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Abstract

Two major linear random number generators (RNGS), the linear
congruential generator (LCG) and the multiple recursive generator
(MRG), have been widely studied and used for many decades. Nowadays,
as the price decreasing of computer processors, parallelization of the
generators is being concerned for, at least, the computational efficiency
purpose. Besides, the proper design of parallel generator may also
Improve some statistical properties such as randomness. The Parallel
linear random number generator with different increment shifts is
efficient and feasible because the change of the increments only shifts the
hyperplanes of the linear RNG. Additionally, parallelizing through the
leapfrogging method can -further improve than through the sequence

splitting method.
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1. INTRODUCTION

It is very important to develop a random number generator (RNG) to generate
pseudo-random numbers for simulations in computers (Knuth 1998). With the
developed of parallel computing in modern computer technology, this study is aiming
at the design of parallel linear random number generators with different increment
shifts for simulations with parallel computing.

The linear congruential generator (LCG) has been widely used for its simplicity
and theoretical properties since the first proposal in Lehmer (1951). With the
increasing demand of high quality random numbers, the multiple recursive generator
(MRG) and other methods were developed afterwards (L’Ecuyer, Blouin and Couture,
1993, Knuth 1998, Deng and Xu, 2003). The MRG greatly extends the period of the
random sequence and improves properties of the LCG. It is challenging to determine
the parameters in the MRG that improve the properties of a RNG. The DX generator
has been proposed by Deng and Xu (2003) to select parameters in the MRG that
prolongs the period of random sequences and improves the efficiency of simulation.

As the price decreasing of computer processors nowadays, it becomes very
economic and efficient to generate numbers through parallelization by many
computers. With a proper design of algorithms, it becomes feasible to shorten the
computational speed and strengthen randomness of the output (Gentle, J. E. 2003).
This study will propose methods to parallelize a linear generator by using different
increment values. The theoretical and empirical properties will be explored in this

study.



2. SERIAL LINEAR RANDOM NUMBER GENERATORS
2.1 Linear Congruential Generator (LCG)
The method of LCG has been proposed by Lehmer (1951). This recursive
generator has the following form:
Xi=(aX;_1+c) mod m, (2.1)
Ui=X;/m, (2.2)
where a, ¢, m, and Xj are integers; m > 0 is the modulus parameter; 0 < a < m is the
multiplier parameter; 0 < ¢ < m is the increment parameter; Xj is the starting value or
the seed, 0 < Xy <m when ¢ # 0 and 0 < X, < m otherwise.

The performances of linear congruential generators differ drastically considering
the changes of a, ¢, and m. These parameters hence ought to be chosen very
cautiously so that the resulting pseudorandom numbers possesses good properties,
such as long period, uniformity, randomness,.and so-forth. Since the random number
of X; is obtained from the remainder-after-the. modulo operation of m, the possible
outcome X; is in the set of S = {0,°1,2, ..., m=1}. An LCG is said to attain the full
period m if and only if the following theorem is satisfied (Knuth 1998):

(1) c is relatively prime to m;
(2) g is a factor of (a — 1), if ¢ is a prime factor of m;
(3) (a—1) is a multiple of 4, if m is also a multiple of 4.

The LCGs can be classified into two types, mixed (¢ > 0) and multiplicative (¢ =
0). Apparently, the full period does not exist in the multiplicative case because ¢ = 0 is
a multiplier of any integer m. Also, 0 is an absorbing state in this case. Instead, its
maximum period, m — 1, is obtained when a is a primitive element modulo m.
Furthermore, it is widely used in 32 bit computers with the multiplicative LCGs, m =

23! — 1 and a = 7" where k is a primitive root such as a = 7° = 16,807.



2.2 Multiple Recursive Generator (MRG)
The multiplicative LCG can be extended to the higher order recursively by
adding up the previous k pseudorandom numbers. This is called as the multiple

recursive generator (MRG), which is defined as follows:

Xi=(alXio1 +axX;_ o+ +aX;_ ) mod m, (2.3)
Ui=X;/m, (2.4)
where k is the order. The absolute values of the multipliers a;, as, ..., a; and the
starting values Xy, Xj, ..., Xy may be any numbers except for all zeros. In addition,

ai should be nonzero. If k = 1, the MRG degenerates to the multiplicative LCG.

The maximum period of an MRG is improved to m" — 1 on condition that f{x) =
I a-1x — ai is a primitive polynomial modulo m. Alanen and Knuth
(1964) and Knuth (1998) showed the following criteria to find a,, ay, ..., ax:

(1) (<1)* '@y must be a primitive root modulo.p;

(2) the polynomial x" must be congruent to (D* g modulo f(x) and m;

(3) the degree of x"? mod f{x), using polynomial arithmetic modulo m, must be
positive, for each prime factor g of 7.

where r = (m* — 1)/(m - 1).

The MRG has improved the statistical properties for an RNG with slight increase
of computational time because this generator requires more multiplication and
calculation. Also, the criteria for selecting multiplier parameters requires the prime
factorization of r = (pk — 1)/(p — 1), which is challenging in seaching when p and k are
larger (Knuth 1998).

L’Ecuyer, Blouin, and Couture (1993) made an attempt to find some MRGs for £
< 7. With m = 2°' — 1, they suggested a sixth-order MRG:

X;=(177,786X;_, + 64,654X;_¢) mod (2°' — 1) (2.5)
that attains the period of (2°' —1)°— 1~ 10™.
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Other subgroups or special cases for the MRGs have been studied (Gentle, J. E.
2003). One typical instance is the generator,
X;= (X j+ X ) mod2", (2.6)

called the additive lagged-Fibonacci random number generator.

2.3 DX-k-s Random Number Generators
Research has been conducted to improve the computational speed of MRGs.
L’Ecuyer (1990), for example, suggested considering the generator of the following
form:
Xi= (aiX;_; + aXi ;) mod m. (2.7)
Thus, the primitive polynomial f{x) = x* — ajxk ~/ — a; would be manipulated because of
the accessibility of this primitive trinomial.
Deng and Lin (2000) proposed the fast multiple recursive random number
generator (FMRG), which is defined ias:
Xi= (Kiza t BXizp) mod m (2.8)
The FMCG in (2.8) and the MRG in (2.7) improves the computational efficiency
because it sets all multipliers to zeros except for a; in (2.8) or g; in (2.7) and a;. Deng
and Lin (2000) also listed some FMCGs of orders up to four. L’Ecuyer (1997),
however, suggested that the sum of squares of coefficients shall be large, which is a
necessary condition for an MRG with a good lattice structure. FMCGs may fail to
satisfy this condition.
Deng and Xu (2003) have further extended the idea of the FMRG to the so-called
DX-k-s random number generator. To prolong the period and improve the efficiency,

they place certain intermittent coefficients to the same value B. Here are some

examples:



(1) DX-k-2
X;=B(X;_| +X;_4) mod m; (2.9)
(2) DX-k-3

X,~=B(Xl~1+XAkW+Xik)m0dm; (2.10)

-

(3) DX-k-4

Xi=BX, 1 +X, ,

]

where l_—‘ is the ceiling function. Deng and Xu (2003) and Deng (2005) recommended

2k
3

+XL_1+XI»_,() mod m, (2.11)

specific generators, and the following one has very long period and large coefficients:
X;=1,073,741,362(X; 1 + X; _s33 + Xi _ 1065 + Xi_1507) mod (2°' = 1).  (2.12)

The period greatly stretches to 10'*°”* approximately.

3. STATISTICAL TESTSAND CRITERIA
3.1 Uniformity
If a random variable U ~ U(0,.1), then the population mean is E(U) = 1/2, the
variance is Var(U) = 1/12, and
Pla<U<b)=b-a, (3.1)
for any 0 < a < b < 1. A good uniform random number generator should generate

similar results. Using the fact that Z X, = @ and Z X =

0<X;<m 0<X;<m
m(m—lé(Zm ) for the RNG with maximum period, we know that U = n;—l and
m
S; _MFL Eor the RNG with the period of m — 1, U = L and S; ~71 When m
12m 2 12m

increases, both U ’s and S/, ’s approach to E(U) and Var(U).

Additionally, goodness-of-fit tests have been developed for testing uniformity,
such as chi-squared test, Kolmogorov-Smirnov (K-S) test, and Anderson-Darling

(A-D) test.



3.2 Randomness
Ideally, an RNG can generate random numbers with no correlation between X;

and X; : . For a LCG, the output X; 1 4 is a function of X; as follows:

c(a" -1)

a—1

X,-+k={ale.+ } mod m. (3.2)

One method to evaluate this association is the Pearson correlation coefficient, R.

When k£ = 1 or with lag one, it is called as the serial correlation coefficient. Making

use of the formulas for z X, and Z X, again, R can be induced from (3.3) to

0<X;<m 0<X;<m

(3.5).

iXiXHI _liXiiXm
i=1 m i i=1

R= S - (3.3)
m z_l m m 5 _l m
sz oA sz L3x)
< 1| mim-1) 2
B ;XIXHI_;[ 7 :|
= . (3.4)
m(m=D)Q2m =1 1[ mm=1)
6 m[ 2 }
_ [a(a,m,c)+6]n21—§6X* +6c+3)’ (3.5)
e —

where o(a, m, ¢) = 12§((LD(( ai+cj} () = -—%(L-J+f-—|), and X satisfies that
m m

i=0

(aX +¢) mod m = 0.
When m is large in practical applications, the serial correlation can be

approximated to (3.6) or (3.7).

_oa(a,m,c)+6

R (3.6)

m
_oa(a,m,c)

(3.7)

m

The upper and lower bounds for the serial correlation can be obtained, which



only involved the parameters ¢ and m (Knuth 1998). For a = 16,807 and m =2' — 1,

the bounds are

ST

(3.8)

and
—2.9764x10° <R <5.9508x 10" (3.9)
Hence, R will decrease with the increasing of m. More details are discussed in Knuth

(1998).

3.3 LATTICE STRUCTURE
The following two LCGs will be used for illustration:
X; = (25X;_4.1,7) mod 96, (3.10)
X; =(61X; st 11) mod 96. (3.11)
Both of them have the full period, 96. Their means and variances are the same
consequently. How to make selection between (3.10) and (3.11)? The pairs of

consecutive numbers of these two LCGs are plotted in Figure 3.1:
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Figure 3.1: The pairs of consecutive numbers of these two LCGs in (3.10) and (3.11)

are plotted in (a) and (b) respectively.

Ideally it is expected that these-pairs.of.consecutive numbers should uniformly
scatter in the unit square. In reality, these pairs fall on lattice structures as proved in
Marsaglia (1968). Hence, one can examine the properties of lattice structures to select

LCGs (Knuth 1998).

4. PARALLEL LINEAR RANDOM NUMBER GENERATORS

In order to accelerate the simulating time and improve efficiency, it is possible to
parallelize the RNG with several computer processors. There are mainly two
approaches to combine random numbers generated by different processors, sequence
splitting and leapfrogging (Coddington, P. D. 1996). These two approaches will be

discussed below.



4.1 Sequence Splitting

The generation of a total sequence of N random numbers is split by the random
numbers generated by p processors. Suppose N = np and n is the number of random
number that one process generates. The processor j, j = 1, 2, ..., p, is responsible for
producing the following random numbers in the total sequence:

XGj—1n+ 1 XG—1n+2s «vs Xin 4.1)

4.2 Leapfrogging

The processor under the leapfrogging method generates random numbers in the
total sequence with a lag of p. The system works like the allocation a deck of cards to
p players. The processor j, j = 1, 2, ..., p, is responsible for producing the following
random numbers in the total sequence:

Xj,Xj“-{—p,AX}ﬁ—ZP,... (4.2)

5. PARALLELIZATION “WITH «DIFFERENT INCREMENT
SHIFTS
For the LCG in (2.1), it is possible to consider the changing of a or ¢ for different
processor in parallel computing. This will be based on the lattice structures of LCGs

as follows.

5.1 Minkowski Bases of the LCG

The Monkowski bases of the lattice structures for LCGs are shown in Marsaglia

(1968). They are
Lz{rf()+z41/,,|zl,zz,...,z,ez} (5.1)
i=1

where



-1
Vozi(o, ¢, l+a), l+a+a’)c, ..., MJ, Vi :i(l, a, a’, ..., GH),
m a-1 m

V,=(,1,0,...,0),73=(0,0,1,...,0), ..., ¥,=(0,0,0, ..., 1).

The increment ¢, simply showing up in Vy, accounts for nothing but the shift of
lattice structure of an LCG. On the other hand, a does have a great effect on the shape
of structure.

Moreover, (2.1) can be rewrite as composition of the equations below if ¢ is
smaller than m:

Xi=aXi_1+ec,
Xi=aXi_1+c—m,

Xi=aX,_1+c—2m,

Xo=aXi- 1 te—(a~Dm, (5.2)
or the followings if ¢ is equal to-or greater-than.m (which is often avoided):
Xiejwke | el
Xi=aXi1+c—m,

Xi=aX,_1+c—2m,

Xi=aX;_1+c—am. (5.3)
Apparently, the pair of consecutive numbers from LCGs will fall on few parallel
lines. The parameter c shifts the lines while the parameter a changes the slope of them.
If we choose ¢ appropriately in the parallelization of LCGs, we can fill in the space
between parallel lines in the lattice structure efficiently as illustrated in Figure 5.1.
However, the changing of a in parallelization is very challenging because the shapes
of lattices are changing accordingly. Hence, we will consider the parallelization of
LCGs with different shift parameters in this study.
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Figure 5.1: The lattice structures of parallel LCGs with different shift increments for

1 to 4 processors are illustrated in part (a) to (d).

Let X; be the random sequence from the processor 1 and Y; be that from the
processor 2. Suppose that these two processors employ LCGs with the same a but

different increments, ¢ and ¢’. Then

11



Xi—Yi=[aXi-1 - Yi-1) +(c— )] mod m (54

= [ai(XO —YO)+W} mod m. (5.5)

a—

That is, X; — Y; has its special lattice structure. It also implies that the random

sequence with leapfrogging method will follow a new lattice structure.

5.2 Parallel Design of Increment Shifts
Another reason for preferring c to a in parallelization is that given an LCG with a
long period of m or m — 1, it is easy to find another c that yields the long period
because it simply requires ¢ be relatively prime to m. But the selection of a for
parallelization for long period is very challenging.
To make the parallel design of increment shifts feasible for two processors, we
consider:
X =(aX") +c) mod-m, Ul=x"m;
X? =(aX? +((C+T’"D) mod m, U™ =(X? +0.5)/(m+0.5),  (5.6)

Lyj, y mod 1>0.5;

where ((y)):{ DJ y mod 1<0.5.

The U'” is calculated with the extra addition of 0.5 in both numerator and

denominator because it can expand the outcome space. Most important of all, this
extra addition ensures the absence of zero which is undesired for most of the practical

applications. Also, addition in both numerator and denominator changes neither the

mean nor the variance. It doesn’t draw different conclusions from U = X /m

under the empirical tests either since there is merely a subtle change for the value of

U and the difference between any two consecutive random numbers doesn’t differ.

12



Besides, some empirical tests consider only X\, which is not modified at all.

This idea can be extended to more than two processors. For three processors, we

consider:

X" =(aX") +c) mod m, U =x"/m

c

X = (@x?) +[c+[(mT_DD mod m,  U® =(X + ) fim+ J);
XO = (ax®) +[c+((§<m_c>ﬂ]> mod m, UL =(X®+34)/m+%)  (5.7)

For p processors, we consider:

X =(ax{) +[c+e]) mod m, UY = (X" +97) [(m+ Uy, (5.8)

1

where ¢ = [(J—_l(m—c)ﬂ, j=1,2,.., p. If ¢c + ¢ is not relatively prime to m, set ¢
p

= &), where g is the nearest integer to g that makes ¢ + gy relatively prime to m.
Moreover, the Euclidean algorithm 1s capable of helping to check if ¢ + ¢ is relatively
prime to m (Cormem, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001). In

practice, this check can be omitted since m is often chosen from prime numbers.

5.3 Serial Correlation

The quality of this kind of parallel RNG (PRNG) will be investigated. The
uniformity, the expectation, and the variance are surely satisfactory. It is necessary to
check the serial correlation. Let p be the number of processors. Following the similar
steps from (3.3) to (3.5), we get the correlation for the sequence splitting methods as
follows:

{Zpla(aj,m,cj)+6p}m—3[22p:()(*(‘/) +cj)+p}

J=l

Rss = (59)

pm’ —p

13



P

ZG(aj,m,cj)+6p

Rgs ~ = " (5.10)
p
Y o(a;,m,c,)
Nj:lp—m (5.11)

Since the term of o(aj, m, c;) are only affected by a; and m, this term does not change
among processors with different ¢;. As a result, we go back to check the primitive

formula. If each processors generates the same amount of random numbers 7, then:

P n
ZZ(X(])Xz(Jr/l) ZZX(/)ZZXI(:I)
RSSz Jj=1 i=1 jlll j=1 i=1 (512)

n

\/Z (X7) - Z(ZXWJ \/ZZ(X}Q nlp_,i(iz)(fisz

j=1 i=l j=1i=l

S

2SS xd)- (5.13)

mnpjlll

The equation of (5.13) is derived by:using the fact that the sample mean and the
sample variance of XV are approximately-to 0.5p and p_2 Then we get the bounds as

following:

min R, < Rgs < max R, (5.14)

1<jsp / 1<j<p
Hence, the correlation of parallel LCGs by the sequence splitting method is
between the best and the worst correlation of p serial LCGs.
The serial correlation for the leapfrogging method Ry is difficult to obtain by
using the same idea from (3.3) to (3.5). We therefore directly check the primitive

formula like (5.12):

n

|:pZiZ(X(1)X(1+1))+Z(Xl(l])X(p)):| ZZX(/)ZZXI(JZI)

jlll Jj=1 i=1 (515)

j=1 i=1 J=1 i=1

Rip=

14



p-1 n n
Rip =~ 122 {Z (XX (X XY -3 (5.16)
m-np

j=1 i=l i=1

min R, < Rip < max R, (5.17)

1<j<p 7 1</<p
Thus, Ry r falls in the same bounds as Rss does. What is more, the approximate
serial correlation in (5.16) will decrease with the increase of N = np. The similar
phenomenon can also be observed by the approximation of the serial correlation in
(5.13). In practice, tremendous amount of random numbers is often generated in large
simulation studies and the correlation will not be a major problem as illustrated in

Figure 5.2.

Serial Correlation
0.00
]
Serial Correlation
0.00
]

o 10000 20000 30000 40000 50000 o 10000 20000 30000 40000 50000
Mumber of Cutput Mumber of Cutput
(a) (b)

Figure 5.2: Serial correlations of the LCG with a = 16,807, c=0, m = 231, and p =
4 in both (a) sequence splitting method and (b) leapfrogging method with the
increasing of the number of random sequence generated. The absolute value of both
correlations have been smaller than 0.01 when the number of output is greater than

15,000.
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5.4 Lattice Structures

From the perspectives of uniformity and serial correlation, sequence splitting
method and leapfrogging methods have compatible performances. But there is a great
difference when they are compared on the plots of the pair of consecutive numbers.
Take four processors as an example. The lattice structure of one LCG is plotted in
Figure 5.3 (a). The lattice structure of parallel LCG by sequence splitting is plotted in
Figure 5.3 (b), which shows the adding of three more sets of parallel lines. The lattice
structure of parallel LCG by leapfrogging is plotted in Figure 5.3 (c), which shows

more changes of lattice structures that could be useful to create more randomness.
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Figure 5.3: The lattice structure of the LCG, X; = 16807.X; | mod (231 — 1) is shown in
(a). Part (b) and (c) demonstrate the structures of the LCG mentioned-above with four

processors and via sequence splitting method and leapfrogging method respectively.

5.5 Inter-processor Correlation

There may exist inter-processor correlation when applying the increment shift
method for different processors. It might be expected that there exists highly positive
correlation when the initial seeds are the same and the differences among the
increments are very small.

For illustration, we simulate pseudo random numbers with the parallel LCG set,
XY =16807X" mod (2" 1) and X =(16807X% +1) mod (2*' —1) using leap-

frogging method. Both initial seeds of these two LCGs are set to 1. The scatter plot is
shown in Figure 5.4. The serial correlation is plotted in Figure 5.5. There does not
seem to have high inter-correlation even when the initial seeds are the same and the
differences among the increments are very small.

That is quite counter-intuition. But suppose the initial seeds are the same in (5.5),

17



then we can simplify the equation into

P 7 N Gl Clt V) R (5.18)
Y= {X;— (C_L(‘i_l) Y mod m. (5.19)
a_

This shows the random sequence still possesses a new lattice structure even

without the term of &'(Xo — Yo). Namely, the scatter plot of (X, Y;) or that of
(X", X?) in Figure 5.3 does never appear with a highly correlated pattern, say, a

line. The serial correlation

UIEZI'
05000 0.5005 05010

04935

4930

D 4980 04995 0.5000 05005 05010
Ui@)

Figure 5.4: Scatter plot for the pair of (X", X)) is shown for the parallel LCG set,

X =16807X") mod (2" ~1) and X2 = (16807X? +1) mod (2" —1).
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Figure 5.5: Serial correlations of this parallel LCG set with leapfrogging method. The

correlation is desirably small especially_ when the number of pseudo-random number

generated is larger than 25,000.

5.6 Absorbing States

It is aimed to parallelize the multiplicative LCGs that can attain the maximum
periods. Each processor of the multiplicative LCG yields random numbers with a
period of m — 1. It is evident that O is an absorbing state of the multiplicative LCG that
is not desired. If the initial seed is the absorbing seed of 0, then the multiplicative
LCG will enter the absorbing state of 0. The absorbing states and seeds shall be
avoided in the parallelization of RNGs.

For the increment c in (2.1) # 0, we can figure out the absorbing states and seeds
by means of the extended Euclidean algorithm in the followings. Let X, denote as the
absorbing seed, then we can rewrite (2.1) into (5.20) and (5.21):

X, = (aX, + ¢) mod m; (5.20)

(a — 1)X, mod m = —c mod m. (5.21)
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As ¢ <m, we can simplify (5.21) as follows:
(a—1)X, modm=m—c. (5.22)
Then it becomes the question of solving the linear congruence.
Firstly, we consider a linear congruence of Ax mod M = 1. We can find an integer
k such that
Ax — kM= 1. (5.23)
Ify=—k,

Ax+ My =1 (5.24)

Through the extended Euclidean algorithm (Cormem, T. H., Leiserson, C. E., Rivest,
R. L., and Stein, C. 2001), we are able to obtain one of the solutions, say (xo, Vo).
Next, we try to solve Ax mod M = B. In the beginning, we multiply B in the

equation Ax mod M = 1 and substitute the solution xp-into it:

B(Axomod M) = B; (5.25)
(B mod M)(Axo mod M) = B; (5.26)
A(Bxp) mod M = B. (5.27)

Then, it is clear that Bx satisfies the linear congruence Ax mod M = B. The same idea
goes in (5.22). For the purpose of figuring out X,, we can employ the extended

Euclidean algorithm to find out ¢ in (5.28).
(a— Doy +mpy=1. (5.28)

In order to ensure that the absorbing seed is smaller than m, we let
X, =[ap* (m—c)] mod m. (5.29)
Since we can calculate the absorbing seeds, we ought to avoid them in advance.

Obviously, the more processors are hired, the more starting values should be avoided.

20



Table 5.1: An example of a = 16,807 and m = 2°' — 1 to illustrate the implementation
of the algorithm via the iterative method.
m=m=2"-1, wy=a-1=16806,
a=0, x=1, p=1, =0,
qi=|u_/u ], i=2,3, ..
W= =W 1XGi-1 G=02— &1 Xqi-1 =P fio1X g1, j=3,4, .
Repeat the computation until #; = 1. The last ¢; is the solution, & in (5.28).

For example, ¢, = L(231 —1)/16806J = 127,780, us = (2*' = 1) — 16806 x 127780

=12,967, o5 =0 —1x127780 =—-127,780, f3 =1 —-0x 127780 = 1, ... Because uj4 =

3 —2x1 =1, the iteration is stopped, and a4 = 827,891,619 is our solution.

u a p q
2147483647 0 1

16806 1 0 127780
12967 —127780 1 1
3839 127781 -1 3
1450 =511123 4 2
939 1150027 -9 1
511 -1661150 13 1
428 2811177 22 1
83 —4472327 35 5
13 25172812 -197 6
5 —155509199 1217 2
3 336191210 -2631 1
2 —491700409 3848 1
1 827891619 —-6479 2
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From Table 5.1, we get o = 14 = 827,891,619, and the absorbing seed is:

X,=[827891619x (2*' = 1 — ¢)] mod (2*' — 1)

(5.30)

Table 5.2: The table shows the parallel LCG set with a = 16,807 and m = 2°' — 1 with

processors varied from one to ten. For instance, for 3 processors, the parallel LCG set

will be XV =16807X") mod (2*' -1), X'” =(16807X")

+715827882) mod (2°' —

1), and X =(16807.X") +1431655765) mod. The absorbing state occurs at 0,

275,963,873, and 1,871,519,774, respectively.

No. of Absorbing

™ Processor

Proc State 2 3 4 5
1 Coefficient
Absorbing Seed
2 Coefficient 1073741824
Absorbing Seed 659796014
3 Coefticient 715827882 1431655765
Absorbing Seed 275963873 1871519774
4 Coefticient 536870912 1073741824 1610612735
Absorbing Seed 329898007 659796014 1817585640
5 Coefticient 429496729 858993459 1288490188 1717986918
Absorbing Seed 760653377 693415135 1454068512 1386830270
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Table 5.2 (Continued)

™ Processor

No. of Absorbing 1 2 3 4 5
e State ® o ®  © w
6 Coefficient 0 357913941 715827882 1073741824 1431655765
Absorbing Seed 0 1211723760 275963873 659796014 1871519774
Coefficient 1789569706
Absorbing Seed 935759887
7 Coefficient 0 306783378 613566756 920350134 1227133513
Absorbing Seed 0 1652187122 1156890597 661594072 1485889575
Cofciem 1sOIGROl oo
Absorbing Seed  990593050% 495296525
8 Coefticient 07 268435456 536870912 805306368 1073741824
Absorbing Seed 0. 1238690827 " 329898007 1568588834 659796014
Cociciem 12177279 felogiags isoasior
Absorbing Seed 578894813 1817585640 908792820
9 Coefticient 0 238609294 477218588 715827882 954437176
Absorbing Seed 0 807815840 1615631680 275963873 1083779713
Cooffcient 1193046471 1431655765 1670265059 1008874353
Absorbing Seed 1063703934 1871519774 531851967 1339667807
10 Coefficient 0 214748365 429496729 644245094 858993459
Absorbing Seed 0 2113864526 760653377 727034256 693415135
Coffiient 1075741524 128490188 1503238553 1717986918 1932735282
Absorbing Seed 659796014 1454068512 1420449391 1386830270 33619121
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Table 5.3: List of ap’s for some other popular multipliers with the same modulus =

2’'_ 1. The absorbing seeds can be found by X, = [ % 2= 1-¢)] mod 2*' - 1).

a 41358 48271 62089911 397204094 630360016 742938285

oy 700423312 179424105 751265057 —858674923 895497791 -447186684

Table 5.2 shows different absorbing seeds for the parallel LCG set with a =
16,807 and m = 2°' — 1 under different processors. Via the same algorithm, absorbing
states of other popular LCGs are listed in Table 5.3.

The increment shift method can also extend to the MRG case because (2.3) is
able to be rewritten as composition of some parallel hyperplanes like (5.2) and (5.3).
The parameter c only shifts this planes. Consequently, we now add the increment ¢ in
(2.3):

Xi= (a1 Xi_ it aaXi o + 24 apX; = + ¢) mod m (5.31)

If the generator enters the absorbingistate; the output vector (X; _«, Xi_x+1, ...,
X;-1) and the next one (X;_+1, Xi k255 X;) are suppose to be the same. It only
occurs when X; ;= X;_;+1=---=X;_; = X.. In other words, the absorbing state arises
when the initial vector is (X,, X, ..., X;). Therefore, we can solve out the absorbing
seed by replacing all X;’s with X,:

Xo= (a1 X, + ax X, +++ apX, + ¢) mod m (5.32)
k

Q. aX,~)ymodm=m—c (5.33)
i=1

Now it turns into the question concerning the linear congruence again. But the

equation changes from (5.27) into (5.34).

k

(D a,— Do +mpy=1 (5.34)

i=1
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6. SIMULATION RESULT

First we study the parallel LCG with @ = 16,807 and m = 2°' — 1. One billion
pseudo-random numbers are generated with ten different seeds and processors by
leapfrogging method. We employ DIEHARD tests which contains 17 test sets and 269
p-values (Marsaglia, G. 1995 and Gentle, J. E. 2003). Besides, « = 0.01 and 0.05 are

chosen as the threshold of the p-values.

Figure 6.1 illustrates the average passing rate of 269 p-values from ten different
initial seeds with different parameters. From only one processor to two, the
performance of the parallel LCG greatly improves. It keeps improving until p = 4 and
then falls back around 80% — but the performances are still better than that by only

one processor.

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65 --e-- a=0.01
0.60

Diehard Tests Passing Rate

1 2 3 4 5 6 7 8 9 10
Number of Processors

Figure 6.1: Passing rate of the DIEHARD test for the parallel LCG with a = 16,807
and m = 2°' — 1. Processors varied from one to ten are tested and the threshold o =
0.01 and 0.05 are used. Ten different initial seeds are make and averaged to calculate

the passing rate.
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Next, we check the MRG of DX-1597-4 in (2.12). For the purpose of avoiding
the problem of overfloating, Jean-Louis (2005) suggest the change of (2.12) to (6.1) in
programming:

X; =29,746[36,097(X; 1 + X; 533+ Xi 1065 + Xi_ 1507) mod (2°' — 1)] mod (2*' - 1).
(6.1)

The same test package is employed to study this parallel generator. First, it is
obvious that the MRG pass more tests than the LCG. The simulation result gives the
similar results that the number of processors is suggested to be two or four.
Additionally, Since the original MRG (with p = 1) has passed many tests, more

processors don’t do much improvement in this case.

§ 1.00
5, 095 1
% 090 | @--e----- 0. PO e .
< 0.85 | -— N —
o
@ 080
wn
S 075 |
B 070 | —e— 0 =0.05
8 0.65 | --e- 0=0.01
(D)
5 0.60

1 2 3 4 5

Number of Processors

Figure 6.2: Passing rate of the DIEHARD test for the parallel MRG of DX-1597-4 in
(2.12). Processors varied from one to five are tested and the threshold o = 0.01 and
0.05 are used. Two different initial seeds are make and averaged to calculate the

passing rate.

7. CONCLUSION AND DISCUSSION
We have proposed a simple and effective approach to parallelize linear RNGs

with different increment shifts, including LCGs and MRGs. The implementation of
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this kind of parallel RNGs is easy and the improvements are as expected. Theoretic
and simulation investigations are performed to confirm this new proposal.

There are two major approaches to connect random numbers generated by
different processors, sequence splitting and leapfrogging. From the properties of
lattice structure, the leapfrogging method dominates in the simulation studies. Also,
theoretically, the leapfrogging method yields the much better lattice structure than the
sequence splitting.

In particular, we examine the parallel LCG with a = 16,807 and m = 2*' — 1
through simulation tests. On the average, it performs best when p = 4 among 1 to 10
processors. It is interesting to perform more investigation to explore more about this
phenomenon. More studies are of interest to pursuit in the future to understand the

properties of this kind of parallel linear RNGs.
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APPENDIX

Table Al: Summary results of DIEHARD test for the parallel LCG with a = 16,807,
m = 2" — 1, and the number of processors p varied from one to ten. The threshold o =
0.01 and 0.05 are set to calculate the passing rate of the LCG. Ten different initial

seeds Xj’s are used and the results are averaged to plot the Figure 6.1.

Seed 1 214748365 429496729 644245094 858993458
No of p 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1 0.7212 0.7918 0.7138 0.7955 0.7398 0.7993 0.7249 0.7955 0.7361 0.8030

2 0.8625 0.8959 0.8699 0.9071 0.8067 0.8848 0.7435 0.8290 0.8141 0.8587
3 0.8364 0.8810 0.8327 0.8699 0.8104 0.8736 0.8401 0.8699 0.8550 0.8848
4 0.8662 0.8996 0.8736 0.8996 0.8662 0.8922 0.8550 0.8959 0.8513 0.8959
5 0.8327 0.8625 0.8141 0.8476 0.8253 0.8587 0.8253 0.8550 0.8290 0.8587
6 0.8216 0.8253 0.8141 0.8290 0.8216 0.8290 0.8216 0.8327 0.8216 0.8290
7 0.8104 0.8216 0.7993 0.8141 0.7993 0.8141 0.8067 0.8178 0.8067 0.8216
8 0.8104 0.8253 0.8067 0:8253 0.8141.0:8253 0.8141 0.8216 0.8067 0.8253
9 0.8104 0.8216 0.8104=0.8253 1 0.7993..0.8141 0.8104 0.8216 0.8141 0.8178
10 0.8141 0.8253 0.8141 0.8290 0.8178 0.8290 0.8178 0.8290 0.8216 0.8290

Seed 1073741823 1288490188 1503238552 1717986917 1932735281
No of p 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1 0.7100 0.7807 0.7323 0.7955 0.7249 0.7955 0.7286 0.7993 0.7249 0.7918

2 0.8141 0.8810 0.8513 0.8922 0.8253 0.8736 0.8439 0.8922 0.8253 0.8773
3 0.8699 0.8922 0.8699 0.8996 0.8178 0.8885 0.8550 0.8810 0.8662 0.8922
4 0.8587 0.8959 0.8550 0.8922 0.8625 0.8922 0.8699 0.8959 0.8439 0.8885
5 0.8290 0.8550 0.8178 0.8550 0.8178 0.8476 0.8253 0.8550 0.8327 0.8625
6 0.8216 0.8290 0.8253 0.8253 0.8104 0.8290 0.8178 0.8290 0.8141 0.8253
7 0.7993 0.8178 0.8030 0.8178 0.8067 0.8216 0.8104 0.8253 0.8030 0.8216
8 0.8141 0.8253 0.8104 0.8216 0.8141 0.8290 0.8104 0.8216 0.8178 0.8253
9 0.8178 0.8253 0.8104 0.8216 0.8067 0.8253 0.8141 0.8253 0.8104 0.8253
10 0.8178 0.8253 0.8178 0.8290 0.8141 0.8253 0.8141 0.8290 0.8141 0.8253
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Table A2: Summary results of DIEHARD test for the parallel MRG of DX-1597-4 in
(2.12), and the number of processors p varied from one to five. The threshold a = 0.01
and 0.05 are set to calculate the passing rate of the MRG. Two initial seeds Xj’s are

used and the results are averaged to plot the Figure 6.2.

Seed 1 1073741823
No of p 0.05 0.01 0.05 0.01

1 0.8364 0.8959 0.8439 0.8885
2 0.8476 0.8922 0.8401 0.8996
3 0.8364 0.8885 0.8476 0.8959
4 0.8699 0.8885 0.8699 0.8922
5 0.8476 0.8699 0.8550 0.8810

32





