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ABSTRACT

This thesis describes’the methodology.-for analyzing in parameter-
driven models for time series of count data generated from latent process
that characterize the correlation structure. These models result in very
complex likelihoods. A modified EM algorithm is proposed which we
replace the marginal expectation with the conditional expectation given y in
the E step of the EM algorithm. We illustrate our method by two time series:
the traffic flow data and Zeger’s polio incidence series. Through the data
collected by the detectors mounted on the road, we can estimate, smooth and
predict the traffic condition about the network, these information are critical

to signal control and traffic queue management.
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1 Introduction

Traffic congestion is a daily occurrence in most urban areas and is becoming a serious
problem in many urban and sub-urban areas. A roadway system is operating in saturated and
oversaturated conditions. A signalized intersection is said to be “oversaturated” if the demand
volume exceeds the capacity of the intersection. Over-saturation refers to conditions where
traffic queues persist from cycle to cycle due to insufficient green splits or because of
blockage. In such conditions queues along signalized arterials may block upstream
intersections thus exacerbating an already bad condition. It is critical that appropriate signal
control and queue management procedures are in place. Otherwise, excessive queues and
spillbacks into upstream interseetions would. lead to gridlock with serious disruptive
consequences on system operations. The need for appropriate traffic management procedures
becomes even more pressing with the “deployment of more efficient traffic control systems
within the intelligent transportation systems (ITSs) complex which handles information,
including traffic flow prediction, on a real-time base.

Several queue management and signal control strategies have been described in literature.
However, to design effective signal control schemes, the traffic flows occur in the next cycles
are required. Traffic signal, as an essential element of an urban transportation network plays a
critical rule in the operation of urban street network and could not be neglected along with the
movement of ITSs. Over the past few decades the study on signalized intersections has been
carried out by various methods, however, still it is well accepted the benefit of signal control
has not been fully realized. In general, current researches on traffic signal control can be

grouped into two classes from the view of flow-capacity situation, i.e. under-saturation and



congestion control. The model concerning with the under-saturated flow condition serve well
from isolate intersection to network control. However for a congested or over-saturated
network, most of the procedures were based upon experience or simple analysis and were not
efficient in easing the congestion situation. To achieve more efficient management of the
traffic, it is better to keep the road system in free-flow condition as long as possible. Therefore,
a dynamic model with covariates is used to describe the time series of traffic flow counts.

In some special time, like raining day, the day before long holidays or rush hours, the
level of oversaturated traffic condition will become more serious. So we hope to control the
daily traffic before the rush hours effectively. If we are able to release the traffic flow of the
section effectively, it may be helpful to release the jammed traffic after that. However, so far
most of the traffic sign in Taiwan‘are stillzcontrolled by the police when the traffic is heavy.
Although it will effectively control at once, it is- difficult to maintain the high level
performance of the signals due to variability existing in personal manipulation. Moreover, the
range of personal control and the vision are restricted at the located intersection. Even we
transmit messages by wireless; we are not able to effectively achieve traffic flow and the
continuance of traffic sign. Therefore, if we can predict the traffic flow precisely, it may help
us a lot. We hope to invent a method to calculate the capacity of roads in Taiwan, and the first
step of the work is to get the model of the traffic flow curve. Therefore, the purposes of this
thesis are to use a more realistic model and an appropriate approach to estimate and predict
the future traffic flow.

This thesis describes the methodology for estimating the parameter-driven models for
time series of counts which are generated from latent unobservable process that characterize

the correlation structure. It is different from previous procedures in many respects. It is a new



general formulation for an under-saturated network.

The rest of the thesis is organized as follows. Literature on modeling time series with
count data are briefly reviewed in Section 2. Section 3 consists of two subsections. In the first
subsection we describe the formulas of the modified EM algorithm to first-order parameter-
driven model for time series of count data; and in the second subsection we describe two
methods to smooth and predict, and to estimate information matrix. Two real data
applications, including the traffic flow data and Zeger’s polio incidence series, are presented
in Section 4. Finally, we discuss the advantages and shortcomings in Section 5. Proofs are

collected in the Appendix.



2 Literature Review

Let {Y, }tN:I be a time series of count data and let {Ut}tN:1 be an observed vector- valued
covariate process. We are interested in modeling the contemporaneous dependence of Y, on
the covariates in U, as well as its dependence on past values. In order to describe g =

E(Y,) as a function of a px1 vector of covariates, U,, classical linear models are

t o
regression models with the assumption that the observations are normally distributed with a
covariance matrix that is known up to a constant. Generalized linear model (Nelder and
Wedderburn, 1972) extended the classical linear model by allowing for non-normal noise such
as the case when the response variable is binary or integer-valued. With independent
observations, logistic and log lingar modelstean be used for this purpose. If the response
variables are a time series, serial-dependence should be incorporated in the model.

Because of the nature of the'traffic flow, a discrete time series model will be utilized to
describe its behavior. Discrete time series occur in many contexts, often as counts of events,
objects or individuals in consecutive intervals or at consecutive points in time. Modelling
discrete time series is the most challenging, as yet, least well developed of all areas of
research in time series. For time series data, Cox (1981) suggested two classes of models of
time-dependent data: parameter-driven and observation-driven models. In an observation-
driven, the conditional distribution of observation is specified as a function of past
observations. Autoregressive models for Gaussian series are example for continuous data.
Integer-valued autoregressive moving average models and Poisson autoregressive (PAR),

introduced by Al-Osh and Alzaid (1987), Freeland and McCabe (2004) applied the model to

describe monthly count data set of claimants for wage loss benefit. Davis et al. (2003) are



examples for discrete data. In a parameter-driven model, which is conceptually more elegant,
serial correlation is introduced through an unobserved latent process. Both specifications are
becoming increasingly popular because of their ability to handle serial correlation and
over-dispersion in the data.

Recently, much research effort has been devoted to the theoretical development and
refinement of parameter-driven models. An important approach to the incorporation of
covariates was initiated by Zeger (1988) who was concerned with testing for a falling trend in
monthly U.S. polio incidence data. He used Poisson regression to model trend and seasonality
explicitly, and a stationary process {gt} with unit mean and autocovariance function
Cov(e,,&._, )= p,(K)o> to model the serial correlation. Campbell (1994) extended this
approach to higher orders of dependenceyintmodeling occurrences of sudden infant death
syndrome and related trends to environmental factors. Brannas and Johansson (1996) further
extended to panel data. Chan and ‘Ledolter (1995),.and Jorgensen et al. (1996), among others,
also tried to tackle the problem of modeling discrete time series. Their common assumption is
that the observations are conditionally independent given the latent process. Without
assuming the full information on the latent process, Zeger (1988) estimated the parameters by
quasi-likelihood estimating equation. Chan and Ledolter (1995) model the polio data as a
dynamic GLM in which the latent process, {Wt} , 1s an Gaussian AR(1) process, i.e.
W, = pW,_, +¢&,, where {51} is iid N(0,07). Explicitly, conditional on trend and seasonal
covariates, {U,}, (¥,W,,U )~ Poisson(4), where logZ =aU, +W,.The authors treated
the latent process as missing values and used a variant of the EM algorithm to maximize the
likelihood. In their algorithm, the E-step is performed indirectly using Monte Carlo simulation.

The approach is direct to estimate the parameters but suffered from, as the authors stated in



the paper, noisy simulated log-likelihood of the complete data. In this thesis, we will basically
follow the formulation but modify the estimation process.

In the linear, Gaussian structure, state-space models are parameter-driven models in
which an unobserved state-vector 6, evolves linearly through time and only a linear function
of it is observed, usually in noise. Thus, there are two defining equations: an observation
equation, and evolution or system equation, typically of the form:

X,=F6 +v, (1)

0,=G0

t+1

+,, (2)
where {v,} and {@} are independent sequences of i.i.d. r.v.s of zero mean and covariance
matrices V, and W,, respectively. It is usually assumed that {F}, {G;}, {V,} and {W}
are known. Our model can be written as_the:modeldescribed in Section 3.1.1, it can also be

expressed as a state-space model-above.



3 Model Specifications and Methodology

3.1 Parameter-Driven Models for Count Data and the Application of the modified

EM Algorithm

3.1.1 The Model

The vehicle detectors equipped on the road system record the information of flow, speed,
and occupancy every ten seconds. We are interested in utilizing these information to predict
the future traffic flow. Let {Y,};', denote the traffic flow process. At each specific time t, Y,
is the number of cars passing the vehicle detector and hence is discrete in nature. We now
discuss a generalized regression model forra time series of count data. To account for the
dependence of the count data- on its past values-and other relevant contemporaneous
covariates, we use a simple parameter-driven model. Let Y =y be the observed complete
data of which Y is a measurable function. The parameter space is denoted by Q and two
arbitrary elements are denoted by € and #'. We assume that {Wt} is a stationary Gaussian
AR(1) latent process. Given this latent process {W,}, the observations {Y,} are generated
independently from a Poisson distribution with mean A, satisfying

log4 =W, +a'U,, (3)

where o and U, areboth px1 vector.

That is, conditional on {W,} the observations are independent Poisson random variables
with means A, , written as

Y, | 4 ~ Poisson(4,), (4)

where {4} isdefinedas A4 =exp(W, +aU,), and



W, = P, , +&,, (5)
where {5t} isiid N (O, 0'52) . The parameter vector consists of the coefficients in equation (4)
and equation (5) ; thatis, 6= (p, of,a’) .

Parameter-driven models specifies an unobserved latent process and results in a complex
likelihood but they are more elegant and are straightforward in their interpretation of
covariates on the observed count process and its demanding computational effort can be eased

by the computational power nowadays.

3.1.2 Modified EM Algorithm

Let X, :(yt,Wt) denote the complete-data random vector of interest at time t, X =
(X,,...,Xy) be the realization of the complete-data. Let Y =(y,,...,y,) be the observed
data and W= (W1 yee s Wy ) be the latent process and the unobserved data. The joint probability
density function of (y,,W,) is given by,

exp(—exp (Wt +a'U, )) X (exp(Wt +a'U, ))y‘

fX(yt’Wt t—l): y.!
!

1

1 2
Tt ) *

and the log-likelihood of X (conditional on the initial latent variable W,, where W, 1is

N[ 0, (1 sz)J)isgivenby
-p

N
Z( exp(W, + U, )+ yW, + yta’Ut)—glog(af)

t=1

IZZW p\Nu (7)

2(75 t=1




35 (explW () yer )+ Sy~

- 202 (sz - 2pZWtWt—l + pzzwtzlj >
O, \ t=1 = t=l1

Clearly, I, () is linear in exp(W, Z:yt i , ZW _, and Z °,, which are
t=1

measurable functions of X. Davis, Dunsmuir, and Wang (2000) find the MLE of a by
ignoring the presence of a latent process in the model.

In the presence of latent process, which will be treated as missing data, only the log
likelihood function IX(9|y) = logI f, (y,W |(9)dW is observed. Maximizing |, ((9|y) is
difficult. The EM algorithm maximizes |, (9|y) by iteratively maximizing |, (€). Each
iteration of the EM algorithm consists of two steps:

E step: from Q(0'|l9) = Eg(lX (0’)‘y);

M step : maximize Q( . |¢9)

Eg( . |y) denotes the conditional expectation“given Y =Yy, where & is the true parameter

and 1, (') is the log-likelihood of X.

Because the conditional expectation given y of |, (0|y) is intractable, so we do some
adjustment on EM algorithm. Then we replace the marginal expectation with the conditional

expectation given Y. Furthermore,

E, (exp(Wt )) = exp[a—jz)J )

2(1-p
E,(YW,)=0,
1— 2(t+1)
EH(Wtz)z ( (110102) )O'sz’
E, (WW P52,



Hence,

Q( . ]9(r))=zn: —exp 2(10_-5—10“)2) exp(a'U,)+ya'U, —glog(of) (8)

Note that Q(0'|0) is concave in @'. This is the reason for conditioning on W,, because
without conditioning, Q(0'|6) is no longer concave. After obtaining the rth-step estimate of

6, denoted by 0, the p ™ and o> " components of the maximizer of

Q( . |6 (r))are given by

E(ZWthj
t=1

prY=— 2, 9)
E[ZW&J
t=1
Zn: p(r) a0
t=1 (l—p(r)z) !
B FENGED
(1 g (r)2 )o-j(’)
t=1 (l—p )
and
n 2
El ) WW
2(”1)_1 E an _|: [; t t_lJ:| 10
O, _H tzl t n ) ( )
B E| )W
)
Zn: P(r) 520 2
:l Zn:(l_p(r)z(m)) 0 = (1_ (r)2)

The o™ components of the maximizer of Q( . |t9 (r)) is estimated by Iterative
Reweighed Least Square (IRLS).

10



The complete procedure of the modified EM algorithm is summarized below:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Initialize by giving the initial values 6, = ( po,ofo,a(;)

The E step:

ng(r)
Eg (eXp(Wt )) = eXp m
E, (YW,)=0

(r)
(l_p(r)z(m)) . tzl:(l_pp(r)z)aj( )
2(r

e _ LN
N L s I

—

=1

a"" s estimated by IRLS to maximize Q( * |'9 (r))

(r+1)

If ‘p(r) _ ol o2 5>

<error,

Update the parameters (p(r),of(r),a(r)') = (p(m) az(r”),a(”l)')

> ¢

Go to Step 2

11

<error and ‘a(r)'—a(”l)'

<error stop



3.2 Fitting, Prediction and the Estimate Information Matrix
We consider the model in equation (4) and equation (5) of Section 3.2.1, and the EM

algorithm of Section 3.1.2 can be readily applied. Furthermore, because

E,(4]y) =exp(aU,)E, (exp(W,)]y) (11)
for all t, fitting and prediction are easily carried out. The |-step prediction can be obtained

from

Ea(ﬂNH |Y) = eXp[a'UNH +2(zl_—p,02))652] E(exp(p'WN )|y) (12)

This approach is easily modified to handle missing values.

Now, we use two methods to smooth and predict the response variable. In method 1,
unconditional expectations are used:for all the terms involving the latent process. In method 2,
estimated the conditional expectation of the latent process is substituted by the simulated

results.

Method 1 ( Take expectation by E,(4,))

Step 1 ( Fitting of Y, , t=1,...,N )

Y, = ée(ﬂ.t):exp[d'Ut+2(la—ng for t=1,...,N (13)

Step 2 ( Prediction of Y, 121 )

~2
Ea(/ir\m) :eXP[d'UNH "‘ﬁ} (14)

Method 2 ( Generate the model in equation (4) and equation (5) )

12



Step 1 ( Generate W, , t=1...,N )
A2

1.  Generate W, ~ N [0 , WJ

2. Generate ¢ ~N (O, 6'52)

3. Let W, =pW,_, +¢

4. Repeat2.,3.for t=1,...,N
Step 2 (Fittingof Y, , t=1...,N )

Generate Y, ~ Po(exp(W, +&U,)) for t=1,...,N

Step 3 ( Prediction of Y,,,, 121 )

1. Generate ¢ ~N (O, 6'52)

2. Let W,=pW,_, +¢

3. Repeatl.,2.for t=N-+1,...,N +I

4. Generate Y, ~ Po(exp(Wy,+@Uy., ))

In order to interpret the accuracy of the estimation of the parameters, we calculate the
estimated information matrix which is given by
A o’l, (6
1(6)=E|-— 7 ( )
06 060

and the estimated variance-covariance matrix is

Cov (é)=l‘1(é). (16)

; (15)

0=0

13



4 Numerical Example

4.1 Polio Incidence

Table 1 Monthly numbers of U.S. cases of poliomyelitis for 1970 to 1983

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1970 0 1 0 0 1 3 9 2 3 5 3 5
1971 1
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

[S—
AN

SO P O WO = OO == O
—_—_ O =) OO~ WO O W
S OO, OO O, O, O~ O
[ R R N T e = N i = R
OO0 W) O O O — = = O
— = O OO0 = O OO = k-
N D= O OO === O W
— NN O RN~ DO OO W
OO OO, NWOO — — — N
— O N O O A~ NOO O N~
W= O O NN == O =

AN O — bW A =D O R~ W

We illustrate the modified EM algorithm by an example taken from Zeger (1988), who
analyzed the monthly number of case of poliomyelitis from January 1970 — December 1983,
and Table 1 lists the monthly numbers. A central question studied by Zeger (1988) is whether
the data follow a decreasing time trend. There is seasonality in the data, and it is modeled with
trigonometric components involving the first time harmonics. The covariate vector in
Equation (3) is given byU, =( 1 ,t/1ooo,cos(2;rt/12),sin(2m/12),cos(znt/6),sin(2m/6))'

where p is 6.

14



Furthermore, we also would like to compare the results of the modified EM algorithm
with those of the estimating equation method proposed by Zeger and with those of the MCEM
algorithm proposed by Chan and Ledolter. Zeger’s model is slightly different from our model
in Section 3.2.1. Zeger assumed that exp (Wt) follows a stationary AR(1) process and used
the estimating equation method to estimate the parameters, but both our model and Chan and
Ledolter’s model assumed that W, is Gaussian.

We adopt the latent AR(1) model described in the previous section, and we used the
modified EM algorithm to carry out the estimation. The starting values for p and o are
0.5 and 0.5. The starting values of « are obtained by fitting a log-linear model to the data,
assuming no temporal dependence, i.e. (,;,0,,0;,0,,04 )’ are (0.554641, -4.843069,
0.136865, -0.541847, 0.455233, —0.059814)’ 5

The value of Q( . |0) is maximized and the approximate ML estimates are given by

P =0.650877 67 =0.384351
(0.058719) (0.042059)

&' =( 0.223810 , -4.798661 , 0.137132 , -0.534985 , 0.458797 , -0.069627 )
(0.127307) (1.402918) (0.089482) (0.115477) (0.101469) (0.098128)

The figures within parentheses are estimate standard errors, obtained from Equation (16).
Fitted results in Section 3.2 are shown in Figure 1, where dots represent the observations.

The thicker solid line connects the fitted data simulated from method 1, and the

=1.150442 . The thinner solid

: : N R .
average error with observations and fitted data is —Z:|yt -Y,
N

line connects the fitted data simulated from method 2, and the average error with observations

and fitted data is lZ:|yt —-V,|=1.535714.
L

15



number of polio cases

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
year

number of polio cases

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
year

Figure 1 Monthly Numbers of Polio Cases. Dots represent observations. The thicker solid
line connects the fitted data simulated from method 1. The thinner solid line connects the

fitted data simulated from method 2.

Because Zeger (1988) modeled & = exp(W, )/E,(exp(W, )), his and our results are not
directly comparable. The following calculations shed light on their relationships. Because we
have calculated E,(exp(W,))= exp(of / 2(1 —,02)) in Section 3.1.2, and because &, in
Zeger’s model is normalized to have mean 1, we need to subtract o’ / 2(1— pz) from our
intercept estimate to make them comparable. Letting 052 and p, (1) be the variance and the

first lag autocorrelation of £, we obtain 0'; and p, (1) as follow:

16



2
yoles
exp| — [—1
p(l—sz

p¢(1)=exp( 6522}—1.

1-p

Base on those expressions, the ML estimate for 0'52 and p, (1) can be obtained.
Our results, as well as those reported by Zeger and Chan and Ledolter, are displayed in
Table 2. In general, the estimates are fairly similar; however, a few differences should be

pointed out:

1. The slope estimate and the coefficient of cos(27rt/ 6) in our model are bigger, in
absolute value, than those reported by both Zeger and Chan and Ledolter. Zeger reported
t-ratios of 1.62 and 0.14, which ate not significant at the 0.05 level, but the one reported by
Chan and Ledolter and ours are significant.

2. The coefficient of sin(27zt/ 6) reported-by Zeger is bigger, in absolute value, than
that reported Chan and Ledolter and in our model. Chan and Ledolter reported a t-ratio of 0.4
and we have a t-ratio of 0.7, which are not significant at the 0.05 level, but the one reported by
Zeger is significant.

3.  Our ML estimate of the noise variance is the maximum of the three methods, and is
much bigger than both Zeger’s estimate and the Chan and Ledolter’s estimate.

4. Our ML estimate of the autoregressive coefficient is smaller than both Zeger’s
estimate and Chan and Ledolter’s estimate. Moreover, our ML estimate 1s more farther from 1
than both their estimates.

5. Our standard errors for the ML estimates are smaller than the ones obtained by

Zeger and similar with the ones obtained by Chan and Ledolter’s.
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Table 2 Coefficients and Standard Errors

Zeger's model Chan and Ledolter's model Our model

¢ Standard error ¢  Standard error ¢  Standard error
Intercept — — 0.21 0.13 0.22 0.13
Trend -4.35 2.68 -4.62 1.38 -4.80 1.40
cos(2mt/12) -0.11 0.16 0.15 0.09 0.14 0.09
sin( 2nt/12)  -0.48 0.17 -0.50 0.12 -0.53 0.12
cos( 2mt/6 ) 0.20 0.14 0.44 0.10 0.46 0.10
sin( 2mt/6 ) -0.41 0.14 -0.04 0.10 -0.07 0.10
S; 0.77 — 0.54 0.04 0.95 0.04
/65 0.77 — 0.88 — 0.57 0.06

We also applied the MCEM algorithm reported by Chan and Ledolter, and we have
compared our results with those of repotted by them: The starting values for p and o) are
the same with the reported by Chan and Ledolter which are 0 and 1. The Markov chain
sample size, m, is initially set to 200. The starting values of « are obtained by fitting a
log-linear model to the data, assuming no temporal dependence, ie. (,, @, @,, a3, a,,
055)’ are (0.554641 ,-4.843069 , 0.136865 , -0.541847 , 0.455233 , —0.059814)’. The time
sequence plot of the estimated log-likelihood ( of the observed data ) for 690 iteration is
shown in Figure 2. After about 350" iterations, most coefficients stabilize. The log-likelihood
is maximized at the 505" iteration and subsequently moves into a slightly lower likelihood

region. Changes for selected coefficients are shown in Figure 3, Figure 4 and Figure 5.
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The parameter values at the 505" iteration are used as starting values for a new MCEM
iteration, i.e., (p,of,a')’:(-0.000208,0.740943,0.190889,-4.783508,0.141291,-0.545433,
0.466094 , —0.063966)’. The Markov chain sample is increased to 2000, and time sequence
plot of the estimated log-likelihood ( of the observed data ) for 473 iteration is shown in
Figure 6. After 473 iterations, the algorithm is stopped. All estimated changes of the
log-likelihood are smaller than 0.0005 in magnitudes. The approximate ML estimates are

given by

2 = 0.000489 &7 =0.551862
(0.077382) (0.060386)

&' =( 0.266812 , -4731944 , 0.134610 , -0.543219 , 0.456102 , -0.057427 )
(0.128069) (1.408738) (0.090010), (0.116141) (0.101956) (0.098602)

Our results are not similar with that ones of reported-by Chan and Ledolter, this may be the
result of the difference between ‘generatorsywhich produces the latent process {Wt} , thus the
variation occurs in the MCE step is too'large. In‘order to reduce such variations, we prefer the
modified EM algorithm method.

Fitted results in Section 3.2 are shown in Figure 7, where dots represent the observations.

The thicker solid line connects the fitted data simulated from method 1, and the average error

with observations and fitted data is lZ:|yt —V,|=1.145561. The thinner solid line connects
n

t=1

the fitted data simulated from method 2, and the average error with observations and fitted

=1.601190.

data is lZn:|yt -,
L
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Figure 7 Monthly Numbers of Polio Cases. Dots represent observations. The thicker solid
line connects the fitted data simulated from method 1. The thinner solid line connects the

fitted data simulated from method 2.
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4.2 Traffic Flow

4.2.1 Data Descriptions

Vehicle detectors are used for detecting the presentation of the queue. In some special
time, like raining day or the day before long holidays, the level of oversaturated traffic
condition will become more serious. Therefore, accurate forecast of traffic flow from the
collected data is desirable. The data we analyze are collected by the RTMS ( Remote Traffic
Microwave Sensor ) from the intersection of Zhong-Hua Road (f[I# %) and Jing-Guang
Road (%A %), on Apr. 25, 2005 from 14:13728 PM to 16:59”57 to study the effect on traffic
before the rush hour. The data are taken at ten-second intervals; therefore, we have a data set
of sample size 1000. The RTMS*( RemoterTraffic. Microwave Sensor ) is in its forward-
looking configuration and is moeunted on overhead sign structures to monitor the road and
collect the data of traffic flow and'eccupancy. The:detector divides the detectable range (about
60 meters) of the lane into six sections, and collects the volume and occupancy in each section
separately. The RTMS mounted on the road is shown in Figure 8. Missing values occur with
unknown reasons, the maximum volume of the six sections and the occupancy of the
corresponding section constitute the data at each time interval. For example, when volume is
0 means that no car passes through the detector in ten seconds, and volume is 8 means that
eight cars pass through the detector in ten seconds. If occupancy is 0, the percentage of
occupancy is 0 %, and if occupancy is 1, the percentage of occupancy is 100 %. The traffic
flow and occupancy change with time, and the scatter plot of the data collected by the RTMS
is shown in Figure 9, the plots of the complete set and a partial set first 200 observations of

traffic flow are shown in Figure 11 and Figure 12, respectively. Because of undetectable
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situation caused by traffic jam or some unidentified reason, we consider the existence of latent

process.

The data of the traffic flow collected by RTMS are discrete data, a model for regression
analysis with a time series of counts will be used. The notations used in the model are listed as
follows:

Y : traffic flow (volume); this value is the variable of the detected flow, and the definition is
the number of vehicles passing a point on a roadway, or other traffic way during some
time interval;

U: occupancy; the percentage of flow at which vehicles traverse a point or uniform segment
of a lane or roadway during a specified ti_n_1§ period under prevailing roadway, traffic, and
control conditions; 4 |

N : the number of data.

i.e.,

Y= (Vi Yareeos Yeooos Yons Y )

U= (Up,Uysee o Upsens Uy, Uy )

and (y,,U,) is the data at time t.

RE231 RE422/435

Figure 8 RTMS in Forward-Looking Mode
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occupancy. The plot conforms to.the Figuré 10 which'is the relationship of flow and density in

Traffic Theory.
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4.2.2 Data Analysis

We have applied the parameter-driven model to analysis traffic flow as an illustration. A
time sequence plot of the traffic flow is shown in Figure 11. Because the sample size is large,
we can’t read Figure 11 clearly and Figure 12 shown the plot of first 200 observations plot of
the complete data. The covariate vector in Equation (3) is given by U, = (1 , U, )' where p is
2. We adopt the latent AR(1) model described in the previous section, and we used both
MCEM and the modified EM algorithm to carry out the estimation. The starting values for p
and o are 0.5 and 0.5. The starting values of « are obtained by fitting a log-linear model

!/

to the data, assuming no temporal dependence, i.e. (¢, )’ are (0.682636,2.550254)

The value of Q( . |0) 1s maximizedrand-the approximate ML estimates are given by

p=0.707559 62 =10.332942 a'=( 0350308 , 2.580916 )
(0.022361) (0.014899) (0.025593) (0.129314)

The figures within parentheses are estimated ‘standard errors, obtained from Equation (16).
Fitted results in Section 3.2 are shown in Figure 13 and Figure 14, where dots represent

the observations. The thinner solid line connects the fitted data simulated from method 1, and

=1.181. The thicker

. N .
the average error between observations and fitted data is —Z:|yt -V,
N

solid line connects the fitted data simulated from method 2, and the average error between

observations and fitted data is lZ:|yt —-V,/|=2.277. We can find that the average error
e

between observations and fitted data from method 1 is smaller than that obtained by method 2,

this unstable situation may come from the variability with the latent process {Wt} .

27



Figure 13 Time sequence of the traffic flow. Dots represent observations. The thinner solid
line connects the fitted data simulated from method 1. The thicker solid line connects the

fitted data simulated from method 2.
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Figure 14 Cumulative Traffic Flow. Dots represent observations. The upper figure shows the
fitted data simulated from method 1. The lower figure shows the fitted data simulated from
method 2. It is clear that the fitted data from method 1 is closer the traffic flow than that one
from method 2, this unstable situation maybe come from generator which produces the latent

process {W,}.
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We apply the MCEM algorithm reported by Chan and Ledolter (1995) to our data. The
starting values for p and o are the same with the reported by them which are 0 and 1.
The Markov chain sample size, m, is initially set to 200. The starting values of a are
obtained by fitting a log-linear model to the data, assuming no temporal dependence, i.e.
(ao, a, ), are (0.682636, 2.550254)’ . The time sequence plot of the estimated log-
likelihood ( of the observed data ) for 150 iteration is shown in Figure 15. After about 90
iterations, all coefficients stabilize. The log-likelihood is maximized at the 132" iteration and
subsequently moves into a slightly lower likelihood region. Changes for selected coefficients

are shown in Figure 16, Figure 17 and Figure 18.
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Figure 15 Q( . |¢9) for Iterations 0 Through 150
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The parameter values at the 132" iteration are used as starting values for a new MCEM
iteration, i.e., (p, of,a')’ = (-0.001962,0.958849,0.209393,2.530430)' . The Markov chain
sample is increased to 2000, and time sequence plot of the estimated log-likelihood ( of the
observed data ) for 147" iteration is shown in Figure 19. After 147 iterations, the algorithm is
stopped. All estimated changes of the log-likelihood are smaller than 0.0005 in magnitudes at

147" iteration. The approximate ML estimates are given by

£ =0.001183 67 =0.913263 a' =( 0.231416 , 2.578988 )
(0.031639) (0.040863) (0.025537) (0.129102)
Our fitted results in Section 3.2 are shown in Figure 20 and Figure 21, where dots represent

the observations. The average error with observations and fitted data simulated

from method 1, is 12|yt -V
n

t=1

= 11181, and the average error with observations and fitted

data simulated from method 2 is lZ:|yt —¥:/=2.493 . We can find that the average error
N3

with observations and fitted data from:method 1 is'smaller than that one from method 2.
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Figure 19 Q( . |¢9) for Iterations 0 Through 147
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Figure 20 Time sequence of the traffic flow. Dots represent observations. The thinner solid
line connects the fitted data simulated from method 1. The thicker solid line connects the

fitted data simulated from method 2.
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Figure 21 Cumulative Traffic Flow. Dots represent observations. The upper figure shows the
fitted data simulated from method 1. The lower figure shows the fitted data simulated from
method 2. It is clear that the fitted data from method 1 is closer the traffic flow than that one
from method 2, this unstable situation maybe come from generator which produces the latent

process {W,}.
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5 Conclusion

In this thesis, a generalized regression model for a time series of count data is used to
model the relationship between the traffic flow and the occupancy, assuming the existence of
an AR(1) Gaussian latent process and the modified EM algorithm. Our method and our results,
a few phenomena should be pointed out:

1. If the log-likelihood function is concave and unimodal, then the sequence of iterates
o ( 0" is the estimate at the r'™ iteration ) converges to the ML estimate 0 of 0, 1in one
step if the log-likelihood is a quadratic function of 6.

2. The starting value for p of the modified EM is 0.5 that we chose. We also tried
the value closer to 0 or 1, in absolute value, and problems come up more easily during the
solving process.

3. No mater which method we use, some very large fitted values pump up in Figure 13.
This is because when we fitted thé-data, it has some relationship with the covariate variable. It
is observed that fitted data could be affected by observed occupancy seriously, and the
average error with observations and fitted data from method 1 is smaller than that from
method 2, this unstable situation may have come from generator which produces the latent

process {W,}.

Our method and the MCEM algorithm reported by Chan and Ledolter are a few
differences shown as follows:

We replace the marginal expectation which has some relation with latent process, and the
variation caused by simulation could be reduced. Another problem to be overcome is that we

may spend much time and need large memory as simulation.
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Appendix : Proof of the E step

2
Proof of Et(exp(Wt))=exp[2(lo-—fz)J. The marginal expectation of exp(W,) is
-p

found by making use of the following conditional expectation

CZ 2
= (exn(om) e o + 22
and

J where c 1s a constant.

Now,

E (exp(W,)) =B By (exp(We))

=E, [exp(pvvt—l i O; J]

Repeat the same calculation procedure and we-can derive

2

E, (exp(Wt)) = exp[i} N

2(1-p?)

Proof of E, (YW, )=0. The marginal expectation of YW, is found by making use of the

following conditional expectation and marginal expectation

2

-3/2
Et\t-l(Yt t):(l_gj) th_lexp{lp Wt31+a'Ut}

2
-0,
and

E, (Wt exp{CWtz}) =0 where c is a constant.

First, the derivative processes of conditional expectation are as follows:
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W +a'Ut ' Yt
—€ W, +a'U
(&)

1
E(YyW,)= W W, — dy,dW,
(YW,) _”yt t \/27z0 exp{ g( - PN 1)} Y aW,

Y,!

| 1 —eMrety (ewtm'uI )yt
ZJ‘Wt—zeXp{ W - PN }J-yt dy, dw,
2o 20 t:
W, L w et tidw,
:J- tTG‘feXp —T‘j( =P, ) pxe t
= ! ex { p W2 +a U}
J1-202  [1-
1 2
x [W, exp . (Wt_1 {; 2Wt_1j dw
(o 2 £ - £
P20 1-20;

Second, the derivations of marginal expectation are as follows:

Et(Wtexp{CWtz}) E-E (Wtexp{CWtz})

=1 itft=1
Repeat the same calculation procedure and TE; (WO exp {Cwoz}) =0, we can derive
E, (Wt exp{CWtz}) =0
Now,

E (YW,) =E_E,_ (YW,)

t—1 tjt-1

6

=E. L( ) AW, 1exp{1 p T W2 +avut}]-

Repeat the same calculation procedure and we can derive

E (YW,)=0. [ |

o 2(t+1)

2 _(1 p ) 2 . . 2 .

Proof of E =-————%0. . The marginal expectation of W~ is found by
t\ YVt (1—,02) £ t

making use of the following conditional expectation
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and

E, (W) =0

&
Now,

E, (Wtz) =E. Et\t—l (Wtz)

=E (exp(pzwtgl + Of)) :

Repeat the same calculation procedure and we can derive

Proof of E,(WW P

making use of the following relation

Cov (W, W,_,)= ( _/’pz) o’
and

E,(W,)=0
Now,

E, (WW,,, ) = Cov(W,,W,

2

¢, . The marginal expectation of WW,

t+1): (l—pz) £

t+1 ) - Et (Wt ) Et+1 (Wm )
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