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動態計數時間序列之估計  

 

 

研究生：黃鷰筑 指導教授：周幼珍  博士 

國立交通大學統計所研究所 

中文摘要 

本篇論文描述分析從 latent process 得到的計數資料的

parameter-driven 模式之方法，且 latent process 與計數資料具

有相關性。而此模型將產生十分複雜的概似函數，modified EM

演算法是將 EM 演算法中的 E 步驟作了一些修改，即將 E 

步驟中給定 y 的條件期望值用邊際期望值替代。我們將用兩

種時間序列的例子來說明我們的方法：車流量資料和 Zeger 

(1988) 的小兒麻痺發生率序列。藉由架設在路邊的偵測器所

收集到的資料，我們可以估計、配適及預測交通網絡中的交

通狀態，而這些訊息將是信號控制以及交通車隊管理的關鍵。 
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Estimation of Dynamic Model of Time Series 

Count Data with Application to Traffic Flow Forecast 
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Institute of Statistics 

National ChiaoTung University 

 

ABSTRACT 

This thesis describes the methodology for analyzing in parameter- 

driven models for time series of count data generated from latent process 

that characterize the correlation structure. These models result in very 

complex likelihoods. A modified EM algorithm is proposed which we 

replace the marginal expectation with the conditional expectation given y in 

the E step of the EM algorithm. We illustrate our method by two time series: 

the traffic flow data and Zeger’s polio incidence series. Through the data 

collected by the detectors mounted on the road, we can estimate, smooth and 

predict the traffic condition about the network, these information are critical 

to signal control and traffic queue management. 
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1 Introduction 

 

 Traffic congestion is a daily occurrence in most urban areas and is becoming a serious 

problem in many urban and sub-urban areas. A roadway system is operating in saturated and 

oversaturated conditions. A signalized intersection is said to be “oversaturated” if the demand 

volume exceeds the capacity of the intersection. Over-saturation refers to conditions where 

traffic queues persist from cycle to cycle due to insufficient green splits or because of 

blockage. In such conditions queues along signalized arterials may block upstream 

intersections thus exacerbating an already bad condition. It is critical that appropriate signal 

control and queue management procedures are in place. Otherwise, excessive queues and 

spillbacks into upstream intersections would lead to gridlock with serious disruptive 

consequences on system operations. The need for appropriate traffic management procedures 

becomes even more pressing with the deployment of more efficient traffic control systems 

within the intelligent transportation systems (ITSs) complex which handles information, 

including traffic flow prediction, on a real-time base. 

 Several queue management and signal control strategies have been described in literature. 

However, to design effective signal control schemes, the traffic flows occur in the next cycles 

are required. Traffic signal, as an essential element of an urban transportation network plays a 

critical rule in the operation of urban street network and could not be neglected along with the 

movement of ITSs. Over the past few decades the study on signalized intersections has been 

carried out by various methods, however, still it is well accepted the benefit of signal control 

has not been fully realized. In general, current researches on traffic signal control can be 

grouped into two classes from the view of flow-capacity situation, i.e. under-saturation and 
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congestion control. The model concerning with the under-saturated flow condition serve well 

from isolate intersection to network control. However for a congested or over-saturated 

network, most of the procedures were based upon experience or simple analysis and were not 

efficient in easing the congestion situation. To achieve more efficient management of the 

traffic, it is better to keep the road system in free-flow condition as long as possible. Therefore, 

a dynamic model with covariates is used to describe the time series of traffic flow counts. 

 In some special time, like raining day, the day before long holidays or rush hours, the 

level of oversaturated traffic condition will become more serious. So we hope to control the 

daily traffic before the rush hours effectively. If we are able to release the traffic flow of the 

section effectively, it may be helpful to release the jammed traffic after that. However, so far 

most of the traffic sign in Taiwan are still controlled by the police when the traffic is heavy. 

Although it will effectively control at once, it is difficult to maintain the high level 

performance of the signals due to variability existing in personal manipulation. Moreover, the 

range of personal control and the vision are restricted at the located intersection. Even we 

transmit messages by wireless; we are not able to effectively achieve traffic flow and the 

continuance of traffic sign. Therefore, if we can predict the traffic flow precisely, it may help 

us a lot. We hope to invent a method to calculate the capacity of roads in Taiwan, and the first 

step of the work is to get the model of the traffic flow curve. Therefore, the purposes of this 

thesis are to use a more realistic model and an appropriate approach to estimate and predict 

the future traffic flow. 

 This thesis describes the methodology for estimating the parameter-driven models for 

time series of counts which are generated from latent unobservable process that characterize 

the correlation structure. It is different from previous procedures in many respects. It is a new 
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general formulation for an under-saturated network.  

 The rest of the thesis is organized as follows. Literature on modeling time series with 

count data are briefly reviewed in Section 2. Section 3 consists of two subsections. In the first 

subsection we describe the formulas of the modified EM algorithm to first-order parameter- 

driven model for time series of count data; and in the second subsection we describe two 

methods to smooth and predict, and to estimate information matrix. Two real data 

applications, including the traffic flow data and Zeger’s polio incidence series, are presented 

in Section 4. Finally, we discuss the advantages and shortcomings in Section 5. Proofs are 

collected in the Appendix. 
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2 Literature Review 

 

 Let { } 1

N
t t

Y
=

 be a time series of count data and let { } 1

N
t t

U
=

 be an observed vector- valued 

covariate process. We are interested in modeling the contemporaneous dependence of tY  on 

the covariates in tU  as well as its dependence on past values. In order to describe tμ =  

( )tE Y  as a function of a 1×p  vector of covariates, tU , classical linear models are 

regression models with the assumption that the observations are normally distributed with a 

covariance matrix that is known up to a constant. Generalized linear model (Nelder and 

Wedderburn, 1972) extended the classical linear model by allowing for non-normal noise such 

as the case when the response variable is binary or integer-valued. With independent 

observations, logistic and log linear models can be used for this purpose. If the response 

variables are a time series, serial dependence should be incorporated in the model. 

 Because of the nature of the traffic flow, a discrete time series model will be utilized to 

describe its behavior. Discrete time series occur in many contexts, often as counts of events, 

objects or individuals in consecutive intervals or at consecutive points in time. Modelling 

discrete time series is the most challenging, as yet, least well developed of all areas of 

research in time series. For time series data, Cox (1981) suggested two classes of models of 

time-dependent data: parameter-driven and observation-driven models. In an observation- 

driven, the conditional distribution of observation is specified as a function of past 

observations. Autoregressive models for Gaussian series are example for continuous data. 

Integer-valued autoregressive moving average models and Poisson autoregressive (PAR), 

introduced by Al-Osh and Alzaid (1987), Freeland and McCabe (2004) applied the model to 

describe monthly count data set of claimants for wage loss benefit. Davis et al. (2003) are 
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examples for discrete data. In a parameter-driven model, which is conceptually more elegant, 

serial correlation is introduced through an unobserved latent process. Both specifications are 

becoming increasingly popular because of their ability to handle serial correlation and 

over-dispersion in the data. 

 Recently, much research effort has been devoted to the theoretical development and 

refinement of parameter-driven models. An important approach to the incorporation of 

covariates was initiated by Zeger (1988) who was concerned with testing for a falling trend in 

monthly U.S. polio incidence data. He used Poisson regression to model trend and seasonality 

explicitly, and a stationary process { }tε  with unit mean and autocovariance function 

2)(),( σρεε ε kCov ktt =−  to model the serial correlation. Campbell (1994) extended this 

approach to higher orders of dependence in modeling occurrences of sudden infant death 

syndrome and related trends to environmental factors. Brannas and Johansson (1996) further 

extended to panel data. Chan and Ledolter (1995), and Jorgensen et al. (1996), among others, 

also tried to tackle the problem of modeling discrete time series. Their common assumption is 

that the observations are conditionally independent given the latent process. Without 

assuming the full information on the latent process, Zeger (1988) estimated the parameters by 

quasi-likelihood estimating equation. Chan and Ledolter (1995) model the polio data as a 

dynamic GLM in which the latent process, { }tW , is an Gaussian AR(1) process, i.e. 

ttt WW ερ += −1 , where { }tε  is iid ),0( 2σN . Explicitly, conditional on trend and seasonal 

covariates, { }tU , ( ), ~ ( )t t t ty W U Poisson λ , where ttt WU +′= αλlog .The authors treated 

the latent process as missing values and used a variant of the EM algorithm to maximize the 

likelihood. In their algorithm, the E-step is performed indirectly using Monte Carlo simulation. 

The approach is direct to estimate the parameters but suffered from, as the authors stated in 
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the paper, noisy simulated log-likelihood of the complete data. In this thesis, we will basically 

follow the formulation but modify the estimation process. 

 In the linear, Gaussian structure, state-space models are parameter-driven models in 

which an unobserved state-vector tθ  evolves linearly through time and only a linear function 

of it is observed, usually in noise. Thus, there are two defining equations: an observation 

equation, and evolution or system equation, typically of the form: 

  t t t tX Fθ υ= + ,               (1) 

  1t t t tGθ θ ω+= + ,              (2) 

where { }tυ  and { }tω  are independent sequences of i.i.d. r.v.s of zero mean and covariance 

matrices tV  and tW , respectively. It is usually assumed that { }tF , { }tG , { }tV  and { }tW  

are known. Our model can be written as the model described in Section 3.1.1, it can also be 

expressed as a state-space model above. 
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3 Model Specifications and Methodology 

  

 3.1 Parameter-Driven Models for Count Data and the Application of the modified 

 EM Algorithm 

 

3.1.1 The Model 

 The vehicle detectors equipped on the road system record the information of flow, speed, 

and occupancy every ten seconds. We are interested in utilizing these information to predict 

the future traffic flow. Let N
ttY 1}{ =  denote the traffic flow process. At each specific time t, tY  

is the number of cars passing the vehicle detector and hence is discrete in nature. We now 

discuss a generalized regression model for a time series of count data. To account for the 

dependence of the count data on its past values and other relevant contemporaneous 

covariates, we use a simple parameter-driven model. Let Y y=  be the observed complete 

data of which Y is a measurable function. The parameter space is denoted by Ω and two 

arbitrary elements are denoted by θ  and θ′ . We assume that { }tW  is a stationary Gaussian 

AR(1) latent process. Given this latent process { }tW , the observations { }tY  are generated 

independently from a Poisson distribution with mean tλ  satisfying 

  log t t tW Uλ α′= + ,              (3) 

where α  and tU  are both 1p×  vector.  

 That is, conditional on { }tW  the observations are independent Poisson random variables 

with means tλ , written as 

  ( )| ~t t ty Poissonλ λ ,             (4) 

where { }tλ  is defined as ( )expt t tW Uλ α′= + , and 
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  1t t tW Wρ ε−= + ,              (5) 

where { }tε  is iid ( )20,N εσ . The parameter vector consists of the coefficients in equation (4) 

and equation (5) ; that is, ( )2, ,εθ ρ σ α′= . 

 Parameter-driven models specifies an unobserved latent process and results in a complex 

likelihood but they are more elegant and are straightforward in their interpretation of 

covariates on the observed count process and its demanding computational effort can be eased 

by the computational power nowadays. 

 

3.1.2 Modified EM Algorithm 

 Let ( ),t t tX y W=  denote the complete-data random vector of interest at time t, X = 

( )1, , NX XK  be the realization of the complete-data. Let Y ( )1, , Ny y= K  be the observed 

data and W ( )1, , NW W= K  be the latent process and the unobserved data. The joint probability 

density function of ( ),t ty W  is given by 

  ( ) ( )( ) ( )( )
1

exp exp exp
,

!

ty
t t t t

X t t t
t

W U W U
f y W W

y
α α

−

′ ′− + × +
=  

        ( )2
122

1 1exp
22

t tW W
εε

ρ
σπσ

−

⎛ ⎞
× − −⎜ ⎟

⎝ ⎠
,          (6) 

and the log-likelihood of X (conditional on the initial latent variable 0W , where 0W  is 

( )
2

2
 0 ,  

1
N εσ

ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

) is given by 

  ( ) ( )( ) ( )2

1
exp log

2

N

X t t t t t t
t

nl W U yW y U εθ α α σ
=

′ ′= − + + + −∑  

      ( )2
12

1

1
2

N

t t
t

W W
ε

ρ
σ −

=

− −∑             (7) 
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    ( ) ( )( ) ( )2

1 1
exp exp log

2

n n

t t t t t t
t t

nW U y U yW εα α σ
= =

′ ′= − + + −∑ ∑  

      2 2 2
1 12

1 1 1

1 2
2

n n n

t t t t
t t t

W WW W
ε

ρ ρ
σ − −

= = =

⎛ ⎞
− − +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ , 

Clearly, ( )Xl θ  is linear in ( )exp tW , 
1

n

t t
t

yW
=
∑ , 2

1

n

t
t

W
=
∑ , 1

1

n

t t
t

WW −
=
∑  and 2

1
1

n

t
t

W −
=
∑ , which are  

measurable functions of X. Davis, Dunsmuir, and Wang (2000) find the MLE of α  by 

ignoring the presence of a latent process in the model. 

 In the presence of latent process, which will be treated as missing data, only the log 

likelihood function ( ) log ( , )X Xl y f y W dWθ θ= ∫  is observed. Maximizing )( ylX θ  is 

difficult. The EM algorithm maximizes )( ylX θ  by iteratively maximizing )(θXl . Each 

iteration of the EM algorithm consists of two steps:  

  :E step  from ( ) ( )( )XQ E l yθθ θ θ′ ′= ; 

  :M step  maximize ( )  Q θ․ . 

( )  E yθ ․  denotes the conditional expectation given Y y= , where θ  is the true parameter 

and ( )Xl θ′  is the log-likelihood of X.  

 Because the conditional expectation given y of )( ylX θ  is intractable, so we do some 

adjustment on EM algorithm. Then we replace the marginal expectation with the conditional 

expectation given y. Furthermore, 

 ( )( ) ( )
2

2
exp exp

2 1tE W ε
θ

σ
ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

, 

 ( ) 0t tE YWθ = , 

 ( )
( )( )

( )
2 1

2 2
2

1

1

t

tE Wθ ε

ρ
σ

ρ

+−
=

−
, 

 ( ) ( )
2

1 21t tE WWθ ε
ρ σ
ρ+ =

−
. 
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Hence, 

  ( )( )
( )

( )( ) ( ) ( )
2

2
2

1
  |  exp exp ' ' log

22 1

rn
r

t t tr
t

nQ U y Uε
ε

σθ α α σ
ρ=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − + −
⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

∑․         (8) 

     
( ) ( )( )

( )( )
( )

( )

( )( )
( )

( ) ( )( )
( )( )

( )
2 1 2

2 2 2 2
2 2 2 2

1 1 1

1 11 2
2 1 1 1

r t r trn n n
r r r

r r r
t t t

ε ε ε
ε

ρ ρρσ ρ σ ρ σ
σ ρ ρ ρ

+

= = =

⎛ ⎞− −
⎜ ⎟− − +
⎜ ⎟− − −⎝ ⎠
∑ ∑ ∑ . 

Note that ( )Q θ θ′  is concave in θ′ . This is the reason for conditioning on 0W , because 

without conditioning, ( )Q θ θ′  is no longer concave. After obtaining the rth-step estimate of 

θ , denoted by ( ) rθ , the ( )1rρ +  and ( )12 r
εσ

+  components of the maximizer of 

( )( )   rQ θ․ are given by  

  ( )
1

1 1

2

1

n

t t
r t

n

t
t

E WW

E W
ρ

+
+ =

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
,                                             (9) 

  

( )

( )( )
( )

( ) ( )( )
( )( )

( )

2
2

1

2

2
2

1

1
        

1

1

rn
r

r
t

r t
n

r
r

t

ε

ε

ρ σ
ρ

ρ
σ

ρ

=

=

−
=

−

−

∑

∑
 

and 

  ( )

2

1
112 2

1 2
1

1

1

n

t tn
tr

t n
t

t
t

E WW
E W

n E W
εσ

−
=+

=
−

=

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎜ ⎟⎝ ⎠⎣ ⎦= −⎜ ⎟⎜ ⎟⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑

∑
              (10) 

  
( ) ( )( )

( )( )
( )

( )

( )( )
( )

( ) ( )( )
( )( )

( )

2

2
22 1

1
2

22
1

2
2

1

111         
1 1

1

rn
r

rr t
n t

r
r r t

nt
r

r
t

n

ε

ε

ε

ρ σ
ρρ

σ
ρ ρ

σ
ρ

+
=

=

=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥−−⎜ ⎟⎣ ⎦= −⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑
∑

∑
. 

The ( )1rα +  components of the maximizer of ( )( )  rQ θ․  is estimated by Iterative 

Reweighed Least Square (IRLS). 
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 The complete procedure of the modified EM algorithm is summarized below: 

Step 1 Initialize by giving the initial values ( )2
0 0 0 0, ,εθ ρ σ α ′′=  

Step 2 The  E step :  

  ( )( )
( )

( )( )
2

2
exp exp

2 1

r

t r
E W ε
θ

σ
ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 

  ( ) 0t tE YWθ =  

  ( )
( ) ( )( )

( )( )
( )

2 1

2 2
2

1

1

r t
r

t r
E Wθ ε

ρ
σ

ρ

+−
=

−
 

  ( )
( )

( )( )
( )2

1 21

r
r

t t r
E WWθ ε

ρ σ
ρ

+ =
−

 

Step 3 The  M step : maximize ( )( )  rQ θ․ , i.e., 

  ( )

( )

( )( )
( )

( ) ( )( )
( )( )

( )

2
2

1
1

2

2
2

1

1

1

1

rn
r

r
t

r
r t

n
r

r
t

ε

ε

ρ σ
ρ

ρ
ρ

σ
ρ

=
+

=

−
=

−

−

∑

∑
 

  ( )
( ) ( )( )

( )( )
( )

( )

( )( )
( )

( ) ( )( )
( )( )

( )

2

2
22 1

1
12 2

22
1

2
2

1

111
1 1

1

rn
r

rr t
n t

r r
r r t

nt
r

r
t

n

ε

ε ε

ε

ρ σ
ρρ

σ σ
ρ ρ

σ
ρ

+
=

+

=

=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥−−⎜ ⎟⎣ ⎦= −⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑
∑

∑
 

  ( )1rα +  is estimated by IRLS to maximize ( )( )  rQ θ․  

Step 4 If ( ) ( )1r r errorρ ρ +− < , ( ) ( )12 2r r errorε εσ σ +− <  and ( ) ( )1r r errorα α +′ ′− <  stop 

Step 5 Update the parameters ( ) ( ) ( )( )2, ,r r r
ερ σ α

′′ = ( ( )1rρ + , ( )12 r
εσ

+ , ( ) )1rα + ′′  

Step 6 Go to Step 2 
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3.2  Fitting, Prediction and the Estimate Information Matrix 

 We consider the model in equation (4) and equation (5) of Section 3.2.1, and the EM 

algorithm of Section 3.1.2 can be readily applied. Furthermore, because  

  ( )tE yθ λ ( ) ( )( )exp expt tU E W yθα′=             (11) 

for all t, fitting and prediction are easily carried out. The l-step prediction can be obtained 

from 

  ( ) ( )
( ) ( )( )

2
2

2

1
exp ' exp

2 1

l
l

N l N l NE y U E W yθ ε

ρ
λ α σ ρ

ρ+ +

⎛ ⎞−
⎜ ⎟= +
⎜ ⎟−⎝ ⎠

.     (12) 

This approach is easily modified to handle missing values. 

 Now, we use two methods to smooth and predict the response variable. In method 1, 

unconditional expectations are used for all the terms involving the latent process. In method 2, 

estimated the conditional expectation of the latent process is substituted by the simulated 

results. 

 

Method 1 ( Take expectation by ( )tEθ λ )  

Step 1 ( Fitting of  ,  1, ,tY t N= K  ) 

  t̂Y ( )ˆ
tEθ λ=

( )
2

2

ˆˆexp
ˆ2 1tU εσα
ρ

⎛ ⎞
⎜ ⎟′= +
⎜ ⎟−⎝ ⎠

 for 1, ,t N= K           (13) 

Step 2 ( Prediction of ,  1N lY l+ ≥  ) 

  ( )ˆ
N lEθ λ + ( )

2

2

ˆˆexp '
ˆ2 1N lU εσα
ρ+

⎛ ⎞
⎜ ⎟= +
⎜ ⎟−⎝ ⎠

          (14) 

 

Method 2 ( Generate the model in equation (4) and equation (5) ) 
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Step 1 ( Generate  ,  1, ,tW t N= K  ) 

 1.  Generate 
( )

2

0 2

ˆ
~ 0 ,  

ˆ1
W N εσ

ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 2.  Generate ( )2ˆ~ 0,t N εε σ  

 3.  Let 1ˆt t tW Wρ ε−= +  

 4. Repeat 2. , 3. for 1, ,t N= K  

Step 2 ( Fitting of  ,  1, ,tY t N= K  ) 

   Generate ( )( )ˆ~ expt t tY Po W Uα′+  for 1, ,t N= K  

Step 3 ( Prediction of ,  1N lY l+ ≥  ) 

 1.  Generate ( )2ˆ~ 0,t N εε σ  

 2.  Let 1ˆt t tW Wρ ε−= +  

 3. Repeat 1. , 2. for 1, ,t N N l= + +K  

 4. Generate ( )( )ˆ~ expN l N l N lY Po W Uα+ + +′+  

 

 In order to interpret the accuracy of the estimation of the parameters, we calculate the 

estimated information matrix which is given by 

  ( ) ( )2

ˆ

ˆ
 

XlI E
θ θ

θ
θ

θ θ
=

⎛ ⎞∂
= −⎜ ⎟′∂ ∂⎝ ⎠

,           (15) 

and the estimated variance-covariance matrix is  

  Ĉov ( )θ̂ = ( )1 ˆI θ− .             (16) 
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4 Numerical Example 

 

4.1 Polio Incidence 

 

 Table 1 Monthly numbers of U.S. cases of poliomyelitis for 1970 to 1983 

 

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1970 0 1 0 0 1 3 9 2 3 5 3 5
1971 2 2 0 1 0 1 3 3 2 1 1 5
1972 0 3 1 0 1 4 0 0 1 6 14 1
1973 1 0 0 1 1 1 1 0 1 0 1 0
1974 1 0 1 0 1 0 1 0 1 0 0 2
1975 0 1 0 1 0 0 1 2 0 0 1 2
1976 0 3 1 1 0 2 0 4 0 2 1 1
1977 1 1 0 1 1 0 2 1 3 1 2 4
1978 0 0 0 1 0 1 0 2 2 4 2 3
1979 3 0 0 2 7 8 2 4 1 0 2 4
1980 0 1 1 1 3 0 0 0 0 0 0 1
1981 1 0 0 0 0 0 1 2 0 2 0 0
1982 0 1 0 1 0 1 0 2 0 0 1 2
1983 0 1 0 0 0 1 2 1 0 1 3 6  

 

 

 We illustrate the modified EM algorithm by an example taken from Zeger (1988), who 

analyzed the monthly number of case of poliomyelitis from January 1970 – December 1983, 

and Table 1 lists the monthly numbers. A central question studied by Zeger (1988) is whether 

the data follow a decreasing time trend. There is seasonality in the data, and it is modeled with 

trigonometric components involving the first time harmonics. The covariate vector in 

Equation (3) is given by ( ( ) ( ) ( ) ( )) 1 , 1000,cos 2 12 ,sin 2 12 ,cos 2 6 ,sin 2 6tU t t t t tπ π π π ′=  

where p is 6.  
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 Furthermore, we also would like to compare the results of the modified EM algorithm 

with those of the estimating equation method proposed by Zeger and with those of the MCEM 

algorithm proposed by Chan and Ledolter. Zeger’s model is slightly different from our model 

in Section 3.2.1. Zeger assumed that ( )exp tW  follows a stationary AR(1) process and used 

the estimating equation method to estimate the parameters, but both our model and Chan and 

Ledolter’s model assumed that tW  is Gaussian. 

 We adopt the latent AR(1) model described in the previous section, and we used the 

modified EM algorithm to carry out the estimation. The starting values for ρ  and 2
εσ  are 

0.5 and 0.5. The starting values of α are obtained by fitting a log-linear model to the data, 

assuming no temporal dependence, i.e. ( )0 1 2 3 4 5, , , , ,α α α α α α ′  are (0.554641, -4.843069,  

)0.136865, -0.541847, 0.455233, -0.059814 ′ . 

 The value of ( )  Q θ․  is maximized and the approximate ML estimates are given by  

 
( )

ˆ 0.650877
     0.058719
ρ =

        
( )

2ˆ 0.384351
      0.042059
εσ =

         

 
( )
( ) ( ) ( ) ( ) ( ) ( )

ˆ   0.223810  ,  -4.798661  ,   0.137132  ,  -0.534985  ,   0.458797  ,  -0.069627  

         0.127307   1.402918   0.089482   0.115477   0.101469   0.098128

α′ =
. 

The figures within parentheses are estimate standard errors, obtained from Equation (16).  

 Fitted results in Section 3.2 are shown in Figure 1, where dots represent the observations. 

The thicker solid line connects the fitted data simulated from method 1, and the  

average error with observations and fitted data is 
1

1 ˆ 1.150442
n

t t
t

y y
n =

− =∑ . The thinner solid  

line connects the fitted data simulated from method 2, and the average error with observations  

and fitted data is 
1

1 ˆ 1.535714
n

t t
t

y y
n =

− =∑ . 
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Figure 1 Monthly Numbers of Polio Cases. Dots represent observations. The thicker solid 

line connects the fitted data simulated from method 1. The thinner solid line connects the 

fitted data simulated from method 2. 

 

 

 Because Zeger (1988) modeled ( ) ( )( )ttt WEW expexp θξ = , his and our results are not 

directly comparable. The following calculations shed light on their relationships. Because we 

have calculated ( )( ) ( )( )22 12expexp ρσ εθ −=tWE  in Section 3.1.2, and because tξ  in 

Zeger’s model is normalized to have mean 1, we need to subtract ( )22 12 ρσε −  from our 

intercept estimate to make them comparable. Letting 2
ξσ  and ξρ (1) be the variance and the 

first lag autocorrelation of tξ , we obtain 2
ξσ  and ξρ (1) as follow: 

 

 1
1

exp 2

2
2 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
ρ

σ
σ ε

ξ  
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 ( )
1

1
exp

1
1

exp
1

2

2

2

2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

ρ
σ

ρ
ρσ

ρ
ε

ε

ξ . 

Base on those expressions, the ML estimate for 2
ξσ  and ξρ (1) can be obtained. 

Our results, as well as those reported by Zeger and Chan and Ledolter, are displayed in 

Table 2. In general, the estimates are fairly similar; however, a few differences should be 

pointed out: 

 

 1. The slope estimate and the coefficient of ( )cos 2 6tπ  in our model are bigger, in 

absolute value, than those reported by both Zeger and Chan and Ledolter. Zeger reported 

t-ratios of 1.62 and 0.14, which are not significant at the 0.05 level, but the one reported by 

Chan and Ledolter and ours are significant. 

 2. The coefficient of ( )sin 2 6tπ  reported by Zeger is bigger, in absolute value, than 

that reported Chan and Ledolter and in our model. Chan and Ledolter reported a t-ratio of 0.4 

and we have a t-ratio of 0.7, which are not significant at the 0.05 level, but the one reported by 

Zeger is significant. 

 3. Our ML estimate of the noise variance is the maximum of the three methods, and is 

much bigger than both Zeger’s estimate and the Chan and Ledolter’s estimate. 

 4. Our ML estimate of the autoregressive coefficient is smaller than both Zeger’s 

estimate and Chan and Ledolter’s estimate. Moreover, our ML estimate is more farther from 1 

than both their estimates. 

 5. Our standard errors for the ML estimates are smaller than the ones obtained by 

Zeger and similar with the ones obtained by Chan and Ledolter’s. 
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Table 2 Coefficients and Standard Errors 

Standard error Standard error Standard error
Intercept — 0.13 0.13
Trend 2.68 1.38 1.40
cos( 2πt/12 ) 0.16 0.09 0.09
sin( 2πt/12 ) 0.17 0.12 0.12
cos( 2πt/6 ) 0.14 0.10 0.10
sin( 2πt/6 ) 0.14 0.10 0.10

— 0.04 0.04
— — 0.06

0.95
0.57

0.14
-0.53
0.46

-0.07

0.77

0.21
-4.62
0.15

-0.50
0.44

-0.04
0.54
0.88

-0.48

-0.41
0.77

—
-4.35
-0.11

0.22
-4.80

0.20

Zeger's model Chan and Ledolter's model Our model

ξρ̂

θ̂ θ̂θ̂

2ˆξσ

 

 

 

 We also applied the MCEM algorithm reported by Chan and Ledolter, and we have 

compared our results with those of reported by them. The starting values for ρ  and 2
εσ  are 

the same with the reported by Chan and Ledolter which are 0 and 1. The Markov chain 

sample size, m, is initially set to 200. The starting values of α are obtained by fitting a 

log-linear model to the data, assuming no temporal dependence, i.e. ( 0 1 2 3 4,  ,  ,  ,  ,α α α α α  

)5α ′  are (0.554641 , -4.843069 , 0.136865 ,  -0.541847 , 0.455233 ,  )-0.059814 ′ . The time 

sequence plot of the estimated log-likelihood ( of the observed data ) for 690 iteration is 

shown in Figure 2. After about 350th iterations, most coefficients stabilize. The log-likelihood 

is maximized at the 505th iteration and subsequently moves into a slightly lower likelihood 

region. Changes for selected coefficients are shown in Figure 3, Figure 4 and Figure 5.  
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Figure 3 Change for AR(1) coefficient ( ρ ) estimates 
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Figure 4 Change for noise variance ( 2
εσ ) estimates 
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Figure 5 Change for covariate vector coefficients (α ) estimates 
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 The parameter values at the 505th iteration are used as starting values for a new MCEM 

iteration, i.e., (2( , , ) -0.000208,0.740943,0.190889,-4.783508,0.141291,-0.545433,ερ σ α′ ′ =  

)0.466094 , -0.063966 ′ . The Markov chain sample is increased to 2000, and time sequence 

plot of the estimated log-likelihood ( of the observed data ) for 473 iteration is shown in 

Figure 6. After 473 iterations, the algorithm is stopped. All estimated changes of the 

log-likelihood are smaller than 0.0005 in magnitudes. The approximate ML estimates are 

given by  

 
( )

ˆ 0.000489
     0.077382
ρ =

        
( )

2ˆ 0.551862
      0.060386
εσ =

         

 
( )
( ) ( ) ( ) ( ) ( ) ( )

ˆ   0.266812  ,  -4.731944  ,   0.134610  ,  -0.543219  ,   0.456102  ,  -0.057427  

         0.128069   1.408738   0.090010   0.116141   0.101956   0.098602

α′ =
. 

Our results are not similar with that ones of reported by Chan and Ledolter, this may be the 

result of the difference between generators which produces the latent process { }tW , thus the 

variation occurs in the MCE step is too large. In order to reduce such variations, we prefer the 

modified EM algorithm method.  

 Fitted results in Section 3.2 are shown in Figure 7, where dots represent the observations. 

The thicker solid line connects the fitted data simulated from method 1, and the average error  

with observations and fitted data is 
1

1 ˆ 1.145561
n

t t
t

y y
n =

− =∑ . The thinner solid line connects  

the fitted data simulated from method 2, and the average error with observations and fitted  

data is 
1

1 ˆ 1.601190
n

t t
t

y y
n =

− =∑ . 
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Figure 7 Monthly Numbers of Polio Cases. Dots represent observations. The thicker solid 

line connects the fitted data simulated from method 1. The thinner solid line connects the 

fitted data simulated from method 2. 
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 4.2 Traffic Flow 

 

4.2.1 Data Descriptions 

 Vehicle detectors are used for detecting the presentation of the queue. In some special 

time, like raining day or the day before long holidays, the level of oversaturated traffic 

condition will become more serious. Therefore, accurate forecast of traffic flow from the 

collected data is desirable. The data we analyze are collected by the RTMS ( Remote Traffic 

Microwave Sensor ) from the intersection of Zhong-Hua Road (中華路) and Jing-Guang 

Road (警光路), on Apr. 25, 2005 from 14:13”28 PM to 16:59”57 to study the effect on traffic 

before the rush hour. The data are taken at ten-second intervals; therefore, we have a data set 

of sample size 1000. The RTMS ( Remote Traffic Microwave Sensor ) is in its forward- 

looking configuration and is mounted on overhead sign structures to monitor the road and 

collect the data of traffic flow and occupancy. The detector divides the detectable range (about 

60 meters) of the lane into six sections, and collects the volume and occupancy in each section 

separately. The RTMS mounted on the road is shown in Figure 8. Missing values occur with 

unknown reasons, the maximum volume of the six sections and the occupancy of the 

corresponding section constitute the data at each time interval. For example, when volume is 

0 means that no car passes through the detector in ten seconds, and volume is 8 means that 

eight cars pass through the detector in ten seconds. If occupancy is 0, the percentage of 

occupancy is 0 %, and if occupancy is 1, the percentage of occupancy is 100 %. The traffic 

flow and occupancy change with time, and the scatter plot of the data collected by the RTMS 

is shown in Figure 9, the plots of the complete set and a partial set first 200 observations of 

traffic flow are shown in Figure 11 and Figure 12, respectively. Because of undetectable 
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situation caused by traffic jam or some unidentified reason, we consider the existence of latent 

process. 

The data of the traffic flow collected by RTMS are discrete data, a model for regression 

analysis with a time series of counts will be used. The notations used in the model are listed as 

follows: 

Y :  traffic flow (volume); this value is the variable of the detected flow, and the definition is 

 the number of vehicles passing a point on a roadway, or other traffic way during some 

 time interval; 

u : occupancy; the percentage of flow at which vehicles traverse a point or uniform segment 

 of a lane or roadway during a specified time period under prevailing roadway, traffic, and 

 control conditions; 

N : the number of data. 

i.e., 

 Y ( )1 2 1, , , , , ,t N Ny y y y y−= K K , 

 u ( )1 2 1, , , , , ,t N Nu u u u u−= K K , 

and ( ),t ty u  is the data at time t. 

 

Figure 8 RTMS in Forward-Looking Mode 
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Figure 9 Occupancy-Volume Plot. The majority of the data set occurs at the small values of 

occupancy and roughly shows a positively correlated relationship between volume and 

occupancy. The plot conforms to the Figure 10 which is the relationship of flow and density in 

Traffic Theory. 

 

 

Figure 10 Flow (q) and Density (k); Density =constant × Occupancy 
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Figure 11 Data of Traffic Flow (Complete Data) 
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Figure 12 Data of Traffic Flow (First 200 time sequence of Complete Data) 
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4.2.2 Data Analysis 

 We have applied the parameter-driven model to analysis traffic flow as an illustration. A 

time sequence plot of the traffic flow is shown in Figure 11. Because the sample size is large, 

we can’t read Figure 11 clearly and Figure 12 shown the plot of first 200 observations plot of 

the complete data. The covariate vector in Equation (3) is given by ( )1 ,  t tU u ′=  where p is 

2. We adopt the latent AR(1) model described in the previous section, and we used both 

MCEM and the modified EM algorithm to carry out the estimation. The starting values for ρ  

and 2
εσ  are 0.5 and 0.5. The starting values of α  are obtained by fitting a log-linear model 

to the data, assuming no temporal dependence, i.e. ( )0 1,α α ′  are ( )0.682636, 2.550254 ′ .  

 

 The value of ( )  Q θ․  is maximized and the approximate ML estimates are given by  

 
( )

ˆ 0.707559
     0.022361
ρ =

        
( )

2ˆ 0.332942
      0.014899
εσ =

        
( )
( ) ( )

ˆ  0.350308  ,   2.580916  

        0.025593   0.129314

α′ =
. 

The figures within parentheses are estimated standard errors, obtained from Equation (16).  

 Fitted results in Section 3.2 are shown in Figure 13 and Figure 14, where dots represent 

the observations. The thinner solid line connects the fitted data simulated from method 1, and  

the average error between observations and fitted data is 
1

1 ˆ 1.181
n

t t
t

y y
n =

− =∑ . The thicker  

solid line connects the fitted data simulated from method 2, and the average error between  

observations and fitted data is 
1

1 ˆ 2.277
n

t t
t

y y
n =

− =∑ . We can find that the average error  

between observations and fitted data from method 1 is smaller than that obtained by method 2, 

this unstable situation may come from the variability with the latent process { }tW . 
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Figure 13 Time sequence of the traffic flow. Dots represent observations. The thinner solid 

line connects the fitted data simulated from method 1. The thicker solid line connects the 

fitted data simulated from method 2. 
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Figure 14 Cumulative Traffic Flow. Dots represent observations. The upper figure shows the 

fitted data simulated from method 1. The lower figure shows the fitted data simulated from 

method 2. It is clear that the fitted data from method 1 is closer the traffic flow than that one 

from method 2, this unstable situation maybe come from generator which produces the latent 

process { }tW . 
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 We apply the MCEM algorithm reported by Chan and Ledolter (1995) to our data. The 

starting values for ρ  and 2
εσ  are the same with the reported by them which are 0 and 1. 

The Markov chain sample size, m, is initially set to 200. The starting values of α  are 

obtained by fitting a log-linear model to the data, assuming no temporal dependence, i.e. 

)( 0 1,  α α ′  are (0.682636 , )2.550254 ′ . The time sequence plot of the estimated log- 

likelihood ( of the observed data ) for 150 iteration is shown in Figure 15. After about 90 

iterations, all coefficients stabilize. The log-likelihood is maximized at the 132nd iteration and 

subsequently moves into a slightly lower likelihood region. Changes for selected coefficients 

are shown in Figure 16, Figure 17 and Figure 18.  
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Figure 15 ( )  Q θ․  for Iterations 0 Through 150 
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Figure 16 Change for AR(1) coefficient ( ρ ) estimates 
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Figure 17 Change for noise variance ( 2
εσ ) estimates 
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Figure 18 Change for covariate vector coefficients (α ) estimates 
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 The parameter values at the 132nd iteration are used as starting values for a new MCEM 

iteration, i.e., )(2( , , ) -0.001962,0.958849,0.209393,2.530430ερ σ α ′′ ′ = . The Markov chain 

sample is increased to 2000, and time sequence plot of the estimated log-likelihood ( of the 

observed data ) for 147th iteration is shown in Figure 19. After 147 iterations, the algorithm is 

stopped. All estimated changes of the log-likelihood are smaller than 0.0005 in magnitudes at 

147th iteration. The approximate ML estimates are given by  

 
( )

ˆ 0.001183
     0.031639
ρ =

        
( )

2ˆ 0.913263
      0.040863
εσ =

        
( )
( ) ( )

ˆ  0.231416  ,  2.578988  

        0.025537   0.129102

α′ =
. 

Our fitted results in Section 3.2 are shown in Figure 20 and Figure 21, where dots represent 

the observations. The average error with observations and fitted data simulated  

from method 1, is 
1

1 ˆ 1.181
n

t t
t

y y
n =

− =∑ , and the average error with observations and fitted 

data simulated from method 2 is 
1

1 ˆ 2.493
n

t t
t

y y
n =

− =∑ . We can find that the average error  

with observations and fitted data from method 1 is smaller than that one from method 2. 
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Figure 19 ( )  Q θ․  for Iterations 0 Through 147 
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Figure 20 Time sequence of the traffic flow. Dots represent observations. The thinner solid 

line connects the fitted data simulated from method 1. The thicker solid line connects the 

fitted data simulated from method 2. 
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Figure 21 Cumulative Traffic Flow. Dots represent observations. The upper figure shows the 

fitted data simulated from method 1. The lower figure shows the fitted data simulated from 

method 2. It is clear that the fitted data from method 1 is closer the traffic flow than that one 

from method 2, this unstable situation maybe come from generator which produces the latent 

process { }tW . 



36 

 5 Conclusion 

 In this thesis, a generalized regression model for a time series of count data is used to 

model the relationship between the traffic flow and the occupancy, assuming the existence of 

an AR(1) Gaussian latent process and the modified EM algorithm. Our method and our results, 

a few phenomena should be pointed out: 

 1. If the log-likelihood function is concave and unimodal, then the sequence of iterates 

( )rθ  ( ( )rθ  is the estimate at the rth iteration ) converges to the ML estimate θ̂  of θ , in one 

step if the log-likelihood is a quadratic function of θ .  

 2. The starting value for ρ  of the modified EM is 0.5 that we chose. We also tried 

the value closer to 0 or 1, in absolute value, and problems come up more easily during the 

solving process. 

 3. No mater which method we use, some very large fitted values pump up in Figure 13. 

This is because when we fitted the data, it has some relationship with the covariate variable. It 

is observed that fitted data could be affected by observed occupancy seriously, and the 

average error with observations and fitted data from method 1 is smaller than that from 

method 2, this unstable situation may have come from generator which produces the latent 

process { }tW . 

 

 Our method and the MCEM algorithm reported by Chan and Ledolter are a few 

differences shown as follows: 

 We replace the marginal expectation which has some relation with latent process, and the 

variation caused by simulation could be reduced. Another problem to be overcome is that we 

may spend much time and need large memory as simulation. 
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 Appendix：Proof of the  E step   

 

 Proof of ( )( ) ( )
2

2
exp exp

2 1t tE W εσ
ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

. The marginal expectation of ( )exp tW  is 

found by making use of the following conditional expectation 

  ( )( )
2 2

11 exp exp
2t tt t

cE cW c W εσρ −−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

and 

  ( )( ) ( )
2 2

0 0 2
exp exp

2 1
cE cW εσ

ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 where c is a constant. 

Now, 

  ( )( )expt tE W  ( )( )1 1 expt tt tE E W− −=  

     
2

1 1exp
2t tE W εσρ− −

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. 

Repeat the same calculation procedure and we can derive  

  ( )( ) ( )
2

2
exp exp

2 1t tE W εσ
ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

.           ■ 

 

 Proof of ( ) 0t t tE YW = . The marginal expectation of t tYW  is found by making use of the 

following conditional expectation and marginal expectation 

  ( ) ( )
23 22 2

1 11 21 exp '
1t t t t tt tE YW W W Uε

ε

ρσ ρ α
σ

−

− −−

⎧ ⎫
= − +⎨ ⎬−⎩ ⎭

 

and 

  { }( )2exp 0t t tE W cW =  where c is a constant. 

First, the derivative processes of conditional expectation are as follows: 
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( ) ( ) ( )

( ) ( )
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Second, the derivations of marginal expectation are as follows: 

  { }( ) { }( )2 2
1 1exp expt t t t t tt tE W cW E E W cW− −=  

Repeat the same calculation procedure and { }( )2
0 0 0exp 0E W cW = , we can derive 

  { }( )2exp 0t t tE W cW =  

Now, 

  ( )t t tE YW  ( )1 1t t tt tE E YW− −=  

    ( )
23 22 2

1 1 121 exp '
1t t t tE W W Uε

ε

ρσ ρ α
σ

−

− − −

⎛ ⎞⎧ ⎫
= − +⎜ ⎟⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠

. 

Repeat the same calculation procedure and we can derive  

  ( ) 0t t tE YW = .               ■ 

 

 Proof of ( )
( )( )

( )
2 1

2 2
2

1

1

t

t tE W ε

ρ
σ

ρ

+−
=

−
. The marginal expectation of 2

tW  is found by 

making use of the following conditional expectation 
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  ( ) ( )2 2 2 2
11 expt tt tE W W ερ σ−− = +  

and 

  ( )2 2
0 0E W εσ= . 

Now, 

  ( )2
t tE W  ( )2

1 1t tt tE E W− −=  

    ( )( )2 2 2
1 1expt tE W ερ σ− −= + . 

Repeat the same calculation procedure and we can derive  

  ( )
( )( )

( )
2 1

2 2
2

1

1

t

t tE W ε

ρ
σ

ρ

+−
=

−
.            ■ 

 

 Proof of ( ) ( )
2

1 21t t tE WW ε
ρ σ
ρ+ =

−
. The marginal expectation of 1t tWW +  is found by 

making use of the following relation 

  ( ) ( )
2

1 2
,

1t tCov W W ε
ρ σ
ρ+ =

−
 

and 

  ( ) 0t tE W = . 

Now, 

  ( ) ( ) ( ) ( )1 1 1 1,t t t t t t t t tE WW Cov W W E W E W+ + + += −  

  .
( )

2
2

                
1 ε
ρ σ
ρ

=
−

.            ■ 
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