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國立交通大學統計學研究所 

 

 

摘要 

在遺傳疾病的研究上，基因與疾病之間的關係是我們感興趣的。

其中我們更感興趣的是，是否仍有一些基因與特定疾病的關係被隱藏

起來而未被發現或驗證。然而盲目的透過生物實驗的方法一一檢驗證

其他的基因與疾病關連性，不僅曠日耗時，更需大量的金錢。根據文

獻的回報，我們建立網路來連結各個基因與疾病。而從文獻裡，我們

亦可估算出兩者之間的機率，藉以完成一個基因與疾病的網路，並建

構演算法選出可能的致病基因。最後再利用交叉比對，決定模型的把

關條件並且證明這個模型對於選取致病基因的可行性。 
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ABSTRACT 
In the study of heritable diseases, we are interested in the relationship 
between genes and diseases. What we are more concerned about is if 
there are some hidden relationships which were not validated in literature 
reports. However, it costs time and money to clarify them one by one 
through biologic experiments. According to literature reports, we can not 
only build a network to connect genes and diseases, but also estimate the 
probability of this network. By this network, we can predict candidate 
genes which also cause diseases and are not observed. Finally, cross 
validation studies are carried out to decide thresholds of models and 
evaluate the performance of our methods proposed in the article. The 
results show that these new methods are promising. 
 
Key words: Disease Genotype-Phenotype Network, Bayesian Network, 
Noisy OR Model, Candidate Genes, Leave-one-out Cross Validation, 
Mitochondrion Diseases. 
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Chapter 1. Introduction 

 

1.1 Motivation 

We all know that there are strong relationships between genotypes and phenotypes. The 

diseases we are interested in are resulted from several genes mutate or express abnormally. 

But exploring these appearances is depending on tremendous biologic experiments which cost 

lots of money and time. However, we want to develop a cheaper and easier method through a 

great deal of literature reports. 

Using Bayesian network has several advantages. First of all, it can represent how we infer 

from this data by graphic structure. The network structure is built through the causality 

determined by domain knowledge. In our case, we believe that variety of genotypes caused 

different phenotypes. 

Furthermore, Bayesian network is a well tool to predict unknown events by new evidences. 

For example, once we obtain information about patients’ heritable diseases, it is possible to 

predict candidate genes which might cause the patients get those diseases. 

In our case, there are eleven diseases, deficiencies, about mitochondrion. According to 

reported literatures, we have the associations between genes and diseases, including those 

deficiencies. Besides, we further wonder if there are still other genes which are relating with 

deficiencies, but not reported in these literatures. We will use these data to construct a 

network, and then design algorithms for detecting those hidden genes. 

   Finally, we do leave-one-out cross validation that we will take one relationship each time 

to predict the relationship took out. Through this study, we can decide thresholds and evaluate 

the performances of algorithms.  
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1.2 Data format 

GENE FEATURE PMID/GENE-FEATURE PMID-GENE 

DLD AKDH-deficiency 6 16 

DLST AKDH-deficiency 3 4 

OGDH AKDH-deficiency 2 3 

AASS Dehydration 1 5 

Our data format looks like above table. There are 9407 relationships in this format. 

GENE: there are total 174 genes in our file. 

FEATURE: there are 502 features including 11 special features associating with 

mitochondrion. 

PMID/GENE: PMID is an acronym for PubMed Identifier which is a unique number assigned 

to each PubMed citation. And PMID/GENE means the number of articles associating with a 

specific gene. 

PMID/GENE-FEATURE: This means the number of articles associating with a specific 

relationship between genes and features. 

There are two files with the same format. One File-ALL is about all genes and features; 

another File-PD is about only the deficiency genes and features (The data files are collected 

by Dr. Curt Scharfe at Stanford University.) 

 

 

 

 

 

 

 



Chapter 2. Bayesian networks 

 

2.1 Definition of Bayesian networks 

Not every network belongs to Bayesian network. There should be some properties which 

Bayesian networks are composed of (Finn V. Jensen, 2001).  

Definition 1.1 

Bayesian networks should consist of the followings: 

1. A set of random variables and a set of directed edges between variables.    

2. Each variable has a finite set of mutually exclusive states. 

3. The variables with directed edges form a directed acyclic graph, what we call DAG. 

(“Acyclic” means there is no directed path  in which ) 1 2 ...  nA A A→ → → 1= nA A

4. To each variable A with parent, 1 2, ,... , nB B B , there is a attached conditional probability 

, which means a strength of A given 1( | ,... , )nP A B B 1 2, ,... , nB B B . 

 

2.2 Constructing Bayesian networks 

Constructing a Bayesian network should follow some rules concerned with the structures 

and parameters. Those rules are also the typical characters of Bayesian networks (Finn V. 

Jensen, 2001). 

Intuitively, we construct networks by causalities which mean the procedures of inferring 

events. We can represent the procedures of inferences in Bayesian networks by using 

structures of d-separation. 

For example, we want to construct the relationship between pregnancy, hormonal state and 

urine test. Generally, pregnancy will affect the hormonal state, and then hormonal state further 

has a impact on the urine test. Once we know the hormonal state, condition of pregnancy 

won’t influence the result of urine test any more. So the network representing the relationship 
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is: 

Pregnancy Hormonal State Urine Test
 

 

Definition 2.1(d-separation) 

   Two distinct variables A and B in a directed network are d-separated if all paths between A 

and B have an intermediate variable V such that either: 

1. The connection is serial or diverging and V has received evidences.  

A V B
     C

V

A B  

    Serial connections         Diverging connections 

2. The connection is converging, and neither V nor any of V’s descendants have received 

evidences. 

C

V

A B

 

Converging connections 

According to this definition, if A and B are d-separated, then changing the certainty of A 

can’t affect the certainty of B. Combining d-separated with conditional independence, we can 

reduce the parameters in Bayesian network.  

For example,  

A B C  

1 2:{ , }A a a , 1 2:{ , }B b b  and . If we don’t use d-separated, then  1 2:{ , }C c c ( | , )P C A B
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includes 8 situations. Through involving d-separated, ( | , ) ( | )P C A B P C B= , it will only 

include 4 situations. Furthermore, we can apply this character to calculate the joint probability 

by Theorem 3.2. 

 

Theorem 2.2 (chain rule) 

   Let a Bayesian network be over 1 2{ ,  ,... , }nU A A A= . Then, we can get the joint 

probability  which is the product of all probabilities specified in this Bayesian 

network. 

( )P U

( ) ( | ( ))i i
i

P U P A pa A=∏  

Where ( )ipa A  is the parent set of A. 

 

2.3 Noisy OR 

   Bayesian networks require conditional probabilities as their parameters. If each variable 

has two values, and one variable has m parents, then this variable requires a  conditional 

probability. The larger m is, the more difficult computation becomes. Moreover, even m is 

small, information about the conditional probability in which one variable is given m 

variables is difficult to obtain. It is much easier to get the conditional probability in which one 

variable is just given other one. So, noisy OR model can not only reduce the computational 

complexity, but need information which is much easier to get (Richard E. Neapolitan, 2004).   

2m

   There are three assumptions in noisy OR model: 

1. Causal inhibition: The assumption indicates that there are some inhibitive mechanisms 

which can inhibit a cause to affect their descendants when the cause is active. Only when 

cause is active and the inhibitive mechanism is turned off at the same time, the cause has 

impacts on his descendant. 

2. Exception independence: The assumption mentions that the mechanism which inhibits one 
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cause is independent of others which inhibit other causes.  

3. Accountability: The assumption points that an effect is valid if at least one of its parents 

(courses) is present and its inhibitive mechanism is turned off. So, all causes that are not 

observed but have impacts on effects should be gathered into a cause which is called 

“unknown” or “leak”.  

 

For example: G: gene, I: inhibitor, N: intermedium, F: feature, leak: leakage. 

 
In above model, I means inhibitors, G means genes and F means features. 

1 1 1

1 1 1

1 1 1

1 1 1

( | , )
( | , )
( | , )
( | , )

P N o n I o ff G o n
P N o n I o ff G o ff
P N o n I o n G o n
P N o n I o n G o ff

= = = =
= = =
= = = =
= = = =

1
0

0
0

=
 

According to assumption 1, the feature will be present when any N is present. So , we have: 

1( |  for some j) 0jP F off N on= = =  

By accountability, we also have: 

1( |  for all j) 1jP F off N off= = =  
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Chapter 3. Algorithms for candidate gene prediction 

 

3.1 Constructing disease genotype-phenotype network 

We construct a mitochondria disease network by the noisy-OR model, which is widely 

applied for the construction of quick medical reference (QMR) networks for diagnostic 

assistance (Miller et al., 1986, Shwe et al., 1991, Middleton et al., 1991). QMR networks were 

constructed by the relationship between diseases and phenotypes in literature. As the 

information of genotypes become available in this study, we can investigate the relationships 

between genotypes and phenotypes directly.  The noisy-OR model is a bi-partite graphical 

model as illustrated in the following figure. The top level of the graph contains hidden nodes 

(like gene deficiencies in this study) and the bottom level contains finding nodes (like 

phenotype features in this study).  

 

 

The dependences between three gene deficiencies and 5 phenotype features are modeled 

via a noisy-OR model. For example, the deficiencies of G1 are associated with feature F1 and 

F3. The feature F3 is associated with the deficiencies in G1 or G3. The association is modeled 

by the modeling probabilities to describe the noisy patterns.  

 

In order to construct the noisy-OR model for this study, we will use the following 

estimates with the Bayesian network toolbox in Matlab that is available at 

http://bnt.sourceforge.net/. We also need some parameters to complete this model as follows: 
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1. inhibit(i,j) = inhibition probability on the Gi->Fj arc and it is estimated by  

inhibit(i,j) = 1 – ratio(i,j), where  

i j

i j

no. of PMIDs for G F
ratio(i,j)=

no. of PMIDs for G F
j

→

→∑
 

 

2. leak(j) = inhibition probability on the leak->Fj arc and it is estimated by leak(j) = 1 for 
every j. That is, the feature Fj is only associated with genes considered in this study and 
there is no leak. 

3. prior(i) = prior probability for the existence of gene deficiency in Gi and it is estimated by  

i

i

no. of PMIDs for Gprior(i)=
no. of PMIDs for G

i
∑

 

 

3.2 Quickscore 

   When we have constructed this model, we also need methods to infer the posterior 

probabilities. Generally, most algorithms for inferring probability of one gene given a set of 

observed diseases are exponential time-complexity,  where n is the number of genes. 

However, our total number of genes is 174. So, most algorithms are infeasible in our model. 

Instead of those algorithms, we use quickscore which can reduce the time-complexity to 

 where  means number of diseases without represent and 

(2 )nΟ

( 2mnm
+−Ο ) m− m+  means 

number of diseases with present (Heckerman, David. 1989).  

Suppose that there are n genes which can cause feature  to be present. We can get that: jF

+
j i

+ +
j i ij

inhibit(i,j)=P(F | only G )=q

P(F | only G )=1-q

−
ij                          (1) 
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Where  denotes the inhibit probability of the feature  given gene ,  and ijq jF iG jF+
jF−  

denote the presence and absence of feature , jF iG +  denotes the presence of gene . 

Besides the genes we have known, there are still some other genes or other factors causing the 

iG



features. We lump them into one unknown cause that we named leak and assume that the leak 

is always presence (prior probability of leak equal to 1). The inhibit probability of leak is: 
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jj 0

+
j 0 j

leak(j)=P(F | leak)=q

P(F | leak)=1-q

−

 

By the noisy OR model’s assumptions, we can get the probabilities of feature given 

multi-genes easily. 

n
+ + +

j 1 2 n j i 1j 2j nj 0j
i=1

+ + + +
j 1 2 n j 1 2 n

P(F |G ,G , ...,G ,leak)= P(F |G )=q q ,... q q

P(F |G ,G , ...,G ,leak)=1-P(F |G ,G , ...,G ,leak)

− + −

+ + − +

⋅ ⋅ ⋅ ⋅∏  

Let H be a set of genes and H+ be the set of present genes in H. Calculating the probability of 

+ +
i i

+
j j

G H G H G H

j j

P(F |H)= P(F |G ) inhibit(i , j) q

P(F |H)=1-P(F |H)

− −

∈ ∈

+ −

= =∏ ∏
+

i

ij
∈
∏

ij

 

Also considering the “leak”, 

+ +
i i

+
j j j i oj

G H G H

P(F |H leak)=P(F |leak) P(F |G ) q q− − −

∈ ∈

∪ =∏ ∏            (2) 

If we want to know the posterior probability, we can compute that by the result of 

quickscore algorithm. 

( )

+ | '| + +
i i i

1 ' ( )' 2

+ +
+ + i

i +

P(F(j) ,F(j) )= ( 1) K [ P(F |G )]P(G )+P(G )

P(G ,F(j) ,F(j) )P(G |F(j) ,F(j) )=
P(F(j) ,F(j) )

F j

n
F

i F F F jF
+ −

− −

= ∈ ∪∈

−
−

−

−
⎧ ⎫⎪ ⎪− ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∏ ∏
       (3) 

Where F(j)+ and F(j)- denotes a set of presences features and a set of absences features for 

similar features of deficiency feature Fj,  denote the prior(i),  is a power set of 

. 

+
iP(G )

+F(j)2

+F(j)

'

1                              without leak
K=      ([ P(F | leak)])    with leak

F F F−

−

∈ ∪

⎧⎪
⎨
⎪⎩
∏  



And we can get the probability of + +
iP(G ,F(j) ,F(j) )−  by setting  in equation (3), 

then 

+
iP(G )=1

( )

' ' '
'

+ + | '| +
i i

' ( )' 2

+ +
i i i

' ( )

P (G ,F(j) ,F (j) )= ( 1) K P (F |G )

                                [ P (F |G )]P (G )+ P (G )

F j

F

F F F jF

i i F F F j

+ −

−

− −

∈ ∪∈

− −

≠ ∈ ∪

− ×

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∏

∏ ∏
 

 

3.3 Algorithms for prediction of candidate genes 

In File-PD, there are specific gene deficiencies associated with the features of protein 

deficiencies. Using the association relationship in File-PD, we can search similar features and 

candidate genes in File-ALL that are associated with every protein deficiency Fj in File-PD as 

follows. 

 

Algorithm 1 for candidate genes: 

 

Step 1. Find the parent set of known gene deficiencies associated with one protein deficiency 

Fj in File-PD: H(j) = {Gi in File-PD that is the parent of protein deficiency Fj}. 

For example: 

 

H(1)={ G1 ,G3 } 

 

Step 2. Find the set of similar features in File-ALL whose parents include H(j): 
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F(j) = {Fm in File-ALL and the parents of Fm include H(j)}. 



For example: 

 

F(1)={ F1 , F3 } 

 

Setp 3. Find the set of associated genes for every similar feature, Fk in F(j), in File-ALL that 

are associated with every protein deficiency Fj in File-PD as follows: 

A(j,k) = {Gl in File-ALL such that Gl is the parent of Fk in F(j)}. 

For example: 

 

A(1,2)={ G1, G2, G3} 

 

Step 4. Find the set of all associated genes as the union of all sets of associated genes for all 

similar features as follows: , where the union is over all similar feature 

F

k{k:F  in F(j)}

A(j)= A(j,k)U

k in F(j). 

For example: 
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A(1)={ G1, G2, G3} 

 

Step 5. Calculate the hit rate of every associated gene as follows: r(Gl) =S(Gl)/|F(j)|, where 

1 1 1
( )

S(G ) I{G Par(F)} (G A( ),  and | F( ) | number of the set F( ))
F F j

j j j
∈

= ∈ ∈ =∑ . 

For example: 

S(G1)=1, S(G2)=1/2=0.5, S(G3)=1 

 

Step 6. Find the set of candidate genes that include the associated genes with hit rates that are 

no less than a threshold, like threshold = 0.6 as follows: 

C(j) = {Gl such that r(Gl) >= threshold and Gl∈A(j)}. 

For example: 

Let threshold be 0.6. Then C(1)={ G1, G2}. 

 

We also provide another algorithm by modifying some detail. It will add the probability of 

feature given genes, and focus on the strength of relationships between genes and futures. 

 

Algorithm 2 for candidate genes: 

 

Step 1. Find the parent set of known gene deficiencies associated with one protein deficiency 

Fj in File-PD: H(j) = {Gi in File-PD that is the parent of protein deficiency Fj}.   

Example: Fj ={AKDH-deficiency} and H(j) = {DLD, DLST, OGDH}. 

 

Step 2. Compute the conditional probability (P(Fm|H(j)) computed by (2)) of all features in 

File-ALL. 

Example: If we want to compute P(TCA-intermediates-elevated| DLD, DLST, 
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OGDH)=1-inhibit(DLD, TCA-intermediates-elevated)*inhibit(DLST,TCA-intermediates- 

elevated)*inhibit(DLST, TCA-intermediates-elevated).  

 

Step 3. Find the set (F(j)) of similar features, F(j)={Fm | P(feature| H(j)) P(F≥ j|H(j)) and 

Fm≠Fj }. 

 

Step 4. Find the set of associated genes for every similar feature, Fk in F(j), in File-ALL that 

are associated with every protein deficiency Fj in File-PD as follows: 

A(j,k) = {Gl in File-ALL such that Gl is the parent of Fk in F(j)}.  

Example: Fk = {TCA-intermediates-elevated} and A(j,k) = {*DLD, FH, *DLST, *OGDH, 

BCS1L,……, SCO1}, where those three genes in H(j) = {DLD, DLST, OGDH} are marked 

with * in the front of gene names. Thus, those genes are associated genes after excluding 

those three genes in H(j) from A(j,k). Those associated genes are ordered in a decreasing 

order of  (computed by (3)). )F|G(P ji

 

Step 5. Find the set of all associated genes as the union of all sets of associated genes for all 

similar features as follows: , where the union is over all similar feature 

F

{ :  in ( )}

A(j)= A( , )
kk F F j

j kU

k in F(j). 

Example: A(1,1) = {HADHA, PDHA1, OAT, ..., UQCRB PARL }, A(1,2) = {DMPK, HD, 

ATP7B, …, HTRA2, ME2}, …, A(1,7) = {*DLD, *DLST, *OGDH }. And the A(1) = 

{ *OGDH, *DLST, *DLD, SURF1, SLC25A19, …}. The set of A(1) is the union of A(1,1), 

A(1,2), …, A(1,7). 

 

Step 6. Calculate the hit rate of every associated gene as follows: r(Gl) =S(Gl)/|F(j)|, where 
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1 1 1
( )

S(G ) I{G Par(F)} (G A( ),  and | F( ) | number of the set F( ))
F F j

j j j
∈

= ∈ ∈ =∑ . 

Example: S(GCDH∈A(1))=5, and |F(1)|=6. The hit rate is r(GCDH) = 0.833333333. 

 

Step 7. Find the set of candidate genes that include the associated genes with hit rates that are 

no less than a threshold, like threshold = 0.6 as follows: 

C(j) = {Gl such that r(Gl) >= threshold and Gl∈A(j)}. 

Example: C(1)={ SURF1, SLC25A19, SLC25A15, …, AASS}. 
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Chapter 4. Leave-one-out Cross Validation 

 

Cross-validation (CV) studies are performed to determine the threshold and empirical hit 

rates in prediction of candidate genes. Beside this, we also can compare the performance for 

those two methods in above chapters by ROC method and other strategies. 

 

4.1 Steps for leave-one-out cross validation 

In this section, we will show the procedures of how to do cross validation and their 

results. 

 

Steps for cross-validation: 

 

Step 1. 

One association relationship between Gi and Fj in File-PD is removed from File-ALL each 

time.  We thus generate new data sets, data1, data2, …, dateN, where N is the number of 

total relationship rows existing in File-PD. 

Example 1: The file of data1 is the File-ALL removing the relationship about DLD and 

AKDH-deficiency.    

 

Step 2. 

We apply the steps for finding candidate genes in Algorithm 1&2 using the file that has 

removed the relationship of Gi and Fj. Then, we obtain the hit rate for a relationship between 

Fj and Gi. 

Example 1 (continued): From the file of data1, we obtain the hit rate of r(DLD)= 1. 
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From the CV results, most cases have hit rates that are at least 0.6 except a few of cases. 

Then, the overall average of all hit rates in algorithm 1 is 0.8912 and the overall average of all 

hit rates in algorithm 2 is 0.9279. We also try other strategies to further compare these two 

results of leave-one-out cross validation. 

 

4.2 Evaluating performances of two algorithms 

There are 109 relationships in File-PD. So we have 109 results of cross validation in each 

cross validation. First, we compare two methods’ AUC (area under ROC curve, let y be power 

and x be type I error). There are 109 AUC in each method.  

 

Table 1. Information about AUC of two algorithms under 109 cross validations 

Method\AUC Median Mean Max Min 

CV for alg. 1 0.7114094 0.7640562 1 0.6354839 

CV for alg. 2 0.8001468 0.8131531 0.9795322 0.5941176 

 

 



 

Fig 1. Auc of alg. 1 

 

 

Fig 2. Auc of alg.2 
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From table 1, we can find that the performance of algorithm 2 is better than algorithm 1. 

But there is one questionable point that why we can decide type I and type II error without the 

knowledge about which gene truly associates with deficiencies. Furthermore, we are going to 

compare the ratio that we define as: 

covering rate of known genes associated with a deficencycovering ratio
the number of candidate genes

=               

Each protein deficiency contains some gene deficiencies. The numerator of ratio indicates that 

gene deficiencies predicted by different thresholds divides the total number of gene 

deficiencies associated with this protein deficiency. By this definition, the larger ratio is, the 

better performance is. Because we hope the model can have a high covering rate and select 

less number of genes. Let cut points from 0.01 to 1. In each cut point, we have 109 ratios and 

we summarize those results by median. 

 

Table 2. The maximum values of median of 109 cross validation under 100 thresholds 

Method\Max Median 

CV for alg. 1 0.009009009 

CV for alg. 2 0.01397516 

 

From table 2, the performance of algorithm 2 is still better than algorithm 1 in ratio. The 

conclusion of comparison algorithm 1 and 2 should be that algorithm 2 has a better 

performance than algorithm 1. 
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Fig 3. Ratio of alg. 1(green) & alg. 2(red) 

 

4.3 Threshold 

   In section 4.3, we talk about that we need to decide thresholds for those two algorithms. 

Here, we have three strategies to choose thresholds. First is controlling type I and type II error 

by arithmetic mean, second is finding the shortest distance by geometric mean and final is 

through observing the jump of the covering rate. 

   First, let us control the type I and type II error by their arithmetic mean. There are 100 cut 

points from 0.01 to 1. Each point also contains 109 arithmetic means and we summarize 

information by taking average. 
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Table 3. Thresholds and their corresponding arithmetic means in each algorithm  

Method\Arithmetic mean Min Cut points 

CV for alg. 1 0.2513621 0.97, 0.98, 0.99, 1 

CV for alg. 2 0.2582092 0.79, 0.8 

 

 

 

Fig 4. Arithmetic mean of type I and type II error VS. cut point for alg. 1 
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Fig 5. Arithmetic mean of type I and type II error VS. cut point for alg. 2 

 

   Second, we find the shortest distance calculated by geometric mean of false positive and 

false negative. 

 

Table 4. Thresholds and their corresponding geometric means in each algorithm  

Method\Distance Min Cut point 

CV for alg. 1 0.4580215 0.97, 0.98, 0.99, 1 

CV for alg. 2 0.3869187 0.89, 0.9 
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Fig 6. Geometric mean of type I and type II errors VS. cut point for alg. 1 

 

 

Fig 7. Geometric mean of type I and type II errors VS. cut point for alg. 2 
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   Finally, we try to observe the change of covering rate, and find out the cut point which 

will make the covering rate change rapidly. This will mean that using the point might attain a 

lower number of candidate genes and an appropriate covering rate.  

 

Table 5. Thresholds and their corresponding jumping ranges in each algorithm 

Method Cut point Difference with next point 

CV for alg. 1 0.84 0.01070336 

CV for alg. 2 0.9 0.0633653 

 

 

 

Fig 8. Covering rate vs. cut point for alg. 1 
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Fig 9. Covering rate vs. cut point for alg. 2 

 

 

 

Table 6. Information about thresholds and corresponding number of candidate genes in two 

alg. 

conclusion\method Arithmetic mean Geometric mean Covering rate 

Cut point (alg. 1) 0.84 1 1 

Candidate gene 94.9266 86.3578 86.3578 

Cut point (alg. 2) 0.8 0.9 0.9 

Candidate gene 80.26606 57.70642 57.70642 
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Chapter 5. Conclusion and Discussion 

 

   First, after deciding the threshold, we can construct a gene-disease deficiency qmr-like 

model. But it still lacks information to estimate model parameter. Maybe we can gather more 

data, but it is not easy because our data are depending on literature reports. New data need 

new PubMed publishes. So the next research orientation should be working on new method 

for tuning parameters of predicted models. 

Second, in our noisy-OR model, we ignore the “leak” and assume its inhibiting 

probabilities 1. But this assumption seems questionable, because this indicates that there are 

no any factors which will affect the diseases, excluding those genes we have known from 

literature reports. In order to complement this model, estimation of “leak” is a subject which 

we can keep working on. Although we have tried some statistic methods, the results are still 

so unconvincing. 

   Furthermore, no matter which genes we choose, the most important thing is that we need a 

golden standard to compare with the results of our algorithms. If there are biological and 

experimental validations, then our results will be more persuasive. 
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