Contents

1	Intr	oduction	6
	1.1	Polymeric light-emitting diodes and reasons for us to choose heavy metal complexes as dopants	6
	1.2	Literature review	8
2	Fab	rication Process for Devices 1	.2
	2.1	Etching for ITO patterns	12
	2.2	Preparations for the solutions 1	12
	2.3	ITO cleaning process	14
	2.4	Spincoating.	15
		2.4.1 Spin coating PEDOT-PSS on the ITO	17
		2.4.2 Spin casting the first layer on the PEDOT-PSS 1	17
		2.4.3 Spin coating the second layer in use of the buffer-layer technique.	17
	2.5	Removing unwanted parts with Acetone	21
	2.6	Thermal-evaporating the cathodes	23
	2.7	Packaging and measuring of the devices	24
3	Hig	hly Efficient Green-emitting Devices 2	27
	3.1	Single-layer devices with different insulating layers between the light emitting layer and the calcium cathode	28
	3.2	Single-layer devices with the CsF/Al cathode in conditions of different thicknesses of the light-emitting layer and of the CsF layer	34

	3.3	Double-layer devices with combinations of different insulating	40
	3.4	Tri-layer structures with TPBI as the electron-transporting layer	40 45
	3.5	Conclusions of Highly Efficient Green-emitting Devices	47
4	Futu	ıre Work	49
\mathbf{A}	The	Effect of TPD Concentration on Device Efficiency	57

B Double-layer Devices with PMMA-adulterated TPBI as the Electron-transporting Layer at the Cathode 60

List of Figures

1.1	Schematic structure of a Polymer Light Emitting Diode. $\ . \ .$	6
1.2	Formation of an excition	7
1.3	Schematic structure of a Polymer Light Emitting Diode after improvements with multiple layers.	10
1.4	Energy diagram of the biased PLED with the multilayer struc- ture	11
2.1	Schematic description of photo patterning of our ITOs	13
2.2	Two active areas of $3mm \times 3mm$ for each	13
2.3	Four active areas of $2mm \times 2mm$ for each	13
2.4	The chemical structure of Chlorobenzene	13
2.5	A 1-centimeter magnetic stirrer	14
2.6	Comparisons between films with solvents of THF or xylene	16
2.7	The filtering gadget	16
2.8	The process of buffer-layer technique of Step 1	19
2.9	The process of buffer-layer technique of Step 2	19
2.10) The process of buffer-layer technique of Step 3	20
2.11	The process of buffer-layer technique of Step 4	20
2.12	2 Baking at a wrong temperature for PVK-PBD blend	21
2.13	³ Successful double-layer samples and failed ones	22
2.14	A Removing unnecessary part by acetone	23
2.15	5 A packaged device	25
2.16	The cleaning process of ITO substrates	26
2.17	7 Spin-coating organic films.	26

3.1	The energy diagram of the single-layer devices
3.2	An example of a bad combination of shifted energy bands about the host and the guest
3.3	Chemical structures of the materials
3.4	J-V diagram for single-layer devices with CsF/Ca/Al or LiF/Ca/Al 30
3.5	L-V diagram for single-layer devices with CsF/Ca/Al or LiF/Ca/Al 31
3.6	Y-J diagram for single-layer devices with CsF/Ca/Al or LiF/Ca/Al 32
3.7	PCE-J diagram for single-layer devices with CsF/Ca/Al or LiF/Ca/Al
3.8	Y-J diagram for single-layer devices with various CsF thicknesses
3.9	L-V diagram for single-layer devices with various CsF thicknesses
3.10	J-V diagram for single-layer devices with various CsF thicknesses
3.11	PCE-J diagram for single-layer devices with various CsF thicknesses
3.12	Spectra of various CsF thicknesses
3.13	Devices with luminous efficiency of 49 cd/A
3.14	Chemical structure of TFB
3.15	Energy diagram of the bi-layer structure
3.16	J-V diagram for bilayer devices
3.17	Y-J diagram for bilayer devices
3.18	L-V diagram for bilayer devices
3.19	PCE-J diagram for bilayer devices
3.20	Spectra of bilayer devices
3.21	The tri-layer energy diagram and (inset) the chemical struc- ture of TPBI
3.22	Performance of a tri-layer device

4.1	EA-IPs of the 6-ingredient blend	50
4.2	Spectra of 6-material blend.	50
4.3	The EA-IPs of the multilayer white device	51
4.4	Performance of devices on the basis of LEP to convert to red- emitting with high efficiency.	52
4.5	Spectra of devices on the basis of LEP to convert to red- emitting with high efficiency	53
A.1	Effect of TPD concentration on the single-layer devices with LiF/Ca/Al cathode.	58
A.2	Effect of TPD concentration on the double-layer devices with CsF/Al cathode.	59
B.1	The chemical structure of Poly(methyl methacrylate) (PMMA).	60
B.2	Electron current density of various blending ratios of TPBI- PMMA	61
B.3	Improving the device performance by using the TPBI-PMMA blend as the electron-transporting layer.	62