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摘要 

 

  線性同餘法（linear congruential generator，LCG）與 k 階乘

餘法（multiple recursive generator，MRG）至今仍為亂數產生器

常使用的兩大線性方法；而近日，由於電腦處理器成本下

降，平行化計算因而被廣泛研究與使用，以改善因分析與模

擬資料量與日俱增，電腦運算效率降低之問題。除此之外，

平行化處理亦可能增強許多模擬數據時所需具備的統計性

質，如隨機性等。傳統平行化線性亂數產生器之方式，譬如

使用不同初始值，多僅改善運算速度，對於統計性質的改

變，則助益不大；但藉由改變線性亂數產生器的增量

（increment），則可坐收同時改善速度與性質之效，且計算

簡單，易於推廣，尤其輔以平行設計之跳蛙法（leapfrogging 

method），綜效較順序切割法（sequence splitting method）更

佳。 
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Abstract 

 

    Two major linear random number generators (RNGs), the linear 

congruential generator (LCG) and the multiple recursive generator 

(MRG), have been widely studied and used for many decades. Nowadays, 

as the price decreasing of computer processors, parallelization of the 

generators is being concerned for, at least, the computational efficiency 

purpose. Besides, the proper design of parallel generator may also 

improve some statistical properties such as randomness. The Parallel 

linear random number generator with different increment shifts is 

efficient and feasible because the change of the increments only shifts the 

hyperplanes of the linear RNG. Additionally, parallelizing through the 

leapfrogging method can further improve than through the sequence 

splitting method. 
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1. INTRODUCTION 

    It is very important to develop a random number generator (RNG) to generate 

pseudo-random numbers for simulations in computers (Knuth 1998). With the 

developed of parallel computing in modern computer technology, this study is aiming 

at the design of parallel linear random number generators with different increment 

shifts for simulations with parallel computing. 

    The linear congruential generator (LCG) has been widely used for its simplicity 

and theoretical properties since the first proposal in Lehmer (1951). With the 

increasing demand of high quality random numbers, the multiple recursive generator 

(MRG) and other methods were developed afterwards (L’Ecuyer, Blouin and Couture, 

1993, Knuth 1998, Deng and Xu, 2003). The MRG greatly extends the period of the 

random sequence and improves properties of the LCG. It is challenging to determine 

the parameters in the MRG that improve the properties of a RNG. The DX generator 

has been proposed by Deng and Xu (2003) to select parameters in the MRG that 

prolongs the period of random sequences and improves the efficiency of simulation. 

    As the price decreasing of computer processors nowadays, it becomes very 

economic and efficient to generate numbers through parallelization by many 

computers. With a proper design of algorithms, it becomes feasible to shorten the 

computational speed and strengthen randomness of the output (Gentle, J. E. 2003). 

This study will propose methods to parallelize a linear generator by using different 

increment values. The theoretical and empirical properties will be explored in this 

study. 
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2.  SERIAL LINEAR RANDOM NUMBER GENERATORS 

2.1  Linear Congruential Generator (LCG) 

        The method of LCG has been proposed by Lehmer (1951). This recursive 

generator has the following form: 

Xi = (aXi – 1 + c) mod m, (2.1) 

Ui = Xi / m, (2.2) 

where a, c, m, and X0 are integers; m > 0 is the modulus parameter; 0 < a < m is the 

multiplier parameter; 0 ≤ c < m is the increment parameter; X0 is the starting value or 

the seed, 0 ≤ X0 < m when c ≠ 0 and 0 < X0 < m otherwise. 

    The performances of linear congruential generators differ drastically considering 

the changes of a, c, and m. These parameters hence ought to be chosen very 

cautiously so that the resulting pseudorandom numbers possesses good properties, 

such as long period, uniformity, randomness, and so forth. Since the random number 

of Xi is obtained from the remainder after the modulo operation of m, the possible 

outcome Xi is in the set of S = {0, 1, 2, …, m – 1}. An LCG is said to attain the full 

period m if and only if the following theorem is satisfied (Knuth 1998): 

(1) c is relatively prime to m; 

(2) q is a factor of (a – 1), if q is a prime factor of m; 

(3) (a – 1) is a multiple of 4, if m is also a multiple of 4. 

    The LCGs can be classified into two types, mixed (c > 0) and multiplicative (c = 

0). Apparently, the full period does not exist in the multiplicative case because c = 0 is 

a multiplier of any integer m. Also, 0 is an absorbing state in this case. Instead, its 

maximum period, m – 1, is obtained when a is a primitive element modulo m. 

Furthermore, it is widely used in 32 bit computers with the multiplicative LCGs, m = 

231 – 1 and a = 7k where k is a primitive root such as a = 75 = 16,807. 
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2.2  Multiple Recursive Generator (MRG) 

    The multiplicative LCG can be extended to the higher order recursively by 

adding up the previous k pseudorandom numbers. This is called as the multiple 

recursive generator (MRG), which is defined as follows: 

Xi = (a1Xi – 1 + a2Xi – 2 + … + akXi – k) mod m, (2.3) 

Ui = Xi / m, (2.4) 

where k is the order. The absolute values of the multipliers a1, a2, …, ak and the 

starting values X0, X1, …, Xk – 1 may be any numbers except for all zeros. In addition, 

ak should be nonzero. If k = 1, the MRG degenerates to the multiplicative LCG. 

    The maximum period of an MRG is improved to mk – 1 on condition that f(x) = 

xk – a1xk – 1 – … – ak – 1x – ak is a primitive polynomial modulo m. Alanen and Knuth 

(1964) and Knuth (1998) showed the following criteria to find a1, a2, …, ak: 

(1) (–1)k – 1ak must be a primitive root modulo p; 

(2) the polynomial xr must be congruent to (–1)k – 1ak, modulo f(x) and m; 

(3) the degree of xr/q mod f(x), using polynomial arithmetic modulo m, must be 

positive, for each prime factor q of r. 

where r = (mk – 1)/(m – 1). 

    The MRG has improved the statistical properties for an RNG with slight increase 

of computational time because this generator requires more multiplication and 

calculation. Also, the criteria for selecting multiplier parameters requires the prime 

factorization of r = (pk – 1)/(p – 1), which is challenging in seaching when p and k are 

larger (Knuth 1998). 

    L’Ecuyer, Blouin, and Couture (1993) made an attempt to find some MRGs for k 

≤ 7. With m = 231 – 1, they suggested a sixth-order MRG:  

 Xi = (177,786Xi – 1 + 64,654Xi – 6) mod (231 – 1) (2.5) 

that attains the period of (231 – 1)6 – 1 ≈ 1055. 
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    Other subgroups or special cases for the MRGs have been studied (Gentle, J. E. 

2003). One typical instance is the generator, 

 Xi = (Xi – j + Xi – k) mod 2m, (2.6) 

called the additive lagged-Fibonacci random number generator.  

 

2.3  DX-k-s Random Number Generators 

    Research has been conducted to improve the computational speed of MRGs. 

L’Ecuyer (1990), for example, suggested considering the generator of the following 

form: 

 Xi = (ajXi – j + akXi – k) mod m. (2.7) 

Thus, the primitive polynomial f(x) = xk – ajxk – j – ak would be manipulated because of 

the accessibility of this primitive trinomial. 

    Deng and Lin (2000) proposed the fast multiple recursive random number 

generator (FMRG), which is defined as: 

 Xi = (–Xi – 1 + BXi – k) mod m (2.8) 

The FMCG in (2.8) and the MRG in (2.7) improves the computational efficiency 

because it sets all multipliers to zeros except for a1 in (2.8) or aj in (2.7) and ak. Deng 

and Lin (2000) also listed some FMCGs of orders up to four. L’Ecuyer (1997), 

however, suggested that the sum of squares of coefficients shall be large, which is a 

necessary condition for an MRG with a good lattice structure. FMCGs may fail to 

satisfy this condition. 

    Deng and Xu (2003) have further extended the idea of the FMRG to the so-called 

DX-k-s random number generator. To prolong the period and improve the efficiency, 

they place certain intermittent coefficients to the same value B. Here are some 

examples: 
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(1) DX-k-2 

 Xi = B(Xi – 1 + Xi – k) mod m; (2.9) 

(2) DX-k-3 

 Xi = B(Xi – 1 +
2
ki

X ⎡ ⎤−⎢ ⎥⎢ ⎥

+ Xi – k) mod m; (2.10) 

(3) DX-k-4 

 Xi = B(Xi – 1 +
3
ki

X ⎡ ⎤−⎢ ⎥⎢ ⎥

+ 2
3
ki

X ⎡ ⎤−⎢ ⎥⎢ ⎥

+ Xi – k) mod m, (2.11) 

where  is the ceiling function. Deng and Xu (2003) and Deng (2005) recommended 

specific generators, and the following one has very long period and large coefficients: 

⋅⎡ ⎤⎢ ⎥

 Xi = 1,073,741,362(Xi – 1 + Xi – 533 + Xi – 1065 + Xi – 1597) mod (231 – 1). (2.12) 

The period greatly stretches to 1014,903 approximately. 

 

3.  STATISTICAL TESTS AND CRITERIA 

3.1  Uniformity 

    If a random variable U ~ U(0, 1), then the population mean is E(U) = 1/2, the 

variance is Var(U) = 1/12, and  

 P(a < U < b) = b – a, (3.1) 

for any 0 ≤ a < b ≤ 1. A good uniform random number generator should generate 

similar results. Using the fact that 
0 i

i
X m

X
≤ <
∑  = ( 1

2
m m )−  and  = 2

0 i

i
X m

X
≤ <
∑

( 1)(2 1
6

m m m− − )  for the RNG with maximum period, we know that 1
2

mU
m
−

=  and 

2 1.
12U
mS

m
+

= For the RNG with the period of m – 1, U  = 1
2

 and 2 1.
12U
mS

m
−

=  When m 

increases, both U ’s and ’s approach to E(U) and Var(U). 2
US

    Additionally, goodness-of-fit tests have been developed for testing uniformity, 

such as chi-squared test, Kolmogorov-Smirnov (K-S) test, and Anderson-Darling 

(A-D) test. 
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3.2  Randomness 

    Ideally, an RNG can generate random numbers with no correlation between Xi 

and Xi + k. For a LCG, the output Xi + k is a function of Xi as follows: 

 Xi + k = ( 1)
1

k
k

i
c aa X

a
⎡ ⎤−

+⎢ ⎥−⎣ ⎦
 mod m. (3.2) 

    One method to evaluate this association is the Pearson correlation coefficient, R. 

When k = 1 or with lag one, it is called as the serial correlation coefficient. Making 

use of the formulas for  and 
0 i

i
X m

X
≤ <
∑

0 i

i
X m

X
≤ <
∑  again, R can be induced from (3.3) to 

(3.5). 

 R = 
1 1

1 1 1
2 2

2 2
1 1

1 1 1 1

1

1 1

m m m

i i i i
i i i

m m m m

i i i
i i i i

X X X X
m

X X X X
m m

+ +
= = =

+ +
= = = =

−

⎛ ⎞ ⎛
− −⎜ ⎟ ⎜

⎝ ⎠ ⎝

∑ ∑ ∑

∑ ∑ ∑ ∑ i
⎞
⎟
⎠

 (3.3) 

= 

2

1
1

2

1 ( 1)
2

( 1)(2 1) 1 ( 1)
6 2

m

i i
i

m mX X
m

m m m m m
m

+
=

−⎡ ⎤− ⎢ ⎥⎣ ⎦
− − −⎡ ⎤− ⎢ ⎥⎣ ⎦

∑
 (3.4) 

= 
*

2

[ ( , , ) 6] (6 6 3) ,
1

σ a m c m X c
m

+ − + +
−

 (3.5) 

where σ(a, m, c) = 
1

0

112 ,  (( )) ( ),
2

m

i

i ai c
m m

−

=

⎛ ⎞⎛ + ⎞⎛ ⎞ ⎛ ⎞ ⋅ = ⋅− ⋅ + ⋅⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑  and X* satisfies that 

(aX* + c) mod m = 0. 

    When m is large in practical applications, the serial correlation can be 

approximated to (3.6) or (3.7). 

 R ≈ ( , , ) 6σ a m c
m

+  (3.6) 

≈ ( , , ) .σ a m c
m

 (3.7) 

 

    The upper and lower bounds for the serial correlation can be obtained, which 
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only involved the parameters a and m (Knuth 1998).  For a = 16,807 and m = 231 – 1, 

the bounds are 

31 31

63918.5 127793
2 1 2 1

R−
≤ ≤

− −
 (3.8) 

and 

 –2.9764 × 10–5 ≤ R ≤ 5.9508 × 10–5 (3.9) 

Hence, R will decrease with the increasing of m. More details are discussed in Knuth 

(1998). 

 

3.3  LATTICE STRUCTURE 

    The following two LCGs will be used for illustration: 

 Xi = (25Xi – 1 + 7) mod 96, (3.10) 

 Xi = (61Xi – 1 + 11) mod 96. (3.11) 

Both of them have the full period, 96. Their means and variances are the same 

consequently. How to make selection between (3.10) and (3.11)? The pairs of 

consecutive numbers of these two LCGs are plotted in Figure 3.1: 

 
(a) 
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(b) 

Figure 3.1: The pairs of consecutive numbers of these two LCGs in (3.10) and (3.11) 

are plotted in (a) and (b) respectively. 

 

    Ideally it is expected that these pairs of consecutive numbers should uniformly 

scatter in the unit square. In reality, these pairs fall on lattice structures as proved in 

Marsaglia (1968). Hence, one can examine the properties of lattice structures to select 

LCGs (Knuth 1998). 

 

4.  PARALLEL LINEAR RANDOM NUMBER GENERATORS 

    In order to accelerate the simulating time and improve efficiency, it is possible to 

parallelize the RNG with several computer processors. There are mainly two 

approaches to combine random numbers generated by different processors, sequence 

splitting and leapfrogging (Coddington, P. D. 1996). These two approaches will be 

discussed below. 
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4.1  Sequence Splitting 

    The generation of a total sequence of N random numbers is split by the random 

numbers generated by p processors. Suppose N = np and n is the number of random 

number that one process generates. The processor j, j = 1, 2, …, p, is responsible for 

producing the following random numbers in the total sequence: 

 X(j – 1)n + 1, X(j – 1)n + 2, …, Xjn (4.1) 

 

4.2  Leapfrogging 

    The processor under the leapfrogging method generates random numbers in the 

total sequence with a lag of p. The system works like the allocation a deck of cards to 

p players. The processor j, j = 1, 2, …, p, is responsible for producing the following 

random numbers in the total sequence: 

 Xj, Xj + p, Xj + 2p, …  (4.2) 

 

5.  PARALLELIZATION WITH DIFFERENT INCREMENT 

SHIFTS 

    For the LCG in (2.1), it is possible to consider the changing of a or c for different 

processor in parallel computing. This will be based on the lattice structures of LCGs 

as follows.   

 

5.1  Minkowski Bases of the LCG 

    The Monkowski bases of the lattice structures for LCGs are shown in Marsaglia 

(1968). They are 

 L =  (5.1) 0 1 2
1

| , , ,
t

i i t
i

V z V z z z
=

⎧ +⎨
⎩ ⎭

∑ … Z⎫∈ ⎬

where 

 9



V0 = 
1

21 ( 1)0,  ,  (1 ) ,  (1 ) ,  ,  ,
1

tc ac a c a a c
m a

−⎛ ⎞−
+ + +⎜ ⎟−⎝ ⎠

…  V1 = ( )2 11 1,  ,  ,  ,  ,ta a a
m

−…  

V2 = (0, 1, 0, …, 0), V3 = (0, 0, 1, …, 0), …, Vt = (0, 0, 0, …, 1). 

    The increment c, simply showing up in V0, accounts for nothing but the shift of 

lattice structure of an LCG. On the other hand, a does have a great effect on the shape 

of structure. 

    Moreover, (2.1) can be rewrite as composition of the equations below if c is 

smaller than m: 

Xi = aXi – 1 + c, 

Xi = aXi – 1 + c – m, 

Xi = aXi – 1 + c – 2m, 

#  

Xi = aXi – 1 + c – (a – 1)m; (5.2) 

or the followings if c is equal to or greater than m (which is often avoided): 

Xi = aXi – 1 + c, 

Xi = aXi – 1 + c – m, 

Xi = aXi – 1 + c – 2m, 

#  

Xi = aXi – 1 + c – am. (5.3) 

    Apparently, the pair of consecutive numbers from LCGs will fall on few parallel 

lines. The parameter c shifts the lines while the parameter a changes the slope of them. 

If we choose c appropriately in the parallelization of LCGs, we can fill in the space 

between parallel lines in the lattice structure efficiently as illustrated in Figure 5.1. 

However, the changing of a in parallelization is very challenging because the shapes 

of lattices are changing accordingly. Hence, we will consider the parallelization of 

LCGs with different shift parameters in this study. 
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 (a) (b) 

 

   

 (c) (d) 

Figure 5.1: The lattice structures of parallel LCGs with different shift increments for 

1 to 4 processors are illustrated in part (a) to (d). 

 

    Let Xi be the random sequence from the processor 1 and Yi be that from the 

processor 2. Suppose that these two processors employ LCGs with the same a but 

different increments, c and c’. Then 

 

 11



Xi – Yi = [a(Xi – 1 – Yi – 1) + (c – c')] mod m (5.4) 

= 0 0
( ')( 1)( )

1

i
i c c aa X Y

a
⎡ − −

− +⎢ −⎣ ⎦

⎤
⎥  mod m. (5.5) 

That is, Xi – Yi has its special lattice structure. It also implies that the random 

sequence with leapfrogging method will follow a new lattice structure. 

 

5.2  Parallel Design of Increment Shifts 

    Another reason for preferring c to a in parallelization is that given an LCG with a 

long period of m or m – 1, it is easy to find another c that yields the long period 

because it simply requires c be relatively prime to m. But the selection of a for 

parallelization for long period is very challenging. 

    To make the parallel design of increment shifts feasible for two processors, we 

consider: 

(1) (1) (1) (1)
1

(2) (2) (2) (2)
1

( ) mod  , / ;

( ) mod  , ( 0.5) /( 0.5),     (5.6)
2

 ,   mod  1 0.5;
where  (( ))

 ,   mod  1 0.5.

i i i i

i i i i

X aX c m U X m

c mX aX m U X m

y y
y

y y

−

−

= + =

⎛ + ⎞⎛ ⎞= + = + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎧ ≥⎢ ⎥⎪ ⎣ ⎦= ⎨
<⎡ ⎤⎪ ⎢ ⎥⎩

 

    The  is calculated with the extra addition of 0.5 in both numerator and 

denominator because it can expand the outcome space. Most important of all, this 

extra addition ensures the absence of zero which is undesired for most of the practical 

applications. Also, addition in both numerator and denominator changes neither the 

mean nor the variance. It doesn’t draw different conclusions from  

under the empirical tests either since there is merely a subtle change for the value of 

(2)
iU

( ) ( ) /j j
i iU X= m

( )j
iU  and the difference between any two consecutive random numbers doesn’t differ. 
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Besides, some empirical tests consider only ( ) ,j
iX  which is not modified at all. 

    This idea can be extended to more than two processors. For three processors, we 

consider: 

(1) (1) (1) (1)
1

(2) (2) (2) (2) 1 1
3 31

(3) (3) (3) (3) 2 2
3 31

( ) mod  , / ;

( [ ]) mod  , ( ) /( );
3

2( [ ( ) ]) mod  , ( ) /( ) (5
3

i i i i

i i i i

i i i i

X aX c m U X m

m cX aX c m U X m

X aX c m c m U X m

−

−

−

= + =

⎛ − ⎞⎛ ⎞= + + = + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= + + − = + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.7)

 

For p processors, we consider: 

 ( ) ( ) ( ) ( ) ( 1) ( 1)
1( [ ]) mod  ,  ( ) /( ),j j j j j j

pi i i iX aX c ε m U X m−
−= + + = + + p

−  (5.8) 

where ε = 
1( )j m c

p
⎛ ⎞⎛ −

−⎜⎜
⎝ ⎠⎝ ⎠

,⎞
⎟⎟  j = 1, 2, …, p. If c + ε is not relatively prime to m, set ε 

= ε0, where ε0 is the nearest integer to ε that makes c + ε0 relatively prime to m. 

Moreover, the Euclidean algorithm is capable of helping to check if c + ε0 is relatively 

prime to m (Cormem, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001). In 

practice, this check can be omitted since m is often chosen from prime numbers. 

 

5.3  Serial Correlation 

    The quality of this kind of parallel RNG (PRNG) will be investigated. The 

uniformity, the expectation, and the variance are surely satisfactory. It is necessary to 

check the serial correlation. Let p be the number of processors. Following the similar 

steps from (3.3) to (3.5), we get the correlation for the sequence splitting methods as 

follows: 

 RSS ≈ 

*( )

1 1
2

( , , ) 6 3 2 ( )
p p

j
j j j

j j

σ a m c p m X c p

pm p
= =

⎡ ⎤ ⎡
+ − + +⎢ ⎥ ⎢

⎣ ⎦ ⎣
−

∑ ∑
⎤
⎥
⎦  (5.9) 
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 RSS ≈ 1
( , , ) 6

p

j j
j
σ a m c p

pm
=

+∑
 (5.10) 

≈ 1
( , , )

p

j j
j
σ a m c

pm
=
∑

 (5.11) 

Since the term of σ(aj, m, cj) are only affected by aj and m, this term does not change 

among processors with different cj. As a result, we go back to check the primitive 

formula. If each processors generates the same amount of random numbers n, then: 

RSS ≈ 

( ) ( ) ( ) ( )
1 1

1 1 1 1 1 1

2 2
( ) 2 ( ) ( ) 2 ( )

1 1
1 1 1 1 1 1 1 1

1( )

1 1( ) ( )

p p pn n n
j j j j

i i i i
j i j i j i

p p p pn n n n
j j j

i i i i
j i j i j i j i

X X X X
np

X X X X
np np

+ +
= = = = = =

+ +
= = = = = = = =

−

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑∑ ∑∑

∑∑ ∑ ∑ ∑∑ ∑ ∑ j

 (5.12) 

≈ ( ) ( )
12

1 1

12 ( )
p n

j j
i i

j i

X X
m np +

= =

−∑∑ 3  (5.13) 

    The equation of (5.13) is derived by using the fact that the sample mean and the 

sample variance of X(j) are approximately to 0.5p and 
2

.
12
p  Then we get the bounds as 

following: 

 
1
min jj p

R
≤ ≤

 ≤ RSS ≤ 
1
max jj p

R
≤ ≤

 (5.14) 

    Hence, the correlation of parallel LCGs by the sequence splitting method is 

between the best and the worst correlation of p serial LCGs. 

    The serial correlation for the leapfrogging method RLF is difficult to obtain by 

using the same idea from (3.3) to (3.5). We therefore directly check the primitive 

formula like (5.12): 

RLF = 

1
( ) ( 1) (1) ( ) ( ) ( )

1 1
1 1 1 1 1 1 1

2 2
( ) 2 ( ) ( ) 2 ( )

1 1
1 1 1 1 1 1 1 1

1( ) ( )

1 1( ) ( )

p pn n n n
j j p j j

i i i i i i
j i i j i j i

p p p pn n n n
j j j

i i i i
j i j i j i j i

X X X X X X
np

X X X X
np np

−
+

+ +
= = = = = = =

+ +
= = = = = = = =

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑ ∑∑ ∑∑

∑∑ ∑ ∑ ∑∑ ∑ ∑

p

j

 (5.15) 
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 RLF ≈ 
1

( ) ( 1) (1) ( )
12

1 1 1

12 ( ) ( )
p n n

j j p
i i i i

j i i

X X X X
m np

−
+

+
= = =

⎡ ⎤
3+ −⎢ ⎥

⎣ ⎦
∑∑ ∑  (5.16) 

 
1
min jj p

R
≤ ≤

 ≤ RLF ≤ 
1
max jj p

R
≤ ≤

 (5.17) 

    Thus, RLF falls in the same bounds as RSS does. What is more, the approximate 

serial correlation in (5.16) will decrease with the increase of N = np. The similar 

phenomenon can also be observed by the approximation of the serial correlation in 

(5.13). In practice, tremendous amount of random numbers is often generated in large 

simulation studies and the correlation will not be a major problem as illustrated in 

Figure 5.2. 

 

  

(a) (b) 

Figure 5.2: Serial correlations of the LCG with a = 16,807, c = 0, m = 231 – 1, and p = 

4 in both (a) sequence splitting method and (b) leapfrogging method with the 

increasing of the number of random sequence generated. The absolute value of both 

correlations have been smaller than 0.01 when the number of output is greater than 

15,000. 
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5.4  Lattice Structures 

    From the perspectives of uniformity and serial correlation, sequence splitting 

method and leapfrogging methods have compatible performances. But there is a great 

difference when they are compared on the plots of the pair of consecutive numbers. 

Take four processors as an example. The lattice structure of one LCG is plotted in 

Figure 5.3 (a). The lattice structure of parallel LCG by sequence splitting is plotted in 

Figure 5.3 (b), which shows the adding of three more sets of parallel lines. The lattice 

structure of parallel LCG by leapfrogging is plotted in Figure 5.3 (c), which shows 

more changes of lattice structures that could be useful to create more randomness. 

 

 

(a) 
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(b) (c) 

Figure 5.3: The lattice structure of the LCG, Xi = 16807Xi – 1 mod (231 – 1) is shown in 

(a). Part (b) and (c) demonstrate the structures of the LCG mentioned-above with four 

processors and via sequence splitting method and leapfrogging method respectively.  

 

5.5  Inter-processor Correlation 

    There may exist inter-processor correlation when applying the increment shift 

method for different processors. It might be expected that there exists highly positive 

correlation when the initial seeds are the same and the differences among the 

increments are very small. 

    For illustration, we simulate pseudo random numbers with the parallel LCG set, 

 and (1) (1) 31
116807  mod  (2 1)i iX X −= − (2) (2) 31

1(16807 1) mod  (2 1)i iX X −= + −  using leap- 

frogging method. Both initial seeds of these two LCGs are set to 1. The scatter plot is 

shown in Figure 5.4. The serial correlation is plotted in Figure 5.5. There does not 

seem to have high inter-correlation even when the initial seeds are the same and the 

differences among the increments are very small. 

    That is quite counter-intuition. But suppose the initial seeds are the same in (5.5), 
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then we can simplify the equation into 

 Xi – Yi = ( ')( 1)
1

ic c a
a

⎡ ⎤− −
⎢ ⎥−⎣ ⎦

 mod m. (5.18) 

 Yi = {Xi – ( ')( 1) }
1

ic c a
a

⎡ ⎤− −
⎢ ⎥−⎣ ⎦

 mod m. (5.19) 

    This shows the random sequence still possesses a new lattice structure even 

without the term of ai(X0 – Y0). Namely, the scatter plot of (Xi, Yi) or that of 

 in Figure 5.3 does never appear with a highly correlated pattern, say, a 

line. The serial correlation  

(1) (2)( ,i iX X )

 

Figure 5.4: Scatter plot for the pair of  is shown for the parallel LCG set, 

 and 

(1) (2)( ,i iX X )

(1) (1) 31
116807  mod  (2 1)i iX X −= − (2) (2) 31

1(16807 1) mod  (2 1).i iX X −= + −  
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Figure 5.5: Serial correlations of this parallel LCG set with leapfrogging method. The 

correlation is desirably small especially when the number of pseudo-random number 

generated is larger than 25,000. 

 

5.6  Absorbing States 

    It is aimed to parallelize the multiplicative LCGs that can attain the maximum 

periods. Each processor of the multiplicative LCG yields random numbers with a 

period of m – 1. It is evident that 0 is an absorbing state of the multiplicative LCG that 

is not desired. If the initial seed is the absorbing seed of 0, then the multiplicative 

LCG will enter the absorbing state of 0. The absorbing states and seeds shall be 

avoided in the parallelization of RNGs. 

    For the increment c in (2.1) ≠ 0, we can figure out the absorbing states and seeds 

by means of the extended Euclidean algorithm in the followings. Let Xa denote as the 

absorbing seed, then we can rewrite (2.1) into (5.20) and (5.21): 

 Xa = (aXa + c) mod m; (5.20) 

 (a – 1)Xa mod m = –c mod m. (5.21) 
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As c < m, we can simplify (5.21) as follows: 

 (a – 1)Xa mod m = m – c. (5.22) 

Then it becomes the question of solving the linear congruence. 

    Firstly, we consider a linear congruence of Ax mod M = 1. We can find an integer 

k such that 

 Ax – kM = 1. (5.23) 

If y = –k, 

 Ax + My = 1 (5.24) 

 

Through the extended Euclidean algorithm (Cormem, T. H., Leiserson, C. E., Rivest, 

R. L., and Stein, C. 2001), we are able to obtain one of the solutions, say (x0, y0). 

    Next, we try to solve Ax mod M = B. In the beginning, we multiply B in the 

equation Ax mod M = 1 and substitute the solution x0 into it: 

 B(Ax0 mod M) = B; (5.25) 

 

 (B mod M)(Ax0 mod M) = B; (5.26) 

 A(Bx0) mod M = B. (5.27) 

Then, it is clear that Bx0 satisfies the linear congruence Ax mod M = B. The same idea 

goes in (5.22). For the purpose of figuring out Xa, we can employ the extended 

Euclidean algorithm to find out α0 in (5.28). 

 (a – 1)α0 + mβ0 = 1. (5.28) 

In order to ensure that the absorbing seed is smaller than m, we let 

 Xa = [α0 × (m – c)] mod m. (5.29) 

    Since we can calculate the absorbing seeds, we ought to avoid them in advance. 

Obviously, the more processors are hired, the more starting values should be avoided. 
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Table 5.1: An example of a = 16,807 and m = 231 – 1 to illustrate the implementation 

of the algorithm via the iterative method.  

u1 = m = 231 – 1,   u2 = a – 1 = 16806, 

α1 = 0,   α2 = 1,   β1 = 1,   β2 = 0, 

qi = 1 /i iu u− ,⎢ ⎥⎣ ⎦  i = 2, 3, … 

uj = uj – 2 – uj – 1 × qj – 1  αj = αj – 2 – αj – 1 × qj – 1  βj = βj – 2 – βj – 1 × qj – 1,  j = 3, 4, … 

Repeat the computation until uj = 1. The last αj is the solution, α0 in (5.28). 

    For example, q2 =  = 127,780, u31(2 1) /16806⎢ −⎣ ⎥⎦ 3 = (231 – 1) – 16806 × 127780 

= 12,967, α3 = 0 – 1 × 127780 = –127,780, β3 = 1 – 0 × 127780 = 1, … Because u14 = 

3 – 2 × 1 = 1, the iteration is stopped, and α14 = 827,891,619 is our solution.  

u α β q 

2147483647 0 1  

16806 1 0 127780 

12967 –127780 1 1 

3839 127781 –1 3 

1450 –511123 4 2 

939 1150027 –9 1 

511 –1661150 13 1 

428 2811177 –22 1 

83 –4472327 35 5 

13 25172812 –197 6 

5  –155509199 1217 2 

3 336191210 –2631 1 

2 –491700409 3848 1 

1 827891619 –6479 2 
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    From Table 5.1, we get α0 = α14 = 827,891,619, and the absorbing seed is: 

 Xa = [827891619 × (231 – 1 – c)] mod (231 – 1) (5.30) 

 

Table 5.2: The table shows the parallel LCG set with a = 16,807 and m = 231 – 1 with 

processors varied from one to ten. For instance, for 3 processors, the parallel LCG set 

will be   (2(1) (1) 31
116807  mod  (2 1),i iX X −= − (2) (2)

1(16807 715827882) modi iX X −= + 31 – 

1), and  The absorbing state occurs at 0, 

275,963,873, and 1,871,519,774, respectively. 

(3) (3)
1(16807 1431655765) mod.i iX X −= +

 

jth Processor No. of 

Proc 

Absorbing 

State 1 2 3 4 5 

1 Coefficient          0     

 Absorbing Seed          0     

2 Coefficient          0 1073741824    

 Absorbing Seed          0  659796014    

3 Coefficient          0  715827882 1431655765   

 Absorbing Seed          0  275963873 1871519774   

4 Coefficient          0  536870912 1073741824 1610612735  

 Absorbing Seed          0  329898007  659796014 1817585640  

5 Coefficient          0  429496729  858993459 1288490188 1717986918

 Absorbing Seed          0  760653377  693415135 1454068512 1386830270
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Table 5.2  (Continued) 

jth Processor 

1 2 3 4 5 No. of 

Proc 

Absorbing 

State (6) (7) (8) (9) (10) 

6 Coefficient          0  357913941  715827882 1073741824 1431655765

 Absorbing Seed          0 1211723760  275963873  659796014 1871519774

 Coefficient 1789569706     

 Absorbing Seed  935759887     

7 Coefficient          0  306783378  613566756  920350134 1227133513

 Absorbing Seed          0 1652187122 1156890597  661594072 1485889575

 Coefficient 1533916891 1840700269    

 Absorbing Seed  990593050  495296525    

8 Coefficient          0  268435456  536870912  805306368 1073741824

 Absorbing Seed          0 1238690827  329898007 1568588834  659796014

 Coefficient 1342177279 1610612735 1879048191   

 Absorbing Seed  578894813 1817585640  908792820   

9 Coefficient          0  238609294  477218588  715827882  954437176

 Absorbing Seed          0  807815840 1615631680  275963873 1083779713

 Coefficient 1193046471 1431655765 1670265059 1908874353  

 Absorbing Seed 1063703934 1871519774  531851967 1339667807  

10 Coefficient          0  214748365  429496729  644245094  858993459

 Absorbing Seed          0 2113864526  760653377  727034256  693415135

 Coefficient 1073741824 1288490188 1503238553 1717986918 1932735282

 Absorbing Seed  659796014 1454068512 1420449391 1386830270   33619121
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Table 5.3: List of α0’s for some other popular multipliers with the same modulus = 

231 – 1. The absorbing seeds can be found by Xa = [α0 × (231 – 1 – c)] mod (231 – 1). 

a 41358 48271 62089911 397204094 630360016 742938285

α0 700423312 –179424105 751265057 –858674923 –895497791 –447186684

 

    Table 5.2 shows different absorbing seeds for the parallel LCG set with a = 

16,807 and m = 231 – 1 under different processors. Via the same algorithm, absorbing 

states of other popular LCGs are listed in Table 5.3. 

    The increment shift method can also extend to the MRG case because (2.3) is 

able to be rewritten as composition of some parallel hyperplanes like (5.2) and (5.3). 

The parameter c only shifts this planes. Consequently, we now add the increment c in 

(2.3): 

 Xi = (a1Xi – 1 + a2Xi – 2 + … + akXi – k + c) mod m (5.31) 

    If the generator enters the absorbing state, the output vector (Xi – k, Xi – k + 1, …, 

Xi – 1) and the next one (Xi – k + 1, Xi – k + 2, …, Xi ) are suppose to be the same. It only 

occurs when Xi – k = Xi – k + 1 = … = Xi – 1 = Xi. In other words, the absorbing state arises 

when the initial vector is (Xa, Xa, …, Xa). Therefore, we can solve out the absorbing 

seed by replacing all Xi’s with Xa: 

 Xa = (a1Xa + a2Xa + … + akXa + c) mod m (5.32) 

 ( – 1) mod m = m – c (5.33) 
1

k

k a
i

a X
=
∑

    Now it turns into the question concerning the linear congruence again. But the 

equation changes from (5.27) into (5.34). 

 (
1

k

k
i

a
=
∑ – 1)α0 + mβ0 = 1 (5.34) 
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6. SIMULATION RESULT 

    First we study the parallel LCG with a = 16,807 and m = 231 – 1. One billion 

pseudo-random numbers are generated with ten different seeds and processors by 

leapfrogging method. We employ DIEHARD tests which contains 17 test sets and 269 

p-values (Marsaglia, G. 1995 and Gentle, J. E. 2003). Besides, α = 0.01 and 0.05 are 

chosen as the threshold of the p-values. 

 

    Figure 6.1 illustrates the average passing rate of 269 p-values from ten different 

initial seeds with different parameters. From only one processor to two, the 

performance of the parallel LCG greatly improves. It keeps improving until p = 4 and 

then falls back around 80% – but the performances are still better than that by only 

one processor. 

 

0.60
0.65
0.70

0.75
0.80
0.85
0.90

0.95
1.00

1 2 3 4 5 6 7 8 9 10

Number of Processors

D
ie

ha
rd

 T
es

ts
 P

as
si

ng
 R

at
e

 α = 0.05
 α = 0.01

 

 

Figure 6.1: Passing rate of the DIEHARD test for the parallel LCG with a = 16,807 

and m = 231 – 1. Processors varied from one to ten are tested and the threshold α = 

0.01 and 0.05 are used. Ten different initial seeds are make and averaged to calculate 

the passing rate. 
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    Next, we check the MRG of DX-1597-4 in (2.12). For the purpose of avoiding 

the problem of overfloating, Jean-Louis (2005) suggest the change of (2.12) to (6.1) in 

programming: 

Xi = 29,746[36,097(Xi – 1 + Xi – 533 + Xi – 1065 + Xi – 1597) mod (231 – 1)] mod (231 – 1). 

 (6.1) 

    The same test package is employed to study this parallel generator. First, it is 

obvious that the MRG pass more tests than the LCG. The simulation result gives the 

similar results that the number of processors is suggested to be two or four. 

Additionally, Since the original MRG (with p = 1) has passed many tests, more 

processors don’t do much improvement in this case. 
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Figure 6.2: Passing rate of the DIEHARD test for the parallel MRG of DX-1597-4 in 

(2.12). Processors varied from one to five are tested and the threshold α = 0.01 and 

0.05 are used. Two different initial seeds are make and averaged to calculate the 

passing rate. 

 

7. CONCLUSION AND DISCUSSION 

    We have proposed a simple and effective approach to parallelize linear RNGs 

with different increment shifts, including LCGs and MRGs. The implementation of 
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this kind of parallel RNGs is easy and the improvements are as expected. Theoretic 

and simulation investigations are performed to confirm this new proposal. 

    There are two major approaches to connect random numbers generated by 

different processors, sequence splitting and leapfrogging. From the properties of 

lattice structure, the leapfrogging method dominates in the simulation studies. Also, 

theoretically, the leapfrogging method yields the much better lattice structure than the 

sequence splitting. 

    In particular, we examine the parallel LCG with a = 16,807 and m = 231 – 1 

through simulation tests. On the average, it performs best when p = 4 among 1 to 10 

processors. It is interesting to perform more investigation to explore more about this 

phenomenon. More studies are of interest to pursuit in the future to understand the 

properties of this kind of parallel linear RNGs.
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APPENDIX 

Table A1: Summary results of DIEHARD test for the parallel LCG with a = 16,807, 

m = 231 – 1, and the number of processors p varied from one to ten. The threshold α = 

0.01 and 0.05 are set to calculate the passing rate of the LCG. Ten different initial 

seeds X0’s are used and the results are averaged to plot the Figure 6.1. 

1 214748365 429496729 644245094 858993458 Seed  

No of p 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 

1 0.7212 0.7918 0.7138 0.7955 0.7398 0.7993 0.7249 0.7955 0.7361 0.8030

2 0.8625 0.8959 0.8699 0.9071 0.8067 0.8848 0.7435 0.8290 0.8141 0.8587

3 0.8364 0.8810 0.8327 0.8699 0.8104 0.8736 0.8401 0.8699 0.8550 0.8848

4 0.8662 0.8996 0.8736 0.8996 0.8662 0.8922 0.8550 0.8959 0.8513 0.8959

5 0.8327 0.8625 0.8141 0.8476 0.8253 0.8587 0.8253 0.8550 0.8290 0.8587

6 0.8216 0.8253 0.8141 0.8290 0.8216 0.8290 0.8216 0.8327 0.8216 0.8290

7 0.8104 0.8216 0.7993 0.8141 0.7993 0.8141 0.8067 0.8178 0.8067 0.8216

8 0.8104 0.8253 0.8067 0.8253 0.8141 0.8253 0.8141 0.8216 0.8067 0.8253

9 0.8104 0.8216 0.8104 0.8253 0.7993 0.8141 0.8104 0.8216 0.8141 0.8178

10 0.8141 0.8253 0.8141 0.8290 0.8178 0.8290 0.8178 0.8290 0.8216 0.8290

 

1073741823 1288490188 1503238552 1717986917 1932735281 Seed  

No of p 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 

1 0.7100 0.7807 0.7323 0.7955 0.7249 0.7955 0.7286 0.7993 0.7249 0.7918

2 0.8141 0.8810 0.8513 0.8922 0.8253 0.8736 0.8439 0.8922 0.8253 0.8773

3 0.8699 0.8922 0.8699 0.8996 0.8178 0.8885 0.8550 0.8810 0.8662 0.8922

4 0.8587 0.8959 0.8550 0.8922 0.8625 0.8922 0.8699 0.8959 0.8439 0.8885

5 0.8290 0.8550 0.8178 0.8550 0.8178 0.8476 0.8253 0.8550 0.8327 0.8625

6 0.8216 0.8290 0.8253 0.8253 0.8104 0.8290 0.8178 0.8290 0.8141 0.8253

7 0.7993 0.8178 0.8030 0.8178 0.8067 0.8216 0.8104 0.8253 0.8030 0.8216

8 0.8141 0.8253 0.8104 0.8216 0.8141 0.8290 0.8104 0.8216 0.8178 0.8253

9 0.8178 0.8253 0.8104 0.8216 0.8067 0.8253 0.8141 0.8253 0.8104 0.8253

10 0.8178 0.8253 0.8178 0.8290 0.8141 0.8253 0.8141 0.8290 0.8141 0.8253

 

 

 

 31



Table A2: Summary results of DIEHARD test for the parallel MRG of DX-1597-4 in 

(2.12), and the number of processors p varied from one to five. The threshold α = 0.01 

and 0.05 are set to calculate the passing rate of the MRG. Two initial seeds X0’s are 

used and the results are averaged to plot the Figure 6.2. 

1 1073741823 Seed 

No of p 0.05 0.01 0.05 0.01 

1 0.8364 0.8959 0.8439 0.8885

2 0.8476 0.8922 0.8401 0.8996

3 0.8364 0.8885 0.8476 0.8959

4 0.8699 0.8885 0.8699 0.8922

5 0.8476 0.8699 0.8550 0.8810
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