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Computational Statistics Approach to Integrated Circuit Design
Optimization and Sensitivity Analysis

Student : Wan-Wen Lo Advisor : Dr. Hui-Nien Hung
Dr. Yiming Li

Institute of Statistics
National Chiao Tung University

Abstract

It is known that integrated circuits (ICs) design nowadays plays a crucial role for
microelectronics industry; in particular, for highly competitive consumer products. To meet
specified electrical characteristics and performance of designed product, designer in general has
to tune parameters of the passive and:active devices ranging from resistors, capacitors, inductors,
line width, line length, to transistor size, etc. Diverse approaches have been proposed to reduce
products’ designing cycles and accelerate time to ‘market. These methods include (1) directly
empirical procedure, (2) numerical: optimization-technique, (3) evolutionary algorithm, and (4)
Monte Carlo statistical method, and have'demonstrated their merit and validity. We believe that a
systematical integration of circuit simulation tool, design of experiment, and response surface
model may provide an alternative way to advanced IC design optimization and sensitivity
analysis of performance.

In this thesis, by verifying two different analog and digital circuits, a low noise amplifier and
static random access memory, we develop a computational statistics approach, which is mainly
based upon SPICE circuit simulator, a screen design, a central composite design (CCD), and a 2™
order response surface model (RSM). We firstly state the computational algorithm by taking a
low noise amplifier circuit with 0.25 um MOSFETs as an example. The circuit specification
consists of (1) the input return loss < -10 dB, (2) the output return loss < -10 dB, (3) reverse
isolation < -25 dB, (4) voltage gain which is as great as possible, (5) stability factor > 1, (6) noise
figure < 2 dB, and (7) the third-order-intercept point > -10 dB. To achieve the aforementioned
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seven circuit specifications, calling circuit simulator to obtain circuit performances is performed
and then ten significant results among thirteen parameters are selected from the screening design.
By simultaneously running SPICE circuit simulator, a ten-parameter face centered cube design is
then performed in the step of central composite design. We use the 149 simulation results in
constructing the corresponding 2" order response surface model (it is a 10-variable 2™ order
polynomial) by using statistical software, Design Expert®. We note that, for validating the
constructed model, the model adequacy checking and the accuracy verification are necessary. If
the model adequacy checking fails, we transform the circuit performance by BOX-COX
transformation. Furthermore, adjustment of parameters’ range corresponding to the circuit
specification will be enabled for accuracy verification. With the 2" order RSM, design
optimization and sensitivity analysis of performance will be explored. For the design
optimization, if one of the circuit performances does not meet its specification, we adjust the
parameter range corresponding to the circuit specification, and return to the step of CCD. If the
optimized results are eventually satisfied the aforementioned seven specifications, the first three
optimal recipes will be provided. Performance:sensitivity with respect to certain optimized
parameter (or all parameters) is investigated by using; RSM to an optimized recipe with 100
randomly generated normal samples. The optimized recipe is right the mean of the normal
distribution; and one per centum of the optimized recipe is assumed to be the standard deviation.
Our result shows that the optimized ‘recipe is stable to the circuit performance. Similar
methodology is further applied to explore the variation of static noise margin (SNM) of six- and
four-transistors (6T and 4T) static random access memory (SRAM) cells with respect to channel
length and supply voltage. For SRAM with 65 nm CMOS devices, our result shows that 98 %
(theoretically it should be 100 %) variation of SNM is within 3-sigma for the 6T SRAM with
3-sigma variation of parameters. It is better than that of the result of 4T SRAM (95.8 %). Thus, it
quantitatively confirms that SRAM with 6T configuration is more stable than it with 4T
configuration.

In conclusion, we systematically implement a computational statistics approach to ICs’
design optimization and sensitivity analysis. Successful application of the method to study analog
and digital circuits shows its computational efficiency and engineering accuracy, compared with
large-scale SPICE circuit simulations. This approach is suitable for optimization problems and
diagnosis of quantify trade-offs in IC industry.
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Chapter 1

| ntroduction

Integrated circuits (1Cs) market-has become so intense that designers have adopted various
optimization strategies in an effort to reduce the development time and to improve circuit
performance. It is increasingly important to design robust circuits that would minimize
fluctuations of the circuit performance. Designers usually do many try-and-error experi-
ments to achieve specifications. One common practice is to guess the improved settings
of the control factors using engineering judgment, and then conducts a paired comparison
with the starting conditions. The guess-and-test cycle is repeated until an improvement
has been obtained, the deadline has been reached, or the budget has been exhausted. This

practice relies heavily on luck. It isinefficient and time-consuming [1].



2 Chapter 1 : Introduction

Due to the excessive time and high costs associated with physical experiments, design-
ers have applied Simulation Program with Integrated Circuit Emphasis (SPICE) to simu-
late the circuit performance and predict the circuit characteristics. Different computational
methods together with the circuit simulation tools to achieve optimization and sensitivity
analysis have been of great interests.

Inthisthesis, a statistical approach is systematically developed for the circuit optimiza-
tion and the sensitivity analysisin the low noise amplifier (LNA) and static random access
memory circuit carried out as examples. Based on the screening design, the central com-
posite design, a SPICE simulator, the response surface model, and the optimization using
desirability function, the circuit performances have been optimized with respect to differ-
ent specified constraints. For example, for the studied LNA Circuit, they are (1) shifting the
input return loss (S11) to the specific target; (2) shifting the output return loss (S22) to the
specific target; (3) shifting the reverse isolation (S12) to the specific target; (4) maximizing
the voltage gain (S21); (5) moving the stability factor (K) to the specific target; (6) moving
the noise figure (NF) to the specific target; and (7) moving the third order intercept point
(I1P3) to the specific target. Furthermore, the statistical approach also applies systemat-
icaly to 6T and 4T static random access memory (SRAM) cells and we investigate the

sensitivity of the static noise margin (SNM) for 4T and 6T SRAM cells.
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1.1 Motivation

When circuit designers encounter the optimization problem, they often solve it according
to their experiences. However, to extract a proper parameter setting of the VLSI circuit
isadifficult problem and the empirical knowledge is needed [2][3][4][5][6]. If the circuit
designers set the parameters corresponding to the experiences based on empirical formulas,
an optimization procedure is needed to loop for times to get acceptable results.

So far, many researches have pointed out the methodol ogiesfor digital circuit optimiza-
tion. Those methodologies are based on conventional optimization techniques which arein
turn based on developed various local solution properties and they are ineffective or lack of
accuracy [7][8][9][10]. These optimization problems often appear with high-dimensional
and nonlinear state, and we provide a systematic method to explore this problem from

computational statistical point of view:
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1.2 Literature Review

Generally speaking, there are four types of optimization approaches. the brute force method,
numerical optimization method, evolutionary agorithm method, and Monte Carlo statisti-
cal method. We discuss each method in brief.

(2) Bruteforce method

Brute force method is a traditional method for solving problem. This is a method that we
try each possible solution one by one when we can not find the solution directly.

(2) Numerical optimization method

The Gauss-Newton method, for example, is a basi¢.agorithm for solving nonlinear opti-
mization problem, and Levenberg-Marquardt (I:M) method-is a quasi-Newton method to
accelerate the Gauss-Newton method [16][17][18]. They start with an initial guess, and
follow the direction of the normal of the gradient to find the optimal solution.

(3) Evolutionary algorithm method

Genetic algorithm (GA), for example, is a global search algorithm based on Darwinian
survival of thefittest approach [19]. It has been proved having a capability of domain inde-
pendent [20] and is an effective search method for large space problem [21]. The method
could be adopted in many fields, such as combinatorial and numerical optimizations [22],
supervised and unsupervised learning [23], and molecular computing [24]. In microelec-

tronics, many works had been done on various VL SI circuit designs, such as cell placement
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[25], channel routing [26], and model parameters extraction [27].

In addition, neural network (NN) is an artificial intelligent algorithm that mimics the
behavior of human brain firstly established by McCulloch and Pitts in 1943. This model
was first considered to be binary devices with fixed thresholds which is able to perform
simple logic, such as unit and intersection. Currently NN has been wildly used in digital
signal processing, such as eigen-state problem [29], image process, audio pattern recogni-
tion [30], and feature classification. Due to the strong capability, there are some research
using NN for solving numerical problem like ordinary/partia differential equations [31]
and other numerical methods [32]. Moreover, it is also applied in parameters extraction
[33].

(4) Monte Carlo statistical methed

Statistical simulation methods may be contrasted to conventional numerical discretization
methods, which typically are appliedto ordinary or partial differential equations that de-
scribe some underlying physical or mathematical system. In many applications of Monte
Carlo, the physical processis simulated directly, and there is no need to even write down
the differential equations that describe the behavior of the system. The only requirement
isthat the physical (or mathematical) system be described by probability density functions

[34][35].

Comparison among these methods, the brute force method is more ineffective than
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others, but is a basic and direct method. Traditional numerical method like LM method
that is necessary for a good initial value and easily trapped into local optima. However,
compared with the global optimization technique such as genetic algorithm method, the

LM method finds a solution rapidly.

1.3 Objectives

In this work, we will provide a computational statistical methodology to study the spec-
ification problem of circuits. We take a popular used circuit, such as low noise ampifier
(LNA) circuit as be an example firstly. Here we want to optimize seven circuit perfor-
mances to each specific value: (1) input return loss(S11);.(2) output return loss (S22);
(3) reverseisolation (S12); (4) voltage gain (S21);(5) stability factor (K); (6) noise figure
(NF); and (7) thethird order intercept point (11 P3). The object of thiswork istrying to con-
struct the response surface model and to obtain the optimal recipes. In our process of the
methodology, we verify the response surface models which are the relation of circuit pa-
rameters and circuit performance, then the model will reflect realistic circuit performance.
Furthermore, by using desirability function with seven performance constraints supplies us
optimal solutions. Finally, we perform the sensitivity analysis with the constructed model,
they help us understand whether the distribution of the seven circuit performances are in

their specific values that we assigned. Our second application is 6T and 4T SRAM cells.
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We construct the response surface models and investigate the sensitivity of the SNM for 6T

and 4T SRAM cdlls.

1.4 Outlineof the Thesis

Thisthesisisorganized asfollows. In Chap. 2, the statistic methodology and the procedure
of methodology in this work will be introduced in detail. The application of the statisti-
cal method to a low noise amplifier will be discussed in Chap. 3. The results of design
of experiment which contain screening design, central composite design, construction of
response surface model, model checking, and accuracy verification are shown in Chap. 4.
The three optimized cases which*are satisfied. all *specifications, minimized noise figure,
and maximized voltage gain are provided in'Chap.' 5. Finally the outcomes of the LNA
circuit sensitivity analysis have'been shownin Chap. 6. The other application of the sta-
tistical method to static random access memory will be discussed in Chap. 7. Finadly we

draw conclusions and suggest future work.
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Statistical M ethodology

In this chapter, we introduce the content of main methodology developed in this work in
the following sections. A methodology.flow isshown in Fig. 2.1, and then two designs
will be discussed. First, screening design, in this'step we merely use fewer experiments
for screening the most important factors‘of the circuit parameters. After determining the
important factors, we will execute the other design, central composite design. Next we
construct the response surface models which are used to find the parameters to optimize

circuit performance. In addition, we will describe some related applications of this work.



Screening design

* Circuit
. simulation
Central composite
design
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Satisfaction of both?

Optimization and/or
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Achieve the target?
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Figure 2.1: The proposed main computational procedure for 1C design
optimization in thiswork. First we use fewer experiments
to select the important factors by screening design. Then we
execute central composite design and construct model. The
model adequacy checking is necessary to check the model
assumption, and the accuracy verification is to check the
values that we are interested in the accuracy of the model
within our high and low level settings. Finally, we use the
model for optimization or sensitivity analysis. If we don’'t
achieve the target we will adjust the parameter range and
repeat the flow chart which restarts at the step of central
composite design
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2.1 Screening Design

Screening design usually leads to an experiment which is designed to investigate these fac-
tors with a view toward eliminating some unimportant ones. In other words, we determine
significant factors by screening design. To determine factor’s significance, two-level frac-
tional factorial design or Plackett-Burman design isideally suited for screening design [36].
In short, screening designs are economically experimental plans that focus on determining
the relative significance of many main effects with resolution I11 or 1V (but the designs of

this case require more runs than aresolution |11 design) [36].

Two-level fractional factorial design can reasonably assume that high-order interactions
are negligible. We can run only afraction'of the compléte factorial experiment to obtain in-
formation on the main effects and low-order interactions. For example, in one-half fraction
of the 23 design (237! design), A and BC are aiases, B and' AC arediases, C and AB are
aliases, where A, B, and C are factors. When designs with resolution I11, main effects are
aliases with two-factor interactions and two-factor interactions may be aliased with each
other. Sometimes designs with resolution 1V are also used for screening designs. In this
design main effects are aliased with, at worst, three-factor interactions. Thisis better from

the confounding viewpoint, but the designs require more runs than aresolution 111 design.

Plackett-Burman design, attributed to Plackett and Burman (1946) [37], is two-level

fractional designsfor studyingupto £k = N — 1 variablesin N runs, where NV isamultiple
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of 4. In aPlackett-Burman design, main effects are heavily confounded with two-factor in-
teractionsin general. For example, N =12, every main effect is partially aliased with every
two-factor interaction. Each main effect is partially aliased with 45 two-factor interactions.

And the plus and minus signs are:
K=11,N=12 +4+—-—4+++———+—. (2.1)

When we analyze data from screening designs, the use of an error mean square obtained
by pooling high order interactionsis inappropriate occasionally. To overcome this problem
a half-normal probability plot of the estimates of the effects is suggested. The half-normal

plot consists of the point:
(@ H0.5 050 = 0514, 10]:))), (2.2)

fori=1,...,1. The ® isthe cumulated density function of the standard normal distribution.
If factors are unimportant, the effectswith.mean zero and variance % will tend to fall along

astraight line on this plot, whereasimportant factors will not lie along the straight line [38].

2.2 Central Composite Design

The central-composite design (CCD) is perhaps the most common experimental design
used to generate second-order response models. These designs combine a two-level full

factorial or fractional factorial design of n; runs with 2% axial runs and n. center runs
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to estimate curvature, where k represents the number of control factors [38]. Figure 2.2
illustrates a CCD for two factors. The axia points represent new extreme values for each

factor in the design. Thereisthree varieties of CCD which are CCC, CClI, and CCF.

The central composite circumscribed (CCC) designs are the original form of the central
composite design. The axia points at some distance o from the center is based on the
properties desired for the design and the number of factorsin the design. The axial points
establish new extremes for the low and high settings for all factors. Figure 2.3 illustrates
a CCC design. These designs have circular, spherical, or hyperspherical symmetry and
require 5 levelsfor each factor. Augmenting an existing factorial or resolution V fractional

factorial design with axial points can produce this.design [36].

For those situations in which the limits specified for factor settings are truly limits, the
central composite inscribed (CCI) design uses.the factor settings as the axial points and
creates a factoria or fractiona factorial design within those limits (in other words, a CCl
design isascaled down CCC design with each factor level of the CCC design divided by «

to generate the CCI design) [36]. Thisdesign aso requires 5 levels of each factor.

The other special design is called the face centered cube (CCF) design. In this design
the axial points are at the center of each face of the factorial space, so « = +1. If the

diamond points move to the face in the cube, then the design is CCF. This variety requires
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3 levels of each factor. Augmenting an existing factorial or resolution V design with ap-
propriate axial points can aso produce this design.

The diagramsin Fig. 2.3 illustrate the three types of central composite designs for two
factors. Note that the CCC explores the largest process space and the CCl explores the
smallest process space. Both the CCC and CCI are rotatable designs, but the CCF is not.
In the CCC design, the design points describe a circle circumscribed about the factorial
square. For three factors, the CCC design points describe a sphere around the factorial
cube. To maintain rotatability, the value of o depends on the number of experimental runs

in the factorial portion of the central composite design:
o= [ni, (2.3)

wheren,. isthe number of experimental runsinthefactorial portion of the central composite
design. However, the factorial partion can-also-be afractional factorial design of resolution

V [36, 39].

2.3 Modds Construction

It is necessary to develop an approximate model for the true response surface. If n obser-

vations are collected in an experiment, the model for them takes the form [38]:

y=Xp+e, (2.4)
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O center points
+ — @ cCube points
[ E  Axial points

Figure 2.2: A central composite design of two factors. The design
includes one center point, four cube points, and four axial
points.

Figure 2.3: Comparison of the three types of central composite designs.
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In general, y isann x 1 vector of the observations, X isann x p matrix of the levels of the
independent variables, 5 isap x 1 vector of the regression coefficients, and c isann x 1
vector of random errors.

We want to find the least squares estimators, 3, that minimizes
L=Y e =cc=(y—Xp3)"(y—XB). (2.5)
=1
Astheresult of our calculation, the least squares estimator of 5 is
g=(XTX)"'XTy. (2.6)

The fitted regression model is

P 2.7)

The difference between the responses y; and the fitted'value y; isaresidual, say e; = y — 7,

The vector of residual is denoted hy:
e=y—7y. (2.8)

To check the normality assumption is by preparing anormal probability plot of the residual
values. If the assumption holds, this plot will resemble a straight line. If the assumption is
violated, a non-linear data transformation (e.g., v’ = log(y)) may be applied and new mod-
els are generated in an attempt to improve model adequacy [38]. A second plot showing

the residual values versus the predicted response values is used to verify if the variance of
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the original observation is constant. A random scattering of the residual values indicates
that no correlation exists between the observed variance and the mean level of the response
[39].

To develop an estimator of this parameter consider the sum of squares of the residuals,

say

n n

SSp=)Y (Wi—u0:)"=) e =ce (2.9)

i=1 =1

Equation (2.9) is called the error or residual of squares, and it has n — p degrees of

freedom associated with it. It can be shown that
E(SSp) = o*(n —p), (2.10)

S0 an unbiased estimator of o is given by.

E .~ (2.11)
=P

To determine if there is a linear relationship between the response variable y and a
subset of the regressor variables x, x5, - - - , ;. 1S the test for significance of regression.

The appropriate hypotheses are [ 38]:

Hy :pi=p= =0 =0,
Hy :3; #0 for at least one j. (2.12)
If we reject Hy, it implies that at least one of the regressor variables x4, x5, - - - , z;, con-

tributes significantly to the model. Thetest procedure involves partitioning the total sum of
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squares due to residual, say

SSr = SSk + SSk. (2.13)

A relatively simple procedure is performed to check for model significance in relation

to random error. Thistest involves calculating the test statistic:

MSp SSp/k w250 (2.14)

= = o —,
’ MSg  SSp/(n—k—1) ﬁ ijl(yi — Ji)?

where 7 is the average of measured response values. y;, v;, and n are the ith measured
response, the ith predicted response, and the number of simulated runs, respectively [38].
If this statistic exceeds the corresponding value of the F distribution value (F, j k1), the
response model is considered significant in relation to random error.

A second statistic, the coefficient of multiple determination 122 is defined as:

2 -SSRl TESE | 2o (Y — 9i)°

SSt SSt Yoy —y)?

(2.15)

R? measures the amount of reduction in:variability of the response y achieved, using the
input factors xy, xo, ..., 2. From Eq. (2.13) we see that R? varies from zero to one
[38][39]. However, a large value of R? does not necessarily imply that the regression
model is good one. Adding a variable to the model will always increase R?, regardless of
whether the additional variableis statistically significant or not. About this problem, some
regression model builders prefer to use an adjusted R? statistic defined as

SSE/<TL—]€—1)_ n—1
By e (1-R?), (2.16)

RZdj =1
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In general, the adjusted R? statistic will not always increase as variables are added to the

model. Infact, if unnecessary terms are added, the value of R?,; will often decrease.

2.4 Variable Selection

In response surface work it is customary to construct the full model corresponding to the
situation at hand. That is, in steepest ascent we usually build the full first-order model,
and in the analysis of a second-order model we usually construct the full quadratic. An
experimenter may encounter situations where the full model may not be appropriate; that
is, amodel based on a subset of the regressors in.the full model may be superior. Variable
selection or model -building techniques may: be used to identify the best subset of regressors

to include in aregression model [39].

Variable selection is determined by statistical analysis of the generated response surface
models. Input factors showing a significant effect on an individual response can be system-
atically determined using statistical techniques. Variations of these significant input factors
will produce the greatest fluctuations in device performance. This analysis is extremely
useful in understanding what areas of manufacturing require greater control.

(1) Half-normal plot and ¢ test

As screening design, a technique for identifying significant model terms can be based
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on the half-normal plot of model coefficients. This method is originally proposed for ana-
lyzing two-level factorial experiments applicable in cases where no degrees of freedom are
availablefor estimating the variance of an error term. The effectsare plotted on half-normal
probability paper, those standing apart being identified as potentially real effects[40]. Prob-
ability plotting may also be used for experiments having three level. One approach is to
express the effects with linear and quadratic components, and construct the normal proba-

bility plot of those components standardized to have the same variance [41][42].

The half-normal plots are informal graphical methods involving visua judgment. A
formal test of effect significance is called ¢ test for the least squares estimate 3. It can be
shown that the least squares estimate!3 has amultivariate normal distribution with mean

vector 3 and variance-covariance matrix o2 (X7 X )7, i.e.,

B SN (B, 62X X)), (2.17)

where M N stands for multivariate normal. The (i, j)th entry of the variance-covariance
matrix is C'ov(3;, 3;) and the jth diagonal element is Cou(0;, 3;) = Var(;). Therefore,
the distribution for theindividual 3; is N (53;, 03;(XT X)), which suggeststhat for testing

the null hypothesis

H() : ﬁj = O, (218)
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the following ¢ statistic be used:

B,
62, (XTX)!

~ tn_p-1 (under Hy). (2.19)

Under H,, it hasat distribution with N — p — 1 degrees of freedom.
(2) Stepwiseregression

Alternative of variable selection is called stepwise regression. It isone of various meth-
ods for evaluating only a small number of subset regression models by either adding or
deleting regressors one at atime. Stepwise regression is a popular combination of proce-
dures forward selection and backward elimination [38].

The procedure of the forward selection begins:with the assumption that there are no
regressors in the model other than the intercept./An effort ismade to find an optimal subset
by inserting regressors into the model one at atime: The first regressor selected for entry
into the equation isthe one that has the largest Simple corréelation with the response variable
y. Suppose that this regressor is z;. Thisis aso the regressor that will produce the largest
value of the F-statistic for testing significance of regression. This regressor is entered if
the F-statistic exceeds a preselected F-value, say Fy (or F-to-enter). The second regressor
chosen for entry is the one that now has the largest correlation with y after adjusting for
the effect of the first regressor entered (z;) on y. We refer ro these correlations as partial
correlations. They are the simple correlations between the residuals from the regression

y= By + 11 and the residuals from the regressions of the other candidate regressors on
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ZEl,SayC(A]j = @Oj—f'dljxlyj =2.3,..., K.
Suppose that at Step 2 the regressor with the highest partial correlation with y is 5.
Thisimplies that the largest partial F-statisticis

F— SSR(I2|.I'1)

If this F-value exceeds Fy, then z, is added to the model. In general, at each step the
regressor having the highest partial correlation with y (or equivalently the largest partial
F-statistic given the other regressors aready in the model) is added to the model if its
partial F-statistic exceeds the preselected entry level F;y [38]. The procedure terminates
either when the partial F-statistic'at a particular. step. does not exceed F;y or when the last

candidate regressor is added to-the model.

Forward selection begins with no regressors in‘the model and attempts to insert vari-
ables until a suitable model is obtained. Backward elimination attempts to find a good
model by working in the opposite direction. That is, we begin with a model that includes
al K candidate regressors. Then the partial F-statistic (or a ¢-statistic, which is equivalent)
is computed for each regressor asif it isthe last variable to enter the model. The smallest
of these partial F-statisticsis compared with a preselected value, Fo (or F-to-move); and
if the smallest partial F-valueislessthan Fy; 1, that regressor is removed from the model.

Now a regression model with K — 1 regressors is constructed, the partial F-statistics for
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this new model calculated, and the procedure repeated. The backward elimination algo-
rithm terminates when the smallest partial F-value is not less than the preselected cutoff
value Foyr [38].

Backward elimination is often a very good variable selection procedure. It is particu-
larly favored by analysts who like to see the effect of including all the candidate regressors,
just so that nothing obvious will be missed. The two procedures described above suggest
a number of possible combinations. One of the most popular is the stepwise regression
algorithm and the flowchart is shown in Fig. 2.4 Thisisamodification of forward selection
in which at each step all regressors entered into the model previously are reassessed via
their partial F- or ¢-statistics. A regressor added atran earlier step may now be redundant
because of the relationship between it and regressors now, in the equation. If the partial
F-statistic for avariableislessthan Fg7, that variable is dropped from the model.

Stepwise regression requires two cutoff values, F;y and For. Severa analysts prefer
to choose F;y = Four, dthough this is not necessary. Sometimes we choose F;y >

Four, making it more difficult to add a regressor than to delete one [38].
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Figure 2.4: A flowchart of the stepwise regression algorithm used in
our work.
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2.5 Model Adequacy Checking

To checking the fitted model is an adequate approximation to the true system or not is a-
ways necessary. Also, we must verify that none of the least squares regression assumptions
are violated. In this section we present several techniques for checking model adequacy
[38].
(1) The normality assumption : The residuals are defined by Eq. (2.8), and they play an
very important role in determining model adequacy. An useful method is to construct a
normal probability plot of the residuals, asin Fig. 2.5. If the residual normal probability
plot is approximately along a straight line, then the normality assumption of residualsis
satisfied. When this plot indicates problemswith the normality assumption, we often trans-
form the response variable as a remedial measure [38][43]. Transformations are used for
three purposes: stabilizing response variance,making;the distribution of response variable
closer to the normal distribution, and improving thefit of the model to the data.

We introduce transformation of the response variables called Box-Cox Method. The

Box-Cox transformation is a particulary useful family of transformations. It is defined as:

yh = 7 (2.21)
Iny, A=0

where y isthe response variable and ) is the transformation parameter. When ) is selected

by the Box-Cox method, the experimenter can analyze the data using v as the response,
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unless of A = 0, inwhich he can use In y. It is perfectly acceptable to use y* as the actual
response, although the model parameter estimates will have a scale difference and origin

shift in comparison to the results obtained using 3* (or In v) [43].

An approximate 100(1 — «) percent confidence interval for A can be found by calculat-

ing:

2

t
SS* = SSp(\)(1 + 224, (2.22)

v

where v is the number of freedom. Plotting a graph of SSg(\) versus A, and then by
locating the points on the \ axiswhere S.S* cutsthecurve SSg(\), we can read confidence
limits on \ directly from the graph. If this confidence interval includes the value A = 1,
thisimplies that the datas do not support the need for transformation.

(2) Plot of residualsversuspredicted value: If themodel iscorrect and if the assumptions
are satisfied, the residuals should be unrelated to any other variable including the predicted
response. A simple check is to plot the residuals versus the predicted value . This plot
should not reveal any obvious pattern, asin Fig. 2.6. A defect that occasionally shows up
on this plot is nonconstant variance. Nonconstant variance also arises in cases where the
data follow a nonnormal, skewed distribution because in skewed distributions the variance

tends to be a function of the mean.
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Considerable research has been devoted to the selection of an appropriate transforma-
tion. If experimenters know the theoretical distribution of the observations, they may uti-
lize thisinformation in choosing a transformation. For example, if the observations follow
the Poisson distribution, the square root transformation ;; = /7;; or yi; = /1 +y;; is
appropriate. If the data follow the lognormal distribution, the logarithmic transformation
y;; = log yi; is appropriate. When there is no obvious transformation, the experimenter
usually empirically seeks a transformation that equalizes the variance regardless of the
value of the mean. Another approach is to select a transformation that minimizes the inter-
action mean square, resulting in an experiment that is easier to interpret. Transformations
made for inequality of variance also affect the form of.the error distribution. In most cases,

the transformation brings the error distribution closer tonormal [43].

2.6 Dedgrability Function

The desirability function is a useful tool to solve multiple responses. It was proposed
by Derringer and Suich (1980) [43]. The desirability function d; varies over the range
0 < d; <1, wherethe d; = 0 is representing a completely undesirable of y; and d; =
1 is representing a completely desirable or target response value of y;. After multiple

response are transformed into individual desirabilities, the individual desirabilities are then
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combined using geometric mean to maximize the overall desirability D :

D = (dy X dy x ... % dp)"™, (2.23)

where m is the number of responses [43]. By the equation, if any d; is equal to zero, then
the overall desirability is zero.

According to the specification for the responses, response is to be maximized, mini-

mized, or achieved atarget value. For the ith response y; is a maximum value,

0, ;< L;
di 2\ (225 L <3 < T, (2.24)
43 Qz > T
For the response y; isaminimum value,
L, v <T;
(2.25)
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For the response is achieved atarget value,

07 gz < Lz
(B2, Li<ii<T
d; = , (2.26)
(7=8)', T<4:<U
07 gi > Uz

where the weight s and ¢ determine how important it is close to the target value. When
theweight s = 1,¢ = 1 the desirability function is liner. Choosing s > 1,¢ > 1 means
more important to be close the target value with the function that is concave, and choosing
0 <s<1,0 <t < 1meansthisless important'with the function that is convex. L;, U;,
and T; are the lower, upper, and target value, respectively.

Theindividual desirability functions are structured as shown in Fig. 2.7,
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Normal % Probability

Studentized Residuals

Figure 2.5: An example of residual normal probability plot. If the
residual is closeto theline, it will satisfy normality
assumption. The studentized residuals are the standardized
residuals adjusted for the distance from the average X value.
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Figure 2.6: An example of scatter plot of predicted values versus
residuals. This plot should not reveal to any obvious
patterns. The studentized residuals are the standardized
residuals adjusted for the distance from the average X value.
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Figure 2.7: Individua desirability functions for the simultaneous
optimization (a) objective isto maximize response, (b)
objective isto minimize response, and (c) objectiveisfor
response which is assumed to be as close as possible to the
target. The weights s and t determine how important it is
closeto the target value, and L, U, T are the lower, upper,
and target value, respectively.
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2.7 Other Design Methods

There are different types of design of experiment that have been widely applied to other

designs such as Taguchi method and mixture design. We briefly describe their validation.

2.7.1 Taguchi Method

Many of the DOE concepts were popularized by Taguchi’s contributions to the method-
ology of off-line quality design. The basis for his approach is to minimizing the loss to
society that occurs when a products performance varies from a customer-specified target
[44][45]. Taguchi’sideasfor parameter.and.tol erance design have evolved into what indus-
try labels Design of Experiments for robust product design. Taguchi introduced the DOE
techniques to engineering for qual ity improvement. In the past, enhancements to the DOE
technique have been used on a preduction line or laboratory to derive empirical models and
optimize a given process. Some of the well-known Taguchi orthogonal arrays were given
earlier when three-level, mixed-level and fractional factorial designs were discussed.
Theaim of parameter design isto make a product or process less variable (more robust)
in the face of variation over which we have little or no control. Taguchi advocated using
inner and outer array designs to take into account noise factors (outer) and design factors
(inner). We could have used fractional factorials for either the inner or outer array de-

signs, or for both. The tolerance design of the design process concentrates on the selective
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reduction of tolerances to reduce quality loss at the expense of increasing manufacturing

Ccosts.

2.7.2 MixtureDesign

In a mixture experiment, the independent factors are proportions of different components
of ablend. For example, if you want to optimize the tensile strength of stainless steel, the
factors of interest should be the proportions of iron, copper, nickel, and chromium in the
alloy. The fact that the proportions of the different factors must sum to 100 % complicates

the design as well as the analysis of mixture experiments.

In mixture problems, the purpose of an/experiment.is to model the blending surface
with some form of mathematical equation so that: (1) predictions of the response for any
mixture or combination of the ingredientscan be made empiricaly; (2) and some measure
of the influence on the response of each component singly and in combination with other

components can be obtained [36].

2.7.3 Comparison with the Popular Designs

DOE using Taguchi approach has become a much more attractive tool to practicing engi-

neersand scientists. The objective of Taguchi approach isto obtain reproducible results and
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Table 2.1: Difference between Taguchi approach and classical DOE.

Taguchi approach Classical DOE
Standard approach Methods are not standardized
Smaller number of experiments Larger number of experiments
Standard method of noise factor No standardized method of noise treatment
Seeks to find stable condition Develops models
Used to solve engineering problems | Used to solve scientific experiments

robust products. The objective of classical DOE isto gather scientific knowledge about fac-
tor effects and their interactions. Difference between Taguchi approach and classical DOE
isshown in Tab. 2.1 [46]. In thisthesis, it is suitable for us to use the classical DOE to

investigate the problem due to our datatype.

2.8 Summary

In this chapter, we introduce the statistical methodology which isused in thiswork. Screen-
ing design is the first step in this work to select the significant factors. After this step, we
have three type central composite design and choose one type among them to construct
the response surface model. The basic of the response surface model and adequacy check-
ing are then introduced. Then we discuss desirability function which is used to solve the
multiple responses and according to this index we can optimize successfully. Finally we

compare the difference between Taguchi approach and classical DOE, and we note that the
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classical DOE is suitable for this work.




Chapter 3

L ow Noise Amplifier

In this chapter, we discuss the low noise amplifier (LNA) circuit which will be one of our
testing examples. Due to a large number-of-circuit simulations, it is necessary to produce
the response data, where Hspice simulator Is integrated in our method. This chapter is
organized as follows: Section 3.1 describes characteristics of LNA circuit. Section 3.2
describes what problem we will discuss and Sec. 3.3 presents the usage of the circuit

simulation. Finally, asummary of this chapter is given.

3.1 A LNA Circuit with Degp Submicron MOSFETSs

LNA circuit isimportant to modern communication systems. The main object of LNA isto

ensure the quality of signal in the process of receiving the signal. A LNA design presents

35
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a considerable challenge because of its simultaneous requirement for high gain, low noise
figure, good input and output matching and unconditional stability at the lowest possible
current draw from the amplifier. In this experiment, the working frequency of the tested
LNA circuit isfrom 2.11 to 2.17 GHz, shown in Fig. 3.1. The cascade low noise amplifier
is constructed two transistor placed cascaded. Lload and Rload are the compact models of
on-chip spiral inductors needed in our LNA circuit. The choke inductor Lchoke working
at high frequency isfixed at 1 uH. Cin isan externa signal couple capacitor is aso fixed at

20 pF.
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Figure 3.1: The exploréd LNA circuit in our experiment.

3.1.1 NoiseFigure

The parameters we used to diagnose the noise of LNA are noise factor (F') and noisefigure
(N F). The noise factor of a low-noise amplifier is defined as the signal-to-noise ratio at
the input divided by the signal-to-noise ratio at the output. The equation for noise factor

and noise figure is given by

signal;y, . . .
__SN&h__mﬂg__Nm%m+AMw%mk_L+Nm%mw (3.0)
SNR,,  Sgnalou Noise;, Noise;, '

Noiseout

F
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NF = 10log(F), (3.2

where SN R;,, is the signal-to-noise ratio at the input and SN R,,,; is the signal-to-noise
ratio at the output. Noise;, iSthe noisefrom the previous stage, Noise,,; isthe noise at the
output which is additional noise from amplifier (Noise,,,,) added the noise from Noise;,.
Besides, in Eq. (3.1), Noisegn, is adways not zero, therefore, /' > 1 and NF > 0 dB is
consequential. In other words, SN R;,, must be greater than SN R,.;.

In acascade amplifier the final stage has an input signal that consists of the original sig-
nal and noise amplified by each successive stage; Each stage in the cascade chain amplifies
signals and noise from previous stages and contributes some noise of its own. The overall

noise factor for a cascade amplifier is:

(F,—1) (F3—1)
Ay ANAL
(F, —1) (Fn—1)

F,=F+—~"24+ 4+ _7
1 Apl Hn lA

F = 1+(FR-1)+

(33)

where F' isthe overall noise factor in cascade, F; isthe noise factor of the ith stage, A,; is
the gain of the ith stage. F,, isthe overall noise factor of n stagesin cascade. As show in
Eqg. (3.3), the noise factor of the entire cascade chain is determined by the the first stage

noise factor because the noise factors of the second and subsequent stages are divided by
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the previous stage gains when referred back to the input. High gain and low noise low-
noise amplifiers typically use alow-noise amplifier circuit for only thefirst stage or two in

the cascade chain to achieve an overall noise factor.

3.1.2 Stability Factor

Unconditional stability of the circuit is the target of the LNA designer. It is a critical
concern in designing alow noise amplifier. The stability of circuit can be determined by S-
parameter of transistors, and the matching network of every stage. S-parameters provided
by the manufacturer of the transistor will aid in stability analysis of the LNA circuit. Two
main methods exist in S-parameter stability analysis. numerical and graphical. Numerical
analysis consists of calculatingaterm called Rollett Stability Factor K [11][12][13]. An
intermitted quantity called delta(A) should be cal culated first to simplify thefinal equation

for the K-factor.
A = Sy % Sag — So1 * S1a, (3-4)

then

o LHIAP —[Sul — [Swf’
2*‘511‘*‘312‘ ’

(3.5)

When the K factor is greater than unity, the circuit will be unconditionally stable for any
combination of source and load impedance. When K isless than unity, the circuit is poten-

tially unstable and oscillation may occur with a certain combination of source and/or load
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impedance presented to the transistor. The K factor represents a quick check for stability
at given frequency and given bias condition. A sweep of the K-factor over frequency for
a given biasing point should be performed to ensure unconditional stability outside of the

band of operation.

3.2 Linearity

There are two different limitations in determining the dynamic range of the amplifier (Fig.
3.2), oneisnoise and the other islinearity. Usually, noise figure sets the limitation on min-
imum signal strength, and linearity limits the maximum signal strength. Hence, linearity
is equally as important as noise figure in the design of a low noise amplifier. In the case
of base band amplifiers, total harmonic-distortion isusually used to represent their linear-
ity. On the other hand, RF amplifiers often use ILP3; 11P2; or the 1 dB gain compression
point to represent their linearity. The 11P3 of each'stage must sufficiently high to reduce

nonlinearity.
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Figure 3.2: Anillustration of spurious-free dynamic range with the

noise floor and 11P3.

3.3 Problem Description

In theintegrated circuit design, people’consider efficiency, reliability and stability. Further-

more, there are also some constrains for the electrical and physical characteristics. In our

work, we are interested in seven physical characteristics with specific performance, and

they are:
(1) S11 < -10dB at working region;

(2) S12 < -25dB at working region;

(3) S21 parameter is as great as possible at working region;

(4) S22 < -10dB at working region;
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(5) K factor > 1 at working region;

(6) NF < 2dB at working region;

(7) 11P3 > -10dB.

The working region isfrom 2.11 GHz to 2.17 GHz. The goal of our optimization problem
isto adjust some parameters, such as capacitance, inductance and resistance, to achieve the

reguirements of each characteristic.

3.4 Circuit Simulators

In thiswork, the SPICE is considered as acircuit'simulation.tool. After designing a proper
experiment, we will get the response data from SPICE. To perform circuit simulation, a set
of model parameter and the designed circuit file are requested. The circuit simulator sim-
ulate the circuit and output the required characteristics noted in circuit file. The execution

flow is shown in Fig. 3.3 and the netlist of this LNA circuit is shown in Appendix B.

Although gain, noise figure, stability, linearity and input and output match are all
equally important, they are dependent and do not always work in each other’s favor. Most
of these conditions can be met by carefully selecting atransistor and understanding para-
meter trade-offs. The RF compact spice netlist that we apply is shown in Appendix B and

the equivalent circuit is presented in Fig. 3.4.
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Figure 3.3: A flow of circuit simulation.

3.5 Summary

A LNA circuit composed with 0.25 pin metal-oxide-silicon field effect transistors (MOS-
FETSs) is discussed as the applied exapmple. Inthis chapter the target LNA circuit isintro-
duced and the method that adopts the circuit simulator is described. We will study the re-
lationship between the circuit performance and its circuit parameters. Circuit performance
that we are interested consist of input return loss, output return loss, reverse isolation, volt-

age gain, k factor, noise figure, and input third-order intercept point.
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Figure 3.4: A RF model applied in this work.
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Results of DOE for,LLNA Circuit

4.1 Resultsof The Screening Design

First, we denote the Rload and Lload as L oad, and they have the same value. The levels of
screening design for each factors are provided in Tab. 4.1. The fractional factorial design

with resolution 1V is used.

45
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4.1.1 TheFractional Factorial Design

A 238 fractional factorial design with resolution 1V is used in the screening design, and

the generators used are:

F=AxBxC(C G =AxBxD
H=AxCxD J =BxCxD
(4.2
K=AxBxFE L =AxCxFE
M=AxDxEFE N =Bx(CXxE,

where A is Cmatchl, B is Cmatch2, C is Cmatch3, D isLdeg, EisLmatchl, FisL1, gis
W1, HisVB1,JisVB2,andK isVDD.

Before performing an experiment for-the fractional factorial design with resolution 1V,
we fix the Load factor because the value of Load.is discrete and is difficult for discussion.
We fix the Load factor at 4.5, and the voltage gain very.close to our target. Table 4.3
presents the minimum and maximum of seven responses in the different settings of Load
factor. Clearly, we determine the value of Load at 4.5 is helpful for this work. So there
are 13 factors in the screening design. In the screening design, some factors are varied by
+10% about their nominal value; and due to restriction, some factors are varied by more
smaller range, for example, the difference between VB2 and VDD islessthan 0.25V. They
are varied by +4.5%. The levels of the screening design for each factor are shown in Tab.

4.1.
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After the experiment for the fractional factorial design with resolution IV for 13 factors,
7 half-normal plots are drawn to select the significant factors. The half-normal plots of
these 7 responses are shown in Figs. 4.1-4.7, and the result is shown in Tab. 4.2. In the
table the numbers present the order of significant effect, and ”1” means the most important
to the corresponding response. We select the factor which uses the "union’ concept. And
we only consider the main effects because main effects and three-factor interactions are
aliases, three-factor interactions are neglected. Besides, two-factor interactions are aliased
with each other. Therefore, because the only three main effects are eliminated, we don’t
consider any significant two-factor interactions. Finally, we remove three factors which are

Lbond, L2, and W2.

412 Summary

In this section, 10 significant facters have suceessfully been selected from the screening
design. They are Cmatchl, Cmatch2, Cmatch3, Ldeg, Lmatchl, L1, W1, VB1, VB2,
and VDD. We use a2;}® fractional factorial design to calculate 13 factor effects, and use
half-normal plots to select the significant factors. The levels of screening design for 13

factors are shown in Tab. 4.1.
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Table 4.1: The levels of screening design for the 13 factors.

Center value | Cube
Factor name 0 +1
A: Cmatchl (F) 658 +10%
B: Cmatch2 (P) 1.7 +5%
C: Cmatch3 (P) 4.5 +5%
D: Lbond (N) 1 +10%
E: Ldeg (N) 1 £10%
F: Lmatchl (N) 46 £10%
G: L1 (um) 0.25 10.01
H: L2 (um) 0:25 +0.01
J W1 (zm) 5 105
K: W2 (um) 5 105
L: VBL (V) 0.75 +10%
M: VB2 (V) 2.7 +4.5%
N: VDD (V) 2.7 +4.5%




4.1 : Results of The Screening Design

Table 4.2: A list of the results for the screening design, where ”1”
means the most important term with respect to the
corresponding response.

S11 | S12 | S21 | S22 | K | NF | IIP3
A:Cmatchl | 3 6 5 2
B: Cmatch2 5 4 1
C: Cmatch3 4 6 2
D: Lbond
E: Ldeg 3 2| 4 4
F: Lmatchl 1 1 2 1 5
G: L1 8 3
H: L2
J W1 2 2 7 4| 3
K: W2
L: VB1 3 1 1] 2 2
M: VB2 1
N: VDD 5 1
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Table 4.3: The minimum and maximum of seven responses in the six
settings of Load. The Load factor is 4.5 which makes the
voltage gain close to our target.

Load= 1.5 Load= 2.5
response god minimum | maximum | minimum | maximum
S11 < -10 -20.41 -2.417 -20.39 -2.402
S12 < =25 -67.25 -61.34 -61.05 -54.89
S21 maximized | -14.81 -9.19 -8.337 -2.8
S22 < -10 -0.051 -0.027 -0.156 -0.078
K > 1 18.26 29.86 13.06 21.13
NF <2 1 2.67 0.916 2.437
[1P3 > —10 0.3 10.77 0.515 11.55
Load= 3.5 Load= 4.5
response god minimum: | maximum: {+ minimum | maximum
S11 < -10 -20.42 -2.369 -21.92 -2.514
S12 < =25 -52.87 -46.12 -42.64 -37.83
S21 maximized 0.274 5.906 9.752 14.59
S22 < -10 -0.71 -0.30 -8.79 -3.49
K > 1 821 12.92 5.841 8.93
NF <2 0.83 2.21 0.79 2.09
[1P3 > —10 0.995 10.505 -11.005 3.405
Load= 5.5 Load= 6.5
response goal minimum | maximum | minimum | maximum
S11 < -10 -25.13 -2.811 -22.26 -2.654
S12 < =25 -47.97 -41.14 -51.01 -45.23
S21 maximized 4.054 11.91 0.5667 8.042
S22 < -=10 -1.421 -0.6178 -0.464 -0.2629
K > 1 4.729 7.053 4.152 6.135
NF <2 0.770 2.033 0.761 2.006
[1P3 > —10 -5.46 5.63 -1.155 8.64
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Figure4.1: A half-normal plot for the effect of S11. The factors are (A)

Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)

Lmatchd, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure4.2: A half-normal plot for the effect of S12. The factors are (A)

Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatchl, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.3: A haf-normal plot for the effect of S21. The factors are (A)

Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)

Lmatchd, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.4: A haf-normal plot for the effect of S22. The factors are (A)

Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatchl, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.5: A haf-normal plot for the effect of K. The factors are (A)
Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatchl, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure 4.6: A half-normal plot for the effect of NF. The factorsare (A)
Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatchl, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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Figure4.7: A half-normal plot for the effect of 11P3. The factorsare (A)
Cmatchl, (B) Cmatch2, (C) Cmatch3, (D) Ldeg, (E)
Lmatchl, (F) L1, (g) W1, (H) VB1, (J) VB2, and (K) VDD.
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4.2 Resultsof The Central Composite Design

In this chapter we discuss the results of the central composite design. From the screening
design we have selected 10 factors for our next design, and the face centered cube design

(CCF) is used.

4.2.1 TheFace Centered Cube Design

To generate the necessary data for construction of the quadratic response models, 149 ex-
perimental runs are completed by calling HSPISE. We choose the CCF design from the
three type of the CCD that we introduced in Chap. 2, because the CCF design is more
suitable for designing the response surface models [39]. The levels of the first CCF design
for 10 factors are the same with the screening design.-From the CCF design, 1 center point,
20 axia points, and 2;7~* cube points which isfractional factorial design with resolution

V are used, and the generators are:
V B1 = Cmatchl x Cmatch2 x Cmatch3 x W1
V B2 = C'match2 x Cmatch3 x Ldeg x Lmatchl (4.2)

V B1 = Cmatchl x Cmatch3 x Ldeg x L1.
We run experiments four times. The experiments of the first three times we are devoted
to achieving S22 to the target by the passive devices and keep other responses in the spec-

ification, because the response of S22 is far from the initial value to the target. Therefore
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Table 4.4: A list of the results of the predicted values after optimization

in the first three experiments using CCF design.

Response S11 S12 21 S22 K NF [1P3
Goals <-10dB | < -25dB | maximize | < -10dB | > 1 <2 > -10
Original -8.756dB | -39.2dB | 13.38dB | -6.137dB | 7.199 | 1.018 | -8.17
Experiment 1 | -17.39dB | -38.57dB | 14.02dB | -8.281dB | 7.377 | 0.8925 | -7.805
Experiment 2 | -19.88dB | -38.27dB | 13.89dB | -10.15dB | 7.705 | 0.9365 | -6.985
Experiment 3 | -18.03dB | -38.04dB | 13.8dB -12.72dB | 7.874 | 0.9674 | -6.58

we have three experiments to make these range of all responses include our targets. Table

4.4 shows the results of the above work in the first three experiments.

Finally we take the values of 10 factorsafter optimization in the 3th experimental as our

nominal case. The experiment levels of 10 factors are shown in Tab. 4.5. We will discuss

in the next section.
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Table 4.5: Experiment levels for 10 factors after optimization of the 3th
experiment .

Factor name Center value | Cube (+1) | Axial (+a =+1)
A: Cmatchl (F) 764.9 +10% +10%
B: Cmatch2 (P) 2.048 +5% +5%
C: Cmatch3 (P) 3.28 £5% +5%
D: Ldeg (N) 1.22 E=10% +10%
E: Lmatchl (N) 5.41 +10% +10%
F: L1 (m) 0.25 +0.01 +0.01
G: W1 (um) 5 Ee5 +0.5
H: VB1 (V) 0.75 +10% +10%
J VB2 (V) 2.7 +4.5% +4.5%
K: VDD (V) 2.7 +4.5% +4.5%
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4.2.2 TheResponse Surface Model

149 runs are completed to generate the necessary data for construction of the quadratic
response models. Table 4.6 is the information for these 7 response surface models with an
average R? value of 0.9825. In order to select significant effect we use the stepwise regres-
sion. Thevalues Fry and Forr are both set 0.1, and when the models are not hierarchical,
we would add several insignificant terms to keep the hierarchy. The hierarchical ordering
principle suggests that when resources are scarce, priority should be given to the estimation
of lower order effects [37]. Thisis also a proper method to us because we don’t want to
loose any potential significant main effects.

In model adequacy checking, Skliand [1P3 have to be transformed by BOX-COX trans-
formation or experience where:Sec. 2.5 have introduced. The information for these 7 re-
sponse surface models with stepwise regression are shown in Tab. 4.7, which are with an
average RR? value of 0.9893. Tables 4.8-4.14-show the significance of effect from large
term to small one and coefficients of the response surface models with coded factors. The
residual normal probability plots and scatter plots of these 7 responses are shown in the

next section which also includes the results of two transformed responses.



Chapter 4 : Results of DOE for LNA Circuit

Table 4.6: The information of 7 response surface models for the LNA

circuit using CCF design.
Response | R* | Adj. R? | Std. Dev.
S11 0.9168 | 0.8493 1.38
S12 0.9957 | 0.9922 0.046
S21 0.9990 | 0.9982 0.04
S22 0.9905 | 0.9828 0.17
K 0.9994 | 0.9990 0.026
NF 0.9932 | 0.9876 0.017
NP3 0.9827 | 0.9687 0.46

Table 4.7: Theinformation of the 5'response-surface models and 2
transformed response surface modelsfor the LNA circuit
using CCF design with stepwise regression method.

Response R? | Adj. R? | Std. Dev.
1/511 0.9608 | 0.9534 | 5.075E-5
S12 0.9947 | 0.9932 0.043
21 0.9988 | 0.9984 0.038
S22 0.9889 | 0.9866 0.15
K 0.9994 | 0.9992 0.022
NF 0.9921 | 0.9908 0.015
log(ITP3 +11.1265) | 0.9901 | 0.9867 0.026
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Table 4.8: The coefficientsof 1/511 with coded factorsin a
significance order of the stepwise regression.

Factor | Coefficient | Factor | Coefficient | Factor | Coefficient
EG -0.030 EF -4.135E-3 | FG -1.281E-3
E? -0.011 DH -2.379E-3 | B 1.089E-3
AE -9.849E-3 | F 1.905E-3 | G? -6.376E-3
EH 9.541E-3 | E 1.740E-3 | FH 9.923E-4
G 9.018E-3 | AH 1.556E-3 | DF 8.496E-4
DE 7.080E-3 | AG 1.371E-3 | GH 8.013E-4
A -4.150E-3 | AD 1.302E-3 | DG 7.542E-4

Table 4.9: The coefficients of S12 with coded factors in a significance
order of the stepwise regression.

Factor | Coefficient | Factor. | Coefficient | Factor | Coefficient
G 0.42 EG -0.072 FG -0.028
K -0.14 DE 0.061 BC -0.026
GH 0.14 DH 0.059 AH 0.023
D 0.11 DG 0.057 H? 0.058
H -0.10 J -0.052 E? -0.14

F -0.094 HK -0.046 AG 0.018
E -0.093 HJ 0.036 AD 0.016
C -0.091 JK -0.032 GJ 0.013
EH 0.079 EF -0.031 BE 0.011
AE -0.078 B -0.031 EJ 8.728E-3
A -0.074 FH -0.028 DJ 6.653E-3
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Table 4.10: The coefficients of S21 with coded factors in a significance
order of the stepwise regression.

Factor | Coefficient | Factor | Coefficient | Factor | Coefficient
H 0.82 C -0.040 AB 0.014

D -0.44 EF -0.037 EJ 0.014

F -0.22 G -0.029 DF 0.013
H? -0.48 H? -0.24 DG 0.012
AE -0.10 AH 0.025 JK 0.011
EH 0.090 HJ -0.024 DJ -0.011
EG -0.083 GH -0.022 FG -0.011
B 0.073 BE 0.020 CH -8.549E-3
DE 0.061 AD 0.019 HK 7.059E-3
A -0.054 J 0.018 BH -6.604E-3
K 0.050 BC -0.017 E 6.027E-3
FH 0.046 E? -0.14 BG 5.738E-3
DH -0.042 AG 0.016 BK 5.573E-3

Table4.11: The coefficients of S22 with coded factors in a significance
order of the stepwise regression.

Factor | Coefficient | Factor | Coefficient | Factor | Coefficient

C 0.97 K -0.15 DE -0.049
BC 0.74 BJ 0.15 DJ -0.039
B? 0.96 AB -0.12 GH 0.031
BK -0.25 BG 0.12 BH 0.031
H 0.23 BD -0.097 BF -0.026

B -0.21 J 0.082 BE -0.026
E 0.16 AG -0.078 A 0.022
G 0.16 AH -0.060
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Table 4.12: The coefficients of K with coded factorsin a significance

order of the stepwise regression.

Factor | Coefficient | Factor | Coefficient | Factor | Coefficient
H -0.68 FH -0.023 EF 6.271E-3
F 0.31 HJ -0.023 DE -6.162E-3
D 0.30 DF 0.021 AH -5.526E-3
G -0.23 JK 0.020 D? -0.030
K 0.098 EH -0.019 DK 4.518E-3
DH -0.088 J 0.016 FJ 4.305E-3
E 0.075 AE 0.015 AG -4.142E-3
GH -0.055 A 0.014 FG -3.836E-3
DG -0.047 H? 0.033
HK 0.030 GJ -8.556E-3

Table 4.13: The coefficientsof NF with.coded factorsin a significance

order of the stepwise regression.

Factor | Coefficient | Factor | Coefficient | Factor | Coefficient
H -0.13 AE 0.024 AH -7.248E-3
E 0.049 A 0.019 DE -5.120E-3
F 0.042 EH -0.014 H? 0.041
C? 0.096 EF 0.012 E? 0.028
G 0.034 J -0.012 HJ 2.935E-3
EG 0.033 FH -0.011 EJ -2.183E-3
D 0.028 FG 7.339E-3
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Table 4.14: The coefficients of 11P3 with coded factorsin a significance
order of the stepwise regression.

Factor | Coefficient | Factor | Coefficient | Factor | Coefficient
K 0.15 BK -0.012 CH 6.803E-3

J -0.14 AE 0.011 EJ 6.624E-3

H -0.082 BJ 0.011 CK -6.674E-3
D 0.061 EK -0.010 BD -5.666E-3
JK 0.035 DE -0.010 Al 5.255E-3

E 0.025 H? 0.029 AK -5.171E-3
F 0.025 BC 9.066E-3 .| GH 4.779E-3

A 0.019 HK 8.074E-3 | GK -4.788E-3
G 0.014 DJ 8.034E-3 | FJ 4.283E-3

BH 0.014 DK -7981E-3 | FK -4.204E-3
EG 0.013 HJ -7.126E-3 | AD -4.084E-3
DH 0.013 cJ 6.856E-3
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42.3 Summary

In this section, we provide the information of the 7 responses for the LNA circuit using the
CCF design. Transformation of S11 and [1P3 by BOX-COX transformation or experience
improves the model adequacy. We also provide the results of variable selection using the
stepwise regression. Both the values F;y and Fppr are set to be 0.1, and we follow the
hierarchical ordering principle. The R?, standard deviation, and coefficients of each re-
sponse surface models are also obtained. The results of CCF design are deemed adequacy
for continuously using in the circuit performance optimization agorithm and the sensitivity

anaysis.

4.3 Mode Adequacy.Checking

The residual normal probability plots, scatter plots of these 7 responses, and two trans-
formed responses are shown in Figs. 4.8-4.16 where scatter plots of S11 and |1P3 reveal
obvious pattern. After transformation of S11 and 11P3, the results confirm that the model

assumption is satisfied.
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Figure 4.8: Residual normal probability plotsfor (a) S11 and (b) 1/S11.
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Figure 4.12: A model adequacy checking for S22 (a) residual normal
probability plot and (b) the residual normal probability
plot.



4.3 Model Adequacy Checking

73

Normal % Probability

3.00

1.50

0.00

Studentized Residuals

-1.50

-3.00

Studentized Residuals

(a)
O o
o
o d - ma A a o g
— ooy O
o (=]
o
(m| Bo g 4 e o o
o E'El':'ﬁl gl o oo o
o [a] (] o o
o o Ealsa] L ot g™ P oo
O =) O =
o
o s o%a B C@egmon
e o I:EI| T O of o
o od o”
[m] I:II:I|:||:| o o |:|EI
N o oo =] =
a o
o o
o
o
[ [ [ [ [
6.27 7.16 8.05 8.95 9.84
Predicted
(b)

Figure 4.13: A model adequacy checking for K (a) residual normal

probability plot and (b) the residual normal probability
plot.



74

Chapter 4 : Results of DOE for LNA Circuit

2
=
<)
o
S
£
S
zZ
Studentized Residuals
(a)
3.00 — f=i
a
n a [m=]
< 150 - o © N E o
k=) = 8- Pie 8 Pl ol="
7] o = ram ]
[ o [m ] a
Ind &o 3 o B EID EF'LTI
B o0.00 =) - th o
N m
= EE = 8 og = 5
() oo B =] =15 [m}
'g o oo 0o o o
[m =] [m] [m] [m] =]
N 150 | B T Hg_ o
o o o
(]
-3.00 —
I I I I I
0.83 0.99 1.16 1.33 1.50
Predicted
(b)

Figure 4.14: A model adequacy checking for NF (a) residual normal
probability plot and (b) the residual normal probability
plot.



4.3 Model Adequacy Checking

75

Normal % Probability
g

Studentized Residuals

(a)

Normal % Probability

Studentized Residuals

(b)

Figure 4.15: Residual normal probability plotsfor (a) [1P3 and (b)
log(I1P3 + 11.1265).



76

Chapter 4 : Results of DOE for LNA Circuit

350 H o
(=]
ﬂ [=]
S 174 a YW om
=] [=]
2 o @ %E B g
o EJ = . néll:ﬁ = °
Tom
§ 002 _| g o = 'I';D Daﬂl o [m] -
. : O o
B Dﬂ%ﬁuﬁnﬁ o . =}
[} o = oo g 4 o
= ° & ©Ba .
(75 o [m] o (=] -
179 -
[=]
355 %
I I I I I
-11.00 -7.94 -4.88 1.82 1.25
Predicted
(a)
3.00 —
[m ]
[m] [m]
a
n = [m} = oo
150 — o =}
g o o™ go
2 2 et
§ o B Lo
B 000 ° o g En::?%n ozf Bo
N . =) = [y
= o Bl gy %Tn,
S o o o O o o
B 150 o s P8 oog 8 o
- o
o (]
-300 4 B
I I I I I
0.07 0.34 0.60 0.87 1.13
Predicted
(b)

Figure 4.16: Residual scatter plotsfor (a) 11P3 and (b)

log(I1P3 +11.1265).




4.4 : Accuracy Verification 77

43.1 Summary

The residual normal probability plots, scatter plots of these 7 responses and two trans-
formed responses are discussed and shown in Figs. 4.8-4.16. And the two responses trans-

formation improve the capability of explanation of the models.

4.4 Accuracy Verification

We have provided the 7 surface response models with stepwise regression in the previous
section and the results of R? show that;the models are well constructed according to the
experimental design points of view. jBut the factor settings of optimization may not lie at
the high (+1), low (—1), or zero factor level setting.-We are interested in the accuracy of
the 7 models within our high and'low level settings;'and we generate 100 random numbers
for each factor with uniform(-1, 1) distribution. 100 random numbers are enough for the

accuracy verification.

4.4.1 Accuracy Verification Results

The results calculated from the response surface models and circuit simulator are shown

in Tab. 4.15 and Tab. 4.16. And the scatter plots of values calculated from the response
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Table 4.15: Accuracy verification of the results calculated from the
constructed response surface model.

Values calculated
from response

surface models S11 S12 S21 S22 K NF [1P3
Mean -15.12 | -38.04 | 13.65 | -12.33 | 7.84 | 0.9995 | -6.26
Std. Dev. 2.40 031 | 055 | 0.79 | 048 | 0.090 | 1.48

surface models versus values that obtained from circuit ssmulator are shown in Figs. 4.17-

4.23. The results show that there is a high linearity between actual and predicted values.

44.2 Summary

In this section, we generate 100 randont:numbers for each factor with uniform(-1, 1) distri-
bution to verify the accuracy of the 7 response surfacemodels within our high and low level
settings. The results are quite high linearity, and predicted values represent actual values

enough.
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Table 4.16: Accuracy verification of the results obtained from circuit

Predicted value

simulator.
Values calculated
from circuit
simulator S11 S12 S21 S22 K NF [1P3
Mean -14.92 | -38.05 | 13.66 | -12.31 | 7.85 | 0.9952 | -6.20
Std. Dev. 3.30 032 | 054 | 1.017 | 049 | 0.088 | 1.63
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Figure 4.17: A scatter plot calculated from the response surface model

versus values obtained from circuit simulator for S11.
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Figure 4.18: A scatter plot calculated from the response surface model
versus values obtained from circuit ssmulator for S12.
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Figure 4.19: A scatter plot calculated from the response surface model
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Figure 4.21: A scatter plot calculated from the response surface model
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Chapter 5

L NA Circuit Design Optimization

To achieve optimization of the LNA circuit performance automatically, we use Design
Expert® to proceed this work, where anumerical method is applied. 2"¢ order response
surface model with the stepwise regression method is applied. Table 5.1 presents the con-
straints of the circuit parameters, and Tah. 5.2 displays the response targets for the opti-

mization.
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Table 5.1: The constraints of LNA circuit parameters.

Parameter Lower limit | Upper limit
A: Cmatchl (F) 688.4 841.4
B: Cmatch2 (P) 1.946 2.150
C: Cmatch3 (P) 312 344
D: Ldeg (N) 1.10 1.35
E: Lmatchl (N) 4.87 5.95
F: L1 (pum) 0.24 0.26
G: W1 (um) 4.5 55
H: VB1 (V) 0.675 0.825
J VB2 (V) 2.5785 2.8215
K: VDD (V) 2.5785 2.8215

Table 5.2 The targets of responses.

Response Goal Lower limit | Upper limit
S11 < —10dB -21.32 -6.63
S12 < —25dB -39.28 -36.85
S21 maximize 11.39 15.12
S22 < —10dB -15.25 -9.44
K > 1 6.26 9.85
NF <2 0.82 1481
NP3 > —10 -10.12 0.94
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5.1 Optimization Results Using the Stepwise Regression

M odels

There are three optimized cases which satisfy all specifications, minimize the noise fig-
ure, and maximize the voltage gain. In the the process of the optimization we modify the
specifications by 24 to ensure the recipes are 95 % credible. Firstly, according to the ob-
jective function which is presented in Egs. 2.23, 2.24, 2.25, and 2.26, the seven responses
are transformed into their individual desirabilities. These individual desirabilities are then
combined using geometric mean to get the desirability function D. Therefore we maximize
the desirability function to get optimal recipes. The constraint of the three optimized cases
are shown in Tabs. 5.3-5.5. In the case-of satisfied all-specifications, the upper and lower
weight are equal to 1. In the case of minimized noisefigure; the upper weight isequal to 10,
that means more important to minimize noise figure. In the case of maximized voltage gain,
the lower weight is equal to 10, that means more important to maximize voltage gain. The
upper or lower limit are also considering their specifications and modify the specifications

by 26 when the target is out of the specifications.

Tables 5.6-5.8 show the original case and the three optimal recipesfor these three cases.
Design Expert® uses direct search methods to maximize the desirability function D. Ta-

bles 5.9-5.11 provide the predicted responses for the three cases which are estimated by
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Table 5.3: The constraint for the case of satisfied all specifications. We
modify the specifications within 25.

Lower | Upper | Lower | Upper
Response Goal limit | Limit | weight | weight
S11 (dB) | minimize | -21.32 | -10
S12 (dB) | minimize | -39.28 | -39.2
S21 (dB) | maximize | 13.456 | 15.12
S22 (dB) | minimize | -15.25 | -10.3
K maximize | 7.199 | 9.846
NF (dB) | minimize | 0.816 | 1.018
[IP3 (dB) | maximize | -8.17 | 0.94

PRRRRRR
PR RRPRRRRE

the response surface models with the stepwise regression method, and the completed con-
tour plots are provided in Appendix A for one case. Tables 5.12-5.14 provide the actual
responses for the three cases which are obtained by running circuit simulator. We can ob-
serve that the predicted optimal-recipes are-accurate. ‘Next we discuss three cases in detail,

and the results of three optimized cases are better than that of the original cases.



Chapter 5: LNA Circuit Design Optimization

Table 5.4: The constraint for the case of minimized noise figure. We
modify the specifications within 25.

Lower | Upper | Lower | Upper
Response Goal limit | Limit | weight | weight
S11(dB) | minimize | -21.32 | -10 1 1
S12 (dB) | minimize | -39.28 | -36.85 1 1
S21 (dB) | maximize | 11.39 | 15.12 1 1
S22 (dB) | minimize | -15.25 | -10.3 1 1
K maximize | 6.262 | 9.846 1 1
NF (dB) | minimize | 0.816 | 1.482 1 10
[1P3 (dB) | maximize | -9.948 | 0.94 1 1

Table 5.5: The constraint for the case of maximized voltage gain. We
modify the specifications within 2.

Lower | Upper | Lower | Upper
Response God l[imit | Limit | weight | weight
S11 (dB) | minimize | -21.32 | -10 1
S12 (dB) | minimize | -39.28 | -36.85 1
S21 (dB) | maximize | 11.39 | 15.12 10
S22 (dB) | minimize | -15.25 | -10.3 1

K maximize | 6.262 | 9.846 1
NF (dB) | minimize | 0.816 | 1.482 1
[1P3 (dB) | maximize | -9.948 | 0.94 1

RPRRPRRRRPR
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Table 5.6: Optimal recipes for the case of satisfied all specifications
calculated by the 2" order response surface model. ”1”
means the highest priority.

Nominal
Recipe case 1 2 3

Cmatchl (F) | 7649 836.6 | 8414 | 8414
Cmatch2 (P) |+52.048.,1.2.045 | 2124 | 2.074
Cmatch3 (P) 3.28 3.35 341 3.39

Ldeg (N) 122 17110 ¢ 111 | 110
Lmatchl (N)-| 541" | 588 | 587 | 588
L1 (um) 025 1026| 026 | 0.26
W1 (um) 5 450 | 450 | 450
VB1 (V) 0.7 710,799 | 0.803 | 0.797
VB2 (V) 27 | 27427 | 2.7178 | 2.6405

VDD (V) 27 | 28214 | 27936 | 2.8215
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Table 5.7: Optimal recipes for the case of minimized noise figure
calculated by the 2" order response surface model. ”1”
means the highest priority.

Nominal
Recipe case 1 2 3

Cmatchl (F) | 7649 [.6885 6884 | 688.4
Cmatch2 (P) | 2.048. | 2.096.[-2.111 | 2.097
Cmatch3 (P) 3.28 3.22 3.20 3.22

Ldeg (N) 122 | 110 4 121-| 110
Lmatchl (N) | 541 | 574 | .580-| 567
L1 (um) 0.25 |- 0247024 | 024
W1 (um) 5 450 | 450 | 450
VBL1 (V) 07 | 0808 | 0823 | 0.793
VB2 (V) 27 | 25785 | 2.6523 | 2.6090

VDD (V) 27 | 28215 | 2.8215 | 2.8207
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Table 5.8: Optimal recipes for the case of maximized voltage gain
calculated by the 2" order response surface model. ”1”
means the highest priority.

Nominal
Recipe case 1 2 3

Cmatchl (F) | 7649 | 688.4 | 6884 | 688.7
Cmatch2 (P) |+32.048....2.131 | 2140 | 2.142
Cmatch3 (P) 3.28 3.15 3.19 3.13

Ldeg (N) 122 7111 ¢ 110 | 110
Lmatchl (N)-| 541" | 590 { 581 | 5.86
L1 (um) 025 1025 | 025 | 0.25
W1 (um) 5 450 | 450 | 450
VB1 (V) 0771'0.825 | 0.828 | 0.825
VB2 (V) 27 | 26530 | 25797 | 2.7191

VDD (V) 27 | 2.8206 | 2.7875 | 2.8214
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Table 5.9: Optimal results for the case of satisfied all specifications

calculated by the 2™ order response surface model. ”1”
means the highest priority.

Values calculated from
response surface models Goal 1 2 3
S11 (dB) <-10 -10.697 | -10.846 | -10.552
S12 (dB) <-25 -39.266 | -39.271 | -39.227
S21 (dB) maximized | 14.351 | 14.314 | 14.325
S22 (dB) <-10 -12.173 | -11.242 | -12.035
K >1 7895 | 7.870 | 7.812
NF (dB) <2 0946 | 0.962 | 0.961
[1P3 (dB) > -10 -5.831 | -5.801 | -4.732
Desirability 0.404 | 0.382 | 0.356

Table 5.10: Optimal results for the case 0f minimized noise figure

calculated by the 274 order response surface model. " 1”
means the highest priority.

Values calculated from
response surface models Goal 1 2 3
S11 (dB) < -10 -16.578 | -16.755 | -16.319
S12 (dB) < -25 -38.582 | -38.478 | -38.535
S21 (dB) maximized | 15.125 | 14.903 | 15.083
S22 (dB) <-10 -13.408 | -13.356 | -13.453
K >1 7272 | 7.370 | 7.256
NF (dB) <2 0816 | 0.816 | 0.814
[1P3 (dB) > -10 -5.031 | -5.544 | -5.404
Desirability 0.702 | 0.695 | 0.693
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Table5.11: Optimal results for the case of maximized voltage gain
calculated by the 2" order response surface model. ”1”
means the highest priority.

Values calculated from
response surface models Goal 1 2 3
S11 (dB) <-10 |-16.240 | -16.915 | -16.671
S12 (dB) < -25 -38.654 | -38.609 | -38.687
S21 (dB) maximized | 15.12 15.12 15.12
S22 (dB) < -10 -13.714 | -13.333 | -13.643
K >1 7352 | 7.331 | 7.387
NF (dB) <2 0.839 | 0.833 | 0.842
[1P3 (dB) > -10 -5.980 | -5.530 | -6.663
Desirability 0.706 | 0.702 | 0.702

Table 5.12: Optimal results for the case of satisfied all specifications by
running circuit simulator: 1" means the highest priority.

Values obtained from
circuit ssimulator God Originl 2 3

S11 (dB) < -10 -8.756 | -10.37 | -10.54 | -10.22
S12 (dB) <-25 -39.2 | -39.3 | -39.32 | -39.29
S21 (dB) maximized | 13.38 | 14.31 | 14.32 | 14.27
S22 (dB) < -10 -6.137 | -12.29 | -11.07 | -11.92

K >1 7199 | 7.948 | 7.921 | 7.932
NF (dB) <2 1.018 | 0.980 | 0.980 | 0.993
[1P3 (dB) > -10 -817 | -573 | -558 | -4.21
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Table 5.13: Optimal results for the case of minimized noise figure by
running circuit smulator. ”1” means the highest priority.

Values obtained from
circuit ssimulator Goal Originl 1 2 3

S11 (dB) <-10 -8.756 | -18.13 | -17.14 | -17.57
S12 (dB) <-25 -39.2 | -38.49 | -38.40 | -38.50
S21 (dB) maximized | 13.38 | 15.17 | 14.85 | 15.07
S22 (dB) < -10 -6.137 | -13.39 | -13.32 | -1341

K >1 7199 | 7.157 | 7.341 | 7.254
NF (dB) <2 1.018 | 0.808 | 0.817 | 0.812
[1P3 (dB) > -10 -8.17 | -552 | -5.67 | -5.77

Table 5.14: Optimal results for-the case of maximized voltage gain by
running circuit ssmulator. ”1” meansthe highest priority.

Values obtained from
circuit simulator God Originl 1 2 3

S11 (dB) < -10 -8.756 | -17.34 | -18.33 | -17.95
S12 (dB) < -25 -39.2 | -38.66 | -38.59 | -38.68
S21 (dB) maximized | 13.38 | 15.09 | 15.11 | 15.14
S22 (dB) <-10 -6.137 | -13.60 | -13.07 | -13.53

K >1 7199 | 7.413 | 7.325 | 7.389
NF (dB) <2 1.018 | 0.840 | 0.834 | 0.831
[1P3 (dB) > -10 -8.17 |-5915| -555 | -6.78
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5.2 Comparison of Three Optimized Cases

The section we compare with three optimized cases which satisfy al specifications, min-
imize the noise figure, and maximize the voltage gain. Using the desirability function D
we achieve the goals easily and we select the largest D as the example of the three cases.
In the case of minimize the noise figure, the upper weight is equal to 10, that means we
pay more attention to minimize the noise figure. In the case of maximize the voltage gain,
the lower weight is equal to 10, that means we pay more attention to maximize the voltage
gain.

Figure 5.1 shows comparison of the original case and three optimized cases for the
result of S11 response. The result is aceeptable if*S11 parameter is smaller than -10 dB
within the working region (2.11 GHz ~ 2.17 GHZz). Figure 5.1 describes that the results of

three optimized cases have achieved tothisgoal.

Figure 5.2 shows comparison of the original case and three optimized cases for the
result of S12 response. The result is acceptable if S12 response is smaller than -25 dB
within the working region. Figure 5.2 shows that the original case and the results of three
optimized cases have achieved to thisgoal. Compared with the original case, the optimized
result are dightly risen. This phenomenon is due to a compromise among response so that

other responses can achieve their goal.

Figure 5.3 shows comparison of the original case and three optimized cases for the
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result of S21 response. Although S21 response doesn’t have critical criteria, to get the
value as great as possible is good for LNA circuit design. Figure 5.3 describes that the

results of three optimized cases that are made some improvement from the original case.

Figure 5.4 shows comparison of the original case and three optimized cases for the
result of S22 response. As the same as parameter S22, the result is acceptable if S22
response is smaller than -10 dB within working region. Figure 5.4 shows that the results of

three optimized cases have achieved to this goal.

Figure 5.5 shows comparison of the original case and three optimized cases for the
result of K response. The criteria of K factor isthat it should be greater than 1 in working
region. Asshown in Fig. 5.5, the original case has achieved this criteria, and the results of

three optimized cases are made improvement from the original data.

Figure 5.6 shows comparison of the original case and three optimized cases for the
result of NF response. The criteria of noise figure is that it should be smaller than 2 in
working region. Figure 5.6 describes that origina case and the results of three optimized

cases have achieved to this goal and the results are improved from the original case.

Figure 5.7 shows comparison of original case and three optimized cases for the result
of input intercept point 3rd. The criteria of [1P3 isthat drop from peak to bottom should be
greater than -20 dB and as small as possible. As shown in Fig. 5.7, the original case has

achieved this criteria, and the optimized result does do an improvement from the original
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Figure 5.2: Comparison of original case and three optimized cases for
the result of S12 response. A zoom-in plot for the operation

frequency.
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Figure 5.3: Comparison of original case and three optimized cases for
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frequency.
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Figure 5.5: Comparison of original case and three optimized cases for
the result of K response. A zoom-in plot for the operation

frequency.
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Figure 5.6: Comparison of original case and three optimized cases for
the result of NF response. A zoom-in plot for the operation

frequency.
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Comparison of original case and three optimized cases for
theresult of 11P3 response. A zoom-in plot for the operation
frequency. Plots (a)isthe original case, (b) isa
maximization of the voltage gain, (c) isaminimization of
the noise figure, and (d) satisfied al specifications.
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5.3 Summary

In this chapter, we provide the constraints of the circuit parameters and the targets of the
responses for the optimization. The seven responses are transformed into desirability func-
tion D, and we maximize the desirability function to get optimal recipes. Three cases of
optimal recipes are obtained and the results all satisfy specifications. In Appendix A we
give the completed contour plots. Finally we take the three cases of optimal recipesto run

circuit ssmulator and compare with the original case.





