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計算統計方法在積體電路設計最佳化及敏感度分析之研究 

 
 

學生：羅婉文 

 

指導教授：洪慧念 博士 

李義明 博士 

國立交通大學 統計研究所 碩士班 

摘 要       

現今電子產品中，為了滿足民生或工業消費上的需求，設計上須達到特定之商業規格，

其中積體電路(ICs)在電子產業中扮演著重要角色與地位，要如何將積體電路設計達到

想要的規格，通常設計者必須調整其中的主、被動元件以及積體電路佈局等參數，使得

電氣規格可以達到我們想要的設計目標。要如何掌握電路行為的趨勢來符合嚴格的需求

是現今市場競爭上困難的一件事，傳統上為了滿足工程需求，工程師往往反覆不斷的手

動調整係數與執行電路模擬器，才能找出一組可行的參數組合來達到想要的設計結果；

或者用數值最佳化的方法、演化式生物計算工程的方法、蒙地卡羅的方法設計參數，這

些方法各有其優缺點。本論文嘗試提出ㄧ個整合電路模擬器與實驗設計的計算統計方法

應用在積體電路的設計最佳化與規格敏感度分析，我們利用此方法研究類比與數位電路

之設計問題展現出不錯的結果。 

藉由此系統化的方法，首先應用在由 0.25 微米金屬氧化物半導體場效應電晶體所組成

之低雜訊放大器射頻積體電路設計。例如，若我們所討論的電路特性希望規格為：一、

輸入反射損失小於-10dB； 二、輸出反射損失小於-10dB；三、輸入端與輸出端隔離度

小於-25dB；四、輸出增益望大；五、穩定因子大於 1；六、雜訊指數小於 2；七、第三

階截斷點(IIP3)大於-10。藉由呼叫電路模擬器取得電路特性，吾人首先透過篩選實驗，

十個顯著的電路參數由 13 個參數中被挑選出來做進一步的中央合成設計，進而導出各

電路特性相對應的二次反應曲面模型，同時使用望想函數(desirability function)，

吾人可取得最佳解；若電路特性未達到希望的規格，可適當的調整參數範圍，最後使得
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所研究的電路特性達到所預期的規格範圍內。同時由取得最佳解之敏感度分析，得知我

們所估算的參數組合對電路特性是穩定的。 

另外，吾人也進一步將此方法應用在數位電路的性能敏感度分析上，例如由 65 奈米金

屬氧化物半導體場效應電晶體所組成之靜態隨機讀取記憶體的靜態雜訊邊際(static 

noise margin)敏感度分析，將靜態隨機讀取記憶體分成六個電晶體組態與四個電晶體

組態討論，我們希望靜態雜訊邊際的變異越小越好。將這兩種結構以 10%元件長度與偏

壓當作三個標準差來探討其變異，分析出六個電晶體組態與四個電晶體組態的靜態雜訊

邊際落在我們測試的條件準則下達 98%和 95.8%，相較之下六個電晶體組態的靜態雜訊

邊際來的穩定。 

總之，藉由以上的例子，吾人歸結得知，此有系統的計算統計方法，初步研究結果顯示，

它可以成功的應用在類比與數位積體電路的設計上，且都有不錯的設計穩定性。吾人深

信此統計方法可進ㄧ步推廣，適當地用在積體電路設計最佳化，並量化分析電路的操作

特性與可靠度之變化趨勢，進而有效解決不同電路的設計問題。 
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Abstract 

It is known that integrated circuits (ICs) design nowadays plays a crucial role for 

microelectronics industry; in particular, for highly competitive consumer products. To meet  

specified electrical characteristics and performance of designed product, designer in general has 

to tune parameters of the passive and active devices ranging from resistors, capacitors, inductors, 

line width, line length, to transistor size, etc. Diverse approaches have been proposed to reduce 

products’ designing cycles and accelerate time to market. These methods include (1) directly 

empirical procedure, (2) numerical optimization technique, (3) evolutionary algorithm, and (4) 

Monte Carlo statistical method, and have demonstrated their merit and validity. We believe that a 

systematical integration of circuit simulation tool, design of experiment, and response surface 

model may provide an alternative way to advanced IC design optimization and sensitivity 

analysis of performance.  

In this thesis, by verifying two different analog and digital circuits, a low noise amplifier and 

static random access memory, we develop a computational statistics approach, which is mainly 

based upon SPICE circuit simulator, a screen design, a central composite design (CCD), and a 2nd 

order response surface model (RSM). We firstly state the computational algorithm by taking a 

low noise amplifier circuit with 0.25 μm MOSFETs as an example. The circuit specification 

consists of (1) the input return loss < -10 dB, (2) the output return loss < -10 dB, (3) reverse 

isolation < -25 dB, (4) voltage gain which is as great as possible, (5) stability factor > 1, (6) noise 

figure < 2 dB, and (7) the third-order-intercept point > -10 dB. To achieve the aforementioned 
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seven circuit specifications, calling circuit simulator to obtain circuit performances is performed 

and then ten significant results among thirteen parameters are selected from the screening design. 

By simultaneously running SPICE circuit simulator, a ten-parameter face centered cube design is 

then performed in the step of central composite design. We use the 149 simulation results in 

constructing the corresponding 2nd order response surface model (it is a 10-variable 2nd order 

polynomial) by using statistical software, Design Expert®. We note that, for validating the 

constructed model, the model adequacy checking and the accuracy verification are necessary. If 

the model adequacy checking fails, we transform the circuit performance by BOX-COX 

transformation. Furthermore, adjustment of parameters’ range corresponding to the circuit 

specification will be enabled for accuracy verification. With the 2nd order RSM, design 

optimization and sensitivity analysis of performance will be explored. For the design 

optimization, if one of the circuit performances does not meet its specification, we adjust the 

parameter range corresponding to the circuit specification, and return to the step of CCD. If the 

optimized results are eventually satisfied the aforementioned seven specifications, the first three 

optimal recipes will be provided. Performance sensitivity with respect to certain optimized 

parameter (or all parameters) is investigated by using RSM to an optimized recipe with 100 

randomly generated normal samples. The optimized recipe is right the mean of the normal 

distribution; and one per centum of the optimized recipe is assumed to be the standard deviation. 

Our result shows that the optimized recipe is stable to the circuit performance. Similar 

methodology is further applied to explore the variation of static noise margin (SNM) of six- and 

four-transistors (6T and 4T) static random access memory (SRAM) cells with respect to channel 

length and supply voltage. For SRAM with 65 nm CMOS devices, our result shows that 98 % 

(theoretically it should be 100 %) variation of SNM is within 3-sigma for the 6T SRAM with 

3-sigma variation of parameters. It is better than that of the result of 4T SRAM (95.8 %). Thus, it 

quantitatively confirms that SRAM with 6T configuration is more stable than it with 4T 

configuration.  

In conclusion, we systematically implement a computational statistics approach to ICs’ 

design optimization and sensitivity analysis. Successful application of the method to study analog 

and digital circuits shows its computational efficiency and engineering accuracy, compared with 

large-scale SPICE circuit simulations. This approach is suitable for optimization problems and 

diagnosis of quantify trade-offs in IC industry.  
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Chapter 1

Introduction

Integrated circuits (ICs) market has become so intense that designers have adopted various

optimization strategies in an effort to reduce the development time and to improve circuit

performance. It is increasingly important to design robust circuits that would minimize

fluctuations of the circuit performance. Designers usually do many try-and-error experi-

ments to achieve specifications. One common practice is to guess the improved settings

of the control factors using engineering judgment, and then conducts a paired comparison

with the starting conditions. The guess-and-test cycle is repeated until an improvement

has been obtained, the deadline has been reached, or the budget has been exhausted. This

practice relies heavily on luck. It is inefficient and time-consuming [1].

1



2 Chapter 1 : Introduction

Due to the excessive time and high costs associated with physical experiments, design-

ers have applied Simulation Program with Integrated Circuit Emphasis (SPICE) to simu-

late the circuit performance and predict the circuit characteristics. Different computational

methods together with the circuit simulation tools to achieve optimization and sensitivity

analysis have been of great interests.

In this thesis, a statistical approach is systematically developed for the circuit optimiza-

tion and the sensitivity analysis in the low noise amplifier (LNA) and static random access

memory circuit carried out as examples. Based on the screening design, the central com-

posite design, a SPICE simulator, the response surface model, and the optimization using

desirability function, the circuit performances have been optimized with respect to differ-

ent specified constraints. For example, for the studied LNA circuit, they are (1) shifting the

input return loss (S11) to the specific target; (2) shifting the output return loss (S22) to the

specific target; (3) shifting the reverse isolation (S12) to the specific target; (4) maximizing

the voltage gain (S21); (5) moving the stability factor (K) to the specific target; (6) moving

the noise figure (NF) to the specific target; and (7) moving the third order intercept point

(IIP3) to the specific target. Furthermore, the statistical approach also applies systemat-

ically to 6T and 4T static random access memory (SRAM) cells and we investigate the

sensitivity of the static noise margin (SNM) for 4T and 6T SRAM cells.
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1.1 Motivation

When circuit designers encounter the optimization problem, they often solve it according

to their experiences. However, to extract a proper parameter setting of the VLSI circuit

is a difficult problem and the empirical knowledge is needed [2][3][4][5][6]. If the circuit

designers set the parameters corresponding to the experiences based on empirical formulas,

an optimization procedure is needed to loop for times to get acceptable results.

So far, many researches have pointed out the methodologies for digital circuit optimiza-

tion. Those methodologies are based on conventional optimization techniques which are in

turn based on developed various local solution properties and they are ineffective or lack of

accuracy [7][8][9][10]. These optimization problems often appear with high-dimensional

and nonlinear state, and we provide a systematic method to explore this problem from

computational statistical point of view.
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1.2 Literature Review

Generally speaking, there are four types of optimization approaches: the brute force method,

numerical optimization method, evolutionary algorithm method, and Monte Carlo statisti-

cal method. We discuss each method in brief.

(1) Brute force method

Brute force method is a traditional method for solving problem. This is a method that we

try each possible solution one by one when we can not find the solution directly.

(2) Numerical optimization method

The Gauss-Newton method, for example, is a basic algorithm for solving nonlinear opti-

mization problem, and Levenberg-Marquardt (LM) method is a quasi-Newton method to

accelerate the Gauss-Newton method [16][17][18]. They start with an initial guess, and

follow the direction of the normal of the gradient to find the optimal solution.

(3) Evolutionary algorithm method

Genetic algorithm (GA), for example, is a global search algorithm based on Darwinian

survival of the fittest approach [19]. It has been proved having a capability of domain inde-

pendent [20] and is an effective search method for large space problem [21]. The method

could be adopted in many fields, such as combinatorial and numerical optimizations [22],

supervised and unsupervised learning [23], and molecular computing [24]. In microelec-

tronics, many works had been done on various VLSI circuit designs, such as cell placement
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[25], channel routing [26], and model parameters extraction [27].

In addition, neural network (NN) is an artificial intelligent algorithm that mimics the

behavior of human brain firstly established by McCulloch and Pitts in 1943. This model

was first considered to be binary devices with fixed thresholds which is able to perform

simple logic, such as unit and intersection. Currently NN has been wildly used in digital

signal processing, such as eigen-state problem [29], image process, audio pattern recogni-

tion [30], and feature classification. Due to the strong capability, there are some research

using NN for solving numerical problem like ordinary/partial differential equations [31]

and other numerical methods [32]. Moreover, it is also applied in parameters extraction

[33].

(4) Monte Carlo statistical method

Statistical simulation methods may be contrasted to conventional numerical discretization

methods, which typically are applied to ordinary or partial differential equations that de-

scribe some underlying physical or mathematical system. In many applications of Monte

Carlo, the physical process is simulated directly, and there is no need to even write down

the differential equations that describe the behavior of the system. The only requirement

is that the physical (or mathematical) system be described by probability density functions

[34][35].

Comparison among these methods, the brute force method is more ineffective than
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others, but is a basic and direct method. Traditional numerical method like LM method

that is necessary for a good initial value and easily trapped into local optima. However,

compared with the global optimization technique such as genetic algorithm method, the

LM method finds a solution rapidly.

1.3 Objectives

In this work, we will provide a computational statistical methodology to study the spec-

ification problem of circuits. We take a popular used circuit, such as low noise ampifier

(LNA) circuit as be an example firstly. Here we want to optimize seven circuit perfor-

mances to each specific value: (1) input return loss (S11); (2) output return loss (S22);

(3) reverse isolation (S12); (4) voltage gain (S21); (5) stability factor (K); (6) noise figure

(NF); and (7) the third order intercept point (IIP3). The object of this work is trying to con-

struct the response surface model and to obtain the optimal recipes. In our process of the

methodology, we verify the response surface models which are the relation of circuit pa-

rameters and circuit performance, then the model will reflect realistic circuit performance.

Furthermore, by using desirability function with seven performance constraints supplies us

optimal solutions. Finally, we perform the sensitivity analysis with the constructed model,

they help us understand whether the distribution of the seven circuit performances are in

their specific values that we assigned. Our second application is 6T and 4T SRAM cells.
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We construct the response surface models and investigate the sensitivity of the SNM for 6T

and 4T SRAM cells.

1.4 Outline of the Thesis

This thesis is organized as follows. In Chap. 2, the statistic methodology and the procedure

of methodology in this work will be introduced in detail. The application of the statisti-

cal method to a low noise amplifier will be discussed in Chap. 3. The results of design

of experiment which contain screening design, central composite design, construction of

response surface model, model checking, and accuracy verification are shown in Chap. 4.

The three optimized cases which are satisfied all specifications, minimized noise figure,

and maximized voltage gain are provided in Chap. 5. Finally the outcomes of the LNA

circuit sensitivity analysis have been shown in Chap. 6. The other application of the sta-

tistical method to static random access memory will be discussed in Chap. 7. Finally we

draw conclusions and suggest future work.
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Statistical Methodology

In this chapter, we introduce the content of main methodology developed in this work in

the following sections. A methodology flow is shown in Fig. 2.1, and then two designs

will be discussed. First, screening design, in this step we merely use fewer experiments

for screening the most important factors of the circuit parameters. After determining the

important factors, we will execute the other design, central composite design. Next we

construct the response surface models which are used to find the parameters to optimize

circuit performance. In addition, we will describe some related applications of this work.

8
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Screening design

Central composite
design

Model construction

Model
checking

Circuit
simulation

Output optimal recipes

 Transformation or
adjustment of the
parameter range

No

Optimization and/or
sensitivity analysis

Accuracy
verification

Satisfaction of both?
No

Yes

Achieve the target?

Yes

Figure 2.1: The proposed main computational procedure for IC design
optimization in this work. First we use fewer experiments
to select the important factors by screening design. Then we
execute central composite design and construct model. The
model adequacy checking is necessary to check the model
assumption, and the accuracy verification is to check the
values that we are interested in the accuracy of the model
within our high and low level settings. Finally, we use the
model for optimization or sensitivity analysis. If we don’t
achieve the target we will adjust the parameter range and
repeat the flow chart which restarts at the step of central
composite design
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2.1 Screening Design

Screening design usually leads to an experiment which is designed to investigate these fac-

tors with a view toward eliminating some unimportant ones. In other words, we determine

significant factors by screening design. To determine factor’s significance, two-level frac-

tional factorial design or Plackett-Burman design is ideally suited for screening design [36].

In short, screening designs are economically experimental plans that focus on determining

the relative significance of many main effects with resolution III or IV (but the designs of

this case require more runs than a resolution III design) [36].

Two-level fractional factorial design can reasonably assume that high-order interactions

are negligible. We can run only a fraction of the complete factorial experiment to obtain in-

formation on the main effects and low-order interactions. For example, in one-half fraction

of the 23 design ( 23−1 design ), A and BC are aliases, B and AC are aliases, C and AB are

aliases, where A, B, and C are factors. When designs with resolution III, main effects are

aliases with two-factor interactions and two-factor interactions may be aliased with each

other. Sometimes designs with resolution IV are also used for screening designs. In this

design main effects are aliased with, at worst, three-factor interactions. This is better from

the confounding viewpoint, but the designs require more runs than a resolution III design.

Plackett-Burman design, attributed to Plackett and Burman (1946) [37], is two-level

fractional designs for studying up to k = N − 1 variables in N runs, where N is a multiple
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of 4. In a Plackett-Burman design, main effects are heavily confounded with two-factor in-

teractions in general. For example, N = 12, every main effect is partially aliased with every

two-factor interaction. Each main effect is partially aliased with 45 two-factor interactions.

And the plus and minus signs are:

K = 11, N = 12 + + − + + + −−− + − . (2.1)

When we analyze data from screening designs, the use of an error mean square obtained

by pooling high order interactions is inappropriate occasionally. To overcome this problem

a half-normal probability plot of the estimates of the effects is suggested. The half-normal

plot consists of the point:

(Φ−1(0.5 + 0.5[i − 0.5]/I), |θ̂|(i)|), (2.2)

for i = 1, . . ., I. The Φ is the cumulated density function of the standard normal distribution.

If factors are unimportant, the effects with mean zero and variance σ2 will tend to fall along

a straight line on this plot, whereas important factors will not lie along the straight line [38].

2.2 Central Composite Design

The central-composite design (CCD) is perhaps the most common experimental design

used to generate second-order response models. These designs combine a two-level full

factorial or fractional factorial design of nf runs with 2k axial runs and nc center runs
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to estimate curvature, where k represents the number of control factors [38]. Figure 2.2

illustrates a CCD for two factors. The axial points represent new extreme values for each

factor in the design. There is three varieties of CCD which are CCC, CCI, and CCF.

The central composite circumscribed (CCC) designs are the original form of the central

composite design. The axial points at some distance α from the center is based on the

properties desired for the design and the number of factors in the design. The axial points

establish new extremes for the low and high settings for all factors. Figure 2.3 illustrates

a CCC design. These designs have circular, spherical, or hyperspherical symmetry and

require 5 levels for each factor. Augmenting an existing factorial or resolution V fractional

factorial design with axial points can produce this design [36].

For those situations in which the limits specified for factor settings are truly limits, the

central composite inscribed (CCI) design uses the factor settings as the axial points and

creates a factorial or fractional factorial design within those limits (in other words, a CCI

design is a scaled down CCC design with each factor level of the CCC design divided by α

to generate the CCI design) [36]. This design also requires 5 levels of each factor.

The other special design is called the face centered cube (CCF) design. In this design

the axial points are at the center of each face of the factorial space, so α = ±1. If the

diamond points move to the face in the cube, then the design is CCF. This variety requires
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3 levels of each factor. Augmenting an existing factorial or resolution V design with ap-

propriate axial points can also produce this design.

The diagrams in Fig. 2.3 illustrate the three types of central composite designs for two

factors. Note that the CCC explores the largest process space and the CCI explores the

smallest process space. Both the CCC and CCI are rotatable designs, but the CCF is not.

In the CCC design, the design points describe a circle circumscribed about the factorial

square. For three factors, the CCC design points describe a sphere around the factorial

cube. To maintain rotatability, the value of α depends on the number of experimental runs

in the factorial portion of the central composite design:

α = [nc]
1
4 , (2.3)

where nc is the number of experimental runs in the factorial portion of the central composite

design. However, the factorial portion can also be a fractional factorial design of resolution

V [36, 39].

2.3 Models Construction

It is necessary to develop an approximate model for the true response surface. If n obser-

vations are collected in an experiment, the model for them takes the form [38]:

y = Xβ + ε, (2.4)
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Axial points

Center points
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Figure 2.2: A central composite design of two factors. The design
includes one center point, four cube points, and four axial
points.

CCC CCF CCI

Figure 2.3: Comparison of the three types of central composite designs.

where

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x12 . . . x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

β1

...

βk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

...

εn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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In general, y is an n×1 vector of the observations, X is an n×p matrix of the levels of the

independent variables, β is a p × 1 vector of the regression coefficients, and ε is an n × 1

vector of random errors.

We want to find the least squares estimators, β̂, that minimizes

L =
n∑

i=1

ε2
i = εT ε = (y − Xβ)T (y − Xβ). (2.5)

As the result of our calculation, the least squares estimator of β is

β̂ = (XT X)−1XT y. (2.6)

The fitted regression model is

ŷ = Xβ̂. (2.7)

The difference between the responses yi and the fitted value ŷi is a residual, say ei = y− ŷ,

The vector of residual is denoted by:

e = y − ŷ. (2.8)

To check the normality assumption is by preparing a normal probability plot of the residual

values. If the assumption holds, this plot will resemble a straight line. If the assumption is

violated, a non-linear data transformation (e.g., y′ = log(y)) may be applied and new mod-

els are generated in an attempt to improve model adequacy [38]. A second plot showing

the residual values versus the predicted response values is used to verify if the variance of
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the original observation is constant. A random scattering of the residual values indicates

that no correlation exists between the observed variance and the mean level of the response

[39].

To develop an estimator of this parameter consider the sum of squares of the residuals,

say

SSE =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

e2
i = eT e. (2.9)

Equation (2.9) is called the error or residual of squares, and it has n − p degrees of

freedom associated with it. It can be shown that

E(SSE) = σ2(n − p), (2.10)

so an unbiased estimator of σ2 is given by

σ̂2 =
SSE

n − p
. (2.11)

To determine if there is a linear relationship between the response variable y and a

subset of the regressor variables x1, x2, · · · , xk is the test for significance of regression.

The appropriate hypotheses are [38]:

H0 : β1 = β2 = · · · = βk = 0,

H1 : βj �= 0 for at least one j. (2.12)

If we reject H0, it implies that at least one of the regressor variables x1, x2, · · · , xk con-

tributes significantly to the model. The test procedure involves partitioning the total sum of
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squares due to residual, say

SST = SSR + SSE. (2.13)

A relatively simple procedure is performed to check for model significance in relation

to random error. This test involves calculating the test statistic:

F0 =
MSR

MSE

=
SSR/k

SSE/(n − k − 1)
=

1
k

∑n
j=1(ŷi − y)2

1
n−k−1

∑n
j=1(yi − ŷi)2

, (2.14)

where y is the average of measured response values. yi, ŷi, and n are the ith measured

response, the ith predicted response, and the number of simulated runs, respectively [38].

If this statistic exceeds the corresponding value of the F distribution value (Fα,k,n−k−1), the

response model is considered significant in relation to random error.

A second statistic, the coefficient of multiple determination R2 is defined as:

R2 =
SSR

SST

= 1 − SSE

SST

= 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2

. (2.15)

R2 measures the amount of reduction in variability of the response y achieved, using the

input factors x1, x2, . . . , xk. From Eq. (2.13) we see that R2 varies from zero to one

[38][39]. However, a large value of R2 does not necessarily imply that the regression

model is good one. Adding a variable to the model will always increase R2, regardless of

whether the additional variable is statistically significant or not. About this problem, some

regression model builders prefer to use an adjusted R2 statistic defined as

R2
adj = 1 − SSE/(n − k − 1)

SST /(n − 1)
= 1 − n − 1

n − k − 1
(1 − R2). (2.16)
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In general, the adjusted R2 statistic will not always increase as variables are added to the

model. In fact, if unnecessary terms are added, the value of R2
adj will often decrease.

2.4 Variable Selection

In response surface work it is customary to construct the full model corresponding to the

situation at hand. That is, in steepest ascent we usually build the full first-order model,

and in the analysis of a second-order model we usually construct the full quadratic. An

experimenter may encounter situations where the full model may not be appropriate; that

is, a model based on a subset of the regressors in the full model may be superior. Variable

selection or model-building techniques may be used to identify the best subset of regressors

to include in a regression model [39].

Variable selection is determined by statistical analysis of the generated response surface

models. Input factors showing a significant effect on an individual response can be system-

atically determined using statistical techniques. Variations of these significant input factors

will produce the greatest fluctuations in device performance. This analysis is extremely

useful in understanding what areas of manufacturing require greater control.

(1) Half-normal plot and t test

As screening design, a technique for identifying significant model terms can be based
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on the half-normal plot of model coefficients. This method is originally proposed for ana-

lyzing two-level factorial experiments applicable in cases where no degrees of freedom are

available for estimating the variance of an error term. The effects are plotted on half-normal

probability paper, those standing apart being identified as potentially real effects [40]. Prob-

ability plotting may also be used for experiments having three level. One approach is to

express the effects with linear and quadratic components, and construct the normal proba-

bility plot of those components standardized to have the same variance [41][42].

The half-normal plots are informal graphical methods involving visual judgment. A

formal test of effect significance is called t test for the least squares estimate β̂. It can be

shown that the least squares estimate β̂ has a multivariate normal distribution with mean

vector β and variance-covariance matrix σ2(XT X)−1, i.e.,

β̂ ∼ MN(β, σ2(XT X)−1), (2.17)

where MN stands for multivariate normal. The (i, j)th entry of the variance-covariance

matrix is Cov(β̂i, β̂j) and the jth diagonal element is Cov(β̂j, β̂j) = V ar(β̂j). Therefore,

the distribution for the individual β̂j is N(βj, σ
2
jj(X

T X)−1), which suggests that for testing

the null hypothesis

H0 : βj = 0, (2.18)
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the following t statistic be used:

β̂j√
σ̂2

jj(X
T X)−1

∼ tN−p−1 (under H0). (2.19)

Under H0, it has a t distribution with N − p − 1 degrees of freedom.

(2) Stepwise regression

Alternative of variable selection is called stepwise regression. It is one of various meth-

ods for evaluating only a small number of subset regression models by either adding or

deleting regressors one at a time. Stepwise regression is a popular combination of proce-

dures forward selection and backward elimination [38].

The procedure of the forward selection begins with the assumption that there are no

regressors in the model other than the intercept. An effort is made to find an optimal subset

by inserting regressors into the model one at a time. The first regressor selected for entry

into the equation is the one that has the largest simple correlation with the response variable

y. Suppose that this regressor is x1. This is also the regressor that will produce the largest

value of the F-statistic for testing significance of regression. This regressor is entered if

the F-statistic exceeds a preselected F-value, say FIN (or F-to-enter). The second regressor

chosen for entry is the one that now has the largest correlation with y after adjusting for

the effect of the first regressor entered (x1) on y. We refer ro these correlations as partial

correlations. They are the simple correlations between the residuals from the regression

ŷ = β̂0 + β̂1x1 and the residuals from the regressions of the other candidate regressors on
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x1, say x̂j = α̂0j + α̂1jx1, j = 2, 3, . . . , K.

Suppose that at Step 2 the regressor with the highest partial correlation with y is x2.

This implies that the largest partial F-statistic is

F =
SSR(x2|x1)

MSE(x1, x2)
. (2.20)

If this F-value exceeds FIN , then x2 is added to the model. In general, at each step the

regressor having the highest partial correlation with y (or equivalently the largest partial

F-statistic given the other regressors already in the model) is added to the model if its

partial F-statistic exceeds the preselected entry level FIN [38]. The procedure terminates

either when the partial F-statistic at a particular step does not exceed FIN or when the last

candidate regressor is added to the model.

Forward selection begins with no regressors in the model and attempts to insert vari-

ables until a suitable model is obtained. Backward elimination attempts to find a good

model by working in the opposite direction. That is, we begin with a model that includes

all K candidate regressors. Then the partial F-statistic (or a t-statistic, which is equivalent)

is computed for each regressor as if it is the last variable to enter the model. The smallest

of these partial F-statistics is compared with a preselected value, FOUT (or F-to-move); and

if the smallest partial F-value is less than FOUT , that regressor is removed from the model.

Now a regression model with K − 1 regressors is constructed, the partial F-statistics for
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this new model calculated, and the procedure repeated. The backward elimination algo-

rithm terminates when the smallest partial F-value is not less than the preselected cutoff

value FOUT [38].

Backward elimination is often a very good variable selection procedure. It is particu-

larly favored by analysts who like to see the effect of including all the candidate regressors,

just so that nothing obvious will be missed. The two procedures described above suggest

a number of possible combinations. One of the most popular is the stepwise regression

algorithm and the flowchart is shown in Fig. 2.4 This is a modification of forward selection

in which at each step all regressors entered into the model previously are reassessed via

their partial F- or t-statistics. A regressor added at an earlier step may now be redundant

because of the relationship between it and regressors now in the equation. If the partial

F-statistic for a variable is less than FOUT , that variable is dropped from the model.

Stepwise regression requires two cutoff values, FIN and FOUT . Several analysts prefer

to choose FIN = FOUT , although this is not necessary. Sometimes we choose FIN >

FOUT , making it more difficult to add a regressor than to delete one [38].
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Calculate correlation
matrix

Choose X which is the largest
correlation between X and Y

to build regression model

Discard non-significant X

Choose X which partial F
     ratio is the largest
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  regression
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Get regression
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Explanation of X is
significant?

Does there exist any
other X?

Is every partial F
ratio in the model significant?

Yes

Figure 2.4: A flowchart of the stepwise regression algorithm used in
our work.
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2.5 Model Adequacy Checking

To checking the fitted model is an adequate approximation to the true system or not is al-

ways necessary. Also, we must verify that none of the least squares regression assumptions

are violated. In this section we present several techniques for checking model adequacy

[38].

(1) The normality assumption : The residuals are defined by Eq. (2.8), and they play an

very important role in determining model adequacy. An useful method is to construct a

normal probability plot of the residuals, as in Fig. 2.5. If the residual normal probability

plot is approximately along a straight line, then the normality assumption of residuals is

satisfied. When this plot indicates problems with the normality assumption, we often trans-

form the response variable as a remedial measure [38][43]. Transformations are used for

three purposes: stabilizing response variance, making the distribution of response variable

closer to the normal distribution, and improving the fit of the model to the data.

We introduce transformation of the response variables called Box-Cox Method. The

Box-Cox transformation is a particulary useful family of transformations. It is defined as:

yλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yλ−1

λ
, λ �= 0

ln y, λ = 0

, (2.21)

where y is the response variable and λ is the transformation parameter. When λ is selected

by the Box-Cox method, the experimenter can analyze the data using yλ as the response,
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unless of λ = 0, in which he can use ln y. It is perfectly acceptable to use yλ as the actual

response, although the model parameter estimates will have a scale difference and origin

shift in comparison to the results obtained using yλ (or ln y) [43].

An approximate 100(1−α) percent confidence interval for λ can be found by calculat-

ing:

SS∗ = SSE(λ)(1 +
t2α/2,ν

ν
), (2.22)

where ν is the number of freedom. Plotting a graph of SSE(λ) versus λ, and then by

locating the points on the λ axis where SS∗ cuts the curve SSE(λ), we can read confidence

limits on λ directly from the graph. If this confidence interval includes the value λ = 1,

this implies that the datas do not support the need for transformation.

(2) Plot of residuals versus predicted value : If the model is correct and if the assumptions

are satisfied, the residuals should be unrelated to any other variable including the predicted

response. A simple check is to plot the residuals versus the predicted value ŷ. This plot

should not reveal any obvious pattern, as in Fig. 2.6. A defect that occasionally shows up

on this plot is nonconstant variance. Nonconstant variance also arises in cases where the

data follow a nonnormal, skewed distribution because in skewed distributions the variance

tends to be a function of the mean.
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Considerable research has been devoted to the selection of an appropriate transforma-

tion. If experimenters know the theoretical distribution of the observations, they may uti-

lize this information in choosing a transformation. For example, if the observations follow

the Poisson distribution, the square root transformation y∗
ij =

√
yij or y∗

ij =
√

1 + yij is

appropriate. If the data follow the lognormal distribution, the logarithmic transformation

y∗
ij = log yij is appropriate. When there is no obvious transformation, the experimenter

usually empirically seeks a transformation that equalizes the variance regardless of the

value of the mean. Another approach is to select a transformation that minimizes the inter-

action mean square, resulting in an experiment that is easier to interpret. Transformations

made for inequality of variance also affect the form of the error distribution. In most cases,

the transformation brings the error distribution closer to normal [43].

2.6 Desirability Function

The desirability function is a useful tool to solve multiple responses. It was proposed

by Derringer and Suich (1980) [43]. The desirability function di varies over the range

0 ≤ di ≤ 1, where the di = 0 is representing a completely undesirable of yi and di =

1 is representing a completely desirable or target response value of yi. After multiple

response are transformed into individual desirabilities, the individual desirabilities are then
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combined using geometric mean to maximize the overall desirability D :

D = (d1 × d2 × . . . × dm)1/m, (2.23)

where m is the number of responses [43]. By the equation, if any di is equal to zero, then

the overall desirability is zero.

According to the specification for the responses, response is to be maximized, mini-

mized, or achieved a target value. For the ith response yi is a maximum value,

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ŷi < Li

( ŷi−Li

Ti−Li
)s, Li ≤ ŷi ≤ Ti

1, ŷi > Ti

. (2.24)

For the response yi is a minimum value,

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ŷi < Ti

(Ui−ŷi

Ui−Ti
)s, Ti ≤ ŷi ≤ Ui

0, ŷi > Ui

. (2.25)
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For the response is achieved a target value,

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ŷi < Li

( ŷi−Li

Ti−Li
)s, Li ≤ ŷi ≤ Ti

(Ui−ŷi

Ui−Ti
)t, Ti ≤ ŷi ≤ Ui

0, ŷi > Ui

, (2.26)

where the weight s and t determine how important it is close to the target value. When

the weight s = 1, t = 1 the desirability function is liner. Choosing s > 1, t > 1 means

more important to be close the target value with the function that is concave, and choosing

0 < s < 1, 0 < t < 1 means this less important with the function that is convex. Li, Ui,

and Ti are the lower, upper, and target value, respectively.

The individual desirability functions are structured as shown in Fig. 2.7.
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Figure 2.5: An example of residual normal probability plot. If the
residual is close to the line, it will satisfy normality
assumption. The studentized residuals are the standardized
residuals adjusted for the distance from the average X value.
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Figure 2.7: Individual desirability functions for the simultaneous
optimization (a) objective is to maximize response, (b)
objective is to minimize response, and (c) objective is for
response which is assumed to be as close as possible to the
target. The weights s and t determine how important it is
close to the target value, and L, U, T are the lower, upper,
and target value, respectively.



2.7 : Other Design Methods 31

2.7 Other Design Methods

There are different types of design of experiment that have been widely applied to other

designs such as Taguchi method and mixture design. We briefly describe their validation.

2.7.1 Taguchi Method

Many of the DOE concepts were popularized by Taguchi’s contributions to the method-

ology of off-line quality design. The basis for his approach is to minimizing the loss to

society that occurs when a products performance varies from a customer-specified target

[44][45]. Taguchi’s ideas for parameter and tolerance design have evolved into what indus-

try labels Design of Experiments for robust product design. Taguchi introduced the DOE

techniques to engineering for quality improvement. In the past, enhancements to the DOE

technique have been used on a production line or laboratory to derive empirical models and

optimize a given process. Some of the well-known Taguchi orthogonal arrays were given

earlier when three-level, mixed-level and fractional factorial designs were discussed.

The aim of parameter design is to make a product or process less variable (more robust)

in the face of variation over which we have little or no control. Taguchi advocated using

inner and outer array designs to take into account noise factors (outer) and design factors

(inner). We could have used fractional factorials for either the inner or outer array de-

signs, or for both. The tolerance design of the design process concentrates on the selective
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reduction of tolerances to reduce quality loss at the expense of increasing manufacturing

costs.

2.7.2 Mixture Design

In a mixture experiment, the independent factors are proportions of different components

of a blend. For example, if you want to optimize the tensile strength of stainless steel, the

factors of interest should be the proportions of iron, copper, nickel, and chromium in the

alloy. The fact that the proportions of the different factors must sum to 100 % complicates

the design as well as the analysis of mixture experiments.

In mixture problems, the purpose of an experiment is to model the blending surface

with some form of mathematical equation so that: (1) predictions of the response for any

mixture or combination of the ingredients can be made empirically; (2) and some measure

of the influence on the response of each component singly and in combination with other

components can be obtained [36].

2.7.3 Comparison with the Popular Designs

DOE using Taguchi approach has become a much more attractive tool to practicing engi-

neers and scientists. The objective of Taguchi approach is to obtain reproducible results and
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Table 2.1: Difference between Taguchi approach and classical DOE.

Taguchi approach Classical DOE
Standard approach Methods are not standardized
Smaller number of experiments Larger number of experiments
Standard method of noise factor No standardized method of noise treatment
Seeks to find stable condition Develops models
Used to solve engineering problems Used to solve scientific experiments

robust products. The objective of classical DOE is to gather scientific knowledge about fac-

tor effects and their interactions. Difference between Taguchi approach and classical DOE

is shown in Tab. 2.1 [46]. In this thesis, it is suitable for us to use the classical DOE to

investigate the problem due to our data type.

2.8 Summary

In this chapter, we introduce the statistical methodology which is used in this work. Screen-

ing design is the first step in this work to select the significant factors. After this step, we

have three type central composite design and choose one type among them to construct

the response surface model. The basic of the response surface model and adequacy check-

ing are then introduced. Then we discuss desirability function which is used to solve the

multiple responses and according to this index we can optimize successfully. Finally we

compare the difference between Taguchi approach and classical DOE, and we note that the
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classical DOE is suitable for this work.



Chapter 3

Low Noise Amplifier

In this chapter, we discuss the low noise amplifier (LNA) circuit which will be one of our

testing examples. Due to a large number of circuit simulations, it is necessary to produce

the response data, where Hspice simulator is integrated in our method. This chapter is

organized as follows: Section 3.1 describes characteristics of LNA circuit. Section 3.2

describes what problem we will discuss and Sec. 3.3 presents the usage of the circuit

simulation. Finally, a summary of this chapter is given.

3.1 A LNA Circuit with Deep Submicron MOSFETs

LNA circuit is important to modern communication systems. The main object of LNA is to

ensure the quality of signal in the process of receiving the signal. A LNA design presents

35
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a considerable challenge because of its simultaneous requirement for high gain, low noise

figure, good input and output matching and unconditional stability at the lowest possible

current draw from the amplifier. In this experiment, the working frequency of the tested

LNA circuit is from 2.11 to 2.17 GHz, shown in Fig. 3.1. The cascade low noise amplifier

is constructed two transistor placed cascaded. Lload and Rload are the compact models of

on-chip spiral inductors needed in our LNA circuit. The choke inductor Lchoke working

at high frequency is fixed at 1 uH. Cin is an external signal couple capacitor is also fixed at

20 pF.
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Figure 3.1: The explored LNA circuit in our experiment.

3.1.1 Noise Figure

The parameters we used to diagnose the noise of LNA are noise factor (F ) and noise figure

(NF ). The noise factor of a low-noise amplifier is defined as the signal-to-noise ratio at

the input divided by the signal-to-noise ratio at the output. The equation for noise factor

and noise figure is given by

F =
SNRin

SNRout

=

signalin
Noisein

signalout

Noiseout

=
Noisein + Noiseamp

Noisein

= 1 +
Noiseamp

Noisein

, (3.1)
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NF = 10log(F ), (3.2)

where SNRin is the signal-to-noise ratio at the input and SNRout is the signal-to-noise

ratio at the output. Noisein is the noise from the previous stage, Noiseout is the noise at the

output which is additional noise from amplifier (Noiseamp) added the noise from Noisein.

Besides, in Eq. (3.1), Noiseamp is always not zero, therefore, F > 1 and NF > 0 dB is

consequential. In other words, SNRin must be greater than SNRout.

In a cascade amplifier the final stage has an input signal that consists of the original sig-

nal and noise amplified by each successive stage. Each stage in the cascade chain amplifies

signals and noise from previous stages and contributes some noise of its own. The overall

noise factor for a cascade amplifier is:

F = 1 + (F1 − 1) +
(F2 − 1)

Ap1

+
(F3 − 1)

Ap1Ap2

+ ......

Fn = F1 +
(F2 − 1)

Ap1

+ ..... +
(Fn − 1)∏n−1

i=1 Api

, (3.3)

where F is the overall noise factor in cascade, Fi is the noise factor of the ith stage, Api is

the gain of the ith stage. Fn is the overall noise factor of n stages in cascade. As show in

Eq. (3.3), the noise factor of the entire cascade chain is determined by the the first stage

noise factor because the noise factors of the second and subsequent stages are divided by
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the previous stage gains when referred back to the input. High gain and low noise low-

noise amplifiers typically use a low-noise amplifier circuit for only the first stage or two in

the cascade chain to achieve an overall noise factor.

3.1.2 Stability Factor

Unconditional stability of the circuit is the target of the LNA designer. It is a critical

concern in designing a low noise amplifier. The stability of circuit can be determined by S-

parameter of transistors, and the matching network of every stage. S-parameters provided

by the manufacturer of the transistor will aid in stability analysis of the LNA circuit. Two

main methods exist in S-parameter stability analysis: numerical and graphical. Numerical

analysis consists of calculating a term called Rollett Stability Factor K [11][12][13]. An

intermitted quantity called delta (Δ) should be calculated first to simplify the final equation

for the K-factor.

Δ = S11 ∗ S22 − S21 ∗ S12, (3.4)

then

K =
1 + |Δ|2 − |S11|2 − |S12|2

2 ∗ |S11| ∗ |S12| . (3.5)

When the K factor is greater than unity, the circuit will be unconditionally stable for any

combination of source and load impedance. When K is less than unity, the circuit is poten-

tially unstable and oscillation may occur with a certain combination of source and/or load
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impedance presented to the transistor. The K factor represents a quick check for stability

at given frequency and given bias condition. A sweep of the K-factor over frequency for

a given biasing point should be performed to ensure unconditional stability outside of the

band of operation.

3.2 Linearity

There are two different limitations in determining the dynamic range of the amplifier (Fig.

3.2), one is noise and the other is linearity. Usually, noise figure sets the limitation on min-

imum signal strength, and linearity limits the maximum signal strength. Hence, linearity

is equally as important as noise figure in the design of a low noise amplifier. In the case

of base band amplifiers, total harmonic distortion is usually used to represent their linear-

ity. On the other hand, RF amplifiers often use IIP3, IIP2, or the 1 dB gain compression

point to represent their linearity. The IIP3 of each stage must sufficiently high to reduce

nonlinearity.
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Figure 3.2: An illustration of spurious-free dynamic range with the
noise floor and IIP3.

3.3 Problem Description

In the integrated circuit design, people consider efficiency, reliability and stability. Further-

more, there are also some constrains for the electrical and physical characteristics. In our

work, we are interested in seven physical characteristics with specific performance, and

they are:

(1) S11 < -10dB at working region;

(2) S12 < -25dB at working region;

(3) S21 parameter is as great as possible at working region;

(4) S22 < -10dB at working region;
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(5) K factor > 1 at working region;

(6) NF < 2dB at working region;

(7) IIP3 > -10dB.

The working region is from 2.11 GHz to 2.17 GHz. The goal of our optimization problem

is to adjust some parameters, such as capacitance, inductance and resistance, to achieve the

requirements of each characteristic.

3.4 Circuit Simulators

In this work, the SPICE is considered as a circuit simulation tool. After designing a proper

experiment, we will get the response data from SPICE. To perform circuit simulation, a set

of model parameter and the designed circuit file are requested. The circuit simulator sim-

ulate the circuit and output the required characteristics noted in circuit file. The execution

flow is shown in Fig. 3.3 and the netlist of this LNA circuit is shown in Appendix B.

Although gain, noise figure, stability, linearity and input and output match are all

equally important, they are dependent and do not always work in each other’s favor. Most

of these conditions can be met by carefully selecting a transistor and understanding para-

meter trade-offs. The RF compact spice netlist that we apply is shown in Appendix B and

the equivalent circuit is presented in Fig. 3.4.
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Prepare netlist

Generate parameter
files

Retrieve results

Figure 3.3: A flow of circuit simulation.

3.5 Summary

A LNA circuit composed with 0.25 μm metal-oxide-silicon field effect transistors (MOS-

FETs) is discussed as the applied exapmple. In this chapter the target LNA circuit is intro-

duced and the method that adopts the circuit simulator is described. We will study the re-

lationship between the circuit performance and its circuit parameters. Circuit performance

that we are interested consist of input return loss, output return loss, reverse isolation, volt-

age gain, k factor, noise figure, and input third-order intercept point.
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Figure 3.4: A RF model applied in this work.



Chapter 4

Results of DOE for LNA Circuit

4.1 Results of The Screening Design

First, we denote the Rload and Lload as Load, and they have the same value. The levels of

screening design for each factors are provided in Tab. 4.1. The fractional factorial design

with resolution IV is used.

45
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4.1.1 The Fractional Factorial Design

A 213−8
IV fractional factorial design with resolution IV is used in the screening design, and

the generators used are:

F = A × B × C G = A × B × D

H = A × C × D J = B × C × D

K = A × B × E L = A × C × E

M = A × D × E N = B × C × E,

(4.1)

where A is Cmatch1, B is Cmatch2, C is Cmatch3, D is Ldeg, E is Lmatch1, F is L1, g is

W1, H is VB1, J is VB2, and K is VDD.

Before performing an experiment for the fractional factorial design with resolution IV,

we fix the Load factor because the value of Load is discrete and is difficult for discussion.

We fix the Load factor at 4.5, and the voltage gain very close to our target. Table 4.3

presents the minimum and maximum of seven responses in the different settings of Load

factor. Clearly, we determine the value of Load at 4.5 is helpful for this work. So there

are 13 factors in the screening design. In the screening design, some factors are varied by

±10% about their nominal value; and due to restriction, some factors are varied by more

smaller range, for example, the difference between VB2 and VDD is less than 0.25V. They

are varied by ±4.5%. The levels of the screening design for each factor are shown in Tab.

4.1.
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After the experiment for the fractional factorial design with resolution IV for 13 factors,

7 half-normal plots are drawn to select the significant factors. The half-normal plots of

these 7 responses are shown in Figs. 4.1-4.7, and the result is shown in Tab. 4.2. In the

table the numbers present the order of significant effect, and ”1” means the most important

to the corresponding response. We select the factor which uses the ’union’ concept. And

we only consider the main effects because main effects and three-factor interactions are

aliases, three-factor interactions are neglected. Besides, two-factor interactions are aliased

with each other. Therefore, because the only three main effects are eliminated, we don’t

consider any significant two-factor interactions. Finally, we remove three factors which are

Lbond, L2, and W2.

4.1.2 Summary

In this section, 10 significant factors have successfully been selected from the screening

design. They are Cmatch1, Cmatch2, Cmatch3, Ldeg, Lmatch1, L1, W1, VB1, VB2,

and VDD. We use a 213−8
IV fractional factorial design to calculate 13 factor effects, and use

half-normal plots to select the significant factors. The levels of screening design for 13

factors are shown in Tab. 4.1.
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Table 4.1: The levels of screening design for the 13 factors.

Center value Cube
Factor name 0 ±1
A: Cmatch1 (F) 658 ±10%
B: Cmatch2 (P) 1.7 ±5%
C: Cmatch3 (P) 4.5 ±5%
D: Lbond (N) 1 ±10%
E: Ldeg (N) 1 ±10%
F: Lmatch1 (N) 4.6 ±10%
G: L1 (μm) 0.25 ±0.01
H: L2 (μm) 0.25 ±0.01
J: W1 (μm) 5 ±0.5
K: W2 (μm) 5 ±0.5
L: VB1 (V) 0.75 ±10%
M: VB2 (V) 2.7 ±4.5%
N: VDD (V) 2.7 ±4.5%
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Table 4.2: A list of the results for the screening design, where ”1”
means the most important term with respect to the
corresponding response.

S11 S12 S21 S22 K NF IIP3
A: Cmatch1 3 6 5 2
B: Cmatch2 5 4 1
C: Cmatch3 4 6 2
D: Lbond
E: Ldeg 3 2 4 4
F: Lmatch1 1 1 2 1 5
G: L1 8 3
H: L2
J: W1 2 2 7 4 3
K: W2
L: VB1 3 1 1 2 2
M: VB2 1
N: VDD 5 1
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Table 4.3: The minimum and maximum of seven responses in the six
settings of Load. The Load factor is 4.5 which makes the
voltage gain close to our target.

Load= 1.5 Load= 2.5
response goal minimum maximum minimum maximum

S11 < −10 -20.41 -2.417 -20.39 -2.402
S12 < −25 -67.25 -61.34 -61.05 -54.89
S21 maximized -14.81 -9.19 -8.337 -2.8
S22 < −10 -0.051 -0.027 -0.156 -0.078
K > 1 18.26 29.86 13.06 21.13

NF < 2 1 2.67 0.916 2.437
IIP3 > −10 0.3 10.77 0.515 11.55

Load= 3.5 Load= 4.5
response goal minimum maximum minimum maximum

S11 < −10 -20.41 -2.369 -21.92 -2.514
S12 < −25 -52.87 -46.12 -42.64 -37.83
S21 maximized 0.274 5.906 9.752 14.59
S22 < −10 -0.71 -0.30 -8.79 -3.49
K > 1 8.21 12.92 5.841 8.93

NF < 2 0.83 2.21 0.79 2.09
IIP3 > −10 0.995 10.505 -11.005 3.405

Load= 5.5 Load= 6.5
response goal minimum maximum minimum maximum

S11 < −10 -25.13 -2.811 -22.26 -2.654
S12 < −25 -47.97 -41.14 -51.01 -45.23
S21 maximized 4.054 11.91 0.5667 8.042
S22 < −10 -1.421 -0.6178 -0.464 -0.2629
K > 1 4.729 7.053 4.152 6.135

NF < 2 0.770 2.033 0.761 2.006
IIP3 > −10 -5.46 5.63 -1.155 8.64



4.1 : Results of The Screening Design 51

H
al

f N
or

m
al

 %
 p

ro
ba

bi
lit

y

|Effect|

0.00 2.08 4.15 6.23 8.30

0

20

40

60

70

80
85

90

95

97

99

A

B

C

D

E

F

G

H

J

K

L

M

N

Figure 4.1: A half-normal plot for the effect of S11. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.2: A half-normal plot for the effect of S12. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.



4.1 : Results of The Screening Design 53

H
al

f N
or

m
al

 %
 p

ro
ba

bi
lit

y

|Effect|

0.00 0.35 0.70 1.05 1.40

0

20

40

60

70

80
85

90

95

97

99

A

B

C

D

E

F

G

H

J
K

L

M

N

AD

AF

Figure 4.3: A half-normal plot for the effect of S21. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.4: A half-normal plot for the effect of S22. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.5: A half-normal plot for the effect of K. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.6: A half-normal plot for the effect of NF. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.7: A half-normal plot for the effect of IIP3. The factors are (A)
Cmatch1, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatch1, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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4.2 Results of The Central Composite Design

In this chapter we discuss the results of the central composite design. From the screening

design we have selected 10 factors for our next design, and the face centered cube design

(CCF) is used.

4.2.1 The Face Centered Cube Design

To generate the necessary data for construction of the quadratic response models, 149 ex-

perimental runs are completed by calling HSPISE. We choose the CCF design from the

three type of the CCD that we introduced in Chap. 2, because the CCF design is more

suitable for designing the response surface models [39]. The levels of the first CCF design

for 10 factors are the same with the screening design. From the CCF design, 1 center point,

20 axial points, and 210−3
V cube points which is fractional factorial design with resolution

V are used, and the generators are:

V B1 = Cmatch1 × Cmatch2 × Cmatch3 × W1

V B2 = Cmatch2 × Cmatch3 × Ldeg × Lmatch1

V B1 = Cmatch1 × Cmatch3 × Ldeg × L1.

(4.2)

We run experiments four times. The experiments of the first three times we are devoted

to achieving S22 to the target by the passive devices and keep other responses in the spec-

ification, because the response of S22 is far from the initial value to the target. Therefore
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Table 4.4: A list of the results of the predicted values after optimization
in the first three experiments using CCF design.

Response S11 S12 S21 S22 K NF IIP3
Goals < -10dB < -25dB maximize < -10dB > 1 < 2 > -10
Original -8.756dB -39.2dB 13.38dB -6.137dB 7.199 1.018 -8.17
Experiment 1 -17.39dB -38.57dB 14.02dB -8.281dB 7.377 0.8925 -7.805
Experiment 2 -19.88dB -38.27dB 13.89dB -10.15dB 7.705 0.9365 -6.985
Experiment 3 -18.03dB -38.04dB 13.8dB -12.72dB 7.874 0.9674 -6.58

we have three experiments to make these range of all responses include our targets. Table

4.4 shows the results of the above work in the first three experiments.

Finally we take the values of 10 factors after optimization in the 3th experimental as our

nominal case. The experiment levels of 10 factors are shown in Tab. 4.5. We will discuss

in the next section.
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Table 4.5: Experiment levels for 10 factors after optimization of the 3th
experiment .

Factor name Center value Cube (±1) Axial (±α = ±1)
A: Cmatch1 (F) 764.9 ±10% ±10%
B: Cmatch2 (P) 2.048 ±5% ±5%
C: Cmatch3 (P) 3.28 ±5% ±5%
D: Ldeg (N) 1.22 ±10% ±10%
E: Lmatch1 (N) 5.41 ±10% ±10%
F: L1 (μm) 0.25 ±0.01 ±0.01
G: W1 (μm) 5 ±0.5 ±0.5
H: VB1 (V) 0.75 ±10% ±10%
J: VB2 (V) 2.7 ±4.5% ±4.5%
K: VDD (V) 2.7 ±4.5% ±4.5%
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4.2.2 The Response Surface Model

149 runs are completed to generate the necessary data for construction of the quadratic

response models. Table 4.6 is the information for these 7 response surface models with an

average R2 value of 0.9825. In order to select significant effect we use the stepwise regres-

sion. The values FIN and FOUT are both set 0.1, and when the models are not hierarchical,

we would add several insignificant terms to keep the hierarchy. The hierarchical ordering

principle suggests that when resources are scarce, priority should be given to the estimation

of lower order effects [37]. This is also a proper method to us because we don’t want to

loose any potential significant main effects.

In model adequacy checking, S11 and IIP3 have to be transformed by BOX-COX trans-

formation or experience where Sec. 2.5 have introduced. The information for these 7 re-

sponse surface models with stepwise regression are shown in Tab. 4.7, which are with an

average R2 value of 0.9893. Tables 4.8-4.14 show the significance of effect from large

term to small one and coefficients of the response surface models with coded factors. The

residual normal probability plots and scatter plots of these 7 responses are shown in the

next section which also includes the results of two transformed responses.
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Table 4.6: The information of 7 response surface models for the LNA
circuit using CCF design.

Response R2 Adj. R2 Std. Dev.
S11 0.9168 0.8493 1.38
S12 0.9957 0.9922 0.046
S21 0.9990 0.9982 0.04
S22 0.9905 0.9828 0.17
K 0.9994 0.9990 0.026
NF 0.9932 0.9876 0.017
IIP3 0.9827 0.9687 0.46

Table 4.7: The information of the 5 response surface models and 2
transformed response surface models for the LNA circuit
using CCF design with stepwise regression method.

Response R2 Adj. R2 Std. Dev.
1/S11 0.9608 0.9534 5.075E-5
S12 0.9947 0.9932 0.043
S21 0.9988 0.9984 0.038
S22 0.9889 0.9866 0.15
K 0.9994 0.9992 0.022
NF 0.9921 0.9908 0.015
log(IIP3 + 11.1265) 0.9901 0.9867 0.026
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Table 4.8: The coefficients of 1/S11 with coded factors in a
significance order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
EG -0.030 EF -4.135E-3 FG -1.281E-3
E2 -0.011 DH -2.379E-3 B 1.089E-3
AE -9.849E-3 F 1.905E-3 G2 -6.376E-3
EH 9.541E-3 E 1.740E-3 FH 9.923E-4
G 9.018E-3 AH 1.556E-3 DF 8.496E-4
DE 7.080E-3 AG 1.371E-3 GH 8.013E-4
A -4.150E-3 AD 1.302E-3 DG 7.542E-4

Table 4.9: The coefficients of S12 with coded factors in a significance
order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
G 0.42 EG -0.072 FG -0.028
K -0.14 DE 0.061 BC -0.026
GH 0.14 DH 0.059 AH 0.023
D 0.11 DG 0.057 H2 0.058
H -0.10 J -0.052 E2 -0.14
F -0.094 HK -0.046 AG 0.018
E -0.093 HJ 0.036 AD 0.016
C -0.091 JK -0.032 GJ 0.013
EH 0.079 EF -0.031 BE 0.011
AE -0.078 B -0.031 EJ 8.728E-3
A -0.074 FH -0.028 DJ 6.653E-3
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Table 4.10: The coefficients of S21 with coded factors in a significance
order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
H 0.82 C -0.040 AB 0.014
D -0.44 EF -0.037 EJ 0.014
F -0.22 G -0.029 DF 0.013
H2 -0.48 H2 -0.24 DG 0.012
AE -0.10 AH 0.025 JK 0.011
EH 0.090 HJ -0.024 DJ -0.011
EG -0.083 GH -0.022 FG -0.011
B 0.073 BE 0.020 CH -8.549E-3
DE 0.061 AD 0.019 HK 7.059E-3
A -0.054 J 0.018 BH -6.604E-3
K 0.050 BC -0.017 E 6.027E-3
FH 0.046 E2 -0.14 BG 5.738E-3
DH -0.042 AG 0.016 BK 5.573E-3

Table 4.11: The coefficients of S22 with coded factors in a significance
order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
C 0.97 K -0.15 DE -0.049
BC 0.74 BJ 0.15 DJ -0.039
B2 0.96 AB -0.12 GH 0.031
BK -0.25 BG 0.12 BH 0.031
H 0.23 BD -0.097 BF -0.026
B -0.21 J 0.082 BE -0.026
E 0.16 AG -0.078 A 0.022
G 0.16 AH -0.060
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Table 4.12: The coefficients of K with coded factors in a significance
order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
H -0.68 FH -0.023 EF 6.271E-3
F 0.31 HJ -0.023 DE -6.162E-3
D 0.30 DF 0.021 AH -5.526E-3
G -0.23 JK 0.020 D2 -0.030
K 0.098 EH -0.019 DK 4.518E-3
DH -0.088 J 0.016 FJ 4.305E-3
E 0.075 AE 0.015 AG -4.142E-3
GH -0.055 A 0.014 FG -3.836E-3
DG -0.047 H2 0.033
HK 0.030 GJ -8.556E-3

Table 4.13: The coefficients of NF with coded factors in a significance
order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
H -0.13 AE 0.024 AH -7.248E-3
E 0.049 A 0.019 DE -5.120E-3
F 0.042 EH -0.014 H2 0.041
C2 0.096 EF 0.012 E2 0.028
G 0.034 J -0.012 HJ 2.935E-3
EG 0.033 FH -0.011 EJ -2.183E-3
D 0.028 FG 7.339E-3
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Table 4.14: The coefficients of IIP3 with coded factors in a significance
order of the stepwise regression.

Factor Coefficient Factor Coefficient Factor Coefficient
K 0.15 BK -0.012 CH 6.803E-3
J -0.14 AE 0.011 EJ 6.624E-3
H -0.082 BJ 0.011 CK -6.674E-3
D 0.061 EK -0.010 BD -5.666E-3
JK 0.035 DE -0.010 AJ 5.255E-3
E 0.025 H2 0.029 AK -5.171E-3
F 0.025 BC 9.066E-3 GH 4.779E-3
A 0.019 HK 8.074E-3 GK -4.788E-3
G 0.014 DJ 8.034E-3 FJ 4.283E-3
BH 0.014 DK -7.981E-3 FK -4.204E-3
EG 0.013 HJ -7.126E-3 AD -4.084E-3
DH 0.013 CJ 6.856E-3
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4.2.3 Summary

In this section, we provide the information of the 7 responses for the LNA circuit using the

CCF design. Transformation of S11 and IIP3 by BOX-COX transformation or experience

improves the model adequacy. We also provide the results of variable selection using the

stepwise regression. Both the values FIN and FOUT are set to be 0.1, and we follow the

hierarchical ordering principle. The R2, standard deviation, and coefficients of each re-

sponse surface models are also obtained. The results of CCF design are deemed adequacy

for continuously using in the circuit performance optimization algorithm and the sensitivity

analysis.

4.3 Model Adequacy Checking

The residual normal probability plots, scatter plots of these 7 responses, and two trans-

formed responses are shown in Figs. 4.8-4.16 where scatter plots of S11 and IIP3 reveal

obvious pattern. After transformation of S11 and IIP3, the results confirm that the model

assumption is satisfied.
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Figure 4.8: Residual normal probability plots for (a) S11 and (b) 1/S11.
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Figure 4.9: Residual scatter plots for (a) S11 and (b) 1/S11.
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Figure 4.10: A model adequacy checking for S12 (a) residual normal
probability plot and (b) the residual normal probability
plot.
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Figure 4.11: A model adequacy checking for S21 (a) residual normal
probability plot and (b) the residual normal probability
plot.
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Figure 4.12: A model adequacy checking for S22 (a) residual normal
probability plot and (b) the residual normal probability
plot.
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Figure 4.13: A model adequacy checking for K (a) residual normal
probability plot and (b) the residual normal probability
plot.
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Figure 4.14: A model adequacy checking for NF (a) residual normal
probability plot and (b) the residual normal probability
plot.
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Figure 4.15: Residual normal probability plots for (a) IIP3 and (b)
log(IIP3 + 11.1265).
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Figure 4.16: Residual scatter plots for (a) IIP3 and (b)
log(IIP3 + 11.1265).
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4.3.1 Summary

The residual normal probability plots, scatter plots of these 7 responses and two trans-

formed responses are discussed and shown in Figs. 4.8-4.16. And the two responses trans-

formation improve the capability of explanation of the models.

4.4 Accuracy Verification

We have provided the 7 surface response models with stepwise regression in the previous

section and the results of R2 show that the models are well constructed according to the

experimental design points of view. But the factor settings of optimization may not lie at

the high (+1), low (−1), or zero factor level setting. We are interested in the accuracy of

the 7 models within our high and low level settings, and we generate 100 random numbers

for each factor with uniform(-1, 1) distribution. 100 random numbers are enough for the

accuracy verification.

4.4.1 Accuracy Verification Results

The results calculated from the response surface models and circuit simulator are shown

in Tab. 4.15 and Tab. 4.16. And the scatter plots of values calculated from the response
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Table 4.15: Accuracy verification of the results calculated from the
constructed response surface model.

Values calculated
from response
surface models S11 S12 S21 S22 K NF IIP3
Mean -15.12 -38.04 13.65 -12.33 7.84 0.9995 -6.26
Std. Dev. 2.40 0.31 0.55 0.79 0.48 0.090 1.48

surface models versus values that obtained from circuit simulator are shown in Figs. 4.17-

4.23. The results show that there is a high linearity between actual and predicted values.

4.4.2 Summary

In this section, we generate 100 random numbers for each factor with uniform(-1, 1) distri-

bution to verify the accuracy of the 7 response surface models within our high and low level

settings. The results are quite high linearity, and predicted values represent actual values

enough.
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Table 4.16: Accuracy verification of the results obtained from circuit
simulator.

Values calculated
from circuit
simulator S11 S12 S21 S22 K NF IIP3
Mean -14.92 -38.05 13.66 -12.31 7.85 0.9952 -6.20
Std. Dev. 3.30 0.32 0.54 1.017 0.49 0.088 1.63

Figure 4.17: A scatter plot calculated from the response surface model
versus values obtained from circuit simulator for S11.
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Figure 4.18: A scatter plot calculated from the response surface model
versus values obtained from circuit simulator for S12.

Figure 4.19: A scatter plot calculated from the response surface model
versus values obtained from circuit simulator for S21.
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Figure 4.20: A scatter plot calculated from the response surface model
versus values obtained from circuit simulator for S22.

Figure 4.21: A scatter plot calculated from the response surface model
versus values obtained from circuit simulator for K.
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Figure 4.22: A scatter plot calculated from the response surface model
versus values obtained from circuit simulator for NF.
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Figure 4.23: The scatter plots of values calculated from response
surface models versus values obtained from circuit
simulator for IIP3.



Chapter 5

LNA Circuit Design Optimization

To achieve optimization of the LNA circuit performance automatically, we use Design

Expert� to proceed this work, where a numerical method is applied. 2nd order response

surface model with the stepwise regression method is applied. Table 5.1 presents the con-

straints of the circuit parameters, and Tab. 5.2 displays the response targets for the opti-

mization.

84



85

Table 5.1: The constraints of LNA circuit parameters.

Parameter Lower limit Upper limit
A: Cmatch1 (F) 688.4 841.4
B: Cmatch2 (P) 1.946 2.150
C: Cmatch3 (P) 3.12 3.44
D: Ldeg (N) 1.10 1.35
E: Lmatch1 (N) 4.87 5.95
F: L1 (μm) 0.24 0.26
G: W1 (μm) 4.5 5.5
H: VB1 (V) 0.675 0.825
J: VB2 (V) 2.5785 2.8215
K: VDD (V) 2.5785 2.8215

Table 5.2: The targets of responses.

Response Goal Lower limit Upper limit
S11 < −10dB -21.32 -6.63
S12 < −25dB -39.28 -36.85
S21 maximize 11.39 15.12
S22 < −10dB -15.25 -9.44
K > 1 6.26 9.85
NF < 2 0.82 1.481
IIP3 > −10 -10.12 0.94
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5.1 Optimization Results Using the Stepwise Regression

Models

There are three optimized cases which satisfy all specifications, minimize the noise fig-

ure, and maximize the voltage gain. In the the process of the optimization we modify the

specifications by 2σ̂ to ensure the recipes are 95 % credible. Firstly, according to the ob-

jective function which is presented in Eqs. 2.23, 2.24, 2.25, and 2.26, the seven responses

are transformed into their individual desirabilities. These individual desirabilities are then

combined using geometric mean to get the desirability function D. Therefore we maximize

the desirability function to get optimal recipes. The constraint of the three optimized cases

are shown in Tabs. 5.3-5.5. In the case of satisfied all specifications, the upper and lower

weight are equal to 1. In the case of minimized noise figure, the upper weight is equal to 10,

that means more important to minimize noise figure. In the case of maximized voltage gain,

the lower weight is equal to 10, that means more important to maximize voltage gain. The

upper or lower limit are also considering their specifications and modify the specifications

by 2σ̂ when the target is out of the specifications.

Tables 5.6-5.8 show the original case and the three optimal recipes for these three cases.

Design Expert� uses direct search methods to maximize the desirability function D. Ta-

bles 5.9-5.11 provide the predicted responses for the three cases which are estimated by
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Table 5.3: The constraint for the case of satisfied all specifications. We
modify the specifications within 2σ̂.

Lower Upper Lower Upper
Response Goal limit Limit weight weight
S11 (dB) minimize -21.32 -10 1 1
S12 (dB) minimize -39.28 -39.2 1 1
S21 (dB) maximize 13.456 15.12 1 1
S22 (dB) minimize -15.25 -10.3 1 1

K maximize 7.199 9.846 1 1
NF (dB) minimize 0.816 1.018 1 1
IIP3 (dB) maximize -8.17 0.94 1 1

the response surface models with the stepwise regression method, and the completed con-

tour plots are provided in Appendix A for one case. Tables 5.12-5.14 provide the actual

responses for the three cases which are obtained by running circuit simulator. We can ob-

serve that the predicted optimal recipes are accurate. Next we discuss three cases in detail,

and the results of three optimized cases are better than that of the original cases.
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Table 5.4: The constraint for the case of minimized noise figure. We
modify the specifications within 2σ̂.

Lower Upper Lower Upper
Response Goal limit Limit weight weight
S11 (dB) minimize -21.32 -10 1 1
S12 (dB) minimize -39.28 -36.85 1 1
S21 (dB) maximize 11.39 15.12 1 1
S22 (dB) minimize -15.25 -10.3 1 1

K maximize 6.262 9.846 1 1
NF (dB) minimize 0.816 1.482 1 10
IIP3 (dB) maximize -9.948 0.94 1 1

Table 5.5: The constraint for the case of maximized voltage gain. We
modify the specifications within 2σ̂.

Lower Upper Lower Upper
Response Goal limit Limit weight weight
S11 (dB) minimize -21.32 -10 1 1
S12 (dB) minimize -39.28 -36.85 1 1
S21 (dB) maximize 11.39 15.12 10 1
S22 (dB) minimize -15.25 -10.3 1 1

K maximize 6.262 9.846 1 1
NF (dB) minimize 0.816 1.482 1 1
IIP3 (dB) maximize -9.948 0.94 1 1
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Table 5.6: Optimal recipes for the case of satisfied all specifications
calculated by the 2nd order response surface model. ”1”
means the highest priority.

Nominal
Recipe case 1 2 3
Cmatch1 (F) 764.9 836.6 841.4 841.4
Cmatch2 (P) 2.048 2.045 2.124 2.074
Cmatch3 (P) 3.28 3.35 3.41 3.39
Ldeg (N) 1.22 1.10 1.11 1.10
Lmatch1 (N) 5.41 5.88 5.87 5.88
L1 (μm) 0.25 0.26 0.26 0.26
W1 (μm) 5 4.50 4.50 4.50
VB1 (V) 0.7 0.799 0.803 0.797
VB2 (V) 2.7 2.7427 2.7178 2.6405
VDD (V) 2.7 2.8214 2.7936 2.8215
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Table 5.7: Optimal recipes for the case of minimized noise figure
calculated by the 2nd order response surface model. ”1”
means the highest priority.

Nominal
Recipe case 1 2 3
Cmatch1 (F) 764.9 688.5 688.4 688.4
Cmatch2 (P) 2.048 2.096 2.111 2.097
Cmatch3 (P) 3.28 3.22 3.20 3.22
Ldeg (N) 1.22 1.10 1.21 1.10
Lmatch1 (N) 5.41 5.74 5.80 5.67
L1 (μm) 0.25 0.24 0.24 0.24
W1 (μm) 5 4.50 4.50 4.50
VB1 (V) 0.7 0.808 0.823 0.793
VB2 (V) 2.7 2.5785 2.6523 2.6090
VDD (V) 2.7 2.8215 2.8215 2.8207
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Table 5.8: Optimal recipes for the case of maximized voltage gain
calculated by the 2nd order response surface model. ”1”
means the highest priority.

Nominal
Recipe case 1 2 3
Cmatch1 (F) 764.9 688.4 688.4 688.7
Cmatch2 (P) 2.048 2.131 2.140 2.142
Cmatch3 (P) 3.28 3.15 3.19 3.13
Ldeg (N) 1.22 1.11 1.10 1.10
Lmatch1 (N) 5.41 5.90 5.81 5.86
L1 (μm) 0.25 0.25 0.25 0.25
W1 (μm) 5 4.50 4.50 4.50
VB1 (V) 0.7 0.825 0.828 0.825
VB2 (V) 2.7 2.6530 2.5797 2.7191
VDD (V) 2.7 2.8206 2.7875 2.8214
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Table 5.9: Optimal results for the case of satisfied all specifications
calculated by the 2nd order response surface model. ”1”
means the highest priority.

Values calculated from
response surface models Goal 1 2 3

S11 (dB) < -10 -10.697 -10.846 -10.552
S12 (dB) < -25 -39.266 -39.271 -39.227
S21 (dB) maximized 14.351 14.314 14.325
S22 (dB) < -10 -12.173 -11.242 -12.035

K > 1 7.895 7.870 7.812
NF (dB) < 2 0.946 0.962 0.961
IIP3 (dB) > -10 -5.831 -5.801 -4.732

Desirability 0.404 0.382 0.356

Table 5.10: Optimal results for the case of minimized noise figure
calculated by the 2nd order response surface model. ”1”
means the highest priority.

Values calculated from
response surface models Goal 1 2 3

S11 (dB) < -10 -16.578 -16.755 -16.319
S12 (dB) < -25 -38.582 -38.478 -38.535
S21 (dB) maximized 15.125 14.903 15.083
S22 (dB) < -10 -13.408 -13.356 -13.453

K > 1 7.272 7.370 7.256
NF (dB) < 2 0.816 0.816 0.814
IIP3 (dB) > -10 -5.031 -5.544 -5.404

Desirability 0.702 0.695 0.693
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Table 5.11: Optimal results for the case of maximized voltage gain
calculated by the 2nd order response surface model. ”1”
means the highest priority.

Values calculated from
response surface models Goal 1 2 3

S11 (dB) < -10 -16.240 -16.915 -16.671
S12 (dB) < -25 -38.654 -38.609 -38.687
S21 (dB) maximized 15.12 15.12 15.12
S22 (dB) < -10 -13.714 -13.333 -13.643

K > 1 7.352 7.331 7.387
NF (dB) < 2 0.839 0.833 0.842
IIP3 (dB) > -10 -5.980 -5.530 -6.663

Desirability 0.706 0.702 0.702

Table 5.12: Optimal results for the case of satisfied all specifications by
running circuit simulator. ”1” means the highest priority.

Values obtained from
circuit simulator Goal Originl 1 2 3

S11 (dB) < -10 -8.756 -10.37 -10.54 -10.22
S12 (dB) < -25 -39.2 -39.3 -39.32 -39.29
S21 (dB) maximized 13.38 14.31 14.32 14.27
S22 (dB) < -10 -6.137 -12.29 -11.07 -11.92

K > 1 7.199 7.948 7.921 7.932
NF (dB) < 2 1.018 0.980 0.980 0.993
IIP3 (dB) > -10 -8.17 -5.73 -5.58 -4.21



94 Chapter 5 : LNA Circuit Design Optimization

Table 5.13: Optimal results for the case of minimized noise figure by
running circuit simulator. ”1” means the highest priority.

Values obtained from
circuit simulator Goal Originl 1 2 3

S11 (dB) < -10 -8.756 -18.13 -17.14 -17.57
S12 (dB) < -25 -39.2 -38.49 -38.40 -38.50
S21 (dB) maximized 13.38 15.17 14.85 15.07
S22 (dB) < -10 -6.137 -13.39 -13.32 -13.41

K > 1 7.199 7.157 7.341 7.254
NF (dB) < 2 1.018 0.808 0.817 0.812
IIP3 (dB) > -10 -8.17 -5.52 -5.67 -5.77

Table 5.14: Optimal results for the case of maximized voltage gain by
running circuit simulator. ”1” means the highest priority.

Values obtained from
circuit simulator Goal Originl 1 2 3

S11 (dB) < -10 -8.756 -17.34 -18.33 -17.95
S12 (dB) < -25 -39.2 -38.66 -38.59 -38.68
S21 (dB) maximized 13.38 15.09 15.11 15.14
S22 (dB) < -10 -6.137 -13.60 -13.07 -13.53

K > 1 7.199 7.413 7.325 7.389
NF (dB) < 2 1.018 0.840 0.834 0.831
IIP3 (dB) > -10 -8.17 -5.915 -5.55 -6.78
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5.2 Comparison of Three Optimized Cases

The section we compare with three optimized cases which satisfy all specifications, min-

imize the noise figure, and maximize the voltage gain. Using the desirability function D

we achieve the goals easily and we select the largest D as the example of the three cases.

In the case of minimize the noise figure, the upper weight is equal to 10, that means we

pay more attention to minimize the noise figure. In the case of maximize the voltage gain,

the lower weight is equal to 10, that means we pay more attention to maximize the voltage

gain.

Figure 5.1 shows comparison of the original case and three optimized cases for the

result of S11 response. The result is acceptable if S11 parameter is smaller than -10 dB

within the working region (2.11 GHz ∼ 2.17 GHz). Figure 5.1 describes that the results of

three optimized cases have achieved to this goal.

Figure 5.2 shows comparison of the original case and three optimized cases for the

result of S12 response. The result is acceptable if S12 response is smaller than -25 dB

within the working region. Figure 5.2 shows that the original case and the results of three

optimized cases have achieved to this goal. Compared with the original case, the optimized

result are slightly risen. This phenomenon is due to a compromise among response so that

other responses can achieve their goal.

Figure 5.3 shows comparison of the original case and three optimized cases for the
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result of S21 response. Although S21 response doesn’t have critical criteria, to get the

value as great as possible is good for LNA circuit design. Figure 5.3 describes that the

results of three optimized cases that are made some improvement from the original case.

Figure 5.4 shows comparison of the original case and three optimized cases for the

result of S22 response. As the same as parameter S22, the result is acceptable if S22

response is smaller than -10 dB within working region. Figure 5.4 shows that the results of

three optimized cases have achieved to this goal.

Figure 5.5 shows comparison of the original case and three optimized cases for the

result of K response. The criteria of K factor is that it should be greater than 1 in working

region. As shown in Fig. 5.5, the original case has achieved this criteria, and the results of

three optimized cases are made improvement from the original data.

Figure 5.6 shows comparison of the original case and three optimized cases for the

result of NF response. The criteria of noise figure is that it should be smaller than 2 in

working region. Figure 5.6 describes that original case and the results of three optimized

cases have achieved to this goal and the results are improved from the original case.

Figure 5.7 shows comparison of original case and three optimized cases for the result

of input intercept point 3rd. The criteria of IIP3 is that drop from peak to bottom should be

greater than -20 dB and as small as possible. As shown in Fig. 5.7, the original case has

achieved this criteria, and the optimized result does do an improvement from the original
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Figure 5.1: Comparison of original case and three optimized cases for
the result of S11 response. A zoom-in plot for the operation
frequency.

case.
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Figure 5.2: Comparison of original case and three optimized cases for
the result of S12 response. A zoom-in plot for the operation
frequency.
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Figure 5.3: Comparison of original case and three optimized cases for
the result of S21 response. A zoom-in plot for the operation
frequency.
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Figure 5.4: Comparison of original case and three optimized cases for
the result of S22 response. A zoom-in plot for the operation
frequency.



5.2 : Comparison of Three Optimized Cases 101

Figure 5.5: Comparison of original case and three optimized cases for
the result of K response. A zoom-in plot for the operation
frequency.
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Figure 5.6: Comparison of original case and three optimized cases for
the result of NF response. A zoom-in plot for the operation
frequency.
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Figure 5.7: Comparison of original case and three optimized cases for
the result of IIP3 response. A zoom-in plot for the operation
frequency. Plots (a)is the original case, (b) is a
maximization of the voltage gain, (c) is a minimization of
the noise figure, and (d) satisfied all specifications.
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5.3 Summary

In this chapter, we provide the constraints of the circuit parameters and the targets of the

responses for the optimization. The seven responses are transformed into desirability func-

tion D, and we maximize the desirability function to get optimal recipes. Three cases of

optimal recipes are obtained and the results all satisfy specifications . In Appendix A we

give the completed contour plots. Finally we take the three cases of optimal recipes to run

circuit simulator and compare with the original case.




