(S Y SR F Y LR S g

Monitoring Random Effect Profiles by Nonparametric
Regression



L2 DI Y R ST

o Eﬁ?”‘ =
z_ @A
Monitoring Random Effect Profiles by Nonparametric
Regression
= ;L‘ 4 D Eppe Student :  Ming-Ye Tsai
B Advisor : Dr. Jyh-Jen Horng Shiau

hEFRBEEIE

A Thesis
Submitted to Institute of Statistics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Statistics
June 2006

Hsinchu, Taiwan, Republic of China

PESRAY LT EAD



Eiiles A S b YT SR F Y Lo d B
SRS AR o 3V T RLERR R T 2 AR SR

W OB 0 AP IR L e aqrk A dTd S TR R # R
i W ”‘]??p’i'——'%?g"\ RN A ch;&#jf’f’o 5 Ml S 28
¢ B S BElhA A A R REEE BB R E THER o AT N F R
combinedchart » T & &H 4 = & A a3 F K@@ f2 o

EEh - 0 FLASS SR afpikgld > g TZ@%%:‘E'J
R o A < RS 2 RWP > F outliers 1A § e
BpE s T2 & BeniR T, i

Ao AP FIRF R E AR s B GRS o RN
Pk * 2 3 sz (cross-validation) s 2 » K EH I A L B E o



Monitoring Random Effect Profiles by
Nonparametric Regression

Student : Ming-Ye Tsai Advisor : Dr. Jyh-Jen Horng Shiau

Institute of Statistic
National Chiao Tung University

ABSTRACT

The monitoring of processsand product profiles is a very popular and
promising area of research in:statistical process control. This study is aimed
at the monitoring scheme for-nonlinear profiles-with random effects.

For random effect models, we use-thestechnique of principal component
analysis to analyze the covariance structure of the profiles and use principal
component scores of each profile torperform monitoring. In Phase 11, since it
is difficult for each principal component score to have identified direction of
shifts, we recommend using a combined chart scheme that combines the
principal component scores to perform monitoring.

In the historical analysis of Phase | data, due to the dependency of
principal component scores, we adopt the T? chart to check for stability.
We show by simulation that the sample-covariance-based T} performs

better than the successive-difference-based T, for temporal shifts.

Also, the number of principal component scores used in constructing
control charts has an effect on the detecting power. We adopt the
cross-validation to choose the number of principal component scores.
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1 Introduction

Statistical process control (SPC) has been widely applied in many areas, espe-
cially in industries. Classical methods for SPC assume that the quality of the
product or process can be measured by one or multiple quality characteristics.
However in many situations, the response of interest is not a single variable
but rather a function of some independent variables. This functional response
is called a profile. An example of profiles is the dissolving process of aspar-
tame, an artificial sweetener, which is characterized by the amount of that
dissolves per liter of water at different levels of temperature; see Kang and
Albin (2000). For illustration, Figure 1 shows the plot of four hypothetical
aspartame profiles. Another example mentioned in Kang and Albin (2000)
is a semiconductor manufacturingtproblem that occurs during the etching
step. In this example, the calibrationjof-a.mass flow controller in which the
performance of the processis eharacterized by & linear function; see Mestek
et al. (1994). There is also an interesting example introduced by Walker and
Wright (2002), called vertical density profiles' (VDP). The density is mea-
sured using a profilometer that usesia laser device to take measurements at
fixed depths across the thickness of the engineered wood board. As an illus-
tration, Figure 2 shows the VDP data from Walker and Wright (2002). The
data set is available at http://bus.utk.edu/stat/walker/VDP/Allstack. TXT.
The authors proposed a method using additive models to assess the sources

of variation in the density profiles of particleboards.

Kang and Albin (2000) studied the problem of linear profile monitoring,.
Let the output of a process be a random variable Y which depends linearly
on an independent variable X. They modeled the profiles by the simple lin-
ear regression model, Y = Ay + A1 X + ¢, X; < X < X}, where Ay and A,
are parameters and X; and X, define the range of X in which the process

is characterized by a linear profile. The random variable € are independent



and normally distributed with mean 0 and variance 2. They proposed two
approaches to monitoring profile data: (i) monitoring the parameters, the
intercept (A4g) and slope (A;), simultaneously with the Hotelling 7% chart
and (ii) using the regular EWMA and R charts for profile monitoring by
treating the residuals of the sample line to the in-control reference line as
a rational subgroup. Kim et al. (2003) proposed another approach called
EW M Az, which they showed was comparable to the approach of Kang and
Albin (2000). They centered the X-values to make the least squares esti-
mators of the Y-intercept and slope independent of each other. So that the
intercept and slope can be monitored separately. They constructed three

EWMA charts to monitor intercept, slope, and the variation, separately.

Shiau and Weng (2004) extendeéd thérabove profile monitoring scheme to
a scheme for more general profiles. Norassumption are made for the form of
the profiles except the smoothness. The nonparaimetric regression model con-
sidered is Y = g(x) + ¢, where g(2)45‘a smooth function and € is the random
error as before. Spline regression was adopted.as the curve fitting/smoothing
technique. They proposed an EWMA chart for detecting the mean shifts, an
R chart for variation changes, and an exponentially weighted moving stan-

dard deviation (EWMSD) chart for the variation increase.

Note that the models described so far are a deterministic line/curve plus
random noises. In this paper, based on Shiau and Weng (2004), we extend
the fixed effect model to a random effect model in order to provide more
variability that we often observe in many profile data, e.g., the aspartame
example and VDP example. We use the function Y = I + MeN@1* 4 ¢
given in Shiau and Weng (2004) as our illustrative example, where I, M, N
are considered to be random variables. Like Shiau and Weng (2004), we
use the B-spline regression technique to smooth profiles. With the random

effect model, we put emphasis on the covariance structure. To analyze the



covariance matrix, it is natural to consider the technique of the principal

component analysis (PCA).

The PCA is very useful in summarizing and interpreting a set of profile
data with the same equally spaced values of the independent variable X
for each profile. Castro et al. (1986) showed that the principal modes of
variation consist of eigenfunctions of the process covariance function and
gave procedures for estimating these eigenfunctions from a set of observed
curves. Rice and Silverman (1991) proposed a method for estimating the
mean function nonparametrically under the assumption that it is smooth.
They also suggested a variant of the usual cross-validation for choosing the
degree of smoothing to be employed. And in the estimation of covariance
structure, they primarily concerned!with. the first few eigenfunctions that
were smoothed and the eigenvaluessthattdecayed rapidly. Jones and Rice
(1992) suggested that a simple PCA be used .toddentify important modes of
variation among the curves-and that the principal component scores be used
to identify particular curves which'clearly demonstrate the form and extent

of a particular mode of variation.

In this paper, we construct our monitoring schemes by utilizing the eigen-
vectors and principal component scores obtained from PCA. If these scores
corresponds to separate modes of variation, then it is natural to monitor
each principal component score for what it represents. If not, we suggest a
combined-chart scheme that combines the charts of these principal compo-
nent scores for profile monitoring. Finally, a simulation study is conducted
to evaluate the performance of each principal-component-score chart and the
combined-chart in terms of the average run length (ARL). The simulation
study demonstrates that the combined chart scheme is comparable with the

best principal-component-score chart.

In the study of Phase I monitoring, we compare two commonly used



T? statistics, T? and T%, in which different covariance estimators are used.
Also, it is found from the study that the number of principal component
scores used in constructing 72 statistics affects the power of detecting out-
of-control profiles significantly. In this study, we use the cross-validation
method, one of the most popular procedures for model selection, to choose

the number of principal component scores.

Section 2 reviews the methods proposed by Shiau and Weng (2004) and
Shiau and Lin (1999) in which a set of degradation paths was modeled by a
stochastic process and PCA was employed to analyze the covariance struc-
ture. Section 3 describes some methodologies used in this paper, including
the B-spline regression technique, principal component analysis, procedure
of cross-validation, and the propeséd control schemes in details. Section 4
presents the simulation results of Phiase ll.monitoring with some discussions
along with some recommendations for Phase I monitoring. Section 5 presents
a case study using the VDP data frem Walker-and Wright (2002). Finally,

Section 6 concludes the paper.with a brief summary and some remarks.

2 Literature Review

Shiau and Weng (2004) proposed a profile monitoring scheme for profiles of
flexible shape. Unlike the combined EWMA /R chart proposed by Kang and
Albin (2000), they recommended using the EWMA to monitor the residual
average for detecting mean shifts and the R chart to monitor the residual
range for detecting standard deviation shifts of the residuals individually
in order to have better detecting power. Also, they proposed an EWMSD

control chart to detect shifts in process variation.

In Shiau and Weng (2004), an exponential profile of the form Y = I +
Me N@E=1D? 1 ¢ is used to mimic an aspartame profile. Shiau and Weng (2004)



showed by simulation studies that, for I, M, and N shifts in the exponential
profile, the EWMA chart performed well in detecting shifts. And for standard
deviation shifts, the EWMSD chart is a good choice while one can also use
the R chart. Also, they showed that, for the linear profile example given
in Kang and Albin (2000), their methods were slightly effective than the
methods of Kang and Albin (2000) and Kim et al. (2003).

Shiau and Lin (1999) proposed a nonparametric regression accelerated
life-stress (NPRALS) model to analyze the accelerated degradation tests
(ADT) data. In order to model a set of degradation paths by a stochas-

tic process, they made the following assumptions:

1. The sample degradation path of each experimental subject is a realiza-
tion of an underlying stochastic proeess { X (¢),t € T'}, where T is an

interval.

2. The model for X (¢) is
X(t) =) wlt) + €t), (1)

where u(t) = E[X (t)], w(t) = a stochastic process with mean 0
and covariance function (s, t)=Cov{w(t),w(s)], and

€(t) = uncorrelated error terms with Fle(t)]=0 and Var[e(t)]=0>.

3. The acceleration stress affects only the degradation rate, not the shape

of the degradation curve.

With these assumptions, they used p(t) to denote the mean curve under the
normal condition (un-accelerated) and p(a-t) to denote the accelerated mean

curve where a is the acceleration factor and usually a > 1.

In their model, there are m stress levels in the experiments. And for stress

level ¢, there are n; experimental units. Also, ti,...,t, are the measured



points of the product characteristic for each experimental unit. By using the

functional principal component technique, they model the ADT data by

L
Xijre = pla; - ty) + Z €iga Pig(th), (2)
q=1

where 1 <7 <m,1 <7< n;,1 <k<p1l<qg< Lyand L is a positive
integer no more then p. So the random component w(t)+€(t) of equation (1)
is then replaced by a random combination of functional principal compo-
nents {p;,(-),¢ = 1,...,L}. And they provided an iterative algorithm to

estimating pu(-) and aq, . .., Gp,.

Also, they investigated the covariance structure of X (-). First, for i =

1,...,m, compute

(V;)s,r —

1 i 3 )
n—1 Z[X%J'as lalts)]'s [Xi,j,r — f1i(tr)]

7 - i
for 1 < s,r < p, where [i(-) 18 the-eéstimate-of u(-). Let ﬁ’i,q = (pig(t1), .-,
Piq(tp)) be the eigenvector cortesponding to-the ¢-th largest eigenvalue A;,

of V;, where i =1,...,mand ¢ = 1,...,p. Then estimate:
2 by \i
o g, by Aig

e pi,(-) by smoothing {p; ,(tx),k=1,...,p} on {tx,k=1,...,p}.

At the end of the paper, they presented a real data analysis with their
NPRALS model. Also, in order to show how well their procedure does in
recovering the truth, they conducted a simulation study. They simulated
the degradation data curves by using equation (2). Treat f(-), A4, and

the smoothed {p; ,(tx),k = 1,...,p} obtained from the previous real data

2

analysis as the true values of ju(-), o7, and p; 4(-), respectively. The following

are the steps of the data generation.



e Compute:
1 &

n;

(Vi)swr = Xijs — tilts)] - [Xijr — palty)]

[
j=1
for 1§Z§m71§]§n171§k7‘97r§p

e Generate € ;4 from N(0,07,),1 <j<n;1<q<L.

e Generate:
L
Xije = pi(te) + Z €igig " Pig(tr)

q=1
for 1<j<n;,1<k<p.

By simulation, they showed that their NPRALS model performed very well

in recovering the features of the original degradation data curves.

3 Methodologies

3.1 Procedures

In this paper, as an illustrative example, we use the model
Y =4 MMV 1 ¢

where I ~ N(1,0.2%), M ~ N(15,1), N ~ N(—1.5,0.3%) , € ~ N(0,0.3%),
and r=0.64, 0.8, ..., 3.52 to simulate the profile data of the aspartame
example. We generate 200 profiles to serve as our historical data for Phase I

analysis.

We apply the B-spline smoothing technique to filter out the noise. For
the model X (¢) = u(t) + W(t) + €(t), this is to filter out €(t) so that the
actual signals can be better extracted from the data. These extracted signals

will be smoother and can explain the variation among profiles better. As

7



the variance of €(t) tends larger, the advantage of smoothing tends more

profound.

In Phase I monitoring, first we select the number of principal component
(PC) scores to be used by cross-validation and then use the T2 statistics
of the score vectors to detect the outliers. The details of these methods
are given in Subsections 3.4 and 3.5. This procedure will continue until, all
the remaining profiles are within the control limit. Then we can apply the
technique of PCA to these "in-control” profiles and the principal components

obtained will be used for the Phase II monitoring.
We summarize the whole simulation procedure as follows:
e Generate historical profile data at set points x=0.64, 0.8, ..., 3.52 by
y= T+ MeNE ¢
where I ~ N(1,0.22); M ~ N(15;1),"N-~ N(—1.5,0.3%) , and € ~
N(0,0.3?).
e Smooth each of the discrete:profile-data with the B-spline smoothing

technique.

e Select the number of effective principal components by the cross-valida-

tion method.

e Phase I: use T2 statistics to remove outliers until the remaining profiles
are all in control. Then, use PCA to obtain important features, by

which the in-control process is characterized.

e Phase II: We compute PC scores for each of the incoming profiles.
And use the independent property of the scores to check the stability
of the incoming profile by monitoring each score separately or by the

combined-chart scheme.

Details of our simulation results will be given in Section 4.



3.2 B-Splines

One basic objective of the data analysis is to identify the signals in a set of
data. But this gets complicated with the existence of random noise in the
data. That is, the goal is to filter out the random noise from the data in
order to get the signal. In order to extend nonlinear profiles of a fixed form to
smooth profiles of any shapes, a smoothing technique is needed for de-noising
sample profiles. The idea of smoothing is to fit a flexible function whose final
form is determined by the data and by the chosen level of smoothness of the
curve. That is, let the data speak for themselves. One popular way is to fit
noisy data by splines. Frequently, cubic splines—piecewise cubic polynomials

with continuous second derivatives—are used for such approximation.

Consider the following nonparametric regression model:

yzzg(%)"‘ez, Zzlaapa (3)

where g(x) is a smooth regression‘curverand ¢;’s are i.i.d. Gaussian variables
with zero mean and common vatiance o >0." In this paper, to estimate g(z),
we adopt the B-spline regression method for its popularity and simplicity.
Simply put, the B-spline regression is just a multiple linear regression with

B-spline bases.

Before we go on, we first give a brief description on B-spline bases. Details
can be found in de Boor (1978). Let b denote the number of bases and k be
the order of the B-splines. Note that the degree of the polynomials is k — 1,
hence each basis of order £ is a k—2 continuously differentiable function. For
example, k = 4 for cubic splines. Also let the interval [u, v] be the domain of
interest. For spline smoothing, knots are the points where the higher-order
derivatives could be discontinuous. For b bases, we need b+ k knots, denoted
by ti,...,tp+k, such that ¢, = v and ¢,41 = v. And let B, denotes the I-th
B-spline basis of order k&, where [ = 1,...,b. B;; can be defined iteratively

9



1 for 6 <t <ty

Bll(t) —
0 fort< tiort > tiv1-

)

t—1 tir — 1
For k > 2, B(t) = ————Bix-1(t) + ———Bii1s1(t).
livk—1 — U livk — Lt
Note that By is nonzero only on the interval (t;,%,4x). A B-spline of order

k can then be constructed as
b
g(z) = ZCZBM(:U), for z € [u, v],
=1
where ¢;’s are the unknown B-spline coefficients to be estimated from data.

For the B-spline regression, the nonparametric regression model in equa-

tion (3) can then be replaced bysthe following linear model:

b
Yi = ZCzBl,k(%‘) deci i 1 .., p. (4)
=1

Given a set of data, {(x;, y;)5% = 1< prthe spline regression method finds

the best spline approximation via-the following least squares problem:

b

min Z{?Ji =Y aBu()), (5)

=1

where ¢ = (¢1,...,¢)". Then the least squares estimator of c is
¢ = (B'B)"'Bly, (6)

where y = (y1,...,9p), € = (¢&1,...,6)", and B is the p x b design matrix
with the (4,1)-th element B ;(x;), { =1,...,b,i=1,...,p. Under the model
in equation (4), ¢ has a multivariate normal distribution with mean vector ¢

and variance-covariance matrix ¥ = o?(B'B) .

Note that the number of bases b acts as the smoothing parameter in
nonparametric regression and it is well known that the choice of the smooth-

ing parameter is crucial in nonparametric regression estimation. Also, the

10



boundary effect inherited in most of the smoothing methods is another issue

of concern.

3.3 Principal Component Analysis

The following materials on PCA are taken from Anderson (2003). PCA is
a multivariate procedure that rotates the data such that maximum variabil-
ities are projected onto the axes. Essentially, a set of correlated variables
are transformed into a set of uncorrelated variables ordered by the amount
of variation explained. Then these uncorrelated variables, called principal
components, are linear combinations of the original variables, and the last of
these variables can be removed with minimum loss of information contained
in data. The main usage of PCA.dsitomeduce the dimensionality of a data

set while retaining as much information as possible.

Principal components have special properties or features in terms of vari-
ance. They turn out to be the characteristic vectors of the covariance matrix.
Suppose the random vector ¥ ef p-components has covariance matrix 3.
Since we are only interested in the covariance matrix 3, without loss of gen-
erality, we may assume that the mean vector is 0. Let 3 be a p-component

column vector such that 3’3 = 1. The variance of 3'Y is
E(BY)*=EBYY'8) =BE(YY)3=p5%8, (7)

where E denotes the expectation. In order to determine 3'Y with the max-

imum variance subjected to 33 = 1, let
¢=pEB-ANBB-1), (8)

where A is a Lagrange multiplier. Then the partial derivatives of ¢ with

respect to 3 is

99 _o58- 928, (9)

0B
11



since 3’3 and (3’3 have derivatives everywhere in the region that contains

B'3 = 1. Thus, set

99 o588 =25 —A)B=0. (10)

op
In order to get the solution of equation (10) with 3’3 = 1, we must have
3 — M singular. In other words,

IS - M|=0. (11)

Since |X — M| is a polynomial in A of degree p, thus equation (11) has p
roots. Without loss of generality, let A\; > Ay > --- > )\, . Then

BEB=7\3B=\. (12)
This shows us that if 3 satisfies equation.(10) and 3’3 = 1, then the variance

of BY is .

Let 8% be a normalized solutionof (Z=MI)B =0. Then BY is the cor-
responding first principal compenent vector and U; = B1V'Y is a normalized
linear combination of the original variables with maximum variance. Next,
we want to find a normalized linear combination 3'Y that has maximum

variance of all linear combination uncorrelated to U;. That is,
0=E(BYU]) =EBYYBY)=8EYY)8Y =858" =188" (13)
since 8% = X\,;8Y. So now, we want to maximize

02 =PSB - NBB - 1) - 2186, (14)
where A and v; are both Lagrange multipliers. Then the partial derivatives
of ¢2 is

O¢s _ 258 — 228 — 21,280 . (15)

B
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Multiply 8% on the left of the above equation, then set it to zero. We have
0=28Y'%28-228W'38 - 20,80 238M = —2u, )\, . (16)

Thus, v; = 0 and B8 must satisfy equation (10), and therefore A must satisfy
equation (11). Let A3 be the maximum of Ay, ..., A, such that there is a
vector @ satisfying (X —\2)I)8 =0, '8 = 1, and equation (13). We denote
this vector by 8% and U, = 6(2)IY.

Continue the same procedure to the (r+1)-st step. All we need is to find
a vector 3 such that 8"Y has maximum variance of all linear combinations

which are uncorrelated with Uy, ..., U, . In other words, the above task is to

find B such that

0=EBYU)=E@EYYR)) =pE8" =)\,38"

fori=1,...,r. (17)
So we want to maximize
¢ = BEB-NBB=T)=2) vBEEY, (18)
i=1

where A\, vy, vs,...,1, are all Lagrange multipliers. First, take the partial

derivatives of ¢, 1, that is,
0ori1 _ 258 — 208 — 2 Z v, 2B (19)

B

i=1

Second, multiply B(j)/ on the left of the above equation and then set this

equation to zero. We then have
0=28Y'%8—228Y'8 — 21,8988 = —2u,)\; . (20)

If Ajy # 0, then —2w;A(;y = 0 implies v; = 0. On the other hand, if A(;) = 0,
then ¥4V = )\(j)ﬁ(j) = 0 and the j-th term in the sum of equation (19)
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vanishes. Hence, 3 must satisfy equation (10) and also A\ must satisfy equa-

tion (11).

Let A¢41) be the maximum of A; to A, such that there is a vector 3
satisfying (X — Ap+nI)B = 0, 8’8 = 1, and equation (17). Denote this
vector by BV and U, = By 1f A1) = 0and Ajy = 0 for j # r+1,
then 89287 does not imply that 898"+ = 0. But we may rewrite
Bt as B 1 0. 8W 4 ... 4+ 0- 8", so that BV is orthogonal to all
6(1), ,3(2), e ,B(’”). This procedure is continued until at the (e + 1)-st stage
that one can not find a vector 3 satisfying 3’3 = 1 and equation (17). Since
ﬁ(l), e ,ﬂ(e) must be linearly independent, so either e = p or e < p . But
e < p will leads to a contradiction, the details can be seen in Anderson

(2003). So we must have e = p .

Now let B = (5(1), e ,,B(p)) and

Ay o 2 0F o
0 Xg 0 -~ 0 0
Ao | 00 ETEER o 0 1)
0 0 - 0 Mgy O
o o0 - 0 0 Ay
Then in matrix form, we can rewrite 3" = A@r) B as
B = BA (22)
and BB =1, BB = 0 for r # 5 as
BB=1. (23)
From equation (22) and equation (23), we have
B'SB=A. (24)
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From the fact that

X = M| =[B]-[Z - Al [B]
= |B'SB — AB'B| = |A — Al

= H(M - A, (25)

it is clearly that the roots of this equation are the diagonal elements of A.
That is, A1) = A1, A@) = A2, -+, Ay = A, . So that we can state the following

theorem.

Theorem 1 (Anderson, 2003)
Let Y be a p-component random vector with E(Y)=0 and E(YY') = X.

Then there exists an orthogonal linear transformation B such that

U =B'X (26)
has the covariance matriz
AN 00 - 0 0
0 X O - 0 0
0 0 X - 0 0
A = . . . 3 . . , (27)
0O 0 -+ 0 XNyt O
O 0 --- 0 0 A

where \y > Ay > -+ > X\, > 0 are roots of equation (11). Then the r-th
column of B, B, satisfies (£ — \.1)B") = 0. And the r-th component of
U, U, = B(’")/Y has mazimum variance of all normalized linear combinations

uncorrelated with Uy, ---,U,_1.

Thus BYW, .-+, 3% are eigenvectors and Ay, - - -, Ap are eigenvalues of 3.

In PCA, for r = 1,---,p, B® is the r-th principal components of Y and U,

15



is called the score of the r-th principal components. These scores will catch
the special properties or features of the curves corresponding to different
principal components. Hence we can use these principal component scores

to monitor the changes or shifts of the profiles.

Now for real data analysis, suppose we have n profiles, each with p set
points. Compute the sample covariance matrix )y by

n

Z(yz -9y —9),

=1

1
n—1

=

where y, is the i-th profile and y = > " | y,/n. Apply the eigenanalysis
to 3. The eigenvector corresponding to the j-th largest eigenvalue is the j-
th principal component, 7 = 1,...,p. Then simply project each profile onto
these eigenvectors to have the ¢orresponding principal component scores that

we use in our monitoring scheme.

3.4 A Simple Cross-Validation Procedure

We adopt the principle of cross-validation'(CV) as the criterion to decide how
many PC scores to use. Here, we use an example to illustrate this procedure.
Assume there are n = 50 profiles, each with p = 19 set points. We randomly
divide the data set into g = 5 groups of 10 samples each. The CV procedure
given in Jackson (1991) is as follows.

Repeat the following steps for i =1 ro g:

1. Delete the i-th group from the original data set. Perform PCA on the
remaining samples to obtain all nineteen eigenvectors. Denote them by

Ui, -, Uy

2. Project each of the 10 deleted samples onto the eigenvectors obtained

in step 1 to obtain its 19 PC scores.
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3. Using, in turn, the first principal component, the first two principal

components, and so on, to obtain the predicted values of the deleted

sample y = (y1,- -+, y19)" by
y=y+UZ (28)

where 5 = 3% /19 and U = (uy,---,uy9) is the matrix of the
eigenvectors obtained in step 1, and Z is the vector of the corresponding

principal component scores obtained in step 2.

A

4. For each of the deleted samples, compute Q = (y — y)' (y — y).

Then there will be 50 values of () for the one-principal-component model, an-
other 50 for the two-principal-component model, and so on. For each model,
add up the 50 Q-statistics. These are called PRESS-statistics. Let PRESS(7)
be the sum of the 50 values of @-for the ¢-principal-component model,
i = 1,...,p, and PRESS(0) be the sum of squares > 7" | >0, (yi; — 4i)°.

Finally, for k£ starting from 1, compute the statistic

 [PRESS(K “)=PRESS(k))/Da
W= PRESS(K)/Dn ’ (29)

where Dy = n+p—2k and Dg = p(n —1) = S5 (n+p—2i). TW > 1,
then retain the k-th principal component in the model and continue to test

the (k + 1)-st. The procedure stops when W < 1.

3.5 T2 statistics

In this paper, for Phase I monitoring, two versions of 7% statistic are studied.
They are different in the estimation of the covariance matrix.

Method 1: Use the usual sample covariance matrix

T2, = (8, — B)ST (B, - B) (30)
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where Bz = (BM, Bl‘72, e ,Biyp)’ is the score vector of the i-th sample profile,
B = (% Yo Bm, % 2;21 31,27 T % Yoy Bi,p)/, 1=1,...,n,and
Si=-45>", (8, — B)(B; — B). So according to William et al. (2003),

T? (31)

n
~ Beta |2
2 ML’ 2

(n—1)

p n—p—l}

Thus, the control limit UCL, = @Betal_%p/gj(n_p_l)/z.

Method 2: Use the successive-difference-based sample covariance matrix

~

T2, = (8, — B)'S; (B, - B), (32)

t=1,...,n—1. Then

= i)

p f-p—1
e, 2 ’

where S, = "' V,V//2(n—1) with V, = 3,,, — 3

5 ~ Beta [

1 o1y (33)

where f = 2An—1)? Thus, the control limit UC Ly = MBetal,mp/g’(f,p,l)/Q.

3n—4 ° n

See Williams et al. (2003).

4 Simulation Studies - Aspartame Example

4.1 Settings for Simulation

In our simulation study, we use the model
y=1+ MV ¢ (34)

where I ~ N(1,0.2%), M ~ N(15,1), N ~ N(—1.5,0.3%) , e ~ N(0,0.3%) and
x=0.64, 0.8, ..., 3.52 to simulate profile data of the aspartame example. We
assess the performance in terms of the average run length (ARL) through
simulation studies. Let ARLy denote the in-control ARL. All charts are
designed to have the same ARLy=200, which corresponds to the false alarm

rate a=0.005 .
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To compute ARL, we simulate 200,000 profiles each time and count the
number of profiles that are out of control. Then the proportion of the out-of-
control profiles is an estimate of the out-of-control probability for each profile.
Consequently, the reciprocal of this estimate is an ARL estimate. We repeat
the above steps 1000 times to obtain 1000 ARL estimates. Compute the
sample mean and sample standard deviation of these 1000 estimates. The
final ARL estimate is taken as the sample mean and its standard error is the

sample standard deviation divided by 1000/2.

4.2 Number of Principal Components

An important issue arises in using PCA: how many principal components
should be used for our purpose?siMore specifically, how does the choice
affect the detecting power of our menitoring-scheme? Here, the detecting
power means the ability of-our monitoring scheme detecting the real out-
of-control profiles. For example, simulate fifty profiles with three out-of-
control profiles in the data Set.” Tf our scheme catches two of these three,
then we measure the detecting power by 2/3 for this data set. In order
to study this issue, we choose some settings of I, M, N shifts and simulate
fifty profiles for each setting. Then repeat each setting 20,000 times to get
the average detecting power and the corresponding percentage of variation

explained across different numbers of principal components.

Partial results are presented here for illustration. Figures 3 and 4 show
the results for the situation of one out-of-control profile in fifty profiles with
a mean shift of 5 sigma on I. Figures 5 and 6 are the plots that two out-of-
control profiles in fifty profiles with a mean shift of 5 sigma on M. Figures 7
and 8 display the results for the situation that there are three out-of-control
profiles in fifty profiles with a mean shift of 2 sigma on N. From these

plots we can clearly see that more principal components does not lead to
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more detecting power, although we do have more variation explained. So
choosing number of principal components becomes an important task. We
use cross-validation method to decide the number of principal components

to use.

Here, we conduct another simulation study on this issue. We generate fifty
profiles each time, apply the cross-validation method to select the number
of principal components. Repeat the process 20,000 times and then plot
the histogram of the results. Figures 9-11 display respectively the resulting
histograms for the cases of I-shift, M-shift, and N-shift described above. We
can see that for all these three settings, the cross-validation method seems

in favor of choosing three principal components.

Also, we wonder if the result may be affected by the number of the di-
viding groups. In order to:see this; we simulate fifty profiles and divide
the sample profiles into two, ten, or fifty groups. Then apply the cross-
validation method to select the number-of principal components for each case.
Repeat the procedure 20,000 times and plot the corresponding histograms.
Figures 12-14 display the plots for two, ten, and fifty groups, respectively.
We observe that as the number of groups increases, the selected number of
principal components decreases. It is surprising to see that the delete-one

cross-validation method chooses only one principal component.

4.3 Phase I monitoring

We now describe the performance of Phase I analysis by an example. In Phase
I, we have 200 historical profiles each with 19 set points; see Figure 15. Fit
these profiles with B-splines of effective degrees of freedom 5; see Figure 16.
And we have a sample covariance matrix of dimension 19x19. Then we ap-
ply PCA to the covariance matrix and get the corresponding 19 eigenvalues.

By ordering these eigenvalues, we have \y > Ay > ... > A\g. For our sample
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profiles, we divide the data set into ten groups of twenty observations each.
The number of principal components selected by the cross-validation method
is four. Then the first principal component is the eigenvector corresponding
to A1, the second principal component is the eigenvector corresponding to Ao,
and so on. The explanation percentage corresponding to the ¢-th principal
component is computed by \;/ Zgl Ai. So the first four principal com-

ponents account for 0.7644, 0.1742, 0.0309, and 0.0086 of variation in the
profiles, respectively. The total is 0.9781.

Now for each profile, we project it onto the first four eigenvectors to get
the scores. In our case, Bl is a 4x1 vector of the scores of the first four
principal components. Here the number of profiles n=200 and the number
of principal components is 4. Setr@ at 0:005 in order to have ARLy = 200.
Then compute both T? andiT3 givenvif, Section 3.5. We then have the
corresponding control charts displayed .in Figures 17 and 18, respectively.
We can see that in T? control chart, there is an out-of-control point. So,
we remove the out-of-control profile and then take the remaining 199 profiles
and recalculate the T2 statistics again. Then plot the corresponding 77 and
T2 control charts. If there are still some out-of-control profiles, then remove
them, recalculate, and plot the control chart again until all of the remaining
profiles are in control. In our case, the 7% and T% control charts, displayed
respectively in Figures 19 and 20, indicate that the remaining 199 profiles

are in control.

Also, we notice some differences between the performance of T? and T%.
In general, T3 performs better when out-of-control profiles occur successively,
while T? performs better for temporal shifts. To see this, as before, we
simulate sets of fifty profiles in which some are shifted. For one shifted
profile only, we set it at the middle of the sequence of sample profiles. For

two shifted profiles, we set them at the one-third and the two-third of the
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sequenced sample profiles. And for three shifted profiles, we set them at
the one-fourth, the middle, and the three-fourth of the sequenced sample
profiles. Since I, M, N shifts contribute variation of the profiles in different
aspects, we need to quantify the extra variation caused by the shift in terms
of the response variable of the profile so that we can have a comparison basis
for different types of shifts. The variance of Y (x) can be approximated as
follows.

Since

Y(z) =1+ MV e m g+ x ¥ et (1— )
+(M = piag) x eNED* L (N — puy)(z — 1)2ppg x e ¥@D*

we have

E(Y (z))8 pr fihgSoe™e 1",

Var(Y(z)) m 02 4 o2, (PN @2 620 ilr — 1)% x e @072 4 52

€

Also, Bias(Y (z)) = E(Y (z) — E(¥:(x))). Note that, when the p; is shifted
to pur + 0oy, Bias(Y(x)) =~ dor; but when py is shifted to uy + doy, then
Bias(Y (x)) & don(x — 1) e~ @ D? | Define

MSE(Y(x)) = E(Y(x) — E(Y(2)))*> = Var(Y (z)) + Bias*(Y ()).

Then the integrated mean squared error (IMSFE) of the profile is

IMSE= [ MSE(Y(2))dr - /

0.64 0.64

3.52 3.52

Var(Y(x))da:~|—/ Bias*(Y (z))dx.
0.64
When the process is in control, denote the IMSE by IMSFEy; when there
are shifts in I, M, and N, denote the IMSFE by IMSE;. We then define a

measure called the variation expansion factor (vef) by

i [TMSE,
VTN TMSE,
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Repeat 20,000 times to get the average of these measures for each setting.
The performance is assessed by the detecting power and the false-alarm rate.
Tables 1-3 display respectively the simulation results for I, M, N shifts. From
these simulation results, we can clearly see that T7 outperforms T7 for tem-
poral shifts with both criteria. Note that the detecting power decreases as
the number of out-of-control profiles increases. This probability is caused by
the fact that the parameter situation gets power as the data contamination

gets worse.

4.4 Phase II monitoring

In Phase II monitoring, we use the true mean function p(-) and the sam-
ple covariance matrix X of the above 199 profiles as the in-control process
parameters to perform our simulatiems det'p be the 19 x 1 vector com-
puted by p(z) = 1 + 15e=P5@DEGE 5= 0:64,0.8,...,3.52 . We then
generate in-control profilestfrom MV-N(p,Y.), “Consider I-shift from p; to
wr +a x or, a = 0,0.25,. 5537 M-shift froni py to py + 8 X op, 0 =
0,0.25,...,3; N-shift from ux %0 gy +9 x oy, v = 0,0.25,...,3. Fig-
ures 21-23 display the curves of f(z) = I + MeN@=D* with different value of
I, M, N respectively. Figure 24 display the plot of the first four eigenvectors
of 3. And Figures 25-28 illustrate respectively the corresponding features
captured by the first four principal components, by showing in each plot the
mean profile and the profiles corresponding to the largest score and smallest
score of the principal component. Now for each shift in 7, M, N, we generate
200,000 profiles to computed an ARL estimate. Then repeat this 1000 times
to get a more accurate estimate along with its standard error as before. Ta-
bles 4-6 display the ARL values for the shifts in I, M, N, respectively. We
can see from Table 4 that PC3 and PC1 can capture the shift in I. PC3 has
the best power for detecting I-shift. PC2 and PC4 hardly have any power
on detecting [-shift. Also, we can see from Table 5 that PC2 and PC1 out-
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perform the other two with PC2 slightly better than PC1 in capturing the
shift in M. And for detecting N-shift, we can see from Table 6 that PC2
and PC1 are the best two. But as the shift tends to 3 units of oy, PC2 still
has the best power and PC3 becomes the second best for detecting N-shift.

In fact, we can obtain the exact ARL values as follows. Let P = (P, P,
-+, Py)’, where P; is the i-th eigenvector of ¥. Then P projects profiles
to the first four principal components. Let A, ---, Ay be the corresponding
eigenvalues of 3. Since the in-control profile Y ~ MV N(u,¥) and PXP' =
diag(A1,- -, \s) = A4, we have the score vector PY ~ MVN(Ppu,Ay).
Denote the shifted profile by Y and the shifted mean profile by fi. Then
PY ~ MV N(Pji,Ay). Let § = j1— p. The probability of detecting the shift
of the i-th principal component chart is
Pi(Y =)

p:P(| \/)\—

| 'S Zi0025)

—Pls PI(Y <) . —PS

=P — Zo.0025 P

+ Zo.0025)

0 —Pé
— — Zpoozs < Z < — + Z0.0025)

where Z is the standard normal variate. The value 1/p is the actual ARL of

:P(

the i-th principal-component chart. Tables 7-9 show respectively the actual
ARL for each of the I, M, N shifts. By comparing Tables 4-9, we can see
that our simulated ARLs are all very close to the actual ARLs, which verifies

the correctness of the simulation.

Since each of the I, M, N shifts is captured by more than one principal-
component chart, we recommend using the combined chart to monitor these
shifts. A combined chart means we monitor the process by more than one

chart and the combined chart signals out of control if any of the charts
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signals. Set the overall false-alarm rate at o = 0.005. Since these scores are
independent, the individual false-alarm rate is o/ = 1 — (0.995)%/* for each of
the four principal component scores. Then we can have the control limits of
these four scores as shown below:

Plll"’ - Z17(0.995)1/4 VAL Plll*l' + 217(0.995)1/4 VA
P

2

( 1)
(P — Zw\/)\_z, PIQM—FZM\/)\_Z)
(Phis — Z,_poom1/i VA5, Pé“—FZM\/)\:)
(

2

PQN - 217(0.995)1/4 V A, Pil“ + 217(0995)1/4 V )‘4)
2

2

If one of the principal component scores is out of the control limits, then
this profile is claimed as out of control. That is, only when all four principal
component scores of that profile are’within the control limits simultaneously,
then it will be treated as an in-controlprefile.”In order to do the comparison
the above, we also simulate 2005000 profiles each time to get an ARL estimate.
Then repeat 1000 times to get the final ARL estimate and its standard error.
Tables 10-12 display the simulation results forr ARL comparison for I, M, N
shifts, respectively. Also, we can derive the exact control limits and compute
the exact ARL. Tables 13-15 show the ARL computed from the exact control
limits with shifts in I, M, N, respectively. By comparing the simulated ARL
with the exact ARL for our combined chart, we can see that they are very
closed to each other. Also, we plot the ARL comparison plots for PCI,
PC2, PC3, PC4 and the combined chart with I, M, N shifts in Figures 29-31
respectively. As we can see for I-shifts, PC3 dominates primarily. And for
the combined chart scheme, it was the second best in monitoring the shifts
in I. As the shifts gets bigger, the difference in ARL between PC3 and the
combined chart gets smaller. Also, for M-shifts, PC2 is the best scheme to
monitor it. For the second best one, the PC1 and the combined chart are
comparable. Note that two ARL curves intersect at about 1.250,, shift. That
is, for shifts smaller than 1.250,;, PC1 has better power. But the combined
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chart scheme outperforms PC1 as the shift size tends larger than 1.250,,.
We can see the same phenomenon in N. From Figure 31, PC2 is still the
best one to monitor shifts in N. PC1 and the combined chart scheme are

comparable. Also the two ARL curves intersect at about 1.1oy shift.

Also, we show the ARL values for simultaneous shifts of I and M, I and
N, and M and N, in Tables 16-18, respectively. We can see from Table 16
that PC1 takes the major job of monitoring simultaneous shifts in I and M
while PC3 serves as the second best. And from Table 17, we can observe
that PC2 dominates the simultaneous shifts in I and N while PC1 serves as
the second best. Also from Table 18, we can see that PC1 plays the major
role in monitoring simultaneous shifts in M and N while PC2 performs the

second best. But notice that the powér for, PC2 here is not comparable with

PCL1.

Finally, we consider shifts in the variance of I, M, and N. Recall that
the in-control situation is: v N(10249M ~N(15,1), N ~ N(—1.5,0.3%).
Now for variance shifts in I, we eonsider.a; = 0.3,0.4,...,1. For each shift,
we simulate 200,000 profiles to get an ARL estimate and then repeat the
procedure for 1000 times to get the mean and the corresponding standard
deviation. The ARL results for each principal component chart and the com-
bined chart are shown in Table 19. And Figure 32 shows the corresponding
ARL curves. As we can see that PC3 dominates for the shifts in variance
of I while the combined chart scheme also performs very well in monitoring

this kind of shifts.

And for variance shifts in M, we consider o), = 1.5,2,...,5. The simula-
tion results are shown in Table 20 and Figure 33. Likewise, we can see that
PC2 dominates for the shifts in variance of M. But here, the combined chart
scheme is comparable with the PC2. As o), gets bigger, the combined chart

scheme performs even better than PC2. At last, for shifts in variance of N,
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we consider oy = 0.4,0.5,...,1.1. Table 21 and Figure 34 shows the simula-
tion results. From these simulation results, we can see that PC3 has the best
detecting power for variance shifts in N. The combined chart scheme also has
great detecting power for monitoring shifts in on. Notice that as oy tends
bigger than 0.7, the profile shape will be greatly affected. Therefore we can
see that all these four principal components are sensitive to it and they all
have great detecting power. While it is difficult to figure out which principal
component dominates the shifts, we recommend the combined chart scheme

for monitoring.

Since the model under study is a random effect model, we are curious
of the power in monitoring variance shifts. From the above simulations,
we have shown that the combined’chait scheme is a very good choice for
monitoring random effect mgdel. So here;.in érder to compare the power of
our combined chart in detecting mean shifts-and variance shifts, we use the
ARL of the combined chart'scheme”*Then, userour comparison basis vef to
quantify the difference between the shifted profiles and the reference profile.
Hence we can have the plot that compares the ARL of detecting mean shifts

and variance shifts; see Figure 35.

We can see from Figure 35 that for both I, M, N shifts, our monitoring
scheme performs better in detecting variance shifts than mean shifts. We can
observe that there exist big differences for all I, M, N shifts at small values
of comparison basis. And as the value of comparison basis tends bigger,
the difference between mean shifts and variance shifts tends smaller. When
the value of comparison basis getting large enough, there exist almost no
differences between mean shifts and variance shifts. Also from Figure 35, we
can see that our monitoring scheme does the best job in detecting variance

shifts in N while the second best one is variance shifts in 1.
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5 A Case Study - VDP Example

5.1 Phase I monitoring

The VDP data set contains n = 24 profiles, each was measured at p = 314
set points. Figure 2 is the plot of the VDP data. We fit these 24 profiles
by B-splines with 16 degrees of freedom. See Figure 36 for the plot of the
fitted B-splines. Also Figures 37-40 respectively plot principal components
1 to 4 showing the modes of variation they capture. And the first four
principal components account for 0.8535, 0.1084, 0.0190, 0.0084 of variation
in the profiles, respectively. The total is 0.9893. Figure 41 is the plot of the
corresponding eigenvectors. Now for Phase I monitoring, we use the same
method as for the aspartame example., Figures 42 and 43 are the control

charts of T? and T7 respectively. We can see‘that there are no out-of-control

profiles in the VDP data.

5.2 Phase II monitoring

Since, in the aspartame example, the first four principal components cannot
distinguish the shifts in I, M, N very clearly, we suggest using the combined
chart scheme to monitor these shifts. Now, we are going to demonstrate an
example that its principal components can capture the shapes of shifts very

clearly by simulation.

For demonstrating Phase I monitoring, we need to generate new VDP
data. Applying PCA to the original VDP data, we then have the corre-
sponding eigenvectors {p;,- -, ps4} and eigenvalues {Ay,---, As14}. Since
the first four principal components can explain 97.57 percent of variation, we
only use these four principal components to regenerate the new VDP data.
And these first four principal components account for 0.8402, 0.1072, 0.0192,

0.0091 of variation in these profiles, respectively.
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We use the following steps to regenerate a set of new VDP data.

1. Generate i.i.d. €, from the normal distribution with zero mean and

variance A\g, 1 < j <24, 1<q <4
2. Generate X = pu(ty) + Y u_y €5 pa(te), 1 < < 24,1 < k < 314,

Note that A\;, Ao, A3, Ay are the four largest eigenvalues and py, po2, p3, pa
are the corresponding eigenvectors with length 314. And p(-) is the mean
profile of the 24 original VDP curves where t;, denotes the k-th set point.
Figure 44 displays the simulated VDP data. We can see that the simulated
data do capture the peaks and the shapes of the original VDP data.

Then, we apply our estimation method to the generated data to get the
simulated mean profile, eigenvalues; and eigenvectors. Figure 45 displays the
mean profile of the real data;and thésimulated data. We can see that these
two curves are very close. Figures 46-49 show the first four eigenvectors of
the real data and that of the simulated data, respectively. Likewise, from
these four figures we can see that the simulated eigenvectors are all close to
that of the real data. Also, Figure 50 shows that the simulated eigenvalues
are fairly close to the eigenvalues of the original profile data. Therefore, we
can say that the data generation method we adopt here can really capture

the shapes and variations of the original data.

In Phase II monitoring, we treat the average profile vector p of the 24
smoothed VDP profiles and the sample covariance matrix ¥ as the in-control
process parameters to perform our simulation. Here, g = (u(t1), -+, pi(tz14))’
is a 314 x 1 vector and the covariance matrix ¥ is a 314x314 matrix. We
can generate the in-control profiles by Y ~ MV N(u, ). For out-of-control
conditions, we shift the profiles in their first two principal components. That

is, generate new profile data by
Y ~ kv x v, + MVN(u, %)
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where k=0, 0.25, ..., 2 and wv; is the i-th eigenvector of ¥, i=1, 2. We sim-
ulated 200,000 profiles to compute an ARL estimate for each out-of-control
conditions considered. Then we repeat the procedure 1000 times to get our
final ARL estimate along with its standard error. Tables 22 and 23 report
the ARL results for shifts in principal component 1 and principal component

2 respectively.

As we can see from Table 22 that shifts in principal component 1 are
solely captured by the first principal component score. Likewise, from Ta-
ble 23, shifts in principal component 2 are captured by the second principal
component score. The other three principal component scores make no con-

tributions to the power of detection.

6 Conclusions

The monitoring of process or produet-profiles is & very popular and promising
area of research in statistical process control in recent years. In this study,
we discuss monitoring schemes for the random effect nonliner profiles. We
use the principal component analysis to analyze the covariance matrix of
the profile data and use the corresponding principal component scores that

capture the main features of these profile data for process monitoring.

In the study of the aspartame example, our simulation shows that prin-
cipal component 3 performs the best over the entire range of I shifts. And
principal component 2 is the best for monitoring M shifts while principal
component 1 also plays an important role in monitoring M shifts. And for
shifts in N, principal component 2 performs the best over the entire range.
Likewise, principal component 1 also plays an important role in monitoring
N shifts. Note that as the shift tends bigger in N shift, all those four prin-

cipal components are good at catching the out-of-control profiles. And for
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each shift, we can also use the combined chart to perform monitoring. We
have shown that although this monitoring scheme may not be the best for
each shift, it still has comparably good power to monitor these shifts. More-
over, we have displayed in the tables the results when two of I, M, N shift

simultaneously.

Using the example of vertical density profiles, we demonstrate that when
the shift corresponds to a mode of variation that a particular principal com-
ponent represents, then we can directly use the score of that principal com-

ponent to perform monitoring.

So if a principal component can clearly identify the shift, a situation may
be rare in real applications, then we recommend monitoring the score of that
principal component. Otherwise we recommeénd the combined chart scheme

because it still has comparably geed-power to monitor these shifts.

Moreover, we use a mean-squares-crror-like (MSE-like) measure as a com-
parison basis to compare the"”ARL performance in mean shifts and variance
shifts. Simulation results indicate that our monitoring scheme performs bet-
ter in detecting variance shifts. And in the selection of number of principal
components, we adopt the cross-validation method for its popularity and
simplicity. Also, in the use of cross-validation, we have observed that the se-
lection is affected by the number of groups that the data set is divided into.
By our simulation result, we can see that as the number of groups increases,
the selected number of principal components decreases. Further studies are

needed on this issue.

Finally in the studies of Phase I monitoring, we compare 7% and T%. And
we show by simulation that 77 has a better overall performance than Ty

under temporal shifts.
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One shift set at the 100th curve among 200 curves
chart\ I shifts | 5 x o7 | 7Tx o7 | 10 X o7

(vef) (1.543) | (1.925) | (2.554)
T? power 0.4506 | 0.8213 | 0.9842
false-alarm 0.0068 | 0.0062 | 0.0059
T3 power 0.1467 | 0.4567 | 0.869
false-alarm 0.0028 | 0.0026 | 0.0025

Two shifts set at the 66th and 133th curve among 200 curves
chart\ I shifts | 5x o7 | Tx o7 | 10 X 07

(vef) (1.543) | (1.925) | (2.554)
T? power 0.2924 | 0.52 0.7339
false-alarm 0.0062 |0.0059 | 0.0054
T3 power 0.0726 [10.1746 | 0.333
false-alarm 0.0026 | 0:0025 | 0.0022

Three shifts set at the 50th;:100th and 150th curve among 200 curves
chart\ I shifts | 5% ey | 7 x o7 | 10 X o7

(vef) (1.543) | (1.925) | (2.554)
T? power 0.1972 | 0.325 | 0.4515
false-alarm | 0.0059 | 0.0054 | 0.005
T? power 0.0392 | 0.0745 | 0.1207
false-alarm 0.0025 | 0.0023 | 0.002

Table 1: The performance assessed by detecting power and false-alarm rate
for T? and T% to detect I shifts with temporal shifts.
(i.e. Shift from pr=1 to 1+k x o; and vef (in parentheses), represents the

impact of the shift on the whole function variation.)
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One shift set at the 100th curve among 200 curves

chart\ M shifts | 5 X oy | 7 x op | 10 X oy
(vef) (3.358) | (4.580) | (6.445)

T? power 0.716 | 0.9637 | 0.9989
false-alarm 0.007 | 0.0068 | 0.0067
T3 power 0.3077 | 0.7331 | 0.9747
false-alarm 0.003 | 0.0029 0.003

Two shifts set at the 66th and 133th curve among 200 curves

chart\ M shifts | 5 x oy | 7 X oy | 10 X oy
(vef) (3.358) | (4.580) | (6.445)

T? power 0.4449 | 0.671 0.8207
false-alarm 0.0067 [“0.0066 | 0.0064
T2 power 0.1209 1:0.2622 | 0.4298
false-alarm 0.0029 | 0.003 0.0028

Three shifts set at the 50th,

100th and 150th curve among 200 curves

chart\ M shifts | 5'xtaps | 7 X opr | 10 X oy
(vef) (3.358) | (4.580) | (6.445)

T? power 0.2854 | 0.4197 0.52
false-alarm 0.0065 | 0.0064 | 0.0063
T2 power 0.0583 | 0.1025 | 0.1502
false-alarm 0.0028 | 0.0028 | 0.0027

Table 2: The performance assessed by detecting power and the false-alarm
rate for T¢ and T3 to detect M shifts with temporal shifts.
(i.e. Shift from pp=15 to 15+k x oy and vef (in parentheses), represents

the impact of the shift on the whole function variation.)
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One shift set at the 100th curve among 200 curves

chart\ N shifts | 2 x oy | 2.5 X oy 3X oy

(vef) (2.284) | (2.979) (3.923)

T? power 0.1587 | 0.4858 0.8961

false-alarm 0.006 0.0045 0.0028

T2 power 0.0396 | 0.2023 0.6566
false-alarm 0.0024 | 0.0018 | 9.5612e-004

Two shifts set at the 66th and 133th curve among 200 curves

chart\ N shifts | 2 X oy | 2.5 X oy 3 X oN

(vef) (2.284) | (2.979) (3.923)

T? power 0.1152. 1. 0.3208 0.6172

false-alarm 0.005 0:0031 0.0016

T2 power 0.0243 0.092 0.2507
false-alarm 0.002 0.0012= | 5.0625e-004

Three shifts set at the 50th;:100th and 150th curve among 200 curves

chart\ N shifts | 2 X o [ 125 X oy 3 X on

(vef) (2.284) | (2.979) (3.923)

T? power 0.0906 0.2097 0.3781

false-alarm 0.0042 0.0025 0.0011

T3 power 0.017 0.0451 0.0946
false-alarm 0.0016 | 8.8298e-004 | 3.1702¢-004
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Table 3: The performance assessed by detecting power and the false-alarm
rate for T and T3 to detect N shifts with temporal shifts.
(i.e. Shift from py=-1.5 to -1.54+k X oy and vef (in parentheses),

represents the impact of the shift on the whole function variation.)




chart | 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.002) | (1.007) | (1.015) | (1.027) | (1.042) | (1.060)

PC1 | 200.38 | 196.64 | 187.86 | 174.44 | 157.88 | 140.51 | 123.51
0.2004 | 0.1970 | 0.1795 | 0.1630 | 0.1394 | 0.1226 | 0.0940

PC2 | 200.12 | 200.14 | 200.16 | 200.21 | 199.77 | 199.26 | 198.53
0.2003 | 0.1961 | 0.1981 | 0.1962 | 0.2006 | 0.1979 | 0.1987

PC3 | 200.13 | 172.04 | 119.20 | 76.094 | 48.049 | 30.992 | 20.497
0.2027 | 0.1669 | 0.0933, {,0.0487 | 0.0239 | 0.0118 | 0.0066

PC4 | 200.40 | 200.34 | 200.27 | 199.69-| 199.23 | 198.58 | 197.87
0.2031 | 0.1922 £0.2027 | 0.2006 [0.1964 | 0.1984 | 0.1957

chart | 1.75 2 2.25 2.5 2.75 3
(1.081) | (1.105) [(L.331) [(1.160) | (1.190) | (1.223)

PC1 | 107.43 | 93.12 | 80.410++69:369 | 59.919 | 51.721
0.0796 | 0.0643 | 0.0489 | 0.0415 | 0.0310 | 0.0268

PC2 | 198.53 | 197.7 | 196.91 | 196.16 | 195.29 | 194.32
0.1965 | 0.1950 | 0.1936 | 0.1915 | 0.1858 | 0.1976

PC3 | 13.999 | 9.859 | 7.1627 | 5.3581 | 4.1247 | 3.2674
0.0036 | 0.0020 | 0.0012 | 0.0008 | 0.0005 | 0.0003

PC4 | 197.71 | 196.6 | 195.58 | 194.84 | 193.55 | 192.47
0.1951 | 0.1950 | 0.1900 | 0.1981 | 0.1839 | 0.1929

Table 4: ARL comparison for I-shift (u; =14 0.2 X «).
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g

chart | 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.019) | (1.062) | (1.126) | (1.207) | (1.302) | (1.408)

PC1 | 200.6 | 177.7 | 1315 | 89.18 | 59.37 | 39.81 | 27.25
0.2032 | 0.1735 | 0.1068 | 0.0601 | 0.0322 | 0.0116 | 0.0099

PC2 | 2001 | 1689 | 112.9 | 69.49 | 42.81 | 27.02 | 17.66
0.1943 | 0.1549 | 0.0871 | 0.0411 | 0.0201 | 0.0098 | 0.0050

PC3 | 200.3 | 199.0 | 196.8 | 192.8 | 187.7 | 181.3 | 174.3
0.1958 | 0.2064 | 0.1942, |,0.1884 | 0.1759 | 0.1689 | 0.1611

PC4 | 199.8 | 199.8 | 4979 | 1955+ 191.9 | 187.5 | 182.1
0.1963 | 0.1986 {0.2041 §10.1906 [-0.1901 | 0.1841 | 0.1679

chart | 1.75 2 2.25 2.5 2.75 3
(1.524) | (1.647) [{(L.775) [(1.908) | (2.044) | (2.183)

PC1 | 19.06 | 13.65 | 10.028+{-7:5328 | 5.7976 | 4.5616
0.0058 | 0.0034 | 0.0021 | 0.0014 | 0.0009 | 0.0006

PC2 | 11.93 | 8.344 | 6.0404 | 4.5196 | 3.492 | 2.7828
0.0028 | 0.0016 | 0.0009 | 0.0006 | 0.0004 | 0.0003

PC3 | 166.2 | 157.9 | 149.08 | 140.33 | 131.89 | 123.37
0.1489 | 0.1378 | 0.1276 | 0.1192 | 0.1080 | 0.0961

PC4 | 1764 | 169.6 | 163.41 | 156.41 | 149.01 | 142.01
0.1699 | 0.1562 | 0.1475 | 0.1354 | 0.1294 | 0.1229

Table 5: ARL comparison for M-shift (uy = 15+ 1 x 3).
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chart | 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.045) | (1.123) | (1.233) | (1.377) | (1.552) | (1.761)
PC1 | 200.6 | 175.46 | 123.33 | 77.235 | 46.416 | 27.765 | 16.783
0.2045 | 0.1576 | 0.0990 | 0.0480 | 0.0221 | 0.0103 | 0.0047
PC2 | 200.07 | 170.31 | 109.92 | 61.319 | 32.571 | 17.17 | 9.2111
0.1943 | 0.1512 | 0.0825 | 0.0339 | 0.0132 | 0.0051 | 0.0018
PC3 | 200.33 | 195.5 | 188.38 | 184.87 | 188.98 | 198.38 | 192.89
0.1958 | 0.1895 | 0.1835,..0.1750 | 0.1877 | 0.1956 | 0.1812
PC4 | 199.79 | 196.79 | 191.12 | 189.787+| 194.81 | 199.71 | 184.19
0.1963 | 0.2030 |=0.1898 |~ 0.1835 [-0.1934 | 0.1935 | 0.1758
chart | 1.75 2 2.25 2.5 2.75 3
(2.004) | (2.284) | (2.607) | 2:979) |- (3.413) | (3.923)
PC1 | 10.336 | 6.5317 | 4.2695{=2:9118 | 2.0902 | 1.5929
0.0023 | 0.0011 | 0.0005 | 0.0003 | 0.0001 | 0.00009
PC2 | 5133 | 3.0404 | 1.9639 | 1.4142 | 1.1482 | 1.0383
0.0007 | 0.0003 | 0.0001 | 0.00006 | 0.00003 | 0.00001
PC3 | 138.36 | 64.003 | 21.627 | 6.4314 | 2.1517 | 1.1355
0.1115 | 0.0351 | 0.0068 | 0.0011 | 0.0002 | 0.00003
PC4 | 126.66 | 61.374 | 23.666 | 8422 | 3.222 | 1.5783
0.1013 | 0.0342 | 0.0081 | 0.0017 | 0.0003 | 0.00009

Table 6: ARL comparison for N-shift (uy = —1.54 0.3 x 7).
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chart | 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.002) | (1.007) | (1.015) | (1.027) | (1.042) | (1.060)
PC1 | 200.0 | 196.78 | 187.65 | 174.04 | 157.74 | 140.46 | 123.39
PC2 | 200.0 | 199.96 | 199.84 | 199.64 | 199.35 | 198.99 | 198.55
PC3 | 200.0 | 172.05 | 119.16 | 75.951 | 47.999 | 30.926 | 20.493
PC4 | 200.0 | 199.94 | 199.77 | 199.49 | 199.09 | 198.58 | 197.96
chart | 1.75 2 2.25 2.5 2.75 3
(1.081) | (1.105) | (1.131) | (1.160) | (1.190) | (1.223)
PC1 | 107.48 | 93.109 | 80.42 | 69.38 | 59.87 | 51.73
PC2 | 198.03 | 197.44 | 196.7 | 196.0 | 1952 | 194.3
PC3 | 13.999 | 9.8623 | 7.162,/,.5.358 | 4.126 | 3.267
PC4 | 197.24 | 196.41 | 4955 [ 1944+ 193.3 | 192.1

Table 7: Real ARL

comparison fot [-shift (1; =1+ 0.2 x a).

p

chart | 0 0.25 0.5 0:75 1 1.25 1.5

(1) | (1.019) | (1.062) | (1.126) | (1.207) | (1.302) | (1.408)
PC1 | 200.0 | 177.55 | 131.31 | 89.198 | 59.356 | 39.824 | 27.235
PC2 | 200.0 | 168.89 | 112.77 | 69.516 | 42.801 | 27.032 | 17.646
PC3 | 200.0 | 199.19 | 196.78 | 192.89 | 187.67 | 181.32 | 174.07
PC4 | 200.0 | 199.45 | 197.83 | 195.17 | 191.56 | 187.09 | 181.87
chart | 1.75 2 2.25 2.5 2.75 3

(1.524) | (1.647) | (1.775) | (1.908) | (2.044) | (2.183)
PC1 | 19.056 | 13.655 | 10.02 | 7.5334 | 5.7958 | 4.5617
PC2 | 11.926 | 8.3429 | 6.04 | 4.5196 | 3.4921 | 2.7826
PC3 | 166.15 | 157.78 | 149.2 | 140.47 | 131.87 | 123.46
PC4 | 176.04 | 169.71 | 163.0 | 156.08 | 149.01 | 141.88

Table 8: Real ARL comparison for M-shift (uy = 15+ 1 x ).
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chart | 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.045) | (1.123) | (1.233) | (1.377) | (1.552) | (1.761)
PC1 | 200.0 | 175.24 | 123.25 | 77.172 | 46.405 | 27.762 | 16.779
PC2 | 200.0 | 170.23 | 109.89 | 61.338 | 32.564 | 17.173 | 9.2121
PC3 | 200.0 | 195.66 | 188.26 | 184.73 | 188.84 | 198.28 | 192.84
PC4 | 200.0 | 196.55 | 191.12 | 189.61 | 194.36 | 199.99 | 184.32
chart | 1.75 2 2.25 2.5 2.75 3
(2.004) | (2.284) | (2.607) | (2.979) | (3.413) | (3.923)
PC1 | 10.333 | 6.5314 | 4.27 | 2.9119 | 2.0901 | 1.5928
PC2 | 51331 | 3.0408 | 1.964,(,1.4141 | 1.1483 | 1.0383
PC3 | 138.29 | 63.968 | .21.63 | 6.4329+] 2.1517 | 1.1355
PC4 | 126.59 | 61.206 | 23.66 | 8,422 |3.2224 | 1.578

Table 9: Real ARL comparison-for N-shift:(uy = —1.5+ 0.3 x 7).

a
chart 0 0.25 0.5 0.75 1 1.25 1.5
(1) (1.002) | (1.007) | (1.015) | (1.027) | (1.042) | (1.060)
Combined | 200.49 | 189.43 | 160.22 | 124.07 | 89.755 | 62.165 | 42.299
0.2053 | 0.1911 | 0.1427 | 0.0988 | 0.0622 | 0.0350 | 0.0191
chart 1.75 2 2.25 2.5 2.75 3
(1.081) | (1.105) | (1.131) | (1.160) | (1.190) | (1.223)
Combined | 28.733 | 19.734 | 13.784 | 9.8526 | 7.2125 | 5.4224
0.0106 | 0.0061 | 0.0036 | 0.0021 | 0.0013 | 0.0008

Table 10: Combined chart ARL for [-shift (u; =1+ 0.2 X «).
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g
chart 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.019) | (1.062) | (1.126) | (1.207) | (1.302) | (1.408)
Combined | 200.49 | 181.31 | 139.05 | 95.667 | 62.436 | 40.059 | 25.88
0.2053 | 0.1695 | 0.1162 | 0.0647 | 0.0353 | 0.0017 | 0.0091
chart 1.75 2 2.25 2.5 2.75 3
(1.524) | (1.647) | (1.775) | (1.908) | (2.044) | (2.183)
Combined | 17.02 11.46 | 7.9553 | 5.689 | 4.2035 | 3.2099
0.0048 | 0.0027 | 0.0015 4|, 0.0009 | 0.0005 | 0.0003
Table 11: Combined chart AREfor M/-shift (pp = 15+ 1 x ).
Y
chart 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.045) | (1.123) | (1.233) | (1.377) | (1.552) | (1.761)
Combined | 200.49 | 179.56 | 131.96 | 83.949 | 48.194 | 25.846 | 13.451
0.2053 | 0.1616 | 0.1052 | 0.0530 | 0.0237 | 0.0089 | 0.0033
chart 1.75 2 2.25 2.5 2.75 3
(2.004) | (2.284) | (2.607) | (2.979) | (3.413) | (3.923)
Combined | 7.026 3.819 | 2.2347 | 1.4543 | 1.1021 | 1.0055
0.0012 | 0.0005 | 0.0002 | 0.00007 | 0.00002 | 0.00001

Table 12: Combined chart ARL for N-shift (uy = —1.5+ 0.3 x 7).
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chart 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.002) | (1.007) | (1.015) | (1.027) | (1.042) | (1.060)
Combined | 200.0 | 188.98 | 160.3 | 124.03 | 89.657 | 62.159 | 42.295
chart 1.75 2 2.25 2.5 2.75 3
(1.081) | (1.105) | (1.131) | (1.160) | (1.190) | (1.223)
Combined | 28.738 | 19.729 | 13.786 | 9.849 | 7.213 | 5.421

Table 13: Real combined chart ARL for [-shift (u; =1+ 0.2 x «).

B
chart 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.019) (1.062) | (1.426) | (1.207) | (1.302) | (1.408)
Combined | 200.0 | 181.28 | 138:9°1195.578 | 62.398 | 40.086 | 25.892
chart 1.75 2 2.25 2.5 2.75 3
(1.524) | (1.647). (L775)4-(1.908) | (2.044) | (2.183)
Combined | 17.022 | 11.469 | '7:953+4115.689 | 4.203 | 3.21

Table 14: Real combined chart ARL for M-shift (uy = 15+ 1 x ).

Table 15: Real combined chart ARL for N-shift (uy
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g
chart 0 0.25 0.5 0.75 1 1.25 1.5
(1) | (1.045) | (1.123) | (1.233) | (1.377) | (1.552) | (1.761)
Combined | 200.0 | 179.26 | 131.93 | 83.893 | 48.162 | 25.855 | 13.446
chart 1.75 2 2.25 2.5 2.75 3
(2.004) | (2.284) | (2.607) | (2.979) | (3.413) | (3.923)
Combined | 7.025 | 3.8194 | 2.235 | 1454 | 1.102 | 1.006
= —1.5+0.3x 7).




a\p 1.5 1.75 2 2.25 2.5

1.5 | PC1 | 12.9351 | 11.5453 | 10.3478 | 9.2981 8.3825
0.0031 0.0027 0.0022 0.0019 0.0015

PC2 | 19.1699 | 19.4443 | 19.6996 | 19.9855 | 20.2791
0.0058 0.0058 0.0061 0.0063 0.0065

PC3 | 30.4043 | 20.1576 | 13.7867 | 9.7243 7.0723
0.0111 0.0063 0.0035 0.0020 0.0013

PC4 | 192.091 | 192.6035 | 193.8697 | 195.1105 | 195.8213
0.1893 0.1842 0.1964 0.1832 0.1872

1.75 | PC1 | 9.5331 8.587 7.7562 7.0278 6.3915
0.0020 0.0017 0.0014 0.0013 0.0010

PC2 | 12.8624 | 13:0283 1 13,1982 | 13.3635 | 13.5408
0.0031 0.0032 0:0031 0.0033 0.0033

PC3 | 32.538 = 21.4606 |~ 14.6218 10.259 7.4253
0.0125 0.0066 0.0039 0.0023 0.0013

PC4 | 186.8353 | 188.369 | 189:5544 | 191.5863 | 192.4798
0.1808 0.1826 0.1786 0.1837 0.1966

2 | PC1| 7.1927 6.5333 5.9532 5.4399 4.9876
0.0012 0.0011 0.0010 0.0008 0.0007

PC2 | 8.938 9.0445 9.1467 9.2587 9.3672
0.0018 0.0018 0.0018 0.0019 0.0018
PC3 | 34.8378 | 22924 | 15.5161 | 10.8357 7.802
0.0146 0.0076 0.0042 0.0024 0.0015

PC4 | 181.7749 | 183.6495 | 185.2074 | 186.4019 | 188.2948
0.1767 0.1735 0.1716 0.1767 0.1765

Table 16: ARL comparison for simultaneous /(row) and M (column) shifts.

([L]:1+02XCV,[,LM:15+1Xﬁ)
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a\y 0.25 0.5 0.75 1 1.25
1.5 | PC1 | 14.8805 | 13.2395 | 11.8106 | 10.5787 | 9.4991
0.0038 | 0.0033 | 0.0029 | 0.0023 | 0.0020

PC2| 9108 | 9.0018 | 88951 | 8.7957 | 8.6955
0.0019 | 0.0018 | 0.0018 | 0.0018 | 0.0017

PC3 | 146.9559 | 96.3573 | 60.8213 | 38.7273 | 25.3012
0.1283 | 0.0654 | 0.0335 | 0.0165 | 0.0089

PC4 | 186.3605 | 187.5394 | 189.4829 | 190.5522 | 192.2426
0.1789 | 0.1850 | 0.1811 | 0.1892 | 0.1908

1.75 | PC1 | 9.2862 | 8.3691 | 7.5679 | 6.8644 | 6.2446
0.0018 | 0.0016 | 0.0014 | 0.0012 | 0.0010

PC2 | 5.0842 | 5036 49869 | 4.941 4.894
0.0009 |=10.0007 F0.0007 | 0.0007 | 0.0007

PC3 | 89.8152 - 56.6432 |736.1729 | 23.7163 | 16.0212
0.0630 4 0.0319° | 0.0148 | 0.0081 | 0.0044

PC4 | 128.9885 | 131.0008 | 133:2422 | 135.5495 | 138.0885
0.1019 | 0.1035"1'0.1079 | 0.1089 | 0.1143

2 | PCl| 509526 | 54386 | 4.9852 | 4.5818 | 4.2257
0.0009 | 0.0008 | 0.0007 | 0.0006 | 0.0005

PC2 | 3.0185 | 29961 | 29734 | 29521 | 2.9305
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003

PC3 | 40.6474 | 26.4623 | 17.7185 | 12.2469 | 8.7252
0.0180 | 0.0094 | 0.0050 | 0.0029 | 0.0017

PC4 | 62.5511 | 63.7505 | 64.95 | 66.2724 | 67.6088
0.0341 | 0.0365 | 0.0357 | 0.0387 | 0.0387

Table 17: ARL comparison for simultaneous /(row) and N(column) shifts.

(uy=1402xa,uy=-15+0.3x7)
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B\y 0.25 0.5 0.75 1 1.25
1 | PC1| 305638 | 20.680 | 14.3699 | 10.2671 | 7.5407
0.0114 | 0.0065 | 0.0038 | 0.0022 | 0.0014

PC2 | 50.3047 | 79.0151 | 122.9198 | 174.99932 | 200.5319
0.0255 | 0.0497 | 0.0923 | 0.1620 | 0.2037

PC3 | 182.2847 | 174.6372 | 166.2471 | 157.5547 | 148.3484
0.1778 | 0.1639 | 0.1544 | 0.1457 | 0.1243

PC4 | 197.3178 | 199.2802 | 200.3078 | 200.1278 | 198.8937
0.2038 | 0.1917 | 0.2043 | 0.2017 | 0.1992

1.25 | PC1 | 18.7555 | 13.0269 | 9.328 | 6.8656 | 5.1969
0.0058 | 0.0031 | 0.0019 | 0.0011 | 0.0007

PC2 | 251209 | 37.7346 {'57:9919 | 90.1817 | 136.5484
0.0087 |=0.0161 ]/ 010312 | 0.0575 | 0.1122

PC3 | 195.3024 £190.4205 | 184.3617 | 177.4459 | 169.7167
0.1861 F10.1883- 1 01771 | 0.1725 | 0.1614

PC4 | 199.6297 | 1983851 | 1956613 | 192.3238 | 187.6948
0.1980 | 0.1996"°|"0.1893 | 0.1898 | 0.1784

1.5 | PC1 | 11.6777 | 83743 | 6.1883 | 4.704 | 3.6792
0.0027 | 0.0016 | 0.0010 | 0.0006 | 0.0004

PC2 | 12.6638 | 17.8661 | 25.8734 | 38.4959 | 58.4024
0.0032 | 0.0053 | 0.0090 | 0.0176 | 0.0296

PC3 | 196.6974 | 198.9704 | 199.9054 | 199.5757 | 197.7061
0.1938 | 0.2075 | 0.2060 | 0.2060 | 0.1948

PC4 | 178.1878 | 171.2192 | 164.4912 | 156.8125 | 148.776
0.1727 | 0.1536 | 0.1485 | 0.1397 | 0.1289

Table 18: ARL comparison for simultaneous M (row) and N (column) shifts.

(upy=154+1x06, uy=-1540.3 x7)
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o1

chart 0.3 0.4 0.5 0.6
(1.034) (1.080) (1.136) (1.201)
PC1 92.8076 | 48.6820 | 79.2516 | 49.4240
0.0629 0.0233 0.0486 0.0246
PC2 46.3985 | 30.8190 | 53.2247 | 70.6521
0.0218 0.0121 0.0276 0.0405
PC3 21.8815 | 9.8422 7.4607 3.8953
0.0073 0.0022 0.0014 0.0005
PC4 172.7439 | 82.5331 | 158.2309 | 279.7896
0.1601 0:0555 0.1467 0.3339
combined | 29.3373 | 12.0996 1-10.4196 | 5.0304
0.0115 0.0029 0.0022 0.0007
chart 0:7 0.8 0.9 1
(1.273) (1.352) (1.437) (1.525)
PC1 58.3326 4 16:5762 | 18.5192 | 16.2502
0.0318 0.0046 0.0053 0.0045
PC2 61.6944 | 57.2272 | 51.1069 | 41.3881
0.0342 0.0292 0.0249 0.0187
PC3 3.5062 2.5973 2.4885 2.0873
0.0004 0.0002 0.0002 0.0002
PC4 167.1431 | 137.9471 | 170.3432 | 139.4717
0.1464 0.1140 0.1561 0.1174
combined | 4.4020 3.0447 2.8854 2.3577
0.0006 0.0003 0.0003 0.0002

Table 19: ARL comparison for I-shift in variance.
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OM

chart 1.5 2 2.5 3
(1.224) (1.481) (1.757) (2.045)
PC1 33.3123 | 10.6511 | 7.7653 4.4383
0.0132 0.0024 0.0014 0.0006
PC2 16.4597 | 6.7316 5.1548 3.3771
0.0047 0.0011 0.0007 0.0004
PC3 86.1611 | 139.2719 | 69.8514 | 115.3932
0.0576 0.1160 0.0417 0.0886
PC4 155.9135 | 73.3568 | 119.8870 | 61.2410
0.1387 0:0470 0.0912 0.0357
combined | 20.7851 | 7.0708 5.2722 3.2934
0.0065 0.0012 0.0007 0.0003
chart 3.5 4 4.5 5
(2.340) (2.640) (2.942) (3.248)
PC1 3.9680 2.8805 2.5122 2.8277
0.0005 0.0003 0.0002 0.0003
PC2 3.0209 2.3876 2.1357 2.2428
0.0003 0.0002 0.0002 0.0002
PC3 54.7949 | 89.3402 | 95.7994 | 136.0448
0.0286 0.0604 0.0653 0.1155
PC4 87.2543 | 49.0418 | 64.6406 | 142.1053
0.0576 0.0239 0.0371 0.1195
combined | 2.9894 2.8168 2.1886 2.0442
0.0003 0.0003 0.0002 0.0002

Table 20: ARL comparison for M-shift in variance.
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ON

chart 0.4 0.5 0.6 0.7
(1.153) | (1.323) | (1.506) | (1.670)

PC1 28.7742 | 9.4391 | 8.5725 | 3.0988
0.0107 | 0.0019 | 0.0017 | 0.0003

PC2 11.5527 | 4.3324 | 4.3710 | 2.1099
0.0027 | 0.0006 | 0.0006 | 0.0002

PC3 4.0039 | 2.2513 | 2.5591 | 1.0304
0.0005 | 0.0002 | 0.0002 | 0.00001

pPC4 42.1725 | 6.7205 | 10.8301 | 1.0207
0.0190 |,,0.0012 | 0.0024 | 0.00001

combined | 4.4747 | 2.3922 1 2.1989 | 1.0057
0.0006 | 0:0002* | 0.0002 | 0.00001

chart 0.8 0.9 1 1.1
(1°893)11(2.093) | (2.270) | (2.502)

PC1 1877 k751 7| 1.3701 | 1.0018
0.0001 | 0.00003 | 0.00006 | 0.00001

PC2 1.7362 | 1.5663 | 1.3526 | 1.0008
0.0001 | 0.0001 | 0.00006 | 0.00001

PC3 1.0072 | 1.0021 | 1.0057 | 1.0000
0.00001 | 0.00001 | 0.00001 | 0.00001

pPC4 1.0037 | 1.0010 | 1.0030 | 1.0000
0.00001 | 0.00001 | 0.00001 | 0.00001

combined | 1.0004 | 1.0000 | 1.0001 | 1.0000
0.00001 | 0.00001 | 0.00001 | 0.00001

Table 21: ARL comparison for N-shift in variance.
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k
chart 0 0.25 0.5 0.75 1
PC1 | 201.141 | 157.7244 | 91.6269 | 50.1074 | 28.1935
0.6537 0.4263 0.1869 0.0773 0.0339
PC2 | 202.5093 | 201.1011 | 202.7793 | 201.3586 | 202.3857
0.6897 0.6687 0.6295 0.6704 0.6432
PC3 | 202.2185 | 202.1651 | 201.4955 | 203.475 | 202.0911
0.6937 0.6648 0.6495 0.6207 0.6461
PC4 | 202.4143 | 200:7331 |.201.7661, | 202.0241 | 202.1318
0.6594 0.6526 0.6303 0.6551 0.6248
chart 1.25 1.5 1.75 2
PC1 | 16.7264 | 10.460% | 6:8874 4.7689
0.0153 0.0071 0.0037 0.0020
PC2 | 202.5093 | 201.1011 | 202.7793 | 201.3586
0.6897 0.6687 0.6295 0.6704
PC3 | 202.2185 | 202.1651 | 201.4955 | 203.475
0.6937 0.6648 0.6495 0.6207
PC4 | 202.4143 | 200.7331 | 201.7661 | 202.0241
0.6594 0.6526 0.6303 0.6551

Table 22: ARL comparison for shifts in principal component 1.

20




k
chart 0 0.25 0.5 0.75 1
PC1 | 203.1434 | 202.2938 | 202.2304 | 201.9739 | 202.0307
0.6599 0.6496 0.6643 0.6826 0.6423
PC2 | 202.3857 | 157.2349 | 91.368 50.138 | 28.2533
0.6432 0.4475 0.1938 0.0783 0.0318
PC3 | 202.0911 | 201.3132 | 202.4239 | 202.4192 | 201.6323
0.6461 0.6695 0.6455 0.6580 0.6622
PC4 | 202.1318 | 201.4323 | 201.5589 | 203.1134 | 201.6549
0.6248 0.6797 0.6407 0.6532 0.6349
chart 1.25 1.5 1.75 2
PC1 | 200.6637 | 202.6417 |,202.2779 | 201.5532
0.6327 0,6492 0.6344 0.6624
PC2 16.75 10.455 6.8888 4.771
0.0141 0.0073 0.0038 0.0020
PC3 | 201.7072 | 202.043:"'202:6156. 202.3369
0.6355 0.6418 0.6803 0.6310
PC4 | 203.0749 | 202.5458 | 202.4285 | 201.5443
0.6780 0.6515 0.6505 0.6427

Table 23: ARL comparison for shifts in principal component 2.
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Figure 2: Original 24 VDP-profiles.
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Figure 3: The relation between the detecting power and the percentage of

explanation in T7? chart. In 50 curves; there is one outlier with I shift from

1 to 14+5x%0.2.
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Figure 4: The relation between the detecting power and the percentage of

explanation in T% chart. In 50 curves, there is one outlier with I shift from

1 to 1+5x%0.2.
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Figure 5: The relation between the detecting power and the percentage of

explanation in T? chart. In 50 curvesiithere are two outliers with M shift

from 15 to 15+5x1.
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Figure 6: The relation between the detecting power and the percentage of

explanation in T§ chart. In 50 curves, there are two outliers with M shift

from 15 to 15+5x1.
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Figure 7: The relation between the detecting power and the percentage of

explanation in T2 chart. In 50 curyés, there are three outliers with N shift

from -1.5 to -1.5+2x0.3.
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Figure 8: The relation between the detecting power and the percentage of
explanation in T3 chart. In 50 curves, there are three outliers with N shift

from -1.5 to -1.5+2x0.3.
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Figure 9: The cross-validation:results for one‘outlier with a shift of five sigma

in I among fifty profiles.
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Figure 10: The cross-validation results for two outliers with a shift of five

sigma in M among fifty profiles.
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Figure 11: The cross-validation results for.three outliers with a shift of two

sigma in N among fifty profiles:
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Figure 12: The resulting histogram for two-fold cross-validation.
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Figure 13: The resulting histogram for ten-fold cross-validation.
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Figure 14: The resulting histogram for delete-one cross-validation.
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Figure 16: Fitted B-splines with d.f.=5 .
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Figure 19: T} control chaﬂ;‘.rafter Etﬁ%‘pﬁﬁ}gﬁ_é@mrol profile was removed.
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Figure 20: T% control chart after the out-of-control profile was removed.
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Figure 22: Shifts in M.
M=16: '—’, M=17: ’o-’, M=18: 'x-’, M=19:
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Figuie 23: Shiftsfin N.
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Figure 24: First four eigenvectors.

1st eigenvector: 'x-’, 2nd: —’, 3rd: ’o-’, 4th: - -’
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Figure 26: Principal component 2.

smallestscore: 'x-’, meanprofile: —’, largestscore: ’o-’
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Figure 27:%Principal ¢omponent 3.
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Figure 28: Principal component 4.

smallestscore: 'x-’, meanprofile: —’, largestscore: ’o-’
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Figure 29: ARL eomparison for I shifts in mean.
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Figure 30: ARL comparison for M shifts in mean.
PC1: ’0-’, PC2: 'x-’, PC3: - -, PC4: "*-’, Combined:
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Figure 31: ARL comparison for. N shifts in mean.
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Figure 32: ARL comparison for I shifts in variance.

PCl: 'o-’, PC2: -, PC3: - -, PC4: "*-’, Combined: ™
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Figure 33: ARL comparison for 2A/ shifts in variance.
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Figure 34: ARL comparison for NN shifts in variance.
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Figure 35: ARL comparison for mean shifts and variance shifts for the com-

bined chart.
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Figure 41: First four eigenvectors.

1st eigenvector: 'x-’, 2nd: —, 3rd: ’o-’, 4th: - -’
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Figure 44: ..Si:riéllllla;céd 24 VDP-profiles.
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Figure 45: Comparison of the real mean profile and the mean profile estimate
of the simulated data.
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Figure 46: Comparison of the real profiles and the simulated profiles for the

first eigenvector.
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Figure 47: Comparison of the real profiles and the simulated profiles for the
second eigenvector.
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Figure 48: Comparison of the real profiles and the simulated profiles for the

third eigenvector.
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Figure 49: Comparison of the real profiles and the simulated profiles for the

fourth eigenvector.
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Figure 50: Comparison of the real eigenvalues and the simulated ones.
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