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ABSTRACT

In this dissertation, we investigate the dependent relationship between two failure time
variables which have a truncation relationship. Chaieb et al. (2006) considered
semi-parametric framework under a *“semi-survival” Archimedean-copula assumption and
proposed estimating functions to estimate the association parameter, the truncation probability
and the marginal functions.

In the first project, we adopt the same model assumption but propose different estimating
methods. In particular we extend Clayton’s conditional likelihood approach (1978) to
dependent truncation data for estimation of the association parameter. For marginal estimation,
we propose a recursive algorithm and derive explicit formula to obtain the solution. The
functional delta method is applied to establish large sample properties which can handle more
general estimating functions than the U-statistic approach. Simulations are performed and the

proposed methods are applied to the transfusion-related AIDS data for illustrative purposes.



Quasi-independence has been assumed by many inference methods for analyzing
truncation data. By forming a series of 2x2 tables, we also propose a weighted log-rank
statisitcs for testing this assumption, which is our second project. Power improvement is
possible by choosing an appropriate weight function. Here, we derive score tests when the
dependence structure under the alternative hypothesis is specified semiparametrically.

Asymptotic analysis and simulations are used to justify our proposed methods.
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Chapter 1 Introduction

1.1 Motivation and Background

In the thesis, we consider a pair of failure times (X,Y) which can be included in the
sample only if X <Y . The variable Y is said to be “left truncated” by X and X is said
to be “right truncated” by Y . In many applications, usually one variable is of major interest
while the other is nuisance. The book by Klein and Moeschberger (2003) mentioned an
example which studied the survival distribution for elderly residents in a retirement center. In
the example, X denotes a subject’s age of entering the retirement community and Y
denotes the lifetime for the person. Notice that only those who had lived long enough to be
eligible for joining the retirement community could be included in the sample. Therefore the
truncation scheme has to be taken into account in:the development of inference methods for
Y . Most nonparametric inference methods for truncation data assume independence between
X and Y (e.g. Lynden-Bell, 1971 and: Woodroofe, 1985). Under this assumption,
Lynden-Bell suggested to estimate Pr(Y >t) based:an the product-limit expression of this
quantity and thereafter many nice properties of the Kaplan-Meier estimator for right censored
data have been extended to the truncation setting.

Unlike the situation of right censoring in which the independent censorship assumption
is not testable, Tsai (1990) claimed that the independence assumption can be relaxed to a
weaker assumption of “quasi-independence” and the latter can be verified nonparametrically.
Tsai (1990) introduced a measure of “conditional Kendall’s tau” which was later applied to
different truncation settings by Martin and Betensky (2005). Tsai also proposed a test of
quasi-independence based on this measure. Alternatively, Chen, Tsai, and Chao (1996)

suggested a conditional version of Pearson’s product-moment correlation coefficient, denoted

as p,., to measure the association between X and Y . Based on the sample version of p_,

they proposed a test for quasi-independence. However the method based on p. can not be
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extended to the more general situation that also includes right-censoring.

InfectMs/\

Y
Start End

Figure 1.a: individuals with X <Y can be observed.

/T\/X\‘\‘
Infecvtion\ AIDS

Y
Start End

Figure 1.b: individuals with ' X.> Y-, can not be observed.

In some applications, X and Y “‘may be correlated and their dependent relationship is
of interest. Tsai (1990) applied his testing procedure to an example of transfusion-related
AIDS study. Let T be the infection time of individuals, measured form the beginning of the
study, and X be the incubation period from the time of infection to AIDS. Only individuals
who developed AIDS by the end of study can be observed (see Figure 1.a). Since the total
study period is 102 months, individuals with T + X <102 were included in the sample.
Using the notation 102—-T =Y , we view X as being right truncated by Y . Primary
interest on this study focuses on the incubation distribution X . Dependence between X
and Y might be of secondary interest. However applying Tsai’s method (1990), the
assumption of quasi-independence was rejected. Positive association between X and Y
means negative association between T and Y . That is the earlier the infection time, the
larger the length of incubation. This surprising finding might shed some light on the study of
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population dynamics of AIDS.

Recently Chaieb et al. (2006) proposed a semi-parametric inference approach to
assessing the dependence between X and Y under the assumption that the two variables
jointly follow a modified version of an Archimedean copula (AC) model which adapts to the
nature of truncation. Copula models have the nice feature that the dependence structure is
modeled separately from the marginal effects. Semiparametric inference of copula models has
received substantial attentions in the literature. There exist several ways of estimating the
association parameter, for a specific copula model or a class of copula models, without
specifying the marginal distributions. One popular approach, which has been taken by Oakes
(1986) for right censored data and by Fine et al. (2000) for semi-competing risks data, is to
utilize the concordance or discordance information for pairs of observations. This idea has
been taken by Chaieb et al. (2006) in.analysis of dependent truncation data. Compared with
the previous results, the new challenge.is that the-association parameter can not be estimated
without knowing the truncation probability. Hence the-paper of Chaieb et al. (2006) also
considered estimation of the truncation‘probability-and the marginal functions. Their proposed
algorithm can be considered as an extension of the method by Rivest and Wells (2001) who
considered the situation of dependent censoring.

The dissertation contains two parts, both of which deal with possibly correlated
truncation data. The first project was motivated by the paper of Chaieb et al. (2006) but a
different inference approach is proposed. Besides proving a new method, we also aim to unify
the two different types of inference approaches under a general framework. In the second
project we study the problem of testing quasi-independence. Specifically we construct a
testing procedure similar to the setup of the weighted Log-rank statistics constructed based on
a series of two-by-two tables. The proposed test is nonparametric in the sense that no model
assumption is needed. We also derive an equivalent expression of the proposed test statistics
which allows us to compare different methods under the same framework. It turns out that the
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proposed test statistic can be viewed as a generalized version of some existing tests including
Tsai’s test (1990). Furthermore, in both projects, the likelihood information is utilized to

improve efficiency of the proposed estimator or power of the proposed test.

1.2 Overview of the Dissertation

Literature review is given in Chapter 2. The first part focuses on bivariate analysis in
which some common association measures and models for lifetime variables are introduced
and related inference results are reviewed. In particular the family of copula models and its
sub-class, Archimedean copula models, are discussed. Different semi-parametric inference
approaches developed for analyzing data which follow copula models are examined.
Specifically we focus on three methods of constructing an estimating function of the copula
association parameter. One is the conditional-likelihood, approach which first appeared in the
landmark paper of Clayton (1978) for bivariate censored data. The second approach utilizes
concordant information of paired observations.and-has been applied to bivariate censored data
by Oakes (1986), Fine (2001) for semi-competing risks data and Chaieb et al. (2006) for
dependent truncation data. The third approach suggests to construct estimating functions
based on a series of two-by-two tables which has been applied by Day et al. (1997) and Wang
(2003) in analysis of semi-competing risks data. In the second part of Chapter 2, we review
the literature on marginal estimation. The idea of product-limit expression has been used to
construct the Kaplan-Meier estimator and the Lynden-Bell’s estimator under independent
censoring and (quasi-) independent truncation respectively. Many papers have studied the
situation when the assumption of independence fails. We will review the papers which use
copula models to specify the dependence relationship.

Chapters 3 and 4 contain our results for the two projects. Specifically, in Chapter 3, we

consider semi-parametric inference based on semi-survival AC models under the framework



proposed by Chaieb et al. (2006). Besides proposing a new inference approach which turns
out to be more efficient, we also establish the relationships among different estimating
functions. The unified framework allows us to compare different methods in a systematic way
and hopefully such analysis can facilitate future development of statistical methodology or
inference theory. In Chapter 4, we consider the problem of testing quasi-independence for
truncation data. We propose a general class of test statistics which include some existing tests
as special cases. In addition, we discuss how to incorporate additional likelihood information

provided by the alternative hypothesis to improve the power of the test.



Chapter 2 Literature Review

2.1 Association Measures and Copula Models

To simplify the analysis, let (X,Y) be a pair of continuous failure time variables.

Kendall’s tau, denoted as 7, is a rank-correlation measure which is often used to describe the

level of global association between X and Y . Let (X;,Y;) and (X;)Y;) be two
independent replications of (X,Y) and A; = I{(X; - X;)(Y; -Y;) >0} indicates whether
the two pairs are concordant (A; =1) or discordant (A; = 0). Kendall’s tau is defined as

7 =Pr((X, = X,)(Y, = Y,) > 0) = Pr((X, - X )(Y, - Y,) < 0)
= Pr(A, =) —Pr(A, =0) (2.1)
= 2E(a,) -1

We note that 7 has the nice property: of rankjinvarianee since its value is unchanged by

both linear or nonlinear increasing:transformations. For measuring local dependence or

time-varying association, Oakes (1989) proposed:the following cross ratio-function:

F(x.y) = 0% Pr(X > XY syl oxoy - Pr(X > x,Y > y) 2.2)
’ OPr(X > x,Y > y)/dx-0Pr(X >x,Y >y)/oy '

Note that §(x, y) =1 implies independence at time (X,Y), §(x, y) >1 implies positive
association and §(x, y) <1 implies negative association respectively. Oakes also derived
another useful expression of 7] (x,y) as the odds ratio of concordance for the (i, j) pairs

given that ()? ﬂ.):(x, y) . It follows that

ij?

B Pr(Aij =1|

o0) = Pr(A; =0

. 23
) (2.3)

Xy =xY;=y)
Xy =XY; =
The two expressions in (2.2) and (2.3) are useful in the development of inference methods for
copula models which be introduced later.

Modeling provides a systematic way of describing the behavior of random variables.
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Copulas form a class of bivariate distribution functions whose marginals are uniform on the
unit interval (Genest and MacKay, 1986). In applications of lifetime data analysis, the copula
structure is usually imposed on the joint survival function such that one can write

Pr(X > x,Y > y) =C{Pr(X > x),Pr(Y > y)},
where the function C(u,v):[0,1]> ->[0] can be viewed as the survival copula of

(X,Y) (Nelsen, 1999, p.28). When the copula function is parameterized as C,(u,v), the

parameter « s related to Kendall’s tau such that

1
T :4j
0

The copula family has the nice feature that the dependence structure can be studied separately

C,(u,v)C,(du,dv)-1.

a

O ey

from the marginal distributions. In practical applications, the association parameter « is
often the major of interest and can be estimated without specifying the marginal distributions.
We will review existing semi-parametric inference ‘methods developed for copula models
later.

Archimedean copulas (AC) are special _copula models which possess useful analytical

properties. For an AC model, the bivariate copula function C_(u,v) can be further
simplified as

C,(uv)=¢, {4, () +¢, ()} for uve[0]], (2.4)
where ¢_(.):[01] —[0,0] is a univariate function which have two continuous derivatives
satisfying ¢, (1) =0, ¢ (t) =0¢, (t)/ ot <O0and ¢’ (t) =0%4,(t)/ot> >0. A special property

of AC models is that the bivariate relationship can be summarized by the univatiate function

¢,() . In applications, selecting an appropriate Archimedean copula model refers to

identifying the form of ¢_(.). For an AC model indexed by ¢, (), Oakes (1989) showed that

0" (x,y) =6 {Pr(X > x,Y > y)}, where ¢, () isa univariate function satisfying



0,(V)=—v- 4 (V)/ 4, (V). (2.5)
When ¢, (t)=—-log(t) , X and Y are independent. For the Clayton model with

g, ()=t -1 (a>1),itcan be shown that 8, (v)=«.

2.2 Semi-parametric Inference for Survival-copula Models

There have been substantial interests in developing inference methods for estimating the
association parameter of a copula model without specifying the marginal distributions. Most
results have been derived for survival copula models in which the copula structure is imposed

on the joint survival function as mentioned earlier. Early work focused on the Clayton model

(Clayton, 1978), a member of the AC family with ¢ (t)=t"“"-1 (a>1) and

§(x, y) = . Clayton (1978) proposed:to maximize a product of conditional probabilities and

later his estimator was re-expressed by Clayton and Cuzick (1985) as a weighted form of
Oakes’ concordance estimator (Oakes; 1982)..The new representation is related to a
U-statistics which turns out to be useful inthe establishment of asymptotic properties (Oakes,
1986).

There has been a trend to develop unified inference approaches suitable for a class of
copula models rather than a single member, say the Clayton model. The approach of
two-stage estimation has been adopted by Genest et al. (1995), Shih and Louis (1995) and
Wang and Ding (2000) for complete data, bivariate right censored data and current status data
respectively. Specifically C_(u,v) can be viewed as the joint survival function of
U=S,(X) and V=S,(Y), where S, (t)=Pr(X>t) and S, (t)=Pr(Y >t). If the
marginals were completely specified, then a random sample of (U,V), denoted as
U,,V,))=(5,(X,),S,(Y,)) (=1..,n), or its censored version can be obtained in

construction of the likelihood for « . However since the marginals are unspecified, a random



sample of (U,V) is not available. These papers suggested a two-stage estimation procedure.
In the first stage, the marginal distributions are estimated by applying existing nonparametric
methods. In the second stage, the marginal estimators are treated as “pseudo observations” in
the likelihood constructed based on C,(u,v). Despite of its simplicity, this approach
becomes infeasible when the data involve dependent censoring or other complicated situations
so that the marginal distributions become non-identifiable nonparametrically.

Semi-competing risks data provides such an example in which one variable is a
competing risk for the other but not vise versa and hence the aforementioned two-stage
estimation procedure is not applicable. For semi-competing risks data., two different
approaches have been adopted. Specifically Day et al. (1997) and Wang (2003) constructed
estimating functions, in the form of the log-rank statistics, based on a series of two-by-two

tables in which the odds ratio of the table reveals the information of association. Day et al.
(1997) considered the Clayton model with 0 (Xy¥) = -and Wang (2003) extended the idea

to the whole AC family using the properties of (2.5), The second approach was proposed by

Fine et al. (2001) who utilized equation /(2.3) to" construct an estimating function for the

Clayton model based on the concordance indicator A; whose expected value contains the

information of « .

2.3 Association Measures and Copula Models Suitable for Truncation Data

For truncation data, we observe (X,Y) only if X <Y . Hence joint analysis has to be
restricted in the upper wedge R, ={(X,y):0 < x <y <oo}. Consequently the aforementioned
descriptive measures and models may not be directly applicable to describe (X,Y) if they
have a truncation relationship.

Kendall’s tau defined in (2.1) is obviously not identifiable for truncation data. Tsai (1990)



suggested to consider the event Aijz{a):)zij(a))SY:j(a))}, where X, =X, v X, ,

ﬁj =Y, AY;. Notice that under the truncation scheme, as long as (Xij,ﬂj)eRU, or

equivalently Xij S\Fij , it follows that (X;Y;) and (X;,Y;) are both in R, . By
conditioning on the event A, , Tsai proposed the modified version of Kendall’s tau such that
T, =2E(A; | A) -1, (2.6)

where (X;,Y;) and (X;,Y;) be two independent replications of (X,Y), which are known

to satisfy the truncation scheme with X; <Y; and X; <Y, given A;. The measure 7, is

a well-defined measure for truncation data.
To measure local dependence for truncation data, Chaieb et al. (2006) adopted Tsai’s idea

to modify equation (2.3). Specifically-for x <-y-they proposed to consider

(2.7)

N Pr(A; =0]
0 (X!y): 1

Pr(Aij I |

;)= (xY))
i) =

()Zij X
X)) = (% y))

The value of 8°(x,y) can be interpreted in'the'same way as §(x, y) . Notice that 8" (x, y)
in (2.7) and §(x, y) in (2.3) differ in the way of choosing the corner position. Specifically

for §(x, y), the corner is chosen to be ()Z \7”) = (X; A X;,Y; AY;) while, for truncation

ij

data, the corner is (X \7”) = (X; A X;,Y; vY;). The measure §(x, y) is not appropriate for

ij

truncation data since given (X \7”.) e Ry, itisstill possible that (X;,Y;) or (X;,Y;) may

ij?

fall outside R, . In contrast, by choosing (X Y~ij) as the target in making the conditioning

ij

arguments, the two points will fall in R, .

For truncation data, Chaieb et al. (2006) suggested to impose the model structure on the

“semi-survival” function, defined as Pr(X <x,Y>y) (x<y), which is a more natural
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descriptive measure than the joint survival function Pr(X >x,Y >y). Furthermore since no
information is available in the lower wedge {(X,y):0<y<x<o} , the function
(X, ¥y)=Pr(X <x,Y >y| X <Y) can be identifiable nonparametrically while Pr(X <x,Y >vy)
is not. Accordingly, adapting to the nature of truncation, Chaieb et al. (2006) suggested to

impose the AC structure on 7z(x,y) such that

7%, Y) =4, [gF (O} + .45, (NH/c  (x<vy), (2.8)

where F, () and S, (-) are continuous distribution and survival functions respectively and

¢ isaunknown normalizing constant satisfying

2

.
= [[- gy ¥ 1AR 00} 445, (N by (2.9)

X<y

Note that under model (2.8), the normalizing constant ¢ may not be the truncation
proportion Pr(X <Y), but it makessthe model-(2.8) to have a valid density function. Note

that when ¢, (t) = —log(t) , quasi-independence between: X and Y holds.

2.4 Statistical Inference for Truncated Data under Quasi-Independence

For truncation data, we observe (X,Y) only if X <Y . Replications of (X,Y) are

located in the upper wedge R, ={(X,y):0<x<y<o} . The sample consists of

{(X;,Y;)(1=1...,n)} subject to X,;<Y, . We can consider the sample

J J
{X;,¥Y))(i=%....n)} as iid from the cumulative distribution  function

H(X,y)=Pr(X <x,Y<y|X<Y). Let X and Y Dbe positive independent random
variables having the marginal distribution functions Pr(X <x) and Pr(Y <y). The
independence between X and Y cannot be tested from data since the information for the

lower wedge is unavailable. Thus, the independence assumption
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H(x,Y) = jf I (u < v)dPr(X <u)dPr(Y <v) ”I(u <v)d Pr(X <u)d Pr(Y <V)

usv
may not be acceptable unless independence between X and Y is known from prior

knowledge. Instead, Wang, Jewell and Tsai (1986) assumed the model,
Xy

Hy: H(X Y)= ” | (u <Vv)dF, (u)dF, (v)/c,
00

where F, andF, are arbitrary distribution functions and c is the normalizing constant
satisfying

¢ = [[dFy ()dF, (v).

X<y

Tsai (1990) called the assumption under H, as “quasi-independence”.
Using the semi-survival function, the,  assumption of quasi-independence can be
simplified as
Hy: Pr(X <x¥Y >y X £Y)=F (X)S,(y)/c,
where F, and S, are arbitrary right continuous:distribution and survival functions, and c,

is the normalizing constant satisfying

Co =~ [[dFy (x)dS, ().

X<y

Define the support of X as [x.,x,] , where x =inf{u;F,(u)>0} and
X, =sup{u; F, (u) <1} . Similarly define the support of Y as [y, y,] ., where
y, =inf{u;S, (u) <1} and vy, =sup{u;S, (u) >0}. It is usually assumed that x, <y, so
that ¢>0 . In general, the true distributions F, and S, cannot be estimated
nonparametrically without further assumptions. However the following conditional

distributions are estimable:
Fo(X)=Pr(X <x|X <vy,,Y =x), SO(y)=Pr(Y >y|X <vy,,Y >x).
Under the assumption of quasi-independence, Lynden-Bell (1971) derived the nonparametric

maximum likelihood estimators (NPMLE) for the two marginal distributions which can be
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expressed as following explicit formula:

~ 3 _ R(u,0)-R(u-,0) 2 B _ R(0,u) —R(o0,u+)
Fx(X)—g{l R(U.U) } SY(y)—g{l R(U.U) } (2.10)

where R(X,y) = Z I(X; <Xx,Y; > y). Woodroofe (1985) showed the uniform consistency
j=1

results
SUP,..o | Fy (X) = FX () [—2=05 sup,., IS, (¥) - SP(y) | ——0.
Wang et al. (1986) derived a simple asymptotic variance for the Lynden-Bell’s estimator,

which turns out to be an analogy of the asymptotic variance of the Kaplan-Meier estimator. A

necessary condition for the above Lynden-Bell’s estimators to be consistent estimators for
F, and S, isthat x, <y, and x <y, sothat F, =F7 and S, =S/. In other words,

there exists two positive number y, < x, such that

Fu(Y) >0, S, (yp) =1, sbp(x,) =1 and S, (x,)>0.

2.5 Statistical Inference for Dependent Truncation Data
Recall the modified version of Kendall’s tau proposed by Tsai in (2.6):

T, = 2E(Ay [A)) -1
Based on the sample consists of {(X;,Y;)(j=1...,n)} subject to X, <Y,, Tsai (1990)

proposed to estimate z, by

ngn{(xi - Xj)(Yi _Yj)}I{Aij} ZAij : I{Aij}
r = =2.= -1. 2.11
- > A} > {A} (@11)

i<j i<j

Under the semi-survival AC assumption in (2.8), Chaieb et al. (2006) proposed to

estimate « by utilizing the concordant information provided by A; since its (conditional)

expected value reveals the information of « . Their idea can be viewed as an extension of the
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methods by Clayton and Cuzick (1985) for bivariate right censored data and by Fine et al.

(2001) for semi-competing risks data. Specifically under the semi-survival AC model

assumption, it follows that

1
1+ 6 {cz(x,y)}

E(A; (X, Y) =(x y) e A) =

where the relationship between 6, (.) and ¢, (.) isgiven inequation (2.5). Accordingly

they proposed the following estimating function:

. o 1
U, («,c) —gl{Aij}Wa,c(Xij’Yij) A; _1+9a{C7%(>Zij'Y:j)} ’

where W, (X,y) isaweight function and

7(X,Y) :anl(xi <xY, >y)/n.

i=1
Note that when w, .(x, y) =1, the above estimating function is equivalent to

> [L-6,{c (X, G A0, {eal X, Y, HI{A}

~ i<j

. > A}

i<j

where the right-hand side can be viewed as an model-based estimator of z,.

Notice that Jw(a,c) involves the truncation proportion parameter

(2.12)

(2.13)

¢ which is

unknown. In the special case of the Clayton model with ¢ (t)=t“" -1 (a>1) and

0,v)=a, Uw(a,c) depends only on « . This implies that Jw(a,c) alone is not enough

for estimation of « . Chaiebl et al. (2006) proposed their second estimating procedure which

was motivated by the paper of Rivest and Wells (2001) on marginal estimation for dependent

censored data. Their idea was inspired by the paper of Zheng and Klein (1995).

Now we describe the second estimation procedure proposed by Chaiebl et al. (2006). Let

t <---<t,, be ordered observed points of (X,,...,X,Y,...,Y,) and t,=0. Define
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R(t,t):ZI(Xj <t,Y; >t) . Replacing =(t,t) by R(t,t+)/n in equation (2.8) , they
i

obtained a set of estimating equations:
¢{c@} BRI AL, )} G=l..2n-D).  (214)

To solve the above equations, Chaieb et al. (2006) modified the algorithm of Rivest and Wells

(2001) originally proposed for dependent censored data. Specifically they first estimated the

jumps, ¢,{S, (t)}-¢,{S, (t-)} and ¢4 {F,(t)}-¢,{F(t+)}, and then summed them
up over all the failure times prior to t to obtain the estimators for ¢ {F, (t)} and
¢.{S, (t)}. Then by plugging in all the marginal estimators into the equations in (2.14), an

estimating function for ¢ can be obtained. In Section 3 and Section 4, we propose different

methods for estimating («,c) and solving the equations in (2.14), respectively.
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Chapter 3 The Proposed Approach for

Semi-parametric Inference

In this chapter, we develop a new inference approach to analyzing semi-survival AC
models of the form in (2-8). Specifically two types of estimating functions are needed to

estimate the unknown parameters, «,c, F,() and S (). One is for estimating the

association parameter and the other is related to marginal estimation. The present method is
semiparametric in the sense that we do not specify the form of F, () and S, (-), but specify

the functional form ¢, (.).

3.1 Estimation of Association

3.1.1. Conditional Likelihood Approach

In this section, we consider estimation of ¢ under the semi-survival AC model in (2.8).

To simplify the analysis, we assume:that-there is-no ties and, temporarily, we ignore external

censoring. The sample consists of {(X,¥,)(§=1...,n)} subject to X; <Y;. Here we

generalize Clayton’s likelihood approach (Clayton, 1978) to truncation data. Define the set of
grid points as follows:
(p:{(x,y)|x3y,gl(xj <X Y; :y):11ji_1:|(xj =X,Y; 2 y):l}.
For a point (x,y) in ¢, we can define the “risk set” R(x,y) ={i; X, <x,Y; > y}. Denote
R(x,y) = Zn: I(X; <xY;>2y) as the number of observations in %R(x,y) . Let
i1
A(X, y):il(xj =X,Y; =Yy), which indicates whether failure occurs at (x,y). Given

i=1

R(x,y)=r for (X,y)e e and under model (2.8), the variable A(x,y) follows a Bernoulli

distribution with the probability
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0,{c7(x, )} o

PRACGY) =LIROGY) =1 (0 y) € g == {cz(x,y)}’

where the relationship between 6 () and ¢,(.) is stated in equation (2.5). Ignoring the
marginal distribution Pr(R(x,y)=r|(X,y) € ¢} which may contain only little information

about «, we can construct the following conditional likelihood function

6 {cx(x,y)} AG) r—1 1-A(x,Y)
r—1+9a{C7Z'(X, y)} r—1+ Ha{Cﬂ'(X, y)} .

L(e, 7(x,y),c) = H {

(x.y)ep
The nuisance parameter z(X,y) can be estimated nonparametrically by 7z(x,y) =R(x,y)/n.
Differentiating logL(«, z(x,y),c) with respect to «, we get the following estimating

function

U, (erc) = ” 6,{cz(x, )} A(X,Y) - g, {cz(x, y)} (32)

oopep 0T (X, YD} R(x,y)-1+6,{cz(x, y)} |
where 6, (v) =06, (v)/da.

For the Clayton model with- ¢ ()=t “" -1 {a>1) and 6,(V)=a, U (,C)

depends only on « . The proposed estimator of ¢« 'can be obtained by solving

a
Vile)= H { (X’y)_R(x,y)—l+a}:

(x, y)ew

However for other members in the AC family, estimation of « requires the information of
c. It is important to note that, for most models, dlogL(«,c)/oc yields the same estimating
function as U (e,c). This implies that the likelihood function can not identify («,c)

simultaneously. Joint estimation of («,c) will be discussed later in Section 3.2.

3.1.2 Estimation based on Two-by-Two Tables

Following the ideas proposed by Day et al. (1997) and Wang (2003), we can construct

the following 2x2 table at an observed failure point (x,y) with x<y . Let
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No(x,dy) =D 1(X; <xY;=y) and N, (x,dy)=> I1(X;=x)Y,>y). The table can be

i=1 i=1

represented as follows:

X =X A(X, Y) N, (dx, y)

N, (x,dy) R(x,Y)

Table: Two-by-two Table for Truncated Data

The odds ratio of the above table is the sample analogy of the cross ratio function

6" (x, y) defined in (2.7). Given the marginal counts, the conditional mean of A(x,y) can be
derived as a function of @°(x,y) or @ {cz(x,y)} under model (2.8). The nuisance

parameter 7(X,Y) can be estimated by 7(x, y) . Motivated by the log-rank type statistic, we
can combine all the tables at different’ values ‘of (x,y) and then construct the following

estimating function

U, (@)= [[w,(x y){A(x, y)=

X<y

Ni (09X, YN, (x, dy)8, {cz(x, y)}
R(x,y)-1+6 {cz(x,y)}

_ 04y
= I et y){“x’ ROy L+ 0,{cA(x y)}} ' 43

where W, (X,Y) is a weight function. Note that in derivation of (3.3), we use the

assumption that the data have no ties and hence N, (dx, y)N,;(x,dy)=1 if and only if

(x,y)eop.

3.1.3 Construction based on Concordance Indicators

Here we review the idea proposed by Chaieb et al. (2006) and present a more general

version of their estimating function . Based on (2.7) and for x <y, it follows that
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1

E(Aij | (Xij ’Yij)’ AJ) - 1+ Ha{Cﬂ'(Xij 'Y~iJ' )}

(3.4)

Recall that if the event A, ={)Zij sﬂj} happens, the two pairs (X;,Y;) and (X;,Y;) will
be located in the identifiable region R, for certain. The following function can be viewed as

a generalization of Oakes’ method (1986):

- - -~ 1
U,(a,c)= él{Aij}Wa,c(Xij’Yij) Ay - 1+ ea{CﬂA(Xiijij)} (3.5)

where W, . (x,y) isa weight function. Note that the estimating function proposed by Chaieb

etal. (2006) sets w, .(x,y) =1, and is related to the conditional Kendall’s tau as mentioned

in equation (2.13).

3.1.4 Equivalence Condition for Different Approaches

Now we establish the relationship ameong different-estimating functions. This idea was
motivated by the analysis of Clayton.& Cuzick (1985) who expressed Clayton’s likelihood
estimator in terms of concordance/discordance indicators. Consider the truncation setting.

Some algebraic calculations yield the following identity:

H w, (X, Y)| A(X, y) - 0,{cz(x,y)} }

e R(,Y) -1+ 6,{c7(% Y}
. W, o (X YR+ 0,{c2(X Y| 1
AR X, ) -1 0,40 (%, ) {A” 1+ea{c7%(x1j,i,->}}' 39

The above equation provides a unified framework for comparing different estimating
functions. Our proposed estimating function U, (e,c) using the conditional likelihood

principle, is a special case of U, (a,c) constructed based on the two-by-two construction

with the weight function:

W, (%, y) = 6,{c7(x, Y)}H 6,{c(x,y)}.
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Furthermore U (e,c) is also a special case of Jw(a,c), constructed based on the

concordance indicators, with the weight function:

O4ea( Y} 1+0,{La(xy)} 37
The estimator proposed by Chaieb et al. (2006) is U , («,c) with

_R(x,y)-1+6 {cz(x y)}
1+ 6 {cz(x, y)} '

W, (X, y)=

w, (X, y) =

Its another representation is of the form U, (a,¢) with W, (x,y)=1.

The above analysis implies that the three different estimation procedures yield the same
form of estimating functions with different choices of the weight function. Now the next
question is which weight function produces better results? Some authors such as Fine et al.
(2001) have suggested practical guidelines for. choosing the weight function under Clayton
model but did not provide any theoretical justification. It seems that no simple theory is
available for choosing the optimal “weight in the estimating function (3-5). Here we
recommend to use U, («,c) since it utilizes some likelthood information. We will see in our

simulations that it also produces more" efficient results than the weighted concordance

estimator with w, .(x,y) =1.

3.2 Estimation of Marginal Functions and Truncation Probability

3.2.1 The Approach of Chaieb et al. (2006)

Here we adopt the framework of Chaiebl et al. (2006) but propose a different estimating

algorithm. Let’s briefly describe their setup. Let t, <---<t,, be ordered observed points of

(Xyoo X Ye,o.Y,) and t;=0. Replacing z(t,t) by R(t,t+)/n=> 1(X; <tY;>t)/n
j

in equation (2-8) with x =y =t it follows that
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R(t,t+ .
4, {c%} AR 448, ()} (=L...20-1). (38)
The idea of constructing the above estimating equations was motivated by the paper of Rivest

and Wells (2001) who considered dependent censoring. For solving the equations, Chaieb et

al. (2006) mimicked the approach of Rivest and Wells (2001) by estimating the difference

¢, {S, t)}-4.{S, (t-)} and ¢ {F, (t)}—o {F, (t+)}. Then the estimated differences

are summed up to obtain the estimators of (4,{F, (t;)},¢,{S, (t;)}). The marginal estimators

are plugged into equation (3-8) to obtain an estimating function involving («,c). We find
that it is difficult to understand the algorithm of Chaieb et al. (2006) and hence decide to

propose a different algorithm.

3.2.2 Recursive Solution to the Moment Constraints

Here we propose to solve the equations in(3-8) in a different way. Suppose that IfX and

A

S, are step functions with jumps only.at.observed paints. Then, the unknown parameters are

£2,C,Fy (X))o F (X0, S, (Yom), oy Sy (Y. =)} e RZ™2,

Total 2n+2 non-homogeneous moment constraints are needed to produce a unique solution

to the set of equations. However (3.8) only contains 2n —1equations which permit numerous
solutions. With no prior information at hand, two boundary conditions F, (t,,,)=1 and
S, (t) =1 would provide reasonable candidates for the additional constraints to be added into

(3.8). Together with the constraint U, («,c) =0 of the likelihood equation, we obtain the full

2n + 2 equations, giving a unique moment estimator for

{a.c, Fy (Xy), .. B (X)), Sy (Y =), -0 Sy (Y, )}
Fixing an arbitrary value for («,c), we regard an equation in (3.8) as an estimating

function for {F, (t,), S, (t,)}. For instance, the initial constraint S, (t,)=1 immediately gives
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the solution (Ifx (t) = cR(tl,t1+)/n,SAY (t;)=1). The proposed procedure can be performed
successively for j=1,...,2n-1.

(Step 1) If t; corresponds to an observed value of X, set

A A A R(t;,t;+) A
¢a{SY (tj )= ¢a{SY (tj—l)} and ¢a{FX (tj )} = ¢a {C T} - ¢a{SY (tj )} ,

and if t; corresponds to an observed value of Y, set

A A N R(t;,t;+) A
¢a{Fx (tj )}= ¢a{FX (tj—l)} and ¢a{SY (tj)}: ¢a {CT}_%{FX (tj)}'

(Step 2) Set U _(a,c) = ¢, {F, (X(n))} =0 tomeet the assumption F,(t,,,)=1. Jointly

solving this equation and U, («,c) =0_ gives the estimators of («,c), denoted
as (a,C).
(Step 3) Redo (Step 1) by setting (e, ¢) = («,€) - ‘obtained in (Step 2) and then update

(B AF ()} 84S, (t)D.

We can show that the solutions to the above algorithm have the following explicit formula:

. R(X. R(x.)-1
b )= Y {@{c (X‘)}—@{c &) Hw{ﬁj, (39)
JiX@y<xjst n n n
. R(v. R(y.)-1
RHOEEDY [@{c ?”}—%{c%}], (310)

where R(t) = R(t,t), X, =min(X,) and y, =min(Y;), and

=1,...,n 1,...,n

}—%{C R(XJ)_]-H"’%(EJ’ (3.11)
n n

In the case of quasi-independence with ¢ (t) =—log(t), equations (3.9) , (3.10) and

U @0)= ¥ [@{CR(:,)

j;x(1)<xj

(3.11) reduce to the Lynden-Bell’s estimators and the natural estimator of the truncation
proportion (He and Yang, 1998). It is worthy to note that the representation of the
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Lynden-Bell’s estimator as a solution to the moment equation in (3.8) with ¢, (t) =—log(t)
is new in the literature. Compared with the traditional expression as a product-limit estimator,
our approach provides a more general estimating scheme which allows for dependent

truncation.

In principle, any other boundary constraints imposed on F, (t,,,) and S, (t,) can give
a different but unique solution to (3.8) and U (a,c)=0. Here, our subjective choice of using

F.(,,)=1 and S (t)=1 facilitates the proposed recursive algorithms that leads the explicit

solutions in (3.9) , (3.10) and (3.11). Compared with the results of Chaieb et al. (2006), the
proposed estimators based on (3.9) and (3.11) are different from theirs. However, the

proposed estimator in (3.10) is identical to the estimator proposed by Chaieb et al. (2006).

3.3 Asymptotic Analysis

3.3.1 General Results for Asymptotic Properties
Under the regularity conditions (A-1)~(A-V) listed in Appendix 3.A (part 1), the
estimators (a,€) which jointly solve U, (a,c)=0 in(3.2)and U (a,C)=0 in (3.11) are

consistent and asymptotically normal. Weak convergence of the marginal estimators is also

established. The results are formally stated in the following theorems.

Theorem 3.1 Random vector (&,€) is consistent.

Y2(a@ - a,,C—c,)" converges in distribution to a

Theorem 3.2 The random vector n
bivairate normal distribution with mean-zero and the covariance matirix given

(X.¥)']

ay,Cy

by A'B(A™)", where A=E[U,  (X,Y)], B=E[U, . (X,Y)U

and the definitions of U, . (X,Y) and U%'CO(X,Y) are given in (A.4).
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Theorem 3.3 The bivariate stochastic process n"?(S, (t)=S, (t), F, (t) = F ()" indexed
by a single time te[0,o) convergences weakly to the mean-zero Gaussian
random field G(t) = (G, (1),G, (t))" in the space {D[0,o)}* with the

covariance function given in equation (A.4). for 0<s,t< .

Note that Chaieb et al. (2006) establish similar results for their estimator which solves

Jw(a,c) with w, . (x,y) =1 by applying properties of U-statistics. However this
approach may not be applicable when w, . (x,y) involves the plugged-in estimator 7(x, y)

as in our case. Here we take a different approach which can handle more general weight
functions. Specifically asymptotic linear representations of the proposed estimating functions
are obtained. By applying the functional delta method (\Van Der Vaart, 1998, theorem 20.8)
and properties of empirical processes, large-sample properties of the proposed estimators can
be established. The sketch of the proof.is-given in-Appendix 3.A (part Il). Since the analytic
derivations involve complicated formula, we suggest to use the jackknife method or other
re-sampling tools for variance estimation. This approach is also suggested by Chaieb et al.

(2006).

3.3.2 Asymptotic Behavior under Independence
Given ¢, (t) =—log(t), the condition for quasi-independence, the asymptotic expression

of U, .(X;,Y;)=0 in Appendix A. (part V) reduces to the iid representation obtained in both

Stute (1993) and He and Yang (1998). Specifically it follows that

- AL2
L ——T

n1/2|:§Y(t)_SY(t):|_ 1 Q {_Sv(t)LY(Xi’Yi;t):|+O (1)1
I:x (t)_Fx (t) _Fx (t)LX(Xi,Yi;t) P
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where

y o f1(X<uY >u) o (Y <t)
L (x,Y,t)_jL ) dz( ,u)+—”(Y'Y),
« _ __’“l(x_uY_u) I(X>t)

LX(X,Y;t) = ! PR d(u,0) + X X)"
The linear expression can be estimated by:
~ S (X <uY =) N (X >t)
L(x,Y,y)_ij FRR d( ’u)+7z(x %)
_ (X < _n nI(Y<y),
X< 2 Ry RM
~y o EHX <uY 2u) 1(X>x)
LX(X,Y;X) = j ) d7(u,0)+ X X)
1) Z n +nI(X>x)'

XV X SXjSXyAY ls(xj)2 IEE(X)
The above expression implies that the variance can be estimated by:
~ ~ = 2 ~
VB ()5 0 S (X, Y507,
R A S (v)?
Vs, (1) = 25 8 0y
On the other hand, Wang, Jewell & Tsai (1986) suggested the Greenwood-type estimator:

v(\/ﬁﬁx (t)):nﬁx (t)z_. Z ﬁ(x_)(lg(x-)—l)'

Now we numerically compare the two different approaches for estimating the asymptotic

variance. The variables (X,Y)were generated from independent exponential distributions

with hazard rates (4,,4,) having the support [0,x,] and [0,c) respectively. The point

estimate for the variance estimator for Ifx is compared for n=50 and n=1000. Two

point estimates exhibit a little numerical difference in the small sample with n =50. When

n =1000, the difference seems negligible.
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Table 3.1. Comparison of Two Variance Estimates based on n =50, %, =10

Based on influence function  Base on WJT(1986)
(4, 4,) Fy (1)

V (VnF (1)) V (VnF (1)

0.259 (t=0.2) 0.1957 0.1953

0.451 (t=0.4) 0.2890 0.2871
(1.5,0.5)

0.593 (t=0.6) 0.3057 0.3119

0.698 (t=0.8) 0.3273 0.3212

0.393 (t=0.2) 0.2567 0.2549

0.632 (t=0.4) 0.2695 0.2725
(2.5,0.5)

0.776 (t=0.6) 0.2144 0.2170

0.864 (t=0.8) 0.1861 0.1878

Table 3.2. Comparison of Two Variance Estimates based on n =1000, x, =10

Based on influence function ~ Base on WJT(1986)

(4, 4,) Fy (t) HALY N
Ak § V (vnFy (1) V (VnF, (1))
0.259 (t=0.2) 0.1318 0.1279
0.451 (t=0.4) 0.2715 0.2695
(1.5,0.5)
0.593 (t=0.6) 0.3562 0.3517
0.698 (t=0.8) 0.2884 0.2858
0.393 (t=0.2) 0.2291 0.2358
0.632 (t=0.4) 0.2693 0.2817
(2.5,0.5)
0.776 (t=0.6) 0.2139 0.2183
0.864 (t=0.8) 0.1439 0.1462

The asymptotic expression via influence functions has significant advantage when we
study the joint behavior of (Ifx,§Y). Now we fix a point (x,y)e R, . Based on the

asymptotic linear expression,
\/H{S:Y(Y)—Sy(y)} d NKOJ (VY VXYH'
Fx (X) - Fx (X) 0 VXY Vx
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The terms in the covariance matrix can be estimated as follows.

Fin(X) > LAY -V = FEOOEIL (X, Y57,

>

2
Y

DT DK% >V = SEOELL (Y39,
and
F(05,() (X)néY W) S (XY YD 0K i) = Vi = ELL (X, Y3 y)L* (X, Y5 )]
Using the delta method, we obtain
(S, (VF, () =S, (Y)F () ——>N(OV),
where the asymptotic variance is
V =F, (X)°V, +2F, (X)S, (Y)V,y +S, (Y)?Vy .
Simulation studies confirm the satisfactory results about the proposed estimators of V,, and

V.
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Table 3.3: Performance of the estimators for the covariance matrix
based on 5000 runs (n =100, x, =20, y, =0.0001)

i) gy Y OMELS) BV warBS)  EC)
0.2 0.0534 0.0425 0.2495 0.2014

0.2 0.4 0.0888 0.0694 0.2297 0.1901

(0.259) 0.6 0.0828 0.0799 0.2009 0.1697

(1.5,0.5) 0.8 0.0880 0.0820 0.1708 0.1468
04 0.4 0.0617 0.0651 0.4154 0.3481

(0.451) 0.6 0.0879 0.0870 0.4021 0.3226

0.8 0.1198 0.0957 0.3802 0.2893

0.2 0.0374 0.0403 0.3226 0.2836

0.2 0.4 0.0810 0.0651 0.3269 0.2698

(0.393) 0.6 0.0717 0.0708 0.2844 0.2409

(2.5,0.5) 0.8 0.0806 0.0715 0.2412 0.2109
0.4 0.0580 0.0508 0.5355 0.4029
(0%:2) 0.6 0.0745 0.0654 0.4845 0.3774

0.8 0.0802 0.0697 0.4395 0.3451

Table 3.4: Performance of the estimators for the covariance matrix
based on 5000 runs/(n = 250, x;:=20, y, =0.0001)

Co2) gy Y OMELS) BV warBS)  EC)
0.2 0.0625 0.0475 0.2594 0.2205
0.2 0.4 0.0661 0.0757 0.2393 0.2049
(0.259) 0.6 0.1007 0.0850 0.2080 0.1805
(1.5,0.5) 0.8 0.0853 0.0874 0.1848 0.1563
04 0.4 0.0687 0.0703 0.4625 0.3803
0.6 0.0979 0.0927 0.4427 0.3565

(0.451)

0.8 0.1083 0.1006 0.3860 0.3171
0.2 0.0493 0.0445 0.3473 0.3080
0.2 0.4 0.0777 0.0694 0.3288 0.2899
(0.393) 0.6 0.0788 0.0750 0.2822 0.2580
(2.5,0.5) 0.8 0.0730 0.0747 0.2560 0.2256
04 0.4 0.0618 0.0531 0.5346 0.4494
(0.632) 0.6 0.0603 0.0688 0.4750 0.4204
0.8 0.0720 0.0719 0.4604 0.3762
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Theorem 3.3 describes the weak convergence result of Lynden-Bell’s estimator as a

special case. By applying the independence copula, ¢,(t) =—log(t), to the theorem, we
obtain the following corollary:

Corollary 3.2 (Wang, Jewell & Tsai, 1986)

Consider the Semi-survival AC model (2.8) with ¢ (t)=-log(t) . Under the

condition (A-1V), stochastic process Jn (IfX (t)—F, (t)) converges weakly to the

Gaussian process G, (t) with mean 0 and covariance given by

Cov[Gy (s), Gy ()] = Fx (s)F (1) f i;;((lljJ S;

where 7(u,0)=Pr(X <u| X <Y).
The above result was first obtained by Wang gt.al. (1986). They also proved the same weak
convergence result by applying the ‘classicalyempirical distribution theory of Breslow and
Crowley (1974). Based on the functional delta method,"we provide a different proof given
below.

Proof of Corollary 3.2: It follows that

. _XJ-“dMX(u) 2
7z(u,u)

t

:E_Td<MX,MX>(u)}

" 7z(u,u)’

z(u,u)’

_ Ef (X <uY > u)dn(u,O)}

t

_ I dz(u,0)

| z(u,u)?

Here,
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dz(u,0)

dM, (u) =d{I(X <u)}-1(X <u,Y 2u) wu
z(u,

E[LY(X,Y;s)L (X, Y;0)]=E[LX (X,Y;tAs)?].

3.4. Extension and Modification

3.4.1. Extension under Right Censoring

In addition to the truncation scheme discussed previously, we now allow Y to be
censored by another random variable C. Assume that C is independent of (X,Y). Let
(X;,Y,,C,) (i=1..,n) be random replications of (X,Y,C) . The sample becomes
{(X;,Z;,0,) (1=1,..,n)} satisfying X, <Z,, where Z, =Y, AC;, and ¢, =I1(Y; <C;). We
consider the same model as in Chaieb et al. (2006) such that

7*(X,y)=Pr(X <XZ > y|X <Z)

., . (3.12)
=Sc (N, [9AF (03 +9,{Sy (Y)}]/c (x<y)
where S.(y)=Pr(C>y) and c*+is anormalizing constant satisfying
0° )
o= [[~ 5y (S 008, LR 001+ 4,15, (o (3.13)

X<y
The objective is to estimate the unknown parameters («,c*,F, (-),S, (-),Sc(-)). Hence we

re-parameterize 0 {cz(x,y)} as @{c*v(x,y)} ., where cxz(x,y)=c*v(x,y) and

V(X y) =7 (X, y)/S.(y).
To simplify the presentation, we still use the same notations to denote A(X,y), R(X,Y)

and ¢ but change their definitions as follows. Let

AxY) =2 1(X; =x2Z; =y,5; =1),

R(x,y):ZI(ngx,Zij),

(/)={(X,y)|XSy,Z|(Xj <XZ;=Y,0;=0)=1L) I(X;=xZ, 2y)=l}.
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In presence of left truncation and right censoring, the proposed estimating function is

U (9= ] A ClG37) | VSRR Gl [67),

e A4S0 Y} RO Y) -1+ O (x y)}}’ 449

where V(Xx,Yy)=R(X,Y) /{n§c(y)} and §C(y) is the Lynden-Bell’s estimator given by

Sc(y)= [[&-1/R(z))}.

zjsy,zS]—:O

In Appendix 3.B, we derive another expression of U («,c*) in terms of a weighted form of

the estimator proposed by Chaieb et al. (2006) constructed based on concordance indicators.

Let t, <---<t,, be ordered observed points of (X,,...,X,,Z;,...,Z,). Letting x=y=t,,

we aim to solve the equations:

¢{ci§—zt+)’} = 4 AF ()} 4.4, )} (i=1....2n-1). (3.15)

The case of i=2n isneglected since R(t,, 1, +) = 0. We impose additional constraints that

the estimators of F,, S, and S are step functions-with jumps only at their observed
values, and that Ifx (t,,,)=1, §Y ()=1 and Su(t;) =1. The following procedure can be
performed successively for j=12,....2n-1.

(Step 1) If t; corresponds to an observed value of X, set

R(t;,t;+)

éc (tj,l)n } - ¢Q{SY (tj )}!

¢a{§v (tj )} = ¢a{§Y (tj—l)}’ ¢a{ﬁx (tj )} = ¢a {C*

and §C (t,) = §c (t,,);if t; corresponds to an observed value of Y, set

R(t;,t;+)

éc (tj,l)n } - ¢a{FX (tj )}

8AF )= ARt )} .48, (t)}= @{c*

and §C (t;) = §C (t;4);andif t; corresponds to an observed value of C, set

8 AF () =g AF ()} 84S, (t)}=045, ()},
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and
SAc (t;)={1-1/ R(tj—l’tj—1+)}§c (tjs)-
(Step2) Set U, (a,c*) = qﬁa{lfx (X(ny)} = 0 to meet the constraint Ifx (t,,,) =1. Jointly

solving this equation and U (a,c*)=0 in (3.14) produces the estimators of
(a,c*), denoted as (a,C*).

(Step 3) Redo (Step 1) by setting (a,c*) = (a,€*) obtained in (Step 2) and then obtain
(4P« (1))} 448, ()} Sc (1))

Explicit formula of the proposed estimators are given by

5E O =— Y Mc* ") }cz{cwﬂ (3.16)

i 56, nS.(z;) nSe(z;)

- B L R(X;) - LR(x;)-1 c*
¢a{Fx(t)}—J;XmZ<:XJ<t[¢a{C nae (Xj)} %{C (k) (X;)H+¢a( nj- (3.17)

The estimating function in (Step 2) is equivalent to

N . R(%) = LR(x;)-1 c*
UC(“’C)_,;M;X,!%{C éc(x,)n} ¢“{C éc(xj)nH%[nj' 19

Under the quasi-independent condition with ¢, (t) = —log(t) , the resulting estimators §Y ®),

F, (t) and §c (t) are equivalent to the Lynden-Bell’s estimators under right censoring. In

Appendix 3.C, we derive the proposed estimating functions explicitly for selected examples.

3.4.2. Modification for Small Risk Sets

The proposed estimation procedure, as well as that proposed by Chaieb et al. (2006)

are both based on the implicit assumption that R(t;,t;+)>1 for all t;. However it

sometimes happens that an empty risk set may occur especially in the tail area. Several
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remedies have been proposed to handle this problem (Klein & Moeschberger, 2003, p. 122).

Here we adopt the idea of Lai and Ying (1991) and propose the following modification:

b6 M= Y [@{c*ﬂ}@{c*MHl{ﬁ(z,)zbna}, (3.19)

iizj<t,o5=1 néc(zj) néc(zj)
where O<a<1 and b>0 are arbitrary tuning parameters. Modifications for ¢a{lfx O}

and S_(t) are obtained in a similar way. Based on our simulation results not reported here,

we recommend to take b=1 and a =1/10, by which estimators are less biased.

3.5 Numerical Analysis

3.5.1 Simulation Studies

The main purposes of the simulation studies-are (i), to check the validity of the proposed
estimators and (ii) to compare the perfoermance of our method with its competitor proposed by
Chaieb et al. (2006). Random replications. of (XY ) -were generated from the Clayton and
Frank models subject to X <Y with ‘the ‘imarginal distributions following exponential
distributions. For the Clayton model, the values of —log(«) were chosen to be 0.511 and
1.099 and, for the Frank model, the value of log(a) were set to be 2.380 and 5.746. The
former transformation corresponds to 7 =0.25 and the latter corresponds to z=0.5. The
censoring variable C was also exponentially distributed. Denote c¢=Pr(X <Y) and
c*=Pr(X <Y AC). For each setting, we report the bias and the MSE based on 500
replications.

Two estimators of the association parameter « were compared under the Clayton

model and Frank model respectively. The proposed method solve U, (a,c)=0 and the
competing estimator proposed by Chaieb et al. (2006) solve Jw(a,c)zo with
W, .(x,y) =1. Explicit formulas for the Clayton and Frank models were available in
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Appendix 3.C. Tables 3.5.A and 3.5.B summarize the results. We see that both methods are
approximately unbiased, and the MSE decreases as the sample size increases. Comparing two
estimators, the MSE of the proposed estimator is uniformly smaller, and the efficiency gain is
remarkable in the Clayton model but modest in the Frank model. Notice that the two
approaches produce similar results under the Frank model in absence of external censoring
(c=c"). Via the relationship in equation (3.6), we find that for the uncensored case of the

Frank model,

AT L onst ROV =1+ 6,{c2(x, )}
o fca(x )} 146,{ci(xY)}

which explains why the numerical results are close. When the degree of external censoring

increases, the advantage of the proposed estimator becomes more obvious.
The proposed recursive algorithm was evaluated jointly with U (e,c) =0 to obtain the
estimators of the marginal functions and: ¢ . The performances of (IfX ('[),SAY (t)) were

evaluated at points t with F, (t)=0.2,0.4,06,0.8 and-S, (t) =0.2,0.4,0.6,0.8. Table 3.6.A

and Table 3.6.B report the results for the Clayton modeland Frank model respectively. Denote

Peey =Pr(C <Y | X <£Z) which measures the censoring proportion in the truncated sample.

We see that when this value decreases, the performance improves. In all the cases,
(c*,F, (),S, () are fairly unbiased. It is worthy to note that the estimated probabilities may

have nicer performance in the tail area but poorer performance in a middle time point, which

behave differently from the Kaplan-Meier estimator without considering truncation.
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Table 3.5.A: Comparison of two Estimators for the Association Parameter
under the Clayton Model

-log(a) (c.c¥) n =250 n =500
(7) Proposed Chaieb Proposed Chaieb

(0.80,0.80)  0.3(.17) 5.4 (0.53) 2.5 (0.08) 3.7 (0.26)

05108 (0.80,0.63)  -0.9 (.44) 1.5 (1.13) -0.3(0.18) 2.9 (0.53)

(0.25) (0.66,0.53) 0.7 (0.29) 0.5 (0.74) -1.2 (0.12) -1.5 (0.38)
(0.66,0.45) 1.6 (0.44) 6.1 (1.04) -0.6 (0.19) -1.3 (0.49)
(0.55,0.39) 0.5 (0.35) 5.2 (0.80) 0.3 (0.14) 1.2 (0.40)
(0.55,0.34) 3.6 (0.37) 7.8 (0.98) -2.2 (0.19) -0.3 (0.51)
(0.86,0.86) -6.7(0.28)  -2.1(0.86) 0.6 (0.13) 0.6 (0.38)
(0.86,0.66) 2.5 (0.56) 6.2 (1.44) -0.7 (0.24) 0.2 (0.74)

1.0986  (0.74,058)  -0.2(0.20) 4.0 (0.54) -4.6 (0.18) -2.9 (0.47)

(050 (0.74,048) -54(052) -55(1.27) -0.1 (0.23) 0.2 (0.62)
(0.63,0.42)  -35(0.44)  -3.2(0.95) -1.5 (0.18) 2.7 (0.49)
(0.63,0.36)  3.0(0.44) 7.1 (1.09) -0.3 (0.20) -0.5 (0.52)

Each cell contains the bias (x107°) and MSE (x107%). (in parenthesis) of the corresponding
estimator based on 500 replications.

Table 3.5. B: Comparison of tworEstimators for the Association Parameter

under the Frank Model

-log(e) (c.c%) n =250 n =500
(7) Proposed Chaieb Proposed Chaieb

(0.81,0.81)  -68.6 (37.55)  -68.1(37.62) -26.1 (20.53) -25.8 (20.53)
(0.81,0.63)  -53.5(52.87)  -36.0 (55.31) -19.4 (26.87) -24.5 (28.49)

2.380  (0.63,0.51) -162.9 (95.06) -156.4(102.07) -35.9 (44.27) -34.6 (48.62)

(0.25)  (0.63,0.43)  -102.2(100.42) -106.3(116.84) -99.2 (51.85) -88.4 (59.76)
(0.50,0.36)  -294.2(201.13) -342.5(239.21) -140.5 (94.01) -141.8 (96.03)
(0.50,0.31)  -371.9(216.14) -360.6(241.92) -243.3 (131.45)  -257.1(151.72)
(0.88,0.88)  -128.3(41.53)  -128.2 (41.56) -27.8 (21.91) -27.5 (22.01)
(0.88,0.66)  -57.0 (64.71)  -21.4 (72.73) -78.0 (33.97) -78.0(36.76)

5746  (0.69,0.53) -136.9(100.55) -142.4(104.41) -114.0 (49.40) -100.0 (51.47)

(0.5)  (0.69,0.44) -182.2(129.78) -155.9(147.13) -0.1259 (68.20) -96.1 (73.32)
(0.50,0.34)  -367.3(223.11) -368.2(247.30) -246.1 (115.74)  -252.5 (129.13)
(0.50,0.29)  -429.6(293.47) -411.3(332.07) -373.9(130.48)  -349.2 (146.83)
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Each cell contains the bias (x107°) and MSE (x107?) (in parenthesis) of the corresponding
estimator based on 500 replications.

Table 3.6.A: The proposed estimators of marginal functions and
truncation proportion under Clayton Model (z =0.5).

parameter True n =250 n =500

P.gy =0.00 P.gy =0.41 P.gy =0.00 Peey =0.41
clc* 0.86/0.66 2.0 (0.04) 1.3(0.27) 2.0 (0.02) 0.4 (0.15)
Fy () 0.2 -1.6 (0.06) -1.7 (0.05) -0.2 (0.03) -1.1(0.03)
Fy (t;) 0.4 -2.0 (0.08) -2.1(0.11) -0.3 (0.04) -1.1(0.06)
Fy (t;) 0.6 -0.2 (0.09) -2.3(0.15) 0.7 (0.05) -1.9(0.08)
Fy () 0.8 -1.2 (0.07) 0.7 (0.16) 1.9 (0.04) -0.9(0.07)
Sy (t) 0.8 0.8 (0.09) 0.1 (0.08) 0.0 (0.04) 0.2 (0.04)
Sy (t,) 0.6 1.5 (0.10) -0.3(0.12) -0.7 (0.05) 0.9 (0.06)
Sy (ts) 0.4 1.5 (0.08) 0.4 (0.14) -1.1 (0.04) 0.2 (0.06)
S, (t,) 0.2 -0.6 (0.06) -1.3.(0.15) -0.1 (0.03) -0.2(0.07)

Each cell contains the bias (x107%) and MSE (x10:°) (in parenthesis) based on the recursive
estimator using the likelihood method for the asseciation-parameter. The censoring proportion
is denoted by P, =Pr(C<Y |X=Z),

Table 3.6.B: The proposed estimatars of marginal functions and
truncation proportion under Frank Model (z =0.5).

parameter True n=250 n =500

P.gy =0.00 P.gy =0.39 P.gy =0.00 P.gy =0.39
clc* 0.86/0.66 -0.9 (0.11) -4.1(0.34) -1.7 (0.06) -1.7 (0.06)
Fy (L) 0.2 -0.1 (0.08) -3.4(0.07) -1.8 (0.04) -1.8 (0.04)
Fy (t,) 0.4 -3.5(0.11) -3.6 (0.12) -1.9 (0.05) -1.9 (0.05)
Fy (t;) 0.6 -3.7 (0.09) -0.8 (0.14) -0.8 (0.05) -0.8 (0.05)
Fy (t,) 0.8 -1.5 (0.06) -1.9(0.12) -0.7 (0.03) -0.7 (0.03)
S, (t,) 0.8 -0.4(0.11) -4.7 (0.13) -1.6 (0.07) -1.6 (0.07)
S, (t,) 0.6 -1.1(0.11) -3.9(0.14) -0.6 (0.06) -0.6 (0.06)
Sy (t;) 0.4 -0.4 (0.10) -2.6 (0.16) -1.5 (0.05) -1.5 (0.05)
S, (t,) 0.2 -1.0 (0.06) -1.9 (0.15) -1.0 (0.03) -1.0 (0.03)

Each cell contains the bias (x107) and MSE (x1072) (in parenthesis) based on the recursive
estimator using the likelihood method for the association parameter. The censoring proportion
is denoted by P, =Pr(C<Y | X <£2Z).

-36 -



3.5.2 Data Analysis
We applied the inference procedures to analyze the dataset from a study of

transfusion-related AIDS in the United States (Kalbfleisch and Lawless, 1989). Let T, be the
infection time of patients, measured form January 1, 1978 and X, be the incubation period
from the time of infection to AIDS. Only individuals who developed AIDS by the starting

date, July 1 1986, could be observed. Since the total study period is 102 months, individuals

with T, + X; <102 were included in the sample which consisted of 293 subjects. With the
notation Y, =102—-T,, we view X, as being right truncated by Y,. Note that there was no
external censoring.

Table 3.7 summarizes the results based on the proposed method and the approach of
Chaieb et al. (2006). We also computed 95% confidence intervals based on the jackknife

method and normal approximation. Wnder Clayton’s model, both methods show positive

correlation between X, and Y. This implies that the earlier the infection time T, and the
larger the incubation time X, . The-confidence interval for —log(«x) based on the proposed
likelihood estimator is slightly narrower than that-obtained by the estimator of Chaieb et al.
(2006). Quasi-independence can be verified by testing H, :a =1. The rejection of H, due
to small p-value coincides with the result of Tsai (1990) based on a nonparametric testing
procedure. Under the Frank model assumption, the level of association between X, and Y,
was even stronger. We see that the two estimators also produced similar results as in the
simulations (Table 1B with ¢ =c*). We applied the proposed recursive algorithm to estimate
the distribution of the incubation time. The estimated curves under two model assumptions
are plotted in Figure 3.1. The estimated function under the Clayton model is significantly
lower than that under Frank’s model. It implies that the marginal estimator is also sensitive to

the model choice.
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Table 3.7: Analysis of the transfusion-related AIDS data

Parameter Proposed Chaieb
Assumption and e 95% o 95%
isti stimates stimates
Statistics jackknife interval jackknife interval
0.203 0.195
—log(ax) (0.112, 0.295) (0.065, 0.326)
(7 =0.101) (7 =0.097)
Clayton C 0.336 (0.201, 0.472) 0.329 (0.176, 0.483)
copula Wald’s
chi-square 19.173 8.562
for (p-value<0.001) (p-value =0.00)
H, :log(e) =0
3.752 3.736
log(a) (2.272,5.232) (2.256, 5.215)
(7 =0.369) (7 =0.368)
Frank C 0.543 (0.356, 0.729) 0.541 (0.354, 0.7271)
copula Wald’s
chi-square 24.696 24.495
for (p-value<0.001) (p-value<0.001)
H, :log(e) =0
© _|
—
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o
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Fig. 3.1: The cumulative distribution functions of the incubation time of AIDS

under two copula models.
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3.6. Conclusion

In this project, we consider semi-parametric inference for dependent truncation data
based on semi-survival AC models. Following the framework in Chaieb et al. (2006), we
proposed a different approach for estimating the association parameter as well as the marginal
functions. In addition, we have provided a unified framework for comparing different
estimation strategies. In particular, we have found that these approaches can be viewed as
equivalent with a flexible choice of weight. The proposed method for estimating the
association parameter extends the idea of Clayton’s conditional likelihood to the truncation
setting. Hence it produces more efficient results than methods which are constructed based on
only the first-moment condition and use an ad-hoc way of choosing the weight function. The
proposed recursive algorithm, which solves, the equations in (3.11) and the two artificial
constraints, is easy to be understood.and yields:nice explicit formula. In the establishment of
the large-sample properties, we apply the functional delta method which can handle more

general estimating functions than the.U-statistic-approach.

-39-



Appendices : Project 1

Appendix 3.A: Asymptotic Analysis

To simplify the notations, we define the following quantitiesg, (v) =1/{1+6,(v)},
(o, y)=pr(Y >y| X <Y) and 7z(x,0)=Pr(X <x|X <Y). Also, let {D[0,0)}* be a
space consisting of right-continuous function (f,(t), f,(t))" with left-side limits, where
f,(t):[0,0)>R for k=212 . The metric is defined as d(f,g)=

max{sup | f, t)—g, ) ;k =12} for f,ge{D[0,)} . Similarly, the space D{[0,)°}

0<t<co

consists of right-continuous  function  f(s,t) with left-side limits, where

f(s,t):[0,0)® — R, equipped with the usual sup-norm. Let ® — R be the parameter space

for (a,c), and (a,,c,)e® is denoted as the true parameter value. Hereafter, expectation

symbols represent the conditional expegctation given: X <Y .

Part I: Regularity Conditions

(A-1) A parameter space © is compact;

(A-11)  Deterministic functions ¢ (v) , ¢.(v)=og,(V)/ov , @' (v)=0°¢,(v)/ov? ,
$7a(V), ¢1(v) =04 (v)/6a,8,(v), 6,(v)=06,(v)/ov,b.(v) =00, (v)/ov?,

0,(v)=20,(v)/oa, W,(v), and W (v)=oW, (v)/év are twice continuously
differentiable and bounded function of («,v);
—1/2) :

(A1) sup |, . (x,y) - W, {cZ(x,y)}=0,(n

(A-1V)  There exists two positive numbers y, <X, such that
FX(yL) >0, SY(yL) =1, Fx(XU) =1 and SY(XU) >0.

(A-V) The (2x2) matrix A isnon-singular, whose definition is given later.
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Part I1. Asymptotic Linear Representation for JW (a,c)
It follows that
" v . o~
(Zj ;1{Aj}v'va,c(xi,-,vu)[Au - 9,{e (X, Yy)}
n B ~ VAR e~
- 2(2) ;1{%}Wa,c(xij YAy — 9,7 (X, Y)}]
e
—@ DA, (X, )G, {cA(X,.Y,)}
Note that the second term in the right-hand side of the above equation has smaller order

op(n‘l’z) than the first term. Based on the condition (A-lll), we have the following

asymptotic expression:

n e 1 7 VARRVE ~i -1/2
(2} U,(a,c)= n(n—1) %:1{Aij}wa,c(xij1Yij)[Aij - ga{C”(Xij'Yij)}]"‘Op(n )

The estimating function can be further'expressed-as a function of 7(x,y) such that

@ U, (@6) = (7;a;6)+ 0, (n?),

where 7 e D{[0, )},
O(7;a,C) = J‘“‘va*gw* w {cz(XvX,yAy)}

x[((x=x)y-y)>0)—g,{ez(xv X,y Ay )}Hdz(x, y)dz(x,y").
Chain rules can be applied to establish the Hadamard differentiability of & and to obtain

the derivative map at 7 with direction h e D{[0,©)*} as:

@' (h;e,C) = C.””M*gyw* h(xvXx,yAy)x
(W Ler(xv X',y A Y IHH(X=X)(y = ¥) > 0} g {ex(xv X,y Ay )} -
W Acx(xv X,y Ay gea(xv X,y A Y IHZ(X, y)da(x,y) +
ZJ..”.J.xvx*syAy* Wa{Cﬂ'(X VXL YAY )}X
[H{(x=xX)y~y) >0} g {cz(xv X',y A y)Hdh(x, y)dz(x", y).
The functional delta method (Van Der Vaart, 1998, Theorem 20.8) shows that
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1

(ZJ_ Gw(a,C) =®(r;a,C) +%Zn:q);;(7z'(xi,¥i) —7T;05,C)+op(n—1/2) 1 (A.1)

where 7z, v (X, ¥) =1(X; <x,Y; 2y) and the term @’ (7 y,—7;,C) has mean zero for

any value of («,c).

Part 111: Asymptotic Linear Representation for U _(«,c)
Let 'fx,a,c(yL) be the marginal estimator for a specified value of («,c). Then by

Taylor expansions, we have
R(X. R(x.)-1 .
o[ B[ e

:CJ.¢;{C7%(U’U)}d7%(u’O)+¢0’{C7’Z\-(yL’yL)}+0p(n_l/2)
Yu
= Y(7;a,c)# 0, (n 7).
Applying the functional delta méthod ,on-*¥(z,,C), we obtain the asymptotic linear

expression as:
U, (a,c) = ¥(r;a,c) +%Z‘1’,’, (Tx,yy =T 0,C) +0,(NH2) (A2)
i=1
where

Y (7x, v, ma,c)= CZT¢§{C7T(U, uWHI(X, £u,Y, 2u)—7z(u,u)}dz(u,0)

Yi

—cj{l (X, < u) = z(u,0)}dd. (cz(u,u)),
YL
which has mean zero for any value of («,c).
Part IV: Proof for Consistency of («,¢)

Define the following notations:
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U,.(X.Y) :{Cb;(ﬂ(xi,vi) —zr;a,c)+cp(,;;a,c)}

¥, (7x, vy~ 7 a,C)+ ¥ (7, a,C) '
U,.(X;,Y))=0U, (X;,Y;)/0(a,c) and A:E[U'%'CO(X,Y)]. From (A.1) and (A.2), we

have > U, (X, Y;)/n=0,(n"?). This formula implies that (2,C) is an approximate
i=1

Z-estimator (Van Der Vaart, 1998, p.46) for the criterion function (a,c)—U, (X,y). The

consistency of (c,C) follows by checking the conditions:

(A) Point (ea,,c,) isthe unique zero for E[U, (X,Y)]=0 inits neighborhood.

(B) sUp(ac)egllznl v (X0, Y In—EU,, (X, Y)]ll=0,(1), where ||-]| is the Euclid norm.
For (A), we need to check ®(7;a,,c,)=0 and ¥(7;e,,cC,)=0. The first equation follows
from the fact that the conditional expectation of A, given ()Zij,ﬂj) IS gao(coz(iij,ﬁj)).
The second equation can be directly-shown from the identity:

dr(u0)
z(u,u)

Bo, (Comr (YL, Y1) = 6., (Fly))= jc 7 (U) g, (Com(u,u)) ——=>
The non-singularity of matrix A:E[U%’CO(X,Y)] in (A-V) is sufficient to show the
uniqueness of the point (e,.c,) . Condition (B) holds if the set of functions
I={U,.(+);(a,c) B} is Glivenko-Cantelli (Van Der Vaart, 1999, p.46). The sufficient

conditions are that U (x,y) is continuous in («,c) for any fixed point (x,y) and that

the function U, (x,y) is bounded with respectto (x,y,,c), both of which hold under the

regularity condition (A-I1).

1/2

Part VI: Asymptotic Normality of n"'*(a-«a,,C-c,)"

The consistency of (&,€) allows us to use the standard argument for proving the
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asymptotic normality based on the second-order Taylor expansion. Following the argument of

Theorem 5.4.1. of Van Der Vaart (1998), we obtain

a-a 1 &,
\/ﬁ[ 0}:WZA1Ua0,%(xi,Yi)+op(1).

C-G i=1

Thus, the statement of Theorem 2 holds by letting B=E[U, . (X,Y)U, . (X,Y)'1.

Part VI: Asymptotic expression of qﬁd{SAY }-¢,{5, ()} and ;1562{|fX O}-¢, {F )}

By the second-order Taylor expansion and the boundedness of ¢/ (v), it follows that
R t
¢&{SY (t)} = Ié¢é{é7%(u, u)}d;i'(w’ u) + Op (nfl/Z) ,
YL

where the integral value is definedsto "bei:0 for t<y, . Defining the function

v(a,c;r)=cg. (cr) and applying the Taylor expansion around («,,c,), we have

9:48, (0= [yt 0o (U HAZERUHH e (2:0)" [i_f °}+op(n-ﬂ2),

Yo o

where
HY we(r;t) = J‘%l//{a,c;ﬂ(u,u)}dﬁ(oo,u) J‘%l/l{a,c;ﬂ(u,u)}dﬂ(oo,u)] .

By the continuous mapping theorem, the process H' ¢, (7;t) converges in probability to
h (t)=H" e (7;t)"  uniformly in t . Applying the functional delta methods on

T —> L w{ay, Cy; (U, u)}r(o0,u), we obtain the following linear expression

I; yAaty, Co; (U, U)3d (o0, U) —j; yAday,Co; (U, u)¥d(oo,u) = n-lzn: L' a0 (X, Y51 +0, (072),

i=1

where L.c(X,Y;t) equals

CJ, #HeAUUHK <uY, 20) (U dreau)+cf geruuleIey, 2u)-au)}
Using the asymptotic expression for (&,€), we have
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L4834, 48, ON =1 YL e (X, Y0+, 07 AU, (X, Y00, ),
i=1
where each term in the summation has mean 0 and finite variance. As a consequence of the
functional delta method, n™Y zzn:l L s (X,,Y;;t) converges weakly to a linear function of
the Gaussian process W (X, y), which implies the tightness of this term. Since the random
variable U, . (X;,Y;) istime independent, the second term is naturally tight.
Using similar arguments, we obtain the expression
LB (O3 L5 OH =177 D[ (X, Y0) +h (0 AU (X Y140, ),
i=1

where L*..(X,,Y;;t) equals
_(;2X'|'U¢C'('{c7z(u,u)}{l(Xi <u,Y, 2u)—7r(u,u)}d7z(u,0)—cx'[ugzﬁ,;{w(u,u)}d{l(Xi <u) - 7(u,0)}.

and

Xy Xy

|- vtg o a0z 0 0) | %w{ao,cmu,u)}dn(u,o)} .

t t

hy () = H o (751) = —{

For instance, the Frank model has the expression

l-«
t

- @100@ o 0g(@)
| =0, g Lo

40 = Iog{et ‘j*“]

5, (1) = Iog[

l-«

ta'*log(a)
(1-a')?

. _i’ B
¢, (1) = e ¢, (1) =

&;1(t>:ai¢;1(t)= 1 { 1 _¢;(t)}
(04

log(a)| &' -1+a «

- 3 1 1 _ Fy (t)
¢a (¢aFX (1) = Iog(a)[(l—a)/(l—an (t))—l-I-O( o :|

Using the expression
AU) =1/A-e"“M), B(u)=e”"“" [1-e"Y), C(u) = A(u)B(u),

We can write:
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het) o™®-1 }/.rC(u)d;;(u,o)
, = =0 X t
aF ) «a [ BU){L+ AUz (u,u)}d7(u,0)

L ac(X;,Y;5t) = —yZTC(u){I (X, <u,Y, >u) -z (u,u)}dz(u,0)
B (X, <t)—7(t,0)}+ /f{l (X, <u)—(u,0)}d(u,u)

This function may be empirically estimated by

L¥c(X;, Yis) =21V 2t) D C(X)/n+y* >.C(X,)R(X,)/n?.
Jtv XX j<xy AY; BitsX<xy
Part VI1: Weak convergence of n“2(S, (t)—S, (t), F, (t)— F, (t))"

The following result follows from:the second-order Taylor expansion:

1,{8 ,(©)-S, (t)} n1 {Vvaoco(x Y t)}op(l), (A3)

112

F, (t)-F, (t) V0w 6X,, Y0 0)
where
VYao,co(Xi'Yi;t)_ ao CO(XI’ I’t) hY(t) +|:¢ _l{¢a05 (t)}:| (X Yi)
.. {Sy (1)} 4. {Sy ()} 0
and
Vi (vt = B Y50 [ @ {qﬁ {4, Fx (t)}} U (XY
¢, {Fx ()} ¢, {Fx (1)} 0 o

are mean-zero i.i.d. stochastic processes and their summation are tight processes. We use the

definition 0/0=0 for the case with ¢a0{§Y (}=0 and ¢%{le (t)}=0.

Let V. (t)=n"2(S, (t)=S, (t),F, (1) = F, (t))". Also, let G(t)=(G,(t),G, (t))" be a zero-mean

Gaussian random field, the covariance function being specified as
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E[G, ()G, (D] = EIV, . (X,Y;s)V, . (X,Y:1)],

E[G, (5)Gx (D1=EIV,; o, (X,Y:8)V,, o (X,Y;0)],

E[Gy (5)Gy ()] = EIV,, o, (X,Y;5)V, o (X,Y51)] (A4)
for 0<s,t<ow. Both V (t) and G(t) are maps from the probability space to the
space{D[0,)}*. Now we show the weak convergence of V, () to the Gaussian random

field G(t) in{D[0,0)}*. Based on the expression (A.3) and the central limit theorem, the
finite-dimensional distribution of Vv (t) converges weakly to that of G(t). The tightness of

process V,(t) is already shown in Section A.6.

Appendix 3.B: Equivalence of Different Estimating Functions

Let
B; ={I(X; <Z;)=8~
N[o, =0, =0Qv{s =16;=0,Z; >Z2,}{6,=0,0, =12, >Z }]

be the event that the pair (i, j) is orderable and comparable (Martin and Betensky, 2005).

We aim to establish the following identity:

= [ W (x| A ) - 24TV }

(Yo R(x,y) -1+0,{cU(x y)}
=—z|{Bij}Wa'c*EXijiZij)[l+ ea{C*Y(i(ij’Eij)}] x|:Aij B “1 - ]
i<j R(X;,Z;)-1+6,{c V(X;,Z;)} 1+6, {c v(X;,Z;)}

As a special case with C, = oo, the above identity yields equation (9).
The following proof is for the general situation that permits external censoring. Let
é(x, y)=0 {c*V(x,y)} and w(x,y)=w,.(X,y). Writing the integral via the finite sum, we

a,c*

obtain
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E B é(xi’zj)
|_z z 5JW(Xi,Zj){N11(dXi’dZJ) R(Xi’zj)—1+é(xilzj)

i=1 j:X,<Z;<Z;,X;<X;

. 6(X,,Z,) K SW(X;,Z,)0(X,,Z,)
_;5‘W(X"Z‘){l } 2 R(X,,Z;)-1+6(X,,Z;)

R(Xi,Zi)—l+é(Xi,Zi) i=l jiXi<Zj<Z;, X <X

=1, +1,.

The first term 1, can be written as

. 5i(l_Aij)W()Zij’Zij)

- o wW(X L, Z{R(X,Z,) -1 =
Z R(Xi’zi)—1+ é(xwzi) ; j:xi<Z:Xj<Xi R(Xii’zij)_l—i_é()zijlzu) |

i=1

The above equation follows by noting that the number of j satisfying Z;>Z;,X; <X; is

R(X;,Z;)-1 and using the notation X, and Z;. It is easy to see that

R ~ N ~

n 5,'W( ij'Zij)e(Xij’Zij)
I, =— = = —.
DI Xz )-1+0(X,.Z;)

i1 X<z, <2, X J<xit R( i

:_Z”: z 5injW(~xij’Zij)6j()fij’éij)_
7)1+ 0(X,.Z,)

im1 i<z, Xpax. ROXG

By combining these terms, we have

2 o5 SM-A)-8,0,0(X,,Z,)
R P AR A

i=l jiX<Zj,Xj<X;

_ _z I{Bi'}W(xij ,ZE ){:1"' Ay +AAijv€()-(~ij Z;)}
! R(X;,Z;)-1+6(X;,Z;)

i<j

ij?

:—2I(Bij)W“'°*V(X”.’.Z”)[l+ea{C:Y()v(ij1—%”)}] Ay - *Al _ .
R(X,Z;)—1+6,{c V(X;,Z;)} 1+6,{cv(X;,Z;)}

i<j ij 1 <ij
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Appendix 3.C: Examples of AC Models
For illustration, we derive explicit formulas for the Clayton and Frank models.
Example 1: Clayton model (Clayton, 1978)

The Clayton copula is indexed by ¢, (t)=t"“" -1 (a«>0) and, by equation (1),

6, (v) = « . The semi-survival Clayton model follows that

1

Pr(X <x,Y > y| X <Y) = @/c)[max{F, (x) P +5, (y) ™ -1,0}] «.
Note that the above expression also accommodates the case of 0< a <1, where ¢, (0) < oo

(Nelsen, 1999, p.92). By equations (2) or (5), @ (x,y) =« but its interpretation is the

reciprocal of the usual odds ratio. Hence, when 0< a <1, we have 0*(1 ) :l >1 which
X,y) «a

implies positive association between X and Y.

The proposed estimating function is given by

o a

U = A Y)———|.

(@) wﬂw“{( ) Rud%4+a}

and, by solvingU (@) =0, a can be obtained without estimating c* or c. The second

estimating function U_(«,c*)=0 reduces to the explicit formula

[y R(x,) 1‘“_ R(x,)-1 sl
ool (3] 5 FRu Rt

Plugging in & in the above equation, we obtain €*. The recursive algorithm yields the

following marginal estimators:

Sm=1- ¥ {6* R(ZJ’)} —{é*—R(Z")_l} ,

il | nSe(z)) nS.(z;)
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N ~ 1-a ~ 1-a i
F. (t)= (C_j -3 |JE ROG) | Jg ROG)TL
X n i ox; <t nS¢ (X;) nS¢ (X;)

Example 2: Frank model (Frank, 1987)

The Frank copula is indexed by ¢ (t)=log{(l-a)/(l-a")} (a>0) with
6, (v) =vlog(a)/(a" —1) . The semi-survival Frank’s model can be written as

Pr(X <x,Y >y|X <Y)=@/c)log,[1- 1-a™)1-a>)/1-a)].
It follows that
0" (x,y) = 0{cV(x, y)} ={c'v(x, y)}-log(e) /(@™ *¥ ~1) .

Consider the transformation y =c*log(«) . The likelihood estimating function can be

expressed in terms of y, and the proposed estimating:-function of y is given by

o A £ 7 V(X,Y)
L= j )L,Wy(x’ y){A(x, W e y)} |

where W, (X,y)=1-y 0(x, y)e’ "V J(1=eZ ") Let 7 be the solution to U (y)=0,

The association parameter « can be estimated by

R(x;) S (x;)}

n s e -1

a=1+e"""-1 —_ -

( )H PR (x;)-1H{nS¢ (x;)}
Ixgy<x;| € -1

A

and hence ¢*= % Explicit formula for the marginal estimators are given by
og(a
~ o RE)DANS )} _q
SY (t) = |Oga 1+(a_1)j;ZlSrt:[5]1 aC*ﬁ(zj)/{ngc(Zj)}_l ]

JiX@y<xj<t

F () =log,| 1+ -1 T[] o
x (1) =109, ¢ ROD-BANSCOF _q | |
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Chapter 4 Testing Quasi-independence

In this chapter we study the problem of testing independence between (X,Y) subject to
X <Y . Tsai (1990) was the first one to study the problem and he found that only a weaker
assumption of quasi-independence can be tested.

Before we present our proposal, it is worthy to briefly review the development of ideas
which have been utilized in construction of test statistics in related problems. Testing
independence between a pair of failure times has been an important area of research. For
bivariate failure-time data subject to right censoring, several nonparametric tests have been
proposed. For example, Oakes (1982) suggested a concordance test based on Kendall's tau.
Cuzick (1982, 1985) and Dabrowska (1986) considered rank-based tests. Shih and Louis
(1996) proposed to utilize the covariance process of martingale residuals to constructs test
statistics. Hsu and Prentice (1996) generalized-the idea of the Log-rank (Mantel-Haenszel)
statistic for testing association.

Recall that for truncation data,no information about (X,Y) is available in the region,
{(x,y):0<y<x<oo}. Hence truncation data are fundamentally different from typical
bivariate survival data mentioned above in which there is no restriction on the range of
observations. Most existing methods for analyzing truncation data have assumed
independence between the two variables (Lynden-Bell, 1971 and Woodroofe, 1985). Tsai
(1990) introduced the concept of quasi-independence, a weaker condition than independence,
and showed that this assumption can be tested. Formally the assumption of
quasi-independence can be stated as

Hy (X, y)=F,(X)S,(y)/c, (x=2vy), (4.2)
where 7z(X,y)=Pr(X<x,Y>y|X<Y) and F, and S, are right continuous

distribution and survival functions, and c, is the normalizing constant satisfying

¢y =— [[dF, (x)dS, (¥).

X<y
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His proposed to utilize the conditional Kendall’s tau estimator in (2.11) to construct a test for
quasi-independence.

Here we propose to constructed a series of 2x2 tables which have the same form as the
tables illustrated in Section 3.1.2. The proposed tests are motivated by the weighted log-rank
statistics based on these 2x2 tables. Power improvement is possible by choosing an
appropriate weight function. Hence we also derive score tests when the dependence structure
under the alternative hypothesis is specified semiparametrically. Extension to right-censored
data is also discussed. Asymptotic analysis is provided based on properties of empirical
processes and the functional delta method. Simulations are performed to evaluate

finite-sample performances of the proposed methods.

4.1. The Proposed Test Statistics

Temporarily, we ignore external ‘censoring. Under the truncation scheme, we observed
{(X;,Y;) (j=1...,n)} subject to X, <¥;."To-facilitate the interpretation of the proposed
test statistics, we set A; = I{(X; —X;)(Y; —Y;) <0} which now represents the discordant

indicator and hence is different from the definition in Section 2.1.

4.1.1. Construction based on Two-by-two Tables

Adapt to the nature of truncation, we can construct the following 2x2 table at (X,Y)

with x<y
X =X N, (dx, dy) N,.(dx, y)
X <X
N, (x,dy) R(x,Y)

Table: Two-by-two table for Truncated Data
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The cell counts and marginal counts in this table are defined as

Nll(dX,dy)=Z|(Xj :Xij =), N,l(x,dy)=ZI(Xj SX,YJ‘ =Y),
j=1

j=1

Nl,(dx,y):Zn:I(Xj =xY;2Y), R(x,y)zznll(xj <xY;2y).

i=L j=L

The odds ratio of the table reveals the information of association between X and Y attime

(x,y). For example the theoretical value of the odds ratio equals 1 under H,. Given the

marginal counts, the conditional mean of N,,(dx,dy) for x<y becomes

E(N,, (0, dy) | Ny, N, R) = Nl“dXF’eﬁN;)(x’ W) 4.2)

We propose to test H, by the following weighted Log-rank type of test statistics:

_ ~ NL (dx, Y)N,; (x,dy)
Ly = [[W(x y){Nu(dx,dy) ROD) } 423)

X<y
where W (x,y) is arbitrary pre-specified weight function which affects the power under the
alternative hypothesis. In the special..case_that there is no tie in data, we have
N, (x,dy) = N, (x,dy) =1 and the expected valuein-(4.2) becomes 1/R(X,Y).

We now illustrate the idea of the 2 x 2 table construction using a simple case. Assume that the
data have no ties so that all the tables wunder analysis have marginal
counts N, (x,dy) = N, (x,dy) =1. Given marginal counts N_(x,dy)=N,(x,dy)=1 and

R(x,y)=r,thetableat (x,y) has the following two possible configurations:

1 r 1 r

Under H,, the probability that the first table appearsis 1/r.
The test based on L, is nonparametric in that no assumption is made on (X,Y). In
Section 3, we will discuss how to utilize the information provided by the alternative

hypothesis, which specifies the association pattern, to choose a weight function that leads to a
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more powerful test. We can modify the G” class proposed by Harrington and Fleming

(1982) for truncation data and obtain

L, = [[#(x y—)P{Nn<dx, ay) - (A dy’} (4.4)

where 7(X,y) = z I(X;<xY;>y)/n and pe[0,) isan arbitrary constant.
j

4.1.2 Relationship with Tsai’s test

In this section, we assume that the observations have no ties, that is, all
X X, Y,..Y, are distinct. We derive another expression of L, based on the newly
defined discordance indicator

= H{(X;i=X))G=Y;) <0}
Tsai (1990) proposed the following-modified version-of-Kendall’s tau, z, =1-2E(A; | A;),

where A, {XIJ _Y} X = X; vX; 'and Y =Y, AY;. Note that when event A; occurs,

the two pairs are both located in the observable region, {(x,y):0<x<y <o} and hence 7,
is well-defined for truncation data. Tsai proposed the following nonparametric estimator of
T,
ZAi,-I{A.,-}
7,=1-28 (4.5)

2 A}

i<j

Note that the formula in (2.11) and (4.5) are actually the same. Because the change of
notations, they have different expressions.

It follows that the proposed test statistic can be written as

u’Yu) _E
LR ROG,. %) o 7 (“0)
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where A, ={>Zij sﬂj}. The derivation of equation (4.6) is proven in Appendix 4.B under a
more general setting that accounts for right-censoring. Under H,, we have E(A;)=1/2.

Expression (4.6) implies that the proposed Log-rank statistics L, can be viewed as a

weighted sum of the difference between the discordant indicator A; and its expected value

1/2 under H, over all comparable (i, j) pairssatisfying I{A;}=1.

Notice that setting W (x,y) = R(x,y)/n, we get

L= R {Nn(dx,dw— T ,Nyj(x’dy’} @7)

X<y

2 1
= FZ |{Aij}(Aij - 5],

i<j
which is exactly Tsai (1990)’s statistics based'on conditional Kendall’s tau.

The equivalence relationship i (4.6) allows us to compare different types of testing

procedures under a unified framework. Note‘that Tsai’s statistics, or L, can be written as

the conditional independent sum of ‘ranks (Tsai; 1990). In this special case, theoretical
analysis may utilize rank-based results. The expression of L, in (4.6) based on A; will be
a U-statistic if the weight function does not involve any unknown nuisance parameter. In this

situation, properties of U-statistics will be helpful for theoretical analysis. This approach has

been adopted by Martin & Betensky (2005). However here we consider a general class of

L, Wwhich can include more flexible weight functions. Hence for large-sample analysis, we

will apply the functional delta method, a useful tool which can handle more flexible weight

functions.

4.2. Conditional Score Test

4.2.1. Likelihood Construction
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The weight function in (4.6) affects the power of the corresponding test. Now we express

the local odds ratio function proposed by Chaieb et al. (2006) for truncated data using the new

notation of A . Specifically for x <y, the odds ratio function can be expressed as

(X, y)-0°w(x,y)loxoy  Pr(d; =11 Xy =xY; =Y, A)

om(x,y)/ox-0m(x,y) 18y  Pr(A; =0|X; =x,Y; =y, A))

]

I(x,y) =

Under quasi-independence, the above ratio reduces to 1. It should be noted that if 3(x,y) <1

implies positive association while 9(x,y) >1 implies negative association since here A; is

the discordance indicator. The proposed score test is derived if the following assumptions for

the alternative hypothesis hold.

(i) The cross-ratio function can be parameterized as 3(x,y) =6, (n(x,y)), where « is
one dimensional parameter and 7(x;¥) ‘iS‘an.unspecified nuisance parameter.

(i) For each fixed n, 6,(n) is a continuously differentiable function of « , and
Iirq@a(n):l.
If the above assumptions hold under.  the -alternative hypothesis and given that

N, (x,dy) =N, (x,dy) =1 and R(x,y)=r, the cell count N,(dx,dy) follows a Bernoulli

distribution with

0,(1(xy)
r=1+0,(n(x )

Suppose that the nuisance parameter 7(x,y) can be estimated separately by 7(x,y). Under

Pr(N,,(dx,dy)=1|N,, =N, =1LR=r) =

a working assumption of independence for different tables of (x,y), we can construct the

following conditional likelihood function

0, (7(x,y)) Nﬂ“‘“’”{ R(x.y) -1 TNu(dx,dy)
H7 - 4.8
(@) H{R(x,y)—lwa(ﬁ(x,y))} R(x,y)-1+8,(7(x,Y)) (4.8)

X<y

Which ignore the distributions of the margins. The idea of equation (4.8) was motivated by

the landmark paper of Clayton (1978). The corresponding score function dlogL(«)/da
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becomes

0, (7(x.y)) N,. (dx, YN, (x, dy)0, ((x, y))
L(dx,dy)— ‘ 4.9
H 9, (7(% { (O ) = R ) -1+, (%, Y)) } (49

where, 6,(v) =20, (v)/da .
By letting « —1 for quasi-independence, we obtain the score test under the model

assumptions (i) and (ii). Since Iirrln9a(77(x, y)) =1, the score statistics belongs to the

weighted Log-rank test with weight function being specified as:
W (x,y) = limé, (7(x. y)). (4.10)

If the alternative hypothesis follows model (i) and (ii), it is expected that the weight in (4.10)
can lead to a more powerful test than an arbitrary choice of weight without any theoretical

justification.

4.2.2 Semi-survival Archimedean Copula-Models
Now we apply the above discussions to"the semiparametric models proposed by Chiaeb
et al. (2006). Specifically the “semi-survival” function can be expressed as
2(%,Y) =PrX <xY >y [ X <Y) = ¢, " [{g {F, (0}+¢.{5, (¥)}l/c  (411)
where ¢ is a unknown normalizing constant satisfying

=1l meay . 100F 003 0,88, (1] ey,

where the properties of ¢,(-) have be given in Section 2.1.
For models in this AC family, assumption (i) and (ii) are also satisfied. It has been shown

that 9(x,y)=6, (cz(x,Yy)), where
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2.01). (4.12)
¢. (1)

In other words, the nuisance parameter is 7(x,y)=cxz(X,y). The formulation in (4.11)

0,(n)=-n

contains the case of quasi-independence as a special such that, under assumption (ii), we have

@, (t) =—log(t) after appropriate parameterization and c=c,.

To apply the result in equation (4.9) for a semi-survival AC model, we need to estimate

n(x,y)=cx(X,y) separately under H, and then compute the weight function in equation
(4.10) when the form of ¢,(-) is specified. Under H,, the truncation probability c can be

estimated by

R(X(l)’x(l)) IX @) SX|; R(Xj’xi) ,
where X, = mjin X;,and z(x,y):can be estimated by
70X, Y) =DX, <Y > y)/n.
j
Now we calculate w(77(x,Yy)) = Iin} 6'?a (7(x,y)) for selected AC models, namely the Clayton,

Frank and Gumbel copula models. We will evaluate how these weight functions affect the
power of the corresponding tests by simulations.
Example 1. Claytonl copula

Clayton’s model (1978) has the generating function ¢, (t)=(t"*" -1)/(a—-1) for

O<a<ow,a=1. Itfollowsthat 6,(r7) = and hence it is easy to see that lima, (n(x,y)) =1.
a—1

Thus the resulting weight function does not involve any nuisance parameter. In this case, the

corresponding score statistics is equivalentto L _,. We may also refer to this unweighted test
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as the original log-rank statistic.
Example 2. Frank copula
For Frank’s model, the generating function is ¢, (t)= Iog{(l—a)/(l—a‘)} for
O<a<ow,a=1.Since ,(n)=nlog(a)/(e”*“ 1), the weight function has the form
limo, (7(x, y)) o= #(x,y-).
The corresponding score test statistics is equivalent to L _, or Tsai’s statistics based on the

conditional Kendall’s tau. Note that L, _, has similar expression as the Gehan’s test for

typical right censored data.
Example 3. Gumbel copula

The generator function is ¢ (t)={-log(t)}* where 1< «. Notice that this generator
function only can generate (X,Y) which are negatively correlated for semi-survival Gumbel
models. Since @, (n) =1-(a—1)/log() , the weight choice becomes

limd, (17(x, y)) o< ~1/log{€Z(x, y-)}.

Denote the corresponding weighted Log-rank statistics as L, -

The suggested weight functions for the three models are plotted in the following figure.
From the three examples, we see that the weight function is independent of the location
(x,y) for Clayton’s model. For Frank or Gumbel models, however, the weight is an

increasing function of 7(x, y—), suggesting the higher weight for the large risk set. Also

notice that the suggested weight function for the Gumbel model also involves the truncation
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probability c¢. The presence of additional nuisance parameters increase the technical

difficulty of asymptotic analysis. In Appendix 4.C, we give the formula of the score tests for

the latter two examples.

Plot of weight functions

n

‘-| T =

o Clayton e

S e —=
g _______________________________

n | Gumbel T e

S Frank

o | LT

c | | | | | |

0.0 0.2 0.4 0.6 0.8 1.0
Y,

Figure 4.1: The suggestedweight functions for three AC models.

4.3. Asymptotic Analysis

4.3.1. Asymptotic normality

For large sample analysis, we introduce the two classes of weighed Log-rank statistics:

L, = [[wz(x y—)){Nn(dx, dy) - F R dy)} , (413)
L*= [[wieaex y—)){Nn(dx, dy) - R R dy)} , (4.14)

where w(v) is a known continuously differentiable function on v € (0,1). Notice that the
difference of the two statistics is whether the truncation proportion ¢ is involved.
To simplify the analysis we assume that the distributions under the null hypothesis in
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(4.1) are absolutely continuous. In the Appendix, we provide a sketch of the proof. Detailed
derivations are given in the technical report. The formula in (4.13) and (4.14) can be

re-expressed as the following functional forms:

_n WAV X YAY Db
L= Il gy ST X =y DA DIFOC ),

~__n wWo(7)z(xv X ,yAY )} e s .
b= MM m ey gy SIMOX)Y =Y N IFK Y

where g(-) isa functional such that ¢=g(z), defined in Appendix A (part I1l) and sgn(x)

is definedto be -1,0,0or 1if x<0, x=0,0r x>0, respectively. These functionals can be

shown to be Hadamard differentiable functions of 7 given the differentiability of w(:). By
applying the functional delta method (Van Der Vaart, 1998, p. 297), we obtain the following

asymptotic expression:

N2, = -n"ETU(X¥)) + 0, (1),

=t

n-1/2|_*;v _ _n—1IZZu*(leYj) +0,(1),

j=1
where the random variables U (X ;,¥;) “and U’ (X i»Y;) are defined in Appendix 4.A (part
I and part I1).

Theorem 4.1: Under H,, the statistics n™"?L, converges weakly to a mean 0 normal

distribution with the variance o = E[U(X,Y;)].
. ; ; ot -1/2 ; _
Corollary 4.1: The Fleming-Harrington type G” statistics n™°L, with w(v)=v”

converges weakly to a mean-zero normal distribution with the variance

E[U,(X,.Y;)?], where
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U,(X,.Y,)

=(o-0I2ff[[ .. A yay)?

x{l (X; <xvXY, 2yAy)—z(xvx,yAa y*—)}
sgn{(x—x")(y -y )}z (x,y)dz(x",y’)

Ly 7OV XY AY ) sg{ (=X ) (Y~ Y )}
{1(X; = x,Y, = y)+dz(x, y)jdz(x", y").

Note that the statistics L, * involves the estimator of truncation probability, which is
closely related to the marginal estimators of F, (t) and S, (t). To show the asymptotic

normality for L, *, we need to assume the following condition.

Identifiability Assumption (I): There exists two positive numbers y, < x, such that
Fe(y) >0, S(y)=1, F(x,)=1 and S,(x,)>0.
The above statement is an identifiability seondition- for (F, (),S, (-)), which has been

routinely used in theoretical analysis"of truncation data; For example, the upper limit x,
plays the same role as the notation T in'Wang, Jewell & Tsai (1986).

Theorem 4.2: Under H, and the identifiability assumption (1), statistics n "L,
converges weakly to a mean O normal distribution with the variance

o =E[U"(X,,Y,)].

4.3.2 Variance Estimation: Empirical vs. Jackknife
For G” class, the asymptotic variance, defined by E[U (X ,YJ.)Z], has a tractable form.

Based on the method of moment and applying the plug-in principle, we obtain the following

estimator of AVar(L,):
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(p+1L,
n

]

Z{%Z I{Ajk}ﬁ-(xjk ’ij -~ sgn{(X; = X )(Y; =Y )+

2
+ pnllgl{Ak.}zﬂik.,Yl.—)P-z sg{(X,c = X )% =YDH (X < Xy, zv}.)} .

Alternatively, for both computational and theoretical convenience, the jackknife method
Is another useful choice for variance estimation. It can handle the situation of right censoring
easily without going through complicated mathematical derivations. In our simulations, we
have found that the Jackknife estimator actually outperforms the empirical estimator based on
analytic derivations.

Asymptotic behavior of the jackknife estimator is closely related to the smoothness of
the functional expression. Unfortunately, Hadamard differentiability of the present statistics
alone does not ensure the consistency of the Jackknife estimator. The consistency of the
Jackknife estimator requires a more stringent-:smoothness condition on the statistical

functional. The following theorem 'provides the theoretical justification for the use of

jackknife estimator in the proposed testing procedure.
Theorem 4.3: The asymptotic variance o and ‘¢ of the class of statistics L, and L,

can be consistently estimated by the Jackknife estimator.
The sufficient condition of continuous Gateaux differentiability (Shao, 1993) for the
consistency proof is given in Appendix A (part IV). The continuous differentiability of the

function w(-) plays an essential role in this proof.

4.4. Modification for Right Censoring

4.4.1 The Weight Log-rank Statistic under Censoring

Censoring is common in analysis of lifetime data. In addition to be left truncated by X, ,

suppose the variable Y; is subject to right censoring by another variable C,. Assume that
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C, isindependence of (X,,Y;). Observed data become {(X,,Z,,5;) (i=1,...,n)} subject to
X, <Z;, where Z, =Y, AC, and &, =1(Y, <C;). The 2x2 table can be modified as
follows. At any point (X,y) with x <y, one can construct a 2x2 table with cell and

marginal counts defined as

Ny (dx,dy) =Y 1(X; =%,Z; =y,6; =1), N (dx,y)=D I(X;=x2Z;2Y),
i j

N (x,dy)=> 1(X; <x,Z;=y,6;=1) and R(x,y)=D_I(X;<X,Z;2Y).
j j

Z=y,6=1 Z>y
X =X N,, (dx, dy) N, (dx, y)
X <X

N.,(x,dy) R(X,Y)

Table: Two-by-two table for Truncated Data subject to Right Censoring

We define

N, (@, Y)N.,(x,dy)
= [ (x, y)¥Ny, (dx, dy) - .
Ly, jj (xy){ (dx, dy) RO) }

In Appendix 4.B, we show that the above statistics can also be expressed as

2W (X, Z;) 1
; I{B”}W(A ——j, (4.15)

where

B, =(X; <Z;)N
{(6,=6,=D)U(Z,-2,>0&6, =1&35; =0)U(Z, - Z, >0&5, =0&3; =)}

implies that the pair (i, j) is comparable and orderable (Martin & Betensky, 2005). Under

the quasi-independence assumption, it can be shown that E(A;; |B;)=1/2.

For a constant p €[0,«), the Fleming-Harrington type G” class statistics can be

modified as
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L, = [foce y—)p{Nn(dx, ay) - (A dy)} , (4.16)

X<y

where O(x,y):(lln)ZI(Xjgx,Zj>y)/§C(y) and §C(y) is the Lynden-Bell’s
j

estimator for Pr(C >y)=S.(y) based on data {(X;,Z;1-0;) (i=1...,n)}. Note that the
weight V(x,y)” mimics z(x,y)” by applying the idea of inverse probability of censoring
weighting .

For the weight choice W (X, y) = R(X, y)/n, the expression in the discordance form becomes

2 1
Len = FZ I{Bij}(Aij _Ej’ (4-17)

i<]

which is equivalent to the modified statistics proposed by Tsai (1990).

4.4.2 The Conditional Score Test under Censoring
Under model assumption (i) and (ii), the-conditional score function has the same form as
(4.9), where the cell and marginal counts: are redefined for the censored case. For a

semi-survival AC model in +4.11), the _model assumption (i) holds for
0,(n)=-nd!(n)/4.(n), and the nuisance parameter becomes 7(x,y)=cv(x,y), where
¢ =Pr(X<Z) and

V(X,y)=Pr(X <x,Z>y| X <Z)/S.(y).

The nuisance parameters can be estimated by

C=—"T ] {1_2k|(xk=xj)} (4.18)

where X, =min X, and V(x,y-) = R(X, y)/Sc(y).
J

4.4.3 Asymptotic Analysis under Censoring

Now we discuss the asymptotic normality of the classes
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L, = [[wacx, y—)){Nn(dx,dy) WAL V)N'l(x’dy)}, @.19)

R(X,Y)
L, = [Jw(Eax, y—»{Nn(dx, dy) - (dxé?xNy;(X’ dy)}. (4.20)

As we could see in the proofs of Theorem 4/1 and 4.2, the formulas under censoring are very

complicated. Hence here we describe a brief sketch of proving the asymptotic normality under

H, . For the empirical process

H(x,y,c)= > 1(X; <xY,>y,C, >c)/n,
i

it can be shown in Appendix A (part I11) that

H:xv X, yAy Acac
L e o)

visyay'<end H(xv X, YAY ACAC — YAY ACAC ),
xsgn{(x23)(y - yI¥dH (x, y,c)dH (", y", ")

L,;v:_g”””X Mg*(ﬁ)¢(ﬁ;XvX*,y/\y*/\CAC*)}

sy e (XX YAY AGAC — YAY ACAC -),
xsgRg(X=x")(Y =y )3aH (x, y,c)dH (X", y",c")

where o(;x,y) and g“() are functions such that v(x,y-)=¢(H;x,y) and ¢ =g (H),
each defined in Appendix A (part V). The asymptotic normality follows from the functional

delta method that is applied based on the fact that both L, and L, are Hadamard

differentiable function of H and that the standardized process n“?(H —H) converges

weakly to some Gaussian process.
Similar to the uncensored case, the consistency of jackknife estimator can be proven by
checking the continuous Gateaux differentiability of the functional expression. The proof

follows the same lines as that for Theorem 4.3 and is omitted.
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4.5. Numerical Analysis

The analysis has several objectives. First we want to choose a better variance estimator
via simulations. Then we will study the size and power of the proposed tests. In particular, we
want to confirm whether our conjecture that the score statistics leads a more powerful test
when the dependence structure under the alternative hypothesis is specified. The rejection rule
is determined based on the normal approximation using the Jackknife variance estimator in

the standardization.

4.5.1 Comparison of two Variance Estimators

We generated truncated data (X,Y) which follow exponential distributions with
hazards A, =1 and A, =1. Total 500.replications of samples n=50,100and 200 were
examined for comparing the analytic and Jackknife estimators for variance estimation. The
true variances were approximated by the sample variance of 30,000 separate Monte Carlo
replications. To obtain the size of the'tests, we compute the empirical proportion of rejection

based on the standard normal approximation.

Table 4.1: Comparison of Two Variance Estimators

pon o var(nieL) —Average of V/ n | Size |
Analytic  Jackknife Analytic Jackknife
0 50 0.759 0.613 0.840 0.088 0.060
0 100 0.843 0.744 0.913 0.076 0.062
0 200 0.906 0.829 0.946 0.070 0.058
1 50 0.0469 0.0512 0.0523 0.048 0.046
1 100 0.0466 0.0476 0.0481 0.044 0.040
1 200 0.0458 0.0460 0.0463 0.060 0.060

Recall that based on the asymptotic mean-zero linear expression of the test statistic, we

can derive an analytic estimator for the variance using the ideas of method of moment and the
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plug-in approach. However based in Table 4.1, this complicated formula slightly
underestimates the true variance and hence inflate the type I error rates for small sample sizes.
It improves as the number of sample size increase. The jackknife method has much smaller

bias and the empirical sizes are satisfactory in all the sample sizes considered here.

4.5.2 Size of the Proposed Tests

The main purpose here is to examine the size of the proposed tests, namely L L

p=071 =p=1

and L.

invlog !

under the null hypothesis of quasi-independence. The nominal level is set to be

a =0.05. Note that the variance of each test statistic was estimated using the Jackknife
method. We consider three sample sizes with n =50, 100 and 200. For each sample size, we
evaluate four configurations of (A,4%4,,4.) . Specifically we set (4,,4,,4:) =(1,1,0),
(1,0.5,0), (0.5,1,0), (1.5,1,0.5), which' yields' c=Pr(X <Y) = 0.5, 0.667, 0.333 and
c*=Pr(X <Z) = 0.5 respectively. The rejection rule is determined by whether the
standardized statistic falls outside the 95%.confidence interval based on the standard normal
distribution.

Table 4.2 presents summary of the results including the means of the Jackknife variance
estimator (Ave07/n) ), the true variance (the number in the parenthesis) and the size of the

test. The Jackknife variance estimates slightly overestimate the true variance. Note that this
kind of positive bias may be common for using the jackknife method, which has been
explained by Theorem 4.1 of Efron (1982). The rejection rates of the three tests are close to

the nominal 5% level.
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Table 4.2. Empirical Size of the Proposed Tests (based on 500 runs)

at nominal level « =0.05 under different truncation proportions

L Lpzl I‘invlog
nooeler Ave(V / Ave(V / Ave(V /

vev/n) Size ve(v /) Size vev/n) Size
(True) (True) (True)
0.864 0.0517 0.195

50 c¢=05 0.070 0.074 0.066
(0.752) (0.0499) (0.179)
0.853 0.0646 0.314

50 ¢=0.67 0.050 0.054 0.034
(0.749) (0.0606) (0.281)
0.830 0.0433 0.134

50 ¢=0.33 0.058 0.056 0.036
(0.733) (0.0396) (0.120)
0.894 0.0483 0.178

100 ¢=05 0.062 0.048 0.040
(0.843) (0.0466) (0.174)
0.912 0:0609 0.286

100 ¢=0.67 0.042 0.044 0.036
(0.851) (0.0597) (0.276)
0.915 0.0388 0.1225

100 ¢=0.33 0.056 0.056 0.044
(0.822) (0.0374) (0.115)

100 ¢ =05 0614 0.044 . A 0.050 0185 0.044

=% 0s49) (0.0625) 0.1709)

0.949 0.0459 0.175

200 c¢=05 0.054 0.058 0.048
(0.906) (0.0455) (0.172)
0.963 0.0592 0.280

200 ¢=0.67 0.042 0.062 0.048
(0.899) (0.0580) (0.269)
0.946 0.0374 0.119

200 ¢=0.33 0.048 0.044
(0.892) (0.0368) (0.114) 0.044

200 ¢"=05 0647 0.052 0.0634 0.060 0177 0.054

¢ =" (0.592) ' (0.0610) ' (0.168) '
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4.5.3 Empirical Power of the Tests
To examine the power of the proposed weighted Log-rank statistics, we generate (X,Y)

from three semi-survival AC models, namely the Clayton, Frank and Gumbel models. Then

we apply the conditional score tests, L L_ and L to the above all the three

p=0"? ) inviog

settings respectively. All the marginal distributions are exponentially distributed. Marginal
hazards are fixed to be (A4,,4,,4.)=(1,1,0) and (1.5,1,0.5) which yield ¢=0.5 and
c*=0.5 respectively. Tables 4.3 and 4,4 show the empirical powers of the three tests based
on 500 replications. Also two sample sizes n=100 and 200 are evaluated. The power

functions are also depicted in Figures 4.2 and 4.3.

The tests based on L,, and L _ are uniformly more powerful under correct

specification of Clayton and Frank model respectively. It indicates that the weight choice

based on the score test yields high efficiency when. the model assumption (I) is correctly

specified. The large discrepancy between.the-powers of "L, and L _, can be explained by

the obvious difference in the suggested weight functions for the Clayton and Frank models.
Note that, under the Frank model, the performance in presence of censoring is deceptively
better since we changed the parameter values for the marginal distributions are different.
Table 5.5 shows the empirical powers under the semi-survival Gumbel model which only
permits negative association. Five five selected levels of association are examined. In contrast

to the Clayton and Frank models, the discrepancy amongr the power curves becomes less

clear for n=100. Nevertheless L

invlog

still performs slightly better than the other two tests for

n=200. To explain why the power improvement is less obvious for the Gumbel case, we
suspect that the problem is caused by the estimation of the nuisance parameter
n(x,y)=cz(x,y) whichisusedin w(n(x,y))=1/log(cz(x,y)). The extra variation due to

¢ and 7z(x,y-) may bring extra variation especially for n=100 which offset the correct
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choice of the weighting form. In other simulations not provided here, we have seen that the

test based on L

invlog

clearly dominant the other two tests for both sample size n=100 and 200

when the true weight function 1/log(cz(x,y)) is used.

Table 4.3: Empirical Powerof L, L, and L atlevel o =0.05

inviog

for the Clayton model (based on 500 runs)

n=100 n=200
Ty C=05 . cent=0 ¢ =0.5,cen%=33 c=0.5,cen%=0 ¢ =0.5,cen%=33
Lp:O Lp:l I‘invlog Lp:O Lp:l I‘invlog Lp:O Lp:l I—invlog Lp:O Lp:l I—invlog

-0.25 0976 0.944 0962 0.930 0.844 0.858 1.000 0.996 0.998 0.998 0.990 0.994
-0.20 0.910 0.782 0.844 0.810 0.676:0.706 0.996 0.988 0.994 0.966 0.916 0.940
-0.15 0.710 0.560 0.630 0.562 0450} 0#4r2 0.942°. 0.876 0.916 0.838 0.736 0.790
-0.10 0.414 0.276 0.344 0.312 0.210 0.224 0.676 =0.504 0.602 0.566 0.430 0.470
-0.05 0.176 0.116 0.118 0.140 '0.098, '0.096 0.284 ©0.184 0.212 0.218 0.154 0.172
0.05 0.176 0.146 0.136 0.128 0.108. 0.098 0.290 0.226 0.252 0.192 0.160 0.168
0.10 0.484 0.348 0.398 0.344 0.260 "0.266 0.860 0.654 0.804 0.656 0.520 0.600
0.15 0.904 0.696 0.822 0.702 0.516 0.564 0.998 0.968 0.998 0.980 0.872 0.946
0.20 0.998 0910 0976 0.938 0.768 0.850 1.000 0.996 1.000 1.000 0.972 0.998
0.25 1.000 0.982 1.000 0.944 0.944 0.984 1.000 1.000 1.000 1.000 0.994 0.996

* denotes the score test when the alternative is correctly specified.
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Figure 4.2: Power function under Clayton alternative
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Table 4.4: Empirical Power of Lo L;:l and L

inviog

for the Frank model (based on 500 runs)

at level «

=0.05

n=100 n=200

Tau =05, cenf=0 ¢ =0.5,cen%=33 ¢c=0.5,cen%=0 ¢ =0.5,cen%=33

Lp=0 Lp=l I-invlog Lp=0 Lp=l I-invlog Lp=0 Lp=1 I-invlog Lp=0 Lp: I-invlog
-05 0912 0.990 0.980 0.944 0.976 0.972 0.998 1.000 1.000 0.998 1.000 1.000
-04 0.670 0.808 0.788 0.700 0.818 0.790 0.904 0.988 0.982 0.942 0.982 0.982
-0.3 0.390 0.466 0.462 0.458 0.468 0.460 0.608 0.770 0.754 0.680 0.806 0.798
-0.2 0.184 0.192 0.180 0.204 0.212 0.204 0.296 0.376 0.336 0.328 0.416 0.396
-0.1 0.074 0.086 0.072 0.090 0.090 0.076 0.094 0.118 0.082 0.096 0.136 0.122
0.2 0.092 0.098 0.084 0.082 0.092 0.068 0.080 0.090 0.082 0.080 0.104 0.088
0.10 0.090 0.124 0.084 0.140 0.164 0.138 0.156 0.198 0.156 0.206 0.292 0.246
0.3 0.172 0.196 0.166 0.204 0.288 0.206 0.256 0.330 0.272 0.396 0.536 0.464
04 0184 0.244 0.180 0.338 0.428 0.348 0:336  0.418 0.354 0.614 0.750 0.668
05 0.216 0.274 0.206 0.494 0576 0.492 0:416,°0.528 0.454 0.774 0.900 0.800

* denotes the score test when the alternative is correctly specified.
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Figure 4.3: Power function under Frank alternative
Table 4.5 Empirical powers of /Ly, k7 and L, atlevel a =0.05
for the Gumbel model ( based on 500 runs).
n=100 n=200

Tau c=05 ,cen%=0 ¢ =05 ,cen%=33 c=05 ,cen%=0 ¢ =05 ,cenf=33

Lp:O Lp:l I-’;vlog Lp:O L;:l I-invlog Lp:O L;:l L;vlog Lp:O L;vlog I:r:vlog
-0.5 0.930 0.928 0.934 0.908 0.900 0.914 0.998 0.996 1.000 0.994 0.988 0.998
-04 0.692 0.698 0.708 0.656 0.668 0.644 0.932 0.940 0.946 0.894 0.936 0.940
-0.3 0.352 0.336 0.334 0.346 0.320 0.318 0.630 0.658 0.671 0.612 0.612 0.620
-0.2 0.182 0.160 0.162 0.144 0.158 0.150 0.290 0.282 0.306 0.296 0.300 0.302
-0.1 0.066 0.060 0.060 0.098 0.078 0.076 0.100 0.084 0.096 0.102 0.080 0.088

* denotes the conditional score test under the alternative.
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Figure 4.4: Power function under Gumbel alternative
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4.6. Data Analysis

We applied the proposed tests to the contaminated blood transfusion AIDS dataset
provided in Lagakos et al. (1988). The variables included the infection times T measured
from April 1, 1978, and the induction period X measured from their infection times. The
sample contained 258 adults and 37 children. Only those who developed AIDS within the 8
years study period can be included in the sample, and thus X +T <8 s the truncation
criteria. We set the new variable Y =8—T so that the pair (X,Y) is observed subject to
X <Y . Lagakos et al. (1988) applied the product-limit estimator for the survival function of
X under the quasi-independence of (X,Y) for adults and children groups separately. Now
we examine the validity of this assumption.

Applying the proposed Log-rank tests for, the adult group, we found that the Z-values of

the test statistics L L, and L standardized by the jackknife estimators, were

p=01 invlog ?

-5.012, -2.918 and -3.795 respectively.” The negative sign of the Z-values indicates the
positive association for (X,Y). The corresponding.two-sided p-values of the three test
statistics were 5.4x107", 3.5x10%and 1.5x10™" respectively. All p-values in the adult group

showed significant deviation from quasi-independence, but the test based on L ,_, produced

the smallest p-value.

For the children group, the Z-values of the test statistics L after

p=0"?

L, and L

inviog ?
standardized by the jackknife estimator, were -1.838, -1.379 and -1.373 respectively. The
positive association on (X,Y) can be found in the children group as well. The p-values for

the two sided alternative were 0.0661, 0.1679 and 0.1697 respectively. The smallest p-value

was also achieved by the L _, statistics, showing 10% significance level. In this case, the

other statistics L, _, and L could not reveal significant departure form

invlog

quasi-independence.
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In both groups, the significance level from L _ is the highest and that from L _, ,

which is equivalent to Tsai’s test statistics, was the lowest. One possible explanation of this

result is that the data is better approximated by the Clayton semi-survival model than the

Frank model. As we have seen in the simulation studies, the statistics L _, has the highest

efficiency while the statistics L ,_, is the worst under the Clayton model. This data analysis

also indicates that choosing an appropriate weight function is essential for power

improvement especially when the sample size is small.

4.7. Conclusion

In the second project, we have proposed .a general class of tests in the form of the
weighted Log-rank statistics for testing quasizindependence for truncation data. Tsai’s test
(1990) turns out to be a special case-of‘our propasal.

We also utilize the distributional ~property-of ‘the 2x2 tables in constructing the
proposed score test. Our results show that'the score test belongs to the proposed class of
weighted Log-rank tests with an appropriate choice of the weight function. Our simulations
confirm that the score test yields a more powerful testing procedure if the pattern of
dependence under the alternative hypothesis is correctly specified. It is important to note that
optimal properties of the score test cannot be derived by applying the results for parametric
models or the efficiency theory under a semi-parametric framework (Van Der Vaart, 1998,
Chapter 25). The difficulty comes from the fact that each term in the product of the likelihood
function (4.9) is neither the conditional likelihood nor partial likelihood since the probabilities
are calculated conditional on an un-nested sequence of conditioning events. Further
theoretical investigation on the likelihood formulation would be helpful.

For establishing the asymptotic normality, we have applied the functional delta method
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which can handle more general situations than the U-statistics or rank statistics approaches.
Furthermore, the expression of the proposed statistics in the statistically differentiable
functional allows us to verify the consistency of the jackknife estimator. These theoretical
justifications allow us to safely use a computationally simpler way for finding the cut-off
values.

Another important and practical problem is how to choose the best weight in real data
analysis where the association pattern on (X,Y) is unknown in a nonparametric setting.
Now we discuss the possible approaches based on the literature of survival analysis. A
common, but somewhat ad-hoc way of choosing weight function is to rely on the researchers’
own experience, or their knowledge on the association structure. Another more elaborate
approach is to use a combination of several weighed Log-rank statistics (Tarone, 1981;
Chapter 7 of Fleming & Harrington, 1991 and Kosorok & Lin, 1999). Such an approach is
considered to be a robust test (Kosorok & Lin, 1999), in-that one may avoid using the worst
weight choice in data analysis. To implement_this methodology, the joint distribution for
several weighted Log-rank statistics must be derived in some sense, and it would be our future

problem for investigation.
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Appendices : Project 2

Appendix 4.A. Asymptotic Analysis
Let D{[0,)*} be the collection of all right-continuous functions with left-side limit

defined on [0,0)* , whose norm is defined by |f(x,y)|, =sup,,|f(x,y)| for

f e D{[0,0)°} . We assume that the function z(x,y)=F,(x)S,(y)/c is absolutely

continuous. The empirical process on the plane is defined as:
A 13
7(X, y) :HZI(XJ' <XY;>y).
j=1

The functional delta method is applied based on the weak convergence result of
n"?(z(x,y) - z(x,y)) to a Gaussian process V(x,y) on D{[0,)*} with the covariance
structure given by
cov{V (X1, Y1),V (%o, Y2 )b = ZOGandainys VoY2) — (X1, Y1) (X, Y,)

forany (x,¥:), (X,,¥,)e€[0,0)%:

Part I: Proof of Theorem 4.1

After some algebraic manipulations involving (6), we obtain

L= [Jwrxy )){ (A dy) - Nl-(dxéﬁ’“yg(x'dy’}

w{ (X4, Yy )} 1

W{ (>Z
(X

i)}
-)

Y
= __Z {AU! V sgn{(Xi - Xj)(Yi _Yj)}'

Here, the last equation follows from the relation sgn{(X; — X;)(Y; —Y;)}=1-2A; and the

symmetry of each term between index (i, j) and (j,i). Using the property that

-1/n X, =x,Y;=y forsome ie{l,...,n}
0 otherwise ’

dz(xy) ={
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the above expression can be written as

L= e

: . —sgn{(x—x")(y -y )}z(x,y)dz(x",y")
T(XVX ,YyAY -)

=-nd(7),

where the definition of the functional ®(-): D{[0,x)’}—> R is

)= [[[[ ST sgnx )y -y M ()

Letting an argument 7z be z(X,y)=Pr(X <x,Y >y|X <Y), the above integral can be

interpreted as the expectation, and we have ®(z)=0:

_ W{”(Xu 2_)} _ _
O(r) = {I{Au or (Xlz 12_) Sgn{(xl Xz)(Yl Yz)}j|
{{Au s Ve )}E{sgn{(xl—xz)(vl—n)ﬂiu,iz}}
272'(X12’ 12 -)
=0.

By direct calculations, we can show:the Hadamard differentiability of ®(-). The differential
map of ®(-) at 7 eD{[0,00)°} with direction h e D{[0,©)°} is:
@’ (h)

ey ZZ((XXVVXX yyfyy ))}h(xvx*,yAy*—)sgn{(x_x*xyAy*)}d;z(x,y>d;z(x*,y*)

_””xvx <yay” Z;I(E(vaxx yy/\/\yy ))}h(x VXL,YA y*—)sgn{(x X))y y*)}dn(x, y)dz(x",y")

11 Wl Y AY ey a g b ) y)

T oa(xvX,yay-)

By applying the functional delta method (Van Der Vaart, 1998, p. 297), we obtain the
following asymptotic linear expression

n—1/2 I—W — _n1/2q)(7’z‘,)
=-n"*{®(7) - ®(7)}

- —n*1’22®; (Gix, v,y =) +0p (D),
=1

where 5(ijyj)(x, y)=1(X; <X, >Y). Itis easy to see that the sequences,
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U (X j ’Yj) = q)’zr(é‘(xj,vj) —-x) for j=1...n,
are iid random variables with mean-zero. From the central limit theorem, n‘”ZLW converges

weakly to a mean-zero normal distribution with the variance o* = E[U (X j ,Yj)z].

Part I11: Analytic Variance Estimator for the G” Class

The statistics in the G” class are special cases of L, . For this class, it is relatively

easier to obtain an analytic formula for estimating o® based on asymptotic linear
expressions. Specifically, the derivative map is given by
@’ (h)
=(p-0/2ff[[ . AxvX YAy )t hxv Xy Ay ) sgn{-x)(y -y )z Yda(x’y)
[T e POV XY A YT sgn{ X ) (3R, )z ( Y ).

The asymptotic expression zq)'ﬂ(5(x,.,vj)—”) can be estimated by qu);%(é}xj,vj)_ﬁ)'

j=1

where

', (S )~ 7)

=(-0I2f[[ .. AxVXyay )
X {I (X;<XVX Y, 2YyAY ) =Z(Xv X, YA y*—)}sgn{(x— X )y -y )Hz(x,y)dz(x",y")
IJe, AV Xy Ay ) sg{ (=X )y -y )}

X {I (X; =xY, =y)+dz(x, y)}d;%(x*, y)

=%Zk: IALIZ(X 4 V) sgnd(X, = X, )Y, =Y )3+

p-1
n2

(p+1L,

_l_

Z |{Ak|}7%()zk|'Y~k| -)? sgn{ (X, — X, )(Y, _YI)}I(Xj < Xklin ZYI(I)'

k<l

Based on the above expression, we can estimate AVar(Lp):ncf2 by the following

empirical estimator:
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o~ L
ng* = Z{%g I{Ajk}ﬁ.(x I ’ij_)w1 sgn{(X; — X, )(Y; _Yk)}+%

]

+ pnzlzl{Akl}ﬁ()ZkPVkl -7 sgn{(X, = X,)(Y, =Y)H(X; < Xkl'Yj 2 1I):| .

Part I11: Proof of Theorem 2

L, involves the estimator of the truncation probability c. From the result of He and
Yang (1998), ¢ has an algebraically equivalent expression
¢= jo S, (u)dF, (u) |

The product limit estimators (Lynden-Bell, 1971; Wang, Jewell & Tsai , 1986) for (X,Y)

are defined as:

dz(u,0 - d7z (oo,
AZJ(UU )}, SY(t)=H{1+ a “)}.

z(u,u-) ey z(u,u-)

FAx H= H{l_

t<u

Define €= g(fr) and we will show that“the map g7+~ C is the composition of two
Hadamard differentiable maps:

2xy) P (RS, - [0S, (WdR (). (A1)
It is well-known for right-censored data that the product limit estimator is Hadamard
differentiable function of the empirical process. For truncation data, we apply the arguments
of example 20.15 of Van Der Vaart (1998) to show the Hadamard differentiability of maps
from D{[0,0)’} to D{[0,)}:

Z(X,Y) > F (1), 2(6y) P S, (0).

To prove the former statement, we decompose the map into three differentiable maps

d7(u,0)

AY) B O A X)) = A, ()= j;ﬁ(u =

= F @) =], &-dA, W}

-82-



where the Hadamard differentiability of the second map follows from Lemma 20.10 of Van
Der Vaart (1998) and the last map follows from the Hadamard differentiability of product

integral (Andersen et al., 1993, proposition 11.8.7). The Hadamard differentiability of the map
(X, y) = §Y (t) can be established by the same arguments. The Hadamard differentiability

of the second map in (A.1) can be found in Lemma 20.10 of Van Der Vaart (1998).Using

chain rules (Van Der Vaart, 1998, theorem 20.9), the map g is shown to be Hadamard
differentiable. Let g’ (h)eR be the differential map of g at 7 eD{[0,:0)°} with
direction h e D{[0,x0)?} such that

n'?(€-c)=n"*(g(7)-g(x))
= nfl/zzj g;r(hXj,Yj _7[)+0P(1).

The statistics L, can be expressed as

~_.n w{g(m)Z(x ¥ Xy A Y S} e A A ox
Com g T e Ty S0 X )y = y D YRy )

= —n\P(7’Z\').

Applying similar arguments in Section A.1, we-can show W¥(z)=0. Now we show the
Hadamard differentiability of the map W¥():D{[0,«)’}— R . From the Hadamard
differentiability of g(-),
g(z+th)=g(7)+g; (z)t+o(|t]), t—>0,

uniformly in h in compact subsets of D{[0,)*}. This leads to the following Taylor
expansion

Wg(z+th)(z(xv X,y Ay =) +th(xv X,y Ay -)}

=wca(xv X,y Ay ) Heh(xv X,y Ay =)+ g (z(xv X,y Ay -)}+o(t]).
A little calculus shows the derivative map of W(-) at 7 <D{[0,:0)°} with direction

h e D{[0,0)?}:
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2(h)

(I S YAV Ny gy sgng(x-x )y -y O, Y)AR(K Y )
wxsyny' 2 (XV XA, YA YF-)

* ””M*gw* g;(h)w’{”(xz Xyny _)}sgn{(X— X)(y—y)Hz(x,y)dz(x",y")

_”” wcz(xv X, yay )}

oy 2a(xw xy my ey T X,y Ay =) sg{(x=x)(y -y )}z(x y)dz(x',y")

eI, EC I AY Ragngx )y -y (s, ) (xy)

z(xv X, yAy =)
By applying the functional delta method, we obtain the following asymptotic linear

expression:

n—l/Z L’\;v — _n1/2\P(7’Z‘_)
=-n"2{¥(7) - ¥ (7)}
= VYW () - 7) 40, (D),
i

where the sequences,

U*(xi’Yj) E\Pz’r('f](xj,\(j) =z) (i=1...,n),

are mean-zero i.i.d. random variables. From-the-central limit theorem, n™"/L, converges

*

weakly to a mean-zero normal distribution with the variance &° .

Part IV: Consistency of the Jackknife Estimator
Now we show the consistency of the jackknife estimator for L, . We have shown that

statistics of the form L, have asymptotic normal distributions with finite variances.
According to the Theorem 3.1 of Shao (1993), we need to show the continuous Gateaux
differentiability of ®(z) at 7 e D{[0,)°}. Note that the Hadamard differentiability is
stronger than the Gateaux differentiability, and hence the Gateaux derivative map is already

available from Section Al. We only need to show the continuous requirement of the

derivative map. For sequence 7z, € D{[0,0)’} satisfying |z, —z| —0 and t, -0, we
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need to show
A =O{r, +t, (5u,v -7 )}-0(7,) _tkq):r(é‘u,v -m)=0(t),
where §,,(x,y)=1(x<u,y>y) and O(|t, [) isuniformin (u,v). The present method for

proving the continuous Gateaux differentiability is essentially the same manner as the

example 2.6 in Shao (1993). The continuous differentiability of w(:) and the assumption

Iz — 7|, — 0 ensure the following expansion

Wiz (xv Xy A Y D)+, (X Xy A Y ) = (v X Y AY O W (xv XLy Ay o)}
Az (xv X,y AY ) +4{8,, (v Xy Ay D) = (xv Xy AY N 27 (xv XLy AY )

_WAROVXLYAY Dby 5 (kv Xy Ay ) -2 (v XLy A Y )
27(XV X, YAY —)

_WROV Y AY s Xy Ay ) - (kv XY A Y RO P,
27(XV X ,YAY -)

uniformly in (u,v). Hence a straightforward but tedious:calculation shows that
A =t By + |t JC* It | D +O( 1t [*),

where
8. = [[[] Wz, (Xv Xy Ay )+ {8, (X v Xy Ay ) -z (xv XLy Ay )Y
© ety g v Xy A Y ) {8, (v XLy A Y ) = (kv Xy A Y )}
xsgn{(x —x")(y -y )}d{5,, (x,y) - 7, (x, )}z (X", y")
(11 . *W{ﬂ(xvx*,yAy*—)}

z(XvXxX,yAy =)
xsgn{(x—x")(y =y )3d{6,, (x, y) — 7, (x, Y)Yz (x", y),

Ckz.[HJ;vx*<yAy Wz{;k((;\\//; ;///\\; ))}{5 (X\/X*,Y/\y*_)—ﬂk(X\/X*,y/\y*—)}

xsgn{(x—x")(y - y") jdz (x, y)dz, (<, y")

S W;jgjxx yyjyy P 0y Ay -y )

xsgn{(x—x")(y - y") jdz(x, y)dz(x",y")

and
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S XV XY AY D) = (xv X,y A Y )}

_ w{r, (xv X,y Ay -)}
Dk:J.J..”-xvaAy 272-()(\/)( y/\y ) I
xsgn{(x—x")(y =y )}z, (x,y)dz, (X", y")

_””X wW{z(xv X', yAy )},5

WXV XL YAY S =z (Xv Xy Ay )}
Wy 27 (Xv X YA Y 2P

xsgn{(x=x")(y =y )}z (x, y)dz(x",y")
Under the assumption that |z, —z| —0, it can be seen that B,,C, and D, have order
0(1).
To show the consistency of the jackknife estimator for L, we only need to check whether

the continuity of the Gateaux differential map of W(xz) which is available in Section A.3.
We can obtain the continuity requirement after tedious algebraic operations similar to the

above arguments in A4.

Part V: Asymptotic Analysis in Presence of Censoring

Based on the product integral form of the Lynden-Bell’s estimator §c (y), we obtain

the expression

p(x, y-) = H (X, y—, y— )/H{1+H(u u,du)/H (u,u—, u— )}
usy (A2)
=o(H;x,y)
Alittle algebra shows that the event B;; can be written as

{B,}=1(X, <Y, <Cy). (A3)

From equation (?), (A-1) and (A-2), we obtain the following functional expression:
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N,. (dx, Y)N,, (x, dy)}
R(x,Y)

B 2p(H: Xy Zy)}( 1

-Se T (8,-3)

i<j

L, = [[wgi(x, y—)){Nn(dx, dy) -

X<y

izz X, <V, <C}rt S0 - X0 Y}

:_ﬂ”””x Wo(H:xv X,y Ay Acac)}

sy’ <o Jxv X, YAY ACAC — YAY ACAC )
xsgn{(x - x")(y — y")}dH (x, y,c)dH (", y",¢”).

Here, the last equation follows from the property

{1/n X;=xY;=y,C;=c forsome j

dl:|(x, y,C) = ow

Based on the similar arguments with Section A3, we can express the estimator ¢ as a

function of H such that é*zg*(l:l). The similar_algebraic operation can be applied to

obtain the functional expression for: Ly

Appendix 4.B: Proof of Equivalence Formula

For right censored data, we show the identity:

N,. (dx, y)N,; (x, dy) 2W (X, Z,)( 1)
W (x, y){ N, (dx, dy) — I{B; Ay —= .
jj (xy){ (dx, dy) ROD) } z{ Sl Ll EA )

As a special case of C, =0, we can show that the above formula reduces to:

~

_ N,, (dx, y)N,, (x,dy) ( i Yii) 1
iij(x,y>{Nll<dx,dy) RO0) };{A, X V)(A 2)

Specifically, let W(X;,Z;) =W, and R(X;,Z;)=R;.

ij
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N,. (dx, y)N.1<x,dy)}

L, = ”W(X. y){Nn(dx,dy)— R(X,Y)

X<y

n

1

i=1 j:X;<X;
X<Z;<Z

:gdw(xi,zi)%—é Y SW(X,Z)————

=l,-1,.

Using the fact that " 1(X; < X;,Z;>Z;)=R(X;,Z)) -1,

~
o z|=§ !

3 W(X,Z) <
B TR Z) R

i=l j:Xj<X{,Zj>Z; i=l jiX;<X{,Z;>Z; ij

The identity A; =1 holds for a pair (i, j) with X; <X;,Z; <Z;. It follows that

: W W,
|1=Z Z @Aij§—1=2 Z @Aiiﬁ_J

i=l jiX;<X,Zi<Z; ij =1, X <X, X <Z ij

Similar algebraic manipulation shows that

: W W,
'222 Z 517122 Z 51(1‘Aij)7]-

i=1 jiX;<X; Rij i=1 X <X, X<Z; Rij

Xi<Z,<Z;

< "'__ 5iAij _é;j(l_Aij)

DI M R

i=1 X <X, X<Z; ij

Aij _{j(l_Aij)l

:Zn: Z I{)Zij SZij}’vvij 5i

i=1 j:X <X Rij

Forapair (i, j) with X; <X;, the following equation holds:

58,5,a-1,)
=1{(6, =6, =) U(Z, ~Z, >0&8, =1&5, =0)U(Z, ~Z; >0&3, =0&5, =)}@A, -D.

Thus,
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~ 2A; -1
|1_|2:Z Z I{B; W F“:-

n
i=l j:X<X; ij

~ 2A; -1
Z |{Bij}Wij F~2—

i< ij

The last equation follows from the permutation symmetry of each term with respect to

arguments (i, j) .
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Chapter 5 Future Work

In Chapter 3, we consider semi-parametric inference for semi-survival AC models and
propose a likelihood-based approach for estimating the association parameter. A nice
equivalent condition for different types of estimating functions is established. Similar idea is
used again to construct a score test. Despite that we have seen efficiency gain or power
improvement by choosing an appropriate weight function, optimality results are still not
available. As mentioned earlier, each term in the product of the likelihood function is neither
the conditional likelihood nor the partial likelihood since the probabilities are calculated
conditional on an un-nested sequence of conditioning events. Further investigation is needed
to elucidate the proposed likelihood, and it is hoped that we develop more understanding for
the theoretical properties of the proposed methods.

For establishing the asymptotic .normality,the.functional delta method is applied for two
problems. For the Log-rank statistics in Chapter ‘4, its expression has been shown to be a
statistically differentiable functional'that-allows us to verify the consistency of the jackknife
estimator. This theoretical justification allows us to safely use a computationally simple way
for determining the decision rule of the testing procedure. Theoretical property of the
jackknife estimator is only proven for the simple case of the Log-rank statistics with no
censoring. For other complicated cases, the jackknife method is still a useful tool even though
it may lack theoretical justification. Nevertheless finding a tractable and theoretically valid

way of constructing confidence intervals or bands still deserves further investigation.
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