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ABSTRACT 

 

In the semiconductor industry, tool comparison is a key task in the yield and the 

product quality enhancements. We developed a new method, called tolerance control 

partitioning (TCP), to automatically partition tools into several homogenous groups 

based on the related metrology results. This methodology is based on a hierarchical 

normal model and the implementation is carried out using a Bayesian approach. 

There are several advantages of using the TCP method. First, it takes into account the 

unbalanced usage of the tools in the manufacturing processes. Moreover, the 

“engineer’s tolerance control” can be incorporated into the TCP method via the 

specification of the priors in the Bayesian analysis, which justifies the significant 

difference between groups according to the experts’ knowledge. This specification 

not only has the advantage of adjusting the number of partition groups but also 

avoids the problem of having too many partition groups with small differences which 

is often encountered in the conventional approaches. Some simulation results 

illustrate the advantages of the TCP method compared to the method of classification 
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and regression trees (CART). Moreover, the TCP method is applied to two real 

examples for the yield and Cp/Cpk enhancement in the semiconductor industry. Both 

results confirm the practical usefulness of the proposed method. For general 

applications, the TCP method is also useful for other similar problems such as the 

comparisons between several experimental recipes or the comparisons between 

different materials.  
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1. Introduction 
 

The importance of semiconductor technology in today’s world can hardly be 

exaggerated. Semiconductor devices are absolutely essential components for almost 

all electronic products. Without semiconductors, most of the electronic products and 

the systems cannot be made or operated and their influences on human society are 

beyond belief. The global semiconductor industry had around US$230 billion worth 

of revenue in 2005 and keeps creating new opportunities, socio-economic 

advancements and new human developments to nations and societies around the 

world [1]. Since building a modern wafer fabrication facility needs around US$3 

billion, enhancing the yield rapidly to volume the production becomes an extremely 

important source of the competitive advantage in the hyper-competitive world on 

semiconductor manufacturing. The sooner a potentially lucrative circuit yields, the 

better the manufacturer generates a revenue stream. On the other hand, rapidly 

identifying the cause of yield loss can restore a revenue stream and prevent the 

destruction of the materials in process [2] [3].  

In the following, the semiconductor manufacturing is briefly introduced. It 

follows a very complex process flow which is quite different from the traditional 

manufacturing industries. It takes about 30-60 days to complete the processes of 
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making bare silicon wafers into integrated circuits, such as the microprocessors or the 

memory chips. In general, 25 wafers are processed together in a group called a lot, 

and the size of each wafer ranges from 3 to 12 inches in diameter. Each wafer could 

contain thousands of dies depending on the size of the die being produced. During the 

manufacturing process, the lots are manufactured through lots of process steps (more 

than 150 process steps). Each process step involves several tools for production. After 

completing each process step, the metrology systems collect the physical data and the 

electrical data, such as the film thickness, film uniformity, critical dimension, overlay, 

defect particle count, voltage, current and wafer sort, etc. At the end of the all process 

steps, the Wafer Acceptance Test (WAT) with 100–500 electrical test items and the 

Wafer Sort Test (WST) with 50-100 test items are performed sequentially to each 

wafer. The objectives of WAT and WST are to perform the device characteristic 

analysis and the die functionality sorting, respectively. Since these testing data also 

characterize the quality of the manufacturing and the performance of the products, 

therefore how to use these data to improve the process itself becomes an interesting 

issue. However these data are huge with lots of variables (about 100M–1G for each 

lot), it is very time-consuming for engineers to analyze the data and find out the 

sources of variations in the production processes. Among various analyses, tool 

comparison is one key task for engineers in the yield improvements and therefore an 
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effective and time-efficient method for comparing tools is critical for rapidly 

improving the yields [4]. In the following, we briefly review the conventional 

approaches in this area, including the multiple comparison methods and the clustering 

methods.   

For multiple comparisons, the analysis of variance (ANOVA) for normal data 

and the Kruskal-Wallis test [5] for non-normal data are the two most popular 

statistical methods for testing the significant differences between population means 

among groups. For our tool partition problem, in order to compare the performances 

among different tools (i.e., groups) at each process step, the engineers perform these 

two statistical tests regarding the distribution of the considered metrology data 

associated with each tool. By quickly reviewing the testing result for each individual 

step, tool differences might be detected at certain process steps and an alarm will be 

triggered for further checking or investigation. In general, the main purpose of this 

kind of testing procedures is to find the variation sources (i.e., which process steps) 

and identify the possibility of abnormal tools. After finding the significant differences 

among tools at certain steps, the engineers will partition all the relevant tools into 

several homogenous groups and further identify the best groups or the problematic 

groups of tools in order to enhance the product quality or to exclude the worst tools, 

see for examples in [6]-[8]. This partition problem is an important and practical issue 
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for engineers but cannot be handled by the ANOVA or the Kruskal-Wallis test 

simultaneously. Some multiple pairwise comparison procedures, such as the methods 

suggested by Fisher [9], Tukey [10], Keuls [11], Duncan [12], Scheffe [13], and 

Dunnett [14] [15], provide useful information about the ranking or ordering structures 

of the group means but these methods cannot directly partition different tools (or 

treatments) into homogenous and non-overlapping groups. For example, there are 

three tools to be partitioned and their sample means satisfy 1 2Y Y Y≤ ≤ 3 . 

Suppose that a multiple comparison procedure finds that the differences 

1 2| |Y Y−  and 2 3| Y Y− | are not significant but the difference 

1 3| Y Y− | is significant. It is not clear how to partition these three tools into 

homogenous but non-overlapping groups since both 1 2( ,Y Y ) and 2 3( ,Y Y )

i P

are 

reasonable homogenous groups. 

Another popular approach for partitioning is using the cluster analysis. Scott 

and Knott [16] suggested a procedure which starts by dividing the k means into two 

groups and then performs a test to decide whether the partition is acceptable. This 

approach is equivalent to a hypothesis testing problem: 

0 1 2 1 1

2

: . . .     v .s .      : '  e q u a l  fo r  ,  
                                                     '  e q u a l  f o r  .  

i

j

H H s
s j P

κθ θ θ θ
θ

= = = ∈
∈  

where forms a partition of {1 2{ , }P P 1, 2 , ..., }κ and  and  are two 

disjoint and nonempty sets with 

1P 2P

1 2 , {1, 2 , . . . , }P P κ=U . If the test is significant 
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at some chosen level α , similar testing procedure is then applied to each individual 

, i=1,2. The procedure is continued sequentially until all tests are not rejected (i.e., 

no further partition is necessary). Worsley [17] proposed a nonparametric version of 

Scott and Knott’s method. Although this approach is intuitive and easy to implement, 

the Type I error of the entire test is difficult to control due to sequential testing 

procedures, in particular when the number of splitting gets larger. Moreover, the final 

partition result may not be unique which highly depends on the initial partition.   

iP

To overcome the difficulty of controlling the Type I error (the probability of 

erroneous grouping) for the sequential testing procedure, Calinski and Corsten [18] 

proposed two cluster methods to partition these tools (or treatments) in a balanced 

design by embedding the simultaneous testing procedures based on F test and 

Studentized range test, respectively. Although this approach solved the problem of 

controlling Type I error, it still has several other disadvantages, such as the partition 

groups are too many with small differences when the number of observations for each 

tool is large; the issue about unbalance data is not considered which generally loses 

the power when the usages are quite different among tools. 

Jolliffe [19] proposed an alternative method to perform the cluster analysis. 

This approach used a particular dissimilarity measure which is defined by the P-value 

of the Studentized range test for testing the difference between two group means. A 
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larger P-value indicates that two groups are more similar and a smaller P-value 

indicates that two groups are more distinguishable. One critical issue for this 

hierarchical clustering approach is to determine the number of clusters which is 

usually determined subjectively.  

Data mining approaches [20] [21], such as the classification and regression 

trees (CART) [22] and the neural networks [23], have also been used for the partition 

problem. Recently, some commercial data analysis software (for example: Yield 

Dynamics, BI IBM, Odyssey YMS, and dataPOWER) in engineering use these 

approaches for the yield enhancements. However, these approaches involve 

supervised algorithms which rely on more complex initial parameter setups and the 

partition results are usually sensitive to these setups [22], and therefore it is somehow 

difficult for engineers to use them in practice. In Appendix A, the CART algorithm is 

briefly introduced which will be compared with the proposed method in the 

simulation study.  

To sum up, each above-mentioned method has its own advantages and 

disadvantages compared to the other methods under different circumstances. But none 

of them is capable of incorporating the experts’ specific opinions into the statistical 

analysis. For example, for our tool partition problem, the engineers’ tolerance controls 

which quantify the tolerance (minimum value) of tool differences should be used in 

 6
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some way in the analysis on determining the grouping structure. Another challenge 

for our tool partition problem in the manufacturing processes is to account for unequal 

tool usages. Unequal usages for different tools at each process step make the numbers 

of processed lots for each tool varying which induces unbalance data issue for the 

statistical tests. Montgomery [24] addressed that the statistical tests for multiple 

comparison lose power for unbalance data. The goal of this thesis is to develop a 

method for tool partition which incorporates the experts’ specific opinions on the 

tolerance of tool differences and considers the unbalance data issue simultaneously.  

We formulate the tool partition problem as a hierarchical model [25] in which 

the metrology measurements from each tool follow a normal distribution with 

tool-specific mean. It is reasonable to expect that the tool-specific means for “similar 

tools” are related in some way, such as viewing these tool-specific means as 

realizations from the same distribution. Under this setup, the engineers’ tolerance of 

tool differences can be naturally incorporated into the variance structure of the model 

imposed on the tool-specific means. For such hierarchical models, Bayesian analysis 

is the most popular method for inference in the literature. We will use the Bayesian 

analysis for searching the possible grouping structure for different tools in which the 

reversible jump Markov chain Monte Carlo (RJMCMC) algorithm, proposed by 

Green [26], will be used for the implementation. We called this proposed procedure 
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“tolerance control partitioning” (TCP) which partitions tools into several homogenous 

groups subject to the engineer’s specific tolerance about the mean differences.  

The remainder of this paper is structured as follows. In Chapter 2, the 

hierarchical model is introduced and the guidelines for choosing the priors for the 

parameters and hyper-parameters in the Bayesian analysis are also addressed. In 

Chapter 3, three simulation experiments are designed to illustrate the advantages of 

using the TCP method. For comparison, the partition results using the pruning scheme 

for the CART method (which also incorporates the tolerance of tool differences into 

account) are also considered in the simulations. In Chapter 4, two real examples in the 

semiconductor industry are analyzed for illustration. One example is related to the 

yield enhancement and the other example is about the Cp/Cpk enhancement. In 

addition, we propose two new ideas to integrate TCP with a statistical dashboard [4] 

for yield enhancement and automatic process control (APC) [27]-[29] for Cp/Cpk 

enhancement, respectively. In Chapter 5, some conclusions and discussions for the 

TCP method are given. In Chapter 6, possible extensions of applying the TCP method 

are addressed for future work. 
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2. Methodologies 
 

In this chapter, we introduce the TCP methodology. In Section 2.1, we 

formulate our tool partition problem by a hierarchical Bayesian model. In Section 2.2, 

we briefly introduce the reversible jump Markov chain Monte Carlo (RJMCMC) 

method. In Section 2.3, we apply the RJMCMC to determine the best partition and 

estimate the model parameters under a Bayesian approach for the tool partition 

problem. In Section 2.4, we suggest some guidelines for the initial setups for the 

model parameters and the hyper-parameters in the RJMCMC algorithm for the TCP 

method. In Section 2.5, we describe the standard method for monitoring the 

convergence of the Markov chain in the Bayesian context.  

 

2.1 A Hierarchical Bayesian Model for Partition Problems 

 

For each observation, Y denotes the response variable (e.g., the yield), and x 

denotes the categorical predictor with J possible categorical levels (e.g., tools). The 

conditional distribution of Y given x is, |Y x j=  ~ Normal ( jθ , ) for the j-th 

tool, and 

2σ

1 2( , ,..., ) 'Jθ θ θ=θ  is the unknown parameter vector. The TCP method 

intends to partition different tools into several homogenous groups (that is, to partition 

 



 10

{ : 1,2,..., }j j Jθ = into several homogenous groups) according to the values of the 

response variable.  

Each partition for J  tools can be represented as a collection 

g={ , ,…, } with  groups and each group  is a subset of {1, 2,…, J}, 

satisfying {1, 2,…, J} and  for 

1S 2S κS κ kS

=∪
=

k
k

S
κ

1
φ=∩ ji SS ji ≠ . The number of groups for 

the partition g, , determines the degree of heterogeneity among different tools. 

According to the partition structure (or the grouping structure), we further assume that 

the mean parameters

κ

jθ ’s follow the same normal distribution with the 

hyper-parameters kµ  and τ when these jθ ’s belong to the same group . That is, kS

jθ  ~ Normal ( kµ , ) if , 2τ j kS∈ j =1,2,… .                 J,

If the partition g is known in advance, all the parameters can be easily 

estimated by using the maximum likelihood. But, the partition g is unknown and a 

Bayesian method is used for estimation. In the following, the prior distributions for 

the mean and variance parameters and the related hyper-parameters are specified:  

 (1) the prior for kµ : ( )kπ µ ~ Uniform (a, b), for k=1,2,…, κ , and { kµ } are 

mutually independent,  

(2) the prior for 2τ : 2( )π τ  is a scaled inverse chi-squared with degrees of 

freedom ν  and the scale parameter  in which the 

tolerance is a tuning parameter defined by the engineers to stand for the 

2 6s (tolerance / )≡ 2
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acceptable difference between tools, 

(3) the prior for 2σ : 2( )π σ  is distributed as a scaled inverse chi-squared with 

degrees of freedom 1ν  and the scale parameter .        2
1s

For the partition g, following the specification in Consonni and Veronese [30], the 

prior distribution is defined as         

1
( )

{#  partitions whose degree }
g

of
κπ

κ

−
∝

=
, where κ  is the degree of 

partition g.    

Under the above prior setup, the posterior distribution for the parameters 

satisfies  

2
2

( )
1 1 1 1

1 2 2

2 2 2 2

2 2 2 2

( )

2 2
2 1/2 2 1/2

1

( , , , , | ) ( , , , , , )
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y I
n J
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e e
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σ τ

σ τ σ τ

σ τ π π π σ π τ
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κ

∈
= = = =

=
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− − − −⎜ ⎟⎜ ⎟

⎝ ⎠

−

∝

=
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θ µ θ µ

θ θ µ µ
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1
1

1   I
s whose degree }

/ 2 / 2
     ( )   ( )

( / 2) ( / 2)

k a b
k

s s
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s e s e

κ κ

µ

ν ν
ν ν ν σ /(2 )ν ν ν

κ

ν ν
σ τ

ν ν

∈
=

− + − − + −

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟= −⎝ ⎠ ⎩ ⎭

×
Γ Γ

Π

τ

       (1) 

where { : 1,2,..., ; 1,2,..., }y = = =ij jy j J i n , 1 2( , , ..., ) 'κµ µ µ=µ ,  , and 
1

k
k

g
κ

=
= U S

1 2( , , ..., ) 'θ θ θ= Jθ . This posterior for the model parameters does not has a close 

form but is proportional to the joint distribution of the observed variables and the 

unknown parameters. For this kind of problem with unknown grouping structures, the 
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RJMCMC method is often used for the Bayesian implementation which is described 

in the next subsection. 

 

2.2 Reversible Jump Markov Chain Monte Carlo 

 

The RJMCMC algorithm was initially proposed for the Bayesian model 

determination problems [26]. But since then, it has been applied to many other 

problems such as the change point problems, the mixture problem, and the factorial 

experiments [26][31][32]. In the semiconductor manufacturing context, Bergeret and 

Gall [33] have applied this algorithm to detect the change point for the yield trend 

under the situation that the failure occurs at a problematic process stage and there are 

different yield performances before and after the failure time. Moreover, the 

RJMCMC algorithm has also been used with the CART method which leads to the 

Bayesian CART method [34]-[38].   

We present the RJMCMC algorithm as introduced in Green [26]. Suppose that 

the competing models can be enumerable and are represented by the set of models 

. Under the model 1 2{ , , . . .M M=M } kM  and given the data , the model 

parameter 

y

kθ  has the posterior distribution  

( | , ) ( | , ) ( | )k kp k p k p= k kθ θ θy y  

 12
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where ( | , )kp ky θ and ( |kp k )θ are the sampling distribution of  and the 

prior distribution of the parameter 

y

kθ  given the model kM , respectively. The 

RJMCMC methods are an extension of the Metropolis-Hastings algorithm [39] that 

allows a Markov chain not only moves between different parameter values but also 

between models with different dimensions. This algorithm is designed to be reversible 

so as to maintain detailed balance of a irreducible and aperiodic chain that converges 

to the correct target posterior distribution. Please refer the reference [26] for the 

details of RJMCMC. 

In the following, we only conceptually illustrate the jumping scheme between 

different models in the RJMCMC algorithm.  

1. Propose a jump from the current Model kM to the other model 'kM  with 

probability . '( )k kJ M M→

2. Sample  from a proposal densityv ( | , , ')kq k kθv , where  is an 

augmented variable which plays the role of adjusting the unequal dimension 

problem between two models 

v

kM  and 'kM . 

3. Set '( , 'k )θ v = , ' ( , )k k kg θ v , where , ' ( )k kg ⋅ is called a bijection 

function between ( ,k )θ v and '( , 'k )θ v  which provides a one-to-one 

mapping between two sets of parameters '( , 'k )θ v  and ( ,k )θ v  and two 

augmented variables v and v’ play the roles of matching the dimensions of the 
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parameters for two model kM  and 'kM . 

4. The RJMCMC moves from the current model kM with parameter kθ  to 

another model 'kM  with parameter 'kθ  according to the acceptance 

probability min{1, }r A=  where 

  , '' ' ' '

'

 ( , )( | , ') ( ) ( ') ( ) ( ' | , ', ) .
( | , ) ( ) ( ) ( ) ( | , , ') ( , )

k k kk k k k k

k k k k k k

g vp k p p k J M M q v k kA
p k p p k J M M q v k k v

∂→
=

→ ∂
y
y

θθ θ θ
θ θ θ θ

 

Each iteration in the RJMCMC algorithm includes the above 4 steps and 

repeating such iterations constructs a Markov chain. Under some appropriate setting 

for the jumping scheme, this Markov chain will converge and its stationary 

distribution is identical to the target posterior distribution of the parameters for the 

selection problem among the model collection . The posterior distribution and 

posterior mode for each parameter can be estimated using the MCMC draws after the 

convergence is achieved. In particular, the model with the highest posterior 

distribution on is considered as the best model based on the Bayesian approach  

[35] [36] [40].  

M

M

For our tool partition problem, the set consists of all possible partition 

models  with various degrees 

M

g 1,2,..., Jκ = . The RJMCMC algorithm helps us to 

determine the best partition among  tools and simultaneously estimate the model 

parameters under the hierarchical Bayesian model. Although we did not give the 

detail formulations for the functions involved in the jumping scheme (such 

J

 14
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as , '( )k kJ M M→ , ' ( )k kg ⋅ and ( | , , ')kq k k⋅ θ  since they are usually 

problem-specific, the detail scheme for our tool partition problem will be described in 

Section 2.3.  

Moreover, we suggest the usage of posterior distribution of possible partitions 

to realize the partitioning structure of tools instead of the usage of hierarchical tree 

structures 

 

2.3 TCP Method for Tool Partitions 

 

In Section 2.1, the posterior distribution of 2 2( , , , , )g σ τθ µ  given the data  

has been derived up to a normalizing constant. The posterior distribution as well as 

the posterior mean for each parameter are estimated using the RJMCMC method. We 

are particularly interested in the posterior distribution for  which gives the best 

partition for tools. The details about how to apply RJMCMC to our tool partition 

problem in Section 2.2 which includes five move types: 

y

g

1. updating the parameter of the group mean jθ , for j=1, 2…J , 

2. updating the parameter of the group variance , 2σ

3. updating the hyperparameters 2τ  and kµ ,  for k=1, 2…κ , 

4. updating the partition g, with “birth”, that is, splitting one group into two, 
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5. updating the partition g, with “death”, that is, combining two groups into one. 

At each iteration in the chain, one of the above five moves is randomly selected 

regarding some pre-set probabilities 1 2 3 4, , , , 5p p p p p , where jp  is for the -th 

move type, 

j

4p and 5p  usually depend on the degree of current partition g (i.e., κ ) 

and . Naturally, we set 
5

1
1j

j
p

=

=∑ 5 0p =  when 1κ =  and 4 0p =  when  is the 

maximum allowed value. 

κ

Given the partition g in each MCMC iteration, the parameter values are 

updated according to the conditional distributions of all parameters in the set  = 

{

Θ

1θ , 2θ … Jθ , , 2σ 1µ , 2µ … κµ , and } via the Gibbs sampling [41] [42] 

(Appendix B). We will use the notation of 

2τ

jθ−Θ  to indicate the set of all parameters 

except the parameter of jθ . The full conditional distributions of all parameters of  

are given below and the detailed derivations for these conditional distributions can be 

found in Appendix C. 

Θ

1. jθ |
jθ−Θ   ~ Normal (

j

j

a
b

2
,

ja2
1 ),                              (2) 

where .
2 2( )j jk

j
n y

b µ
τ σ

= + , 2
1

2 2
j

j
n

a 2τ σ
= + ,  for kSj∈ , and j =1,2 ,… , J,

2. kµ |
kµ−Θ   ~ Normal ( k

j
j S

kw

θ
∈
∑

,
2

kw
τ ) ),( ba

kµΙ   where {#  of   in }k kw j S= , 

3. |2τ 2τ−Θ  ~ Inverse Gamma (
2

J+ν ,
2

2
s Fν + ),  where   

F= , , 
2

( )
1 1 k

J
j k j S

j k
I

κ
θ µ ∈

= =

⎛ ⎞−∑ ∑⎜ ⎟
⎝ ⎠ 1

k
k

g S
κ

=
= U

 16
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4. |2σ 2σ−Θ  ~Inverse Gamma (
2

1 N+ν ,
2

1 1
2

s Eν + ),  

where E= , and N= . 2

11
)( j

n

i
ij

J

j

j

y θ∑ −∑
==

∑
=

J

j
jn

1

The structure parameter g is updated by the birth and death move types. The 

birth move means adding one group from the current partition g. In contrast, the death 

move means eliminating one group from the current partition g. We introduce the 

schemes for implementing these two move types below. Suppose that the current 

partition is  with degree )1(g )1(κ  and mean vector (1)µ . For the “birth” move type, 

we first choose a group to split randomly among those with at least two tools to form 

a new partition  with degree )2(g )2(κ = ( )1(κ +1) groups. At the same time, the 

mean vector (2)µ  needs a change for both the dimension and the value. The 

relocation can be simply done by adding a new random variable z that is 

independently distributed as Normal ( zµ , 2
zσ ). In Section 2.4, we will discuss how to 

define zµ  and 2
zσ  in detail. Suppose that a proposal birth splits group  for k 

{1, 2… } into two groups  and . Let 

kS

∈ )1(κ
1kS

2kS kµ  be the current value and 

1kµ , 
2kµ  be the new values for the two groups. Then we set  

1kµ = kµ  + 2
2

k

k

w

w
z ,  

2kµ = kµ  - 2
1

k

k

w

w
z ,                       (3) 

where  ={# of j in } for i= , , and , with = + , 

= , and =

iw iS k 1k 2k kw
1kw

2kw

1kS ∪
2kS kS

1kS ∩
2kS φ . So we have ={)2(g (1)

ksS − } { , } and ∪
1kS

2kS

 



 18

1 2

(2) (1)( , ,
k k kµ )µ µ−=µ µ . Similarly, for a “death” move, we will randomly choose two 

groups  and  from the current partition  and merge them into a new 

group  to generate a new partition  with 

1k
S

2k
S )2(g

kS )1(g kµ 1 1 2 2k k k k

k

w w
w

µ µ+
= , 

= + , and   by solving the simultaneous equations in (3). kw
1kw

2kw
1 2

( )k kz µ µ= − kw

After specifying the jumping proposal, the acceptance probabilities for the 

birth and death in the RJMCMC algorithm are min {1,A} and min{1,1/A} respectively, 

where  

A =
( ) ( )

( 2)2 2

( 2) (1)
( 2)( 2) (1)2

1 1 1 1

(1)

(1)

1
(2) 2 1
(1)

1

I ( , )( ) 1
( )( ) I ( , )

J J

j k j kj S j Sj k j k kk k

k

I I
k d

birth
k

a b PP g e
b a PP g a b

κ κ κ
θ µ θ µ µτ

κ
µ

∈ ∈= = = =

⎧ ⎫⎛ ⎞ ⎛ ⎞− ⎪ ⎪− − −∑ ∑ ∑ ∑⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ =⎩ ⎭

=

Π
× ×

−
Π

eath  

×  # of { , k=1,2,…,2; ≥kwk )1(κ }×
)(

11}22{
)1(

1
)1()1( zfwk

wk −
+κκ

,     

where )(iκ  is the degree of , for i=1,2, with )(ig 1)1()2( += κκ , , 

 is the number of tools in ,  are the proposal probability 

for the death move type and birth move type respectively (i.e., 

( )

( ) ( )

1

i

i i
k

k
g S

κ

=
= U

kw (1)
kS , and death birthP P

4p  and 5p  in the 

earlier context), 
kw

1  is the Jacobian, and  is the density function of  z.  )(zf

The derivations for the acceptance probabilities of the birth and death move types are 

given in Appendix D for details.  
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2.4 Guidelines for Choosing Initial Values for Parameters 

and Hyperparameters in TCP 

 

The engineers can set up the initial parameters and hyperparameters in the 

priors based on their knowledge for each problem. However, when there is no 

enough prior information, we will suggest some guidelines to set up the priors to 

facilitate the practice of TCP in the semiconductor industry and in other applications. 

The details of our guidelines include the following: 

1. kµ ~ Uniform (a, b), for k=1,2,…,κ ,  let a=min { jy. : j=1,2,…,J} and 

b=max{ jy. , j=1,2,…,J }. The reason is described as follows: Since these 

jθ ’s belong to the same group , these kS jθ s will be distributed as the same 

normal distribution , (that is, jθ  ~ Normal ( kµ , ), for , 2τ j kS∈

j =1,2,… . ) On the contrary, if J,
1jθ  and 

2jθ  belong to two different 

groups  and , 
1kS

2kS
1jθ  and 

2jθ  are distributed as two different normal 

distribution with two different means 
1kµ  and 

2kµ .  Therefore, in tool 

comparison problem, kµ  can represent the performances of different tool 

groups, and (a, b) represents the range of tool performances among tools. So, 

we suggest to use the empirical estimate for the range, (min { jy. }, max{ jy. })  

for the prior specification. 
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2. ~ scaled inverse chi-squared ( ) with 2τ 2,sν 20ν =  and 

( )22 / 6s tolerance= . 

3. ~ scaled inverse chi squared ( ) with 2σ 2
11, sν 1 20ν =  and  sample 

variance of {

=2
1s

)( . jij yy − , j=1, 2…J, i=1, 2… }. Note that, is an 

unbiased estimator of . 

jn 2
1s

2σ

The values of ν  and 1ν  are only for recommendation, as they only impacts the 

convergence speed of the TCP method. Based on our experience, since the population 

mean 2
2

sν
ν −

 of the scaled inverse chi-squared distribution ( ) is very close to 

its mode 

2,sν

2
2

sν
ν +

 and the variance 
2

4
2

2
( 2) ( 4)

sν
ν ν− −

 is small when ν  and 1ν  

are large than 20, the prior distribution of  will produce more s with values 

closed to . This effect usually speeds up the convergence for the 

Markov chain toward our target distribution based on the tolerance control. 

2τ 2τ

26 )/(tolerance

Following the above guidelines, the engineers only need to determine the 

numerical level of the tolerance parameter. Since the tolerance concept is widely used 

in the semiconductor industry and in other applications, it is not difficult but friendly 

for the engineers to make this setup. For example, there exist some unavoidable errors 

from the metrology systems and minor deviations with respect to the product 

specifications. Hence, one can set up the tolerance based on the engineers’ knowledge, 

the product specifications, and the tool limitations. In Section 3.2, we present some 

 20
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simulation results of the sensitivity analysis to show that the TCP method could 

generate the optimal partitions with respect to different levels of tolerances.  

 

2.5 Convergence Assessment for RJMCMC 

 

Before conducting the Bayesian inference using RJMCMC samples, the output 

should be analyzed to determine the required run length for the MCMC sequences. 

Gelman and Rubin [43] proposed a convergence diagnostic, the potential scale 

reduction factor (PSRF), obtained by running multiple I chains with overspread  

starting values. Books and Gelman [44] provided a generalization of Gelman and 

Rubin’s method that considers several parameters simultaneously. For a Bayesian 

model selection, Brooks and Giudici [45] suggested selecting a scale summary of 

parameters and decomposing its variance within the RJMCMC simulation output into 

two distinct groups, within and between chains, to monitor the convergence. 

The convergence check for TCP method proceeds as follows. We begin with 

simulating five independent chains (I=5) of length + , each starts with different 

initial values which are overspread. After discarding the first  iterations for 

burn-in and retaining only the last  iterations, we first compute the 

-2(log-likelihood) value  observed for the i-th chain and up to the t-th iteration 

1T 2T

1T

2T

t
iL
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according to the equation (1). Then, we calculate the following 6 variation quantities: 

^
V : the total variance of ,  t

iL

^
cW : the averaged within-chain variance of ,  t

iL

^
mB : the estimated between-model variance of , t

iL

^
cmWB : the estimated between-model and within-chain variance of ,  t

iL

^
mW : the estimated within-model variance of ,  t

iL

^
cmWW : the estimated within-model and within- chain variance of . t

iL

For convenience, we let  be the value of  corresponding to the th 

observation of the m th model in the th chain for =1,2,…, , = 1, 2,…,M, 

and =1,2,…,I, where  denotes the number of times that the th model is 

observed in the -th chain and M is the number of models in I chains. By definition, 

we have . The expressions for , , , , , and 

are listed below: 

k
iml t

iL k

i k ),( miK m

i ),( miK m

i

∑ =∑
==
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TmiK ,(
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^

cmWB )1()(1 2

1

.
.

.

1
−∑ −∑=

==
Mll

I
M

m
iim

I

i
, 

^

cmWW )1),(()(1 2),(

1

.

1 1
−∑ −∑ ∑=

== =
miKll

IM

miK

k
im

k
im

I

i

M

m
,                   (4) 

where   ,  ∑=∑=
==

I

i
m

M

m
i miKKmiKK

11
),(,),(

( , ).
.

1 1

1 K i mI k
m im

i km
l l

K = =
= ∑ ∑ , 

( , ).
.

1 1

1 K i mI k
i im

i ki
l l

K = =
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( , ).

1

1
( , )

K i m k
im im

k
l l

K i m =
= ∑ , 

( , ).
..

1 1 1

1 K i mI M k
im

i m k
l l

IT = = =
= ∑ ∑ ∑ . 

 

We follow the method by Brooks and Giudici [45] for our convergence 

assessment. By monitoring the plots of three pairs,  v.s. ,  v.s.  

and  v.s. , across iterations, the convergence is achieved among multiple 

chains when two lines in each plot get closer and stable after some iterations. 

Consequently, the TCP method achieves the convergence after that iteration. 

^
V

^
cW

^
mB

^
cmWB

^
mW

^
cmWW
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3. Simulation Studies 
 

To illustrate the performance for the TCP method, we provide three simulation 

cases in this section. In Section 3.1, we show the limited impacts for the unbalanced 

usage in the manufacturing. In Section 3.2, we report the sensitivity analysis by using 

different tolerance controls in the TCP method and compare the results to the pruning 

results using CART. In Section 3.3, we perform a robustness analysis by simulating 

the data from a location lognormal distribution to investigate the impact of the normal 

assumption in the TCP method for non-normal data.  

In these simulation cases, we follow the guidelines of choosing initial values 

for parameters and hyperparameters given in Section 2.4 to show the feasibility for 

future applications in the semiconductor industry. For convergence assessment, we 

follow the method in Section 2.5 to monitor the convergence for the RJMCMC by 

running 5 independent parallel chains with 50,000 iterations. In order to save 

computational expenses, we calculate , , , , , and  for 

every 100 iterations. The simulation programs are written by R (in Splus) and run in a 

PC with 1G CPU and 512M RAM. It takes about 70 minutes to complete a case. The 

simulation results for each case are summarized in the following subsections.  

^
V

^
cW

^
mB

^
cmWB

^
mW

^
cmWW
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3.1 Unbalanced Data for Unbalanced Tool Usage 

 

We present three unbalanced data cases to illustrate the influences on the TCP 

method when different usages exist among five tools. Following the notations defined 

in Section 2.2, the simulation models are described in detail as follows:  ~ 

Normal (

ijy

jθ , ), where i=1, 2…  and j=1, 2,…, 5. ( , ,  , ) and 

(

2σ jn 1n 2n 3n , 4n 5n

1θ , 2θ , …, 5θ ) are the numbers of observations and the yield means for the five 

tools respectively.  

 

Case I:   ( , ,  , )=(15, 150, 20, 250, 20)  1n 2n 3n , 4n 5n

( 1θ , 2θ , …, 5θ )=(3, 3, 4, 4, 7)  

σ =1.5 

In Case I, the true partition for 5 tools is {(T1, T2), (T3, T4), T5}, which is denoted as 

(11223). The box plot and the related statistics for the simulated data are given in 

Figure 3.1 and Table 3.1.  

Table 3.1. The sample mean, standard deviation, and count for each tool for the 
simulated data in Case I. 

 

Tool Mean Std Count
T1 2.78 1.58 15
T2 2.88 1.54 150
T3 3.78 1.5 20
T4 3.79 1.55 200
T5 7.23 1.4 20  
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Figure 3.1. Box plots by tools for the simulated data in Case I. 

 

We apply the TCP method to the simulated data in Case I by setting the  

tolerance to be 1. The three convergence plots, including  v.s. ,  v.s. 

, and  v.s. , are displayed in Figure 3.2. We collect the partition 

results from the last 10,000 iterations to estimate the posterior distribution of the 

partition. The estimated posterior distribution for the partition is given in Figure 3.3. 

The correct partition (denoted as (11223)) is the mode of the estimated posterior 

distribution with the probability 0.49. From this simulation, we found that the impact 

of unbalanced data is very limited.  

^
V

^
cW

^
mB

^
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^
mW

^
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Figure 3.2. Convergence assessment plots for the simulated data in Case I :  

(a)  vs. , (b) vs. , and (c) vs.  
^

V
^
cW

^
mW

^
cmWW

^
mB

^
cmWB

(one unit in the x-axis is 100 iterations) 
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Figure 3.3. Estimated posterior distribution of partition for the simulated data in Case I (and 
the partition with probability less than 0.005 is not shown). 

 

Table 3.2. Partitioning results with respect to different values of cost complexity in the 
CART model for the simulated data in Case I. 

 
Partitioning result Cost-complexity

(1,2,3,4,5) 0 

(1,1,2,2,3) 1 

(1,1,1,1,2) 90 

|

T1 T2 T3 T4

T5

 

Figure 3.4. The tree obtained by the CART model for the simulated data in Case I. 
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We also analyze the same data by the CART method for comparison which is 

implemented by the S-Plus functions of tree and prune.tree [46]. The complete tree 

result is given in Figure 3.4. and the best partitioning results with respect to different 

cost-complexities are given in Table 3.2. According to Table 3.2, one should select a 

correct cost-complexity to get reasonable tree results when applying the CART 

method. However, it is hard to link the cost complexity with the concept of tolerance 

control in engineering. For this reason, the TCP method is much easier for engineers 

to use in the connections with engineering tolerance controls. 

 

Case II:  ( , ,  , )=(20, 40, 80, 160, 320)  1n 2n 3n , 4n 5n

 ( 1θ , 2θ , …, 5θ )=(5, 3, 5, 3, 3)  

σ =1. 

Similar to Case I, the box plots by tools and the related statistics for the simulated data 

are given in Figure 3.5 and Table 3.3. There true partition among 5 tools is denoted as (12122). 

By applying TCP method with tolerance =1 and under similar setups as those in Case I, the 

estimated posterior distribution for the partition is given in Figure 3.6 and the correct partition 

is the posterior mode with probability 0.71. For the same data, the complete tree resulted by 

CART is given in Figure 3.7, and the best partitioning results with respect to different 

cost-complexities are given in Table 3.4.  
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Table 3.3. The sample mean, standard deviation, and count for each tool for the 
simulated data in Case II. 

 
Tool Mean Std Count
T1 4.25 0.84 20
T2 2.86 0.94 40
T3 4.12 0.94 80
T4 3.16 1.04 160
T5 2.99 1 320  

 

T1 T2 T3 T4 T5
Tool

-1

1

3

5

da
ta

 

Figure 3.5. Box plots by tools for the simulated data in Case II. 

 

 
Figure 3.6. Estimated posterior distribution of partition for the simulated data in Case II  (the 

partition with probability less than 0.005 is not shown) 
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Table 3.4. Partitioning results with respect to different values of cost complexity in the 
CART model for the simulated data in Case II. 

 
Partitioning result Cost-complexity

(1,2,3,4,5) 0 

(1,2,1,3,3) 1 

(1,2,1,2,2) 4 

|

T2 T5

T4 T3 T1

 

Figure 3.7. The tree obtained by the CART model for the simulated data in Case II. 

 

Case III:  ( , ,  , )=(10, 50, 50, 100, 15)  1n 2n 3n , 4n 5n

  ( 1θ , 2θ , …, 5θ )=(5, 3, 3, 3, 3)  

σ =1 

The box plot and the related statistics for the simulated data for Case III are given in 

Figure 3.8 and Table 3.5. The true partition is denoted as (12222) among 5 tools. Under the 

similar setups for the TCP method with tolerance =1, the estimated posterior distribution of the 

partition is given in Figure 3.9 and again the correct partition is the posterior mode with the 
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probability 0.71. The complete tree result using CART is given in Figure 3.10, and the best 

partitioning results with respect to different cost-complexities are given in Table 3.6 for 

comparison.  

 

Table 3.5. The sample mean, standard deviation, and count of each tool for the 
simulated data in Case III. 

 

Tool Mean Std Count
T1 5.52 0.78 10
T2 2.76 0.82 50
T3 2.88 0.93 50
T4 3.07 0.93 100
T5 3.07 0.77 15  

 

T1 T2 T3 T4 T5
Tool

0

2

4

6

da
ta

 

Figure 3.8. Box plots by tools for the simulated data in Case III. 
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Figure 3.9. Estimated posterior distribution of partition for the simulated data in Case III and 

(the partition with probability less than 0.005 is not shown). 
 
 

Table 3.6. Partitioning results with respect to different values of cost complexity in the 
CART model for the simulated data in Case III. 

 
Partitioning result Cost-complexity

(1,2,3,4,5) 0 

(1,2,2,3,3) 1 

(1,2,2,2,2) 4 

 

|

T2 T3 T5 T4

T1

 

Figure 3.10. The tree obtained by the CART model for the simulated data in Case III. 
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3.2 Sensitivity Analysis with Different Tolerance Controls for 

TCP and the Comparison with CART 

 

In the sensitivity analysis, the data are generated from the same model as Case 

I in Section 3.1, but the number of observations is 30 for each tool and σ  is changed 

to be 1. The box plots by tools and the related statistics of the simulated data are given 

in Figure 3.11 and Table 3.7. The true partition is {(T1, T2), (T3, T4), T5} (denoted as 

(11223)). Here, we apply the TCP method with different values of tolerance (= 0.5, 1, 

2, 3, 4, 5, 6) to examine its influence on the partition results of the TCP method. 

 

Table 3.7. The sample mean, standard deviation, and count of each tool for the 
simulated data in Case I with equal sample size. 

 

Tool Mean Std Count
T1 2.90 0.75 30
T2 3.12 0.93 30
T3 3.88 0.99 30
T4 3.86 0.98 30
T5 6.82 1.25 30  
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Figure 3.11. Box plots by tools for the simulated data in Case I with equal sample 

size. 

The partition results under various tolerance levels are given in Table 3.8. The 

numbers presented in the table are the posterior probability for each possible partition 

and the corresponding estimated error (shown in the parentheses) based on 30 

realizations under each tolerance specification. Now, the group means are 3, 3, 4, 4, 

and 7 and the within-group standard deviations are 1 in this simulation. When the 

tolerance is 0.5 or 1, the target (11223*) will be the most plausible partition because 

the between group differences can be as large as 1. When the tolerance is 2, 3, 4, or 5, 

the most plausible partition becomes (11112**) because the between group 

differences can be as large as 4 and within group standard deviation is 1. When the 

tolerance is 6, the most plausible partition moves to (11111***) because the between 

group differences are smaller than 6.  In the table, we can see that the standard errors 

for the most plausible partition are very small, demonstrating the robustness of the 
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posterior modes. Another interesting phenomenon is that the averages of the posterior 

probabilities of three partitions, {11223*}, {11112**} and {11111***}, changes 

according to the level of tolerance. Intuitively, tools tends to be merged if the 

tolerance is large. For this particular case, the averaged posterior probability for the 

partition {11223*} decreases when the tolerance increases. On the other hand, the 

averaged posterior probability for the partition {11112**} increases when the 

tolerance increases from 0.5 to 3 but decreases when the tolerance increases from 3 to 

6. Similarly, the averaged posterior probability for the partition {11111***} increases 

when the tolerance increases. Hence, the posterior distributions of the partitions 

indeed reflect the levels of tolerance controls. Beside the most plausible partitions, the 

posterior distribution also reveals the next plausible partition with the strength of 

plausibility (i.e., the posterior probability). This useful information can only be 

provided by the Bayesian approach. The results of the sensitivity analysis provide the 

evidence that the partitioning results of TCP will be affected by the level of tolerance 

controls.  

        Similarly, based on the same data, the complete tree result using CART is 

given in Figure 3.12, and the best partitioning results with respect to different 

cost-complexities are given in Table 3.9. It is evident that Table 3.8 contains more 

information than Table 3.9. 
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Table 3.8. Averaged posterior probabilities and their standard errors (in the 
parentheses) for the partition results in the sensitivity analysis for TCP method with 

respect to different tolerances. 
 

Tolerance=0.5 Tolerance=1 Tolerance=2 Tolerance=3 Tolerance=4 Tolerance=5 Tolerance=6

11111*** 0(0) 0(0) 0(0) 0.004(0.0051) 0.050(0.0134) 0.239(0.0223) 0.444(0.0181)

11112** 0.005(0.0056) 0.079(0.0176) 0.408(0.0142) 0.495(0.0145) 0.450(0.0157) 0.300(0.0168) 0.159(0.0132)

11122 0(0) 0(0) 0(0) 0.002(0.0014) 0.013(0.0031) 0.027(0.0040) 0.032(0.0042)

11123 0.002(0.0031) 0.018(0.0050) 0.047(0.0048) 0.050(0.0044) 0.046(0.0037) 0.033(0.0024) 0.020(0.0024)

11212 0(0) 0(0) 0(0) 0.003(0.0020) 0.013(0.0038) 0.030(0.0048) 0.033(0.0056)

11213 0.003(0.0038) 0.021(0.0067) 0.052(0.0068) 0.052(0.0064) 0.047(0.0034) 0.032(0.0032) 0.019(0.0029)

11222 0(0) 0(0) 0(0) 0(0) 0.0041(0.0015) 0.012(0.0024) 0.017(0.0031)

11223* 0.683(0.0230) 0.542(0.0321) 0.180(0.0137) 0.093(0.0084) 0.062(0.0060) 0.038(0.0048) 0.020(0.0026)

11234 0.123(0.0130) 0.118(0.0063) 0.057(0.0061) 0.035(0.0042) 0.029(0.0037) 0.019(0.0022) 0.012(0.0018)

12112 0(0) 0(0) 0(0) 0(0) 0.002(0.0011) 0.007(0.0020) 0.011(0.002)

12113 0(0) 0.006(0.0026) 0.026(0.0034) 0.031(0.0029) 0.032(0.0023) 0.024(0.0036) 0.015(0.0018)

12123 0(0) 0.004(0.0016) 0.0233(0.0039) 0.034(0.0037) 0.035(0.0036) 0.026(0.0033) 0.016(0.0027)

12134 0(0) 0.004(0.0015) 0.013(0.0019) 0.016(0.0020) 0.017(0.0020) 0.013(0.0020) 0.009(0.0016)

12213 0(0) 0.003(0.0015) 0.023(0.0029) 0.035(0.0028) 0.037(0.0033) 0.026(0.0035) 0.016(0.0032)

12221 0(0) 0(0) 0(0) 0(0) 0.001(0.0007) 0.006(0.0015) 0.009(0.0018)

12223 0.009(0.0072) 0.028(0.0078) 0.041(0.0059) 0.037(0.0042) 0.034(0.0037) 0.024(0.0033) 0.014(0.0022)

12234 0.004(0.0024) 0.010(0.0027) 0.017(0.0026) 0.017(0.0023) 0.017(0.0017) 0.014(0.0017) 0.009(0.0017)

12314 0.001(0.0008) 0.004(0.0016) 0.013(0.0021) 0.016(0.0022) 0.017(0.0018) 0.013(0.0024) 0.009(0.0017)

12324 0.005(0.0027) 0.011(0.0032) 0.018(0.0021) 0.018(0.0025) 0.017(0.0021) 0.013(0.0025) 0.009(0.0016)

12334 0.096(0.0115) 0.079(0.0080) 0.034(0.0029) 0.0216(0.0025) 0.018(0.0027) 0.013(0.002) 0.008(0.0018)

12345 0.070(0.0092) 0.073(0.0055) 0.047(0.0048) 0.039(0.0038) 0.040(0.0037) 0.031(0.0038) 0.023(0.0029)
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Table 3.9. The different partitioning results with respect to different values of cost 
complexity in the CART model. 

 

Partitioning result Cost-complexity 

(1,2,3,4,5) 0 

(1,1,2,2,3) 5 

(1,1,1,1,2) 25 

|

T1 T2 T4 T3

T5

 

Figure 3.12. A tree obtained by the CART model for the simulated data in the 
sensitivity analysis. 

 

3.3 Robustness Studies by Balanced Simulation Data with  

Mean Shifts 

 

In the semiconductor industry, the tool performance often follows a baseline 

distribution (for example, a normal distribution) when the tools are in control. On the 

contrary, the mean shifts often occur when the tools are out of control. Therefore, 

without loss of generality, we generate two cases with different kinds of yield baseline 
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distribution to verify the robustness of the TCP method subject to non-normal data. 

 

3.3.1 Mean Shifts for Lognormal Distribution 

 

The simulation models are described as follows:  ~ ijy jθ + Lognormal (0,1), 

where i=1,2,…, and j=1,2,…,5, with ( , , , ) = (30, 30, 30, 30, 30), 

(

jn 1n 2n 3n , 4n 5n

1θ , 2θ ,…, 5θ )=(0, 0, 3, 3, 7). In this experiment, there are 3 groups in 5 tools and 

the true partition is {(T1, T2), (T3, T4), T5} (denoted as, (1,1,2,2,3)). The box plots 

by tools and the related statistics for the simulated data are given in Figure 3.13 and 

Table 3.10.   

Table 3.10. The sample mean, standard deviation, and count for each tool for the 
simulated lognormal data in the robustness study.  

 

Tool Mean Std Count
T1 1.51 1.23 30
T2 1.21 1.22 30
T3 4.24 1.63 30
T4 4.45 1.27 30
T5 8.59 1.98 30  
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Figure 3.13. Box plots by tools for the simulated lognormal data in the robustness 

study. 

We apply the TCP methods with tolerance =1 to get the posterior distribution 

of partitions given in Figure 3.14. The true partition {(T1, T2), (T3, T4), T5} (denoted 

as, (1,1,2,2,3)) is the posterior mode with the probability 0.7226. For this experiment, 

we still get correct partition result although the simulated data violate the normal 

assumption in the TCP method. 

 
Figure 3.14. Estimated posterior distribution of partition for the lognormal data in the 

robustness study (the partition with probability less than 0.005 is not shown) 
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3.3.2 Mean Shifts for t Distribution 

 

The simulation models are described as follows:  

ijy  ~ jθ + (t distribution with the degrees of freedom 5),  

where i=1,2,…, and j=1,2,…,5, with ( , , , ) = (30, 30, 30, 30, 30), 

(

jn 1n 2n 3n , 4n 5n

1θ , 2θ ,…, 5θ )=(3, 3, 4, 4, 7). There are 3 groups in 5 tools and the true partition is 

{(T1, T2), (T3, T4), T5} (denoted as, (1,1,2,2,3)). The box plots by tools and the 

related statistics for the simulated data are given in Figure 3.15 and Table 3.11. Using 

the TCP methods with tolerance =1, the posterior distribution of partition for this 

t-distributed data set is obtained in Figure 3.16 and the posterior mode is still the 

correct partition {(T1, T2), (T3, T4), T5} (denoted as, (1,1,2,2,3)) with the probability 

0.70364. Again, the TCP method gives a good partition result even when the data are 

not normal with mean shifts. 

Table 3.11. The sample mean, standard deviation, and count for each tool for the 
simulated t-distributed data in the robustness study.  

Tool Mean Std Count
T1 2.81 1.56 30
T2 3.09 1.17 30
T3 4.21 0.98 30
T4 4.05 1.4 30
T5 7.25 0.98 30  
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Figure 3.15. Box plots by tools for the simulated t-distributed data in the robustness 

study. 

 
Figure 3.16. Estimated posterior distribution of partition for the t-distributed data in the 

robustness study (the partition with probability less than 0.005 is not shown) 
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4. Two Applications in the Semiconductor 
Industry 
 

Two real applications in the semiconductor industry are illustrated to show the 

effectiveness of the proposed TCP method for improving the product quality. In 

Section 4.1, we first demonstrate an application about the yield enhancement by 

detecting tool differences. In Section 4.2, we apply the TCP method to the problem 

related to Cp/Cpk enhancement. For this particular application, we also describe a 

possible implication of the TCP method to another related problem. All data are from 

a semiconductor company in Taiwan. 

 

4.1 Ramp Up Yield Using The TCP Method 

 

As introduced in Chapter 1, semiconductor manufacturing has a very long 

process cycle including 150-400 process steps to complete the entire manufacturing 

process. After completing all process steps, each lot is inspected via WAT, WST and 

FT (final test) with approximately 100 test items for each inspection test.  We 

analyze the “Srow” measurement for each lot which is one of the key test items in 

wafer sort testing. A larger value of the Srow measurement indicates a worse yield 
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performance. The considered the Srow data consist of 439 lots with the sample mean 

5.98 and the sample standard deviation 1.85. For this Srow measurement, the 

engineers have found 52 suspected steps from 221 process steps by performing 

ANOVA for tool comparison for each process step. In particular, the 10th process step 

is one of the suspected steps. The box plots and the related statistics of the Srow 

measurements for various tools in the 10th step are shown in Figure 4.1 and Table 4.1, 

respectively. It clearly shows that two tools, SPU03 and SPU05, have relatively worse 

performance at this problematic step. 

Table 4.1. The sample mean, sample standard deviation, and the counts for the 
Srow measurements for various tools in the 10th process step. 

Tool Mean Std Count
SPU03 9.05 1.85 14
SPU04 5.79 1.51 48
SPU05 7.17 1.27 96
SPU07 5.54 1.4 36
SPU14 5.83 1.7 93
SPU16 5.16 1.78 152  
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1 3
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Figure 4.1. Box plots of the Srow measurements for various tools in the 10th 

process step. 
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Figure 4.2. Convergence monitoring: (a)  versus , (b) versus ,  

(c) versus  (one unit in the x-axis is 100 iterations). 
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For this problem, according to the engineering knowledge, the acceptance 

tolerance of difference is set to be 1. We carry out the TCP method by running 5 

independent chains with 50,000 iterations, including 5,000 burn-in iterations, and 

monitor the convergence of RJMCMC samplers by examining v.s. ,  v.s. 

, and  v.s. , as described in Chapter 2.5. The convergences of the 

above three sets of comparisons can be visualized in Figures 4.2 (a)-(c). 
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Figure 4.3. Estimated posterior distribution of the partition (the partitions 

with probability less than 0.005 are not displayed). 

Finally, we summarize the results based on the last 10,000 MCMC iterations 

and the posterior distribution for the tool partition is displayed in Figure 4.3 where the 

partitions with probability less than 0.005 are not shown. The best partition for the set 

of tools, {SPU16, SPU14, SPU07, SPU05, SPU04, SPU03}, with the highest 

posterior probability 0.2244 is {SPU16, SPU14, SPU07, SPU04}, {SPU05}, and 

{SPU03} (denoted as (111213) in Figure 4.3). This partition result is consistent with 

that obtained by the CART method [46] with cost-complexity=30 shown in Table 4.2 
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and Figure 4.4. Although two different approaches reach the same partition result, it is 

somehow difficult for engineers to understand and interpret the meaning of 

cost-complexity=30 in CART method. In contrast, the engineering tolerance control is 

much easy to set and interpret in the TCP method. 

 

Table 4.2. The partitioning results using the CART method with different values of the 
cost complexity. 

 

Partitioning result Cost-complexity

(1,2,3,4,5,6) 0 

(1,2,2,3,2,4) 5 

(1,1,1,2,1,3) 30 

(1,1,1,2,1,2) 45 

 

|

SPU16

SPU07

SPU04 SPU14

SPU05 SPU03

 
Figure 4.4. Tree obtained by the CART method with cost complexity=30. 

 

After further checking on this problematic step, the engineers find that there 

are two different tool types: one type includes SPU03 and SPU05 and another type 

includes SPU16, SPU14, SPU07, and SPU04. Because different tool types use 
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different process chemicals, the contaminated chemical is the main source of bad 

performance of SPU03 and SPU05. After eliminating the contaminated chemical, the 

performance of SPU03 and SPU05 becomes regular and the Srow measurements are 

as same as those for other tools. Accordingly, the overall sample mean for Srow 

among tools reduces from 5.98 to 5.4 and the sample variance reduces from 1.85 to 

1.52 after the adjustment. It really enhances the product yield.  
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difference among 
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Kruskal - Wallis test 
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No 

Engineers take related 
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Is there more 
than 1 group? 

System automatically 
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engineers’ tolerance by 

TCP   

Yes 

 
Figure 4.5. Engineer daily trouble shooting flow by combining statistical tests and 

TCP method. 

 

From this application, we suggest to integrate the TCP method with statistical 

tests into a statistical dashboard [4] to form an analysis flow, as shown in Figure 4.5. 

After building automatic systems according to the analysis flow, systems could 

execute the analysis automatically at night for each item of each product to compare 

the tool performances according to the pre-defined tolerances. Then, at the beginning 
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of the daily work, the engineers could quickly detect the possible problematic tools 

for yield enhancement as demonstrated in Table 4.3. This will dramatically shorten the 

time for engineers to find out the root causes of yield variance and eliminate the 

problematic tools. This working flow for yield enhancement not only avoids the 

subjective engineering judgments in tool comparisons, but also links with a well 

management plan through an engineering discussion about the reasonable tolerances. 

Based on the example, we have shown the TCP method can really help engineers 

enhance yield by automatically partitioning the tools according their performances. 

 

Table 4.3. An illustration example for automatically detecting the performance 
difference among tools for each process step. 

 

Step 

P value of  

T or Kruskal Wallis Test 

TCP Result 

(Group, Tool List; Mean) 

Step 10 0.000005 
(1.SPU03; 9.05);(2.SPU05; 7.17); 
(3.SPU04,SPU07,SPU14,SPU16; 5.58) 

Step 15 0.0003 (1.TEC02; 8.32);(2.TEC01; 8.08); 
Step 2 0.06 (1.ACE01,ACE02; 8.1);
Step 4 0.08 (1.PHO01,PHO0202, PHO03; 8.21); 
… … …

  

4.2 Process Capability Indices Enhancement 

 

The process capability indices  and  [47] have been widely used in 

the manufacturing industry for measuring the process performance and product 

pC pkC
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quality. These two indices are defined as  
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where LSL and USL are the lower and upper specification limits, respectively which 

are defined by the process engineers or the product designers, µ  is the process mean 

and σ  is the process standard deviation.  A larger value of  or  indicates 

better product quality and process capability. Conventionally, we use 
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minˆ . In general, the minimum requirement for  and 

 is 1.33. Some leading companies may set a higher standard, such as  and 

 >=2, to guarantee their competitiveness. Therefore, enhancing  and  is 

one of the major tasks for process engineers in the semiconductor industry. 
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Figure 4.6. Site locations in each wafer. 
 

As introduced in Chapter 1, the semiconductor manufacturing processes by lot 

batches with 25 wafers per lot. After completing each process step, we sample one or 
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several wafers from 25 wafers to measure the related parameters at 5-9 

pre-determined sites on each wafer as shown in Figure 4.6. In this example, the 

process parameter considered is the critical oxide thickness after one important 

diffusion process step during the semiconductor manufacturing. The data are 

measured at 9 sites (shown on Figure 4.6) for each sampled wafer and only one wafer 

was sampled from each lot from 2006/8/6 to 2006/8/12. In Figure 4.7, we illustrate a 

particular lot-trend and the histogram of the oxide thickness in which the error bar 

indicates the minimum and maximum values within each lot. Based on the product 

specification with USL =1850 and LSL=1550, the  and  are equal to 1.132, 

and 1.105, respectively. 

pC pkC

                           

(a) 
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(b) 

 
Figure 4.7. (a) The trend chart (b) The histogram of Oxide thickness from 

2006/0806 to 2006/08/12 Note that data count=9*1*35(site*wafer*lot), 
USL=1850, and LSL=1550. 

 
Table 4.4. The ANOVA result for tool effect. 

 Df Sum of Sq Mean Sq F Value Pr(F) 

tool 1 4480.967937 4480.967937 2.259479857 0.133806921 

Residuals 313 620737.0956 1983.185609   

 

Table 4.5. The ANOVA result for site effect. 

 Df Sum of Sq Mean Sq F Value Pr(F) 

site 8 409274.2921 51159.28651 72.49452748 0 

Residuals 306 215943.7714 705.6985994   

 

After applying the ANOVA analysis to the oxide thickness data summarized in 

Table 4.4 and Table 4.5, we found that the tool effect is not significant but the site 

effect is extremely significant. The site effects are also clearly seen from the box plots 
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by sites in Figure 4.8. Therefore, we apply the TCP method to partition these sites. We 

first define the tolerance to be 10% of the USL-LSL, which is equal to 30. We carry 

out the TCP method by running 5 independent chains with 200,000 iterations  

including 75,000 burn-in iterations. The convergence monitoring is plotted in Figure 

4.9. 
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1800

 

Figure 4.8. Box plots of oxide thickness by different sites. 

Finally, the posterior distribution for the partition is calculated based on the 

last 10,000 MCMC iterations, shown in Figure 4.10. The best partition has two 

groups {site1}, {site2, site3, site4, site5, site6, site7, site8, site9} (denoted as 

(122222222) in the figure for simplicity) and the posterior probability 0.60. Again, 

this result is consistent with the site phenomenon by the box plots in Figure 4.8 and 

related test results. After fine-tuning the process recipe, the site difference was 

eliminated and and  increased to 1.86 and 1.56, respectively. pC pkC
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Figure 4.9. Convergence monitoring: (a)  versus W , (b)  versus W , 
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Figure 4.10. The posterior distribution of the site partition (the partitions with 
probability less than 0.005 are not displayed). 

 

Similarly, for comparison, we perform the CART method with various 

cost-complexity values. The complete tree based on the CART method and the 

partition results under different cost-complexity are given in Figure 4.11 and Table 4.6. 

It turns out that the same partition result can be obtained by the CART method with 

the cost-complexity=9775. But, again, choosing an appropriate cost-complexity is a 

harder problem than setting a meaningful tolerance for engineers in practice. 

Therefore, TCP method is better method for engineers to enhance Cp/Cpk according 

their engineering tolerance controls. 

Furthermore, we suggest that we can integrate the TCP method into the 

capability enhancement procedure to form an automatic fine-tuning toolbox [27]-[29] 

as shown in Figure 4.12. This toolbox includes automatically detecting the site 
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differences and automatically adjusting the recipe to eliminate the site differences. It 

is expected to enhance the capability more efficiently and reduce a lot of workload for 

engineers. Based on the example, we illustrate TCP method can help engineers 

enhance Cp/Cpk performances. 

 

Table 4.6. Site partition results based on CART method with various cost complexity 
values. 

Partitioning result Cost-complexity

(1,2,3,4,5,6,7,8,9) 0 

(1,2,3,4,2,2,5,3,3) 20 

(1,2,3,2,2,2,4,3,3) 40 

(1,2,2,2,2,2,3,2,2) 200 

(1,2,2,2,2,2,2,2,2) 9775 

 

|

s_1

s_7

s_8 s_9

s_3

s_6

s_2 s_5

s_4

 

Figure 4.11. Tree structure for the site partition based on CART method. 
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Figure 4.12. Auto process capability enhancement mechanism by integrating 
ANOVA, TCP method and the auto-recipe-tuning tools. 
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5. Conclusion and Discussion 
 

In the semiconductor industry, yield enhancement is one of major challenges 

to make the companies profitable. Tool comparison is a key task for yield 

enhancement. After comparing the tool differences, engineers can identify the best 

groups or problematic groups of tools to enhance product quality or to reject the worst 

tools, respectively. 

From literature, ANOVA, the Kruskal-Wallis [5] test and the CART method 

[22] are among the most common methodologies used to compare tool differences [6] 

[7]. At each process step, the tools are compared by these methods. If a statistically 

significant difference is detected, an alarm is triggered and engineers perform further 

investigation. This process saves engineers a great deal of time in finding variance 

among sources and identifying abnormal tools. 

However, there are several phenomena by the existing methods to compare 

tool performances, such as the followings: (1) non-uniform tool usage in most process 

steps should be taken into account, (2) engineers still need to take time to identify 

problematic tools after detecting statistical significant differences. It is still very 

time-consuming, (3) there are many different methods by multiple pairwise 

comparison procedures [9]-[15], but all these methods could not directly partition 
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different treatments (or tools) into several homogenous groups to allow engineers to 

quickly understand the overall profile of several treatments (or tools), (4) several 

cluster approaches [16]-[19] that partition these tools in a balanced design based on 

the results of likelihood ratio test, Studentized range test, rank test, and simultaneous 

F-test at levelα  respectively, however they may get too many partition groups with 

small differences when the number of observations for each tool is large, and (5) there 

are many different values of the parameters in the pruning methods to develop 

different sizes of trees by CART method that are difficult to be related to the tolerance 

and related criteria used by engineers, and this phenomenon generates the problem of 

parameter selection to users. 

To sum up, there are three major challenges in tool comparisons: (1) to take 

into account of unbalanced tool usage in manufacturing processes, (2) to further 

partition these tools into several homogenous groups by related metrology results 

instead of detecting only the significant differences, and (3) to partition these tools 

and get a reasonable partition result according to engineers’ tolerance controls. 

However, existing methods can not solve these challenges very well. 

We propose a TCP method to overcome these challenges. In Section 3.1, we 

showed that the TCP method can reduce the influences of unbalanced data by several 

simulation cases. In Section 3.2, we showed TCP method can partition the tools into 

 



 60

several homogenous groups according to engineers’ tolerances. In Section 3.3, we 

showed the robustness of TCP method with non-normal data.  

In comparisons with CART methods, the TCP method can automatically 

partition tools into several homogenous groups with the built-in control of tolerance in 

engineering. Therefore, it also resolves the difficulty of determining related 

parameters for the CART methods. Instead of using a hierarchical tree structure as 

CART does, the posterior distribution of the partition is used to discover the 

partitioning structure of tools. We also provide a method that includes the set-up of 

initial values and the integration with the natural concept of tolerance in the 

engineering to facilitate its practice for engineers.  

Using two real applications from the semiconductor industry, we not only 

show that our method could provide correct information for engineers to enhance 

yield/process capability, but we also provide an idea to build a practical mechanism 

by integrating engineers’ daily work flow and the capability of the most advanced 

tools. This idea will make it much easier for engineers to realize the performance 

differences among tools (or treatments) and enhance the yield and process capability. 

In the semiconductor industry, the TCP method could also be applied to all 

similar cases such as recipes or material comparisons. The TCP method can also be 

applied in multiple comparison problems [48].  
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6. Future Works 
 

There are many potential extensions of the TCP method for future work. Tools 

with unequal variances and other types of distribution models are natural extensions 

for practical engineering applications. All of the above cases could also be extended to 

a multivariate situation for engineers to perform simultaneous comparisons on a 

collection of responses.  

We also can investigate the integration of the Bayesian hierarchical model and 

the random variable for dimension matching in RJMCMC for the Bayesian CART 

Model. With built-in control of tolerance in engineering, this will resolve the 

difficulty of pruning and regrouping in the Bayesian CART methods. We could extend 

the methodology of the TCP method to a regression trees.  

Finally, we can develop a new method to automatically judge the convergence 

of the TCP method such that the TCP method will become a fully automatically 

partitioning method.  

Based on the advantage that the TCP method can automatically partition tools 

to several homogenous groups according engineers’ tolerances, another important 

extension is to develop an automatic system to integrate the TCP method with the 

ANOVA and the Kruskal-Wallis test. Therefore, it will be possible to automatically 
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alarm possible excursions in automatic process control (APC) [27]-[29]. Thus, we 

would provide more improvements for automatic process control by statistical 

methods in the semiconductor industry. 
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7. Appendix 

 

Appendix A. Introduction of regression trees 

 

 The methodology of classification and regression trees (CART) [22], is a 

recursive partitioning algorithm to partition data into several homogenous groups. 

Classification trees and regression trees are applied for categorical response and 

continuous response, respectively. The following figure, Figure A.1, makes a brief 

introduction using a graphical representation to construct the trees. In our research, 

the type of our response is continuous, so we only focus on the introduction of 

regression trees in the followings below. 

Suppose our data consists of p input variables and a response, for each of N 

observations: that is, ( ,  ),  1,  ...,  ,i ix y i N=  with 1 2( ,  ,  ...,  )i i i ipx x x x= . The algorithm 

will automatically decide the splitting variables from and split points. 

Suppose first that we have a partition into 

1 2( ,  ,  ...,  )i i ipx x x

κ  regions 1 2,  ,  ...,  R R κR

k

. Then our 

response model is denoted by  

1

( ) ( )m
k

f x c I x R
κ

=

= ∈∑                       (A.1) 

where  is a constant in each region. mc
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Figure A.1 Construction of a tree. 

 

 If we adopt minimization of the sum of squares 2( ( )i iy f x− )∑  as the criterion 

for split rule, we will use  to estimate , where  is the average of  in the 

region 

ˆmc mc ˆmc iy

kR . 

m
ˆ average( | )i i mC y x= R∈                     (A.2) 

 We will illustrate the regression trees in three sections. We will present how to 

find the best splitting variable and split point to partition the data at each node in A.1 , 

how to decide the tree size in A.2, and how to view the tree result in A.3.  
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A.1. How to find the best splitting variable and split point to 

partition the data at each node 

 Start from all of the data and choose a splitting variable jX . If the split variable 

jX  is continuous variable, then a split point s will define the pair of half-planes 

1 2( , ) { | } and ( , ) { | }jR j s X X s R j s X X= ≤ = j s> .           (A.3) 

If the split variable jX  is categorical variable, then we find a split set s and split data 

into the pair of half planes  

1 2( , ) { | } and ( , ) { | }j jR j s X X s R j s X X s= ∈ = ∉

i

1 j s
j s

. 

    To seek the best splitting variable j and split point (or split set) s by solving 

1 2
1 2

2 2
1 2, ( , ) ( , )

min[min ( ) min ( ) ]
i i

ij s c cx R j s x R j s

y c y c
∈ ∈

− + −∑ ∑          (A.4) 

For any choice of j and S, the solution of  and  are estimated by  and 

, where  and  are as follows below. 

1c 2c 1̂c

2ĉ 1̂c 2ĉ

1

2 2

ˆ average( | ( ,  ))
ˆ average( | ( ,  ))

i i

i i

c y x R
c y x R
= ∈
= ∈

                  (A.5) 

 We partition the data into two resulting regions and repeat the splitting process 

on each of the two regions. Then the process will grow a tree step by step and split the 

data into several terminal nodes.  
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A.2. How to decide the tree size 

 

 How large should we grow the tree? A large tree might over-fit the data; on the 

contrary, a small tree might not describe the important structure. Tree size will be a 

parameter to control the model’s complexity. So how to choose a reasonable tree size 

is very important in CART algorithm. 

Traditionally, there are two ways to prune trees for choosing a tree size. One is 

pre-pruning, and the other is post-pruning. The algorithm of pre-pruning is setting 

some criteria to determine how to stop growing the tree from growing, and the 

algorithm of post-pruning is pruning a tree by some criteria after growing a complete 

tree. Since the criterion in pre-pruning is difficult in determining the value, we will 

use post-pruning to choose the tree size in our research. 

Cost-complexity pruning is one of the popular pos-pruning methods. Suppose  

is a tree getting from the splitting method as in A.1. 

T

T  is the number of terminal 

nodes in , then we partition all of the data into T T  regions. We index terminal 

nodes by , and we represent the respective region by k kR . Suppose  

1ˆ
i k

k
x Rk

c
N ∈

= iy∑                          (A.6) 

21 ˆ( ) ( )
i k

k
x Rk

Q T y c
N ∈

= ∑ i k− ,                    (A.7) 

the cost complexity criterion is represented by 
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| |

1

( ) ( )
T

k k
k

C T N Q T Tα α
=

= +∑ ×                      (A.8) 

where  

kN  is the number of the observation data falling in the region kR . 

k T is the index of terminal nodes on the binary tree . 

T  is the number of terminal nodes in , and. T

α  is the cost-complexity ( ). 0α ≥

 For given a cost-complexityα , we can get a subtree Tα of to minimize . 

From this formula, we can find the larger value 

T ( )C Tα

α , the smaller size of subtree Tα  

that we will get. For given each valueα , we can get a unique smallest subtree Tα . If 

, we can get a full tree.  0α =

As the meaning of cost-complexity α  is difficult to connect with the concept 

of engineering tolerance control, so engineers are hard to choose a correct 

cost-complexity α  in order to get a reasonable tree size.  

 

A.3. How to view the tree result  

 

The structure of tree is very important information from regression tree 

algorithm. We can realize the similarity in our data. The data which belong into the 

same terminal nodes means they have the highest similarity by regression tree 
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algorithm. When the data does not belong to the same terminal nodes, it will split into 

different terminal nodes later if the data is more similar. So we could realize the 

similarities of tool performances by the tree structure in our research. We illustrate the 

result of Case I in section 3.1 as an example of how to read the tree structure. 

 

Table A.1. Partitioning results with respect to different values of cost complexity 
in the CART model for the simulated data in Case I. 

 
Partitioning result Cost-complexity

(1,2,3,4,5) 0 

(1,1,2,2,3) 1 

(1,1,1,1,2) 90 

|

T1 T2 T3 T4

T5

 

Figure A.2. A tree obtained by the CART model for section 3.1. 

 

From Table A.1, we will get the partition result (12345) when the 

cost-complexity is 0; that is each tool is partitioned into different group. If we set 

cost-complexity is 1, we will get the partition result (11223); that is the tools T1 and 
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T2 belong to one group, T3 and T4 belong to one group, and T5 belong to another one. 

We also can get the same information from the structure of the tree in Figure A.2. As 

the similarity of T1 to T2 is higher than that of T1 to T4, the time that T1 and T2 split 

into different groups is later than that of T1 and T4. As such way, we can understand 

the similarity among T1, T2, T3,T4, and T5 by the tree structure. 
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Appendix B. The introduction of Gibbs sampling 

 

Gibbs sampling, also called alternating conditional sampling, is a particular 

Markov chain algorithm and useful in many multidimensional problem. It is named 

by Geman and Geman [49], who used it for analyzing Gibbs distributions on lattice. 

Nevertheless, the works of Gelfand and Smith [50] and Gelfand et al. [51] introduced 

Gibbs sampling into the mainstream statistics. To date, most statistical applications of 

MCMC have used Gibbs sampling. 

Suppose ( | )P y θ  is the data distribution with d-dimensional parameter vector 

1 2( , ,..., )dθ θ θ=θ  and ( )P θ  is the related prior distribution, then ( , )P yθ  is the 

joint density of θ and y with ( , )P y =θ ( | )P y θ  ( )P θ  and ( | )P yθ  is the 

posterior density with ( , ) ( | ) ( )( | ) ( | ) ( ).
( ) ( )

P y P y PP y P y P
P y P y

= = ∝
θ θ θθ θ θ  For 

Bayesian inference, our target density is the posterior density ( | )P yθ , then we can 

use Gibbs sampling to construct a Markov chain which will converge to the target 

density ( | )P yθ .  

Suppose ( | ,j j )P yθ −θ  is the conditional distribution given all other 

component of θ , where j−θ  represents all components of θ , except for jθ . The 

illustration about how to construct a Markov chain by Gibbs sampling is as follows: 
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At each iteration t, we can choose one of the components of jθ  to update. 

When we select to update the jth component jθ  of θ , t
jθ is sampled from the 

conditional distribution 1( | ,t
j j )P yθ −

−θ  where t
jθ  represents the jth component 

of θ  at iteration t  and 1t
j
−

−θ  represents the all the components of θ , except for 

jθ , at their current values of the iteration t-1.  By repeating such iterations, we 

construct a Markov chain. If the Markov chain satisfy irreducible and aperiodic 

properties, then it will converge to our target density ( | )P yθ .  

Therefore, if we can get the conditional distribution ( | , )j jP yθ −θ  for j=1, …, 

d. we could construct the Markov chain by Gibbs sampling. 
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Appendix C. The derivation of conditional distributions in 

TCP method  

 

In the Appendix C, we present the inductions for the conditional distributions of 

all parameters in Θ  = { 1θ , 2θ ,…, Jθ , , 2σ 1µ , 2µ … κµ , and } based on a  

given partition g . At the followings, we will use the notation of 

2τ

jθ−Θ  to indicate the 

set of all parameters except the parameter of jθ  

 

C.1 jθ |
jθ−Θ   ~ Normal (

j

j

a
b

2
,

ja2
1 )                               

where .
2 2( )j jk

j
n y

b µ
τ σ

= + ,  2
1( )

2 2
j

j
n

a 2τ σ
= +  for kSj∈ , and j =1,2 ,… , J,

and jn  is the number of observations for tool j.  

<Proof>  

P( g, µ , , 2τ θ , , )= 2σ y

2
( ) 2

1
2 2

( )
( )

2 2 22 2
2 2

1 1 1 1

1 1( ) ( | , ) ( ) ( ) ( ) ( )
2 2

j k j Sk
ij jk j

I
ynJ J

k
k j j i

P g P g P e e P

κ
θ µ

θκ
τ σµ τ τ

πτ πσ
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=

− −
− −

= = = =

⎡ ⎤∑ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

∏ ∏ ∏∏ σ

where   µ = 1 2( , , ..., )t
κµ µ µ , θ = 1 2( , , ..., ) t

Jθ θ θ ,  

and the partition is , 
1

k
k

g S
κ

=
= U
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Appendix D. The derivation of acceptance probability in 

TCP method 

 

Following the introduction of RJMCMC in Section 2.1, the acceptance 

probability R of jumping from current Model kM (that is, ( , )kk θ ) to new model 

'kM (that is, '
'( , )kk θ ) is the minimum of {1 , A}. The detailed formula of A is as 

follows below: 

   , '' ' ' '

'

( , )( | , ') ( ) ( ') ( ) ( ' | , ', )
( | , ) ( ) ( ) ( ) ( | , , ') ( , )

k k kk k k k k

k k k k k k

g vp y k p p k J M M q v k kA
p y k p p k J M M q v k k v

δ θθ θ θ
θ θ θ δ θ

→
=

→
 (A.1) 

where is proposal jump probability for a jump from 

current Model 

'( kJ M M→ )k

kM to model 'kM , 

( | , , ')kq v k kθ is a proposal density for dimensional matching,  

, ' ( )k kg ⋅  is a bijection function between ( , )k vθ and '( , 'k v )θ  

with '( , ') , ' ( , )k k kg vθk vθ = . 

Hence, A = LR * PJR*PBD*J,  

where LR = ' '( | , ') ( ) ( ')
( | , ) ( ) ( )

k k

k k

p y k p p k
p y k p p k

θ θ
θ θ

 is the likelihood ratio of two Models, 

PJR= '

'

(
( )

k

k k

)kJ M M
J M M

→
→

 is the proposal jump probability ratio, 

PBR= '( ' | , ', )
( | , , ')

k

k

q v k k
q v k k

θ
θ

 is the proposal probability ratio,  

and J= , ' ( , )
( , )

k k k

k

g v
v

δ θ
δ θ

 is the Jacobin of bijection function , ' ( ,k k kg v )θ . 
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At first, we consider the birth move type: the current partition  with 

degree 

(1)g

)1(κ  jump to the new partition  with degree (2)g (2)κ = ( )1(κ +1) by 

choosing a group which included at least two tools from  to split randomly. 

Since the length of 

(1)g

1( )µ
uuuv

= ( 1µ , 2µ , … )1(κµ ) also increases by one, we add a new 

random variable z that is independently distributed as Normal ( zµ , 2
zσ ) for dimension 

matching. Suppose that we choose the group  from to split into two new 

groups  and . Let 

kS (1)g

1kS
2kS kµ  be the current value and 

1kµ , 
2kµ  be the new 

values for the two groups  and . Then we set  
1kS

2kS
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2

k

k

w

w
z ,  
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1
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k

w

w
z ,                       (3) 
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with = + , = , and kw
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2kw
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1kS ∩
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kµ−

(1)µ
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} {∪
1kµ ,

2kµ } and ={)2(g (1)
ksS − } { , }, and 

then we replace these densities in (A.1) according to our data distribution, prior 

distributions, proposal jump probability and bijection function in TCP, we can have 

∪
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As A= LR * PJR*PBD*J, we substitute LR, PJR, PBD, and J into A 

Therefore, 

A =
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where )(iκ  is the degree of , for i=1,2, with )(ig 1)1()2( += κκ ,  

the partition is , 
( )

( ) ( )

1

i

i i
k

k
g S

κ
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(1){#  of  in }k kw j S= ,  

kw
1  is the Jacobian, and  is the p. d. f. of  z, )(zf

and we get the acceptance probability is min{1, A} for the birth type. 

     Without loss of generality, since the death move type is the reverse of the birth 

move type, we can get the acceptance probability is min{1, 1/A} for the death move 

type. 
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