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摘要 

 
監控製程與產品之曲線型資料在統計品質管制中是ㄧ個非常熱門且

有前景的研究領域。我們的研究將以對具有隨機效應之非線性曲線型資

料的監控方法為主。 
 
對隨機效應模式，我們利用主成分分析來分析曲線型資料的共變異

結構，並利用每個曲線型資料所得之主成分分量來做監控。在第二階段

中，因為個別的主成分分量很難區別開變動的趨勢，所以我們建議利用

combined chart，即合併主成分分量的方法來做監控。 
    

在第一階段中，因為主成分分量的相依特性，我們採用 2T 圖來檢測

穩定性。我們利用大量模擬的方法來說明，當 outliers 出現的形式是短

暫時， 2
1T 表現的較 2

2T 佳。 
 
而且，我們也發現用來建造控制圖的主成分個數會影響偵測力。我

們採用交互驗證(cross-validation)的方法，來選擇主成分的個數。 
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ABSTRACT 
 

The monitoring of process and product profiles is a very popular and 
promising area of research in statistical process control. This study is aimed 
at the monitoring scheme for nonlinear profiles with random effects. 

 
For random effect models, we use the technique of principal component 

analysis to analyze the covariance structure of the profiles and use principal 
component scores of each profile to perform monitoring. In Phase II, since it 
is difficult for each principal component score to have identified direction of 
shifts, we recommend using a combined chart scheme that combines the 
principal component scores to perform monitoring. 

 
In the historical analysis of Phase I data, due to the dependency of 

principal component scores, we adopt the 2T  chart to check for stability. 
We show by simulation that the sample-covariance-based 2

1T  performs 
better than the successive-difference-based 2

2T  for temporal shifts. 
  
Also, the number of principal component scores used in constructing 

control charts has an effect on the detecting power. We adopt the 
cross-validation to choose the number of principal component scores. 
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1 Introduction

Statistical process control (SPC) has been widely applied in many areas, espe-

cially in industries. Classical methods for SPC assume that the quality of the

product or process can be measured by one or multiple quality characteristics.

However in many situations, the response of interest is not a single variable

but rather a function of some independent variables. This functional response

is called a profile. An example of profiles is the dissolving process of aspar-

tame, an artificial sweetener, which is characterized by the amount of that

dissolves per liter of water at different levels of temperature; see Kang and

Albin (2000). For illustration, Figure 1 shows the plot of four hypothetical

aspartame profiles. Another example mentioned in Kang and Albin (2000)

is a semiconductor manufacturing problem that occurs during the etching

step. In this example, the calibration of a mass flow controller in which the

performance of the process is characterized by a linear function; see Mestek

et al. (1994). There is also an interesting example introduced by Walker and

Wright (2002), called vertical density profiles (VDP). The density is mea-

sured using a profilometer that uses a laser device to take measurements at

fixed depths across the thickness of the engineered wood board. As an illus-

tration, Figure 2 shows the VDP data from Walker and Wright (2002). The

data set is available at http://bus.utk.edu/stat/walker/VDP/Allstack.TXT.

The authors proposed a method using additive models to assess the sources

of variation in the density profiles of particleboards.

Kang and Albin (2000) studied the problem of linear profile monitoring.

Let the output of a process be a random variable Y which depends linearly

on an independent variable X. They modeled the profiles by the simple lin-

ear regression model, Y = A0 + A1X + ε, Xl ≤ X ≤ Xh, where A0 and A1

are parameters and Xl and Xh define the range of X in which the process

is characterized by a linear profile. The random variable ε are independent

1



and normally distributed with mean 0 and variance σ2. They proposed two

approaches to monitoring profile data: (i) monitoring the parameters, the

intercept (A0) and slope (A1), simultaneously with the Hotelling T 2 chart

and (ii) using the regular EWMA and R charts for profile monitoring by

treating the residuals of the sample line to the in-control reference line as

a rational subgroup. Kim et al. (2003) proposed another approach called

EWMA3, which they showed was comparable to the approach of Kang and

Albin (2000). They centered the X-values to make the least squares esti-

mators of the Y-intercept and slope independent of each other. So that the

intercept and slope can be monitored separately. They constructed three

EWMA charts to monitor intercept, slope, and the variation, separately.

Shiau and Weng (2004) extended the above profile monitoring scheme to

a scheme for more general profiles. No assumption are made for the form of

the profiles except the smoothness. The nonparametric regression model con-

sidered is Y = g(x)+ ε, where g(x) is a smooth function and ε is the random

error as before. Spline regression was adopted as the curve fitting/smoothing

technique. They proposed an EWMA chart for detecting the mean shifts, an

R chart for variation changes, and an exponentially weighted moving stan-

dard deviation (EWMSD) chart for the variation increase.

Note that the models described so far are a deterministic line/curve plus

random noises. In this paper, based on Shiau and Weng (2004), we extend

the fixed effect model to a random effect model in order to provide more

variability that we often observe in many profile data, e.g., the aspartame

example and VDP example. We use the function Y = I + MeN(x−1)2 + ε

given in Shiau and Weng (2004) as our illustrative example, where I,M, N

are considered to be random variables. Like Shiau and Weng (2004), we

use the B-spline regression technique to smooth profiles. With the random

effect model, we put emphasis on the covariance structure. To analyze the

2



covariance matrix, it is natural to consider the technique of the principal

component analysis (PCA).

The PCA is very useful in summarizing and interpreting a set of profile

data with the same equally spaced values of the independent variable X

for each profile. Castro et al. (1986) showed that the principal modes of

variation consist of eigenfunctions of the process covariance function and

gave procedures for estimating these eigenfunctions from a set of observed

curves. Rice and Silverman (1991) proposed a method for estimating the

mean function nonparametrically under the assumption that it is smooth.

They also suggested a variant of the usual cross-validation for choosing the

degree of smoothing to be employed. And in the estimation of covariance

structure, they primarily concerned with the first few eigenfunctions that

were smoothed and the eigenvalues that decayed rapidly. Jones and Rice

(1992) suggested that a simple PCA be used to identify important modes of

variation among the curves and that the principal component scores be used

to identify particular curves which clearly demonstrate the form and extent

of a particular mode of variation.

In this paper, we construct our monitoring schemes by utilizing the eigen-

vectors and principal component scores obtained from PCA. If these scores

corresponds to separate modes of variation, then it is natural to monitor

each principal component score for what it represents. If not, we suggest a

combined-chart scheme that combines the charts of these principal compo-

nent scores for profile monitoring. Finally, a simulation study is conducted

to evaluate the performance of each principal-component-score chart and the

combined-chart in terms of the average run length (ARL). The simulation

study demonstrates that the combined chart scheme is comparable with the

best principal-component-score chart.

In the study of Phase I monitoring, we compare two commonly used

3



T 2 statistics, T 2
1 and T 2

2 , in which different covariance estimators are used.

Also, it is found from the study that the number of principal component

scores used in constructing T 2 statistics affects the power of detecting out-

of-control profiles significantly. In this study, we use the cross-validation

method, one of the most popular procedures for model selection, to choose

the number of principal component scores.

Section 2 reviews the methods proposed by Shiau and Weng (2004) and

Shiau and Lin (1999) in which a set of degradation paths was modeled by a

stochastic process and PCA was employed to analyze the covariance struc-

ture. Section 3 describes some methodologies used in this paper, including

the B-spline regression technique, principal component analysis, procedure

of cross-validation, and the proposed control schemes in details. Section 4

presents the simulation results of Phase II monitoring with some discussions

along with some recommendations for Phase I monitoring. Section 5 presents

a case study using the VDP data from Walker and Wright (2002). Finally,

Section 6 concludes the paper with a brief summary and some remarks.

2 Literature Review

Shiau and Weng (2004) proposed a profile monitoring scheme for profiles of

flexible shape. Unlike the combined EWMA/R chart proposed by Kang and

Albin (2000), they recommended using the EWMA to monitor the residual

average for detecting mean shifts and the R chart to monitor the residual

range for detecting standard deviation shifts of the residuals individually

in order to have better detecting power. Also, they proposed an EWMSD

control chart to detect shifts in process variation.

In Shiau and Weng (2004), an exponential profile of the form Y = I +

Me−N(x−1)2+ε is used to mimic an aspartame profile. Shiau and Weng (2004)

4



showed by simulation studies that, for I, M, and N shifts in the exponential

profile, the EWMA chart performed well in detecting shifts. And for standard

deviation shifts, the EWMSD chart is a good choice while one can also use

the R chart. Also, they showed that, for the linear profile example given

in Kang and Albin (2000), their methods were slightly effective than the

methods of Kang and Albin (2000) and Kim et al. (2003).

Shiau and Lin (1999) proposed a nonparametric regression accelerated

life-stress (NPRALS) model to analyze the accelerated degradation tests

(ADT) data. In order to model a set of degradation paths by a stochas-

tic process, they made the following assumptions:

1. The sample degradation path of each experimental subject is a realiza-

tion of an underlying stochastic process {X(t), t ∈ T}, where T is an

interval.

2. The model for X(t) is

X(t) = µ(t) + ω(t) + ε(t), (1)

where µ(t) ≡ E[X(t)], ω(t) ≡ a stochastic process with mean 0

and covariance function r(s, t)≡Cov[ω(t), ω(s)], and

ε(t) ≡ uncorrelated error terms with E[ε(t)]=0 and V ar[ε(t)]=σ2.

3. The acceleration stress affects only the degradation rate, not the shape

of the degradation curve.

With these assumptions, they used µ(t) to denote the mean curve under the

normal condition (un-accelerated) and µ(a·t) to denote the accelerated mean

curve where a is the acceleration factor and usually a > 1.

In their model, there are m stress levels in the experiments. And for stress

level i, there are ni experimental units. Also, t1, . . . , tp are the measured

5



points of the product characteristic for each experimental unit. By using the

functional principal component technique, they model the ADT data by

Xi,j,k = µ(ai · tk) +
L∑

q=1

εi,j,q · ρi,q(tk), (2)

where 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ p, 1 ≤ q ≤ L, and L is a positive

integer no more then p. So the random component ω(t)+ ε(t) of equation (1)

is then replaced by a random combination of functional principal compo-

nents {ρi,q(·), q = 1, . . . , L}. And they provided an iterative algorithm to

estimating µ(·) and a1, . . . , am.

Also, they investigated the covariance structure of X(·). First, for i =

1, . . . , m, compute

(Vi)s,r =
1

ni − 1
·

ni∑
j=1

[Xi,j,s − µ̂i(ts)] · [Xi,j,r − µ̂i(tr)]

for 1 ≤ s, r ≤ p, where µ̂(·) is the estimate of µ(·). Let ρ̂i,q ≡ (ρ̂i,q(t1), . . . ,

ρ̂i,q(tp))
′ be the eigenvector corresponding to the q-th largest eigenvalue λi,q

of Vi, where i = 1, . . . , m and q = 1, . . . , p. Then estimate:

• σ2
i,q by λi,q.

• ρi,q(·) by smoothing {ρ̂i,q(tk), k = 1, . . . , p} on {tk, k = 1, . . . , p}.

At the end of the paper, they presented a real data analysis with their

NPRALS model. Also, in order to show how well their procedure does in

recovering the truth, they conducted a simulation study. They simulated

the degradation data curves by using equation (2). Treat µ̂(·), λi,q, and

the smoothed {ρ̂i,q(tk), k = 1, . . . , p} obtained from the previous real data

analysis as the true values of µ(·), σ2
i,q, and ρi,q(·), respectively. The following

are the steps of the data generation.
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• Compute:

(Vi)s,r =
1

ni

·
ni∑

j=1

[Xi,j,s − µi(ts)] · [Xi,j,r − µi(tr)]

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k, s, r ≤ p.

• Generate εi,j,q from N(0, σ2
i,q), 1 ≤ j ≤ ni, 1 ≤ q ≤ L.

• Generate:

X̃i,j,k = µi(tk) +
L∑

q=1

εi,j,q · ρi,q(tk)

for 1 ≤ j ≤ ni, 1 ≤ k ≤ p.

By simulation, they showed that their NPRALS model performed very well

in recovering the features of the original degradation data curves.

3 Methodologies

3.1 Procedures

In this paper, as an illustrative example, we use the model

Y = I + MeN(x−1)2 + ε

where I ∼ N(1, 0.22), M ∼ N(15, 1), N ∼ N(−1.5, 0.32) , ε ∼ N(0, 0.32),

and x=0.64, 0.8, . . ., 3.52 to simulate the profile data of the aspartame

example. We generate 200 profiles to serve as our historical data for Phase I

analysis.

We apply the B-spline smoothing technique to filter out the noise. For

the model X(t) = µ(t) + W (t) + ε(t), this is to filter out ε(t) so that the

actual signals can be better extracted from the data. These extracted signals

will be smoother and can explain the variation among profiles better. As
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the variance of ε(t) tends larger, the advantage of smoothing tends more

profound.

In Phase I monitoring, first we select the number of principal component

(PC) scores to be used by cross-validation and then use the T 2 statistics

of the score vectors to detect the outliers. The details of these methods

are given in Subsections 3.4 and 3.5. This procedure will continue until, all

the remaining profiles are within the control limit. Then we can apply the

technique of PCA to these ”in-control” profiles and the principal components

obtained will be used for the Phase II monitoring.

We summarize the whole simulation procedure as follows:

• Generate historical profile data at set points x=0.64, 0.8, . . ., 3.52 by

y = I + MeN(x−1)2 + ε,

where I ∼ N(1, 0.22), M ∼ N(15, 1), N ∼ N(−1.5, 0.32) , and ε ∼
N(0, 0.32).

• Smooth each of the discrete profile data with the B-spline smoothing

technique.

• Select the number of effective principal components by the cross-valida-

tion method.

• Phase I: use T 2 statistics to remove outliers until the remaining profiles

are all in control. Then, use PCA to obtain important features, by

which the in-control process is characterized.

• Phase II: We compute PC scores for each of the incoming profiles.

And use the independent property of the scores to check the stability

of the incoming profile by monitoring each score separately or by the

combined-chart scheme.

Details of our simulation results will be given in Section 4.
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3.2 B-Splines

One basic objective of the data analysis is to identify the signals in a set of

data. But this gets complicated with the existence of random noise in the

data. That is, the goal is to filter out the random noise from the data in

order to get the signal. In order to extend nonlinear profiles of a fixed form to

smooth profiles of any shapes, a smoothing technique is needed for de-noising

sample profiles. The idea of smoothing is to fit a flexible function whose final

form is determined by the data and by the chosen level of smoothness of the

curve. That is, let the data speak for themselves. One popular way is to fit

noisy data by splines. Frequently, cubic splines−piecewise cubic polynomials

with continuous second derivatives−are used for such approximation.

Consider the following nonparametric regression model:

yi = g(xi) + εi, i = 1, . . . , p, (3)

where g(x) is a smooth regression curve and εi’s are i.i.d. Gaussian variables

with zero mean and common variance σ2 > 0 . In this paper, to estimate g(x),

we adopt the B-spline regression method for its popularity and simplicity.

Simply put, the B-spline regression is just a multiple linear regression with

B-spline bases.

Before we go on, we first give a brief description on B-spline bases. Details

can be found in de Boor (1978). Let b denote the number of bases and k be

the order of the B-splines. Note that the degree of the polynomials is k − 1,

hence each basis of order k is a k−2 continuously differentiable function. For

example, k = 4 for cubic splines. Also let the interval [u, v] be the domain of

interest. For spline smoothing, knots are the points where the higher-order

derivatives could be discontinuous. For b bases, we need b+k knots, denoted

by t1, . . . , tb+k, such that tk = u and tb+1 = v. And let Bl,k denotes the l-th

B-spline basis of order k, where l = 1, . . . , b. Bl,k can be defined iteratively
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by

Bl,1(t) =





1 for tl ≤ t < tl+1,

0 for t < tl or t ≥ tl+1.

For k ≥ 2, Bl,k(t) =
t− tl

tl+k−1 − tl
Bl,k−1(t) +

tl+k − t

tl+k − tl+1

Bl+1,k−1(t).

Note that Bl,k is nonzero only on the interval (tl, tl+k). A B-spline of order

k can then be constructed as

g(x) =
b∑

l=1

clBl,k(x), for x ∈ [u, v],

where cl’s are the unknown B-spline coefficients to be estimated from data.

For the B-spline regression, the nonparametric regression model in equa-

tion (3) can then be replaced by the following linear model:

yi =
b∑

l=1

clBl,k(xi) + εi, i = 1, . . . , p. (4)

Given a set of data, {(xi, yi), i = 1, . . . , p}, the spline regression method finds

the best spline approximation via the following least squares problem:

min
c

p∑
i=1

{yi −
b∑

l=1

clBl,k(xi)}2, (5)

where c = (c1, . . . , cb)
′. Then the least squares estimator of c is

ĉ = (B′B)−1B′y, (6)

where y = (y1, . . . , yp)
′, ĉ = (ĉ1, . . . , ĉb)

′, and B is the p × b design matrix

with the (i, l)-th element Bl,k(xi), l = 1, . . . , b, i = 1, . . . , p. Under the model

in equation (4), ĉ has a multivariate normal distribution with mean vector c

and variance-covariance matrix Σ = σ2(B′B)−1.

Note that the number of bases b acts as the smoothing parameter in

nonparametric regression and it is well known that the choice of the smooth-

ing parameter is crucial in nonparametric regression estimation. Also, the
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boundary effect inherited in most of the smoothing methods is another issue

of concern.

3.3 Principal Component Analysis

The following materials on PCA are taken from Anderson (2003). PCA is

a multivariate procedure that rotates the data such that maximum variabil-

ities are projected onto the axes. Essentially, a set of correlated variables

are transformed into a set of uncorrelated variables ordered by the amount

of variation explained. Then these uncorrelated variables, called principal

components, are linear combinations of the original variables, and the last of

these variables can be removed with minimum loss of information contained

in data. The main usage of PCA is to reduce the dimensionality of a data

set while retaining as much information as possible.

Principal components have special properties or features in terms of vari-

ance. They turn out to be the characteristic vectors of the covariance matrix.

Suppose the random vector Y of p-components has covariance matrix Σ.

Since we are only interested in the covariance matrix Σ, without loss of gen-

erality, we may assume that the mean vector is 0. Let β be a p-component

column vector such that β′β = 1. The variance of β′Y is

E(β′Y)2 = E(β′YY′β) = β′E(YY′)β = β′Σβ , (7)

where E denotes the expectation. In order to determine β′Y with the max-

imum variance subjected to β′β = 1, let

φ = β′Σβ − λ(β′β − 1) , (8)

where λ is a Lagrange multiplier. Then the partial derivatives of φ with

respect to β is

∂φ

∂β
= 2Σβ − 2λβ , (9)
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since β′Σβ and β′β have derivatives everywhere in the region that contains

β′β = 1. Thus, set

∂φ

∂β
= 2Σβ − 2λβ = 2(Σ− λI)β = 0 . (10)

In order to get the solution of equation (10) with β′β = 1, we must have

Σ− λI singular. In other words,

|Σ− λI| = 0 . (11)

Since |Σ − λI| is a polynomial in λ of degree p, thus equation (11) has p

roots. Without loss of generality, let λ1 ≥ λ2 ≥ · · · ≥ λp . Then

β′Σβ = λβ′β = λ . (12)

This shows us that if β satisfies equation (10) and β′β = 1, then the variance

of β′Y is λ.

Let β(1) be a normalized solution of (Σ−λ1I)β = 0. Then β(1) is the cor-

responding first principal component vector and U1 = β(1)′Y is a normalized

linear combination of the original variables with maximum variance. Next,

we want to find a normalized linear combination β′Y that has maximum

variance of all linear combination uncorrelated to U1. That is,

0 = E(β′YU ′
1) = E(β′YY′β(1)) = β′E(YY′)β(1) = β′Σβ(1) = λ1β

′β(1) ,(13)

since Σβ(1) = λ1β
(1). So now, we want to maximize

φ2 = β′Σβ − λ(β′β − 1)− 2ν1β
′Σβ(1) , (14)

where λ and ν1 are both Lagrange multipliers. Then the partial derivatives

of φ2 is

∂φ2

∂β
= 2Σβ − 2λβ − 2ν1Σβ(1) . (15)
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Multiply β(1)′ on the left of the above equation, then set it to zero. We have

0 = 2β(1)′Σβ − 2λβ(1)′β − 2ν1β
(1)′Σβ(1) = −2ν1λ1 . (16)

Thus, ν1 = 0 and β must satisfy equation (10), and therefore λ must satisfy

equation (11). Let λ(2) be the maximum of λ1, . . . , λp such that there is a

vector β satisfying (Σ−λ(2)I)β = 0, β′β = 1, and equation (13). We denote

this vector by β(2) and U2 = β(2)′Y.

Continue the same procedure to the (r +1)-st step. All we need is to find

a vector β such that β′Y has maximum variance of all linear combinations

which are uncorrelated with U1, . . . , Ur . In other words, the above task is to

find β such that

0 = E(β′YUi) = E(β′Y′Yβ(i)) = β′Σβ(i) = λ(i)β
′β(i)

for i = 1, . . . , r . (17)

So we want to maximize

φr+1 = β′Σβ − λ(β′β − 1)− 2
r∑

i=1

νiβ
′Σβ(i) , (18)

where λ, ν1, ν2, . . . , νr are all Lagrange multipliers. First, take the partial

derivatives of φr+1, that is,

∂φr+1

∂β
= 2Σβ − 2λβ − 2

r∑
i=1

νiΣβ(i) . (19)

Second, multiply β(j)′ on the left of the above equation and then set this

equation to zero. We then have

0 = 2β(j)′Σβ − 2λβ(j)′β − 2νjβ
(j)′Σβ(j) = −2νjλ(j) . (20)

If λ(j) 6= 0, then −2νjλ(j) = 0 implies νj = 0. On the other hand, if λ(j) = 0,

then Σβ(j) = λ(j)β
(j) = 0 and the j-th term in the sum of equation (19)
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vanishes. Hence, β must satisfy equation (10) and also λ must satisfy equa-

tion (11).

Let λ(r+1) be the maximum of λ1 to λp such that there is a vector β

satisfying (Σ − λ(r+1)I)β = 0, β′β = 1, and equation (17). Denote this

vector by β(r+1) and Ur+1 = β(r+1)′Y. If λ(r+1) = 0 and λ(j) = 0 for j 6= r+1,

then β(j)′Σβ(r+1) does not imply that β(j)′β(r+1) = 0. But we may rewrite

β(r+1) as β(r+1) + 0 · β(1) + · · · + 0 · β(r), so that β(r+1) is orthogonal to all

β(1), β(2), · · · ,β(r). This procedure is continued until at the (e + 1)-st stage

that one can not find a vector β satisfying β′β = 1 and equation (17). Since

β(1), · · · ,β(e) must be linearly independent, so either e = p or e < p . But

e < p will leads to a contradiction, the details can be seen in Anderson

(2003). So we must have e = p .

Now let B = (β(1), · · · , β(p)) and

Λ =




λ(1) 0 0 · · · 0 0

0 λ(2) 0 · · · 0 0

0 0 λ(3)
. . . 0 0

...
...

. . . . . . . . .
...

0 0 · · · 0 λ(p−1) 0

0 0 · · · 0 0 λ(p)




. (21)

Then in matrix form, we can rewrite Σβ(r) = λ(r)β
(r) as

ΣB = BΛ (22)

and β(r)′β(r) = 1, β(r)′β(s) = 0 for r 6= s as

B′B = I . (23)

From equation (22) and equation (23), we have

B′ΣB = Λ . (24)
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From the fact that

|Σ− λI| = |B′| · |Σ− λI| · |B|
= |B′ΣB− λB′B| = |Λ− λI|

=

p∏
i=1

(λ(i) − λ) , (25)

it is clearly that the roots of this equation are the diagonal elements of Λ.

That is, λ(1) = λ1, λ(2) = λ2, · · · , λ(p) = λp . So that we can state the following

theorem.

Theorem 1 (Anderson, 2003)

Let Y be a p-component random vector with E(Y)=0 and E(YY′) = Σ.

Then there exists an orthogonal linear transformation B such that

U = B′X (26)

has the covariance matrix

Λ =




λ1 0 0 · · · 0 0

0 λ2 0 · · · 0 0

0 0 λ3
. . . 0 0

...
...

. . . . . . . . .
...

0 0 · · · 0 λp−1 0

0 0 · · · 0 0 λp




, (27)

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are roots of equation (11). Then the r-th

column of B, β(r), satisfies (Σ − λrI)β(r) = 0. And the r-th component of

U, Ur = β(r)′Y has maximum variance of all normalized linear combinations

uncorrelated with U1, · · · , Ur−1.

Thus β(1), · · · ,β(p) are eigenvectors and λ1, · · · , λp are eigenvalues of Σ.

In PCA, for r = 1, · · · , p, β(p) is the r-th principal components of Y and Ur
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is called the score of the r-th principal components. These scores will catch

the special properties or features of the curves corresponding to different

principal components. Hence we can use these principal component scores

to monitor the changes or shifts of the profiles.

Now for real data analysis, suppose we have n profiles, each with p set

points. Compute the sample covariance matrix Σ̂ by

Σ̂ =
1

n− 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′ ,

where yi is the i-th profile and ȳ =
∑n

i=1 yi/n. Apply the eigenanalysis

to Σ̂. The eigenvector corresponding to the j-th largest eigenvalue is the j-

th principal component, j = 1, . . . , p. Then simply project each profile onto

these eigenvectors to have the corresponding principal component scores that

we use in our monitoring scheme.

3.4 A Simple Cross-Validation Procedure

We adopt the principle of cross-validation (CV) as the criterion to decide how

many PC scores to use. Here, we use an example to illustrate this procedure.

Assume there are n = 50 profiles, each with p = 19 set points. We randomly

divide the data set into g = 5 groups of 10 samples each. The CV procedure

given in Jackson (1991) is as follows.

Repeat the following steps for i = 1 ro g:

1. Delete the i-th group from the original data set. Perform PCA on the

remaining samples to obtain all nineteen eigenvectors. Denote them by

u1, · · · ,u19.

2. Project each of the 10 deleted samples onto the eigenvectors obtained

in step 1 to obtain its 19 PC scores.
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3. Using, in turn, the first principal component, the first two principal

components, and so on, to obtain the predicted values of the deleted

sample y = (y1, · · · , y19)
′ by

ŷ = ȳ + UZ (28)

where ȳ =
∑19

i=1 yi/19 and U = (u1, · · · , u19) is the matrix of the

eigenvectors obtained in step 1, and Z is the vector of the corresponding

principal component scores obtained in step 2.

4. For each of the deleted samples, compute Q = (y − ŷ)′(y − ŷ).

Then there will be 50 values of Q for the one-principal-component model, an-

other 50 for the two-principal-component model, and so on. For each model,

add up the 50 Q-statistics. These are called PRESS-statistics. Let PRESS(i)

be the sum of the 50 values of Q for the i-principal-component model,

i = 1, . . . , p, and PRESS(0) be the sum of squares
∑n

i=1

∑p
j=1 (yij − ȳi)

2.

Finally, for k starting from 1, compute the statistic

W =
[PRESS(k − 1)− PRESS(k)]/DM

PRESS(k)/DR

, (29)

where DM = n + p− 2k and DR = p(n− 1)−∑k
i=1(n + p− 2i). If W > 1,

then retain the k-th principal component in the model and continue to test

the (k + 1)-st. The procedure stops when W < 1.

3.5 T 2 statistics

In this paper, for Phase I monitoring, two versions of T 2 statistic are studied.

They are different in the estimation of the covariance matrix.

Method 1: Use the usual sample covariance matrix

T 2
1,i = (β̂i − ¯̂

β)′S−1
1 (β̂i − ¯̂

β) , (30)
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where β̂i = (β̂i,1, β̂i,2, · · · , β̂i,p)
′ is the score vector of the i-th sample profile,

¯̂
β = ( 1

n

∑n
i=1 β̂i,1,

1
n

∑n
i=1 β̂i,2, · · · , 1

n

∑n
i=1 β̂i,p)

′, i = 1, . . . , n, and

S1 = 1
n−1

∑n
i=1 (β̂i − ¯̂

β)(β̂i − ¯̂
β)′. So according to William et al. (2003),

T 2
1

n

(n− 1)2
∼ Beta

[
p

2
,
n− p− 1

2

]
. (31)

Thus, the control limit UCL1 = (n−1)2

n
Beta1−α,p/2,(n−p−1)/2.

Method 2: Use the successive-difference-based sample covariance matrix

T 2
2,i = (β̂i − ¯̂

β)′S−1
2 (β̂i − ¯̂

β), (32)

where S2 =
∑n−1

i=1 ViV
′
i/2(n−1) with Vi = β̂i+1− β̂i, i = 1, . . . , n−1. Then

T 2
2

n

(n− 1)2
∼ Beta

[
p

2
,
f − p− 1

2

]
, (33)

where f = 2(n−1)2

3n−4
. Thus, the control limit UCL2 = (n−1)2

n
Beta1−α,p/2,(f−p−1)/2.

See Williams et al. (2003).

4 Simulation Studies - Aspartame Example

4.1 Settings for Simulation

In our simulation study, we use the model

y = I + MeN(x−1)2 + ε, (34)

where I ∼ N(1, 0.22), M ∼ N(15, 1), N ∼ N(−1.5, 0.32) , ε ∼ N(0, 0.32) and

x=0.64, 0.8, . . ., 3.52 to simulate profile data of the aspartame example. We

assess the performance in terms of the average run length (ARL) through

simulation studies. Let ARL0 denote the in-control ARL. All charts are

designed to have the same ARL0=200, which corresponds to the false alarm

rate α=0.005 .
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To compute ARL, we simulate 200,000 profiles each time and count the

number of profiles that are out of control. Then the proportion of the out-of-

control profiles is an estimate of the out-of-control probability for each profile.

Consequently, the reciprocal of this estimate is an ARL estimate. We repeat

the above steps 1000 times to obtain 1000 ARL estimates. Compute the

sample mean and sample standard deviation of these 1000 estimates. The

final ARL estimate is taken as the sample mean and its standard error is the

sample standard deviation divided by 10001/2.

4.2 Number of Principal Components

An important issue arises in using PCA: how many principal components

should be used for our purpose? More specifically, how does the choice

affect the detecting power of our monitoring scheme? Here, the detecting

power means the ability of our monitoring scheme detecting the real out-

of-control profiles. For example, simulate fifty profiles with three out-of-

control profiles in the data set. If our scheme catches two of these three,

then we measure the detecting power by 2/3 for this data set. In order

to study this issue, we choose some settings of I, M,N shifts and simulate

fifty profiles for each setting. Then repeat each setting 20,000 times to get

the average detecting power and the corresponding percentage of variation

explained across different numbers of principal components.

Partial results are presented here for illustration. Figures 3 and 4 show

the results for the situation of one out-of-control profile in fifty profiles with

a mean shift of 5 sigma on I. Figures 5 and 6 are the plots that two out-of-

control profiles in fifty profiles with a mean shift of 5 sigma on M . Figures 7

and 8 display the results for the situation that there are three out-of-control

profiles in fifty profiles with a mean shift of 2 sigma on N . From these

plots we can clearly see that more principal components does not lead to
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more detecting power, although we do have more variation explained. So

choosing number of principal components becomes an important task. We

use cross-validation method to decide the number of principal components

to use.

Here, we conduct another simulation study on this issue. We generate fifty

profiles each time, apply the cross-validation method to select the number

of principal components. Repeat the process 20,000 times and then plot

the histogram of the results. Figures 9-11 display respectively the resulting

histograms for the cases of I-shift, M -shift, and N -shift described above. We

can see that for all these three settings, the cross-validation method seems

in favor of choosing three principal components.

Also, we wonder if the result may be affected by the number of the di-

viding groups. In order to see this, we simulate fifty profiles and divide

the sample profiles into two, ten, or fifty groups. Then apply the cross-

validation method to select the number of principal components for each case.

Repeat the procedure 20,000 times and plot the corresponding histograms.

Figures 12-14 display the plots for two, ten, and fifty groups, respectively.

We observe that as the number of groups increases, the selected number of

principal components decreases. It is surprising to see that the delete-one

cross-validation method chooses only one principal component.

4.3 Phase I monitoring

We now describe the performance of Phase I analysis by an example. In Phase

I, we have 200 historical profiles each with 19 set points; see Figure 15. Fit

these profiles with B-splines of effective degrees of freedom 5; see Figure 16.

And we have a sample covariance matrix of dimension 19×19. Then we ap-

ply PCA to the covariance matrix and get the corresponding 19 eigenvalues.

By ordering these eigenvalues, we have λ1 ≥ λ2 ≥ . . . ≥ λ19. For our sample
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profiles, we divide the data set into ten groups of twenty observations each.

The number of principal components selected by the cross-validation method

is four. Then the first principal component is the eigenvector corresponding

to λ1, the second principal component is the eigenvector corresponding to λ2,

and so on. The explanation percentage corresponding to the i-th principal

component is computed by λi/
∑19

i=1 λi. So the first four principal com-

ponents account for 0.7644, 0.1742, 0.0309, and 0.0086 of variation in the

profiles, respectively. The total is 0.9781.

Now for each profile, we project it onto the first four eigenvectors to get

the scores. In our case, β̂i is a 4×1 vector of the scores of the first four

principal components. Here the number of profiles n=200 and the number

of principal components is 4. Set α at 0.005 in order to have ARL0 = 200.

Then compute both T 2
1 and T 2

2 given in Section 3.5. We then have the

corresponding control charts displayed in Figures 17 and 18, respectively.

We can see that in T 2
1 control chart, there is an out-of-control point. So,

we remove the out-of-control profile and then take the remaining 199 profiles

and recalculate the T 2 statistics again. Then plot the corresponding T 2
1 and

T 2
2 control charts. If there are still some out-of-control profiles, then remove

them, recalculate, and plot the control chart again until all of the remaining

profiles are in control. In our case, the T 2
1 and T 2

2 control charts, displayed

respectively in Figures 19 and 20, indicate that the remaining 199 profiles

are in control.

Also, we notice some differences between the performance of T 2
1 and T 2

2 .

In general, T 2
2 performs better when out-of-control profiles occur successively,

while T 2
1 performs better for temporal shifts. To see this, as before, we

simulate sets of fifty profiles in which some are shifted. For one shifted

profile only, we set it at the middle of the sequence of sample profiles. For

two shifted profiles, we set them at the one-third and the two-third of the

21



sequenced sample profiles. And for three shifted profiles, we set them at

the one-fourth, the middle, and the three-fourth of the sequenced sample

profiles. Since I, M, N shifts contribute variation of the profiles in different

aspects, we need to quantify the extra variation caused by the shift in terms

of the response variable of the profile so that we can have a comparison basis

for different types of shifts. The variance of Y (x) can be approximated as

follows.

Since

Y (x) = I + MeN(x−1)2 + ε ≈ µI + µM × eµN (x−1)2 + ε + (I − µI)

+(M − µM)× eµN (x−1)2 + (N − µN)(x− 1)2µM × eµN (x−1)2 ,

we have

E(Y (x)) ≈ µI + µM × eµN (x−1)2 ,

V ar(Y (x)) ≈ σ2
I + σ2

M(eµN (x−1)2)2 + σ2
N(µM(x− 1)2 × eµN (x−1)2)2 + σ2

ε .

Also, Bias(Y (x)) = E(Y (x) − E(Y (x))). Note that, when the µI is shifted

to µI + δσI , Bias(Y (x)) ≈ δσI ; but when µN is shifted to µN + δσN , then

Bias(Y (x)) ≈ δσN(x− 1)2µMeµN (x−1)2 . Define

MSE(Y (x)) = E(Y (x)− E(Y (x)))2 = V ar(Y (x)) + Bias2(Y (x)).

Then the integrated mean squared error (IMSE) of the profile is

IMSE =

∫ 3.52

0.64

MSE(Y (x))dx =

∫ 3.52

0.64

V ar(Y (x))dx+

∫ 3.52

0.64

Bias2(Y (x))dx.

When the process is in control, denote the IMSE by IMSE0; when there

are shifts in I,M, and N , denote the IMSE by IMSE1. We then define a

measure called the variation expansion factor (vef) by

vef =

√
IMSE1

IMSE0

.
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Repeat 20,000 times to get the average of these measures for each setting.

The performance is assessed by the detecting power and the false-alarm rate.

Tables 1-3 display respectively the simulation results for I, M, N shifts. From

these simulation results, we can clearly see that T 2
1 outperforms T 2

2 for tem-

poral shifts with both criteria. Note that the detecting power decreases as

the number of out-of-control profiles increases. This probability is caused by

the fact that the parameter situation gets power as the data contamination

gets worse.

4.4 Phase II monitoring

In Phase II monitoring, we use the true mean function µ(·) and the sam-

ple covariance matrix Σ of the above 199 profiles as the in-control process

parameters to perform our simulation. Let µ be the 19 × 1 vector com-

puted by µ(x) = 1 + 15e−1.5(x−1)2 at x = 0.64, 0.8, . . . , 3.52 . We then

generate in-control profiles from MV N(µ, Σ). Consider I-shift from µI to

µI + α × σI , α = 0, 0.25, . . . , 3; M -shift from µM to µM + β × σM , β =

0, 0.25, . . . , 3; N -shift from µN to µN + γ × σN , γ = 0, 0.25, . . . , 3. Fig-

ures 21-23 display the curves of f(x) = I + MeN(x−1)2 with different value of

I,M, N respectively. Figure 24 display the plot of the first four eigenvectors

of Σ. And Figures 25-28 illustrate respectively the corresponding features

captured by the first four principal components, by showing in each plot the

mean profile and the profiles corresponding to the largest score and smallest

score of the principal component. Now for each shift in I, M, N , we generate

200,000 profiles to computed an ARL estimate. Then repeat this 1000 times

to get a more accurate estimate along with its standard error as before. Ta-

bles 4-6 display the ARL values for the shifts in I, M,N , respectively. We

can see from Table 4 that PC3 and PC1 can capture the shift in I. PC3 has

the best power for detecting I-shift. PC2 and PC4 hardly have any power

on detecting I-shift. Also, we can see from Table 5 that PC2 and PC1 out-
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perform the other two with PC2 slightly better than PC1 in capturing the

shift in M . And for detecting N -shift, we can see from Table 6 that PC2

and PC1 are the best two. But as the shift tends to 3 units of σN , PC2 still

has the best power and PC3 becomes the second best for detecting N -shift.

In fact, we can obtain the exact ARL values as follows. Let P = (P1,P2,

· · · ,P4)
′, where Pi is the i-th eigenvector of Σ. Then P projects profiles

to the first four principal components. Let λ1, · · · , λ4 be the corresponding

eigenvalues of Σ. Since the in-control profile Y ∼ MV N(µ, Σ) and PΣP ′ =

diag(λ1, · · · , λ4) ≡ Λ4, we have the score vector PY ∼ MV N(Pµ, Λ4).

Denote the shifted profile by Ỹ and the shifted mean profile by µ̃. Then

P Ỹ ∼ MV N(P µ̃, Λ4). Let δ = µ̃−µ. The probability of detecting the shift

of the i-th principal component chart is

p = P (|P
′
i(Y − µ)√

λi

| ≤ Z0.0025)

= P (
−P′

iδ√
λi

− Z0.0025 ≤ P′
i(Y − µ̃)√

λi

≤ −P′
iδ√

λi

+ Z0.0025)

= P (
−P′

iδ√
λi

− Z0.0025 ≤ Z ≤ −P′
iδ√

λi

+ Z0.0025),

where Z is the standard normal variate. The value 1/p is the actual ARL of

the i-th principal-component chart. Tables 7-9 show respectively the actual

ARL for each of the I, M, N shifts. By comparing Tables 4-9, we can see

that our simulated ARLs are all very close to the actual ARLs, which verifies

the correctness of the simulation.

Since each of the I, M, N shifts is captured by more than one principal-

component chart, we recommend using the combined chart to monitor these

shifts. A combined chart means we monitor the process by more than one

chart and the combined chart signals out of control if any of the charts

24



signals. Set the overall false-alarm rate at α = 0.005. Since these scores are

independent, the individual false-alarm rate is α′ = 1− (0.995)1/4 for each of

the four principal component scores. Then we can have the control limits of

these four scores as shown below:

(P′
1µ− Z 1−(0.995)1/4

2

√
λ1, P′

1µ + Z 1−(0.995)1/4

2

√
λ1)

(P′
2µ− Z 1−(0.995)1/4

2

√
λ2, P′

2µ + Z 1−(0.995)1/4

2

√
λ2)

(P′
3µ− Z 1−(0.995)1/4

2

√
λ3, P′

3µ + Z 1−(0.995)1/4

2

√
λ3)

(P′
4µ− Z 1−(0.995)1/4

2

√
λ4, P′

4µ + Z 1−(0.995)1/4

2

√
λ4)

If one of the principal component scores is out of the control limits, then

this profile is claimed as out of control. That is, only when all four principal

component scores of that profile are within the control limits simultaneously,

then it will be treated as an in-control profile. In order to do the comparison

the above, we also simulate 200,000 profiles each time to get an ARL estimate.

Then repeat 1000 times to get the final ARL estimate and its standard error.

Tables 10-12 display the simulation results for ARL comparison for I,M, N

shifts, respectively. Also, we can derive the exact control limits and compute

the exact ARL. Tables 13-15 show the ARL computed from the exact control

limits with shifts in I, M, N , respectively. By comparing the simulated ARL

with the exact ARL for our combined chart, we can see that they are very

closed to each other. Also, we plot the ARL comparison plots for PC1,

PC2, PC3, PC4 and the combined chart with I, M,N shifts in Figures 29-31

respectively. As we can see for I-shifts, PC3 dominates primarily. And for

the combined chart scheme, it was the second best in monitoring the shifts

in I. As the shifts gets bigger, the difference in ARL between PC3 and the

combined chart gets smaller. Also, for M -shifts, PC2 is the best scheme to

monitor it. For the second best one, the PC1 and the combined chart are

comparable. Note that two ARL curves intersect at about 1.25σM shift. That

is, for shifts smaller than 1.25σM , PC1 has better power. But the combined
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chart scheme outperforms PC1 as the shift size tends larger than 1.25σM .

We can see the same phenomenon in N . From Figure 31, PC2 is still the

best one to monitor shifts in N . PC1 and the combined chart scheme are

comparable. Also the two ARL curves intersect at about 1.1σN shift.

Also, we show the ARL values for simultaneous shifts of I and M , I and

N , and M and N , in Tables 16-18, respectively. We can see from Table 16

that PC1 takes the major job of monitoring simultaneous shifts in I and M

while PC3 serves as the second best. And from Table 17, we can observe

that PC2 dominates the simultaneous shifts in I and N while PC1 serves as

the second best. Also from Table 18, we can see that PC1 plays the major

role in monitoring simultaneous shifts in M and N while PC2 performs the

second best. But notice that the power for PC2 here is not comparable with

PC1.

Finally, we consider shifts in the variance of I, M, and N . Recall that

the in-control situation is: I ∼ N(1, 0.22),M ∼ N(15, 1), N ∼ N(−1.5, 0.32).

Now for variance shifts in I, we consider σI = 0.3, 0.4, . . . , 1. For each shift,

we simulate 200,000 profiles to get an ARL estimate and then repeat the

procedure for 1000 times to get the mean and the corresponding standard

deviation. The ARL results for each principal component chart and the com-

bined chart are shown in Table 19. And Figure 32 shows the corresponding

ARL curves. As we can see that PC3 dominates for the shifts in variance

of I while the combined chart scheme also performs very well in monitoring

this kind of shifts.

And for variance shifts in M , we consider σM = 1.5, 2, . . . , 5. The simula-

tion results are shown in Table 20 and Figure 33. Likewise, we can see that

PC2 dominates for the shifts in variance of M . But here, the combined chart

scheme is comparable with the PC2. As σM gets bigger, the combined chart

scheme performs even better than PC2. At last, for shifts in variance of N ,
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we consider σN = 0.4, 0.5, . . . , 1.1. Table 21 and Figure 34 shows the simula-

tion results. From these simulation results, we can see that PC3 has the best

detecting power for variance shifts in N . The combined chart scheme also has

great detecting power for monitoring shifts in σN . Notice that as σN tends

bigger than 0.7, the profile shape will be greatly affected. Therefore we can

see that all these four principal components are sensitive to it and they all

have great detecting power. While it is difficult to figure out which principal

component dominates the shifts, we recommend the combined chart scheme

for monitoring.

Since the model under study is a random effect model, we are curious

of the power in monitoring variance shifts. From the above simulations,

we have shown that the combined chart scheme is a very good choice for

monitoring random effect model. So here, in order to compare the power of

our combined chart in detecting mean shifts and variance shifts, we use the

ARL of the combined chart scheme. Then, use our comparison basis vef to

quantify the difference between the shifted profiles and the reference profile.

Hence we can have the plot that compares the ARL of detecting mean shifts

and variance shifts; see Figure 35.

We can see from Figure 35 that for both I, M, N shifts, our monitoring

scheme performs better in detecting variance shifts than mean shifts. We can

observe that there exist big differences for all I, M,N shifts at small values

of comparison basis. And as the value of comparison basis tends bigger,

the difference between mean shifts and variance shifts tends smaller. When

the value of comparison basis getting large enough, there exist almost no

differences between mean shifts and variance shifts. Also from Figure 35, we

can see that our monitoring scheme does the best job in detecting variance

shifts in N while the second best one is variance shifts in I.
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5 A Case Study - VDP Example

5.1 Phase I monitoring

The VDP data set contains n = 24 profiles, each was measured at p = 314

set points. Figure 2 is the plot of the VDP data. We fit these 24 profiles

by B-splines with 16 degrees of freedom. See Figure 36 for the plot of the

fitted B-splines. Also Figures 37-40 respectively plot principal components

1 to 4 showing the modes of variation they capture. And the first four

principal components account for 0.8535, 0.1084, 0.0190, 0.0084 of variation

in the profiles, respectively. The total is 0.9893. Figure 41 is the plot of the

corresponding eigenvectors. Now for Phase I monitoring, we use the same

method as for the aspartame example. Figures 42 and 43 are the control

charts of T 2
1 and T 2

2 respectively. We can see that there are no out-of-control

profiles in the VDP data.

5.2 Phase II monitoring

Since, in the aspartame example, the first four principal components cannot

distinguish the shifts in I,M, N very clearly, we suggest using the combined

chart scheme to monitor these shifts. Now, we are going to demonstrate an

example that its principal components can capture the shapes of shifts very

clearly by simulation.

For demonstrating Phase I monitoring, we need to generate new VDP

data. Applying PCA to the original VDP data, we then have the corre-

sponding eigenvectors {ρ1, · · · , ρ314} and eigenvalues {λ1, · · · , λ314}. Since

the first four principal components can explain 97.57 percent of variation, we

only use these four principal components to regenerate the new VDP data.

And these first four principal components account for 0.8402, 0.1072, 0.0192,

0.0091 of variation in these profiles, respectively.
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We use the following steps to regenerate a set of new VDP data.

1. Generate i.i.d. εj,q from the normal distribution with zero mean and

variance λq, 1 ≤ j ≤ 24, 1 ≤ q ≤ 4.

2. Generate X̃j,k = µ(tk) +
∑4

q=1 εj,q · ρq(tk), 1 ≤ j ≤ 24, 1 ≤ k ≤ 314.

Note that λ1, λ2, λ3, λ4 are the four largest eigenvalues and ρ1, ρ2, ρ3, ρ4

are the corresponding eigenvectors with length 314. And µ(·) is the mean

profile of the 24 original VDP curves where tk denotes the k-th set point.

Figure 44 displays the simulated VDP data. We can see that the simulated

data do capture the peaks and the shapes of the original VDP data.

Then, we apply our estimation method to the generated data to get the

simulated mean profile, eigenvalues, and eigenvectors. Figure 45 displays the

mean profile of the real data and the simulated data. We can see that these

two curves are very close. Figures 46-49 show the first four eigenvectors of

the real data and that of the simulated data, respectively. Likewise, from

these four figures we can see that the simulated eigenvectors are all close to

that of the real data. Also, Figure 50 shows that the simulated eigenvalues

are fairly close to the eigenvalues of the original profile data. Therefore, we

can say that the data generation method we adopt here can really capture

the shapes and variations of the original data.

In Phase II monitoring, we treat the average profile vector µ of the 24

smoothed VDP profiles and the sample covariance matrix Σ as the in-control

process parameters to perform our simulation. Here, µ = (µ(t1), · · · , µ(t314))
′

is a 314 × 1 vector and the covariance matrix Σ is a 314×314 matrix. We

can generate the in-control profiles by Y ∼ MV N(µ, Σ). For out-of-control

conditions, we shift the profiles in their first two principal components. That

is, generate new profile data by

Ỹ ∼ k
√

λi × vi + MV N(µ, Σ) ,
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where k=0, 0.25, . . . , 2 and vi is the i-th eigenvector of Σ, i=1, 2. We sim-

ulated 200,000 profiles to compute an ARL estimate for each out-of-control

conditions considered. Then we repeat the procedure 1000 times to get our

final ARL estimate along with its standard error. Tables 22 and 23 report

the ARL results for shifts in principal component 1 and principal component

2 respectively.

As we can see from Table 22 that shifts in principal component 1 are

solely captured by the first principal component score. Likewise, from Ta-

ble 23, shifts in principal component 2 are captured by the second principal

component score. The other three principal component scores make no con-

tributions to the power of detection.

6 Conclusions

The monitoring of process or product profiles is a very popular and promising

area of research in statistical process control in recent years. In this study,

we discuss monitoring schemes for the random effect nonliner profiles. We

use the principal component analysis to analyze the covariance matrix of

the profile data and use the corresponding principal component scores that

capture the main features of these profile data for process monitoring.

In the study of the aspartame example, our simulation shows that prin-

cipal component 3 performs the best over the entire range of I shifts. And

principal component 2 is the best for monitoring M shifts while principal

component 1 also plays an important role in monitoring M shifts. And for

shifts in N , principal component 2 performs the best over the entire range.

Likewise, principal component 1 also plays an important role in monitoring

N shifts. Note that as the shift tends bigger in N shift, all those four prin-

cipal components are good at catching the out-of-control profiles. And for

30



each shift, we can also use the combined chart to perform monitoring. We

have shown that although this monitoring scheme may not be the best for

each shift, it still has comparably good power to monitor these shifts. More-

over, we have displayed in the tables the results when two of I, M, N shift

simultaneously.

Using the example of vertical density profiles, we demonstrate that when

the shift corresponds to a mode of variation that a particular principal com-

ponent represents, then we can directly use the score of that principal com-

ponent to perform monitoring.

So if a principal component can clearly identify the shift, a situation may

be rare in real applications, then we recommend monitoring the score of that

principal component. Otherwise we recommend the combined chart scheme

because it still has comparably good power to monitor these shifts.

Moreover, we use a mean-squares-error-like (MSE-like) measure as a com-

parison basis to compare the ARL performance in mean shifts and variance

shifts. Simulation results indicate that our monitoring scheme performs bet-

ter in detecting variance shifts. And in the selection of number of principal

components, we adopt the cross-validation method for its popularity and

simplicity. Also, in the use of cross-validation, we have observed that the se-

lection is affected by the number of groups that the data set is divided into.

By our simulation result, we can see that as the number of groups increases,

the selected number of principal components decreases. Further studies are

needed on this issue.

Finally in the studies of Phase I monitoring, we compare T 2
1 and T 2

2 . And

we show by simulation that T 2
1 has a better overall performance than T 2

2

under temporal shifts.
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One shift set at the 100th curve among 200 curves

chart\ I shifts 5× σI 7× σI 10× σI

(vef) (1.543) (1.925) (2.554)

T 2
1 power 0.4506 0.8213 0.9842

false-alarm 0.0068 0.0062 0.0059

T 2
2 power 0.1467 0.4567 0.869

false-alarm 0.0028 0.0026 0.0025

Two shifts set at the 66th and 133th curve among 200 curves

chart\ I shifts 5× σI 7× σI 10× σI

(vef) (1.543) (1.925) (2.554)

T 2
1 power 0.2924 0.52 0.7339

false-alarm 0.0062 0.0059 0.0054

T 2
2 power 0.0726 0.1746 0.333

false-alarm 0.0026 0.0025 0.0022

Three shifts set at the 50th, 100th and 150th curve among 200 curves

chart\ I shifts 5× σI 7× σI 10× σI

(vef) (1.543) (1.925) (2.554)

T 2
1 power 0.1972 0.325 0.4515

false-alarm 0.0059 0.0054 0.005

T 2
2 power 0.0392 0.0745 0.1207

false-alarm 0.0025 0.0023 0.002

Table 1: The performance assessed by detecting power and false-alarm rate

for T 2
1 and T 2

2 to detect I shifts with temporal shifts.

(i.e. Shift from µI=1 to 1+k × σI and vef (in parentheses), represents the

impact of the shift on the whole function variation.)

34



One shift set at the 100th curve among 200 curves

chart\ M shifts 5× σM 7× σM 10× σM

(vef) (3.358) (4.580) (6.445)

T 2
1 power 0.716 0.9637 0.9989

false-alarm 0.007 0.0068 0.0067

T 2
2 power 0.3077 0.7331 0.9747

false-alarm 0.003 0.0029 0.003

Two shifts set at the 66th and 133th curve among 200 curves

chart\ M shifts 5× σM 7× σM 10× σM

(vef) (3.358) (4.580) (6.445)

T 2
1 power 0.4449 0.671 0.8207

false-alarm 0.0067 0.0066 0.0064

T 2
2 power 0.1209 0.2622 0.4298

false-alarm 0.0029 0.003 0.0028

Three shifts set at the 50th, 100th and 150th curve among 200 curves

chart\ M shifts 5× σM 7× σM 10× σM

(vef) (3.358) (4.580) (6.445)

T 2
1 power 0.2854 0.4197 0.52

false-alarm 0.0065 0.0064 0.0063

T 2
2 power 0.0583 0.1025 0.1502

false-alarm 0.0028 0.0028 0.0027

Table 2: The performance assessed by detecting power and the false-alarm

rate for T 2
1 and T 2

2 to detect M shifts with temporal shifts.

(i.e. Shift from µM=15 to 15+k × σM and vef (in parentheses), represents

the impact of the shift on the whole function variation.)

35



One shift set at the 100th curve among 200 curves

chart\ N shifts 2× σN 2.5× σN 3× σN

(vef) (2.284) (2.979) (3.923)

T 2
1 power 0.1587 0.4858 0.8961

false-alarm 0.006 0.0045 0.0028

T 2
2 power 0.0396 0.2023 0.6566

false-alarm 0.0024 0.0018 9.5612e-004

Two shifts set at the 66th and 133th curve among 200 curves

chart\ N shifts 2× σN 2.5× σN 3× σN

(vef) (2.284) (2.979) (3.923)

T 2
1 power 0.1152 0.3208 0.6172

false-alarm 0.005 0.0031 0.0016

T 2
2 power 0.0243 0.092 0.2507

false-alarm 0.002 0.0012 5.0625e-004

Three shifts set at the 50th, 100th and 150th curve among 200 curves

chart\ N shifts 2× σN 2.5× σN 3× σN

(vef) (2.284) (2.979) (3.923)

T 2
1 power 0.0906 0.2097 0.3781

false-alarm 0.0042 0.0025 0.0011

T 2
2 power 0.017 0.0451 0.0946

false-alarm 0.0016 8.8298e-004 3.1702e-004

Table 3: The performance assessed by detecting power and the false-alarm

rate for T 2
1 and T 2

2 to detect N shifts with temporal shifts.

(i.e. Shift from µN= -1.5 to -1.5+k × σN and vef (in parentheses),

represents the impact of the shift on the whole function variation.)

36



α

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.002) (1.007) (1.015) (1.027) (1.042) (1.060)

PC1 200.38 196.64 187.86 174.44 157.88 140.51 123.51

0.2004 0.1970 0.1795 0.1630 0.1394 0.1226 0.0940

PC2 200.12 200.14 200.16 200.21 199.77 199.26 198.53

0.2003 0.1961 0.1981 0.1962 0.2006 0.1979 0.1987

PC3 200.13 172.04 119.20 76.094 48.049 30.992 20.497

0.2027 0.1669 0.0933 0.0487 0.0239 0.0118 0.0066

PC4 200.40 200.34 200.27 199.69 199.23 198.58 197.87

0.2031 0.1922 0.2027 0.2006 0.1964 0.1984 0.1957

chart 1.75 2 2.25 2.5 2.75 3

(1.081) (1.105) (1.131) (1.160) (1.190) (1.223)

PC1 107.43 93.12 80.410 69.369 59.919 51.721

0.0796 0.0643 0.0489 0.0415 0.0310 0.0268

PC2 198.53 197.7 196.91 196.16 195.29 194.32

0.1965 0.1950 0.1936 0.1915 0.1858 0.1976

PC3 13.999 9.859 7.1627 5.3581 4.1247 3.2674

0.0036 0.0020 0.0012 0.0008 0.0005 0.0003

PC4 197.71 196.6 195.58 194.84 193.55 192.47

0.1951 0.1950 0.1900 0.1981 0.1839 0.1929

Table 4: ARL comparison for I-shift (µI = 1 + 0.2× α).
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β

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.019) (1.062) (1.126) (1.207) (1.302) (1.408)

PC1 200.6 177.7 131.5 89.18 59.37 39.81 27.25

0.2032 0.1735 0.1068 0.0601 0.0322 0.0116 0.0099

PC2 200.1 168.9 112.9 69.49 42.81 27.02 17.66

0.1943 0.1549 0.0871 0.0411 0.0201 0.0098 0.0050

PC3 200.3 199.0 196.8 192.8 187.7 181.3 174.3

0.1958 0.2064 0.1942 0.1884 0.1759 0.1689 0.1611

PC4 199.8 199.8 197.9 195.5 191.9 187.5 182.1

0.1963 0.1986 0.2041 0.1906 0.1901 0.1841 0.1679

chart 1.75 2 2.25 2.5 2.75 3

(1.524) (1.647) (1.775) (1.908) (2.044) (2.183)

PC1 19.06 13.65 10.023 7.5328 5.7976 4.5616

0.0058 0.0034 0.0021 0.0014 0.0009 0.0006

PC2 11.93 8.344 6.0404 4.5196 3.492 2.7828

0.0028 0.0016 0.0009 0.0006 0.0004 0.0003

PC3 166.2 157.9 149.08 140.33 131.89 123.37

0.1489 0.1378 0.1276 0.1192 0.1080 0.0961

PC4 176.4 169.6 163.41 156.41 149.01 142.01

0.1699 0.1562 0.1475 0.1354 0.1294 0.1229

Table 5: ARL comparison for M -shift (µM = 15 + 1× β).
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γ

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.045) (1.123) (1.233) (1.377) (1.552) (1.761)

PC1 200.6 175.46 123.33 77.235 46.416 27.765 16.783

0.2045 0.1576 0.0990 0.0480 0.0221 0.0103 0.0047

PC2 200.07 170.31 109.92 61.319 32.571 17.17 9.2111

0.1943 0.1512 0.0825 0.0339 0.0132 0.0051 0.0018

PC3 200.33 195.5 188.38 184.87 188.98 198.38 192.89

0.1958 0.1895 0.1835 0.1750 0.1877 0.1956 0.1812

PC4 199.79 196.79 191.12 189.78 194.81 199.71 184.19

0.1963 0.2030 0.1898 0.1835 0.1934 0.1935 0.1758

chart 1.75 2 2.25 2.5 2.75 3

(2.004) (2.284) (2.607) (2.979) (3.413) (3.923)

PC1 10.336 6.5317 4.2695 2.9118 2.0902 1.5929

0.0023 0.0011 0.0005 0.0003 0.0001 0.00009

PC2 5.133 3.0404 1.9639 1.4142 1.1482 1.0383

0.0007 0.0003 0.0001 0.00006 0.00003 0.00001

PC3 138.36 64.003 21.627 6.4314 2.1517 1.1355

0.1115 0.0351 0.0068 0.0011 0.0002 0.00003

PC4 126.66 61.374 23.666 8.422 3.222 1.5783

0.1013 0.0342 0.0081 0.0017 0.0003 0.00009

Table 6: ARL comparison for N -shift (µN = −1.5 + 0.3× γ).
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α

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.002) (1.007) (1.015) (1.027) (1.042) (1.060)

PC1 200.0 196.78 187.65 174.04 157.74 140.46 123.39

PC2 200.0 199.96 199.84 199.64 199.35 198.99 198.55

PC3 200.0 172.05 119.16 75.951 47.999 30.926 20.493

PC4 200.0 199.94 199.77 199.49 199.09 198.58 197.96

chart 1.75 2 2.25 2.5 2.75 3

(1.081) (1.105) (1.131) (1.160) (1.190) (1.223)

PC1 107.48 93.109 80.42 69.38 59.87 51.73

PC2 198.03 197.44 196.7 196.0 195.2 194.3

PC3 13.999 9.8623 7.162 5.358 4.126 3.267

PC4 197.24 196.41 195.5 194.4 193.3 192.1

Table 7: Real ARL comparison for I-shift (µI = 1 + 0.2× α).

β

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.019) (1.062) (1.126) (1.207) (1.302) (1.408)

PC1 200.0 177.55 131.31 89.198 59.356 39.824 27.235

PC2 200.0 168.89 112.77 69.516 42.801 27.032 17.646

PC3 200.0 199.19 196.78 192.89 187.67 181.32 174.07

PC4 200.0 199.45 197.83 195.17 191.56 187.09 181.87

chart 1.75 2 2.25 2.5 2.75 3

(1.524) (1.647) (1.775) (1.908) (2.044) (2.183)

PC1 19.056 13.655 10.02 7.5334 5.7958 4.5617

PC2 11.926 8.3429 6.04 4.5196 3.4921 2.7826

PC3 166.15 157.78 149.2 140.47 131.87 123.46

PC4 176.04 169.71 163.0 156.08 149.01 141.88

Table 8: Real ARL comparison for M -shift (µM = 15 + 1× β).
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γ

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.045) (1.123) (1.233) (1.377) (1.552) (1.761)

PC1 200.0 175.24 123.25 77.172 46.405 27.762 16.779

PC2 200.0 170.23 109.89 61.338 32.564 17.173 9.2121

PC3 200.0 195.66 188.26 184.73 188.84 198.28 192.84

PC4 200.0 196.55 191.12 189.61 194.36 199.99 184.32

chart 1.75 2 2.25 2.5 2.75 3

(2.004) (2.284) (2.607) (2.979) (3.413) (3.923)

PC1 10.333 6.5314 4.27 2.9119 2.0901 1.5928

PC2 5.1331 3.0408 1.964 1.4141 1.1483 1.0383

PC3 138.29 63.968 21.63 6.4329 2.1517 1.1355

PC4 126.59 61.296 23.66 8.422 3.2224 1.578

Table 9: Real ARL comparison for N -shift (µN = −1.5 + 0.3× γ).

α

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.002) (1.007) (1.015) (1.027) (1.042) (1.060)

Combined 200.49 189.43 160.22 124.07 89.755 62.165 42.299

0.2053 0.1911 0.1427 0.0988 0.0622 0.0350 0.0191

chart 1.75 2 2.25 2.5 2.75 3

(1.081) (1.105) (1.131) (1.160) (1.190) (1.223)

Combined 28.733 19.734 13.784 9.8526 7.2125 5.4224

0.0106 0.0061 0.0036 0.0021 0.0013 0.0008

Table 10: Combined chart ARL for I-shift (µI = 1 + 0.2× α).

41



β

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.019) (1.062) (1.126) (1.207) (1.302) (1.408)

Combined 200.49 181.31 139.05 95.667 62.436 40.059 25.88

0.2053 0.1695 0.1162 0.0647 0.0353 0.0017 0.0091

chart 1.75 2 2.25 2.5 2.75 3

(1.524) (1.647) (1.775) (1.908) (2.044) (2.183)

Combined 17.02 11.46 7.9553 5.689 4.2035 3.2099

0.0048 0.0027 0.0015 0.0009 0.0005 0.0003

Table 11: Combined chart ARL for M -shift (µM = 15 + 1× β).

γ

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.045) (1.123) (1.233) (1.377) (1.552) (1.761)

Combined 200.49 179.56 131.96 83.949 48.194 25.846 13.451

0.2053 0.1616 0.1052 0.0530 0.0237 0.0089 0.0033

chart 1.75 2 2.25 2.5 2.75 3

(2.004) (2.284) (2.607) (2.979) (3.413) (3.923)

Combined 7.026 3.819 2.2347 1.4543 1.1021 1.0055

0.0012 0.0005 0.0002 0.00007 0.00002 0.00001

Table 12: Combined chart ARL for N -shift (µN = −1.5 + 0.3× γ).
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α

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.002) (1.007) (1.015) (1.027) (1.042) (1.060)

Combined 200.0 188.98 160.3 124.03 89.657 62.159 42.295

chart 1.75 2 2.25 2.5 2.75 3

(1.081) (1.105) (1.131) (1.160) (1.190) (1.223)

Combined 28.738 19.729 13.786 9.849 7.213 5.421

Table 13: Real combined chart ARL for I-shift (µI = 1 + 0.2× α).

β

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.019) (1.062) (1.126) (1.207) (1.302) (1.408)

Combined 200.0 181.28 138.9 95.578 62.398 40.086 25.892

chart 1.75 2 2.25 2.5 2.75 3

(1.524) (1.647) (1.775) (1.908) (2.044) (2.183)

Combined 17.022 11.469 7.953 5.689 4.203 3.21

Table 14: Real combined chart ARL for M -shift (µM = 15 + 1× β).

γ

chart 0 0.25 0.5 0.75 1 1.25 1.5

(1) (1.045) (1.123) (1.233) (1.377) (1.552) (1.761)

Combined 200.0 179.26 131.93 83.893 48.162 25.855 13.446

chart 1.75 2 2.25 2.5 2.75 3

(2.004) (2.284) (2.607) (2.979) (3.413) (3.923)

Combined 7.025 3.8194 2.235 1.454 1.102 1.006

Table 15: Real combined chart ARL for N -shift (µN = −1.5 + 0.3× γ).
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α\β 1.5 1.75 2 2.25 2.5

1.5 PC1 12.9351 11.5453 10.3478 9.2981 8.3825

0.0031 0.0027 0.0022 0.0019 0.0015

PC2 19.1699 19.4443 19.6996 19.9855 20.2791

0.0058 0.0058 0.0061 0.0063 0.0065

PC3 30.4043 20.1576 13.7867 9.7243 7.0723

0.0111 0.0063 0.0035 0.0020 0.0013

PC4 192.091 192.6035 193.8697 195.1105 195.8213

0.1893 0.1842 0.1964 0.1832 0.1872

1.75 PC1 9.5331 8.587 7.7562 7.0278 6.3915

0.0020 0.0017 0.0014 0.0013 0.0010

PC2 12.8624 13.0283 13.1982 13.3635 13.5408

0.0031 0.0032 0.0031 0.0033 0.0033

PC3 32.538 21.4606 14.6218 10.259 7.4253

0.0125 0.0066 0.0039 0.0023 0.0013

PC4 186.8353 188.369 189.5544 191.5863 192.4798

0.1808 0.1826 0.1786 0.1837 0.1966

2 PC1 7.1927 6.5333 5.9532 5.4399 4.9876

0.0012 0.0011 0.0010 0.0008 0.0007

PC2 8.938 9.0445 9.1467 9.2587 9.3672

0.0018 0.0018 0.0018 0.0019 0.0018

PC3 34.8378 22.924 15.5161 10.8357 7.802

0.0146 0.0076 0.0042 0.0024 0.0015

PC4 181.7749 183.6495 185.2074 186.4019 188.2948

0.1767 0.1735 0.1716 0.1767 0.1765

Table 16: ARL comparison for simultaneous I(row) and M(column) shifts.

(µI = 1 + 0.2× α , µM = 15 + 1× β)
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α\γ 0.25 0.5 0.75 1 1.25

1.5 PC1 14.8805 13.2395 11.8106 10.5787 9.4991

0.0038 0.0033 0.0029 0.0023 0.0020

PC2 9.108 9.0018 8.8951 8.7957 8.6955

0.0019 0.0018 0.0018 0.0018 0.0017

PC3 146.9559 96.3573 60.8213 38.7273 25.3012

0.1283 0.0654 0.0335 0.0165 0.0089

PC4 186.3605 187.5394 189.4829 190.5522 192.2426

0.1789 0.1850 0.1811 0.1892 0.1908

1.75 PC1 9.2862 8.3691 7.5679 6.8644 6.2446

0.0018 0.0016 0.0014 0.0012 0.0010

PC2 5.0842 5.036 4.9869 4.941 4.894

0.0009 0.0007 0.0007 0.0007 0.0007

PC3 89.8152 56.6432 36.1729 23.7163 16.0212

0.0630 0.0319 0.0148 0.0081 0.0044

PC4 128.9885 131.0008 133.2422 135.5495 138.0885

0.1019 0.1035 0.1079 0.1089 0.1143

2 PC1 5.9526 5.4386 4.9852 4.5818 4.2257

0.0009 0.0008 0.0007 0.0006 0.0005

PC2 3.0185 2.9961 2.9734 2.9521 2.9305

0.0003 0.0003 0.0003 0.0003 0.0003

PC3 40.6474 26.4623 17.7185 12.2469 8.7252

0.0180 0.0094 0.0050 0.0029 0.0017

PC4 62.5511 63.7505 64.95 66.2724 67.6088

0.0341 0.0365 0.0357 0.0387 0.0387

Table 17: ARL comparison for simultaneous I(row) and N(column) shifts.

(µI = 1 + 0.2× α , µN = −1.5 + 0.3× γ)
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β\γ 0.25 0.5 0.75 1 1.25

1 PC1 30.5638 20.689 14.3699 10.2671 7.5407

0.0114 0.0065 0.0038 0.0022 0.0014

PC2 50.3047 79.0151 122.9198 174.99932 200.5319

0.0255 0.0497 0.0923 0.1620 0.2037

PC3 182.2847 174.6372 166.2471 157.5547 148.3484

0.1778 0.1639 0.1544 0.1457 0.1243

PC4 197.3178 199.2802 200.3078 200.1278 198.8937

0.2038 0.1917 0.2043 0.2017 0.1992

1.25 PC1 18.7555 13.0269 9.328 6.8656 5.1969

0.0058 0.0031 0.0019 0.0011 0.0007

PC2 25.1209 37.7346 57.9919 90.1817 136.5484

0.0087 0.0161 0.0317 0.0575 0.1122

PC3 195.3024 190.4205 184.3617 177.4459 169.7167

0.1861 0.1883 0.1771 0.1725 0.1614

PC4 199.6297 198.3851 195.6613 192.3238 187.6948

0.1980 0.1996 0.1893 0.1898 0.1784

1.5 PC1 11.6777 8.3743 6.1883 4.704 3.6792

0.0027 0.0016 0.0010 0.0006 0.0004

PC2 12.6638 17.8661 25.8734 38.4959 58.4024

0.0032 0.0053 0.0090 0.0176 0.0296

PC3 196.6974 198.9704 199.9054 199.5757 197.7061

0.1938 0.2075 0.2060 0.2060 0.1948

PC4 178.1878 171.2192 164.4912 156.8125 148.776

0.1727 0.1536 0.1485 0.1397 0.1289

Table 18: ARL comparison for simultaneous M(row) and N(column) shifts.

(µM = 15 + 1× β , µN = −1.5 + 0.3× γ)

46



σI

chart 0.3 0.4 0.5 0.6

(1.034) (1.080) (1.136) (1.201)

PC1 92.8076 48.6820 79.2516 49.4240

0.0629 0.0233 0.0486 0.0246

PC2 46.3985 30.8190 53.2247 70.6521

0.0218 0.0121 0.0276 0.0405

PC3 21.8815 9.8422 7.4607 3.8953

0.0073 0.0022 0.0014 0.0005

PC4 172.7439 82.5331 158.2309 279.7896

0.1601 0.0555 0.1467 0.3339

combined 29.3373 12.0996 10.4196 5.0304

0.0115 0.0029 0.0022 0.0007

chart 0.7 0.8 0.9 1

(1.273) (1.352) (1.437) (1.525)

PC1 58.3326 16.5762 18.5192 16.2502

0.0318 0.0046 0.0053 0.0045

PC2 61.6944 57.2272 51.1069 41.3881

0.0342 0.0292 0.0249 0.0187

PC3 3.5062 2.5973 2.4885 2.0873

0.0004 0.0002 0.0002 0.0002

PC4 167.1431 137.9471 170.3432 139.4717

0.1464 0.1140 0.1561 0.1174

combined 4.4020 3.0447 2.8854 2.3577

0.0006 0.0003 0.0003 0.0002

Table 19: ARL comparison for I-shift in variance.
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σM

chart 1.5 2 2.5 3

(1.224) (1.481) (1.757) (2.045)

PC1 33.3123 10.6511 7.7653 4.4383

0.0132 0.0024 0.0014 0.0006

PC2 16.4597 6.7316 5.1548 3.3771

0.0047 0.0011 0.0007 0.0004

PC3 86.1611 139.2719 69.8514 115.3932

0.0576 0.1160 0.0417 0.0886

PC4 155.9135 73.3568 119.8870 61.2410

0.1387 0.0470 0.0912 0.0357

combined 20.7851 7.0708 5.2722 3.2934

0.0065 0.0012 0.0007 0.0003

chart 3.5 4 4.5 5

(2.340) (2.640) (2.942) (3.248)

PC1 3.9680 2.8805 2.5122 2.8277

0.0005 0.0003 0.0002 0.0003

PC2 3.0209 2.3876 2.1357 2.2428

0.0003 0.0002 0.0002 0.0002

PC3 54.7949 89.3402 95.7994 136.0448

0.0286 0.0604 0.0653 0.1155

PC4 87.2543 49.0418 64.6406 142.1053

0.0576 0.0239 0.0371 0.1195

combined 2.9894 2.8168 2.1886 2.0442

0.0003 0.0003 0.0002 0.0002

Table 20: ARL comparison for M -shift in variance.
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σN

chart 0.4 0.5 0.6 0.7

(1.153) (1.323) (1.506) (1.670)

PC1 28.7742 9.4391 8.5725 3.0988

0.0107 0.0019 0.0017 0.0003

PC2 11.5527 4.3324 4.3710 2.1099

0.0027 0.0006 0.0006 0.0002

PC3 4.0039 2.2513 2.5591 1.0304

0.0005 0.0002 0.0002 0.00001

PC4 42.1725 6.7205 10.8301 1.0207

0.0190 0.0012 0.0024 0.00001

combined 4.4747 2.3922 2.1989 1.0057

0.0006 0.0002 0.0002 0.00001

chart 0.8 0.9 1 1.1

(1.893) (2.093) (2.270) (2.502)

PC1 1.5877 1.1751 1.3701 1.0018

0.0001 0.00003 0.00006 0.00001

PC2 1.7362 1.5663 1.3526 1.0008

0.0001 0.0001 0.00006 0.00001

PC3 1.0072 1.0021 1.0057 1.0000

0.00001 0.00001 0.00001 0.00001

PC4 1.0037 1.0010 1.0030 1.0000

0.00001 0.00001 0.00001 0.00001

combined 1.0004 1.0000 1.0001 1.0000

0.00001 0.00001 0.00001 0.00001

Table 21: ARL comparison for N -shift in variance.

49



k

chart 0 0.25 0.5 0.75 1

PC1 201.141 157.7244 91.6269 50.1074 28.1935

0.6537 0.4263 0.1869 0.0773 0.0339

PC2 202.5093 201.1011 202.7793 201.3586 202.3857

0.6897 0.6687 0.6295 0.6704 0.6432

PC3 202.2185 202.1651 201.4955 203.475 202.0911

0.6937 0.6648 0.6495 0.6207 0.6461

PC4 202.4143 200.7331 201.7661 202.0241 202.1318

0.6594 0.6526 0.6303 0.6551 0.6248

chart 1.25 1.5 1.75 2

PC1 16.7264 10.4605 6.8874 4.7689

0.0153 0.0071 0.0037 0.0020

PC2 202.5093 201.1011 202.7793 201.3586

0.6897 0.6687 0.6295 0.6704

PC3 202.2185 202.1651 201.4955 203.475

0.6937 0.6648 0.6495 0.6207

PC4 202.4143 200.7331 201.7661 202.0241

0.6594 0.6526 0.6303 0.6551

Table 22: ARL comparison for shifts in principal component 1.
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k

chart 0 0.25 0.5 0.75 1

PC1 203.1434 202.2938 202.2304 201.9739 202.0307

0.6599 0.6496 0.6643 0.6826 0.6423

PC2 202.3857 157.2349 91.368 50.138 28.2533

0.6432 0.4475 0.1938 0.0783 0.0318

PC3 202.0911 201.3132 202.4239 202.4192 201.6323

0.6461 0.6695 0.6455 0.6580 0.6622

PC4 202.1318 201.4323 201.5589 203.1134 201.6549

0.6248 0.6797 0.6407 0.6532 0.6349

chart 1.25 1.5 1.75 2

PC1 200.6637 202.6417 202.2779 201.5532

0.6327 0.6492 0.6344 0.6624

PC2 16.75 10.455 6.8888 4.771

0.0141 0.0073 0.0038 0.0020

PC3 201.7072 202.043 202.6156 202.3369

0.6355 0.6418 0.6803 0.6310

PC4 203.0749 202.5458 202.4285 201.5443

0.6780 0.6515 0.6505 0.6427

Table 23: ARL comparison for shifts in principal component 2.
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Figure 1: Four hypothetical aspartame profiles.
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Figure 2: Original 24 VDP–profiles.

52



1 2 3 4 5 6 7
0

0.2

0.4

0.6

D
et

ec
tin

g 
po

w
er

Number of scores
1 2 3 4 5 6 7

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

of
 e

xp
la

na
tio

ns

Figure 3: The relation between the detecting power and the percentage of

explanation in T 2
1 chart. In 50 curves, there is one outlier with I shift from

1 to 1+5×0.2.
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Figure 4: The relation between the detecting power and the percentage of

explanation in T 2
2 chart. In 50 curves, there is one outlier with I shift from

1 to 1+5×0.2.

detecting power: ’- -’, percentage of explanation: ’—’
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Figure 5: The relation between the detecting power and the percentage of

explanation in T 2
1 chart. In 50 curves, there are two outliers with M shift

from 15 to 15+5×1.
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Figure 6: The relation between the detecting power and the percentage of

explanation in T 2
2 chart. In 50 curves, there are two outliers with M shift

from 15 to 15+5×1.
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Figure 7: The relation between the detecting power and the percentage of

explanation in T 2
1 chart. In 50 curves, there are three outliers with N shift

from -1.5 to -1.5+2×0.3.

detecting power: ’- -’, percentage of explanation: ’—’

1 2 3 4 5 6 7
0.005

0.01

0.015

0.02

D
et

ec
tin

g 
po

w
er

Number of scores
1 2 3 4 5 6 7

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

of
 e

xp
la

na
tio

ns

Figure 8: The relation between the detecting power and the percentage of

explanation in T 2
2 chart. In 50 curves, there are three outliers with N shift

from -1.5 to -1.5+2×0.3.
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Figure 9: The cross-validation results for one outlier with a shift of five sigma

in I among fifty profiles.
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Figure 10: The cross-validation results for two outliers with a shift of five

sigma in M among fifty profiles.
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Figure 11: The cross-validation results for three outliers with a shift of two

sigma in N among fifty profiles.
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Figure 12: The resulting histogram for two-fold cross-validation.
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Figure 13: The resulting histogram for ten-fold cross-validation.
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Figure 14: The resulting histogram for delete-one cross-validation.
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Figure 15: Original 200 aspartame profiles.
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Figure 16: Fitted B-splines with d.f.=5 .
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Figure 17: T 2
1 control chart.
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Figure 18: T 2
2 control chart.
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Figure 19: T 2
1 control chart after the out-of-control profile was removed.
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Figure 20: T 2
2 control chart after the out-of-control profile was removed.
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Figure 21: Shifts in I.

I=1: ’—’, I=2: ’o-’, I=3: ’x-’, I=4: ’- -’
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Figure 22: Shifts in M .

M=16: ’—’, M=17: ’o-’, M=18: ’x-’, M=19: ’- -’
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Figure 23: Shifts in N .

N=-1.3: ’—’, N=-2.1: ’o-’, N=-2.9: ’x-’, N=-3.7: ’- -’
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Figure 24: First four eigenvectors.

1st eigenvector: ’x-’, 2nd: ’—’, 3rd: ’o-’, 4th: ’- -’
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Figure 25: Principal component 1.

smallestscore: ’x-’, meanprofile: ’—’, largestscore: ’o-’
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Figure 26: Principal component 2.

smallestscore: ’x-’, meanprofile: ’—’, largestscore: ’o-’

64



0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

x

y

Figure 27: Principal component 3.

smallestscore: ’x-’, meanprofile: ’—’, largestscore: ’o-’

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

x

y

Figure 28: Principal component 4.

smallestscore: ’x-’, meanprofile: ’—’, largestscore: ’o-’
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Figure 29: ARL comparison for I shifts in mean.

PC1: ’o-’, PC2: ’x-’, PC3: ’- -’, PC4: ’*-’, Combined: ’—’
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Figure 30: ARL comparison for M shifts in mean.

PC1: ’o-’, PC2: ’x-’, PC3: ’- -’, PC4: ’*-’, Combined: ’—’
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Figure 31: ARL comparison for N shifts in mean.

PC1: ’o-’, PC2: ’x-’, PC3: ’- -’, PC4: ’*-’, Combined: ’—’
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Figure 32: ARL comparison for I shifts in variance.

PC1: ’o-’, PC2: ’x-’, PC3: ’- -’, PC4: ’*-’, Combined: ’—’
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Figure 33: ARL comparison for M shifts in variance.

PC1: ’o-’, PC2: ’x-’, PC3: ’- -’, PC4: ’*-’, Combined: ’—’
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Figure 34: ARL comparison for N shifts in variance.

PC1: ’o-’, PC2: ’x-’, PC3: ’- -’, PC4: ’*-’, Combined: ’—’
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Figure 35: ARL comparison for mean shifts and variance shifts for the com-

bined chart.
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Figure 36: Fitted B-splines with d.f.=16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
35

40

45

50

55

60

65

x

y

Figure 37: Principal component 1.

smallestscore: ’- -’, meanprofile: ’—’, largestscore: ’.’
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Figure 38: Principal component 2.

smallestscore: ’- -’, meanprofile: ’—’, largestscore: ’.’
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Figure 39: Principal component 3.

smallestscore: ’- -’, meanprofile: ’—’, largestscore: ’.’
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Figure 40: Principal component 4.

smallestscore: ’- -’, meanprofile: ’—’, largestscore: ’.’
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Figure 41: First four eigenvectors.

1st eigenvector: ’x-’, 2nd: ’—’, 3rd: ’o-’, 4th: ’- -’
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Figure 42: T 2
1 control chart.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

Figure 43: T 2
2 control chart.
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Figure 44: Simulated 24 VDP–profiles.
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Figure 45: Comparison of the real mean profile and the mean profile estimate

of the simulated data.

real profile: ’- -’, simulated profile: ’—’
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Figure 46: Comparison of the real profiles and the simulated profiles for the

first eigenvector.

real profile: ’- -’, simulated profile: ’—’
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Figure 47: Comparison of the real profiles and the simulated profiles for the

second eigenvector.

real profile: ’- -’, simulated profile: ’—’
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Figure 48: Comparison of the real profiles and the simulated profiles for the

third eigenvector.

real profile: ’- -’, simulated profile: ’—’
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Figure 49: Comparison of the real profiles and the simulated profiles for the

fourth eigenvector.

real profile: ’- -’, simulated profile: ’—’
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Figure 50: Comparison of the real eigenvalues and the simulated ones.

real profile: ’- -’, simulated profile: ’—’
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