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摘要 

 

塞車是日常生活中常出現的問題，預測塞車時的車流量成為交通管

理上的核心目標；我們希望預測塞車時的車流量，尤其是累積車流量的

預測，將有助於交通號誌的設計與控制，進而紓解塞車情況。本文考慮

一組實際偵測的交通資料，其中包含車流量與佔有率，針對有截斷

（censored）且有延遲（lagged）的特性資料，提出兩種估計方法，第一

是針對 Poisson 迴歸動態 Tobit 模式採取牛頓法進行參數迭代，第二是針

對有潛在獨立變數的動態 Tobit 模式使用 SML-GHK 模擬法，模擬潛在

變數及概似函數求得參數的最大模擬概似估計式。 
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ABSTRACT 
 
    Traffic congestion is a serious problem in everybody's daily life. 

Prediction of traffic flow is becoming the kernel of the traffic management 

for oversaturated conditions. Our goal is to forecast the traffic flow, 

especially predict the cumulative traffic flow. This thesis considers the 

estimation of the parameters of censored data models with lagged dependent 

variable. Two methods have been proposed. NR algorithm is supplied for 

solving the Poisson regression dynamic Tobit model. The SML-GHK 

simulator is another feasible method for the estimation of dynamic Tobit 

model whose lagged dependent variable is latent. 
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Estimation of Dynamic Tobit Models by

Newton’s Method and SML-GHK Simulator

Student: Wan-Ru Chang Advisor: Dr. Yow-Jen Jou
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National Chiao Tung University

Hsinchu, Taiwan

Abstract

Traffic congestion is a serious problem in everybody’s daily life. Prediction

of traffic flow is becoming the kernel of the traffic management for oversatu-

rated conditions. Our goal is to forecast the traffic flow, especially predict the

cumulative traffic flow. This thesis considers the estimation of the parameters

of censored data models with lagged dependent variable. Two methods have

been proposed. NR algorithm is supplied for solving the Poisson regression

dynamic Tobit model. The SML-GHK simulator is another feasible method

for the estimation of dynamic Tobit model whose lagged dependent variable

is latent.

Key words: Censoring; Dynamic Tobit model; Poisson regression; NR algo-

rithm; GHK simulator; Simulated likelihood estimator
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1. Introduction

Traffic congestion is becoming a serious problem in everybody’s daily life. A

roadway system is operating in saturated and oversaturated conditions. However,

most of the existing control algorithms are developed for undersaturated conditions

and would lead to misleading results if they are used to control oversaturated con-

ditions. The appropriation traffic modeling and management procedures for over-

saturated conditions are required imminently and become even more pressing with

the deployment of more efficient traffic control systems within the intelligent trans-

portation systems (ITSs) complex.

In oversaturated conditions, the subjects of signal control, queue management,

and traffic management are closely related – and in fact they become one – more

so than in undersaturated conditions. Generally, in congested and oversaturated

conditions, maximizing system output is a critical issue. The signal timing algo-

rithm needs to be dynamic and must be capable of responding to and evaluating

various queue management strategies. The traffic flow prediction is our goal, the

most important objective is the cumulative traffic flow prediction, however, due to

the subjects of signal control.

Vehicle detector is used for detecting the presentation of the queue. It is installed

on links which traffic flow has key impact on critical intersection. Because of the

restriction of detecting, it may be well imagined that the presentation of the queue

has unobserved data. The real traffic flow will be unobservable when the quantity is

too heavy and the ceiling of the observed flow will be determined according to the

location of detector. To adequately model the dynamic and censored feature of our
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variables of interests, the Poisson dynamic Tobit model is considered for the traffic

flow and the Normal distribution is used as an approximation.

The Tobit model is frequently used by economists to analyze limited depen-

dent variable (LDV) models. In order to make the inference of the dynamic Tobit

model, including estimating parameters and predicting latent vectors, the conven-

tional technique first used in the estimation of Poisson regression dynamic Tobit

model is Newton-Raphson (NR) optimization algorithm. In general, a direct solu-

tion to the Tobit model is not possible, although NR iteration method is supplied

for solution by computing the gradient and Hessian matrix of the relevant log-

likelihood. Secondly, the technique used in the estimation of dynamic Tobit model

with lagged latent dependent variable is the simulated maximum likelihood (SML)

method through procedures based on a recursive algorithm formulated by Geweke-

Hajivassiliou-Keane (GHK) simulator. The SML is feasible for the estimation of

such model, and GHK is a smooth, asymptotically unbiased, and consistent simu-

lator for this likelihood function.

The rest of the paper is organized as follows. Section 2 is a review about the

researches relative to the Tobit model, NR algorithm, and SML-GHK simulator.

Section 3 illustrates the construction of the dynamic Tobit model based on the NR

algorithm for Poisson regression and SML-GHK simulator for lagged latent depen-

dent variable. We also construct valid asymptotic inference for the parameters of

interests. The numerical example with traffic congested and oversaturated condi-

tions is described in section 4. Comparing the effect if using different methods and

choosing distinct forms for the LDV model, a few concluding remarks are made in

section 5.

3



2. Literature Review

A growing proportion of travel is occurring in congested and oversatured condi-

tions around the world. Oversaturation refers to conditions where traffic queues per-

sist from cycle to cycle either due to insufficient green splits or because of blockage.

The procedure for dynamic design and evaluation of traffic management strategies

in oversaturated conditions was presented by Ghassan and Benekohal (2003).

A very common problem in economic data is the censoring of the dependent

variable. When the dependent variable is censored, values in a certain range are all

transformed to a single value. The censored regression model was first introduced by

Tobin (1958) in which the dependent variable is normal but truncated to the left of

zero. An iterative procedure starting from a certain initial estimator was proposed

in his paper. The dependent variable of such regression often has a known lower

or upper bound; it takes on the boundary values for a number of observations and

takes a wide range of values for the remaining observations. This model has been

widely applied in economics up to the present and is usually called ‘Tobit’ model.

Amemiya (1973) extended the work of Tobin, proved the consistency and asymp-

totic normality of the maximum likelihood estimator in the regression case. He

pointed that nonlinear normal equations generally have multiple roots and for guar-

anteeing the consistency of the root produced iteratively, it is necessary to start from

an initial consistent estimator. Amemiya also showed the second-round estimator

which taking Newton iteration from this initial estimator is asymptotically the same

as the maximum likelihood estimator. Olsen (1978) indicated that the likelihood

function for the Tobit model has a single maximum and this property is proved in

4



detail.

An adaptation for linear regression is Poisson regression model. It has been given

considerable attention in the statistics and econometrics literatures. The analysis of

economic behavior often leads to the study of characteristics taking a small number

of positive values. The assumption of normality of the disturbances can’t be made,

because the endogenous variables take a small number of values with positive prob-

abilities. Advances in the theory of estimation can be found in Gourieroux et al.

(1984). Formulae for the gradient and Hessian matrix of the relevant log-likelihood

function were given by Terza (1985) and detailed a Newton-Raphson (NR) opti-

mization algorithm for Poisson regression model with a dependent variable subject

to censoring. The asymptotic covariance matrix of the estimator was derived as

well. The statistical inference on this model was introduced in Brännäs (1992). He

illustrated that the efficiency of Poisson maximum likelihood estimator is lost due

to the censoring and the consistent property also disappeared.

The impact of simulation methods on the analysis of LDV models is profound.

Various simulation methods and procedures for drawing random variables have also

been proposed in the statistics and econometrics literatures. The simulated maxi-

mum likelihood (SML) method was introduced by Lerman and Manski (1981). SML

is also called maximum simulated likelihood (MSL) on ocassion, and both are the

same. Simulated pseudo-maximum likelihood (SPML) method was indicated by

Gourieroux and Monfort (1993). McFadden (1989) presented the method of sim-

ulated moments (MSM), and Hajivassiliou and McFadden (1990) performed the

method simulated scores (MSS). For the estimation of limited dependent variable

models, the maximum likelihood is the desirable estimation approach (Tobin, 1958).
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We therefore concentrate on the SML for dynamic Tobit model in this paper.

The performance of a simulation method depends on simulator for relevant

functions involving integrals. Several simulator have been offered for multinormial

probabilities in LDV models. Among multivariate normal probability simulators,

Hajivassiliou et al. (1996) suggested that the GHK simulator is the most reliable

and accurate way to simulate multivariate normal probabilities for classical esti-

mation. The GHK simulator was developed by Geweke (1992), Hajivassilious and

McFadden (1990), and Keane (1990). Hendry and Richard (1992) provided sim-

ulation techniques for evaluating likelihood functions of dynamic latent variables

models based on a sequential factorization of joint densities of observable and latent

variables. The simulated probabilities required for SML can be estimated by the

GHK simulator so that one can estimate SML-GHK models. The consistency and

asymptotic normality of SML estimator can be obtained directly from Hajivassiliou

and McFadden (1998).

Recently, this simulator is further applied in discrete choice estimation. For

instance, Chang (2002) applied this to study the earnings dynamics and the impact

of Title VII of the 1964 Civil Rights Act on the convergence of the black-white earn-

ings gap. Contoyannis et al. (2004) used binary choice models to show what can be

done with conventional methods and how the range of models can be expanded by

using Markov Chain Monte Carlo (MCMC) algorithm and GHK simulator.
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3. Model Specifications and Methodology

In LDV models, the observed data vector y is an indirect observation on a latent

vector y∗. The generating process for y can be regard as an ‘incomplete data’ or

‘partial observable’ process.

Definition 1. (Censored Random Variable) Let Y ∗ be a random variable from

a population with c.d.f. F (Y ∗) and support A. Let B be the support of the random

variable Y = τ(Y ∗) where τ : A → B is not invertible. Then Y is a censored

random variable.

In such case, τ is often called the ‘observation rule’ and though it may not be

monotonic, τ is generally piece-wise continuous. An important characteristic of

censored sampling is that no observations are missing.

Tobin (1958) first considered the regression model where truncated to the left of

zero. It is the case of censored random variables. The model is called ‘Tobit’ model

and represented as

y∗
i = βxi + εi

yi = max{y∗
i , 0}

where y∗
i is a latent dependent variable, xi is a vector of exogenous variables, β is the

corresponding vector of parameters, the disturbance εi is assumed to be independent

N(0, σ2), and yi represents an observed dependent variable. In above model, yi = y∗
i

if y∗
i > 0 and yi = 0 if y∗

i ≤ 0 for each individual i.

In censored case, censoring destroys the linearity of the model, and ordinary

estimation method for linear regression is not applicable. We therefore discuss two

7



techniques to deal with this problem. The NR algorithm is considered for Poisson

regression dynamic Tobit model in the first subsection below, and simulation es-

timation relied on GHK simulator is proposed for Tobit model with lagged latent

dependent variable in the second subsection.

3.1 Poisson Regression with Newton-Raphson Algorithm

The basic model for the analysis of count data is Poisson regression. A property

of this model is the variance of data to be equal to the mean, conditional on explana-

tory variables. The endogenous variable is assumed to have a Poisson distribution

conditional upon the explanatory variables. In particular, there is no finite upper

limit on the values that may be observed and the parameter of this distribution is a

function of the values of the explanatory variables. The lagged observed dependent

variables are considered in the Poisson dynamic Tobit model.

NR algorithm is a computational procedure that can be used generally to max-

imize a complicated function. The idea is to approximate the function by a linear

Taylor series. NR algorithm is supplied for solving the Poisson regression models by

computing the gradient and Hessian matrix of the relevant log-likelihood function.

Let conditional pmf of yt given Xt be a Poisson distribution. The mean and the

variance of yt given Xt are equal to mt. The basic Poisson regression model is

ft(yt|Xt) =
myt

t e−mt

yt!
t = 1, . . . , T (1)

where mt = exp{X ′
tθ} is the mean of yt given Xt, Xt is a k×1 vector of explanatory

variables, and θ is a k × 1 vector of unknown parameters to be estimated. The

8



exponential function appearing in mt is mainly justified by the positivity of mt.

The parameter vector θ can be estimated by iterative maximum log-likelihood

function via NR optimization algorithm. Given explanatory variables Xt, the depen-

dent variables, yt, t = 1, . . . , T, are independent, and therefore likelihood function

can be written as

L = L(θ) =

T∏
t=1

ft(yt|Xt, θ)

The log-likelihood function

l = log L =

T∑
t=1

(
yt log mt − mt − log(yt!)

)

The NR update of θ at the (i + 1)th iteration is

θ(i+1) = θ(i) − H(θ(i))−1G(θ(i)) (2)

where G(k × 1) is the gradient and H(k × k) is the Hessian matrix with

G(θ) =
∂l

∂θ
=

T∑
t=1

(yt − mt)Xt

H(θ) =
∂l2

∂θ∂θ′ = −
T∑

t=1

mtXtX
′
t

(3)

Detailed account of the censored model is given below. Suppose that the value

of yt is observable for the tth member of the sample iff yt < C where C is a known

non-negative integer. Let dt be a indicator function defined as

dt =

⎧⎪⎨
⎪⎩

1, if yt < C

0, if yt ≥ C

This is a right censoring, a count above and including C is censored, only value

smaller than C is exactly observed. The log-likelihood function l of censored sample

9



can be represented as

T∑
t=1

(
dt

(
yt log mt − mt − log(yt!)

)
+ (1 − dt) log

(
Pr(yt ≥ C)

))
(4)

Let Pr(yt ≥ C) = Ft(C). The NR iteration defined in Eq.(2) can be used to

maximize Eq.(4) after respectively replacing the gradient and Hessian matrix. The

calculating process be detailed as follows.

G(θ) =

T∑
t=1

(
dt(yt − mt)Xt + (1 − dt)

∂

∂θ
log
(
Ft(C)

))

H(θ) =

T∑
t=1

(
− dtmtXtX

′
t − (1 − dt)

∂

∂θ′
1

Ft(C)

C−1∑
i=0

ft(i)(i − mt)Xt

)

In which G and H matrix have following properties

∂

∂θ
log
(
Ft(C)

)
= − 1

Ft(C)

C−1∑
i=0

ft(i)(i − mt)Xt

∂

∂θ′
1

Ft(C)

C−1∑
i=0

ft(i)(i − mt)Xt

=

C−1∑
i=1

1

Ft(C)2

(
Ft(C)

∂

∂θ′ ft(i)(i − mt) − ft(i)(i − mt)
∂

∂θ′ Ft(C)
)
Xt

=
C−1∑
i=1

1

Ft(C)2

(
Ft(C)

(
(i − mt)

∂

∂θ′ ft(i) + ft(i)
∂

∂θ′ (i − mt)
)
− ft(i)(i − mt)

∂

∂θ′ Ft(C)

)
Xt

=

C−1∑
i=1

1

Ft(C)
ft(i)

(
(i − mt)

2 − mt

)
XtX

′
t +

C−1∑
i=1

1

Ft(C)2

(
ft(i) − (i − mt)

)2

XtX
′
t

The gradient and Hessian matrix hence become

G(θ) =
T∑

t=1

(
dt(yt − mt) − (1 − dt)

Φ1t

Ft(C)

)
Xt

H(θ) = −
T∑

t=1

(
dtmt + (1 − dt)

( Φ2t

Ft(C)
+
( Φ1t

Ft(C)

)2))
XtX

′
t

(5)
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where Φ1t =
∑C−1

i=0 ft(i)(i−mt) and Φ2t =
∑C−1

i=0 ft(i)
(
(i−mt)

2 −mt

)
. The asymp-

totic covariance matrix of the maximum likelihood estimator of θ is(
T∑

t=1

((
1 − Ft(C)

)
mt +

(
Φ2t +

Φ2
1t

Ft(C)

))
XtX

′
t

)−1

(6)

The initial value of θ can be obtained from the uncensored NR algorithm.

However the uncensored NR algorithm still need a initial value. One way we can

operate is from the population mean of observation yt. The yt can be used to

estimate mt due to the equation log mt = X
′
tθ, i.e. log yt ≈ X

′
tθ.

One importance of adopting this model is to generate prediction of yt value for

each t corresponding to the vector Xt of values on exogenous variables. From the

Poisson regression model, we will have

m̂t = exp(X
′
t θ̂) (7)

The complete procedure of NR algorithm is summarized below.

• Step 1 : Initiate from log yt ≈ X
′
tθ, and the LSE will be the initial vector.

• Step 2 : Put the vector from Step1 into the basic NR algorithm (Eq.(2) and

Eq.(3)), update until |θ(i+1)
j − θ

(i)
j | < ε (a small value) for all j.

• Step 3 : Put the vector from Step2 into the censored NR algorithm (Eq.(2)

and Eq.(5)), update until |θ(i+1)
j − θ

(i)
j | < ε (a small value) for all j. The

parameter vector θ̂(i+1) will be the MLE of θ.

• Step 4 : Calculate the asymptotic covariance matrix by Eq.(6) and prediction

yt for each individual t by Eq.(7).
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In regression model, it is important to spell out the consistent and asymptoti-

cally normal estimator. Amemiya (1973) illustrated the convergence of the iteration

to the global maximum if the initial estimator is consistent. However, the consis-

tency property of the Poisson maximum likelihood estimator is lost in the LDV

models (Brännäs, 1992). The efficiency is also lost based on Poisson regression.

3.2 Gaussian Model with Simulation Estimation

The maximum likelihood approach is the desirable estimation to estimate the

dynamic latent variable model. The sequential factorization of joint densities of

observable and latent variables were introduced by Hendry and Richard (1992). A

recursive algorithm formulated by GHK simulator provides the most reliable and

accurate way to simulate multivariate normal probabilities. Once the simulated

probabilities are obtained, maximum likelihood techniques are employed. The gen-

eral procedure is called ‘simulated maximum likelihood’ (SML).

Definition 2. (SML Estimator) Let the log-likelihood function for the unknown

parameter vector θ given the sample of observations (yt, t = 1, . . . T ) be

lT (θ) ≡
T∑

t=1

log f(θ; yt)

and let f̃(θ; y, ω) be an unbiased simulator so that f(θ; y) = Eω

(
f̃(θ; y, ω)|y) where

ω is a simulated vector of R random variates, and R is the number of simulation

for each t. The simulated maximum likelihood estimator is

θ̂SML ≡ arg max
θ

l̃T (θ)

12



where

l̃T (θ) ≡
T∑

t=1

log f̃(θ; yt, ωt)

for some given simulation sequence {ωt}.

In this section, we consider the following dynamic model for the true/latent data

generating process

y∗
t = λy∗

t−1 + βxt + α + εt t = 1, . . . , T

yt =

⎧⎪⎨
⎪⎩

y∗
t , if y∗

t < C

C, if y∗
t ≥ C

(8)

where C is a known value. Suppose that the error terms have a normal distribu-

tion, i.e. εt ∼ N(0, σ2). Under this assumption, we derive the simulated likelihood

function relied on GHK simulator for a general dynamic Tobit model.

3.2.1 Likelihood Simulation

Given sample observations, let It be an indicator function with latent variable

censoring, such that

It =

⎧⎪⎨
⎪⎩

1, if y∗
t < C

0, if y∗
t ≥ C

Suppose the joint conditional density of observable and latent dependent variable

for this model is f(yt, y
∗
t |yt−1, y

∗
t−1). The classical likelihood function for the Tobit

model is represented as

L =

∫ ∞

C

. . .

∫ ∞

C

T∏
t=1

f(yt, y
∗
t |yt−1, y

∗
t−1)dy∗

t (9)
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It is a high-dimensional integral with a dimension for y∗
t as the same as the number

of censoring periods 1.

In order to obtain the tractable simulation estimation, the joint density func-

tion of f(yt, y
∗
t |yt−1, y

∗
t−1) in Eq.(9) can be further decomposed into two products of

conditional densities, the suggestions were proposed by Hendry and Richard (1992)

and Lee (1999)

f(yt, y
∗
t |yt−1, y

∗
t−1) = g1(yt|y∗

t , yt−1, y
∗
t−1) × h1(y

∗
t |yt−1, y

∗
t−1) (10)

= g2(yt|yt−1, y
∗
t−1) × h2(y

∗
t |It = 0, yt−1, y

∗
t−1) (11)

where g1
2 and g2

3 is conventional Tobit likelihood function, and latent variables y∗
t

can be drawn recursively from importance sampling density h1 and h2.

On the basis of the decomposition of Eq.(10) with a finite number of simulation

runs R, the unbiased likelihood simulator can be provided

L̃ =
1

R

R∑
r=1

T∏
t=1

(
f(yt|yt−1, y

∗(r)
t−1 )

)It
(
I(C,∞)(y

∗(r)
t )

)1−It
(12)

where y
∗(r)
t is drawn from h1. This likelihood simulation is not a smooth function in

the parameter space due to the indicator function. In addition, Lee (1999) showed

the simulator based on Eq.(12) is inefficient in terms of the simulation variance

compared with the GHK-based estimators.

A better approach is to allow sample information to feedback to simulation

procedure. That is, the latent variable y∗
t is recursively drawn from the univariate

conditional probability h2(y
∗
t |It = 0, yt−1, y

∗(r)
t−1 ) conditional on not only the past,

1Note that we assume y0 and y∗
0 to be C in this likelihood simulation.

2g1 =
(
f(yt|yt−1, y

∗
t−1)

)It
(
P (It = 0|yt−1, y

∗
t )
)1−It in Eq.(10).

3g2 =
(
f(yt|yt−1, y

∗
t−1)

)It
(
P (It = 0|yt−1, y

∗
t−1)

)1−It in Eq.(11).
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but the current sample information. Thus, y
∗(r)
t is drawn from h2 and the unbiased

likelihood simulator behind the GHK simulator can be expressed as

L̂ =
1

R

R∑
r=1

T∏
t=1

(
f(yt|yt−1, y

∗(r)
t−1 )

)It
(
P (It = 0|yt−1, y

∗(r)
t−1 )

)1−It
(13)

This simulator is expected to be useful for the dynamic Tobit model. SML is ap-

plied to estimate the linear dynamic Tobit model through GHK simulator and using

Eq.(13) in this paper.

3.2.2 The GHK Simulator

The GHK simulator was developed by Geweke(1992), Hajivassilious and Mc-

Fadden (1990), and Keane (1990). It is chosen here because a recent exhaustive

survey of probability simulators (Hajivassiliou et al., 1996) reaches the conclusion

that the GHK simulator is the most reliable and accurate way to simulate multi-

variate normal probabilities for classical estimation. SML in conjunction with the

GHK simulator can cope with the intractabilities of the LDV models.

According to Eq.(8), let θ be the vector of interests in the linear dynamic Tobit

model, that is, θ = (λ, β, α, σ). Suppose the total number of censoring is m and

occurs at time t1, . . . , tm. Random variables ξ
(r)
t are drawn from the uniform random

number generator on [0, 1], where t = t1, . . . , tm and r = 1, . . . , R. Those uniform

random numbers are kept fixed during an optimization search of SML estimator. For

the rth simulation run, the latent variable at censoring period t can be simulated

from

y
∗(r)
t = λy

∗(r)
t−1 + βxt + α + ση

(r)
t (θ) (14)
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where y
∗(r)
t−1 = yt−1 if censoring does not occur at time t − 1.

For generating y∗
t from the univariate conditional probability h2(y

∗
t |It = 0, yt−1, y

∗(r)
t−1 ),

the truncated normal random variables η
(r)
t are drawn recursively for censored ob-

servations. Let Φ be the cumulative standard normal function and F be the 1 −Φ.

Hence, η
(r)
t can be calculated by

η
(r)
t (θ) = F−1

(
ξ

(r)
t F

(C − λy
∗(r)
t−1 − βxt − α

σ

))
if t ∈ {t1, . . . , tm} (15)

This is a mapping that takes a uniform [0, 1] random variable into a right truncated

standard normal random variate. Then y
∗(r)
t will be simulated by Eq.(14) for each

period of time t.

The simulated likelihood function Eq.(13) can be obtained through Eq.(14) and

Eq.(15). Specially in Eq.(13), the first part of two products can be given as

f(yt|yt−1, y
∗(r)
t−1 ) =

1

σ
φ
(yt − λy

∗(r)
t−1 − βxt − α − ση

(r)
t

σ

)
(16)

as t /∈ {t1, . . . , tm}, i.e. yt is a true observation, where φ is the standard normal

density function. The second part of two products in Eq.(13) can be calculated by

P (It = 0|yt−1, y
∗(r)
t−1 ) = 1 − Φ

(C − λy
∗(r)
t−1 − βxt − α − ση

(r)
t

σ

)
(17)

as t ∈ {t1, . . . , tm}. The simulated likelihood function Eq.(13) therefore will be

obtained by combining Eq.(16) and Eq.(17). Furthermore, the parameter θ will

be estimated by maximizing the likelihood simulator. The complete procedure of

SML-GHK simulator is summarized below.

• Step 1 : Initiate the estimation process with the LSE of the model yt =

λyt−1 + βxt + α + εt, where yt is the observation at time t.

16



• Step 2 : Generate a random variable ξ
(r)
t ∼ U(0, 1) when observation yt is

censored at period of time t.

• Step 3 : Calculate a truncated normal random variable η
(r)
t from Eq.(15)

relied on Step1 and Step2 at each censored time t.

• Step 4 : Simulate the latent variable y
∗(r)
t by Eq.(14) combined with Step3.

• Step 5 : Calculate the likelihood simulator Eq.(13) by combining the condi-

tional density Eq.(16) and conditional probability Eq.(17).

• Step 6 : The θ̂ will be the SML estimator of θ by maximizing the likelihood

simulator Eq.(13) from Step5.

3.2.3 Asymptotic Properties

The consistency and asymptotic normality of SML estimator can be obtained

directly from Hajivassiliou and McFadden (1998) since the dynamic Tobit model is a

special case of a LDV model. The authors suggest choosing R bigger than
√

T . The

following theorem, the proof can be found in their paper, develops the consistency

and asymptotic normality of the maximum simulated likelihood estimator for the

dynamic Tobit model.

Theorem 1. Assume that the observations and simulators are independently and

identically distributed. Assume also that the moment existence assumption in Ha-

jivassiliou and McFadden (1998) is satisfied. Let θ̂ ≡ arg maxθ l̂(θ), where l̂(θ) is

simulated by the GHK simulator with an appropriate choice of the number of sim-
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ulations specified in the proof and is obtained by requiring that the Monte Carlo

random numbers are not redrawn when θ is changed. Then, θ̂ → θ∗ in probabil-

ity, and (θ̂ − θ∗) → N(0, J) in distribution, where θ∗ is the true value of θ in the

parameter space Θ and J = −E
(

∂2l
∂θ∂θ

′
)|θ=θ∗.
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4. Empirical Illustration

4.1 Data Collection and Model Description

The data we analyze are collected near the intersection of Zhong-Hua Road

(中華路) and Jing-Guang Road (警光路) of Hsinchu City by the detector, RTMS4

,which is in forward-looking configuration. The collected time is from 8:00 AM to

9:00 AM on April 25, 2005. These vehicles drive in the direction of the Hsinchu

Train Station. There are 120 data sets and the time interval is 30 seconds. The

RTMS records the volume, number of vehicles that pass over the detector at the

interval of 30 seconds, and the occupancy, percentage of having vehicles detected at

the interval of 30 seconds.

Time series plot of volume is shown in Figure 1 , the maximum of volume is

15 and the minimum is 1. Because of the restriction of detecting, we infer that

the true volume may equal or exceed the maximum value of observations. It also

4The RTMS (Remote Traffic Microwave Sensor) radar is a general-purpose, all-weather traffic

sensor which detects presence and measures traffic parameters in multiple independent lanes. It

requires no maintenance and was proven to be the only multi-zone traffic detector unaffected by

any type of weather. The RTMS is a true presence traffic detector providing presence, volume,

occupancy, speed and classification information in up to 8 discrete user-defined detection zones up

to 60 m (200 ft.) away. It also uniquely designed for side-fired operation. In side-fired configuration,

it is usually mounted on existing side-of-the-road poles, is easy to install and remove, and is

fully programmable to support a variety of applications. In its forward-looking configuration it is

mounted on overhead sign structures to monitor a specific lane. In many tests performed by traffic

professionals worldwide, this presence radar technology has been recognized as the best for almost

all traffic management applications.
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indicates that the volume is censored at both time t = 35 (8:17:30 AM) and t = 97

(8:48:30 AM). Figure 2 shows the time series plot of occupancy, some close to

zero percent values are found. Two reasons for the close to zero occupancy, one

is indeed no vehicle crossing this section of roadway, another is in heavy traffic

condition and RTMS can’t detect the moving vehicles. In Figure 3 and Figure 4 we

have plotted the sample ACF and sample PACF of the volume together with 95%

confidence bounds. Notice those values lies outside the confidence bounds at lag 2.

This statement corresponds with the signal timing algorithm, and it is needed to be

dynamic.

Figure 1: Time series plot of volume.
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Figure 2: Time series plot of occupancy.
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Figure 3: The sample ACF of volume (with 5% significance limits).
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Figure 4: The sample PACF of volume (with 5% significance limits).

The volume and occupancy can be obtained at time point t by RTMS, the

dynamic Tobit model is suitable for our traffic data sets

y∗
t = λy∗

t−1 + βxt + α + εt t = 1, . . . , 120

yt =

⎧⎪⎨
⎪⎩

y∗
t , if y∗

t < 15

15, if y∗
t ≥ 15

The notation used in the model are listed as follows:

yt : volume, an observed dependent variable.

y∗
t : volume, the latent dependent variable.

xt : occupancy, a vector of exogenous variables.

εt : the disturbance sequence of i.i.d. random variables.

T : the number of observations detected by RTMS.

C : the maximum volume detected by RTMS.
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The adopted models in this section have censored data with lagged dependent

variables are linked with something previously mentioned. We propose two methods

to study such intractable models. First, suppose the dependent variables are from a

discrete Poisson distribution – this is reasonable due to the nature of volume. The

NR algorithm is used to estimate the models under consideration. Secondly, for

parameters of interests in the dynamic Tobit models with lagged latent dependent

variable will be obtained by maximizing the likelihood functions simulated through

procedures relied on the GHK simulator. The traffic flow prediction is our goal. The

most important objective is cumulative traffic volume prediction, however, for the

subjects of traffic signal control.

4.2 NR Algorithm

The density function of dynamic Poisson regression with censoring

ft(yt) =
myt

t e−mt

yt!
t = 1, . . . , T

dt =

⎧⎪⎨
⎪⎩

1, if yt < 15

0, if yt ≥ 15

According to the preliminary analysis of the data set, following are three models to

be considered.

• Model 1 : mt = exp{λ1yt−1 + βxt + α} t = 1, . . . , 120

• Model 2 : mt = exp{λ2yt−2 + βxt + α} t = 2, . . . , 120

• Model 3 : mt = exp{λ1yt−1 + λ2yt−2 + βxt + α} t = 2, . . . , 120
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In these cases, we stop the NR iteration’s update as |θ(i+1)
j −θ

(i)
j | < 10−6 for all j.

The estimates obtained from uncensored Poisson model are used as the initial values

of the parameters to estimate parameters of censored model. The results are shown

in Table 1 . It summarizes the estimated parameter values and the corresponding

SDs for each individual model. It can be found that the influence of volume yt−1

and yt−2 on present volume yt is adverse, the effect of yt−1 is even weak enough to

be ignored. It also shows the small SDs of each parameter.

The prediction information is presented in Table 2 . It tells us that prediction

means are nearly equal to observation mean but their SDs are smaller than that

in the observed data. The minimum values of prediction are larger than volume

of observation. It means that the predictions shake near the mean of observations

and the predicted ability of high volume is better than low volume. Also, it can be

found that Model 2 has less ARPE than others. Table 3 is the cumulative prediction

summary including means, SDs and maximum values. It indicates those values are

closed to cumulative observation and Model 1 has lesser ARCPE than two other

models. The plots of predicted volume and cumulative predicted volume have been

shown in Figure 5 to Figure 10.

The results of residual analysis, listed in Table 4, indicate that each individual

model are adequate. The time series plots of residuals for each model have been

plotted in Figure 11 to Figure 13.
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Table 1: Estimated parameter values and the corre-

sponding standard deviations (SD) with NR algorithm.

Parameter Model 1 Model 2 Model 3

λ1 -0.0058 -0.0065
(0.0101) (0.0101)

λ2 -0.0304 -0.0294
(0.0099) (0.0099)

β 0.0109 0.0111 0.0112
(0.0024) (0.0024) (0.0024)

α 1.9172 2.1070 2.1469
(0.0896) (0.0930) (0.1158)

* The values in the parentheses are SDs corresponding its
parameter values.

Table 2: Descriptive statistics of prediction compared with obser-

vation by NR algorithm.

Model 1 Model 2 Model 3

Observation Prediction Prediction Prediction

Mean 7.9250 7.9454 7.9150 7.9159

SD 3.3460 1.2598 1.4682 1.4810

Max 15 14.2285 13.9707 13.8898

Min 1 6.6345 5.5323 5.5353

ARPEa 0.5576 0.5370 0.5387

a Average relative prediction error = 1
T

∑T
t=1

|yt−ŷt|
yt

.
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Table 3: Descriptive statistics of cumulative prediction compared

with observation by NR algorithm.

Model 1 Model 2 Model 3

Cumulate Cumulate Cumulate Cumulate
Observation Prediction Prediction Prediction

Mean 491.4083 486.0201 461.0155 460.2781

SD 277.8814 276.6035 274.0158 274.0276

Max 951 953.4527 941.8832 941.9922

ARCPEa 0.0622 0.0693 0.0706

a Average relative cumulative prediction error = 1
T

∑T
t=1

|Yt−Ŷt|
Yt

.

Table 4: Residual analysis for Model 1, 2, and 3 with NR algorithm.

Testing Method Model 1 Model 2 Model 3

Ljung-Boxa 24.847 13.744 13.843
(0.2074) (0.8432) (0.8383)

McLeod-Lia 16.330 22.667 20.270
(0.6960) (0.3054) (0.4411)

Jarque-Bera(normality)b 2.7725 2.4705 2.9830
(0.2500) (0.2908) (0.2250)

* The values in the parentheses are p-value corresponding its χ2 statistic.
a The test statistic has asymptotically a χ2 distribution with 20 degrees

of freedom.
b The test statistic has asymptotically a χ2 distribution with 2 degrees

of freedom.
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Figure 5: Time series plot of prediction compared with observation for Model 1

(ARPE = 0.5576).

Figure 6: Time series plot of prediction compared with observation for Model 2

(ARPE = 0.5370).
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Figure 7: Time series plot of prediction compared with observation for Model 3

(ARPE = 0.5387).

Figure 8: Time series plot of cumulative prediction compared with cumulative ob-

servation for Model 1 (ARCPE = 0.0622).
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Figure 9: Time series plot of cumulative prediction compared with cumulative ob-

servation for Model 2 (ARCPE =0.0693).

Figure 10: Time series plot of cumulative prediction compared with cumulative

observation for Model 3 (ARCPE =0.0706).
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Figure 11: Time series plot of residuals for Model 1.

Figure 12: Time series plot of residuals for Model 2.
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Figure 13: Time series plot of residuals for Model 3.

4.3 SML-GHK Simulator

In this section, results of the analysis of dynamic Tobit models with lagged latent

dependent variables by using the SML-GHK simulator for our traffic data will be

presented. Firstly, the latent volume values are simulated by generating uniform

random numbers and applied to GHK simulator. The parameters of interests will

then be estimated by maximizing the unbiased likelihood estimator numerically

L̂ =
1

R

R∑
r=1

T∏
t=1

(
f(yt|yt−1, y

∗(r)
t−1 )

)It
(
P (It = 0|yt−1, y

∗(r)
t−1 )

)1−It

Two models are proposed as follows.
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• Model 4 : y∗
t = λ1y

∗
t−1 + βxt + α + εt t = 1, . . . , 120

• Model 5 : y∗
t = λ1y

∗
t−1 + λ2y

∗
t−2 + βxt + α + εt t = 2, . . . , 120

Let the number of simulations R = 15 in these cases. The latent volume, y∗
35 and

y∗
97, for two models above can then be estimated and the results have reported in

Table 5, the SDs of simulated volume are calculated as well. The estimated param-

eters and their SDs are summarized in Table 6. As it indicates, the traffic volume

yt−1 and yt−2 affect the present volume in the adverse direction.The prediction and

cumulative prediction summaries are listed in Table 7 and Table 8 representatively.

ARPE and ARCPE both are smaller for Model 5. The time series plots of predic-

tion and cumulative prediction are shown in Figure 14 to Figure 17. The results of

residual analysis, summarized in Table 9, indicate that both models are adequate.

The times series plots of residuals have been plotted in Figure18 and Figure 19.

Table 5: Simulation Estimation with SML-GHK simulator

where R = 15.

Model 4 Model 5

Latent volume Mean SD Mean SD

y∗35 16.8244 1.6308 17.1131 1.6767

y∗97 17.1570 1.7882 17.0346 1.7135
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Table 6: Estimated parameters and the corresponding stan-

dard deviations (SD) with SML-GHK simulator.

Model 4 Model 5

Parameter Estimate SD Estimate SD

λ1 -0.0370 0.0048 -0.0335 0.0047

λ2 -0.2215 0.0024

β 0.0920 0.0026 0.0850 0.0024

α 6.5605 0.0086 8.5090 0.0074

σ 3.1385 0.0071 3.0365 0.0053

Table 7: Descriptive statistics of prediction compared

with observation by SML-GHK simulator.

Model 4 Model 5

Observation Prediction Prediction

Mean 7.9250 7.8574 7.9183

SD 3.3460 1.1706 1.3030

Max 15 12.8021 12.2905

Min 1 6.4969 5.4005

ARPEa 0.5462 0.5409

a Average relative prediction error = 1
T

∑T
t=1

|yt−ŷt|
yt

.
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Table 8: Descriptive statistics of cumulative prediction com-

pared with observation by SML-GHK simulator.

Model 4 Model 5

Cumulate Cumulate Cumulate
Observation Prediction Prediction

Mean 491.4083 463.7327 462.2012

SD 277.8814 273.5527 274.0060

Max 951 942.8892 942.2777

ARCPEa 0.0696 0.0664

a Average relative cumulative prediction error = 1
T

∑T
t=1

|Yt−Ŷt|
Yt

.

Table 9: Residual analysis for Model 4 and 5 with SML-GHK Simula-

tor.

Model 4 Model 5

Testing Method Statistic p-value statistic p-value

Ljung-Boxa 24.397 0.2255 13.459 0.8568

McLeod-Lia 18.026 0.5857 19.967 0.4600

Jarque-Bera(normality)b 0.8467 0.6549 1.0543 0.5903

a The test statistic has asymptotically a χ2 distribution with 20 degrees
of freedom.

b The test statistic has asymptotically a χ2 distribution with 2 degrees of
freedom.
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Figure 14: Time series plot of prediction compared with observation for Model 4

(ARPE = 0.5462).

Figure 15: Time series plot of prediction compared with observation for Model 5

(ARPE = 0.5409).
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Figure 16: Time series plot of cumulative prediction compared with cumulative

observation for Model 4 (ARCPE = 0.0696).

Figure 17: Time series plot of cumulative prediction compared with cumulative

observation for Model 5 (ARCPE = 0.0664).
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Figure 18: Time series plot of residuals for Model 4.

Figure 19: Time series plot of residuals for Model 5.
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5. Conclusion and Discussion

This study proposed two methodologies to deal with the traffic censored data and

our goal is to find out the cumulative traffic flow predictions. The Newton-Raphson

optimization algorithm and SML-GHK simulator have been adopted to overcome our

problem under different assumptions. We introduce the Poisson regression dynamic

Tobit models and solve the MLE of parameters by using NR algorithm. The Tobit

models with lagged latent dependent variables are also used to obtain the SML

estimator via SML-GHK simulator. It can be found that similar results of predicted

volume and cumulative predicted volume are obtained by different techniques under

different models. The following Table 10 shows ARPEs and ARCPEs under five

models.

Table 10: The ARPE and ARCPE from NR al-

gorithm and SML-GHK simulator.

ARPEa ARCPEb

Model 1 0.5576 0.0622

Model 2 0.5370 0.0693

Model 3 0.5387 0.0706

Model 4 0.5462 0.0696

Model 5 0.5409 0.0664

a Average relative prediction error.
b Average relative cumulative prediction error.
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This is no strong evidence to discern between models, but it is recognized that

both NR algorithm and SML-GHK simulator result in satisfactory cumulative pre-

dicted traffic flow. The advantage of using Poisson regression is that the discreteness

nature of traffic flow has been taken into consideration, while through SML-GHK

simulator the potential censored data can be recovered. Hopefully these two choices

will be helpful to design the signal timing plan and ease traffic congestion problem

more or less.
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