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摘要 

在本論文中，我們提出一個理論模型，來研究近來利用自組裝法

(self-assembled)所製造出的同心量子雙環。我們利用電子在量子單

環的確切解來形成一組基底，展開同心量子雙環之漢密頓函數

(Hamiltonian)，並用數值方法將其對角化，得出相應的能量本徵值

和本徵函數。藉由此法，我們可以研究 Aharonov-Bohm 效應，是否還

會發生在中心有外加磁通量的量子雙環中？此外，我們也計算了在量

子雙環中存在一個固定的雜質時之能階變化情形，並進一步討論量子

環中有兩個對稱且固定的雜質，皆位於內環以及其一在內環而另一在

外環的不同情形之能階變化。 
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Abstract

In this thesis, we propose a theoretical model to study the spectra of the
concentric quantum rings which have been fabricated lately by self-assembled
technique. By using the exact diagonalization method, we examine whether
the Aharonov-Bohm (AB) effect still appears in the concentric quantum rings
threaded by a magnetic flux. Moreover, we study the variations of the energy
spectra when impurities are presented in the rings.
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Chapter 1

Introduction

During the past two decades, ringlike structures, with the capability of
trapping magnetic flux in their interiors, are regarded as the idea candidates
for observing Aharonov-Bohm effect [1], such as the energy oscillations and
persistent currents. The first observation of AB effect in normal metal rings
was reported by Webb et al. [2]. Cheung et al. [3] calculated the persis-
tent currents and the energy levels of the electron in a one-dimensional ring
with impurities, and it reveals that in the presence of impurities, the gaps-like
structures take place in energy spectra. In 1995, A. V. Chaplik [4] considered
an opening (antidot) in a two-dimensional (2D) electron gas in a strong per-
pendicular magnetic field and found that the possibility of electron-to-hole
tunneling around the antidot results in a shift for each of the excitonic levels,
which oscillate as functions of the magnetic field. It is the first prediction
for AB oscillation of excitonic levels in one-dimensional quantum ring struc-
tures. Römer and Raikh [6] then found similar results with a short-ranged
interaction potential by using a quite different analytical approach. Rapid
progress in nanostructure technology, especially self-assembly techniques, can
produce nanoscopic semiconductor rings with a characteristic inner/outer ra-
dius of 10/30-70 nm, and 2-3 nm in height [6,7], and the AB oscillations in
the ground state energy have been observed by Lorke et al. [7]. Song and
Ulloa [8] studied the magnetic field effect on excitons in a finite width nanor-
ing instead of a perfect one-dimensional quantum ring, and found that the
excitons in nanorings behave like a great extent as those in quantum dots of
similar dimensions. The finite width of nanorings can suppress completely
the AB effect predicted for one-dimensional rings, Hu et al. [9] found similar
results by numerically diagonalizing the effective-mass Hamiltonian of the
problem. Zhu et al. [10] investigated the energy spectra and AB effect in
a two dimensional quantum nanoring interrupted by two identical barriers
and found that AB oscillation of energy spectra are strongly affected by the
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double barriers: the fewer barriers the ring contains, the stronger the AB
oscillation is.

From these previous works, one knows that the problems of the single
quantum ring have been studied extensively both theoretically and experi-
mentally. In 2005, Mano et al. [11] demonstrated the self-assembled forma-
tion of concentric quantum rings with high uniformity and excellent rota-
tional symmetry using the droplet epitaxy technique. The diameters of the
inner and outer rings are 45 (±3)nm and 100 (±5)nm, respectively; both
rings are 3 (±1)nm high, and show a good circular symmetry. This report
inspires us to consider a theoretical model to study this concentric quantum
double ring. Because of the special geometry of the inner and outer rings, we
would like to deal with problems of identical double impurities located both
in the inner ring, or one in the inner ring and the other in the outer ring
individually. This should be the most difference between the single quantum
ring and the concentric quantum rings.

4



Chapter 2

Formulation

2.1 Single Quantum Ring

The hard-wall confinement potential is assumed for numerical calculations
(Fig.2.1). The potential energy of this system can be written as

V =
{∞, if ra < r < rb ;

0, otherwise.
, (2.1)

where ra(rb) denotes the inner (outer) radius of the ring structure. The
Hamiltonian of this system can then be written as

Ĥe =
p̂2

e

2m∗
e

+ V̂ , (2.2)

where the subscription ”e” denotes electron, and ” m∗
e ” is the effective mass

of electron in the material. The appropriate Schrödinger equation of the
electron of this ”ring” system in polar coordinate then reads

Ĥeψ(r, φ) = Eψ(r, φ). (2.3)

Because of V (~r) = V (r), the solution of the equation can be written as the
form of ψ(r, φ) = R(r)Φ(φ). Performing the separation of variables in the
Schrödinger equation, the radial part is

− h̄

2m∗
e

(
d2

dr2
+

1

r

dR(r)

dr
) +

h̄2m2

2m∗
er

2
R(r) = ER(r), (2.4)

where m is the angular momentum quantum number. It can also be written

in terms of the dimensionless variable u = kr (where k =
√

2m∗
eE

h̄2 ):

d2R(u)

du2
+

1

u

dR(u)

du
+ (1− m2

u2
)R(u) = 0. (2.5)
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The above equation can be recognized from the mathematical literature as
Bessel’s equation. The solution of the radial part of the wave function is
R(r) = C1J|m|(kr) + C2Y|m|(kr), whereJ|m| and Y|m| are the regular and
irregular solution of cylindrical Bessel functions of order m, and C1, C2 are
undetermined constant.

The angular part of the Schrödinger equation is

d2Φ(φ)

dφ2
+ m2Φ(φ) = 0. (2.6)

The wave function of the angular part is 1√
2π

eimφ ( m = 0,±1,±2,±3...).

Particles for |m| and−|m| have the same quantized energies. Therefore, every
energy level is twofold degenerate for each m except for m = 0. Consequently,
the basis set for the electron in such a ring is given by products of the radial
and angular parts, namely

ψn,m(r, φ) = [C1J|m|(kr) + C2Y|m|(kr)] · ( 1√
2π

eimφ), (2.7)

along with the normalization condition for the corresponding probability den-
sity , ∫ rb

ra

rdr
∫ 2π

0
dφ|ψ(r, φ)|2 = 1. (2.8)

This condition is associated with the fact that the probability of finding
the electron simultaneously in the small coordinate intervals (r, r + dr) and
(φ, φ + dφ).The boundary conditions at the edge of the well are satisfied for
all values of φ, provided that

{
C1J|m|(kra) + C2Y|m|(kra) = 0
C1J|m|(krb) + C2Y|m|(krb) = 0

, (2.9)

namely,

−C1

C2

=
Y|m|(kra)

J|m|(kra)
=

Y|m|(krb)

J|m|(krb)
. (2.10)

From this, one can determine the nth(n = 1, 2, 3...) energy level and the
value of −C1

C2
for this system. One thus has two quantum numbers for this

two dimensional ”ring” system (n, m), and the energy eigenvalues read

En,m =
h̄2k2

(n,m)

2m∗
e

. (2.11)

The ground state and the first excited state wave functions are shown in Fig.
2.2 .

6



Figure 2.1: Radial view of potential (upper) and the quantum ring(bottom).
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Figure 2.2: Upper panel: radial (left) and 3-dim (right) view of the ground
state wave function of the quantum ring electron. Bottom panel: radial (left)
and 3-dim(right) view of the first excited state wave function of a quantum
ring electron (for ra = 50nm and rb = 100nm).
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2.2 Aharonov-Bohm Effect in Single Quan-

tum Ring

Now let us consider a modified arrangement, where the ring shell encloses
a uniform magnetic field, as shown in Fig.2.3. Intuitively we may conjecture
that the energy spectrum is unchanged because the region with ~B(Bẑ) 6= 0
is completely inaccessible to the charged particle trapped inside the ring.
However, quantum mechanics tells us that this conjecture is not correct.
Even though the magnetic field vanishes in the interior of the ring, the vector
potential ~A is nonvanishing there. By using Stokes’ theorem :

∮

C

~A · d~l =
∫ ∫

S
(~5× ~A) · d~S =

∫ ∫
~B · d~S = ΦB, (2.12)

the vector potential ~A = (Ar, Aφ, Az) for the production of the magnetic field
~B = (Bẑ) is

Ar = 0, Aφ =
ΦB

2πr
=

Br2
a

2r
, and Az = 0 (ΦB ≡ Bπr2

a). (2.13)

The Hamiltonian for a particle of electric charge q subjected to the magnetic
field is

H =
(~P − q ~A

c
)2

2m∗
e

+ V, (2.14)

where ~P is canonical momentum which becomes an operator in quantum
mechanics [12]. So, the Hamiltonian operator in the polar coordinate inside
the ring (V̂ = 0) is

Ĥ =
P̂r

2

2m∗
e

+
(P̂φ − qAφ

c
)2

2m∗
e

=
P̂r

2

2m∗
e

+
1

2m∗
er

2
(−ih̄

∂

∂φ
− qAφr

c
)2

= − h̄

2m∗
e

(
d2

dr2
+

1

r

d

dr
)− h̄2

2m∗
er

2
(

∂

∂φ
− qΦB

2πh̄c
)2. (2.15)

If we consider that the ring width (rb− ra) is zero, namely the ring is exactly
an ideal one-dimensional ring, the energies will be independent of quantum
number n, and the corresponding wavefunctions are

ψn,m(r, φ) = [C1J|m|(kr) + C2Y|m|(kr)] · ( 1√
2π

eimφ).
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We then have
Ĥψn,m = Emψn,m

⇒ − h̄2

2m∗
er

2
(

∂

∂φ
− qΦB

2πh̄c
)2ψn,m = Emψ

⇒ Em =
h̄2

2m∗
er

2
(m− qΦB

2πh̄c
)2. (2.16)

For q = −e ,

Em =
h̄2

2m∗
er

2
(m +

ΦB

Φ0

)2; m = 0,±1,±2,±3, .., (2.17)

with Φ0 being the universal flux quantum hc
e
. Thus, with the increasing of

the magnetic field, the ground state will change from angular momentum
m = 0 to lower (negative) values of m (Fig.2.4) [2]. This phenomenon is
the so-called ”Aharonov-Bohm-type oscillation”. It’s a purely ”quan-
tum mechanical” phase interference effect, because the motion of a charged
particle is determined solely by the Lorentz force. But in this problem, the
charged particle bounded by the hard wall can never enter the region in which
B is finite. The Lorentz force is identically zero in the regions where the par-
ticle wave function is finite. This point has led some people to conclude
that in quantum mechanics, it is A rather than B that is more fundamental.
Therefore, when a flux ΦB = πr2

aB penetrates the interior of the ring, an
additional phase contributed from A is picked up by the electron on its way
around the ring and results in the ”Aharonov-Bohm effect ”.
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Figure 2.3: A flux ΦB = πr2
aB threads the interior of the ring.

Figure 2.4: Energy levels of an ideal one dimensional ring as a function of
the magnetic flux ΦB threading the ring area. [A. Lork, R.J. Luyken, A.o.
Govorov, J.P. Kotthaus, J.M. Garcia, and P.M. Petroff, Phys. Rev. Lett.
84, 2223 (2000)].
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2.3 Energy Spectra of Quantum Rings with

Impurities

If we consider the energy spectra of a quantum ring with fixed impurities
[3,10], in general, the interaction between an electron inside the ring and
a fixed impurity is exactly the coulomb interaction (see Fig.2.5), and the
corresponding potential energy U is

U =
−e · qi

εr|~re − ~ri| ,

where εr is the dielectric constant of media, and qi is the charge of the
impurity. Due to the coulomb interaction between a fixed impurity and an
electron, the cylindrical symmetry (or the axial symmetry) will be broken,
and the two-folded energy degeneracies for each m (±|m|, |m| 6= 0) will also
be removed. Furthermore, because of the periodic boundary condition of
the ring structure, this coulomb interaction is a periodic interaction to an
electron circulating around a ring. As a result, the AB effect is reduced and
the sawtooth-like oscillation is rounded with the presence of fixed impurities.
There is a close connection between the states of an electron in a ring and
the one-dimensional Bloch problem by comparing 2πΦB/Φ0 and kL [13] (k
is the wave vector, and L is the length of the 1-dim. lattice). The energy
levels of the ring form microbands as a function of ΦB with period Φ0, which
is analogous to the Bloch electron bands in the extended k -zone picture.

Instead of the charged impurity, another type of the impurity is the
barrier-like impurity (see Fig.2.5). For example, the formulation of the po-
tential energy for two identical sectorial barriers is

Vg =





Vi, θ ∈ [π − α
2
− β, π − α

2
]

and[π + α
2
, π + α

2
+ β];

0, otherwise.
.

These barriers can also break the cylindrical symmetry and remove the energy
degeneracies. Fig.2.6 shows the energy spectra for a quantum ring with single
barrier, two identical symmetric, or unsymmetrical barriers. From Fig.2.4
and Fig.2.6, one can find that in the absence of impurities (barriers), the
curves form intersecting parabolas, however, in the presence of impurities,
the gaps are opened at the points of intersection, just like the band structures
in solid state physics.

It is clearly shown that the fewer impurities the ring contains, the stronger
the AB oscillation is. In general, for rings containing two barriers, those
with parallel double barriers have stronger AB oscillations than those with
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nonparallel double barriers. In our latter discussions in this paper, we will
also consider two concentric quantum rings with impurities. It will be more
interesting than the single quantum ring, because in the case of concentric
quantum rings, one can discuss the energy spectra of impurities located in
different rings .
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Figure 2.5: Upper panel: schematic view of a quantum ring with a fixed
impurity. φe and φi denote the angle of electron and impurity, respectively.
re denotes the radius of the electron. Bottom panel: schematic view of a
quantum ring with double barrier.
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Figure 2.6: Energy spectra of a quantum ring as a function of the magnetic
flux ΦB: (a) without barrier(or impurity) structures, (b) with a single barrier,
(c) nonparallel double barriers, and (d) parallel double barriers (Zhu et al.,
Phys. Rev. B 67, 075404 (2003)).
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2.4 Theoretical Model for Two Concentric Quan-

tum Rings

In section 2.1 and 2.2, we have introduced the basic concepts of quantum
rings and discussed how AB effect takes place when a finite magnetic flux
exist, in the region bounded by the ring. In 2004, Mano et al. [11] demon-
strated two self-assembled concentric quantum rings with high uniformity
and excellent rotational symmetry using the droplet epitaxy technique. It
inspires us to consider whether the AB effect still takes place in the concen-
tric quantum rings. We thus consider a simple model to fit the potential
energy(see Fig.2.7) of two concentric quantum rings. The hard-wall confine-
ment potential is used to simulate the ”single” quantum ring in sec.2.1. In
order to simulate the concentric quantum rings here, one finite potential bar-
rier V0 is included in the middle of radial direction (from rc to rd). Thus, the
potential energy Vc of the concentric quantum double rings becomes :

V ′ = V (eq.2.1) + Vb =




∞, if ra < r < rb;
V0, if rc < r < rd;
0, otherwise.

, (2.18)

where the added barrier Vb is

Vb =
{

V0, if rc < r < rd;
0, otherwise.

. (2.19)

Since ∫ rb

ra

rdr
∫ 2π

0
dφψ∗n′,m′ψn,m = δn,n′δm,m′ , (2.20)

the eigenkets |n,m〉 (the ψn,m in sec.2.1) of single quantum ring form a com-
plete(orthonormal) set with the completeness relation

∑
n,m

|n,m〉〈n,m| = 1̂. (2.21)

Because the boundary of the single quantum ring and the concentric
quantum rings are the same, so we can take the complete set of the single
quantum ring to be the basis to span the eigenspace of any physical operators
of the concentric quantum double ring. Therefore, a physical operator Ô is
represented as

Ô = 1̂Ô1̂ =
∑

n,m;n′,m′
|n′,m′〉〈n′,m′|Ô|n,m〉〈n,m| (2.22)
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⇒ Ô
.
=




〈n′ = 1, m′ = 0|Ô|n = 1,m = 0〉 〈n′ = 1,m′ = 0|Ô|n = 1,m = −1〉 . . .
〈n′ = 1,m′ = −1|Ô|n = 1,m = 0〉 〈n′ = 1,m′ = −1|Ô|n = 1,m = −1〉 . . .

...
...

. . .

. . . . . . . . .




.

Since the boundary of quantum rings is hard-wall, the value of the prin-
ciple quantum number n has no upper limit (n=1→ ∞), and because the
magnetic quantum number m is independent of n, m also has no upper limit
(|m| = 0 →∞). In our numerical calculations, we diagonalize the matrix of
physical operators numerically. So, the number of basis should be truncated
to make numerical calculations possible. Through checking the property of
convergence of energy eigenvalues, we find that with up to 1010 elements
(n = 1 → 10 and m = −50 → 50) of the basis, the energy eigenvalues con-
verge to a constant even we keep adding element number. We will apply this
numerical method to calculate the wave functions of a concentric quantum
double ring with the use of the ”effective Hatree unit” of atomic physics for
GaAs materials. We also set





ra = 80nm(8a∗B);
rb = 100nm(10a∗B);
rc = 86nm(8.6a∗B);
rd = 94nm(9.4a∗B).

, (2.23)

where a∗B = 4πε0εrh̄
2/m∗

ee
2 is the effective Bohr radius. Here, a∗B = 10nm

and εr = 10.9 for the material of GaAs.
The Hamiltonian operator of a concentric quantum double ring is

Ĥ =
p̂2

e

2m∗
e

+ V̂ ′. (2.24)

According to Eq. (2.23), Ĥ can be written as

Ĥ = 1̂Ĥ 1̂ =
∑

n,m;n′,m′
|n′, m′〉〈n′,m′|Ĥ|n,m〉〈n,m| (2.25)

Ĥ
.
=

∑

n,m;n′,m′
〈n′,m′|Ĥ|n,m〉. (2.26)

Since we have represented the Hamiltonian operator by a 1010×1010 Her-
mitian square matrix, all we need to do is to diagonalize this matrix. We
then get 1010 energy eigenvalues Ei (i = 1 → 1010), and the corresponding
eigenkets |Φi〉 (i = 1 → 1010). From linear algebra, every |Φi〉 is a linear
combination of |n, m〉, namely

|Φi〉 =
∑
n,m

Cn,m|n,m〉, (2.27)

17



where Cn,m is the ”weight” of corresponding |n,m〉, and we will get Cn,m

after diagonalizing the matrix of Hamiltonian (Eq. (2.26)).
The radial part’s potential of the concentric quantum double rings is

similar to 1-dim. symmetric double-well potential. However, since the radial
part of a ring structure has no parity symmetry, the radial part’s ground
state wave function of the concentric quantum double ring is not symmetrical
with respect to the middle barrier. Therefore, the probability density of the
electron in the inner ring is higher than that in the outer ring (see Fig.2.10).
From quantum mechanics, if the middle barrier V0 is very high, there is rare
possibility for the tunneling between the inner and outer ring (see Fig.2.8).
So we set V0 = 100meV to make tunneling become possible (see Fig.2.8).
Fig.2.9 illustrates the scheme of concentric quantum double ring and Fig.2.10
shows the ground state wave function |Φ1〉 of a concentric quantum double
ring with the middle barrier V0 = 100meV .
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Figure 2.7: Illustration of the concentric quantum double ring in real space
(upper panel) (Takaaki Mano et al., Nano Lett. 5, 425 (2005)). Lower panel:
theoretical model for the double-ring.
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Figure 2.8: The ground state wave function (radial part) of a concentric
quantum double ring for the middle barrier with height 300meV (upper) and
100meV( bottom).
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Figure 2.9: Illustration of the concentric quantum double ring
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Figure 2.10: Upper panel : the ground state wave function of a concentric
quantum double ring. Bottom panel : a vertical view of upper panel. The
small red ring is the inner ring and the large red ring is the outer ring. The
light green part is the middle barrier of the double ring.
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Chapter 3

Results and Discussions

We have built a theoretical model to calculate the ground state wave
function of the electron in concentric quantum double rings. In this chapter,
we present the results and discussions on some physical properties such as
AB effect, impurity binding energies, and the energy spectra of a concentric
quantum double ring in the presence of impurities.

3.1 Aharonov-Bohm Effect in Concentric Quan-

tum Rings

The Hamiltonian operator for a concentric quantum double ring is

Ĥ =
p̂2

e

2m∗
e

+ V̂ ′,

where V̂ ′ is the same as Eq. (2.18). Let us consider the concentric quantum
double ring acting by an interior-threaded uniform magnetic field oriented
along the z axis. The corresponding vector potential is the same as Eq.
(2.13), and the Hamiltonian is

H =
(~P − q ~A

c
)2

2m∗
e

+ V ′. (3.1)

Inside the concentric quantum double ring , the Hamiltonian operator is :

Ĥ =
P̂r

2

2m∗
e

+
(P̂φ − qAφ

c
)2

2m∗
e

+ V̂b

=
P̂r

2

2m∗
e

+
1

2m∗
er

2
(−ih̄

∂

∂φ
− qAφr

c
)2 + V̂b
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= − h̄

2m∗
e

(
d2

dr2
+

1

r

d

dr
)− h̄2

2m∗
er

2
(

∂

∂φ
− qΦB

2πh̄c
)2 + V0 (if rc < r < rd), (3.2)

where Eq. (3.2) is the Hamiltonian operator in position representation. We
use this as the basis (1010 elements) to span the eigenspace of Ĥ and diag-
onalize the matrix of this Hamiltonian and obtain the corresponding 1010

energy eigenvalues En,m (En,m = En + Em), where En =
p2

r,n

2m∗
e
, pr is the mo-

mentum of the radial part, and n is the principle quantum number. As in
Eq.(2.17), Em = h̄2

2m∗
er2 (m + ΦB

Φ0
)2 with Φ0 = hc

e
and ΦB = Bπr2

a. More
explicitly, En,m is written as

En,m =
p2

r,n

2m∗
e

+
h̄2

2m∗
er

2
(m+

ΦB

Φ0

)2 (n = 1 → 10; m = 0,±1,±2, ..±50). (3.3)

With the increasing of the magnetic field, the lowest energy of each n (i.e.
En,m = E1,0, E2,0, .., En,0) should change from angular momentum m = 0
to lower m (negative value). It means AB effect should also take place in
concentric quantum double rings, and our results (Fig.3.2), have confirmed
this.

Note that all energies here are measured in units of the effective Rydberg
Ry∗ = m∗

ee
4/2h̄2(4πε0εr)

2, and all distances are measured in units of effective
Bohr radius a∗B = 4πε0εrh̄

2/m∗
ee

2. For GaAs materials, Ry∗ = 5.8meV , the
effective mass of the electron is 0.067me, and the universal flux quanta Φ0

for a 1D ring with a radius a∗B corresponds to the magnetic field of 13.18T .
One might wonder that whether the tunneling of the electron between the

inner and the outer ring affects the AB effect. To answer this, we raise the
”height” of the middle barrier to 300meV to suppress the tunneling of the
electron between the inner and the outer ring. It is found that the behavior of
AB oscillation of energy spectra is the same as in Fig.3.2. We then conclude
the tunneling effect does not affect the AB effect.
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Figure 3.1: Illustration of the concentric quantum double ring with a interior-
threaded constant magnetic field.
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Figure 3.2: Energy levels of a concentric quantum double ring as a function
of the magnetic flux ΦB threading through the ring area.
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3.2 Energy Spectra of Concentric Quantum

Rings with Single Impurity

In this section, we are more concerned with the energy spectra of a concen-
tric quantum double ring with one impurity inside the inner or outer ring.
Let us consider one fixed impurity (charges +|e|) located in the middle of
inner ring (ri = 83nm). The azimuthal angle of this impurity is at φi = 0,
i.e. this impurity is on the x axis (see Fig.3.3). It is obvious that the electron
rounding in a concentric quantum double ring would be strongly attracted by
the fixed impurity as a result of the coulomb interaction between the impu-
rity and electron without taking the electrical screening effect into account.
So the probability density amplitude of the electron would gather around the
position of the fixed impurity for low-lying energy states. In other words, the
electron would be bounded by the impurity when the electron is in low-lying
energy states (see Fig.3.4).

The Hamiltonian of a concentric quantum double ring with an impurity
can be written as

Ĥ =
p̂2

e

2m∗
e

− e2

εr|~re − ~ri| + V̂ ′, (3.4)

where |~re − ~ri| is the distance between the electron and the impurity. Ap-
plying the z-axis oriented uniform magnetic field threading the interior of
the concentric quantum double ring as previous discussions, the Hamiltonian
turns out to be

H =
(~P − e ~A

c
)

2m∗
e

− e2

εr|~re − ~ri| + V ′. (3.5)

From Eq. (2.26), one can get the matrix representation of this Hamiltonian
and diagonalize it numerically again. The total energy Etot of this system is
obtained as [14]

Etot = En,m − Eb, (3.6)

where the binding energy Eb is defined as

Eb ≡ En,m − Etotal , and Eb ≥ 0. (3.7)

As discussed in the last section, because of the AB effect, En,m will oscil-
late periodically. But we find the total energy Etot continually increases as
one increases the magnitude of the uniform magnetic field. It seems that the
AB effect doesn’t happen in total energy. From Eq. (3.6), one may easily
conject that Eb should oscillate periodically, but has non-fixed amplitude as
shown in Fig. 3.5 and Fig. 3.6.
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We now consider a more general situation. As is well known, the coulomb
interaction will be reduced by the electrical screening from other atoms in
materials. The field strength seen by the electron should not be so strong.
Nevertheless, the impurity still breaks the cylindrical symmetry and lifts the
two-folded energy degeneracies for each m (±|m|, |m| 6= 0) of the concentric
quantum double rings. Instead of trapping the electron, the coulomb interac-
tion due to the fixed impurity plays a role of providing a periodic potential,
just like the Kronig-Penney model in the band structure problem. For sim-
plicity, we reduce two orders of the strength of the coulomb interaction and
apply the uniform magnetic field threading the interior of the ring to this
system. We find that because of the periodic boundary condition due to the
impurity, the band gaps appear at the points of intersection are as shown in
Fig. 3.7.
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Figure 3.3: Illustration of a concentric quantum double ring with an impurity
located at ri = 83nm and φi = 0.
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Figure 3.4: Upper panel : the ground state wave function of a concentric
quantum double ring with an impurity. Bottom panel : a contour view of
upper panel.
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Figure 3.5: Oscillations of the binding energies of the first excited state (up-
per), the second excited state (middle), and the third excited state (bottom).
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Figure 3.6: Oscillations of binding energies of the fourth excited state (up-
per), the fifth excited state (middle), and the sixth excited state (bottom).
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Figure 3.7: Energy spectra of a concentric quantum double ring with one
impurity as a function of the magnetic flux ΦB threading through the ring
area.
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3.3 Energy Spectra of Concentric Quantum

Rings with Two Impurities

In last section, we deal with a concentric quantum double ring with single
impurity. In this section, we would like to discuss the concentric quantum
rings with two impurities. Since a concentric quantum double ring has two
rings: inner and outer rings, one can put two identical impurities in two
different rings individually, and see how the energy spectra varies.

Following the last section, we put another identical impurity also in the
middle of inner ring with φ = π. So the inner ring has two identical symmetric
impurities at φi1 = 0 and φi2 = π (Fig.3.8). The Hamiltonian now becomes

Ĥ =
p̂2

e

2m∗
e

− e2

εr|~re − ~ri1| −
e2

εr|~re − ~ri2| + V̂ ′. (3.8)

We also apply an uniform magnetic field threading the interior of the ring
and find that the appearance of the second impurity located at ri2 = 83nm
and φi2 = π results in the disappearance of energy gaps as shown in Fig.3.9.
To explain this, one has to take a closer look at the second excited state
E1,1(the green curve), the third excited state E1,−2 (the deep blue curve),
and the the fourth excited state E1,2 (the light blue curve). One finds that
in the presence of the second impurity, the cylindrical symmetry is broken
further. So the separation of E1,−2 and E1,2 is bigger than that with only
one impurity inside the inner ring, and the separation of E1,1 and the E1,−2

becomes closer. Therefore, the energy gap between E1,1 and E1,−2 vanishes,
and the curves of E1,1 and E1,−2 intersects again.

Because a concentric quantum double ring has one inner and outer rings,
one can also consider the second impurity is put in the middle in the middle
of the outer ring located at ri2 = 97nm and φi2 = π (Fig.3.10). In this case,
these two impurities are not symmetric anymore in the radial direction, but
still symmetric in the azimuthal angle part. From Fig.2.8, we realize that the
radial wave function of a concentric quantum double ring is not symmetric
with respect to the middle barrier, and an electron prefers to appear in the
inner ring rather than in the outer ring. Thus, we are then able to conjecture
that when the uniform magnetic field is applied, the energy levels E1,1 and
E1,−2 should not intersect with each other because of the difference in the
radial probability density for inner and outer rings. Fig.3.11 shows the energy
spectra of E1,1 and E1,−2. Comparing it with Fig.3.9, the gaps appear, which
proves our conjecture.

34



Figure 3.8: Illustration of a concentric quantum double ring with two iden-
tical symmetric impurities located at (ri1 = 83nm, φi1 = 0) and (ri2 =
83nm, φi2 = π).
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Figure 3.9: Upper panel : energy spectra of a concentric quantum double
ring with single impurity. Bottom panel : energy spectra of a concentric
quantum double ring with symmetric double impurities .
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Figure 3.10: Illustration of a concentric quantum double ring with two iden-
tical symmetric impurities located at the inner ring (ri1 = 83nm, φi1 = 0)
and the outer ring (ri2 = 97nm, φi2 = π) .
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Figure 3.11: Energy spectra of a concentric quantum double ring with one
impurity in the inner ring and the other in the outer ring.
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3.4 Relation Between ΦB and Aharonov-Bohm

Effect

According to Eq.(3.3), AB effect appears whenever ΦB = Bπr2 is a positive
multiple of Φ0, i.e. ΦB

Φ0
is a positive integer. Because the magnetic flux

quantum Φ0 = hc
e

is a constant, and is independent of the applied magnetic
field and the area under magnetic field, so, when we enlarge the radius of
the area under magnetic field, Therefore, to keep the ΦB to be constant, the
magnitude of the uniform magnetic field corresponds to the appearance of
AB effect should be reduced when we enlarge the radius of the area under
magnetic field.

We vary the radius of the magnetic flux area from r = 80 nm to r =
150, 200, 300, and 500 nm, and show the alternations of the periods of the
AB oscillations in Fig.3.12 and Fig.3.13. As can be seen from Fig.3.12 and
Fig.3.13, the period of the applied uniform magnetic field indeed becomes
smaller when the radius of the area under the applied magnetic field becomes
larger.
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Figure 3.12: The energy spectra of a concentric quantum double ring for 150
nm (upper panel) and 200 nm (lower panel) wide of the flux-area radius.
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Figure 3.13: The energy spectra of a concentric quantum double ring for 300
nm (upper panel) and 500 nm (lower panel) wide of the flux-area radius.
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Chapter 4

Conclusion

In this work, we employed the solutions of a free electron in a quantum ring
to be a set of basis to solve the problem of a concentric quantum double ring
with one finite potential barrier in the middle of the radial direction. The
energy eigenvalues of the electron in the concentric quantum double ring with
a uniform interior-threaded magnetic field are obtained by diagonalizing the
Hamiltonian spanned by the basis. In addition, we also consider the problem
of a concentric quantum double ring with single impurity located inside the
inner ring. It is found that in the presence of the impurity the energy spectra
have a gaps-like structure. If one further puts another identical impurity
symmetric to the first impurity inside the inner ring, the gaps will disappear.
But when one moves the second impurity to the outer ring, the gaps show
up again due to the unsymmetrical radial part’s wave functions. In the last
section, we also find that due to the invariability of the universal magnetic
flux quantum the periods of the magnitude of the applied uniform magnetic
field became smaller when the magnetic flux area is enlarged.
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