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三維果蠅嗅覺神經影像之統計分類 
 

中文摘要 

 本研究主要目的是發展果蠅嗅覺神經影像的分類器，在

此我們有六種三維影像都以果蠅的嗅覺腦區 (Antennal 

Lobe)來命名，分別是 DL1, VL2a, DM1, DM2,DL3 和

DA1。一般而言，影像資料有太多冗贅訊息，我們針對每

一個神經路徑萃取不同的特徵用以描述該三維圖像中的神

經路徑複雜程度，並以這些特徵來發展分類器。在此，發

展的分類器皆以 Leave-one-out 的 cross-validation 正確

率當作評估的標準。在本研究中，分成六類的分類器中最

好的正確率是 54.4%，比亂猜的正確率 1/6 高出三倍多，

在此加入旋轉骨架的端點數特徵並將影像強度值的相對頻

率取對數會幫助提升正確率。 
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Statistical Classification of 3D Drosophila 
Calyx Images 

 

Abstract 

The main study purpose is the application of a classification method 

for six kinds of 3D Drosophila (fly) Calyx Images automatically.  We have 

six different classes, which are named by the glomeruli in Antennal Lobe, 

DL1, VL2a, DM2, DM1, DL3 and DA1.  Generally speaking, most of the 

image data contain redundant information; the extracted features 

describing the 3D olfactory neuron pathway of the six calyxes will help us 

construct a classification method.  On the other hand, the classification 

cross validation accuracy is helpful to determine the essentialness of 

these features.  First, SVM classifiers outperform better than LDA 

classifiers across the 23 different features combinations in accuracy. 

Secondly, the 18th model (six-category-SVM) has the highest leave-one 

out cross validation accuracy, 54.4% (more than three times of random 

guess).  Rotational skeleton Endpoint feature helps the six-category- 

SVM classifier with log relative frequency vector and histogram feature in 

the 18th model. 
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Chapter 1. Introduction 

 
Exploring the function of brain structure has been the long-term research topic in 

scientific investigation.  Two modern fundamental principles of functional mechanisms in 

brain are functional integration and specialization, derived from connectionism and 

localizationism in 19th century respectively [4].  Neuron pathway of olfactory function has 

been a research topic of rising interests, especially after the pioneering studies of Richard 

Axel and Linda B. Buck, the Nobel Prize winner of Physiology or Medicine in 2004, for their 

discovery of “ordant receptors and the organization of the olfactory system”.  

 

Fruit fly, Drosophila, is an ideal experimental model for brain research. The 

improvements of 3-D imaging technique on Drosophila developed by NTHU Brain Research 

Center provide high-resolution images [12]. It is challenging to develop automatic methods 

for pattern recognition of the resulting fly images. This study will investigate analysis 

methods for feature extraction and pattern classification on Drosophila’s olfactory pathways 

from 3D brain images generated by Professor Ann-Shyn Chiang at NTHU Brain Research 

Center. 
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Chapter 2. Motivation and Data Description 

 

2.1. Research Goals 

 

The main study purpose is the application of a classification method to determine the raw 

images into six categories automatically.  Here we have six categories of raw images of 

connectivity in Drosophila olfactory neuron pathway or track(Calyx).  There are two 

important olfactory nucleuses after Antenna Lobe (AL), Mushroom Body (MB) and Lateral 

Horn (LH) on the path from nose to brain.  All are specified imaging of Calyx (olfactory 

neuron path way from glomeruli in AL to LH) [1, 3, 9, 13, 14, 17, 20, 21].  The 

terminologies and abbreviations of these anatomy parts are listed as following table. 

 

ORN Olfactory Receptor Neuron 

PN Projection neuron 

AL Antennal Lobe 

OB Olfactory Bulb; Glomeruli in side 

MB Mushroom Body 

LH Lateral Horn 

Table 1.  The biological terminologies and the corresponding 

abbreviations used in this study are listed. 
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Figure 1.  The calyx connection paths of projection neurons are illustrated. 

 

 The projection neuron is responsible to transmitting neuron impulse to higher level in 

Drosophila’s central nerve system. The main destination of projection neuron is mainly 

Mushroom Body (MB) and Lateral Horn (LH).  And the imaging data is describing the 

complexity of the axon of projection neuron. 
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2.2. Data Description 

 

There are six different classes in this study, which are named by the glomeruli in 

Antenna Lobe, DL1, VL2a, DM2, DM1, DL3 and DA1.  The numbers of flies are 40, 25, 22, 

13, 13, and 12 respectively.  These 3D images of Drosophila’s Calyx are provided by 

Professor Ann-Shyn Chiang at brain research center of NTHU, Taiwan (ROC).  Glomeruli 

are grouped according to the anatomic locations of connected olfactory receptor neurons in 

the smelling organ in antenna and maxillary palp [1].  Referring to the grouping result of 

glomeruli in [1], six glomeruli in this study can be combined to 3 or 2 categories in the 

following table. 

 

6 categories 3 categories 2 categories number of flies 

DL1 ab ab 40 

VL2a ac ac-or-at 25 

DM2 ab ab 22 

DM1 ab ab 13 

DL3 at ac-or-at 13 

DA1 at ac-or-at 12 

  Total 125 

Table 2.  The numbers of flies in 6 categories are listed, which can be 

combined as 3 or 2 categories. 

 

In each 3D image, there are three channels, red, green and blue.  We will select the 

green channel as target information of calyx.  The green channel is 8-bit depth, so the gray 

intensity of each voxel varies from 0 to 255.  Because the size of each fly varies, the field of 
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view (FOV), slice and slice thickness are set according to the adequacy.  For each 3D image 

the voxel size is consistent across slices.  This information is all recorded in the header of 

LSM file.  LSM file format is similar to TIFF.  Here we take one on DL1 3D image as 

example, the signal intensity of each voxel is recorded in a 1024×1024×64 matrix.  And 

there is a scale-vector representing μm/ voxel in 3 orthogonal direction of FOV.  In this case, 

the real size of filed of view is 194.7×194.7×63 (μm3). 

 

DL1:GH146-singlePN49.lsm 

Stack Size (Voxel) Stack Size (μm) Scaling 

1024×1024×64 194.7×194.7×63 0.19×0.19×1 

Table 3. The data format of one set of 3D images is listed. 

 

In these cases of this study, the number of slice varies from 50 to 81 for the individual 

difference in physical sizes of these 125 flies.  Therefore, the thickness of each obtained 3D 

images varies from 49 to 80 μm. 
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A typical example in every class is shown in the following figure. 

 
DA1_PN80.bmp(at) DL1_PN47.bmp(ab) 

 
DL3_PN111.bmp(at) VL2a_PN158.bmp(ac) 

 
DM1_PN39.bmp (ab) DM2_PN217.bmp (ab) 

Figure 2.  Six calyxes examples are shown. 
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Chapter 3. Analysis Methods 

 
The main study purpose is the application of statistical classification method to 

determine which olfactory neuron track of the six calyxes for 3D images.  In this chapter, the 

image pre-process for noise removal will be explained before feature extraction, and the 

classification methods, Fisher’s LDA and SVM are utilized after feature extraction.  The 

essential information, e.g. RST-invariant features, describing the olfactory neuron track of the 

six calyxes will help us construct classification methods.  For example, we will consider the 

rotation, scaling and translation invariant (RST-invariant) features suggested in [19].  The 

RST-invariant features will be useful to capture the main features in different sets of fly 

images in this study that are taken at different orientation, size and centering.  Furthermore, 

the other features based on skeletons [16] could be used as well.  The skeletons obtained 

from neuron images will be useful to detect the neuron tracks and explore genuine 

characteristics of neuron transmission pathways in this study.  At the end, the cross 

validation method can be applied to evaluate classification accuracies for different features 

and classifiers. 

 

The data analysis procedures of this study are depicted in the next page based on the 

empiric evaluations of data in this study.  The details of key steps will be explained and 

described in the following sections.  Empirical results will be also illustrated utilizing fly 

neuron images in this study. 
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3D Spatial pre-process for Rotational Image × 64 

(One 2D image per 5.625 degree) noise removal and morphological operation* 
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Bayesian wavelet 
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2D Spatial pre-process for 

noise removal and morphological operation * 

Reconstructed  
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Rotational 2D Image 
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Wavelet Endpoints 

Feature  

Objects Feature 

Skeleton 

Endpoints 

Feature  

Figure 3. The flowchart of image-processing steps in this study is shown. 
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3.1. Image Pre-Processing 

 

Noise in physics means the fluctuations and the additional of external factors to the 

target information detected by any recording devices.  Some degree of noise always exists in 

any electronic device when receiving or transmitting signals.  However noise can be adjusted 

as relatively small to the main part of signal, and perceive as nonexistent.   

 

Image processing of noise reduction helps recover the genuine image properties.  

Imperfect images with heavy noise prevent fine-clear feature extraction for further model 

training of pattern recognition.  The purposes of noise remover consist of two key points: 

1. Edges, thin lines, and small features are sharp and clean. 

2. Areas between these features are smoothly varying. 

 

Spatial filtering, spectrum filtering and morphological operations [10] will be utilized for 

noise reduction and feature extraction in this study.  For instance, we will consider the 

following model for additive noise signals: 

( , ) ( , ) ( , )f i j F i j N i j= + , 

where f(i, j) represents the observed intensity on one 2D pixel (in the i-th row and the j-th 

column) and it can be composed by the unobserved signal F(i, j) with noise N(i, j).  This 

model can be extended to signals on 3D voxels as well.  Then, the following operation on 

the observed intensity f(i, j) can be used to recover the unobserved signal F(i, j) and its 

properties. 
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Morphological Operation 

Dilation ( )[ ]{ }.ˆ AABzBA z ⊆∩=⊕  

]1,1[];1,1[
)),((),(

^

−=−=

++=

ba
bjaifMaxjiF

 

Erosion { }.ABzBA z ⊆=Θ  

]1,1[];1,1[
)),(min(),(

^

−=−=

++=

ba
bjaifjiF  

Opening ( ) BBABA ΘΘ=o  

( ) BBABAClosing ⊕ Θ=•  

De-isolated  

points 
If (sum of neighbor intensity==0), replace the target pixel with zero. 

Table 4. The denoising and morphological operations used in this study are listed. 
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The following flowchart is the spatial pre-process for noise removal and morphological 

operation, which is shown simplified in Figure3 of P.8.  All the operation in this flowchart 

can be applied for any 3D and 2D image; the only difference is the neighbor window is 33 for 

3D, and 32 for 2D.  The flowchart of denoising and morphological operation is combined 

with median filter, closing filter, Gaussian smoothing filter and thresholding, and they are 

performed in this order. 

 

 
Median Filter 

 

 
Closing Filter 

 

 

 Gaussian 

Smoothing Filter
 

 

 
Thresholding 

 

 
Figure 4.  The flowchart of denoising and morphological operation is

combined with median filter, closing filter, Gaussian smoothing
filter and thresholding.  

 

 

 

After noise reduction, it is common to use signal-to-noise ratio (SNR or S/N) as a 

measure to estimates of the quality of a reconstructed image compared with an original image.  

High SNR implies very little visible noise in an image, whereas the opposite contains noisy 

image.  The mathematical formula of SNR is defined below: 
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M-1 N-1
2

0 0
M-1 N-1 2

0 0

F̂(i,j)
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F̂(i,j)-f(i,j)

i j

i j

= =

= =

=
⎡ ⎤⎣ ⎦

∑∑

∑∑
. 

 

Alternatively, there are other measures similar to SNR.  For example, the peak 

signal-to-reconstructed image measure (PSNR) will be another considering measure.  It is 

defined through the following procedure.  First, the mean square error (MSE) is calculated.  

Secondly, by taking root of MSE the root mean square error (RMSE) can be derived.  

Thirdly, the PSNR will be calculated by twenty times of log of RMSE. 

 
1 1

2
( , ) ( , )

0

ˆ( )
M N

i j i j
i o j

f F
MSE

N M

− −

= =

−
=

⋅

∑∑
 

 

MSERMSE =  

 

⎟
⎠
⎞

⎜
⎝
⎛⋅=

RMSE
PSNR 255log20 10  

 

Although there is not a perfect method of noise reduction, here we will utilize SNR and 

PSNR as referenced measures for the evaluation index. 

 

3.2. Feature Extraction 
 

Feature extraction will be application-dependent.  In my end goal of this study is the 

generation of classifier for six calyx 3D images.  Therefore a proposed feature extraction for 

retrieving distinctive representations from the 6 calyx images is required to be informative, 

robust, consistent and invariant.  The robustness index is discussed in feature vectors and 
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feature space while the target object is obtained from different angles, distances, imaging 

settings and so on. The observed object in images resulted in different resolutions, sizes, 

translations and rotations. Informative features will be RST-invariant, and contributed for 

higher classification accuracy.  In fact, if the classification accuracy with these RST-features 

is not computed or comparatively high, some other informative RST-features hunting should 

never stop.  For generating the dataset for classification in this study, the RST-invariant 

features and rotational skeleton features are utilized.  Those features are used for describing 

the different complexity in projection neuron’s spatial dispersions in 3D space.   

 

3.2.1. RST-invariant Feature 

 

The two-dimensional image processes for RST-invariant feature extraction is discussed 

in the frequency and the spatial domains [19].  For a binary images object features can be 

area, center of area, and the axis of least second moment, perimeter, Euler number, 

projections in row or column, thinness ratio, and aspect ratio.  The first four tell us location 

of the object in image, and the last four tell us the shape of the object.  For gray images, 

histogram features are mean, standard deviation, skewness, energy, and entropy.  The 

strength of these RST-invariant features is robustness with the object in image is rotated, 

adjusted in size, which means diminishing or enlarging in area, and shifted left/right or 

up/down. 

 

3.2.2. Rotational Skeleton Endpoints Feature 

 

Before we start to do rotational skeleton, we need to impute rotational 2D images to 

represent this 3D neuron path.  It is very similar to that we walk around a tree, and take 

pictures of the tree from different angles in a circle. 
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1. Skeleton 

Skeletonizing is also called thinning in morphological operation.  In binary images, by 

peeling of the boundary pixels, the skeleton of the object left keeps the features, pattern and 

shape.  Many skeleton algorithms have been well developed [5, 7, 8, 18, 22]. 

 

The skeleton of object set A by structure set B is defined as the following set operations,  

 

)))((( BBBAkBA Θ⋅⋅⋅ΘΘ=Θ  

BkBAkBAASk o)()()( Θ−Θ=  

U
∞

=

=
0

)()(
k

k ASAS  

Skeletonization operation of A by B iterates for k times.  The stop criterion is until no 

any pixel is deleted.  S(A) is the skeleton of A.  The obtained skeleton must have three 

properties: 

1. Connected for any single object. 

2. As thin as possible. 

3. The skeleton is in the middle axis. 

 

The idea of skeleton is shown in the following figure. 

        
 ● ● ● ● ● ● ● ● ● ● ●
 ● ● ● ● ● ● ● ● ● ● ●
 ● ● ● ● ● ● ● ● ● ● ●
    ● ● ●  
    ● ● ●  
    ● ● ●  
    ● ● ●  
    ● ● ●  
    ● ● ●  
         

     
     

● ● ● ● ● ● ● ● ●    
●      
●      
●      
●      
●      
●      

     
      

Set A: a T-shape object                S(A): the skeleton of T-shape object 

Figure 5.  The T-shape skeleton is illustrated. 
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For this empirical data in this study, we utilize the integrated procedure of Stentiford 

preprocessing [18], Z-S algorithm [22] and Holt algorithm [9].  The effect of implementation 

of skeleton procedures after pre-process is demonstrated in the following figure.   

before after 
 

  

  
Figure 6.  Two skeleton examples of two calyx data are shown, where one is noisier than the 

other one. 

2. Endpoints 

Any one and only one of the target 2D pixel’s eight neighbors has non-zero intensity, and 

the target pixel is an endpoint. An example of endpoint is show above.  Here the pixel with 

non-zero intensity, while only one of its eight neighbors has non-zero intensity.   

 

●   

 ●  

   

Figure 7.  An example of terminal of end point is illustrated. 
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Here the endpoint of calyx means a terminal spot in the olfactory neuron path.  The 

number of endpoints means the number of terminal spot in the olfactory neuron path, while 

the fly’s neuron system transmitting information upward to brain after antennal lobe.  In the 

following ANOVA table, the mean number of rotational endpoints is significantly different 

across six categories with the p-vale=0.000. 

Tests of Between-Subjects Effects

Dependent Variable: e_mean

7963.633a 5 1592.727 15.979 .000
26460.491 1 26460.491 265.463 .000
7963.633 5 1592.727 15.979 .000

11861.542 119 99.677
46506.232 125
19825.176 124

Source
Corrected Model
Intercept
ans_6
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .402 (Adjusted R Squared = .377)a. 
 

Table 5. ANOVA table of six calyx on mean of rotational endpoints is shown. 
 

DA1DL3DM1DM2VL2aDL1
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Figure 8.  Estimated marginal means on rotational endpoints of six calyx is shown. 

 

The above figure is the estimated marginal mean number of rotational endpoints across six 
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categories.  DM1 it is the category with high complexity comparing to the other 5 categories, 

and DM1 has the satisfactory highest mean in the rotational endpoints feature. 

 

3. Region growing for object labeling 

After these pre-processing and skeletonization, the main stem skeleton is remained, 

while there are some separated pieces remaining.  The positions of endpoints are set to 

be the initial seed for region growing labeling.  When the growing labeling meets, it 

will be merged to be a single object with the same label. 

Before After 

  
Figure 9.  An example of object labeling is shown. 

 

There are six separated objects including the main stem in this image; these 

unconnected objects are shown with different colors.  For the calyx in 3D space, there 

will be 64 rotational projection views.  The number of separated objects varies from 

different views of angle.  The number of objects describing the small pieces derived 

from main stem in MB and LH.  The mean number of separated objects is significantly 

different across six categories.  The ANOVA table is the supporting evidence for the 

p-vale is 0.008.       
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Tests of Between-Subjects Effects

Dependent Variable: o_mean_w

475.769a 5 95.154 3.292 .008
15266.198 1 15266.198 528.152 .000

475.769 5 95.154 3.292 .008
3439.684 119 28.905

23018.220 125
3915.453 124

Source
Corrected Model
Intercept
ans_6
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .122 (Adjusted R Squared = .085)a. 
 

Table 6. The ANOVA table of six calyxes on mean of rotational objects is shown. 
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Figure 10.  Estimated Marginal means on rotational objects of six calyx is shown. 

 

Here these features can be grouped in 4 groups.   

 

1. Relative frequency (r.f.) vector and log r.f. vector of intensity histogram 

Relative frequency vector of intensity histogram is the simple statistics of this 3-D 

image with gray intensity (integer) from zero to 255.  Since the total number of 
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pixels is very large, some element of r.f. Vector has a value very small, even close to 

zero.  It might be hardly to distinguish the subtle difference between six calyx 

categories.  Here the log transformation is utilized. 

 

2. Histogram features 

There are six features generated by intensity histogram, mean intensity, S.D. of 

intensity, skewness and kurtosis of intensity histogram, number of nonzero pixel, 

energy and entropy. 

 

3. Rotational skeleton endpoints features 

The 64-sliced rotational 2D projection images are utilized for representing the 3D 

calyx image.  For each 2D image of the 64 in a set, we run 2D denoising process and 

skeletonization.  At last, only the largest object, which is the skeleton of calyx, will 

be remained.  The 64-sliced rotational 2D skeleton represents the 3D calyx from 64 

different angles in a circle.  For each 3D calyx, we can calculate endpoints in 64 2D 

skeletons from 64 different angles in a circle.  For the same category of calyx, there 

is a hypothesis; the distribution of rotational endpoints should be very similar but 

different across different categories.  The number of endpoints is viewed as a random 

variable, and the observed number of endpoints from different angles is the obtained 

data.  Therefore we will calculate the 4 moments of the number of endpoints as 

endpoints moment feature and the 10%-increased percentiles as endpoints percentile 

feature.  As for wavelet endpoints feature, the only difference is the utilization of 

spatial resize, which is size reduction in pixel, and Bayesian wavelet Filtering 

(BLS-GSM) [15] before the 2D image pre-processing and skeletonization.  The 

wavelet skeleton tends to have terminal pieces separated from the main stem 
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especially in LH and MB.  And here we will count the number of endpoints in the 

main stem only. 

 

4. Wavelet objects feature  

For each 64-sliced rotational projection 2D image sets, the utilization of spatial size 

reduction in pixel and Bayesian Wavelet Filtering (BLS-GSM) [15] will be done 

before the 2D pre-processing and skeletonization.  The wavelet skeleton tends to 

have terminal pieces separated from the main stem especially in LH and MB on these 

calyx image data.  Therefore, we will use object labeling to calculate how many 

separated objects including the main stem in a 2D image.  For each 3D Calyx, we can 

calculate objects in each 2D skeleton of the 64 images from 64 different angles in a 

circle.  Therefore we will calculate the 4 moments of the number of object as 

rotational separated object feature. In figure 11, there are 6 objects including the main 

stem. 

 

Figure 11. An example of the separated terminals in LH is shown. 

20 



 

Code in 

Classification 

Model 

Description 
Number of 
attributes 

F1 Rotational Endpoints Moment Feature 4 

F1** Rotational Endpoints Percentile Feature 11 

F1* Wavelet R. Endpoints Feature 4 

F2 Rotational Object Feature 4 

F3 Relative frequency (r.f.) vector 256 

F3* Log r.f. vector 256 

F4 Histogram Feature 7 

Table 7.  The Features Code is listed. 

 

The combination of selection of feature groups for classifier can be interpreted as a 

statistical problem, which is known as model selection.  The possible combination will be 

25*2 rather than 27, for F3 and F3*, only one of them will be selected in a model.  For the 

possible combinations can too many choices, here I will run 26 different combinations of 

interest. 
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3.3. Classification 
 

The terminologies of some concepts in statistics are quite different from computer science.  

Terminology of predicting a discrete Y from X is classification in statistics and supervised 

learning in computer science.  The comparison of these terminologies atr listed in the 

following table. 

Statistics Computer Science Meaning 

Classification Supervised learning Predict a discrete Y from X 

Data Training sample (X1, Y1), …, (Xn, Yn) 

Covariates Features The Xi’s 

Classifier Hypothesis Map h: X→Y. 

Estimate Learning Using data to find an unknown quantity, 

finding a good classifier 

Table 8.  Terminologies in CS and statistics are compared here. 

 

This The Xi’s in training samples are covariates in statistics and features in computer 

science. 

(X1, Y1),…, (Xn, Yn)  

where  X  is a d-dimensional vector and Yi takes values in a finite 

set Y. 

∈= ),...,( XXX 1 idii
dℜ⊂

A classification rule is a function h: X→Y. When we have a new query Xn+1, we predict 

Yn+1 to be h(Xn+1). 

There are many ways to estimate error rates and it helps us at choosing a good classifier.  

We will consider cross-validation.  The data are divided into two groups, training setτ  and 

validation setν , The training set contributes to generate the estimation of classifier .  Then 
^
h
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we apply  into the validation set for the estimation of the error rate . 
^
h

^
L

∑
∈

≠=
νiX

ii YXhI
m

hL ))((1)(
^

 

, where m is the size of ν . 

Leave-one-out validation will be useful for the error rate estimate.  Here two different 

classifiers, LDA and SVM, are introduced briefly in the following sections. 

 

3.3.1. Fisher Linear Discriminant Analysis (LDA) 

 

Fisher’s LDA is a classification method. LDA project dataset in  

onto a one-dimensional space, and the classification is performed on the projection line.  The 

mean vectors and variance matrixes of the two different classes decide the projection line.  

This projection maximize the distance between the mean points of two different classes, while 

the within variances of each class is minimized [2].  In this study, SPSS13.0 

“classify>Discriminant” is utilized for the results of Fisher’s LDA. 

),...,( 1 idii XXX = dℜ

 

3.3.2. Support Vector Machine (SVM) 

 

SVM [11] is another kind of supervised learning methods used for classification, and it is 

also a generalized linear classifier.  The basic idea is how to map our data/ observations into 

a higher dimensional space and find out the maximal separation/gap between different classes.  

The goal of SVM is to find out the optimal hyper-plane (maximal margin hyper plane) which 

maximizing the margin between bounding plane, such that SVM is also known as a maximum 

margin classifier. 
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Figure 12. Support plane for 2 classes is demonstrated. 
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∈= ),...,( 1 idii XXX  X  is a d-dimensional vector, and dℜ⊂ ω  is the normal vector of 

the maximal margin hyper plane.  Here we have ω·x-b=0 as the dividing hyper plane.  

Therefore, we describe the two parallel hyperplanes closest to these support vectors in either 

class with following equations. 
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w
2And our focus interest is on the maximal margin , so we can  

 

min ω , subject to  nibxc ii ,...,2,1,1)( =∀≥−⋅ω

 

For mathematical convenience, we will transform the original problem to a quadratic 

programming (Q-P) optimization, 

 

2

2ω
, subject to  min nibxc ii ,...,2,1,1)( =∀≥−⋅ω

 

The Dual form of SVM classifier decided by the support vectors, i.e. the training dataset 

that lie on the boundary.  The dual form of the SVM can be shown as: 

 

∑ ∑
=

−
n

i ji
j

T
ijijii xxcc

1 ,
max ααα  subject to  nii ,...,2,1,0 =∀≥α

 

where the 
i

α
~

 constitute a dual representation for the weight vector in terms of the training 

dataset: 

∑=
i

iii xcαω  

SVM with slack variable (ξ) means a Soft margin.  Soft margin allows some mislabled 

case, which are located within the dividing gap.  Here the soft marging hyper plane will 

devide the training dataset as seperated as possible.   

The constrain equation is revised as  nibxc iii ,...,2,1,1)( =∀−≥−⋅ ξω
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Although we endure ξi 0, the penalty is defined as≧ ∑ .  And we will need to 

minimize the penalty with the Q-P optimization 

=

n

i
i

1
ξ

2

2ω
.  Therefore, the revised equation is: 

∑+
i

iCw ξ2  , subject to  min nibxc iii ,...,2,1,1)( =∀−≥−⋅ ξω

Here we are going to utilize SMO in WEKA for the result with SVM. 

Chapter 4 Results 

 

In this chapter, the reconstructed images of six calyxes (olfactory neuron track of 

Drosophila) are checked with SNR and PSNR.  And the accuracies of different classification 

models with various feature combinations are also reported.  Similar to regression method, 

the model selection here means the selection of classification method and selection of feature 

combinations.  R-square or adjusted R-square can be helpful index for regression model, and 

the cross validation accuracy is our evaluation index to determine the superior method of 

classifying six different calyxes. 

 

4.1. SNR PSNR and Skeleton Image 

 

The SNR and PSNR of reconstructed images fluctuate, but the image quality is generally 

improved.  Because the skeleton operation is very sensitive to noise, the pre-process of 

rotational images are carefully considered.  As our expectation, most of the reconstructed 

images has SNR greater than 1.0, and PSNR within 20 to 40.  And the s.d. of SNR and 

PSNR of rotational images are also checked.  The improved image quality doesn’t fluctuate 

greatly across and within categories. 
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Figure 13. The SNR results of rotational images are shown. 
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Figure 14. The PSNR results of rotational images are shown. 
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After the image process, all the 3D Calyx images are simplified as rotational skeleton.  

Skeletons of six calyxes are varying differently in the complexity of the spatial dispersion.  

The 64-sliced rotational image describes the axon of projection neuron in 3D space, and the 

64-sliced rotational skeleton is the simplified version of the calyx. 

DA1_PN80.bmp(at) 
 

DL1_PN47.bmp(ab) 
 

DL3_PN111.bmp(at) 
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VL2a_PN158.bmp(ac) 
 

 
Figure 15. The skeleton examples of six calyxes are shown. 

 

The 64-sliced rotational image describes the axon of projection neuron in 3D space, and 

the 64-sliced rotational skeleton is the simplified version of the calyx. 
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4.2. Accuracy  
 
model feature code #of attributes LDA_2 LDA_3 LDA_6 SVM_2 SVM_3 SVM_6
1 F1 4 64 48 36.8 59.2 60 31.2 
2 F2 4 56 38.4 28 60 60 32 
3 F1* 4 48.8 29.6 16 60 60 32 
4 F4 7 71.2 60.8 42.4 60 60 40.8 
5 F1+F2 8 53.6 42.4 33.6 60 60 32 
6 F1+F4 11 72.8 57.6 44.8 68.8 60 39.2 
7 F1*+F2+F4 15 64.8 50.4 40 58.4 60 40.8 
8 F1+F2+F4 15 66.4 59.2 40.8 63.2 61.6 44 
9 F1+F1** 15 62.4 45.6 29.6 58.4 60 40 
10 F1*+F2+F4+F1 19 64 55.2 44.8 67.2 60.8 45.6 
11 F1+F1**+F4 22 69.6 57.6 43.2 67.2 61.6 48.8 
12 F1+F1**+F3*+F4 26 70.4 62.4 47.2 76 71.2 53.6 
13 F3 256 73.6 64 44 66.4 62.4 43.2 
14 F3* 256 72 60 39.2 76.8 67.2 52.8 
15 F3+F4 263 71.2 61.6 42.4 68.8 64.8 44 
16 F3*+F4 263 68 64 42.4 80 72 52.8 
17 F3+F4+F1 267 72 61.6 42.4 70.4 61.6 45.6 
18 F3*+F4+F1 267 68.8 64 42.4 79.2 69.6 54.4 
19 F3+F4+F2 267 68.8 64.8 41.6 70.4 62.4 48 
20 F3*+F4+F2 267 66.4 64 44 80 70.4 50.4 
21 F3+F4+F1+F2 271 68.8 64.8 42.4 68 62.4 47.2 
22 F3*+F4+F1+F2 271 66.4 64 44 80 71.2 52.8 
23 F3+F4+F2+F1* 271 65.6 64.8 42.4 71.2 63.2 46.4 
24 F3*+F4+F2+F1* 271 68 64 37.6 79.2 71.2 52.8 
25 F1+F3+F4+F2+F1* 275 64.8 64.8 42.4 70.4 61.6 47.2 
26 F1+F3*+F4+F2+F1* 275 70.4 64 39.2 79.2 70.4 52.8 

Table 9.  Table of Leave-one-out Accuracy of 26 interested models is shown. 

 

  First, the accuracy of SVM is generally better than LDA across the 23 different feature 

combinations.  SVM outperforms LDA, for the over-simplification of mapping function of 

LDA on one-dimension, while SVM is finding a max-margin separation hyper-plane on 

sample space.  The subtle difference across six categories are delimitated by LDA. 
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 Figure 16. The accuracy and times of random guess across 26 models are shown. 

 

Secondly, the 18th model (six-category-SVM) has the highest leave-one out cross 
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validation accuracy, 54.4%.    The random guess rate is one divided by the number of 

categories.  Here for six- category classifier, the random guess rate is 1/6.  And all the 

accuracy should be divided by the random guess rate. In the 18th model, the accuracy is higher 

than random guess rate more than 3 times.  Rotational skeleton Endpoint feature helps the 

six-category- SVM classifier with log r.f. vector and histogram feature in the 18th model. 

 

Chapter 5 Discussion 
 

For human beings, comparing to the dominant vision, the functional connection beyond 

glomerulus for the smelling chemicals remain a mysterious story.    In Drosophila, the two 

important nucleuses in neuron pathway going beyond the well-studied AL are LH and MB.  

And for each glomerulus in AL, the further pathway going upward to brain is basically called 

Calyx.  For the Calyx 3D imaging, it can be perceived as 3 main parts, the main stem, MB 

and LH.  For each partition, there is a gray intensity histogram.  These three parts mainly 

compose the intensity histogram of the whole gray 3D image.  And the produced rotational 

skeleton of Calyx is mainly a simplified functional connection version.  And those utilized 

features describe the dispersion of neuron signal transmitting of Drosophila; especially the 

endpoints feature and object features.    The complexity of the functional connection for 

different smelling senses is very fascinating for many neuron biologists.  The consummating 

discovery of the olfactory perception mechanism is still waited to be finished.  Therefore, 

there are several directions for us keeping work on further improvement the accuracy. 

First, while the corrupting noise is always inevitable for any imaging equipments, better 

denoising image preprocess might raise the quality of reconstructed images, especially the 

sensitivity to noise of the skeleton operation is known for us.  Secondly, the applications of 

better 3D alignments and spatial partition of main stem, MB and LH before some more 3D 

RST invariant and other features and more tuning of classification methods will contribute as 
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a pilot study for the accomplishment of Hidden Markov Model and Fractal Analysis in the 

future.  Third, the further application at integrated reconstruction from the rotational 2D 

skeleton to 3D skeleton may play a possible heuristic idea for 3D skeleton operation.   

Besides, some more possible biological extended applications of the results of this study 

at fly, Drosophila, to human or other species are also potential future works. 
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