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ABSTRACT

In the semiconductor industry; tool comparison is a key task in the yield and the
product quality enhancements. We developed a new method, called tolerance control
partitioning (TCP), to automatically partition tools into several homogenous groups
based on the related metrology results. This methodology is based on a hierarchical
normal model and the implementation is carried out using a Bayesian approach.
There are several advantages of using the TCP method. First, it takes into account the
unbalanced usage of the tools in the manufacturing processes. Moreover, the
“engineer’s tolerance control” can be incorporated into the TCP method via the
specification of the priors in the Bayesian analysis, which justifies the significant
difference between groups according to the experts’ knowledge. This specification
not only has the advantage of adjusting the number of partition groups but also
avoids the problem of having too many partition groups with small differences which
is often encountered in the conventional approaches. Some simulation results

illustrate the advantages of the TCP method compared to the method of classification



and regression trees (CART). Moreover, the TCP method is applied to two real
examples for the yield and Cp/Cpk enhancement in the semiconductor industry. Both
results confirm the practical usefulness of the proposed method. For general
applications, the TCP method is also useful for other similar problems such as the
comparisons between several experimental recipes or the comparisons between

different materials.
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1. Introduction

The importance of semiconductor technology in today’s world can hardly be
exaggerated. Semiconductor devices are absolutely essential components for almost
all electronic products. Without semiconductors, most of the electronic products and
the systems cannot be made or operated and their influences on human society are
beyond belief. The global semiconductor industry had around US$230 billion worth
of revenue in 2005 and keeps creating new opportunities, socio-economic
advancements and new human developments to nations and societies around the
world [1]. Since building a modern wafer-fabrication facility needs around US$3
billion, enhancing the yield rapidly. to*volume the production becomes an extremely
important source of the competitive advantage in the hyper-competitive world on
semiconductor manufacturing. The sooner a potentially lucrative circuit yields, the
better the manufacturer generates a revenue stream. On the other hand, rapidly
identifying the cause of yield loss can restore a revenue stream and prevent the
destruction of the materials in process [2] [3].

In the following, the semiconductor manufacturing is briefly introduced. It
follows a very complex process flow which is quite different from the traditional

manufacturing industries. It takes about 30-60 days to complete the processes of



making bare silicon wafers into integrated circuits, such as the microprocessors or the

memory chips. In general, 25 wafers are processed together in a group called a lot,

and the size of each wafer ranges from 3 to 12 inches in diameter. Each wafer could

contain thousands of dies depending on the size of the die being produced. During the

manufacturing process, the lots are manufactured through lots of process steps (more

than 150 process steps). Each process step involves several tools for production. After

completing each process step, the metrology systems collect the physical data and the

electrical data, such as the film thickness, film uniformity, critical dimension, overlay,

defect particle count, voltage, current-and wafer sort, etc. At the end of the all process

steps, the Wafer Acceptance Test(WAT) with 100-500 electrical test items and the

Wafer Sort Test (WST) with 50-100 “test items. are performed sequentially to each

wafer. The objectives of WAT and WST are to perform the device characteristic

analysis and the die functionality sorting, respectively. Since these testing data also

characterize the quality of the manufacturing and the performance of the products,

therefore how to use these data to improve the process itself becomes an interesting

issue. However these data are huge with lots of variables (about 100M-1G for each

lot), it is very time-consuming for engineers to analyze the data and find out the

sources of variations in the production processes. Among various analyses, tool

comparison is one key task for engineers in the yield improvements and therefore an



effective and time-efficient method for comparing tools is critical for rapidly

improving the yields [4]. In the following, we briefly review the conventional

approaches in this area, including the multiple comparison methods and the clustering

methods.

For multiple comparisons, the analysis of variance (ANOVA) for normal data

and the Kruskal-Wallis test [5] for non-normal data are the two most popular

statistical methods for testing the significant differences between population means

among groups. For our tool partition problem, in order to compare the performances

among different tools (i.e., groups)-at each process step, the engineers perform these

two statistical tests regarding-the" distribution of -the considered metrology data

associated with each tool. By quickly reviewing the testing result for each individual

step, tool differences might be detected at certain process steps and an alarm will be

triggered for further checking or investigation. In general, the main purpose of this

kind of testing procedures is to find the variation sources (i.e., which process steps)

and identify the possibility of abnormal tools. After finding the significant differences

among tools at certain steps, the engineers will partition all the relevant tools into

several homogenous groups and further identify the best groups or the problematic

groups of tools in order to enhance the product quality or to exclude the worst tools,

see for examples in [6]-[8]. This partition problem is an important and practical issue



for engineers but cannot be handled by the ANOVA or the Kruskal-Wallis test
simultaneously. Some multiple pairwise comparison procedures, such as the methods
suggested by Fisher [9], Tukey [10], Keuls [11], Duncan [12], Scheffe [13], and
Dunnett [14] [15], provide useful information about the ranking or ordering structures
of the group means but these methods cannot directly partition different tools (or
treatments) into homogenous and non-overlapping groups. For example, there are

three tools to be partitioned and their sample means satisfy Y1i<Ya2<Ys.

Suppose that a multiple comparison procedure finds that the differences

[Y1—Y 2| and |Y 2 —Y 3] are not: significant but the difference
|Y_1 ~Y3 | is significant. It=is'not clear -how to-partition these three tools into
homogenous but non-overlapping:groups since both (Y_1 , Y_z) and (Y_z ,Y_3) are
reasonable homogenous groups.

Another popular approach for partitioning is using the cluster analysis. Scott
and Knott [16] suggested a procedure which starts by dividing the k means into two
groups and then performs a test to decide whether the partition is acceptable. This
approach is equivalent to a hypothesis testing problem:

Hog:0,=0,=..=20 v.s. H;:6;,'s equal forie P,

0;'s equal forje P,.

K

where {P;, P,} forms a partition of {1,2,...,x}and P; and P, are two

disjoint and nonempty sets with Py U P,, = {1,2,..., x } . If the test is significant

4



at some chosen level « , similar testing procedure is then applied to each individual
P; , i=1,2. The procedure is continued sequentially until all tests are not rejected (i.e.,
no further partition is necessary). Worsley [17] proposed a nonparametric version of
Scott and Knott’s method. Although this approach is intuitive and easy to implement,
the Type | error of the entire test is difficult to control due to sequential testing
procedures, in particular when the number of splitting gets larger. Moreover, the final
partition result may not be unique which highly depends on the initial partition.

To overcome the difficulty of controlling the Type I error (the probability of
erroneous grouping) for the sequential testing procedure, Calinski and Corsten [18]
proposed two cluster methods -to ‘partition these tools (or treatments) in a balanced
design by embedding the simaltaneous testing procedures based on F test and
Studentized range test, respectively. Although this approach solved the problem of
controlling Type | error, it still has several other disadvantages, such as the partition
groups are too many with small differences when the number of observations for each
tool is large; the issue about unbalance data is not considered which generally loses
the power when the usages are quite different among tools.

Jolliffe [19] proposed an alternative method to perform the cluster analysis.
This approach used a particular dissimilarity measure which is defined by the P-value

of the Studentized range test for testing the difference between two group means. A



larger P-value indicates that two groups are more similar and a smaller P-value

indicates that two groups are more distinguishable. One critical issue for this

hierarchical clustering approach is to determine the number of clusters which is

usually determined subjectively.

Data mining approaches [20] [21], such as the classification and regression

trees (CART) [22] and the neural networks [23], have also been used for the partition

problem. Recently, some commercial data analysis software (for example: Yield

Dynamics, Bl IBM, Odyssey YMS, and dataPOWER) in engineering use these

approaches for the vyield enhancements. ‘However, these approaches involve

supervised algorithms which relyion more complex-initial parameter setups and the

partition results are usually sensitive to'these setups [22], and therefore it is somehow

difficult for engineers to use them in practice. In Appendix A, the CART algorithm is

briefly introduced which will be compared with the proposed method in the

simulation study.

To sum up, each above-mentioned method has its own advantages and

disadvantages compared to the other methods under different circumstances. But none

of them is capable of incorporating the experts’ specific opinions into the statistical

analysis. For example, for our tool partition problem, the engineers’ tolerance controls

which quantify the tolerance (minimum value) of tool differences should be used in



some way in the analysis on determining the grouping structure. Another challenge

for our tool partition problem in the manufacturing processes is to account for unequal

tool usages. Unequal usages for different tools at each process step make the numbers

of processed lots for each tool varying which induces unbalance data issue for the

statistical tests. Montgomery [24] addressed that the statistical tests for multiple

comparison lose power for unbalance data. The goal of this thesis is to develop a

method for tool partition which incorporates the experts’ specific opinions on the

tolerance of tool differences and considers the unbalance data issue simultaneously.

We formulate the tool partition problem as a hierarchical model [25] in which

the metrology measurements from each tool follew a normal distribution with

tool-specific mean. It is reasonable to expect that-the tool-specific means for “similar

tools” are related in some way, such as viewing these tool-specific means as

realizations from the same distribution. Under this setup, the engineers’ tolerance of

tool differences can be naturally incorporated into the variance structure of the model

imposed on the tool-specific means. For such hierarchical models, Bayesian analysis

is the most popular method for inference in the literature. We will use the Bayesian

analysis for searching the possible grouping structure for different tools in which the

reversible jump Markov chain Monte Carlo (RIMCMC) algorithm, proposed by

Green [26], will be used for the implementation. We called this proposed procedure



“tolerance control partitioning” (TCP) which partitions tools into several homogenous

groups subject to the engineer’s specific tolerance about the mean differences.

The remainder of this paper is structured as follows. In Chapter 2, the

hierarchical model is introduced and the guidelines for choosing the priors for the

parameters and hyper-parameters in the Bayesian analysis are also addressed. In

Chapter 3, three simulation experiments are designed to illustrate the advantages of

using the TCP method. For comparison, the partition results using the pruning scheme

for the CART method (which also incorporates the tolerance of tool differences into

account) are also considered in the simulations. In.Chapter 4, two real examples in the

semiconductor industry are analyzed for illustration: One example is related to the

yield enhancement and the other example is abeut the Cp/Cpk enhancement. In

addition, we propose two new ideas to integrate TCP with a statistical dashboard [4]

for yield enhancement and automatic process control (APC) [27]-[29] for Cp/Cpk

enhancement, respectively. In Chapter 5, some conclusions and discussions for the

TCP method are given. In Chapter 6, possible extensions of applying the TCP method

are addressed for future work.



2.Methodologies

In this chapter, we introduce the TCP methodology. In Section 2.1, we
formulate our tool partition problem by a hierarchical Bayesian model. In Section 2.2,
we briefly introduce the reversible jump Markov chain Monte Carlo (RIMCMC)
method. In Section 2.3, we apply the RIMCMC to determine the best partition and
estimate the model parameters under a Bayesian approach for the tool partition
problem. In Section 2.4, we suggest some guidelines for the initial setups for the
model parameters and the hyper-parameters in.'the RIMCMC algorithm for the TCP
method. In Section 2.5, we -describe the’standard method for monitoring the

convergence of the Markov chain-in the Bayesian context.

2.1 A Hierarchical Bayesian Model for Partition Problems

For each observation, Y denotes the response variable (e.g., the yield), and x
denotes the categorical predictor with J possible categorical levels (e.g., tools). The
conditional distribution of Y given xis, Y | X = ] ~ Normal (6; ,02) for the j-th
tool, and 8=(4,,0,,....6;)" is the unknown parameter vector. The TCP method

intends to partition different tools into several homogenous groups (that is, to partition
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{6,:1=12,..,J}into several homogenous groups) according to the values of the
response variable.
Each partition for J tools can be represented as a collection

9={S;,S;,,...,S,} with x groups and each group S, is a subset of {1, 2,..., J},
K
satisfying kulsk ={1,2,..., 3} and §;nS;=¢ for i= j. The number of groups for

the partition g, x, determines the degree of heterogeneity among different tools.

According to the partition structure (or the grouping structure), we further assume that
the mean parameters 6; s follow the same normal distribution with the

hyper-parameters 4 and z when these| @;°s,belong to the same group Sy . That is,

0.

i ~Normal (.7 %)if j €S, j=L2n 3.

If the partition g is knowninradvance, all the parameters can be easily
estimated by using the maximum likelihood. But, the partition g is unknown and a
Bayesian method is used for estimation. In the following, the prior distributions for
the mean and variance parameters and the related hyper-parameters are specified:

(1) the prior for g : 7(x)~ Uniform (a, b), for k=1,2,..., x, and { } are
mutually independent,

(2) the prior for 7°: z(r?) is a scaled inverse chi-squared with degrees of
freedom v and the scale parameter s”=(tolerance/6)° in which the

tolerance is a tuning parameter defined by the engineers to stand for the

10
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acceptable difference between tools,
(3) the prior for o”: z(c?) is distributed as a scaled inverse chi-squared with
degrees of freedom v, and the scale parameter s,
For the partition g, following the specification in Consonni and \Veronese [30], the

prior distribution is defined as

Kfl

oC
{#of partitions whose degree = x}

7(9)

, Where «x is the degree of

partition g.
Under the above prior setup, the posterior distribution for the parameters

satisfies
p(9,0,u,0%,7%|y) < p(g,6, o’ , 7%, Y)

=p(y|6,0%)p(0|9, 1, 7*)7(9)7m(1)7lo)mlz")

3 Nj

i”' 2206’ 3 ‘i{‘gﬁi#k'msm]
I AL ) g4
* (2o ?)"? © (27r?)"? °

: (523 {111
{# of partitions whose degree =«x} \b-a ) |ja “<®»

i2) (vi2)
&sVl(02)_(V1’2*1)e‘”512"2"2) v/2)
F(Vl / 2) 1 F(V / 2)

1)

N (2_2)—(1//2+1) e—vszl(ZTZ)

- - K
where y={y;:j=12,..,3;i=12,..,n}, p= (g, 15, 1,)", g:kU Sy , and
=1
6 =(6,,0,,...,05)". This posterior for the model parameters does not has a close
form but is proportional to the joint distribution of the observed variables and the

unknown parameters. For this kind of problem with unknown grouping structures, the
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RIMCMC method is often used for the Bayesian implementation which is described

in the next subsection.

2.2 Reversible Jump Markov Chain Monte Carlo

The RIMCMC algorithm was initially proposed for the Bayesian model
determination problems [26]. But since then, it has been applied to many other
problems such as the change point problems, the mixture problem, and the factorial
experiments [26][31][32]. In the semiconductor manufacturing context, Bergeret and
Gall [33] have applied this algorithm to detect the ¢hange point for the yield trend
under the situation that the failure occurs at a problematic process stage and there are
different yield performances before and after the failure time. Moreover, the
RIMCMC algorithm has also been used with the CART method which leads to the
Bayesian CART method [34]-[38].

We present the RIMCMC algorithm as introduced in Green [26]. Suppose that
the competing models can be enumerable and are represented by the set of models
M ={M;,M,,...}.Under the model M | and given the data Y, the model

parameter &, has the posterior distribution

POy |y, k)= p(y|8¢.k)p(8 k)

12
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where p(y |68y ,k)and p (8 | k) are the sampling distribution of y and the
prior distribution of the parameter 6, given the model M | , respectively. The
RIMCMC methods are an extension of the Metropolis-Hastings algorithm [39] that
allows a Markov chain not only moves between different parameter values but also
between models with different dimensions. This algorithm is designed to be reversible
so as to maintain detailed balance of a irreducible and aperiodic chain that converges
to the correct target posterior distribution. Please refer the reference [26] for the
details of RIMCMC.

In the following, we only conceptually iflustrate the jumping scheme between
different models in the RIMCMC algorithm.

1. Propose a jump from the current*Model™ M ;" to the other model M | . with
probability J (M , —> M ).

2. Sample v from a proposal density q(Vv |8y ,k,k ") , where v is an
augmented variable which plays the role of adjusting the unequal dimension
problem between two models M, and M | ..

3. Set (Oy,v") =0k (@¢,V), where gy () is called a bijection
function between (& ,Vv) and (€, V') which provides a one-to-one
mapping between two sets of parameters (&, ,v ') and (€y,v) and two

augmented variables v and v’ play the roles of matching the dimensions of the
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parameters for two model M, and M | ..
4. The RIMCMC moves from the current model M , with parameter 6, to
another model M . with parameter 6@, according to the acceptance

probability r=min{l, A} where

_ P10 K PO (k) I(Mye > M)AV G k' K) [0 G (B )|
P(Y 16, K)p@)P(k) I(M > M)AV k. k) | 9(6.v) |

Each iteration in the RIMCMC algorithm includes the above 4 steps and

repeating such iterations constructs a Markov chain. Under some appropriate setting

for the jumping scheme, this Markov chain will converge and its stationary

distribution is identical to the target posterior distribution of the parameters for the

selection problem among the model collection M |+ The posterior distribution and

posterior mode for each parameter can‘be estimated using the MCMC draws after the

convergence is achieved. In particular, the model with the highest posterior

distribution on M is considered as the best model based on the Bayesian approach

[35] [36] [40].

For our tool partition problem, the set M consists of all possible partition

models g with various degrees x=12,...,J . The RIMCMC algorithm helps us to

determine the best partition among J tools and simultaneously estimate the model

parameters under the hierarchical Bayesian model. Although we did not give the

detail formulations for the functions involved in the jumping scheme (such

14
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asJ (M = M), ggk-(:)and q(-|6y.k, k") since they are usually
problem-specific, the detail scheme for our tool partition problem will be described in
Section 2.3.

Moreover, we suggest the usage of posterior distribution of possible partitions
to realize the partitioning structure of tools instead of the usage of hierarchical tree

structures

2.3 TCP Method for Tool Partitions

In Section 2.1, the posteriordistribution of (9,8, #,0°,7%) given the data y
has been derived up to a normalizing-constant. The posterior distribution as well as
the posterior mean for each parameter are estimated using the RIMCMC method. We
are particularly interested in the posterior distribution for g which gives the best
partition for tools. The details about how to apply RIMCMC to our tool partition
problem in Section 2.2 which includes five move types:

1. updating the parameter of the group mean 6;, for j=1, 2...J,

2. updating the parameter of the group variance o2,

3. updating the hyperparameters z° and g, fork=1,2...«,

4. updating the partition g, with “birth”, that is, splitting one group into two,
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5. updating the partition g, with “death”, that is, combining two groups into one.
At each iteration in the chain, one of the above five moves is randomly selected
regarding some pre-set probabilities p,, p,, ps, P, P, Where p; is for the j-th
move type, p,and p, usually depend on the degree of current partition g (i.e., K)
and Zslpj =1. Naturally, we set p,=0 when x=1 and p,=0 when x is the

i1
maximum allowed value.

Given the partition g in each MCMC iteration, the parameter values are

updated according to the conditional distributions of all parameters in the set ® =
{61, 6,... 05, %, 1, Hy... woand 2 Yviathe Gibbs sampling [41] [42]

(Appendix B). We will use the notation of @_6,j to Indicate the set of all parameters

except the parameter of 6;. Thefull'conditional distributions of all parameters of ©

are given below and the detailed derivations for these conditional distributions can be

found in Appendix C.

b; 1
1. 6;|®_, ~Normal (—,—), 2
10 (2aj 2aj) (2)
n.y. 1 n: . )
where b, = £k ¢ 320y q.= = 4L forjeS,,andj=1,2,...,J,
! (2'2 o’ ) 122 262 K
ZS ‘91 2
2. 0} ~Normal ({2 = )1 (a,b) where w, ={# of jinS,},
e l®_,, ( W Wk)ﬂk( )  ={# of jinS}
2
3. 72 |©_. ~Inverse Gamma(vzJ ,VS 2+F), where

2
J K
F= 2(91- —kZ ﬂkl(jesk)j RS

j=1 =1

Sy
1

T Cx

16
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)
vi+N v,y +E
4. 6%|@®__. ~Inverse Gamma ( 12 : 112

),

J N J
where E= 3 3(Y;; —Hj)z,and N=3>n;.
j=1i=1 j=1

The structure parameter g is updated by the birth and death move types. The
birth move means adding one group from the current partition g. In contrast, the death
move means eliminating one group from the current partition g. We introduce the
schemes for implementing these two move types below. Suppose that the current
partition is g(l) with degree D and mean vector 1. For the “birth” move type,
we first choose a group to split randomly among those with at least two tools to form
a new partition g with degee K22 (K®+1) groups. At the same time, the
mean vector u'® needs a change, for“both- the dimension and the value. The
relocation can be simply done by adding a new random variable z that is
independently distributed as Normal ( z; , (722). In Section 2.4, we will discuss how to
define 4, and o-z2 in detail. Suppose that a proposal birth splits group S, for k
e{1, 2. kW } into two groups Sk1 and Skz. Let sz be the current value and

4 p bethe new values for the two groups. Then we set

sz Wkl
M, = M ¥ —52, = M - —512, 3)
Wi Wi
where w; ={# of j in §} for i= k, ky, and ky, with w = w +w ,

S, U S, =S, and S, NS, =¢. So we have 9@ ={s®_; }u{s, .Sy } and
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u? = (u® Mo i) - Similarly, for a “death” move, we will randomly choose two

—Hy

groups Sk and Sk from the current partition g(z) and merge them into a new
1 2

W, 4, +W
group Sy to generate a new partition g& with = ol R Yol
Wk

Wi =Wy + W, and 2= (g, -, )W, by solving the simultaneous equations in (3).
After specifying the jumping proposal, the acceptance probabilities for the
birth and death in the RIMCMC algorithm are min {1,A} and min{1,1/A} respectively,

where
11 2 3 ) 2 PR
;2 Z gj_i IEZ)IV 2 j_Z(gj_i LEI)I_ 1 ] I 2 a,b
_ P(g(z)) 27 {1_1[ k:l'u (]ESIE ’) a H,u (Jeslg >) 1 kl_=[l ,uﬁ )( ) Pdeath

 P(g®) ° “boa) R,
g I |#(1) (a, b) birth
k=1 "*

1 W 1 1
B[OV _ 9 _

KD (D +1){ }Wk f(2)

- - - (I) -
where «@ is the degree of 9@, fori=1.2,with #® =x® 11, g0 = 5@,
k=1

x #of {k;w, =2, k=12.. D Ix

w, is the number of tools in Sk(l), Pyeath» and B¢, are the proposal probability
for the death move type and birth move type respectively (i.e., p, and p, inthe
earlier context), S is the Jacobian, and f(z) is the density function of z.

Wi

The derivations for the acceptance probabilities of the birth and death move types are

given in Appendix D for details.

18
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2.4 Guidelines for Choosing Initial Values for Parameters

and Hyperparameters in TCP

The engineers can set up the initial parameters and hyperparameters in the
priors based on their knowledge for each problem. However, when there is no
enough prior information, we will suggest some guidelines to set up the priors to
facilitate the practice of TCP in the semiconductor industry and in other applications.
The details of our guidelines include the following:

1. u~ Uniform (a, b), for k=12,.../K s let a=min {Tj: j=1,2,....J} and
b:max{Tj, j=1,2,...,3 }» The reason is described as follows: Since these
0;’s belong to the same group~'S; ", these. &; s will be distributed as the same

normal distribution , (that is, €; ~ Normal ( g , 2'2), for j €S,

j
j=1,2,...,3.) On the contrary, if 0;, and o;, belong to two different

groups S, and S, , ¢; and ¢; are distributed as two different normal

I
distribution with two different means s and g . Therefore, in tool

comparison problem, s can represent the performances of different tool

groups, and (a, b) represents the range of tool performances among tools. So,

we suggest to use the empirical estimate for the range, (min {Tj}, max{Tj})

for the prior specification.
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2. 72 ~ scaled inverse chi-squared (v,sz) with v =20 and
2

s* =(tolerance/ 6)

2

3. o~ scaled inverse chi squared (v;,5,°) with v, =20 and s°= sample

variance of {(y;j; —Tj), j=1, 2.3, i=1, 2..nj}. Note that, 312 is an
unbiased estimator of .

The values of v and v, are only for recommendation, as they only impacts the

convergence speed of the TCP method. Based on our experience, since the population

2

mean > s of the scaled inverse chi-squared distribution (v,sz) is very close to
V_
. 2 . 2V2 4 -
its mode s and the variance 5 s” is small when v and v,
v+2 (v-2)°(v=4)

2

are large than 20, the prior distribution.of"z <. will-produce more r 2 s with values

closed to (tolerance/6)?. This effectusually speeds up the convergence for the
Markov chain toward our target distribution based on the tolerance control.

Following the above guidelines, the engineers only need to determine the
numerical level of the tolerance parameter. Since the tolerance concept is widely used
in the semiconductor industry and in other applications, it is not difficult but friendly
for the engineers to make this setup. For example, there exist some unavoidable errors
from the metrology systems and minor deviations with respect to the product
specifications. Hence, one can set up the tolerance based on the engineers’ knowledge,

the product specifications, and the tool limitations. In Section 3.2, we present some

20
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simulation results of the sensitivity analysis to show that the TCP method could

generate the optimal partitions with respect to different levels of tolerances.

2.5 Convergence Assessment for RIMCMC

Before conducting the Bayesian inference using RIMCMC samples, the output
should be analyzed to determine the required run length for the MCMC sequences.
Gelman and Rubin [43] proposed a convergence diagnostic, the potential scale
reduction factor (PSRF), obtainedsby runningzmultiple | chains with overspread
starting values. Books and Gelman [44] provided a generalization of Gelman and
Rubin’s method that considers Several parameters simultaneously. For a Bayesian
model selection, Brooks and Giudici [45] suggested selecting a scale summary of
parameters and decomposing its variance within the RIMCMC simulation output into
two distinct groups, within and between chains, to monitor the convergence.

The convergence check for TCP method proceeds as follows. We begin with
simulating five independent chains (1=5) of length T, +T,, each starts with different
initial values which are overspread. After discarding the first T, iterations for
burn-in and retaining only the last T, iterations, we first compute the

-2(log-likelihood) value Lti observed for the i-th chain and up to the t-th iteration
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according to the equation (1). Then, we calculate the following 6 variation quantities:

N

V : the total variance of L!,

N

W, : the averaged within-chain variance of Lti ,

N

B,, : the estimated between-model variance of L},

N

B, W, : the estimated between-model and within-chain variance of L},

W, : the estimated within-model variance of Lti ,

W, W, : the estimated within-model and within- chain variance of L} .

For convenience, we let Ii'ﬁn be the value of L' corresponding to the k th
observation of them th model in thes®ith chainfor k =1,2,...,K(i,m), m=1,2,....M,
and 1=1,2,...,1, where K(i,m)= denotes the -number-of times that the m th model is

observed in the i-th chain and M is the number of-models in | chains. By definition,

| M AN N AN N N
we have Y > K(i,m)=T,. The expressions for V., W., B,, B,W., W,, and
i=1 m=1
W,,W_. are listed below:
~ 1 T,T, t = 2 _ T.T, t
V=3 X (L-L) /(IT,-1), where L=3% X L /IT,,
i=1 i=T,+1 i=1 i=T,+1
AM L 2
B,=2X(n-1) /(M-1),
m=1
A 1 1M KG@m 2
WmZ—ZZ > (Iim Im) (Km_l)’
M i=lm=1 k=
A - 2
11 M K@m)
Wc=—ZZ > (Iim I|) (KI 1)’
l'icim=1 k=

22
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3 11 M _
Bch :72 Z(Ilm II) (M _1)!
I|=1 m=1
A 1 LM KG@m 2 _
Wch :—Z Z Z (Iim_li.m) (K(I,m)—l), (4)

IM iZim=1 k=1

where K, = %K(i,m) , Ky = IZK(i,m),
i=1

m=1 i
— 1L KEm 11 KEm)
I.rth__zl kzl lim » | 2?'21 = lifm »
m i= = ii= =
_ 1 K@M, 1 LM KEm
- Sk, =3y |
™OK@,m) IT iZm1 k=1

We follow the method by Brooks and Giudici [45] for our convergence

N N N

assessment. By monitoring the plots of three pairs, V. v.s. W, , B, wvs. B W,

N

and W,, v.s. W W, , across iterations, the-convergence is achieved among multiple

chains when two lines in each. plot*get closer and stable after some iterations.

Consequently, the TCP method achieves the convergence after that iteration.
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3.Simulation Studies

To illustrate the performance for the TCP method, we provide three simulation
cases in this section. In Section 3.1, we show the limited impacts for the unbalanced
usage in the manufacturing. In Section 3.2, we report the sensitivity analysis by using
different tolerance controls in the TCP method and compare the results to the pruning
results using CART. In Section 3.3, we perform a robustness analysis by simulating
the data from a location lognormal distribution to investigate the impact of the normal
assumption in the TCP method for non-normal data.

In these simulation cases, we follow-the guidelines of choosing initial values
for parameters and hyperparameters given in Section 2.4 to show the feasibility for
future applications in the semiconductor industry. For convergence assessment, we
follow the method in Section 2.5 to monitor the convergence for the RIMCMC by

running 5 independent parallel chains with 50,000 iterations. In order to save

N N N

computational expenses, we calculate V., W;, B, , BW,, W,, and W, W, for

every 100 iterations. The simulation programs are written by R (in Splus) and run in a
PC with 1G CPU and 512M RAM. It takes about 70 minutes to complete a case. The

simulation results for each case are summarized in the following subsections.
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3.1 Unbalanced Data for Unbalanced Tool Usage

We present three unbalanced data cases to illustrate the influences on the TCP
method when different usages exist among five tools. Following the notations defined
in Section 2.2, the simulation models are described in detail as follows: y; ~
Normal (Hj,az), where i=1, 2...n; and j=1, 2,..., 5. (n;, ny, ng, ny, Ns) and
(6y, 0,, ..., 65) are the numbers of observations and the yield means for the five

tools respectively.

Casel: (ng, ny, n3, ng, Ng)=(15, 150,20, 250,.20)

(61, 0,5, ..., 05)=(3,3,4,4,7)

0=15
In Case I, the true partition for 5 tools is {(T1, T2), (T3, T4), T5}, which is denoted as
(12223). The box plot and the related statistics for the simulated data are given in

Figure 3.1 and Table 3.1.

Table 3.1. The sample mean, standard deviation, and count for each tool for the
simulated data in Case I.

Tool Mean Std Count
T1 278 158 15

T2 288 154 150
T3 3.78 15 20

T4 3.79 155 200
T5 7.23 14 20
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data
»

cat

Figure 3.1. Box plots by tools for the simulated data in Case I.

We apply the TCP methodsto the simulated data in Case | by setting the

AN AN AN

tolerance to be 1. The three:zconvergence plots, including V vs. W,, B, Vs.

B,\W,, and W,, v.s. W,W,, are displayed in Figure 3.2. We collect the partition

results from the last 10,000 iterations to estimate the posterior distribution of the
partition. The estimated posterior distribution for the partition is given in Figure 3.3.
The correct partition (denoted as (11223)) is the mode of the estimated posterior
distribution with the probability 0.49. From this simulation, we found that the impact

of unbalanced data is very limited.
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Figure 3.2. Convergence assessment plots for the S|mulated data in Case | :

(@) v VS. WC,(b) W VS.W Wc,and(c) B VS. BW
(one unit in the x-axis is 100 iterations)



28

) 0k 323

Frobahll by
03

0z

o

afa]

PN PN PPN MU LN R KU MU S P A
A L L L A A A L

rJ
OO -

Figure 3.3. Estimated posterior distribution of partition for the simulated data in Case | (and
the partition with probability less than 0.005 is not shown).

Table 3.2. Partitioning results with respect to different values of cost complexity in the
CART model for thersimulated data in Case I.

Partitioning result ‘Cast-complexity

(112131415) 0
(1,1,2,2,3) 1
1,111, 90
T5
T1 T2 T3 T4

Figure 3.4. The tree obtained by the CART model for the simulated data in Case I.
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We also analyze the same data by the CART method for comparison which is
implemented by the S-Plus functions of tree and prune.tree [46]. The complete tree
result is given in Figure 3.4. and the best partitioning results with respect to different
cost-complexities are given in Table 3.2. According to Table 3.2, one should select a
correct cost-complexity to get reasonable tree results when applying the CART
method. However, it is hard to link the cost complexity with the concept of tolerance
control in engineering. For this reason, the TCP method is much easier for engineers

to use in the connections with engineering tolerance controls.

Casell: (n;, n,, n3, n4, ng)=(20, 40, 80, 160, 320)
(61, O,, ..., 05)=(5,3,5,3,3)
O =1.
Similar to Case I, the box plots by tools and the related statistics for the simulated data
are given in Figure 3.5 and Table 3.3. There true partition among 5 tools is denoted as (12122).
By applying TCP method with tolerance =1 and under similar setups as those in Case I, the
estimated posterior distribution for the partition is given in Figure 3.6 and the correct partition
is the posterior mode with probability 0.71. For the same data, the complete tree resulted by
CART is given in Figure 3.7, and the best partitioning results with respect to different

cost-complexities are given in Table 3.4.
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Table 3.3. The sample mean, standard deviation, and count for each tool for the
simulated data in Case II.

Tool Mean Std Count
T1 4.25 0.84 20
T2 2.86 0.94 40
T3 412 0.94 80
T4 3.16 1.04 160
T5 2.99 1 320

data
w
|

R — — o
——
-1 T T T T T
T1 T2 T3 T4 T5

Tool

Figure 3.5. Box plots by‘tools:for the simulated data in Case II.
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Figure 3.6. Estimated posterior distribution of partition for the simulated data in Case Il  (the
partition with probability less than 0.005 is not shown)
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Table 3.4. Partitioning results with respect to different values of cost complexity in the
CART model for the simulated data in Case II.

Partitioning result Cost-complexity

(1121314:5) 0
(1,2,1,3,3) 1
(1,2,1,2,2) 4

T4 T3 T1

T2 5

Figure 3.7. The tree obtained:by the' CART-model for the simulated data in Case II.

Case Ill:  (n;, n,, n3, ng, n5)=(10, 50, 50, 100, 15)
(61, €5, ..., 05)=(5,3,3,3,3)
O =1
The box plot and the related statistics for the simulated data for Case Il are given in
Figure 3.8 and Table 3.5. The true partition is denoted as (12222) among 5 tools. Under the
similar setups for the TCP method with tolerance =1, the estimated posterior distribution of the

partition is given in Figure 3.9 and again the correct partition is the posterior mode with the
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probability 0.71. The complete tree result using CART is given in Figure 3.10, and the best

partitioning results with respect to different cost-complexities are given in Table 3.6 for

comparison.

Table 3.5. The sample mean, standard deviation, and count of each tool for the

simulated data in Case IlI.

Tool Mean Std Count
T1 5.52 0.78 10

T2 276 0.82 50

T3 2.88 0.93 50

T4 3.07 0.93 100
T5 3.07, ..0.77 15

Figure 3.8. Box plots by tools for the simulated data in Case IlI.
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Figure 3.9. Estimated posterior distribution of partition for the simulated data in Case I11 and
(the partition with probability less than 0.005 is not shown).

Table 3.6. Partitioning results with respect to different values of cost complexity in the
CART model for the:simulated data in Case IlI.

Partitioning result “Cost-complexity

(112131415) 0
(12,2,3,3) 1
(1,2,2,2,2) 4
T1
T2 T3 5 T4

Figure 3.10. The tree obtained by the CART model for the simulated data in Case IlI.
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3.2 Sensitivity Analysis with Different Tolerance Controls for

TCP and the Comparison with CART

In the sensitivity analysis, the data are generated from the same model as Case
| in Section 3.1, but the number of observations is 30 for each tool and o is changed
to be 1. The box plots by tools and the related statistics of the simulated data are given
in Figure 3.11 and Table 3.7. The true partition is {(T1, T2), (T3, T4), T5} (denoted as
(11223)). Here, we apply the TCP method with different values of tolerance (= 0.5, 1,

2, 3,4, 5, 6) to examine its influence on the partition results of the TCP method.

Table 3.7. The sample mean, standard deviation, and count of each tool for the
simulated data‘in Case | with-equal sample size.

Tool Mean Std Count
T1 290 0.75 30
T2 3.12 093 30
T3 3.88 0.99 30
T4 3.86 0.98 30
T5 6.82 125 30

34
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10

data

Figure 3.11. Box plots by tools for the simulated data in Case | with equal sample
size.

The partition results under various tolerance levels are given in Table 3.8. The

numbers presented in the table are the posterior probability for each possible partition

and the corresponding estimated error (shown - in-the parentheses) based on 30

realizations under each tolerance: specification. Now, the group means are 3, 3, 4, 4,

and 7 and the within-group standard deviations are 1 in this simulation. When the

tolerance is 0.5 or 1, the target (11223*) will be the most plausible partition because

the between group differences can be as large as 1. When the tolerance is 2, 3, 4, or 5,

the most plausible partition becomes (11112**) because the between group

differences can be as large as 4 and within group standard deviation is 1. When the

tolerance is 6, the most plausible partition moves to (11111***) because the between

group differences are smaller than 6. In the table, we can see that the standard errors

for the most plausible partition are very small, demonstrating the robustness of the
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posterior modes. Another interesting phenomenon is that the averages of the posterior

probabilities of three partitions, {11223*}, {11112**} and {11111***}, changes

according to the level of tolerance. Intuitively, tools tends to be merged if the

tolerance is large. For this particular case, the averaged posterior probability for the

partition {11223*} decreases when the tolerance increases. On the other hand, the

averaged posterior probability for the partition {11112**} increases when the

tolerance increases from 0.5 to 3 but decreases when the tolerance increases from 3 to

6. Similarly, the averaged posterior probability for the partition {11111***} increases

when the tolerance increases. Hence, the posterior distributions of the partitions

indeed reflect the levels of tolerance controls:‘Beside-the most plausible partitions, the

posterior distribution also reveals the*next plausible partition with the strength of

plausibility (i.e., the posterior probability). This useful information can only be

provided by the Bayesian approach. The results of the sensitivity analysis provide the

evidence that the partitioning results of TCP will be affected by the level of tolerance

controls.

Similarly, based on the same data, the complete tree result using CART is

given in Figure 3.12, and the best partitioning results with respect to different

cost-complexities are given in Table 3.9. It is evident that Table 3.8 contains more

information than Table 3.9.
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Table 3.8. Averaged posterior probabilities and their standard errors (in the
parentheses) for the partition results in the sensitivity analysis for TCP method with
respect to different tolerances.

Tolerance=05 Tolerance=1 Toleranoe=2 Tolerance=3 Tolerance= Tolerance=5 Tolerance=6

1T 0(0) 00 00 00040005) 00000134 023900223 044400181
1112 000500066 007900176 040800142 049500145 045000157 030000168  0.15%001%)
m2 0o 00 00 000200014  001300081)  00Z7C0040) 000004
11123 00020008)  OQIBO00E0) 004700049 00000044 004600087  003300024)  0.020(0.0024)
e oo 00 00 000300020) 001300039  0030(C0X48  0.0330.0056)
1213 000800089 002100067 006200069 006200064  OOA700034)  00(000%) 001900029
122 00 00 00 00 0004100015)  001200024)  0OL7(0.0031)
1123 0683002%)  054200821) 018000137 009300084  006200060) 003300048  0.020(0.0026)

1123 0123001) 011800063  005700061) 00300042, 002900087  00190002)  001200018)

2112 00 00 b0 00 000200011)  0007Q000)  0.0L10.00R)

213 00 000600026 00600034 00BUO00X) 00200029  004000%)  00I50.0018)
213 00 000400016 0023300089 003400037 - 00350003 00260003  0.016(0.0027)
213 00 000400015 001300019+ 00160000)  001700020)  00130000)  0.00X0.0016)
1213 00 000300015 002300029 008500028  00G7(0008)  0026000%5)  0OI60.00%)
221 00 00 00 00 000100007)  000600015)  0.00%0.0018)

1223 000900072  002800079)  OO4L00069  00B7(0004) 0040087 00240003 001400022
1234 000400024 001000027  001700026) 001700023  0O0700017)  00I4Q0017)  0.00X0.0017)
12314 000100008) 000400016  00130002)  00160002) 00700018 001300024  0.00X0.0017)
1204 000500027) 001100089  00I80002)  00I8000%)  001700021)  0013000%5)  0.00%0.0016)
12334 009600115 007900080  00B400029) 0021600025 001800027 0013000  0.0080.0018)

1235 007000092) 007300085 004700048 003900039  004000087)  00BL000%)  0.023(0.0029)
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Table 3.9. The different partitioning results with respect to different values of cost
complexity in the CART model.

Partitioning result Cost-complexity
(112131415) 0
(1,1,2,2,3) 5
(1,1,1,1,2) 25
T5
T1 T2 T4 T3

Figure 3.12. A tree obtained hy the CART model for the simulated data in the
sensitivity analysis.

3.3 Robustness Studies by Balanced Simulation Data with

Mean Shifts

In the semiconductor industry, the tool performance often follows a baseline
distribution (for example, a normal distribution) when the tools are in control. On the
contrary, the mean shifts often occur when the tools are out of control. Therefore,
without loss of generality, we generate two cases with different kinds of yield baseline
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distribution to verify the robustness of the TCP method subject to non-normal data.

3.3.1 Mean Shifts for Lognormal Distribution

The simulation models are described as follows: y;; ~ 6;+ Lognormal (0,1),

where i=1,2,...,n;and j=1,2,...,5, with (n;,n,,n3,n,,n5) = (30, 30, 30, 30, 30),

(61,6,,..., 65)=(0, 0, 3, 3, 7). In this experiment, there are 3 groups in 5 tools and

the true partition is {(T1, T2), (T3, T4), T5} (denoted as, (1,1,2,2,3)). The box plots

by tools and the related statistics for the simulated data are given in Figure 3.13 and

Table 3.10.

Table 3.10. The sample mean, standarddeviation, and count for each tool for the
simulated lognormal data in the-robustness study.

Tool Mean Sid Count
T1 151 123 30
T2 121 12 30
T3 424 163 30
T4 445 127 30
T5 859 198 30
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Figure 3.13. Box plots by tools for the simulated lognormal data in the robustness
study.

We apply the TCP methods with tolerance =1 to get the posterior distribution
of partitions given in Figure 3.14. The true partition {(T1, T2), (T3, T4), T5} (denoted
as, (1,1,2,2,3)) is the posterior modejwith-the probability 0.7226. For this experiment,
we still get correct partition result although the simulated data violate the normal

assumption in the TCP method.
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Frabebility
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<2 2y
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e
Py 7

Figure 3.14. Estimated posterior distribution of partition for the lognormal data in the
robustness study (the partition with probability less than 0.005 is not shown)
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3.3.2 Mean Shifts for t Distribution

The simulation models are described as follows:

yij ~ 0;+ (tdistribution with the degrees of freedom 5),
where i=1,2,...,n;and j=1,2,...,5, with (n;,n,,n3,n,,n5) = (30, 30, 30, 30, 30),
(61,6,,..., 65)=(3, 3, 4,4, 7). There are 3 groups in 5 tools and the true partition is
{(T1, T2), (T3, T4), T5} (denoted as, (1,1,2,2,3)). The box plots by tools and the
related statistics for the simulated data are given in Figure 3.15 and Table 3.11. Using
the TCP methods with tolerance =1; the posterior distribution of partition for this
t-distributed data set is obtained in Figure 3:16 and the posterior mode is still the
correct partition {(T1, T2), (T3, T4), T5} (denoted as, (1,1,2,2,3)) with the probability
0.70364. Again, the TCP method gives a good partition result even when the data are

not normal with mean shifts.

Table 3.11. The sample mean, standard deviation, and count for each tool for the
simulated t-distributed data in the robustness study.

Tool Mean Std Count
T1 281 156 30
T2 3.09 117 30
T3 421 098 30
T4 405 14 30
T5 725 0.98 30




42

| i

t i

T T T T T
Tl T2 T3 T4 T5
Tool

Figure 3.15. Box plots by tools for the simulated t-distributed data in the robustness
study.
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Figure 3.16. Estimated posterior distribution of partition for the t-distributed data in the
robustness study (the partition with probability less than 0.005 is not shown)
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4. Two Applications in the Semiconductor
Industry

Two real applications in the semiconductor industry are illustrated to show the
effectiveness of the proposed TCP method for improving the product quality. In
Section 4.1, we first demonstrate an application about the yield enhancement by
detecting tool differences. In Section 4.2, we apply the TCP method to the problem
related to Cp/Cpk enhancement. For this particular application, we also describe a
possible implication of the TCP method to another related problem. All data are from

a semiconductor company in Taiwan.

4.1 Ramp Up Yield Using The TCP Method

As introduced in Chapter 1, semiconductor manufacturing has a very long
process cycle including 150-400 process steps to complete the entire manufacturing
process. After completing all process steps, each lot is inspected via WAT, WST and
FT (final test) with approximately 100 test items for each inspection test. We
analyze the “Srow” measurement for each lot which is one of the key test items in

wafer sort testing. A larger value of the Srow measurement indicates a worse yield
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performance. The considered the Srow data consist of 439 lots with the sample mean
5.98 and the sample standard deviation 1.85. For this Srow measurement, the
engineers have found 52 suspected steps from 221 process steps by performing
ANOVA for tool comparison for each process step. In particular, the 10" process step
is one of the suspected steps. The box plots and the related statistics of the Srow
measurements for various tools in the 10™ step are shown in Figure 4.1 and Table 4.1,
respectively. It clearly shows that two tools, SPUO3 and SPUO5, have relatively worse

performance at this problematic step.

Table 4.1. The sample mean, sample standard deviation, and the counts for the
Srow measurements for various.tools in the 10" process step.

Tool Mean Std Count
SPU03 " 9.05 1.85 14
SPU04 1.5:79 151 48
SPUOS. 7117 1.27 96
SPUO7+ 5.54 1.4 36
SPU14 5.83 1.7 93
SPU16 5.16 1.78 152

data

«

1
T _
1 T [ T

SPUO3 SPUO4 SPUO5 SPUO7 SPU14 SPUL1S6
Tool

Figure 4.1. Box plots of the Srow measurements for various tools in the 10"
process step.
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Figure 4.2. Convergence monitoring: (a) v versus W, , (b) w,, versus w w,,

(c) B, versus B,W, (one unitin the x-axis is 100 iterations).
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For this problem, according to the engineering knowledge, the acceptance
tolerance of difference is set to be 1. We carry out the TCP method by running 5

independent chains with 50,000 iterations, including 5,000 burn-in iterations, and

N N N

monitor the convergence of RIMCMC samplers by examining V v.s. W;, B, V.s.

B,W,, and W,, v.s. W, W, , as described in Chapter 2.5. The convergences of the

above three sets of comparisons can be visualized in Figures 4.2 (a)-(c).
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Figure 4.3. Estimated posterior distribution of the partition (the partitions
with probability less than 0.005 are not displayed).

Finally, we summarize the results based on the last 10,000 MCMC iterations

and the posterior distribution for the tool partition is displayed in Figure 4.3 where the

partitions with probability less than 0.005 are not shown. The best partition for the set

of tools, {SPU16, SPU14, SPU07, SPUO05, SPU04, SPUO03}, with the highest

posterior probability 0.2244 is {SPU16, SPU14, SPU07, SPU04}, {SPUO05}, and

{SPUO03} (denoted as (111213) in Figure 4.3). This partition result is consistent with

that obtained by the CART method [46] with cost-complexity=30 shown in Table 4.2
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and Figure 4.4. Although two different approaches reach the same partition result, it is

somehow difficult for engineers to understand and interpret the meaning of

cost-complexity=30 in CART method. In contrast, the engineering tolerance control is

much easy to set and interpret in the TCP method.

Table 4.2. The partitioning results using the CART method with different values of the
cost complexity.

Partitioning result Cost-complexity

(1,2,3,4,5,6) 0
(1,2,2,3,2,4) 5
(1,1,1,2,1,3) 30
(1,1,1,241,2) 45

N

SPUO5 SPUO3

SPU16

]

SPU04 SPU14

Figure 4.4. Tree obtained by the CART method with cost complexity=30.

After further checking on this problematic step, the engineers find that there
are two different tool types: one type includes SPUO3 and SPUO5 and another type

includes SPU16, SPU14, SPUQ7, and SPUO4. Because different tool types use
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different process chemicals, the contaminated chemical is the main source of bad

performance of SPUO3 and SPUO5. After eliminating the contaminated chemical, the

performance of SPUO3 and SPUO5 becomes regular and the Srow measurements are

as same as those for other tools. Accordingly, the overall sample mean for Srow

among tools reduces from 5.98 to 5.4 and the sample variance reduces from 1.85 to

1.52 after the adjustment. It really enhances the product yield.

System -
System automatically o Sy_st_em automaucall_y
automatically verifies the If statistical partitions tool according

significance
exists

v

to their performances and
engineers’ tolerance by
TCP

detects each difference among
process step every tools by T-test or
day Kruskal - Wallis test

!

Engineers take related
actions to eliminate the

phenomenon

System automatically
passes the information
to engineers

Is there more
than 1 group?

lNo

Output results

Figure 4.5. Engineer daily trouble shooting flow by combining statistical tests and

TCP method.

From this application, we suggest to integrate the TCP method with statistical

tests into a statistical dashboard [4] to form an analysis flow, as shown in Figure 4.5.

After building automatic systems according to the analysis flow, systems could

execute the analysis automatically at night for each item of each product to compare

the tool performances according to the pre-defined tolerances. Then, at the beginning
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of the daily work, the engineers could quickly detect the possible problematic tools

for yield enhancement as demonstrated in Table 4.3. This will dramatically shorten the

time for engineers to find out the root causes of yield variance and eliminate the

problematic tools. This working flow for yield enhancement not only avoids the

subjective engineering judgments in tool comparisons, but also links with a well

management plan through an engineering discussion about the reasonable tolerances.

Based on the example, we have shown the TCP method can really help engineers

enhance yield by automatically partitioning the tools according their performances.

Table 4.3. An illustration example for :automatically detecting the performance
difference among tools‘for each process step.

P value of TCP Result
Step T or Kruskal Wallis Test (Group, Tool List; Mean)
(1.SPU03; 9.05);(2.SPU05; 7.17);
Step 10 0.000005 (3.5PU04,SPU07,SPU14,SPU16; 5.58)
Step 15 0.0003 (1.TECO02; 8.32);(2.TECO01; 8.08);
Step 2 0.06 (1.ACE01,ACE02; 8.1);
Step 4 0.08 (1.PHO01,PHO0202, PHOO03; 8.21);

4.2 Process Capability Indices Enhancement

The process capability indices C, and C, [47] have been widely used in

the manufacturing industry for measuring the process performance and product
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quality. These two indices are defined as

C

k
p 60' p

=USL—LSL C :min{USL—,u’,u—LSL}’
3o 3o

where LSL and USL are the lower and upper specification limits, respectively which
are defined by the process engineers or the product designers, x is the process mean

and o is the process standard deviation. A larger value of C, or C, indicates

better product quality and process capability. Conventionally, we use X = (Z X,)/n

i=1

and s=[2(xi—f)2 (n—DJ"* as the estimators for x and o respectively, so

i=1

the natural estimators of C, and C, are C _Ust-Lsb

0 ok . = and

« . {USL—Y X —LSL
C = min ,

3 3 } In general, the minimum requirement for ép and
S s

épk is 1.33. Some leading companies-may set a higher standard, such as ép and

A A

C, >=2, to guarantee their competitiveness. Therefore, enhancing ép and C, is

one of the major tasks for process engineers in the semiconductor industry.

Figure 4.6. Site locations in each wafer.

As introduced in Chapter 1, the semiconductor manufacturing processes by lot

batches with 25 wafers per lot. After completing each process step, we sample one or
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several wafers from 25 wafers to measure the related parameters at 5-9
pre-determined sites on each wafer as shown in Figure 4.6. In this example, the
process parameter considered is the critical oxide thickness after one important
diffusion process step during the semiconductor manufacturing. The data are
measured at 9 sites (shown on Figure 4.6) for each sampled wafer and only one wafer
was sampled from each lot from 2006/8/6 to 2006/8/12. In Figure 4.7, we illustrate a
particular lot-trend and the histogram of the oxide thickness in which the error bar
indicates the minimum and maximum values within each lot. Based on the product

specification with USL =1850 and LSL=1550,the C, and C, are equal to 1.132,

and 1.105, respectively.
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Figure 4.7. (a) The trend chart (b) The histogram of Oxide thickness from
2006/0806 to 2006/08/12 Note that data count=9*1*35(site*wafer*lot),

USL=18507and LSL=1550.

Table 4.4. The ANOVA result for tool effect.

Df Sum of Sq Mean Sq F Value Pr(F)
tool 1 4480.967937 4480.967937 2.259479857 0.133806921
Residuals 313 620737.0956  1983.185609

Table 4.5. The ANOVA result for site effect.

Df Sum of Sq Mean Sq F Value Pr(F)
site 8 409274.2921 51159.28651 72.49452748 0
Residuals 306 215943.7714  705.6985994

52

After applying the ANOVA analysis to the oxide thickness data summarized in

Table 4.4 and Table 4.5, we found that the tool effect is not significant but the site

effect is extremely significant. The site effects are also clearly seen from the box plots
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by sites in Figure 4.8. Therefore, we apply the TCP method to partition these sites. We

first define the tolerance to be 10% of the USL-LSL, which is equal to 30. We carry

out the TCP method by running 5 independent chains with 200,000 iterations

including 75,000 burn-in iterations. The convergence monitoring is plotted in Figure

4.9.
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Site
Figure 4.8. Box plots of oxide thickness by different sites.

Finally, the posterior distribution for the partition is calculated based on the
last 10,000 MCMC iterations, shown in Figure 4.10. The best partition has two
groups {sitel}, {site2, site3, sited, siteb, site6, site7, site8, site9} (denoted as
(122222222) in the figure for simplicity) and the posterior probability 0.60. Again,

this result is consistent with the site phenomenon by the box plots in Figure 4.8 and

related test results. After fine-tuning the process recipe, the site difference was

eliminated and C jand C,, increased to 1.86 and 1.56, respectively.
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Figure 4.9. Convergence monitoring: (a) v versus w,, (b) w, versus w w,,

and (c) B, versus B,W, (one unitin the x-axis is 100 iterations).
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Figure 4.10. The posterior distribution of the site partition (the partitions with
probability less than 0.005 are not displayed).

Similarly, for comparison,»we perform. the CART method with various
cost-complexity values. The complete tree~based on the CART method and the
partition results under different cost-complexity are.given in Figure 4.11 and Table 4.6.
It turns out that the same partition result can be obtained by the CART method with
the cost-complexity=9775. But, again, choosing an appropriate cost-complexity is a
harder problem than setting a meaningful tolerance for engineers in practice.
Therefore, TCP method is better method for engineers to enhance Cp/Cpk according
their engineering tolerance controls.

Furthermore, we suggest that we can integrate the TCP method into the
capability enhancement procedure to form an automatic fine-tuning toolbox [27]-[29]

as shown in Figure 4.12. This toolbox includes automatically detecting the site
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differences and automatically adjusting the recipe to eliminate the site differences. It
Is expected to enhance the capability more efficiently and reduce a lot of workload for
engineers. Based on the example, we illustrate TCP method can help engineers

enhance Cp/Cpk performances.

Table 4.6. Site partition results based on CART method with various cost complexity
values.

Partitioning result Cost-complexity

(1,2,3,4,5,6,7,8,9) 0
(1,2,3,4,2,2,5,3,3) 20
(1,2,3,2,2,2,4,3,3) 40
(1,2212,2.2,3,2,2) 200
1,2,2,2,2,2,2,2.2) 9775

s 8 s 9 s 6 I__I
2

S s b5

Figure 4.11. Tree structure for the site partition based on CART method.
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Figure 4.12. Auto process capability enhancement mechanism by integrating
ANOVA, TCP method and the auto-recipe-tuning tools.
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5. Conclusion and Discussion

In the semiconductor industry, yield enhancement is one of major challenges
to make the companies profitable. Tool comparison is a key task for yield
enhancement. After comparing the tool differences, engineers can identify the best
groups or problematic groups of tools to enhance product quality or to reject the worst
tools, respectively.

From literature, ANOVA, the Kruskal-Wallis [5] test and the CART method
[22] are among the most common méthodologies used to compare tool differences [6]
[7]. At each process step, the tools are compared’by-these methods. If a statistically
significant difference is detected,-an alarmis triggered and engineers perform further
investigation. This process saves engineers a great deal of time in finding variance
among sources and identifying abnormal tools.

However, there are several phenomena by the existing methods to compare
tool performances, such as the followings: (1) non-uniform tool usage in most process
steps should be taken into account, (2) engineers still need to take time to identify
problematic tools after detecting statistical significant differences. It is still very
time-consuming, (3) there are many different methods by multiple pairwise

comparison procedures [9]-[15], but all these methods could not directly partition
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different treatments (or tools) into several homogenous groups to allow engineers to

quickly understand the overall profile of several treatments (or tools), (4) several

cluster approaches [16]-[19] that partition these tools in a balanced design based on

the results of likelihood ratio test, Studentized range test, rank test, and simultaneous

F-test at level « respectively, however they may get too many partition groups with

small differences when the number of observations for each tool is large, and (5) there

are many different values of the parameters in the pruning methods to develop

different sizes of trees by CART method that are difficult to be related to the tolerance

and related criteria used by engineers; and this phenomenon generates the problem of

parameter selection to users.

To sum up, there are three major challenges in tool comparisons: (1) to take

into account of unbalanced tool usage in manufacturing processes, (2) to further

partition these tools into several homogenous groups by related metrology results

instead of detecting only the significant differences, and (3) to partition these tools

and get a reasonable partition result according to engineers’ tolerance controls.

However, existing methods can not solve these challenges very well.

We propose a TCP method to overcome these challenges. In Section 3.1, we

showed that the TCP method can reduce the influences of unbalanced data by several

simulation cases. In Section 3.2, we showed TCP method can partition the tools into
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several homogenous groups according to engineers’ tolerances. In Section 3.3, we

showed the robustness of TCP method with non-normal data.

In comparisons with CART methods, the TCP method can automatically

partition tools into several homogenous groups with the built-in control of tolerance in

engineering. Therefore, it also resolves the difficulty of determining related

parameters for the CART methods. Instead of using a hierarchical tree structure as

CART does, the posterior distribution of the partition is used to discover the

partitioning structure of tools. We also provide a method that includes the set-up of

initial values and the integrationswith the hatural concept of tolerance in the

engineering to facilitate its practice for engineers.

Using two real applications. from the semiconductor industry, we not only

show that our method could provide correct information for engineers to enhance

yield/process capability, but we also provide an idea to build a practical mechanism

by integrating engineers’ daily work flow and the capability of the most advanced

tools. This idea will make it much easier for engineers to realize the performance

differences among tools (or treatments) and enhance the yield and process capability.

In the semiconductor industry, the TCP method could also be applied to all

similar cases such as recipes or material comparisons. The TCP method can also be

applied in multiple comparison problems [48].
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6. Future Works

There are many potential extensions of the TCP method for future work. Tools
with unequal variances and other types of distribution models are natural extensions
for practical engineering applications. All of the above cases could also be extended to
a multivariate situation for engineers to perform simultaneous comparisons on a
collection of responses.

We also can investigate the integration of the Bayesian hierarchical model and
the random variable for dimensionymatching in. RIMCMC for the Bayesian CART
Model. With built-in control “of; tolerance“in engineering, this will resolve the
difficulty of pruning and regrouping in‘the Bayesian CART methods. We could extend
the methodology of the TCP method to a regression trees.

Finally, we can develop a new method to automatically judge the convergence
of the TCP method such that the TCP method will become a fully automatically
partitioning method.

Based on the advantage that the TCP method can automatically partition tools
to several homogenous groups according engineers’ tolerances, another important
extension is to develop an automatic system to integrate the TCP method with the

ANOVA and the Kruskal-Wallis test. Therefore, it will be possible to automatically
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alarm possible excursions in automatic process control (APC) [27]-[29]. Thus, we

would provide more improvements for automatic process control by statistical

methods in the semiconductor industry.
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7. Appendix

Appendix A. Introduction of regression trees

The methodology of classification and regression trees (CART) [22], is a
recursive partitioning algorithm to partition data into several homogenous groups.
Classification trees and regression trees are applied for categorical response and
continuous response, respectively. The following figure, Figure A.1, makes a brief
introduction using a graphical representation:to construct the trees. In our research,
the type of our response is continuous; so we. only focus on the introduction of
regression trees in the followings below.

Suppose our data consists of p input variables and a response, for each of N

observations: that is, (x;, y;), i=1 ..., N, with X =(X;, X

21 e

X;,) - The algorithm
will automatically decide the splitting variables from (x,, X;,, ..., X;,) and split points.
Suppose first that we have a partition into K regionsR;, R,, ..., R_. Then our
response model is denoted by
f(x):ZK:cml(xERk) (A.1)
k=1

where c_ isa constant in each region.
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Figure A.1 Construction of a tree.

If we adopt minimization aof the sum-of squares }Z(yi — f(x))* as the criterion
for split rule, we will use €, to estimate~¢c.,'where C is the average of y, in the
region R,.

ém =average (y,|x ;€R,,) (A.2)

We will illustrate the regression trees in three sections. We will present how to

find the best splitting variable and split point to partition the data at each node in A.1,

how to decide the tree size in A.2, and how to view the tree result in A.3.
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A.1. How to find the best splitting variable and split point to

partition the data at each node

Start from all of the data and choose a splitting variable X;. If the split variable

X is continuous variable, then a split point s will define the pair of half-planes

R, (J,8) ={X| X;<s}and R,(}],s) ={X| X, >s}. (A.3)

If the split variable X, is categorical variable, then we find a split set s and split data

into the pair of half planes

R,(1,8) ={X| X, s} and R,(j,s) ={X| X, es}.

To seek the best splitting variable j and split:point (or split set) s by solving

nj]’isn[min Z (yi—c1)2+mcin Z (yi_Cz)z] (A-4)

% €Ry(].5) 2 XeR,(j.s)

For any choice of j and S, the Solutionof ¢ .and c, are estimated by ¢ and

C,, where ¢ and ¢, are as follows below.

¢, =average (Y, €Ri(], s)) (A.5)
¢, =average (Y|x; €R, (], s)) |

We partition the data into two resulting regions and repeat the splitting process

on each of the two regions. Then the process will grow a tree step by step and split the

data into several terminal nodes.
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A.2. How to decide the tree size

How large should we grow the tree? A large tree might over-fit the data; on the
contrary, a small tree might not describe the important structure. Tree size will be a
parameter to control the model’s complexity. So how to choose a reasonable tree size
is very important in CART algorithm.

Traditionally, there are two ways to prune trees for choosing a tree size. One is
pre-pruning, and the other is post-pruning. The algorithm of pre-pruning is setting
some criteria to determine how to stop growing the tree from growing, and the
algorithm of post-pruning is pruning a tree by some criteria after growing a complete
tree. Since the criterion in pre-pruning is difficultin determining the value, we will
use post-pruning to choose the tree size in our research.

Cost-complexity pruning is one of the popular pos-pruning methods. Suppose T

is a tree getting from the splitting method as in A.1. |T| is the number of terminal
nodes in T, then we partition all of the data into |T| regions. We index terminal

nodes by k, and we represent the respective region by R, . Suppose

~ 1
Ci :N_k X;k Yi (A.6)
QM= ¥ (3-8, (A7)

the cost complexity criterion is represented by
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[T]

Ca(T):;Nka(T)+ax|T| (A.8)
where
N, is the number of the observation data falling in the region R, .
k is the index of terminal nodes on the binary tree T.
[T| is the number of terminal nodes in T, and.
a is the cost-complexity (a >0).

For given a cost-complexity « , we can get a subtree T_of T to minimizeC_(T).
From this formula, we can find the larger value « , the smaller size of subtree T,
that we will get. For given each valuee , we can get a unique smallest subtree T, . If
a =0, we can get a full tree.

As the meaning of cost-complexity ¢ is difficult to connect with the concept
of engineering tolerance control, so engineers are hard to choose a correct

cost-complexity « inorder to get a reasonable tree size.

A.3. How to view the tree result

The structure of tree is very important information from regression tree
algorithm. We can realize the similarity in our data. The data which belong into the

same terminal nodes means they have the highest similarity by regression tree
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algorithm. When the data does not belong to the same terminal nodes, it will split into

different terminal nodes later if the data is more similar. So we could realize the

similarities of tool performances by the tree structure in our research. We illustrate the

result of Case I in section 3.1 as an example of how to read the tree structure.

Table A.1. Partitioning results with respect to different values of cost complexity
in the CART model for the simulated data in Case I.

Partitioning result Cost-complexity

(1,2,3,4,5) 0
(1,1,2,2,3) 1
(1,1,%,152) 90

T5

1l

Figure A.2. A tree obtained by the CART model for section 3.1.

T1 T4

From Table A.1, we will get the partition result (12345) when the

cost-complexity is 0; that is each tool is partitioned into different group. If we set

cost-complexity is 1, we will get the partition result (11223); that is the tools T1 and
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T2 belong to one group, T3 and T4 belong to one group, and T5 belong to another one.

We also can get the same information from the structure of the tree in Figure A.2. As

the similarity of T1 to T2 is higher than that of T1 to T4, the time that T1 and T2 split

into different groups is later than that of T1 and T4. As such way, we can understand

the similarity among T1, T2, T3,T4, and T5 by the tree structure.
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Appendix B. The introduction of Gibbs sampling

Gibbs sampling, also called alternating conditional sampling, is a particular
Markov chain algorithm and useful in many multidimensional problem. It is named
by Geman and Geman [49], who used it for analyzing Gibbs distributions on lattice.
Nevertheless, the works of Gelfand and Smith [50] and Gelfand et al. [51] introduced
Gibbs sampling into the mainstream statistics. To date, most statistical applications of
MCMC have used Gibbs sampling.

Suppose P(y | ) is the data distribution with d-dimensional parameter vector
0=(6,,0,,.,0;) and P(@) is the related prior distribution, then P(8,y) is the

joint density of @ and y with. P(@;y)="P(y|€) P(@) and P(4|y) is the

oosterior  density  with P8 y) = L&) - PYIOPO) _ oy ovp(g).  For
P(y) P(y)
Bayesian inference, our target density is the posterior density P(@]|y), then we can
use Gibbs sampling to construct a Markov chain which will converge to the target
density P(@]y).
Suppose  P(6;16_j,y) is the conditional distribution given all other

component of &, where @_; represents all components of &, except for &;. The

illustration about how to construct a Markov chain by Gibbs sampling is as follows:
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At each iteration t, we can choose one of the components of &; to update.
When we select to update the jth component 6; of &, Qtj is sampled from the
conditional distribution P(6; |0_jt_1, y) where Htj represents the jth component
of @ atiterationt and O_jt_l represents the all the components of @, except for
6;, at their current values of the iteration t-1. By repeating such iterations, we
construct a Markov chain. If the Markov chain satisfy irreducible and aperiodic
properties, then it will converge to our target density P(8|y).

Therefore, if we can get the conditional distribution P(6;(6_;,y) forj=1, ...,

d. we could construct the Markov chain by Gibhs sampling.
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Appendix C. The derivation of conditional distributions in

TCP method

In the Appendix C, we present the inductions for the conditional distributions of

all parameters in © = {6, 6,,....,0y, 2, wm, uo... p, and 2 } based on a

given partition g . At the followings, we will use the notation of ®_, to indicate the

set of all parameters except the parameter of 9;

b;
C.1 6;|®, ~Normal (—J,i
! 23.] 23.]
njYs

where bj:(”—z,k+ > ), aj:(iz+n—j2) forjeS,,andj=1.2,...,J,
T o 2t° 20

and n; is the number of observations-for tool j.

<Proof>

P(g, u, t2, 8, o°, y)=

j=1 i=l

_ 9._’( 1, 2
1 @ kz:;ﬂk (ies)) { ;o L (v,

P(g){ﬁp(uklrz,g)}w#) [Mep—=e ™ [Mes—e )}P(cﬁ)
k=1 j=1 T o

where  u=(uy, tip,..o 1)t 0=(6,,0,,...,05)",

K
and the partitionis g= U S,
k=1
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_ J 1 Y
=AT]¢ —e g

i1 27T

( 20 )
j=1 i=l \/%

where A= P(g){ﬁ Py, |7, g)} P(z*)P(c?),

k=1

—(6;- s, ; )2
3 i él k' (jesk) N (yu zyug +9 )
A * . e i1 27 7 20—

where A" =A-( Y andN =n,+n,+---+n,,

=)"+(
\/ 277t \/2710
; (nH 249njy +Zyu

Jz (6’ 249]/4]+y Z
* -
=A-e" =

2062

* K kil K 2
where 4 :Elﬂkl(jesk)’ and u j=(k§1ﬂk|(jesk)) )

=A .eg{a(gji)2+cj}
Z yu b2 ,UT

”J+Jy’) and C, =-1t—-—+—5.
20' 4a 2t

2 F 2
(0 20,5 4457) 0T 2OY 2]

20°

yi2' -

. Mg 2N a

j=1 2 j 262 22_2 ]

J b Zyu b_2 Iu**
= a0, - )+t -+

j=1 Vi 261j 2 4aj 2r

n. * n___

where &, = (557 b, = (1)
=-218,(6; - - 1) +C, where C, =—1— 1 1 20
Then

P(6;10_4)
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=P(g, u#, t%, 0, 0 YIP(g p, % 0% Y)
. ia U a,) *Ci . ‘i 31(91—%)2”;
=A-e“{ 2 }/ [If A-e“{ 2 }dﬁl...dHJ
0,...0,
=ﬁ ( 2aj) 0 2;)2
j=1 \/272'
=11 Normal(—L L), where a ._(i+ ). b.=(”—;+ni—y")
i 2aj'2a. ’ X To R o’
J b.
=11 Normal(—’,i),
i 2a; 2a;
1 n; Y7 y
where aj=(2—T2+2’2) ( Sy 120y when jeS,
L0 2
C.2 0 ~ Normal JE—,— [ (a,b) “where w, ={# ofjinS,}.
e lO_y, ( i Wk) wAkab) « ={# ofjin S}
<Proof>
P(g, #, z%, 8, o°, Y)=

J N 1 *()’ij*'gj)z

TTI1¢ — )}P(«f)
=1 il \27mo

; *(Hj*iﬂﬂ(jesk))z
K 1 =i

P(g){ P(u |T2,g)}P(12) ( e
lkl “ 111 N27mr?

where  u=(ug, tty,.o ), 0=(01,0,,...,05)",
-, . - K
and the partitionis g=U Sy,
k=1

*(H Zﬂk (je Sk))

=B-{ﬁp(uk|r2,g)} He &

n; 1 -(y=0;)’

where B = P(g)P(z%)( ! 2)J {li[ ( —e 20" ) |P(c?),

27T
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k=1 jeS

e | (07-20,+157)
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22 {Wk:“k Zyk(ZH )+Z€

:B.H P(u, |7%,9)e S } where w, ={#ofjinS,},
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P(y |7°,9)ez gl 20 q

!!Ij
o
[

jeSy jeSy
B af 6 R
K ——2] Wk (ﬂk—v\T) =W (W*) +0
=B-J|Plu |z g)e™ ! } :
k=1
i af o ., .
K 7 Wk(/lk_W) +Dg -1 ok
=B. Py, | 7%, g)e* { } where D, = — —wk(e—)2 +0 |,
ey 2T W,
1 S 2 k——)z
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P(:uk | ®_ﬂk )

=P(g, u, 2, 0, *, y)P(g 2, 0, ° VY),

0
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Wk :{# OfJ in Sk}

v+J vs?+F

C3 72 |®_, ~Inverse Gamma ( >

J
where F= > (0

> ) jes,))’
Fp— ﬂ . y
Fiat Bt k1(jeSy)

-y . - K
and the partitionis g= U Sy.
k=1

<Proof>

2 2
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1

e
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j=1 i=l

_ g.,K 1, 2
1 (4; kZ:;,#k (iese)) { 1 L (-6,

P(g){ﬁp(ukvz,g)}(#) I v [ ™ )}P(aZ)
k=1 j=1 T o

where  u=(ug, tiy,.o ), 0=(01,0,,...,05)",
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n; 1 -(y=0,)
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i1 27T
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Then
P(c?|0_:)

=P(g, u4, %, 0, o Y)P(g u, t2,0,y),

vi+N

:D*.(O'z)_( 2 t

—(ns’+E) _ N 1) — (18,2 +E)
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e 2 /jD-(az) 2 Ve 2 dg?
0_2

2
v,s°+E

=Scaled inverse (v, + N,
v, +N

)

v,+N v,si°+E L&
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Appendix D. The derivation of acceptance probability in

TCP method

Following the introduction of RIMCMC in Section 2.1, the acceptance
probability R of jumping from current Model M | (thatis, (k, &, ) ) to new model
M« (thatis, (K ; 6y ) ) is the minimum of {1, A}. The detailed formula of A is as

follows below:

_ P16,k )P p(k) I(My > M)A (6. k k) [9kk (G V) | (A1)
P(Y 16K P(G)P(K) I (M > M)A(v [0,k k) | 5(6,v) |

where J (M — M . )is proposal:jump probability for a jump from
current Model M | tamodel M ¢,
q(v |8,,k,k") isaproposal density for.dimensional matching,
Jk k' (+) isabijection function between (& ,Vv) and (6, V")
with (Gy,v") =gy k (O, V).
Hence, A= LR * PJR*PBD*],

where LR= PO 10 KIP(G) P(KY) s the fikelihood ratio of two Models,
P(Y |6, k) p(6k)p(k)

_I(My > M) . , o
PJR= k k’ s the proposal jump probability ratio,
T(My > M) prop jump p y

pBR= (V1% K" K) js the proposal probability ratio,
q(v |6 k k)

and J:‘5gk,k'(9kyv)
0(6,,Vv)

is the Jacobin of bijection function gy - (dy,V).
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At first, we consider the birth move type: the current partition g® with
degree P jump to the new partition g@ with degree @ = (x® +1) by
choosing a group which included at least two tools from g® to split randomly.
Since the length of u_(ﬁ = (m, My, ... 1.0 ) also increases by one, we add a new
random variable z that is independently distributed as Normal ( z,, o2 ) for dimension
matching. Suppose that we choose the group S, from g®to split into two new
groups Skl and Skz. Let s be the current value and My o My be the new
values for the two groups Skl and SkZ.Then we set

_ W, ¥ i %
Mg, = Mg ¥ —57, M= Mg 752, ©)
Wi Wic

where w; ={#ofjin §;} fori="k, k;, and k,

with w = w +w , Sy, YUSk =Sk, and S, NSy, =¢.
so we have u@= {u®_ YU {u . u ¥ and g@={s®_ yu{s, .S, } and
then we replace these densities in (A.1) according to our data distribution, prior

distributions, proposal jJump probability and bijection function in TCP, we can have

o) o) ~(0-4PY 3 n 1 ~(=6;)°

1 2 ' ;
P TPE? 1= OTTTT (e = Tt = )
LR= lkl “ lkj! jg(([kzg 27t 1:! 1I=_1[ 2rc?
- - D) 1 O 5 1 “=6)°

PP 1= O TTT (e = DI —e =)
k=1 T

k=1 jes(f) i1 i1 \2mo



82

(™

where P(g®) o — :
{# of partition whose degree = K‘(I)}

-1
K'(I) NK(i)

and N _o =#{g"': the degree of partitiong'= K(i)}

:[(K(”)J +K%_1(—1)Ic{<‘” (W —i)? /(W 1) fori=1, 2,
i=1

2

| a, b (91'—/1k)2 (91—#k1)2 (ej_,uk)z (gj_,ukz)z
- P(g(z)) l g ngz)( ) ej§1 272 272 +j§2 272 272
P(g®”)\b-a

PO ’

I, (a,b)
k=1

2)
| a,b -1.2 & 2 2 3 & 1
Pe?) 1 5D Bt ek

= pg®) (b—a)"ﬁI (@b)
kzl'Lé

(esk®)

Y}

where W® = (. gy .. pes), a0d WD =@ 3O L u

.. i K(i) 1
and the partitiong® =y 5,™.
k=1

PJR= M where Py, and By, are the proposal probability for the death
irth

move type and birth move type respectively.

2

PBR:{# of Sk whose W, >2 }m{ P _1_1}ﬁ.
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aﬂkl 5/4(1 1 &

2
J:ayk oz _ W, :Wk2+Wk1:i
2 2 !
O,  Oth, 1 _ W | Wi We o W
ou, oz w2
— sz d = Wkl
M, = M T —5z, and e = oy - —5Z.
Wi Wi

As A= LR * PJR*PBD*J, we substitute LR, PJR, PBD, and J into A

Therefore,
2 s 2@ 2_3 < 2 KI(—})l  (a,b)

- P(g( )) eﬁiz::l(gj_kz::lﬂk ! jes2n) _jzzl(ej_gl'uk ! s }>< 1 o k=1 A7 Peath

" pg® —a) -
P(g*) (b-a) li—“ﬂk(l) (a,b) Roirth

k=1

x{#of k whose w, >2,k=1,2,...,c P }x el owopt 1

P (@ +1) w, f(2)

where «® s the degree of g®, fori=1,2, with 'x® = x® +1,
. K(i) .
the partitionisg® = |y 5, @,
k=1
w, ={# of j in 5,1},
S is the Jacobian, and f(z) isthep.d.f of z,
Wik
and we get the acceptance probability is min{1, A} for the birth type.

Without loss of generality, since the death move type is the reverse of the birth

move type, we can get the acceptance probability is min{1, 1/A} for the death move

type.
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