligent trans-
portation systems (ITSs) complex.

In oversaturated conditions, the sgbje(.:ts of signal control, queue management,
and traffic management are clqsel'y:frelatﬁed and in fact they become one — more
so than in undersaturated Conz(.ii.tions.‘El(u‘r.:c_%ﬂé'réllifﬁ,.:lin congested and oversaturated
conditions, maximizing syster;r‘-;_ "outﬁuiﬁltléﬁ:gxiti.rcaf issue. The signal timing algo-
rithm needs to be dynamic and:' must be Capfabi'é of responding to and evaluating
various queue management strategies. Thé traffic low prediction is our goal, the
most important objective is the cumulative traffic flow prediction, however, due to
the subjects of signal control.

Vehicle detector is used for detecting the presentation of the queue. It is installed
on links which traffic low has key impact on critical intersection. Because of the
restriction of detecting, it may be well imagined that the presentation of the queue
has unobserved data. The real traffic flow will be unobservable when the quantity is

too heavy and the ceiling of the observed flow will be determined according to the

location of detector. To adequately model the dynamic and censored feature of our



variables of interests, the Poisson dynamic Tobit model is considered for the traffic
flow and the Normal distribution is used as an approximation.

The Tobit model is frequently used by economists to analyze limited depen-
dent variable (LDV) models. In order to make the inference of the dynamic Tobit
model, including estimating parameters and predicting latent vectors, the conven-
tional technique first used in the estimation of Poisson regression dynamic Tobit
model is Newton-Raphson (NR) optimization algorithm. In general, a direct solu-
tion to the Tobit model is not possible, although NR iteration method is supplied
for solution by computing the gradient and Hessian matrix of the relevant log-
likelihood. Secondly, the technique used in the estimation of dynamic Tobit model
with lagged latent dependent variable is the simulated maximum likelihood (SML)
method through procedures based':an- a gecd_féi?;e_ algorithm formulated by Geweke-
Hajivassiliou-Keane (GHK) siJ;u.llatorr.‘Eé_l“:f_lé.”SIM]'_;v_llis feasible for the estimation of
such model, and GHK is a SHZI_S)'Oth‘, [a;s‘;z:]:ﬁ_.p_I__gtjce}llj; unbiased, and consistent simu-
lator for this likelihood functioﬁ-:' H

The rest of the paper is organized as follows. Section 2 is a review about the
researches relative to the Tobit model, NR algorithm, and SML-GHK simulator.
Section 3 illustrates the construction of the dynamic Tobit model based on the NR
algorithm for Poisson regression and SML-GHK simulator for lagged latent depen-
dent variable. We also construct valid asymptotic inference for the parameters of
interests. The numerical example with traffic congested and oversaturated condi-
tions is described in section 4. Comparing the effect if using different methods and
choosing distinct forms for the LDV model, a few concluding remarks are made in

section 5.



2. Literature Review

A growing proportion of travel is occurring in congested and oversatured condi-
tions around the world. Oversaturation refers to conditions where traffic queues per-
sist from cycle to cycle either due to insufficient green splits or because of blockage.
The procedure for dynamic design and evaluation of traffic management strategies
in oversaturated conditions was presented by Ghassan and Benekohal (2003).

A very common problem in economic data is the censoring of the dependent
variable. When the dependent variable is censored, values in a certain range are all
transformed to a single value. The censored regression model was first introduced by
Tobin (1958) in which the dependent \{ariaple is normal but truncated to the left of
zero. An iterative procedure stqftiﬁé from a ;ér'-t_ain initial estimator was proposed
in his paper. The dependent ‘;/.a.riable('(‘_‘)l_f éuch réégession often has a known lower
or upper bound; it takes on the bouhda,r-}uuahles fér a number of observations and
takes a wide range of values for:'ﬁhe;remainin'g-'Si)servations. This model has been
widely applied in economics up to the presént and is usually called ‘Tobit” model.

Amemiya (1973) extended the work of Tobin, proved the consistency and asymp-
totic normality of the maximum likelihood estimator in the regression case. He
pointed that nonlinear normal equations generally have multiple roots and for guar-
anteeing the consistency of the root produced iteratively, it is necessary to start from
an initial consistent estimator. Amemiya also showed the second-round estimator
which taking Newton iteration from this initial estimator is asymptotically the same
as the maximum likelihood estimator. Olsen (1978) indicated that the likelihood

function for the Tobit model has a single maximum and this property is proved in



detail.

An adaptation for linear regression is Poisson regression model. It has been given
considerable attention in the statistics and econometrics literatures. The analysis of
economic behavior often leads to the study of characteristics taking a small number
of positive values. The assumption of normality of the disturbances can’t be made,
because the endogenous variables take a small number of values with positive prob-
abilities. Advances in the theory of estimation can be found in Gourieroux et al.
(1984). Formulae for the gradient and Hessian matrix of the relevant log-likelihood
function were given by Terza (1985) and detailed a Newton-Raphson (NR) opti-
mization algorithm for Poisson regression model with a dependent variable subject
to censoring. The asymptotic covariance matrix of the estimator was derived as
well. The statistical inference on, thls quelin_;;fés{_introduced in Brénnés (1992). He
illustrated that the efficiency of Pmssof;nia}qmum likelihood estimator is lost due
to the censoring and the Consi;s_;_ﬁent‘ br@pfé%t_g_galsq d%sappeared.

The impact of simulation methods on the aﬁélysis of LDV models is profound.
Various simulation methods and proc;edures”for drawing random variables have also
been proposed in the statistics and econometrics literatures. The simulated maxi-
mum likelihood (SML) method was introduced by Lerman and Manski (1981). SML
is also called maximum simulated likelihood (MSL) on ocassion, and both are the
same. Simulated pseudo-maximum likelihood (SPML) method was indicated by
Gourieroux and Monfort (1993). McFadden (1989) presented the method of sim-
ulated moments (MSM), and Hajivassiliou and McFadden (1990) performed the
method simulated scores (MSS). For the estimation of limited dependent variable

models, the maximum likelihood is the desirable estimation approach (Tobin, 1958).



We therefore concentrate on the SML for dynamic Tobit model in this paper.

The performance of a simulation method depends on simulator for relevant
functions involving integrals. Several simulator have been offered for multinormial
probabilities in LDV models. Among multivariate normal probability simulators,
Hajivassiliou et al. (1996) suggested that the GHK simulator is the most reliable
and accurate way to simulate multivariate normal probabilities for classical esti-
mation. The GHK simulator was developed by Geweke (1992), Hajivassilious and
McFadden (1990), and Keane (1990). Hendry and Richard (1992) provided sim-
ulation techniques for evaluating likelihood functions of dynamic latent variables
models based on a sequential factorization of joint densities of observable and latent
variables. The simulated probabilities required for SML can be estimated by the
GHK simulator so that one can .eéfi-rr-lagtg SML—GHK models. The consistency and
asymptotic normality of SML e;stimato‘ll_‘:ngib_}Bé o'l;fgined directly from Hajivassiliou
and McFadden (1998). ;‘.__ s ﬁ— , ]

Recently, this simulator 1sv furtht;:r apphed in discrete choice estimation. For
instance, Chang (2002) applied this to study the earnings dynamics and the impact
of Title VII of the 1964 Civil Rights Act on the convergence of the black-white earn-
ings gap. Contoyannis et al. (2004) used binary choice models to show what can be

done with conventional methods and how the range of models can be expanded by

using Markov Chain Monte Carlo (MCMC) algorithm and GHK simulator.



3. Model Specifications and Methodology

In LDV models, the observed data vector y is an indirect observation on a latent
vector y*. The generating process for y can be regard as an ‘incomplete data’ or

‘partial observable’ process.

Definition 1. (Censored Random Variable) Let Y* be a random variable from
a population with c.d.f. F(Y™*) and support A. Let B be the support of the random
variable Y = 7(Y*) where 7 : A — B is not invertible. Then Y is a censored

random variable.

In such case, 7 is often called the ‘observation rule’ and though it may not be
monotonic, 7 is generally piece—(wi’s{'eﬂ contiﬁﬁ'ou_s. An important characteristic of

censored sampling is that no obsérvatidtﬁfsi’are. miésjng.

Tobin (1958) first consideréd the[regfeSsion :mocfiel where truncated to the left of
zero. It is the case of censored random véfi;ibles:v”The model is called ‘Tobit’ model

and represented as
y; = B+ €

yi = max{y;, 0}
where y; is a latent dependent variable, z; is a vector of exogenous variables, 3 is the
corresponding vector of parameters, the disturbance ¢; is assumed to be independent
N(0,0%), and y; represents an observed dependent variable. In above model, y; = y;
it y* > 0 and y; = 0 if y7 < 0 for each individual <.
In censored case, censoring destroys the linearity of the model, and ordinary

estimation method for linear regression is not applicable. We therefore discuss two
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techniques to deal with this problem. The NR algorithm is considered for Poisson
regression dynamic Tobit model in the first subsection below, and simulation es-
timation relied on GHK simulator is proposed for Tobit model with lagged latent

dependent variable in the second subsection.

3.1 Poisson Regression with Newton-Raphson Algorithm

The basic model for the analysis of count data is Poisson regression. A property
of this model is the variance of data to be equal to the mean, conditional on explana-
tory variables. The endogenous variable is assumed to have a Poisson distribution
conditional upon the explanatory variables. 7In particular, there is no finite upper
limit on the values that may be dg;sérvedﬁ and Ktil"e; parameter of this distribution is a

‘ uﬁ:
function of the values of the explanatory véiflables -The lagged observed dependent
variables are considered in the Pmssonﬂynannc Tob1t model.

NR algorithm is a computatlonal procedure that can be used generally to max-
imize a complicated function. The idea is to approximate the function by a linear
Taylor series. NR algorithm is supplied for solving the Poisson regression models by
computing the gradient and Hessian matrix of the relevant log-likelihood function.

Let conditional pmf of y; given X; be a Poisson distribution. The mean and the

variance of y; given X, are equal to m;. The basic Poisson regression model is

myte—mt
ft(yt|Xt) ti' t = ]_,...,T (1)

Ye:
where m,; = exp{X,6} is the mean of y, given X,, X, is a k x 1 vector of explanatory

variables, and # is a k£ x 1 vector of unknown parameters to be estimated. The



exponential function appearing in m, is mainly justified by the positivity of m;.
The parameter vector ¢ can be estimated by iterative maximum log-likelihood

function via NR optimization algorithm. Given explanatory variables X, the depen-

dent variables, y;, t = 1,...,T, are independent, and therefore likelihood function

can be written as

T
0) =] f:wlX:.0)

The log-likelihood function

T
l=log L= (y:logm; —m; —log(y!))

t=1

The NR update of 6 at the (i + 1)th iteration is

where G(k x 1) is the gradient 'and H (k Xk) 1S thé Hessian matrix with

1296

G(Q) gé : Z(ytj_—--%t)Xt
- (3)

Detailed account of the censored model is given below. Suppose that the value

tth

of y; is observable for the member of the sample iff y; < C' where C is a known

non-negative integer. Let d; be a indicator function defined as

1, ity <C
dt: '
07 1fyt20

This is a right censoring, a count above and including C' is censored, only value

smaller than C' is exactly observed. The log-likelihood function [ of censored sample

9



can be represented as

T
Z <dt (yt 10g my — my — 1Og(yt')) -+ (]_ - dt) 10g (PT(yt Z C))) (4)
=1
Let Pr(y: > C) = F,(C). The NR iteration defined in Eq.(2) can be used to

maximize Eq.(4) after respectively replacing the gradient and Hessian matrix. The

calculating process be detailed as follows.

o~
Il
—
s
I
)

79 108 (F0)) =~ (10) Czl Fi (= ) X
= B
aae’ F, 10) C:: feli) (i — my) X | I -
B i: Ft(lc)2 (Ft(C )%ft(i)(;i mt)— ft (2)(2 ;‘"m)%m(c» X,
. e (PO (=m0 10 (6= ) = 5 = m (€D )

The gradient and Hessian matrix hence become

T

616) = Y- (4l =) = (1= do i )X,
o ()
H) = — Z; (dtmt + (1 —dy) <Fjb(26t7) + (Filct,>)2>)XtX£

10



where ®; = Zf:ol f:(3)(i —my) and ®yy = Zicz_ol 0 ((z —my)? — mt). The asymp-

totic covariance matrix of the maximum likelihood estimator of 6 is

-1

(Z (1= R+ (2ut %))m;) ()

t=1
The initial value of # can be obtained from the uncensored NR algorithm.
However the uncensored NR algorithm still need a initial value. One way we can
operate is from the population mean of observation ;. The y; can be used to
estimate m; due to the equation logm; = X;H, ie. logy, =~ X;H.
One importance of adopting this model is to generate prediction of y; value for
each t corresponding to the vector X; of values on exogenous variables. From the

Poisson regression model, we will have

i ooy G

The complete procedure of NR algorithim ris surhm&irized below.
e Step 1 : Initiate from log yt%X,;H, gnd the LSE will be the initial vector.

e Step 2 : Put the vector from Stepl into the basic NR algorithm (Eq.(2) and

Eq.(3)), update until |0](-i+1) - 6’]@| < € (a small value) for all j.

e Step 3 : Put the vector from Step2 into the censored NR algorithm (Eq.(2)
and Eq.(5)), update until |0](-i+1) - Qj(-i)| < € (a small value) for all j. The

parameter vector 00+ will be the MLE of 6.

e Step 4 : Calculate the asymptotic covariance matrix by Eq.(6) and prediction

y; for each individual ¢ by Eq.(7).

11



In regression model, it is important to spell out the consistent and asymptoti-
cally normal estimator. Amemiya (1973) illustrated the convergence of the iteration
to the global maximum if the initial estimator is consistent. However, the consis-
tency property of the Poisson maximum likelihood estimator is lost in the LDV

models (Brannés, 1992). The efficiency is also lost based on Poisson regression.

3.2 Gaussian Model with Simulation Estimation

The maximum likelihood approach is the desirable estimation to estimate the
dynamic latent variable model. The sequential factorization of joint densities of
observable and latent variables were introduced by Hendry and Richard (1992). A

recursive algorithm formulated by GH ; simuiabtqr provides the most reliable and

RIS R
accurate way to simulate mulfivariate normnal probabilities. Once the simulated

probabilities are obtained, maﬁgj_imurﬁ hkeh'lmvd fpeéhniques are employed. The gen-

eral procedure is called ‘simulatéd«ﬁ@ximum fikelihood’ (SML).

Definition 2. (SML Estimator) Let the log-likelihood function for the unknown

parameter vector 6 given the sample of observations (yi,t =1,...T) be

Ir(0) = Zlog JICET

and let f(0;y,w) be an unbiased simulator so that f(0;y) = E., (f(Q;y,w)|y) where
w s a stmulated vector of R random variates, and R is the number of simulation

for each t. The simulated maximum likelithood estimator is
[—— arg max ZT(H)

12



where

T
Ir(0) = Zlog f(0; yp, wi)
=1
for some given simulation sequence {w;}.

In this section, we consider the following dynamic model for the true/latent data

generating process
y::)\yt*_l"i_ﬁxt‘i‘@"‘ﬁt tzlaaT

v, iy <C (8)
Yt =
C, ity; >C
where C' is a known value. Suppose that the error terms have a normal distribu-

tion, i.e. ¢ ~ N(0,0?). Under this assumption, we derive the simulated likelihood

function relied on GHK simula@o’f for apgencral aynamic Tobit model.
o Tl = Y

e sl
|

| :-7(

3.2.1 MhﬁhmdSMmbﬁ;H ﬁ
Given sample observations, let I; be an indicator function with latent variable
censoring, such that
1, ifyf <C
0, ifyy >C
Suppose the joint conditional density of observable and latent dependent variable
for this model is f(ys, yi|yi—1,y;_1). The classical likelihood function for the Tobit

model is represented as
o o T
L= / . / H e v lye1, yiy)dyf (9)
¢ ¢ =1

13



It is a high-dimensional integral with a dimension for y; as the same as the number
of censoring periods !

In order to obtain the tractable simulation estimation, the joint density func-
tion of f(y, yf|yt—1,y;_1) in Eq.(9) can be further decomposed into two products of
conditional densities, the suggestions were proposed by Hendry and Richard (1992)

and Lee (1999)

F e v lye-1.vi-1) = (el vy, v, vi_q) X P (Y3 |Ye—1, Yi_1) (10)

= go(Yelye—1, ;1) X ha(yi |l = 0,91, y7 1) (11)

where g;? and ¢»® is conventional Tobit likelihood function, and latent variables y;
can be drawn recursively from importance sampling density h; and hs.

On the basis of the decomposiﬂén inqu._(.'l'O).-_With a finite number of simulation

runs R, the unbiased likelihoocll 'simula’c'c'):r ('Jan be" ﬁll"ovided

W =
| L )

= 1 R T2y e *(r —1I
= EZH yt‘?}t 1,% 1))1_ (I(Coo)(y ( )))1 ! (12)
r=1 t=1 5

where 3"

is drawn from h;. This likelihood simulation is not a smooth function in
the parameter space due to the indicator function. In addition, Lee (1999) showed
the simulator based on Eq.(12) is inefficient in terms of the simulation variance
compared with the GHK-based estimators.

A better approach is to allow sample information to feedback to simulation

procedure. That is, the latent variable y; is recursively drawn from the univariate

conditional probability hs(y;|I; = O,yt,l,y;ﬁ)) conditional on not only the past,

'Note that we assume yo and y§ to be C' in this likelihood simulation.
* I 1= 1t .

201 = (f(welye—1,9i1)) (P = Olye—1, 7)) in Eq.(10).

. NG RN T/

%92 = (f(yt|yt71ayt—1)) (P(It = 0|yt—1,yt—1)) in Eq.(11).

14



(r

but the current sample information. Thus, y, ) is drawn from ho and the unbiased

likelihood simulator behind the GHK simulator can be expressed as

1AL AN P
= S TGl i) (P = Oy )™ (18)
r=1 t=1

This simulator is expected to be useful for the dynamic Tobit model. SML is ap-
plied to estimate the linear dynamic Tobit model through GHK simulator and using

Eq.(13) in this paper.

3.2.2 The GHK Simulator

The GHK simulator was developed by Geweke(1992), Hajivassilious and Mec-
Fadden (1990), and Keane (1990)..4tlis’éhosen here because a recent exhaustive
survey of probability simulator§ (Hapvgass;hou e’jcf al., 1996) reaches the conclusion

that the GHK simulator is tlie most reliable and accurate way to simulate multi-
=1 | =]

variate normal probabilities f&'_c!aési’éai estunatlon SML in conjunction with the
GHK simulator can cope with thet i-nrt‘ractabiliﬁties of the LDV models.

According to Eq.(8), let 6 be the vector of interests in the linear dynamic Tobit
model, that is, § = (X, 3,a,0). Suppose the total number of censoring is m and
occurs at time ¢4, ...,t,,. Random variables é’t(T) are drawn from the uniform random
number generator on [0, 1], where t = ty,...,t,, and r = 1,..., R. Those uniform
random numbers are kept fixed during an optimization search of SML estimator. For
the r* simulation run, the latent variable at censoring period ¢ can be simulated

from

*(r

i = M)+ B+ a+ o (0) (14)
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where yffrl) =y, if censoring does not occur at time ¢t — 1.

For generating y; from the univariate conditional probability hs(y; |1y = 0, y—1, yt*frl)),

the truncated normal random variables nt(r) are drawn recursively for censored ob-

servations. Let ® be the cumulative standard normal function and F' be the 1 — ®.

Hence, n,gr) can be calculated by

C - )\yﬁ? — fr; — «
o

0" (0) = F*(ft(r)F( )) ifte{ty,...,tm}  (15)

This is a mapping that takes a uniform [0, 1] random variable into a right truncated
standard normal random variate. Then y; ™) will be simulated by Eq.(14) for each
period of time .

The simulated likelihood function Eq.(13) can be obtained through Eq.(14) and
Eq.(15). Specially in Eq.(13), the ﬁrstpart of 'tw_o products can be given as

sl |

- = ES - (r)
w(r)ve ke M T — a — o)
Felye-1, v - SO “) (16)
.K 1 O' [ ::-VK 7;'0'
as t & {t1,...,tm}, le. y is é'rtru_éf”observati(_)ﬁ; where ¢ is the standard normal

density function. The second part of mtwo pféducts in Eq.(13) can be calculated by

C - )\yirl) — By —a— any))

P(I; = 0lys1, ")) = 1 — @ (17)

g

as t € {t1,...,tn}. The simulated likelihood function Eq.(13) therefore will be
obtained by combining Eq.(16) and Eq.(17). Furthermore, the parameter 6 will
be estimated by maximizing the likelihood simulator. The complete procedure of

SML-GHK simulator is summarized below.

e Step 1 : Initiate the estimation process with the LSE of the model y; =

Ayi_1 + PBxy + o + €, where y; is the observation at time ¢.

16



e Step 2 : Generate a random variable ft(r) ~ U(0,1) when observation y; is

censored at period of time t.

e Step 3 : Calculate a truncated normal random variable nt(r) from Eq.(15)

relied on Stepl and Step2 at each censored time t.
e Step 4 : Simulate the latent variable v, (r) by Eq.(14) combined with Step3.

e Step 5 : Calculate the likelihood simulator Eq.(13) by combining the condi-

tional density Eq.(16) and conditional probability Eq.(17).

e Step 6 : The 6 will be the SML estimator of 8 by maximizing the likelihood

simulator Eq.(13) from Stepb.

3.2.3 Asymptotic Properties _;_ : , =

| :-7(

The consistency and asyrrfpfpopic-'ﬁ:)"rrﬂéility 9”f SML estimator can be obtained
directly from Hajivassiliou and M(':-Jk?-ardden (1998) since the dynamic Tobit model is a
special case of a LDV model. The authors suggest choosing R bigger than v/T. The
following theorem, the proof can be found in their paper, develops the consistency

and asymptotic normality of the maximum simulated likelihood estimator for the

dynamic Tobit model.

Theorem 1. Assume that the observations and simulators are independently and
identically distributed. Assume also that the moment existence assumption in Ha-
jivassiliou and McFadden (1998) is satisfied. Let § = argmaxgl(0), where [() is

simulated by the GHK simulator with an appropriate choice of the number of sim-

17



ulations specified in the proof and is obtained by requiring that the Monte Carlo
random numbers are not redrawn when 0 is changed. Then, 6 — 0% in probabil-
ity, and (0 — 0%) — N(0,.J) in distribution, where 0% is the true value of 0 in the

parameter space © and J = _E(ag—;le’) lo—g+ -
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4. Empirical Illustration

4.1 Data Collection and Model Description

The data we analyze are collected near the intersection of Zhong-Hua Road
(F#ERL) and Jing-Guang Road (%3#) of Hsinchu City by the detector, RTMS*
,which is in forward-looking configuration. The collected time is from 8:00 AM to
9:00 AM on April 25, 2005. These vehicles drive in the direction of the Hsinchu
Train Station. There are 120 data sets and the time interval is 30 seconds. The
RTMS records the volume, number of vehicles that pass over the detector at the
interval of 30 seconds, and the occupancy, percentage of having vehicles detected at
the interval of 30 seconds.

Time series plot of Volumé is sho‘rvrﬁ; lnFlgure 1, the maximum of volume is

15 and the minimum is 1. Beéausq of the restriction of detecting, we infer that

the true volume may equal or é’xg:eéif the max1m’um value of observations. It also

4The RTMS (Remote Traffic Microwéve"Sensof‘)‘rémdar is a general-purpose, all-weather traffic
sensor which detects presence and measures traffic parameters in multiple independent lanes. It
requires no maintenance and was proven to be the only multi-zone traffic detector unaffected by
any type of weather. The RTMS is a true presence traffic detector providing presence, volume,
occupancy, speed and classification information in up to 8 discrete user-defined detection zones up
to 60 m (200 ft.) away. It also uniquely designed for side-fired operation. In side-fired configuration,
it is usually mounted on existing side-of-the-road poles, is easy to install and remove, and is
fully programmable to support a variety of applications. In its forward-looking configuration it is
mounted on overhead sign structures to monitor a specific lane. In many tests performed by traffic
professionals worldwide, this presence radar technology has been recognized as the best for almost

all traffic management applications.
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indicates that the volume is censored at both time ¢t = 35 (8:17:30 AM) and t = 97
(8:48:30 AM). Figure 2 shows the time series plot of occupancy, some close to
zero percent values are found. Two reasons for the close to zero occupancy, one
is indeed no vehicle crossing this section of roadway, another is in heavy traffic
condition and RTMS can’t detect the moving vehicles. In Figure 3 and Figure 4 we
have plotted the sample ACF and sample PACF of the volume together with 95%
confidence bounds. Notice those values lies outside the confidence bounds at lag 2.
This statement corresponds with the signal timing algorithm, and it is needed to be

dynamic.

—_
[e))
1

1135 St v = 97

— — —
(e [\ ~
T T

Volume(vehicles)
(o)

~

0 20 40 60 30 100 120
Time(30sec)

Figure 1: Time series plot of volume.
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Figure 2: Time series plot of occupancy.

Sample ACF

Figure 3: The sample ACF of volume (with 5% significance limits).
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4 Sample PACF

.08 ". T |-.|'|| |u L ST

Figure 4: The sample PACF of volume (with 5% significance limits).

The volume and occupancy can be obtained at time point ¢ by RTMS, the

dynamic Tobit model is suitable for-.'diir" 'tféfﬁc._('iata sets

vi = Ny Btk e =1, 120

o it < 15

The notation used in the model are listed as follows:

y; : volume, an observed dependent variable.

y; : volume, the latent dependent variable.

x; @ occupancy, a vector of exogenous variables.

¢; : the disturbance sequence of 7.i.d. random variables.

T : the number of observations detected by RTMS.

C : the maximum volume detected by RTMS.

22



The adopted models in this section have censored data with lagged dependent
variables are linked with something previously mentioned. We propose two methods
to study such intractable models. First, suppose the dependent variables are from a
discrete Poisson distribution — this is reasonable due to the nature of volume. The
NR algorithm is used to estimate the models under consideration. Secondly, for
parameters of interests in the dynamic Tobit models with lagged latent dependent
variable will be obtained by maximizing the likelihood functions simulated through
procedures relied on the GHK simulator. The traffic flow prediction is our goal. The
most important objective is cumulative traffic volume prediction, however, for the

subjects of traffic signal control.

4.2 NR Algorithm 5 [ 488

The density function of dygémié Pbisgquegreésion with censoring

""myie_mt
ft(yt):ti tzl,,T

Yi!

1, if Yy < 15
dt -

0, ify, >15

According to the preliminary analysis of the data set, following are three models to

be considered.
e Model 1 : my =exp{\y;1+ P +a} t=1,...,120
e Model 2 : my = exp{ Ay o+ By +a} t=2,...,120

e Model 3 : m; = exp{\yi—1 + Aoy o+ By +a}  t=2,...,120
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In these cases, we stop the NR iteration’s update as IH(ZH HJ(-i)\ < 1075 for all j.
The estimates obtained from uncensored Poisson model are used as the initial values
of the parameters to estimate parameters of censored model. The results are shown
in Table 1. It summarizes the estimated parameter values and the corresponding
SDs for each individual model. It can be found that the influence of volume ;1
and 1;_o on present volume y; is adverse, the effect of y,_; is even weak enough to
be ignored. It also shows the small SDs of each parameter.

The prediction information is presented in Table 2. It tells us that prediction
means are nearly equal to observation mean but their SDs are smaller than that
in the observed data. The minimum values of prediction are larger than volume
of observation. It means that the predictions shake near the mean of observations
and the predicted ability of hlgh Volume is better than low volume. Also, it can be
found that Model 2 has less ARPE thanI others Table 3 is the cumulative prediction
summary including means, SD.g'and ma.xmm.m v_a}ﬁes. It indicates those values are
closed to cumulative observatié;i’_aﬁé Model ﬂ'l'-lr'i-as lesser ARCPE than two other
models. The plots of predicted Volum=e and.;:umulative predicted volume have been
shown in Figure 5 to Figure 10.

The results of residual analysis, listed in Table 4, indicate that each individual
model are adequate. The time series plots of residuals for each model have been

plotted in Figure 11 to Figure 13.
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Table 1: Estimated parameter values and the corre-

sponding standard deviations (SD) with NR algorithm.

Parameter Model 1 Model 2 Model 3
A1 -0.0058 -0.0065
(0.0101) (0.0101)

A9 -0.0304 -0.0294
(0.0099) (0.0099)

J6] 0.0109 0.0111 0.0112
(0.0024) (0.0024) (0.0024)

o 1.9172 2.1070 2.1469
(0.0896) (0.0930) (0.1158)

* The values in the parentheses are SDs corresponding its

parameter values. %'

Table 2: Descriptive statisties of (paij“‘edic"c_ion compared with obser-

vation by NR algorithm.

Model 1 Model 2 Model 3

Observation Prediction Prediction Prediction
Mean 7.9250 7.9454 7.9150 7.9159
SD 3.3460 1.2598 1.4682 1.4810
Max 15 14.2285 13.9707 13.8898
Min 1 6.6345 5.5323 5.5353
ARPE® 0.5576 0.5370 0.5387

2 Average relative prediction error = + ST
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Table 3: Descriptive statistics of cumulative prediction compared

with observation by NR algorithm.

Model 1 Model 2 Model 3
Cumulate Cumulate Cumulate Cumulate
Observation Prediction Prediction Prediction

Mean 491.4083 486.0201 461.0155 460.2781
SD 277.8814 276.6035 274.0158 274.0276
Max 951 953.4527 941.8832 941.9922

ARCPE? 0.0622 0.0693 0.0706

& Average relative cumulative prediction error = %Zthl %

Table 4: Residual analysjs fof.l’\;flodelsl, 2;.and 3 with NR algorithm.

Testing Method Model 1 Model 2 Model 3
Ljung-Box?* 24.847 13.744 13.843
(0.2074) (0.8432) (0.8383)
McLeod-Li* 16.330 22.667 20.270
(0.6960) (0.3054) (0.4411)
Jarque-Bera(normality) 2.7725 2.4705 2.9830
(0.2500) (0.2908) (0.2250)

* The values in the parentheses are p-value corresponding its x? statistic.
@ The test statistic has asymptotically a y? distribution with 20 degrees

of freedom.

b The test statistic has asymptotically a y? distribution with 2 degrees

of freedom.
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Figure 5: Time series plot of prediction compared with observation for Model 1

(ARPE = 0.5576).
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Figure 6: Time series plot of prediction compared with observation for Model 2

(ARPE = 0.5370).

27



Predicted volume

16
14
12
10

Volume(vehicles)

S o~ O

0 20 40 60 30 100 120
Time(30sec)

Figure 7: Time series plot of prediction compared with observation for Model 3

(ARPE = 0.5387). PRI
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Figure 8: Time series plot of cumulative prediction compared with cumulative ob-

servation for Model 1 (ARCPE = 0.0622).
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Figure 9: Time series plot of cumulative prediction compared with cumulative ob-

servation for Model 2 (ARCPE =0.0693). 10,
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Figure 10: Time series plot of cumulative prediction compared with cumulative

observation for Model 3 (ARCPE =0.0706).
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Figure 11: Time series plot of residuals for Model 1.
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Figure 12: Time series plot of residuals for Model 2.
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Figure 13: Time series plot of residuals for Model 3.

4.3 SML-GHK Simulatoy’ o

In this section, results of the arizﬂfsis of fdyﬁémic Tobit models with lagged latent
dependent variables by using the SML-GHK simulator for our traffic data will be
presented. Firstly, the latent volume values are simulated by generating uniform
random numbers and applied to GHK simulator. The parameters of interests will
then be estimated by maximizing the unbiased likelihood estimator numerically

1 e I 1-1
- EZH (Ye|ye— 1,yt 1))) t(P( = 0|ye—1, yt(1))) '
r=1 t=1

Two models are proposed as follows.
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e Model 4 : y; = \y;_ + B, +a+e¢ t=1,...,120
e Model 5 : yf =My, |+ Ny o+ B +a+¢e¢ t=2,...,120

Let the number of simulations R = 15 in these cases. The latent volume, y3; and
Yo7, for two models above can then be estimated and the results have reported in
Table 5, the SDs of simulated volume are calculated as well. The estimated param-
eters and their SDs are summarized in Table 6. As it indicates, the traffic volume
y;—1 and y;_o affect the present volume in the adverse direction.The prediction and
cumulative prediction summaries are listed in Table 7 and Table 8 representatively.
ARPE and ARCPE both are smaller for Model 5. The time series plots of predic-
tion and cumulative prediction are shown in Figure 14 to Figure 17. The results of
residual analysis, summarized in, Table 9, 'if{&ibape that both models are adequate.
The times series plots of residu::%_ml's have‘fla)égr__i"'plot‘c.i?fi in Figurel8 and Figure 19.

| '_f

Table 5: Simulation Estimation with SML-GHK simulator

where R = 15.
Model 4 Model 5
Latent volume Mean SD Mean SD
Yas 16.8244 1.6308 17.1131 1.6767
Yo7 17.1570 1.7882 17.0346 1.7135
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Table 6: Estimated parameters and the corresponding stan-

dard deviations (SD) with SML-GHK simulator.

Model 4 Model 5
Parameter Estimate SD Estimate SD
A1 -0.0370 0.0048 -0.0335 0.0047
Ao -0.2215 0.0024
15} 0.0920 0.0026 0.0850 0.0024
« 6.5605 0.0086 8.5090 0.0074
o 3.1385 0.0071 3.0365 0.0053

Table 7: Descriptive statistics of prediction compared

with observation by SMIFGHK simulator.

Model 4 Model 5
Observation Prediction Prediction
Mean 7.9250 7.8574 7.9183
SD 3.3460 1.1706 1.3030
Max 15 12.8021 12.2905
Min 1 6.4969 5.4005
ARPE? 0.5462 0.5409
|yt =3

a Average relative prediction error = = ZtT:1 IRt
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Table 8: Descriptive statistics of cumulative prediction com-

pared with observation by SML-GHK simulator.

Model 4 Model 5
Cumulate Cumulate Cumulate
Observation Prediction Prediction
Mean 491.4083 463.7327 462.2012
SD 277.8814 273.5527 274.0060
Max 951 942.8892 942.2777
ARCPE? 0.0696 0.0664

Yi—Yi

& Average relative cumulative prediction error = % Yot m Gy

Y:

Table 9: Residual analyéi_s for Medel4 and5 with SML-GHK Simula-

tor.

Model 4 Model 5
Testing Method Statistic p-value statistic p-value
Ljung-Box® 24.397 0.2255 13.459 0.8568
McLeod-Li* 18.026 0.5857 19.967 0.4600
Jarque-Bera(normality)P 0.8467 0.6549 1.0543 0.5903

2 The test statistic has asymptotically a x? distribution with 20 degrees

of freedom.

b The test statistic has asymptotically a x? distribution with 2 degrees of

freedom.
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Figure 14: Time series plot of prediction compared with observation for Model 4

(ARPE = 0.5462).
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Figure 15: Time series plot of prediction compared with observation for Model 5

(ARPE = 0.5409).
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Figure 16: Time series plot of cumulative prediction compared with cumulative

observation for Model 4 (ARCPE =10.0696).s,.
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Figure 17: Time series plot of cumulative prediction compared with cumulative

observation for Model 5 (ARCPE = 0.0664).
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Figure 18: Time series plot of residuals for Model 4.
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Figure 19: Time series plot of residuals for Model 5.
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5. Conclusion and Discussion

This study proposed two methodologies to deal with the traffic censored data and
our goal is to find out the cumulative traffic low predictions. The Newton-Raphson
optimization algorithm and SML-GHK simulator have been adopted to overcome our
problem under different assumptions. We introduce the Poisson regression dynamic
Tobit models and solve the MLE of parameters by using NR algorithm. The Tobit
models with lagged latent dependent variables are also used to obtain the SML
estimator via SML-GHK simulator. It can be found that similar results of predicted
volume and cumulative predicted volume are obtained by different techniques under
different models. The following Table 10.rshows ARPEs and ARCPEs under five
models. Y

Table 10: Thig\ ARPE and ARCPE from NR al-

gorithm and SMISGHE simfultator.

ARPE? ARCPEP
Model 1 0.5576 0.0622
Model 2 0.5370 0.0693
Model 3 0.5387 0.0706
Model 4 0.5462 0.0696
Model 5 0.5409 0.0664

& Average relative prediction error.

b Average relative cumulative prediction error.
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This is no strong evidence to discern between models, but it is recognized that
both NR algorithm and SML-GHK simulator result in satisfactory cumulative pre-
dicted traffic flow. The advantage of using Poisson regression is that the discreteness
nature of traffic flow has been taken into consideration, while through SML-GHK
simulator the potential censored data can be recovered. Hopefully these two choices
will be helpful to design the signal timing plan and ease traffic congestion problem

more or less.
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