o RS AR M 2 AT R A ] e
37 KRR o A F

Predict Candidate Genes by Network Analysis of

Genotypes and Phenotypes for Mitochondrion Diseases

ForoA Mk

R e

¢oE o3 R 4 L o2 E o2



FE o RAUREAD M A R 2 A T2 A A i
23T RALRIA 2 7

Predict Candidate Genes by Network Analysis of

Genotypes and Phenotypes for Mitochondrion Diseases

Moyod T Mk Student : Chun-Jui Chen
R pEE Advisor: Henry Horng-Shing Lu

B oot

BPEF G

| 4

L oo

A Thesis
Submitted to Institute of Statistics
College of Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Statistics
June 2007

Hsinchu, Taiwan, Republic of China

L A



%ﬁﬁﬁ@ﬁ%ﬁ%ig A 2 4 ] e i
o AT R AL IRIE s A

R pEE B4

Emiiﬁfkﬁﬁﬁlﬁggiﬁ

1 2

il @A PR g L R RIS PR A S TR RS R SRR -

Hoo i g RABnE AT MG - A TR R el AR R

Ark A AMPFRAKZHE R PP NEEL PRI 2 - REE

B nh Bl pm Mt 3 Wafpfepho {4 Eeha s - 152

Jrew R AP s R kB E BATIE A o A R o AP

BE NS FL Wi JEre e S - R FIER S

Bl 2 7 AL hso A 7] o b il 2

AT 2t kg

SETET S EE 38 S F LR



Predict Candidate Genes by Network Analysis of
Genotypes and Phenotypes for Mitochondrion

Diseases

Student : Chun-Jui Chen  Advisor : Dr. Henry Horng-Shing Lu

Institute of Statistic

National Chiao Tung University

ABSTRACT

In the study of heritable diseases, we are interested in the relationship
between genes and diseases. What we are more concerned about is if
there are some hidden relationships which were not validated in literature
reports. However, it costs time and money to clarify them one by one
through biologic experiments. According to literature reports, we can not
only build a network to connect genes and diseases, but also estimate the
probability of this network. By this network, we can predict candidate
genes which also cause diseases and are not observed. Finally, cross
validation studies are carried out to decide thresholds of models and
evaluate the performance of our methods proposed in the article. The
results show that these new methods are promising.

Key words: Disease Genotype-Phenotype Network, Bayesian Network,
Noisy OR Model, Candidate Genes, Leave-one-out Cross Validation,
Mitochondrion Diseases.
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Chapter 1. Introduction

1.1 Motivation

We all know that there are strong relationships between genotypes and phenotypes. The
diseases we are interested in are resulted from several genes mutate or express abnormally.
But exploring these appearances is depending on tremendous biologic experiments which cost
lots of money and time. However, we want to develop a cheaper and easier method through a
great deal of literature reports.

Using Bayesian network has several advantages. First of all, it can represent how we infer
from this data by graphic structure. The network structure is built through the causality
determined by domain knowledge. In our caséjwe believe that variety of genotypes caused
different phenotypes.

Furthermore, Bayesian network is a well'tool to predict unknown events by new evidences.
For example, once we obtain infotmation about patients’ heritable diseases, it is possible to
predict candidate genes which might cause the patients get those diseases.

In our case, there are eleven diseases, deficiencies, about mitochondrion. According to
reported literatures, we have the associations between genes and diseases, including those
deficiencies. Besides, we further wonder if there are still other genes which are relating with
deficiencies, but not reported in these literatures. We will use these data to construct a
network, and then design algorithms for detecting those hidden genes.

Finally, we do leave-one-out cross validation that we will take one relationship each time
to predict the relationship took out. Through this study, we can decide thresholds and evaluate

the performances of algorithms.



1.2 Data format

GENE | FEATURE PMID/GENE-FEATURE PMID-GENE

DLD AKDH-deficiency 6 16
DLST | AKDH-deficiency 3 4
OGDH | AKDH-deficiency 2 3
AASS | Dehydration 1 5

Our data format looks like above table. There are 9407 relationships in this format.

GENE: there are total 174 genes in our file.

FEATURE: there are 502 features including 11

mitochondrion.

PMID/GENE: PMID is an acronym for PubMed Identifier which is a unique number assigned

to each PubMed citation. And PMID/GENE means the number of articles associating with a

specific gene.

PMID/GENE-FEATURE: This ‘means’ the-number of articles associating with a specific

relationship between genes and features:

There are two files with the same format. One File-ALL is about all genes and features;

another File-PD is about only the deficiency genes and features (The data files are collected

by Dr. Curt Scharfe at Stanford University.)

special features associating with




Chapter 2. Bayesian networks

2.1 Definition of Bayesian networks

Not every network belongs to Bayesian network. There should be some properties which
Bayesian networks are composed of (Finn V. Jensen, 2001).
Definition 1.1

Bayesian networks should consist of the followings:
1. A set of random variables and a set of directed edges between variables.
2. Each variable has a finite set of mutually exclusive states.
3. The variables with directed edges form a directed acyclic graph, what we call DAG
(“Acyclic” means there is no directed path A — A, —...— A, inwhich A=A))
4. To each variable A with parent, B B,,..., B, there is a attached conditional probability
P(A|B,,..., B,), which means a.strength of A given ' B , B,,... , B, .
2.2 Constructing Bayesian networks

Constructing a Bayesian network should follow some rules concerned with the structures
and parameters. Those rules are also the typical characters of Bayesian networks (Finn V.
Jensen, 2001).

Intuitively, we construct networks by causalities which mean the procedures of inferring
events. We can represent the procedures of inferences in Bayesian networks by using
structures of d-separation.

For example, we want to construct the relationship between pregnancy, hormonal state and
urine test. Generally, pregnancy will affect the hormonal state, and then hormonal state further
has a impact on the urine test. Once we know the hormonal state, condition of pregnancy

won’t influence the result of urine test any more. So the network representing the relationship



is:
—> ormonal State —>

Definition 2.1(d-separation)
Two distinct variables A and B in a directed network are d-separated if all paths between A
and B have an intermediate variable V such that either:

1. The connection is serial or diverging and V has received evidences.

AN
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Serial connections Diverging connections
2. The connection is converging, and neither V nor ‘any of V’s descendants have received

evidences.

N

V)

Converging connections
According to this definition, if A and B are d-separated, then changing the certainty of A
can’t affect the certainty of B. Combining d-separated with conditional independence, we can
reduce the parameters in Bayesian network.

For example,

®-®-©

A:{a,a}, B:{b,b,} and C:{c,c,}. If we don’t use d-separated, then P(C|A,B)



includes 8 situations. Through involving d-separated, P(C|A,B)=P(C|B), it will only
include 4 situations. Furthermore, we can apply this character to calculate the joint probability

by Theorem 3.2.

Theorem 2.2 (chain rule)

Let a Bayesian network be over U ={A, A,..,A}. Then, we can get the joint
probability P(U) which is the product of all probabilities specified in this Bayesian

network.
PU)= H P(A | pa(A))

Where pa(A) is the parent set of A.

2.3 Noisy OR
Bayesian networks require conditional probabilitiés as their parameters. If each variable

has two values, and one variable’has m parents; then this variable requires a 2™ conditional

probability. The larger m is, the more difficult' computation becomes. Moreover, even m is

small, information about the conditional probability in which one variable is given m

variables is difficult to obtain. It is much easier to get the conditional probability in which one

variable is just given other one. So, noisy OR model can not only reduce the computational

complexity, but need information which is much easier to get (Richard E. Neapolitan, 2004).
There are three assumptions in noisy OR model:

1. Causal inhibition: The assumption indicates that there are some inhibitive mechanisms
which can inhibit a cause to affect their descendants when the cause is active. Only when
cause is active and the inhibitive mechanism is turned off at the same time, the cause has
impacts on his descendant.

2. Exception independence: The assumption mentions that the mechanism which inhibits one

5



cause is independent of others which inhibit other causes.

3. Accountability: The assumption points that an effect is valid if at least one of its parents
(courses) is present and its inhibitive mechanism is turned off. So, all causes that are not
observed but have impacts on effects should be gathered into a cause which is called

“unknown” or “leak”.

For example: G: gene, I: inhibitor, N: intermedium, F: feature, leak: leakage.

DO @O

& &
e

In above model, I means inhibitors, Giuneans.genes and F means features.

P(N,=90n/|l, =0off G, =on)=1
P(N, =on[l =0ff,G, =0ff)=0
P(N,=on|l,=0on,G, =0on)=20
P(N,=on|l,=0on,G, =0ff)=0

According to assumption 1, the feature will be present when any N is present. So , we have:

P(F1 = off | Nj =on for somej):O

By accountability, we also have:

P(F, = off IN, = off forallj)=1



Chapter 3. Algorithms for candidate gene prediction

3.1 Constructing disease genotype-phenotype network

We construct a mitochondria disease network by the noisy-OR model, which is widely
applied for the construction of quick medical reference (QMR) networks for diagnostic
assistance (Miller et al., 1986, Shwe et al., 1991, Middleton et al., 1991). QMR networks were
constructed by the relationship between diseases and phenotypes in literature. As the
information of genotypes become available in this study, we can investigate the relationships
between genotypes and phenotypes directly. The noisy-OR model is a bi-partite graphical
model as illustrated in the following figure. The top level of the graph contains hidden nodes
(like gene deficiencies in this study) and, the bottom level contains finding nodes (like

phenotype features in this study).

The dependences between three gene deficiencies and 5 phenotype features are modeled
via a noisy-OR model. For example, the deficiencies of G1 are associated with feature F; and
F5. The feature F; is associated with the deficiencies in G; or Gs. The association is modeled

by the modeling probabilities to describe the noisy patterns.

In order to construct the noisy-OR model for this study, we will use the following
estimates with the Bayesian network toolbox in Matlab that is available at

http://bnt.sourceforge.net/. We also need some parameters to complete this model as follows:

7


http://bnt.sourceforge.net/

1. inhibit(i,j) = inhibition probability on the G;->F; arc and it is estimated by
inhibit(i,j) = 1 —ratio(i,j), where

no. of PMIDs for G; — F,
Zno. of PMIDs for G; - F,
]

ratio(i,j))=

2. leak(j) = inhibition probability on the leak->F; arc and it is estimated by leak(j) = 1 for
every j. That is, the feature F; is only associated with genes considered in this study and
there is no leak.

3. prior(i) = prior probability for the existence of gene deficiency in G;j and it is estimated by

no. of PMIDs for G;,
Zno. of PMIDs for G,

prior(i)=

3.2 Quickscore

When we have constructed this model;»we also need methods to infer the posterior
probabilities. Generally, most algorithms for inferring: probability of one gene given a set of
observed diseases are exponential time-complexity, {O(2") where n is the number of genes.
However, our total number of genes is 174. So, most algorithms are infeasible in our model.
Instead of those algorithms, we use quickscore which can reduce the time-complexity to
O(nm_2m+) where m~ means number of diseases without represent and m”™ means
number of diseases with present (Heckerman, David. 1989).

Suppose that there are n genes which can cause feature F, to be present. We can get that:

inhibit(i,j)=P(F,"| only G,")=q; 0
P(F,"| only G, )=1-q;
Where q; denotes the inhibit probability of the feature F, given gene G, Fj+ and Fj

denote the presence and absence of feature F;, G,” denotes the presence of gene G;.

Besides the genes we have known, there are still some other genes or other factors causing the
8



features. We lump them into one unknown cause that we named leak and assume that the leak
is always presence (prior probability of leak equal to 1). The inhibit probability of leak is:

leak(j)=P(F,"| leak)=q,;
P(F,"| leak)=1-q,;

By the noisy OR model’s assumptions, we can get the probabilities of feature given

multi-genes easily.

P(F}_’G1+’G2+: ""Gn+’leak):HP(Fj_|Gi+):q1j Qoo Gy doj

i=1

P(F|G,".G,", ....G, ,leak)=1-P(F|G,",G,", ...,.G," leak)
Let H be a set of genes and H' be the set of present genes in H. Calculating the probability of

P(E [H=[ ] PEG") = [ ] inhibiti, )= [] g,

G, cH™ G, cH" G eH"
P(E; [H)=1-PEH)
Also considering the “leak”,
P |HUleak)=P(Elleaky] [ PG, )=q, [] g, 2)
Gq eH" G, eH"

If we want to know the posterior probability, we can compute that by the result of

quickscore algorithm.

P(EG)JFG)Y )= D (—l)F'Kll[{[ [ pE Gf)]P(Gf)JrP(Gi)}

FrepF ()" i=l | FeF'UF(j)

e (3)
PG, [EG)"JF() )~ P(giF’GF)?)F’(f)(’; )

Where F(j)" and F(j)" denotes a set of presences features and a set of absences features for

similar features of deficiency feature Fj, P(G,”) denote the prior(i), 20" is a power set of

FG)".
1 without leak
K500 T pEleak))  with leak

FeF UF~
9



And we can get the probability of P(G,",F(j)",F(j)") by setting P(G,")=1 in equation (3),

then

PG, FG)LFM )= 2 DK J]  PFIG)x
FreoF (i)t FeF'UF(j)
I {[ 11 P(FGiv+)]P(Gi+)+P(Giv)}
i'#i FeF'UF (j)”

3.3 Algorithms for prediction of candidate genes

In File-PD, there are specific gene deficiencies associated with the features of protein
deficiencies. Using the association relationship in File-PD, we can search similar features and
candidate genes in File-ALL that are associated with every protein deficiency F; in File-PD as

follows.

Algorithm 1 for candidate genes:

Step 1. Find the parent set of known gene deficiencies associated with one protein deficiency
F; in File-PD: H(j) = {G; in File-PD that is the parent of protein deficiency F;}.
For example:

© ©®

PN

H(1)={ G ,Gs }

Step 2. Find the set of similar features in File-ALL whose parents include H(j):

F(j) = {Fm in File-ALL and the parents of F,, include H(j)}.
10



For example:

F(1)={F1,Fs}

Setp 3. Find the set of associated genes for every similar feature, Fy in F(j), in File-ALL that
are associated with every protein deficiency F;j in File-PD as follows:
A(j,k) = {Gj in File-ALL such that G; is the parent of Fy in F(j)}.

For example:

A(1,2)={ Gy, Gz, G3}

Step 4. Find the set of all associated genes as the union of all sets of associated genes for all

similar features as follows: A(j)= U A(j,k) , where the union is over all similar feature
{k:F, in F(j)}

Fx in F(])

For example:




A(1)={ Gy, G2, G3}

Step 5. Calculate the hit rate of every associated gene as follows: r(Gy) =S(Gj)/|F(j)|, where

S(G)) = Z I{G, € Par(F)} (G, € A(}]), and | F(j) |= number of the set F(])).

FeF())

For example:

S(Gi)=1, S(G»)=1/2=0.5, S(Gs)=1

Step 6. Find the set of candidate genes that include the associated genes with hit rates that are
no less than a threshold, like threshold = 0.6 as follows:

C(j) = {G such that r(G;) >= threshold and G, € A(j)}.

For example:

Let threshold be 0.6. Then C(1)={G1, Ga}z

We also provide another algotithm by medifying some detail. It will add the probability of

feature given genes, and focus on the strength of relationships between genes and futures.

Algorithm 2 for candidate genes:

Step 1. Find the parent set of known gene deficiencies associated with one protein deficiency
F; in File-PD: H(j) = {G; in File-PD that is the parent of protein deficiency F;}.

Example: F; ={AKDH-deficiency} and H(j) = {DLD, DLST, OGDH}.

Step 2. Compute the conditional probability (P(F,,|H(j)) computed by (2)) of all features in
File-ALL.

Example: If we want to compute P(TCA-intermediates-elevated] DLD, DLST,

12



OGDH)=I1-inhibit(DLD, TCA-intermediates-elevated)*inhibit(DLST,TCA-intermediates-

elevated)*inhibit(DLST, TCA-intermediates-elevated).

Step 3. Find the set (F(j)) of similar features, F(j)={Fn. | P(feature| H(j))>P(F;H(j)) and

FoitF; }.

Step 4. Find the set of associated genes for every similar feature, Fi in F(j), in File-ALL that
are associated with every protein deficiency F; in File-PD as follows:

A(j,k) = {G) in File-ALL such that G; is the parent of Fy in F(j)}.

Example: Fx = {TCA-intermediates-elevated} and A(j,k) = {*DLD, FH, *DLST, *OGDH,
BCSIL....... , SCO1}, where those three genes in H(j) = {DLD, DLST, OGDH} are marked
with * in the front of gene names; Thus, those genes are associated genes after excluding

those three genes in H(j) from -A(j,k). Those-associated genes are ordered in a decreasing

order of P(G; |F;) (computed by (3)):

Step 5. Find the set of all associated genes as the union of all sets of associated genes for all

similar features as follows: A(j)= U A(],k), where the union is over all similar feature
kiR in F(j)}

Fy in F(j).

Example: A(1,1) = {HADHA, PDHA1, OAT, .., UQCRB PARL }, A(1,2) = {DMPK, HD,
ATP7B, ..., HTRA2, ME2}, ..., A(1,7) = {*DLD, *DLST, *OGDH }. And the A(1) =

{ *OGDH, *DLST, *DLD, SURF1, SLC25A19, ...}. The set of A(1) is the union of A(1,1),

A(12), ..., A(1,7).

Step 6. Calculate the hit rate of every associated gene as follows: r(Gj) =S(G))/|F(j)|, where

13



S(G)) = Z I{G, € Par(F)} (G, € A(]), and |F( ) |= number of the set F( j)).

FeF(j)

Example: S(GCDH € A(1))=5, and |F(1)|=6. The hit rate is r(GCDH) = 0.833333333.

Step 7. Find the set of candidate genes that include the associated genes with hit rates that are
no less than a threshold, like threshold = 0.6 as follows:
C(j) = {G such that r(G;) >= threshold and G, € A(j)}.

Example: C(1)={ SURF1, SLC25A19, SLC25A15, ..., AASS}.

14



Chapter 4. Leave-one-out Cross Validation

Cross-validation (CV) studies are performed to determine the threshold and empirical hit
rates in prediction of candidate genes. Beside this, we also can compare the performance for

those two methods in above chapters by ROC method and other strategies.
4.1 Steps for leave-one-out cross validation
In this section, we will show the procedures of how to do cross validation and their

results.

Steps for cross-validation:

Step 1.

One association relationship between'G; and F; in-File-PD is removed from File-ALL each
time. We thus generate new data sets, ‘datal, ‘data2, ..., dateN, where N is the number of
total relationship rows existing in File-PD.

Example 1: The file of datal is the File-ALL removing the relationship about DLD and

AKDH-deficiency.

Step 2.

We apply the steps for finding candidate genes in Algorithm 1&2 using the file that has
removed the relationship of G; and F;. Then, we obtain the hit rate for a relationship between
Fj and Gi.

Example 1 (continued): From the file of datal, we obtain the hit rate of r(DLD)= 1.

15



From the CV results, most cases have hit rates that are at least 0.6 except a few of cases.
Then, the overall average of all hit rates in algorithm 1 is 0.8912 and the overall average of all
hit rates in algorithm 2 is 0.9279. We also try other strategies to further compare these two

results of leave-one-out cross validation.

4.2 Evaluating performances of two algorithms
There are 109 relationships in File-PD. So we have 109 results of cross validation in each
cross validation. First, we compare two methods’ AUC (area under ROC curve, let y be power

and x be type I error). There are 109 AUC in each method.

Table 1. Information about AUC of two algorithms under 109 cross validations

Method\AUC Median Mean Max Min
CV foralg. 1 0.7114094 0.7640562 1 0.6354839
CV foralg. 2 0.8001468 0.8131531 0.9795322 0.5941176

16
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From table 1, we can find that the performance of algorithm 2 is better than algorithm 1.
But there is one questionable point that why we can decide type I and type II error without the
knowledge about which gene truly associates with deficiencies. Furthermore, we are going to

compare the ratio that we define as:

covering rate of known genes associated with a deficency

covering ratio = -
the number of candidate genes

Each protein deficiency contains some gene deficiencies. The numerator of ratio indicates that
gene deficiencies predicted by different thresholds divides the total number of gene
deficiencies associated with this protein deficiency. By this definition, the larger ratio is, the
better performance is. Because we hope the model can have a high covering rate and select
less number of genes. Let cut points from 0.01 to 1. In each cut point, we have 109 ratios and

we summarize those results by median.

Table 2. The maximum values of median of 109 cross validation under 100 thresholds

Method\Max Median
CV foralg. 1 0.009009009
CV for alg. 2 0.01397516

From table 2, the performance of algorithm 2 is still better than algorithm 1 in ratio. The
conclusion of comparison algorithm 1 and 2 should be that algorithm 2 has a better

performance than algorithm 1.

18
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0.006
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Fig 3. Ratio'of alg. T(gteen) & alg. 2(red)

4.3 Threshold

In section 4.3, we talk about that we 'need t0 decide thresholds for those two algorithms.
Here, we have three strategies to choose thresholds. First is controlling type I and type II error
by arithmetic mean, second is finding the shortest distance by geometric mean and final is
through observing the jump of the covering rate.

First, let us control the type I and type II error by their arithmetic mean. There are 100 cut
points from 0.01 to 1. Each point also contains 109 arithmetic means and we summarize

information by taking average.

19



Table 3. Thresholds and their corresponding arithmetic means in each algorithm

Method\Arithmetic mean Min Cut points
CV foralg. 1 0.2513621 0.97,0.98, 0.99, 1
CV for alg. 2 0.2582092 0.79, 0.8
000%00%0
000%%%00
00 02 04 08 08 1.0
cut point

Fig 4. Arithmetic mean of type I and type II error VS. cut point for alg. 1
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Fig 5. Arithmetic mean of type I'and type II error VS. cut point for alg. 2

Second, we find the shortest*distance.calculated by geometric mean of false positive and

false negative.

Table 4. Thresholds and their corresponding geometric means in each algorithm

Method\Distance Min Cut point
CVforalg. 1 0.4580215 0.97,0.98, 0.99, 1
CV for alg. 2 0.3869187 0.89,0.9
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Finally, we try to observe the change of covering rate, and find out the cut point which
will make the covering rate change rapidly. This will mean that using the point might attain a

lower number of candidate genes and an appropriate covering rate.

Table 5. Thresholds and their corresponding jumping ranges in each algorithm

Method Cut point Difference with next point
CV foralg. 1 0.84 0.01070336
CV for alg. 2 0.9 0.0633653

070 072 074 076 0‘8 170

cut point

Fig 8. Covering rate vs. cut point for alg. 1
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covering rate
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Fig 9. Covering rate ¥s. cut point for alg. 2
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Table 6. Information about thresholds and corresponding number of candidate genes in two

alg.

conclusion\method

Arithmetic mean

Geometric mean

Covering rate

Cut point (alg. 1)
Candidate gene
Cut point (alg. 2)

Candidate gene

0.84

94.9266

0.8

80.26606

1

86.3578

0.9

57.70642

1

86.3578

0.9

57.70642
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Chapter 5. Conclusion and Discussion

First, after deciding the threshold, we can construct a gene-disease deficiency qmr-like
model. But it still lacks information to estimate model parameter. Maybe we can gather more
data, but it is not easy because our data are depending on literature reports. New data need
new PubMed publishes. So the next research orientation should be working on new method
for tuning parameters of predicted models.

Second, in our noisy-OR model, we ignore the “leak” and assume its inhibiting
probabilities 1. But this assumption seems questionable, because this indicates that there are
no any factors which will affect the diseases, excluding those genes we have known from
literature reports. In order to complement this‘model, estimation of “leak” is a subject which
we can keep working on. Although we haye:tried some statistic methods, the results are still
SO unconvincing.

Furthermore, no matter which genes we choose, the most important thing is that we need a
golden standard to compare with the results of our algorithms. If there are biological and

experimental validations, then our results will be more persuasive.
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