國立交通大學

生物科技研究所

碩 士 論 文

融合一段 SARS 片段至腪瘤來源的胜肽可提高免疫反應

The Enhancement of Immunogenicity by a SARS Fragment Fusion to
a Tumor－Derived Peptide

研 究 生：高詩涵
指導教授：廖光文博士

中華民國九十五 年 七月

融合一段 SARS 片段至腫瘤來源的胜肽可提高免疫反應

The Enhancement of Immunogenicity by a SARS Fragment Fusion to

a Tumor－Derived Peptide

研 究 生：高詩涵
Student：Shih－Han Kao
指導教授：廖光文
Advisor ：Kuang－Wen Liao

國立交通大學

生 物 科 技 系
碩 士 論 文

Submitted to Institute of Biological Science and Technology College of Biological Science and Technology

National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in

Biological Science and Technology

July 2006

Hsinchu，Taiwan，Republic of China

融合一段 SARS 片段至腫瘤來源的胜肽可提高免疫反應

研究生：高詩涵
指導教授：廖光文 博士

國立交通大學生物科技研究所

中文摘要

腫瘤細胞會表現低免疫反應之腫瘤相關抗原（TAA）。一段癌顼抗原（CEA）在CT26腫瘤模式中被用來模擬低免疫反應之腫瘤相關抗原。我們藉由SARS冠狀病毒的片段修飾之胜肽疫苗提高在Balb／c老鼠動物模式裡的CEA專一療效。並且藉由提高SARS片段上抗原決定位（epitope）與主要組織適應性複合體第一型（MHC class I）之結合力來確保 SARS片段之冕疫反應效果。利用網路軟體（http：／／www．syfpeithi．de／）分析顯示，突變越多的抗原決定位表示其與主要組織適應性的結合力越好。這些質體設計分別轉殖入沙門氏桿菌（Salmonella typhimurium）藉以急疫Baib／c／老鼠。細胞生理細胞激素測試（in vitro cytokine assay）顯示只帶有CEA的組別只引起介白質冝－4 的分泌，而其他多帶有SARS片段的組別，不論有無突變點，都能有效的引起腫瘤壞死因子－α（TNF－α ）及介白質IL－10的分泌。活體細胞激素測試（in vivo cytokine assay）則顯示單獨的CEA不能引起Th1 與Th2的反應，但多加的SARS片段則可•老鼠在經過急疫後接種腫瘤大小上的表現也以有SARS片段者來得小，甚者其存活率與無腫瘤率也以SARS組較佳，顯示SARS片段，不論有無突變，對CT26有較好的抑制效果。在治療上面，CEA表現無法有效的抑制腫瘤生長，但 SARS則可。

綜合以上結果，低免疫反應之腫瘤相關抗原，如 CEA，是無法在動物模式上面帶來有效的保護效果，而在我們建立的系統祼，一段普遍的抗原一SARS 片段一則可以加強原低免疫反應的腫瘤相關抗原的反應，進而提高 DNA 疫苗的效果。此外，我們也建立了一個平台，可以利用電腦預測的方式提高佐藥疫苗的療效。

The Enhancement of Immunogenicity by a SARS Fragment Fusion to

a Tumor-Derived Peptide
Student: Shih-Han Kao
Advisor: Dr. Kuang-Wen Liao
Institute of Biological Science and Technology
National Chiao Tung University

Abstract

Tumor cells express tumor-associated antigens (TAAs) that are usually in low immunogenicity. A fragment of carcinoembryonic antigen (CEA) was utilized to simulate the low immunogenous TAA on colon carcinoma, CT26. To enhance the efficiency of our DNA vaccine, it was fused with an exogenous SARS-CoV fragment which is high immunogenous and is expected to induce and enhance the immune response in our animal model, Balb/c mice. The SARS fragment was mutated based on the âffinity prediction between the epitope and MHC molecules (H2-Kd) by Internet software (http://www.syfpeithi.de/). The more mutations there are in a construct, the higher the affinity is. These constructs were then transformed into Salmonella typhimurium and orally fed to immunize Balb/c mice. In vitro cytokine profile reveals that CEA alone induces only IL-4 secretion whereas constructs with an additional SARS fragments, whether mutated or not, can significantly induce TNF-aand IL-10 secretion. In vivo cytokine profile shows that CEA alone can not induce any cytokine secretion but an additional SARS fragment fused to CEA can induce both Th1 and Th2 responses. Mice in the protection assay also had smaller tumor volume than those with CEA alone. The efficiency of the CEA-SARS immunization (both non-mutated and mutated) is reflected on their survival rate and tumor-free rate, which are both higher than the CEA alone group. Moreover, the SARS fragment fused with CEA effectively slowed tumor growth in the therapeutic assay. In conclusion, low immunogenous TAAs, such as CEA, can not effectively induce the immune response of animal models. We have set up a system in which the foreign parental or mutated SARS fragments could enhance the anti-tumor efficacy of the tumor vaccine against endogenous tumor antigens. Furthermore, we provide a platform to enhance the adjuvant effect of the foreign peptide by computer prediction.

Acknowledgement

我要感謝許多人，因爲有了他們才使得我的論文能夠完成。首先要感謝的是我們實驗室的大家長一廖光文老師，兩年前他不計我的背景願意收我當他的指導學生，也信任我可以在這兩年內可以完成實驗和修課內容，因爲有了這樣的契機使我得以實現自己的理想，而每當我實驗遇到困難侍，他總是熱心與我討論，謝謝他的指導讓我從什麼都倩懂無知到開始欣賞科學的嚴㯵和邏輯。再來要感謝的是靜宜學姐，總是在實驗實務操作上給我建議和指導，並且帶著我做了許多實驗；另外還要感謝同組的學弟：侑松和昱丞，每每爲了毒殺實驗必須陪著我早起；源庭要分擔流式細胞儀的分析，其翰很辛苦地打了無數盤的 ELISA，真的很謝謝你們！

另外還要感㛛我的同學上知，他陪我去了很多趈鼠房也陪我做了很多實驗，還幫我們買了便當，以在大家實驗做得焦頭䑌額的同時得以溫飽；還要感謝竣元和弘育，在午夜的時分幫我收膠或收菌•感謝懐堯 贑如｢彥谷等學弟妹日常生活中的照顧，爲枯燥不變的生活增添幾分色彩！還要感謝我的實驗老鼠，每次看到他們被犧牲都覺得很不捨，我希望每一條生命的犧牲都有其代拱。

最後還要感謝我的父母，因爲有家人的支持和鼓勵，我才能順利地完成學業。感謝所有曾經幫助過我的朋友，因爲有你們的相左，讓我膫解友誼的真諦。

Contents

中文摘要 5
ABSTRACT 6
ACKNOWLEDGEMENT 7
CONTENTS 8
TABLES 12
FIGURES 13
ABBREVIATIONS 15
ABBREVIATIONS 15
CHAPTER 1 INTRODUCTION 16
1．1 TUMOR ANTIGENS 16
1．1．1 TAAs from oncogene mutations or rearrangement 16
1．1．2 TAAs from mutated tumor－suppressor gene products 16
1．1．3 TAAs from reactivated embryonic gene products not expressed in adult tissues． 17
1．1．4 TAAs from viral gene products．．．．．．．．．．．．．．．．S．．．．．．．．．．．．．．．．． 17
1．1．5 TAAs from idiotypic epitopes． 18
1．1．6 TAAs from tissue－specific self antigens expressed by tumors 18
1．2 MHC TYPES AND ANTIGEN－PRESENTING PATHWAYS． 18
1．2．1 MHC class I molecules and their functions． 19
1．2．2 MHC class II molecules and their functions 19
1．3 BINDING AFFINITY AND PRESENTATION STRENGTH 19
1．3．1 MHC Class I binding of its peptides 20
1．3．2 MHC Class I binding affinity and presentation strength 20
1．3．3 The binding affinity between the MHC－epitope complex and the T cell． 21
1．4 TUMOR VACCINES 21
1．4．1 Tumor－infiltrating lymphocytes（TILs） 22
1．4．2 Tumor antigen fusion 22
1．4．3 Cytokine fusion． 22
1．4．4 Antigen－presenting cells（APCs）fusion 23
1．5 VACCINE APPROACHES 23
1．5．1 Irradiated tumor cells as a vaccine approach． 23
1．5．2 Protein vaccine 24
1．5．3 DNA vaccine 25
1．6 Oral DNA vaccine 26
1．7 StRATEGY 27
1.7.1 The concept of design 27
1.7.2 Strategy 28
CHAPTER 2 MATERIALS AND METHODS 30
2.1 Materials 30
2.1.1 Primers 30
2.1.2 Cell lines 31
2.1.3 Bacterial strains 32
2.1.4 Plasmids 32
2.1.5 Chemicals, Enzymes, and reagents 33
2.1.6 Antibodies 34
2.1.7 Kits. 35
2.1.8 Buffers 35
2.1.9 Media 36
2.1.10 Equipment 37
2.2 Methods 38
2.2.1 Computer prediction 38
2.2.2 PCR reaction 39
2.2.2.1 CEA synthesis 39
2.2.2.2 SARS synthesis 39
2.2.2.3 SARS mutation.
1896 40
2.2.3 Plasmid construction 43
2.2.3.1 Restriction enzyme digestion. 43
2.2.3.2 DNA extraction 43
2.2.3.3 Ligation 43
2.2.4 Transformation of E. coli 44
2.2.4.1 Preparation of competent cells 44
2.2.4.2 Transformation 44
2.2.5 Plasmid DNA extraction 44
2.2.5.1 Minipreparation 44
2.2.5.2 Midipreparation 45
2.2.6 Cell culture 46
2.2.6.1 Balb/3T3 46
2.2.6.2 PT67. 46
2.2.6.3 CT26 46
2.2.6.4 P338D1 46
2.2.7 Transfection of mammalian cells 47
2.2.7.1 Seeding cells 47
2.2.7.2 Lipofectamine ${ }^{\mathrm{TM}} 2000$ transfection 47
2.2.8 Infection of mammalian cells 48
2.2.9 Dot-blotting. 48
2.2.9.1 Preparation of the CEA antibody 48
2.2.9.2 Confirmation of the CEA antibody 48
2.2.9.3 Dot-blotting 49
2.2.10 Transformation of Salmonella typhimurium 50
2.2.10.1 Preparation of competent cells 50
2.2.10.2 Transformation 50
2.2.11 P338D1 incubation with transformed Salmonella typhimurium 50
2.2.12 Killing assay 51
2.2.12.1 Animal immunization 51
2.2.12.2 Splenocyte isolation 51
2.2.12.3 Target cell staining. 52
2.2.12.4 The killing assay. 52
2.2.13 The cytokine profile assay 52
2.2.13.1 The in vitro cytokine assay 52
2.2.13.2 The in vivo cytokine assay 53
2.2.14 Tumor inoculation 54
2.2.14.1 The protection assay 54
2.2.14.2 Therapy assay 54
2.2.15 Data analysis 54
3.1 EPITOPE PREDICTION (CEA-SARS) BY INTERNET SOFTWARE 55
3.1.1 The epitope score of the CEA-SARS sequence 55
3.1.2 Affinity of H2-Kd compared with other epitopes 55
3.2 Point mutation prediction (CEA-SARS) by Internet software 56
3.3 CONSTRUCTION OF PAAV-CEA, PAAV-CEA-SARS, PAAV-CEA-M1, PAAV-CEA-M2, PAAV-CEA-M3 EXPRESSION PLASMIDS 56
3.4 CONSTRUCTION OF PAAV-CEA-B7.1-IVH3H EXPRESSION PLASMID 58
3.5 CONSTRUCTION OF PMSCVNEO-CEA EXPRESSION PLASMID 59
3.6 VERIFICATION OF PLASMID EXPRESSION BY CYTOMETRY 59
3.7 CT26 INFECTION BY RETROVIRUS: SMALL FRAGMENT OF CEA IS SECRETED FROM CT26 60
3.7.1 Transfection of PT67 cell lines with pMSCVneo-CEA expression plasmid 60
3.7.2 Infection of CT26 with supernatant of PT67 transfection 60
3.7.3 The CEA expression by dot blot. 61
3.8 IN VITRO KILLING ASSAY OF BALB/C SPLENOCYTES 61
3.8.1 The effect of DIOC18 staining on target cells. 61
3.8.2 The killing assay 62
3.9 CyTOKINE PROFILE ASSAY 63
3.9.1 The in vitro cytokine assay. 63
3.9.2 The in vivo cytokine assay 65
3.10 TUMOR GROWTH 66
3.10.1 The protection assay 66
3.10.2 The therapy assay 66
CHAPTER 4 DISCUSSION 107
REFERENCES 113
APPENDIX 119

Tables

Table 1. The epitope scores of the CEA-SARS SEQUENCE CALCULATED bY THE INTERNET SOFTWARE, SYFPEITHI. 67
TAble 2. The CEA and CEA-SARS EPITOPES COMPARED WITH OTHER KNOWN EPITOPES THAT HAVE BEEN PROVED TO ELICIT IMMUNITY IN BALB/C MICE. 68
Table 3. The flow chart of mutagenesis. 69
Table 4. The candidate sequence of the m1 construct. 70
TAble 5. The generation of m2 and m3 70

Figures

Figure 1. The scheme of CEA and SARS synthesis. 39
FIGURE 2. THE SCHEME OF M2, M3 PLASMID CONSTRUCTION. 41
Figure 3. The construct of pAAv-CEA (WITH A STOP CODON). 71
FIGURE 4. RESTRICTION ENZYME DIGESTION OF THE PAAV-CEA CONSTRUCT WITHOUT A STOP CODON 72
Figure 5. RESTRICTION ENZYME DIGESTION OF THE PAAV-CEA-SARS CONSTRUCT 73
FIGURE 6. RESTRICTION ENZYME DIGESTION OF THE PAAV-CEA-M1 CONSTRUCT. 74
Figure 7. Restriction enzyme digestion of the paiv-CEA-m2 construct. 75
FIGURE 8. RESTRICTION ENZYME DIGESTION OF THE PAAV-CEA-M3 CONSTRUCT. 76
Figure 9. The diagram of pAAV-CEA, pAAV-CEA-SARS, pAAV-CEA-m1, pAAV-CEA-M2, and PAAV-CEA-M3 FOR IMMUNIZATION. 77
Figure 10. Primer annealing of the CEA sequence without its leader sequence. 78
Figure 11. The construct of pAAV-CEA-B7.1. 79
Figure 12. The construct of pAAV-CEA-B7.1-IVH3H. 80
Figure 13. The diagram of paAv-CEA-B7.1-IVH3H FOR CEA antibody production. 81
Figure 14. Restriction enzyme digestion of pMSCVneo-CEA 82
Figure 15. The diagram of pMSCVneo-CEA For CT26 infection. 83
Figure 16. The fluorescence expression of hrGFPin P338D1. 84
Figure 17. SELECTION OF PT67 TRANSFECTED WITH PMSCVNEO-CEA. 85
Figure 18. The G418 resistance test of CT26. 86
Figure 19. Infection of CT26 at 400 Mg/ML G418 on Day 7. 87
FIGURE 20. THE CEA ANTIBODY IN THE SERA OF BALB/C MICE. BALB/3T3 WAS TRANSFECTED WITH
PAAV-CEA-B7.1 AND PAAV-B7.1-IVH3H. 88
Figure 21. The secretion of CEA from CT26. 89
Figure 22. The mortality rate and surface fluorescence of CT26 after overnight DIOC18
STAINING. 90
Figure 23. The mortality rate and surface fluorescence of CT26/CEA after overnight DiOC18
\qquadSTAINING.91
Figure 24. The mortality rate and surface fluorescence of YAC-1 after overnight DiOC18
STAINING. 92
Figure 25. The CT26/CEA KILLING ASSAY. 93
Figure 26. The CT26 KILLING ASSAY 94
Figure 27. CT26/CEA SPECIFIC KILLING at an E/T RATIO = 25/1. 95
Figure 28. The YAC-1 Killing assay. 96
Figure 29. In VITro TNF-AEXPRESSION AFTER CT26/CEA SOUP OR CT26 SOUP STIMULATIONS 97
FIGure 30. In VITro IL-10 EXPRESSION AFTER CT26/CEA SOUP OR CT26 SOUP STIMULATIONS. 98
FIGURE 31. In VITRO IL-4 EXPRESSION AFTER CT26/CEA SOUP OR CT26 SOUP STIMULATIONS. 99
FIGURE 32. IN VITRO IL-12 EXPRESSION AFTER CT26/CEA SOUP OR CT26 SOUP STIMULATIONS. 100
FIGURE 33. IN VITRO IFN-Г EXPRESSION AFTER CT26/CEA SOUP OR CT26 SOUP STIMULATIONS. 101
Figure 34. In Vivo cytokine expression. 102
Figure 35. The Tumor-Free rate of Balb/C Mice in the protection assay. 103
Figure 36. The tumor volume of Balb/C mice in the protection assay. 104
Figure 37. The survival rate of Balb/C MICE in The protection assay. 105
Figure 38. The tumor volume of Balb/c mice in the therapy assay. 106

	Abbreviations
APCs	antigen-presenting cells
CEA	carcinoembryonic antigen
CTLs	Cytotoxic T lymphocytes
DCs	dendritic cells
DIOC18	3,3'-dioctadecyloxacarbocyanine
DMEM	Dulbecoo's modified eagle medium
Th cells	Helper T cells
IFN- γ	interferon- γ
IL-10	interleukin-10
IL-12	interleukin-12
IL-2	interleukin-2
IL-4	Sinterleukin-4
IL-5	interleukin-5
kDa	killoDalton
MHC	major histocompatibility complex
NK cells	natural killer cells
PBS	phosphate buffer saline
PI	propidium iodide
SARS-CoV	severe acute respiratory syndrom coronavirus
TAA	tumor-associated antigen
TCR	T-cell receptor

Chapter 1 Introduction

1.1 Tumor antigens

The immune system surveys the body for abnormal antigens or cells not only of infectious microorganisms but also of tumor. It has been observed that tumor expresses tumor associated antigens (TAAs) that can be recognized and serve as the target for immune cells such as cytotoxic T cells (Boon, Cerottini et al. 1994; Pardoll 1994). Six categories of TAAs can be defined due to the different mechanisms that result in the generation of TAAs and described in the following sections.

1.1.1 TAAs from oncogene mutations or rearrangement

These antigens are the result of point mutations or gene rearrangements, which often arise as part of the process of oncogenesis. For example, the transforming allele of the Ki-ras2 gene present in the human colon carcinoma cell line SW480 differs from its normal counterpart only at the amino acid at position 12 . The normal cDNA encodes a glycine at this position, and the transforming allele encodes a valine. Expression of these cDNAs indicates that this amino acid 12 alteration confers oncogenic activity on the mutated gene (McCoy, Bargmann et al. 1984). Chronic myelogenous leukemia (CML) is a human disease associated with a consistent chromosomal translocation that results in sequences from the $\mathrm{c}-\mathrm{abl}$ locus on chromosome 9 being fused to sequences in a breakpoint cluster region (bcr) on chromosome 22 (Ben-Neriah, Daley et al. 1986).

1.1.2 TAAs from mutated tumor-suppressor gene products

Normal cells contain repressors whose loss result in uncontrolled growth (King 2000). The p53 gene, for instance, which produces the p 53 repressor protein, is the gene most
frequently altered in human cancers (King 2000). The p53 gene is frequently mutated or inactivated in all types of human lung cancer. The genetic abnormalities of p53 include gross changes such as homozygous deletions and abnormally sized messenger RNAs along with a variety of point or small mutations, which map to the p53 open reading frame and change the amino acid sequence in a region highly conserved between mouse and human (Takahashi, Nau et al. 1989).
1.1.3 TAAs from reactivated embryonic gene products not expressed in adult tissues

Some TAAs, which are the embryonic gene products, are somehow turned on in tumors. For instance, MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis (Bueler and Mulligan 1996). Alpha-fetoprotein is another example whose mRNA levels increase in hepatocellular carcinoma (HCC) cells as compared with non-neoplastic tissues (Matsumura, Ijichi et al. 2001).

1.1.4 TAAs from viral gene products

Some viruses can provide an oncogene which codes for a functional product, as in the case of Rous sarcoma virus. The oncogene v-src codes for a 60 kDa phosphoprotein (pp60 ${ }^{\text {scc }}$) that has tyrosine kinase activity (King 2000). Other viruses may insert a part of the sequence into a host's genome. For example, the regulatory sequences repeated at each end of the viral genome of mouse mammary tumor virus (MMTV) enhance the transcription of the nearby genes (King 2000). Still others can act directly by virtue of their v-onc protein product binding to and inactivating host proteins, such as human papilloma virus. Inactivation of tumor suppressors, Rb and p 53 , by viral E7 and E6 proteins is required for cervical cancer (King 2000).

1.1.5 TAAs from idiotypic epitopes

Some of the TAAs are specifically expressed on tumors but not on normal cells, including idiotypic epitopes. One of the best characterized idiotypic epitopes is the idiotypic immunoglobulin (Id) of B-cell lymphoma. The Id is determined by the rearrangements of the variable heavy (VH) and light (VL) chains of the immunoglobulin V regions that are unique for each clonal B-cell population and represent tumor-specific antigens (Muraro, Bondanza et al. 2005).

1.1.6 TAAs from tissue-specific self antigens expressed by tumors

The tissue-specific self antigens are specifically expressed on tumors but not on normal cells as well. They can be exemplified by carcinoembryonic antigen (CEA), which is a membrane-anchored glycoprotein expressed on the great majority of colorectal, gastric, and pancreatic carcinomas as well as 50% of breast cancers and 70% of non-small cell lung cancers (Thompson, Grunert et al. 1991). Another example of self antigens is the tyrosinase of melanoma, which is responsible for the synthesis of melanin in the epidermis via oxidation of tyrosine (Halaban, Pomerantz et al. 1983). Melanin biosynthesis (melanogenesis) is a metabolic pathway exclusively expressed by melanocytes and melanoma cells, and is often altered and/or markedly elevated in the latter cells (Salopek and Jimbow 1996). Therefore, tyrosinase is overexpressed by melanoma and serves as a self antigen for clinical detection (Kounalakis and Goydos 2005).

1.2 MHC types and antigen-presenting pathways

Tumor antigens, whether endogenous or exogenous, are all presented by the major histocompatibility complex (MHC) molecules to different T cells. There are mainly two types
of MHC molecules, MHC class I and MHC class II, each of which functions in different ways.

1.2.1 MHC class I molecules and their functions

MHC class I molecules, expressed on the surface of the all cell types except for red blood cells (RBCs), present peptides derived from endogenous antigens to CD8+ cytolytic T lymphocytes (CTL). Degraded by proteasomes, these peptides bind to MHC class I molecules in the lumen of the endoplasmic reticulum via the transporters associated with antigen processing-1 and -2 (TAP1 and TAP2). The presentation of peptides by the MHC class I molecules initiate the activation of CTL, which is one of the effector cells in antitumor immunity.

1.2.2 MHC class II molecules and their functions

MHC class II molecules, expressed on the antigen-presenting cells (APCs), such as B cells, dendritic cells, and macrophages, present peptides derived from exogenous antigens to CD4+ helper T (Th) cells. These tumor antigens are released from tumor cells, taken up and processed into peptides by APCs, then displayed on MHC class II molecules. The recognition by Th cells releases cytokines, such as IL-2, to promote the activation of CTLs (Li, Zhang et al. 2006).

1.3 Binding affinity and presentation strength

When molecules interact, binding affinity accounts for the strength between them. In the case of the MHC molecule presentation to T cells, there are two kinds of binding affinity that need to be considered to activate the T cell response, namely the binding affinity between the epitope and the MHC molecule and that between the MHC-epitope complex and the T-cell
receptor (TCR) of a T cell.

1.3.1 MHC Class I binding of its peptides

Because tumor antigens are mostly recognized by the CD8+ T cells, it is of importance to introduce the binding between the peptide and the MHC class I molecule.

The binding of a peptide in the peptide-binding cleft of an MHC class I molecule is stabilized at both ends by contacts between atoms in the specific residues of the peptide and invariant sites that are found at each end of the cleft of all MHC class I molecules through a series of hydrogen bonds and ionic interactions. Peptides that bind to MHC class I molecules are usually 8-10 amino acids long. The peptides that can bind to a given MHC variant have the same or very similar amino acid residues at two or three particular positions along the peptide sequence. The side chains of the amino acids at these positions insert into pockets in the MHC molecule that are lined by the polymorphic amino acids. Because the binding of these side chains anchors the peptide to the MHC molecule, the peptide residues involved have been called anchor residues, which are usually hydrophobic at the carboxyl terminus. In some cases, particular amino acids are preferred in certain positions, whereas in others the presence of particular amino acids prevents binding (Janeway 2005).

1.3.2 MHC Class I binding affinity and presentation strength

Although some tumor antigens can elicit the T-cell response, most of the endogenous T cell responses are weak. This is because the affinity between the peptide antigen and its presenting MHC molecule is generally weak (Cox, Skipper et al. 1994). Such antigens are often characterized by an absence of favored residues at critical anchor positions involved in MHC binding. For weak tumor antigens that fall into the low-affinity MHC binding category, replacement or mutation of unfavorable anchor residues with more effective ones may greatly enhance MHC binding properties (Lurquin, Van Pel et al. 1989; Gervois, Guilloux et al. 1996;

Parkhurst, Salgaller et al. 1996; Bakker, van der Burg et al. 1997). These altered peptides may more effectively activate T cell responses against the wild-type peptide antigen by virtue of the increased efficiency of presentation of the MHC-peptide complex to specific T cells. In both mouse and human studies, these anchor-modified peptides can elicit superior T cell responses against the original antigen in vivo (Dyall, Bowne et al. 1998; Rosenberg, Yang et al. 1998).

1.3.3 The binding affinity between the MHC-epitope complex and the T cell

Some antigens bind to their presenting MHC with affinities in a similar range to the viral antigens yet elicit weak endogenous immune responses (Lee, Yee et al. 1999). For tumor antigens with high MHC affinities, the proposed mechanism for weak endogenous immune responses is that high-affinity T cells are actively, tolerated via anergy or deletion, thereby leaving a functional repertoire consisting of T cells bearing T cell receptors (TCR) with low affinity for MHC-peptide complexes. This residual T cell repertoire is postulated to have escaped active tolerance induction by virtue of its low affinity for MHC-peptide ligand. This mechanism is particularly relevant for shared tumor antigens, which, because they are self-antigens, have had a long period of time to induce tolerance (Morgan, Kreuwel et al. 1998).

The low binding affinity between the MHC-epitope complex and the TCR can be elevated by amino acid substitution. Slansky et al indicated in their research that the improved immunity results from enhanced in vivo expansion of T cells specific for natural tumor epitopes (Slansky, Rattis et al. 2000).

1.4 Tumor vaccines

TAAs have been utilized to induce antitumor immunity in tumor vaccines. Several
strategies have been developed to utilize TAAs for tumor vaccines (Rosenberg 1996; Chen and Wu 1998; Timmerman and Levy 1999). Some of the most important tumor vaccines will be discussed below.

1.4.1 Tumor-infiltrating lymphocytes (TILs)

The earliest discovery of tumor-infiltrating lymphocytes has suggested the involvement of immune cells in the suppression of tumor growth. Studies in animal tumor models have indicated that progressively growing tumors contain weak or nonreactive tumor lymphocytes but that regressing tumors have highly reactive lymphocytes (Gillespie and Russell 1978). In the study by Wang and Rosenberg, the adoptive transfer of cytotoxic T lymphocytes (CTLs) derived from tumor-infiltrating lymphocytes (TIL) along with interleukin-2 (IL-2) into autologous patients with cancer resulted in the objective regression of tumor, indicating that these CTLs recognized cancer rejection antigens on tumor cells (Wang and Rosenberg 1996).

1896

1.4.2 Tumor antigen fusion

Fused tumor antigens have been constructed to elicit antitumor effect. A recent research has indicated that mucin 1 (MUC1), a TAA for epithelial carcinoma, when fused with heat shock protein complexes (HSP65) isolated from tumors, can induce specific and nonspecific antitumor immunity. HSP65-MUC1 induces growth inhibition of MUC1-expressing tumors and increases survival of the tumor-bearing mice by activating MUC1-specific CTL and enhancing IFN- γ secretion (Li, Li et al. 2006).

1.4.3 Cytokine fusion

Other researchers enhance the immunity by cytokines that have been well-known for their proinflammatory or T-cell mediated responses. For example, the human IL-2 has been fused with human MUC1, which is over-expressed and aberrantly glycosylated in most breast
tumors. The patients vaccinated intramuscularly with a single dose of the recombinant vaccinia virus resulted in no significant clinical adverse effects. None of the nine patients had a significant increase in MUC1-specific antibody titers after one single injection (Scholl, Balloul et al. 2000).

1.4.4 Antigen-presenting cells (APCs) fusion

APCs can prime naïve T cells and initiate a prime immune response (Steinman 1991; Banchereau and Steinman 1998). Among all, dendritic cells (DCs) are one of the most utilized APCs to induce a T-cell response. Various DC-based strategies, such as DCs pulsed with tumor-associated peptides or proteins, viral transduction of DCs with tumor-specific genes or transfection with liposomal DNA or RNA, have been developed to introduce tumor specific antigens into DCs and thereby to generate cytotoxic T lymphocyte (CTL) responses against malignant cells (Boczkowski, Nair et al. 1996; Condon, Watkins et al. 1996; Gong, Chen et al. 1997; Ribas, Butterfield et al. 1997; Song, Lee et al. 1997; Song, Kong et al. 1997; Specht, Wang et al. 1997). Xu et al. has generated the fusion between human cancer SW480 cells and DCs to elicit interferon- γ secretion against colon cancer (Xu, Ye et al. 2004).

1.5 Vaccine approaches

Approaches to deliver tumor vaccines can vary, but they can be categorized into two main groups by their molecular components, protein injection and DNA vaccine. The previous group is later subcategorized into two subgroups. One utilizes dead tumor cells as a vaccine approach, and the other utilizes TAAs or any other protective molecules in the form of functional proteins.

1.5.1 Irradiated tumor cells as a vaccine approach

Irradiated tumor cells were once injected into animal models (Mazurek and Duplan 1959; Shibata, Jerry et al. 1976). However, such an approach may only exert a limited effect. Therefore, they have been engineered later with other molecules to exert a synergistic effect on tumors. For example, in a more recent study, Jain et al. transduced irradiated CT26 cells with granulocyte-macrophage colony-stimulating factor to enhance the efficacy of their tumor vaccine. Along with the help of systemic injection of IL-2, 88% of the treated mice were tumor free on day 21 (Jain, Slansky et al. 2003). Besides, irradiated tumor cells can be incubated with DCs and uptaken by them as a vaccine approach. Such pulsed DCs have been proved to elicit the immune response successfully. The specific T cell responses were observed. In vitro studies showed that fusions effectively activated CD8+ T lymphocytes to secrete IFN- γ (Xu, Ye et al. 2004).

1.5.2 Protein vaccine

Vaccines can be in the form of proteins. Cytokines, such as IL-2, have been injected intratumorally with TILs in a breast cancer model. In the study of Liu DL et al., such an immunotherapy with rIL-2 and TILs were given to Wistar rats with breast cancer. The total response rate was 42%, of which 25% tumors showed partial regression and 17% tumors reached complete remission where infiltration of plenty of T lymphocytes was detected, indicating that T cell-mediated antitumor immunity is primarily responsible for tumor rejection. (Liu, Yang et al. 1996).

Pulsed APCs can be injected into animals to elicit immune responses against tumors. For instance, DCs can be pulsed with an antigenic peptide or tumor lysate to induce specific CTLs against tumors. In the study of Waeckerle-Men et al, autologous DCs were pulsed with multiple T cell epitopes derived from four different prostate-specific antigens in patients with advanced hormone-refractory prostate cancer. The vaccination elicited significant cytotoxic T cell responses against all prostate-specific antigens tested. In addition, memory T cell
responses against the control peptides derived from influenza matrix protein and tetanus toxoid were efficiently boosted (Waeckerle-Men, Uetz-von Allmen et al. 2006).

1.5.3 DNA vaccine

DNA vaccine, which is to construct the desired DNA segment in a vector to elicit immunity, is another approach for vaccine delivery. The desired DNA segment can be a TAA, cytokine, or the combination of both in the form of DNA sequence. For instance, neu is an oncogene for breast cancer. Chen et al generated DNA expression vectors encoding the full-length neu cDNA (designated pNeuN), the neu extracellular domain (pNeuE), and the neu extracellular and transmembrane domains (pNeuTM). The intramuscular injection of pNeuTM or pNeuE , and to a lesser extent pNeuN , induced protective immunity against a subsequent challenge with Tgl-1 cells, a neu-expressing tumor cell line, in FVB/N mice (Chen, Hu et al. 1998).

Cytokine can be delivered into animals in the form of DNA instead of protein. In the study of Schultz J et al., the intramuscular injection of plasmid DNA coding for IL-12 abolished the establishment of pulmonary metastases of B16F10 melanoma cells in a syngeneic mouse model. Moreover, it also resulted in a pronounced reduction of tumor growth in C57/BL6 mice. This antitumor effect correlated with a long-lasting expression of cytokines, which manifested itself as high levels of IL-12 in the serum 12 days after DNA treatment (Schultz, Pavlovic et al. 2000).

However, TAA alone or cytokines cannot always induce enough immunity against tumor. Combined therapy has been adopted in some of the therapeutic approaches. Marshall et al. tested a prostate-specific antigen (PSA) DNA vaccine along with the co-administration of pIL-18 plasmid in a mouse tumor model. Complete tumor protection mediated by both CD4+ and CD8+ T cells was observed in all mice. Analysis of the immune response in mice immunized with either pPSA or pPSA/pIL-18 demonstrated that pIL-18 skewed the

PSA-specific immune response toward Th1. More importantly, stronger CD4+ and CD8+ T cell responses developed in the pPSA/pIL-18-immunized mice with faster kinetics (Marshall, Rudnick et al. 2006).

1.6 Oral DNA vaccine

DNA vaccine, though usually injected intramuscularly, can be administered into the animal model orally by bacteria. It has been observed that some of them display preferential replication or preferential accumulation in the tumor microenvironment (Sznol, Lin et al. 2000). In contrast to viruses, the bacteria reside primarily in the extracellular tumor microenvironment and possess certain features that may be advantageous in the treatment of cancer (Kops 1997). Moreover, because of their large genome size, bacteria can readily express multiple therapeutic transgenes, such as cytokines or pro-drug-converting enzymes, and their spread can be controlled with antibiotics if necessary (Sznol, Lin et al. 2000).

Among all, Salmonella typhimurium has been one of the most utilized bacteria to carry therapeutic transgenes. In 1997, Pawelek et al. reported that Salmonella would infect and preferentially accumulate within implanted tumors in mice, achieving tumor/normal tissue ratios of approximately $1,000: 1$ (Pawelek, Low et al. 1997). However, wild-type Salmonella contains certain virulence and toxicity that when administered systemically, it may threaten the safety of the host (Clairmont, Lee et al. 2000). Therefore, to develop a clinical candidate with a high safety profile, a wild-type strain of Salmonella typhimurium was attenuated by partial deletion of the $m s b B$ gene, whose product is responsible for addition of a terminal myristic acid group in the formation of lipid A (Somerville, Cassiano et al. 1999). Lipopolysaccharide derived from these lipid A mutants is markedly diminished in ability to induce TNF- . in vitro in human monocytes and in vivo after administration to mice and pigs (Low, Ittensohn et al. 1999). As an additional safeguard, deletion of the purI gene
(requirement for an external source of purine, e.g., adenine) was engineered into the msbBSalmonella strain as a second attenuating mutation (Low K 1999; Low, Ittensohn et al. 1999; Luo X 1999). The gene modifications do not affect the ability to achieve high tumor/normal tissue ratios in mouse models, and the bacteria maintained their capacity to inhibit the growth of both subcutaneous tumors and lung metastatic diseases (Sznol, Lin et al. 2000).

Other modifications have been reported. For example, the strain used in this study is the attenuated aromatic acid-dependent (aro) Salmonella typhimurium, which has been well characterized as carriers for various heterogeneous antigens (Dougan G. 1986; Fagan, Djordjevic et al. 1997). These vaccine strains are capable of colonizing the gut-associated lymphoid tissues (Peyer's patches) and secondary lymphatic tissues including spleen and liver following oral administration in mice, to elicit mucosal, humoral and cell-mediated immune responses (Hormaeche CE 1995)

1896

1.7 Strategy

1.7.1 The concept of design

Tumor-associated antigens have some disadvantages. First of all, they are usually in low immunogenicity due to their low binding to the MHC class I molecule (Cox, Skipper et al. 1994). Second, they can be toxic or tumorigenic themselves if not properly handled. For example, the E6 and E7 proteins of the HPV bind p53 and Rb , respectively and inactivate them (King 2000). As a result, a full-length TAA is not a practical approach for a therapeutic target. In contrast, a peptide, if used in the vaccine, can reduce the toxicity or tumorigenicity of the TAA. Yet, peptides are supposedly to be less immunogenous because they generate fewer epitopes than an antigen after proteasome degradation. Therefore, an exogenous peptide that is immunogenous is considered in our strategy to enhance the immunity of our animal model.

Viruses are a suitable source of exogenous peptides. Many viruses can elicit strong immunity in humans. For example, severe acute respiratory syndrome coronavirus (SARS coronavirus) has been proved to elicit a cytokine storm, in which IFN- γ, IL-18, TGF- β, IL-6, etc., are elevated significantly (Wong, Lam et al. 2004; Zhang, Li et al. 2004; Huang, Su et al. 2005). However, the immune response should not exceed the threshold, beyond which viral infection will cause great damage to the host. To solve this problem, a fully replicable virus can not be utilized in the experiment.

1.7.2 Strategy

Here, the construction of a fragment of the SARS coronavirus (SARS-CoV) was preceded by a low immunogenous peptide, carcinoembryonic antigen (CEA) on a vector. The selected SARS fragment has been verified to effectively elicit IFN- γ secretion in human (Xu, Ye et al. 2004). The most possible epitope for Balb/c mice within this SARS peptide was calculated by the SYFPEITHI (http:/www.syfpeithi.de/), which is an affinity-predicting website between the MHC molecule and the epitope presented. The higher the score is, the better the affinity predicted by the computer is.

The epitope that has the highest score is modified by point mutation to yield an epitope with even a higher score (m1). Subsequently, the amino acids of this m 1 epitope is further mutated by SYFPEITHI to obtain a much higher score sequence (m2). Finally, a third epitope that has another cumulative point mutation is calculated by the SYFPEITHI (m3), which has the highest score among all.

Each plasmid was designed to transform Salmonella typhimurium to generate an immune response within tumor. The genetically engineered Salmonella may stimulate and activate naïve T cells. After immunization with Salmonella transformed with pAAV-CEA, pAAV-CEA-SARS, pAAV-CEA-m1, pAAV-CEA-m2, and pAAV-CEA-m3, respectively,

CT26 cells producing the peptide CEA (CT26/CEA) were inoculated into mice and tumor sizes were measured. In addition, the immune responses, such as cytotoxic activities and cytokine releases of splenocytes, were analyzed. These results showed that the peptide derived from the SARS virus and fused with the low immunogenous tumor antigen can strengthen the immune activities of the host against tumor cells with CEA peptide production.

Chapter 2 Materials and Methods

2.1 Materials

2.1.1 Primers

Gene	Primer	Sequence ($5^{\prime} \rightarrow 3^{\prime}$)	Tm (${ }^{\circ} \mathrm{C}$)
CEA	P1	TAC GGA ATT CAT GGA GTC TCC CTC	71.6
		GGC CCC TCC CCA CAG ATG GTG CAT CC	
	P2	CCT GGC AGA GGC TCC TGC TCA CAG GTG AAG GGA GGA CAA C	71.5
	P3	CTG GGA GAG GGT GGG AGG AGG GAG CTG GGG TCT CCT GGG T	75.1
	P4	CTC CTC CCA CCC TCT CCC AGG TTG TCE TCC CTT CAC CTG T	71.8
	P5 $\mathrm{P6}$ (GAGCAGGAG CCTCTG CCA GGG GAT GCACCA TCT GTGG GGG A GCT ATC TAG ATC ACA GCC CTG TCC TAC CCA GGA GAC CCC AGC TCC	73.7
	P7	GCTATCTAG ACA GCC CTG TCC TAC CCA GGA GAC CCC AGC TCC	71.0
SARS	P1	TAC GTC TAG AAA AGT CGA GGC GGA	65.7
		GGT ACAAAT TGA CAG GTt Aat tac	
		A	
	P2	GGC AGA CTT CAA AGC CTT CAA ACC TAT GTA ACA CAA CAA C	63.9
	P3	TAA TCA GGA TTA AAT GGC CTT GGT ATG TTT GGC TCG GCT T	65.3
	P4	CAT TGC TGG ACT AAT TGC CAT CGT CAT GGT TAC AAT CTT G	63.7
	P5	GCT AAA GCT TTT AAG TCA TGC AAC AAA GCA AGA TTG TAA CCA TGA CGA	64.1
	P6	TGG CAA TTA GTC CAG CAA TGA AGC CGA GCC AAA CAT ACC A	67.7
	P7	_agG CCA TIT AAT CCT Gat tag ttg	61.7

TTG TGT TAC ATA GGT T			
		TGA AGG CTT TGAAGT CTG CCT GTA ATT AAC CTG TCA ATT T	63.2
B7.1	5'	GTC GAC GCT GAC TTC TCT ACC CCC AA	72.2
	$3 '$	AAG CTT AAG GAA GAC GGT CTG TTC AGC	71.9
CEA w/o leader	5	CTA GTG GTG AAG GGA GGA CAA CCT GGG AGA GGG TGG GAG GAG GGA GCT GGG GTC TCC TGG GTAGGA CAG	75.3
		GGC TGG TCG ACC AGC CCT GTC CTA CCC AGG	
	$3 '$	AGA CCC CAG CTC ССТ ССT CCC ACC CTC TCC CAG GTT GTC CTC CCT TCA CCT	76.5
SARS m1	5 3	TGG CTC GGC TTC ATT ATT GGA TCE AAT AAT GAA GCC GAG CCA	56.6 56.6
SARS m2	5 3	TGGCTC GGC ACC ATt ATT GGA TCC AAT AAT GGT GCC GAG CCA	59.2 59.2
SARS m3	5 3	'TGG CCT TGG TAT GTT CCA CTC GAG TGG AAC ATA CCA AGG CCA	57.1 57.1
IVH3H	5'	AGC TTT GCC CAA AGT ACG TGAAGC AAA ACA CAC TTA AAC TGG CTA CCG GAA TGA GAA ACG TGC CAG AAA AGC AAA CAT AAC TCG AGT TAT GTT TGC TTT TCT GGC ACG TTT CTC ATT CCG GTA GCC AGT tTA AGT GTG TTT TGC TTC ACG TAC TTT GGG CAA	70.9
β-globin intron	5'	ACA GCT CCT GGG CAA CG	58.3
hGH poly(A)	3'	AAG GCT GGT GGG CAC TGG	61.0

2.1.2 Cell lines

CT26 (mouse colon cell, ATCC: CRL-2638)

PT67 (mouse retrovirus-packaging cell line, ATCC: CRL-12284)
Balb/3T3 (mouse embryo fibroblast, ATCC: CCL-163.2)
P338D1 (mouse lymphoblast, ATCC: TIB-39)

2.1.3 Bacterial strains

Escherichia coli Top10 strain: for general cloning (Invitrogen)
Escherichia coli DH5 $\alpha^{\mathrm{TM}}-\mathrm{T} 1$: for site-directed mutagenesis (Invitrogen)
Salmonella typhimurium SL3261 strain: for plasmid uptake (kindly provided by Dr. Wu, Chang-Jer)

2.1.4 Plasmids

plasmid	Description	Source
pAAV-MCS	pCMV promoter for MCS	Stratagene
pAAV-CEA	EcoRI-XbaI fragment, containing the CEA fragment	This study
pAAV-CEA-SARS	EcoRI-HindIII fragment, containing the CEA-SARS fragment Bg .	This study
pAAV-CEA-m1	Modified pAAV-CEA-SARS, with one mutation site	This study
pAAV-CEA-m2	Modified pAAV-CEA-SARS, with two mutation sites	This study
pAAV-CEA-m3	Modified pAAV-CEA-SARS, with three mutation sites	This study
pAAV-B7.1	Modified pAAV, with a B7.1 fragment	Liao's lab
pAAV-CEA-B7.1-IVH3H	EcoRI-XhoI fragment, containing the	This study
pMSCVneo	CEA-B7.1-IVH3H fragment neomycin resistant and containing 5 ' LTR and a viral packaging signal	BD
pMSCVneo-CEA	EcoRI-XhoI fragment, containing the CEA fragment	This study

2.1.5 Chemicals, Enzymes, and reagents

Chemical	Source	Catalog number	Application
100bp DNA ladder	Protech	M1-100T	DNA electrophoresis
1 kb DNA ladder	Protech	M1-1KB	DNA electrophoresis
3,3'-dioctadecyloxacarbocyanine (DIOC18)	SIGMA	D-4292	Cell staining
Agarose	MDBio	929049	DNA electrophoresis
Ampicillin	AMRESCO	0339	Bacterial culture
DMSO		196055	Buffer
EDTA		ER-0531	Cell passage
EtBr	AMRESCO	3434B14	DNA staining
Ethanol	SIGMA	E7023	DNA extraction
Fetal Bovine Serum	Biological industries	04-001-1A	Cell culture
HCl	Scharlau	AC0741	Buffer
Incomplete Freund's adjuvant	SIGMA	F-5506	Immunization
Isopropanol	C-Echo	PH-3101	DNA extraction
Kanamycin	MDBio	226039	Antibiotics
LB agar	AMRESCO	J637	Bacterial culture
LB broth	Scharlau	02-385	Bacterial culture
Lipofectamine 2000	Invitrogen	11668-019	Transfection

MEM	GIBCO	41500-034	Cell culture medium
NaCl	AMRESCO	0241	Buffer
NaHCO 3	MP	194847	Additional ingredient to cell culture medium
NaOH	Showa	1943-0150	Buffer
Pfu polymerase	MDBio	826049	PCR
Propium iodide (PI)	SIGMA	P4170	Cell live/dead staining
PSA	Biological Industries	$03-033-1 \mathrm{~B}$	Cell culture
RPMI	GIBCO	$31800-022$	Cell culture medium
Taq polymerase	Biokit	Bio Taq	PCR
Taq DNA polymerase XL	Protech	P6a	PCR
Trypan blue stain	GIBCO	0759	Cell staining
Trypsin	GIBCO	27250-018	Cell passage
Tween 20	MP	194724	ELISA

2.1.6 Antibodies

Antibodies	Source	Catalog number
Goat anti-mouse B7.1	R\&D	AF740
Goat anti-mouse HRP	SIGMA	A0412
Goat anti-mouse FITC	Jackson ImmunoResearch	$115-095-003$

Mouse anti-mouse CEA	This study	N/A

2.1.7 Kits

Kit	Source	Catalog number	Application
Gene-Spin ${ }^{\text {TM }} 1-4-3$ DNA extraction kit Gene-Spin${ }^{\text {TM }}$ Miniprep	Protech	PT-DNA143XL-V2	DNA extraction,
clean-up			

2.1.8 Buffers

- 1X ACK lysis buffer
$0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}, 1.0 \mathrm{mM} \mathrm{KHCO} 3,0.1 \mathrm{mM} \mathrm{Na} 2$ EDTA in dd $\mathrm{H}_{2} \mathrm{O}$
- 1X PBS (pH 7.4)
$137 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 2.7 \mathrm{mM} \mathrm{KCl}, 1.8 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$
- 2% Blocking buffer

1 g nonfat powdered milk dissolved in 50 ml 1 X PBS buffer

- 50X TAE buffer
48.4 g Tris base, 0.5 M EDTA (pH 8.0) $20 \mathrm{ml}, 11.42 \mathrm{ml}$ acetic acid. dd $\mathrm{H}_{2} \mathrm{O}$ was added to 200 ml .
- EDTA-trysin
2.5g trypsin, 0.1 M EDTA (pH 8.0) in 1L 1X PBS, $\mathrm{pH} 7.4,0.2 \mu \mathrm{~m}$ filtered
- Reagent Diluent
1% BSA in PBS, $\mathrm{pH} 7.2-7.4,0.2 \mu \mathrm{~m}$ filtered
- Staining buffer
$1 \% \mathrm{BSA}, 0.05 \% \mathrm{NaN}_{3}$ in 1 x PBS
- Stop solution (for ELISA)

1 NHCl

- PBST
0.5% Tween 20 in 1x PBS
- Versene
0.2 g EDTA in 1L 1 X PBS
- Wash buffer
0.05\% Tween 20 in PBS, pH7.2-7.4

2.1.9 Media

- LB (Luria-Bertani) broth
1% tryptone, 0.5% yeast extract, $1 \% \mathrm{NaCl}$
- LB (Luria-Bertani)/Ampicillin broth
1% tryptone, 0.5% yeast extract, $1 \% \mathrm{NaCl}, 50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin
- LB (Luria-Bertani)/Ampicillin agar
1% tryptone, 0.5% yeast extract, $1 \% \mathrm{NaCl}, 1.5 \%$ agar, $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin
- DMEM medium

10\% FBS, 1\% PSA in Dulbecco's Modified Eagle's Medium

- RPMI 1640 medium
$10 \% \mathrm{FBS}, 1 \% \mathrm{PSA}, 2 \mathrm{~g} \mathrm{NaHCO}_{3}$ in 1L RPMI Medium 1640
- Opti-MEM I Medium

Medium without serum

2.1.10 Equipment

$-20^{\circ} \mathrm{C}$ low temperature refrigerator (Frigidaire)
$4^{\circ} \mathrm{C}$ refrigerator (MINI KINGCON)
$-80^{\circ} \mathrm{C}$ low temperature refrigerator (NUAIRE)
Bench top orbital shaker 060 (LMS)
Biophotometer DPU-414 (eppendorf)
Bright-line chamber (Marienfeld)
Centrifuge 5415D (eppendorf)
Centrifuge 5804 R (eppendorf)
DNA electrophoresis unit Gel Mate 2000 (Toyobo)
Dot-blot machine (Bio-East)
Flow cytometer, FACSarray (BD)
Flow cytometer, FACScan (BD)

Heating block (FIRSTEK)
Inverted research microscope, IX71 (Olympus)
Laminar flow hood, Forma Class II, A 1284 (NSF)
Microplate reader, Sunrise (Tecan)
Microscope, CX31 (Olympus)
Orbital Shaking incubator OS1500R (TKS)
pH meter SP701 (Suntex)
Thermal cycler (eppendorf)
Uni-photo gel image system (EZ lab)
Water bath (FIRSTECK)

2.2 Methods

2.2.1 Computer prediction

The most probable epitope within the CEA-SARS sequence was calculated by the Internet software, SYFPEITHI (http://www.syfpeithi.de/). The sequence was pasted in the required box, and $\mathrm{H} 2-\mathrm{Kd}$ was selected as the MHC type. The number of amino acids of the epitope was set to nonamers (9 aa).

According to the description on the website, a reliability of at least 80% in retrieving the most apt epitope can be expected. Thus the naturally presented epitope should be among the top-scoring 2% of all peptides predicted in 80% of all predictions (http://www.syfpeithi.de/). The sequence that had the highest score was chosen to be our mutation template. To yield a mutated sequence, each amino acid of the template was replaced until another sequence had a highest score among all the changed sequences. It was named m1. Next, the amino acids within this new sequence was changed until another sequence with the highest score was
attained, which was named m2. The same approach was applied so that three cumulative mutations were generated in the m 3 sequence.

2.2.2 PCR reaction

2.2.2.1 CEA synthesis

Because the antisense sequences overlap with the sense sequences for 20 bp in the designed primers, they will base pair with each other. Therefore, the whole CEA sequence can be constructed in the polymerase chain reaction (PCR) by DNA polymerase.

Figure 1. The scheme of CEA and SARS synthesis.

The CEA P1~P6 primers and the CEA P1~P5, P7 were added into a 0.2 ml tube, respectively, each taken 1μ. The concentration of the first and the last primers in the sequence was $10 \mu \mathrm{M}$ (P1, P6, P7) while the rest was $1 \mu \mathrm{M} . \quad 5 \mu \mathrm{l}$ Taq buffer, $4 \mu \mathrm{l} 10 \mathrm{nmol} / \mathrm{ml}$ dNTP, $0.5 \mu \mathrm{l}$ Pro Taq, and $34.5 \mu 1$ dd $\mathrm{H}_{2} \mathrm{O}$ were added. The reaction cycle is: $94^{\circ} \mathrm{C}$ for 30 $\mathrm{sec}, 50^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 20 sec for 2 cycles, $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 20 sec for 34 cycles, $72^{\circ} \mathrm{C}$ for 5 min to complete the reaction.

2.2.2.2 SARS synthesis

The SARS P1~P8 primers were added into a 0.2 ml tube, each taken 1μ. The concentration of the first and the last primers in the sequence was $10 \mu \mathrm{M}(\mathrm{P} 1, \mathrm{P} 8)$ while the rest was $1 \mu \mathrm{M} . \quad 5 \mu \mathrm{l}$ Taq buffer, $4 \mu \mathrm{l} 10 \mathrm{nmol} / \mathrm{ml}$ dNTP, $0.5 \mu \mathrm{l}$ Pro Taq, and $34.5 \mu \mathrm{ldd} \mathrm{H}_{2} \mathrm{O}$ were added. The reaction cycle is: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 20 sec for 2 cycles, $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 65^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 20 sec for 33 cycles, $72^{\circ} \mathrm{C}$ for 5 min
to complete the reaction.

2.2.2.3 SARS mutation

The ml plasmid was mutated by Gene Tailor ${ }^{\mathrm{TM}}$ Site-Direted Mutagenesis System (Invitrogen, USA). The site-directed mutation has been designed on the primer beforehand. Original plasmid DNA is methylated before PCR so that it can be distinguished from the PCR product. After transformation into $\mathrm{DH} 5 \alpha^{\mathrm{TM}}-\mathrm{T} 1$ competent cells, McrBC endonuclease in the host cell digests the methylated template DNA, leaving only unmethylated, mutated product.

100 ng plasmid DNA, $1.6 \mu \mathrm{l}$ methylation buffer, $1.6 \mu \mathrm{l}$ 10X SAM, $1.0 \mu \mathrm{l}$ DNA methylase ($4 \mathrm{U} / \mu \mathrm{l}$) were added into a 0.2 ml tube, sterile, distilled water was added to make the total volume 16μ. These reagents were incubated at $37^{\circ} \mathrm{C}$ for 1 hr . Then, $2 \mu \mathrm{l}$ methylated DNA, $5 \mu \mathrm{l}$ 10X PCR buffer, $1.5 \mu \mathrm{l} 10 \mathrm{mM}$ dNTP', $1.5 \mu \mathrm{l}$ SARS m1 5 ' and 3' primers ($10 \mu \mathrm{M}$ each), and $0.5 \mu \mathrm{~T}$ TaqXL (Protech, Taipei, Taiwan) were added into a 0.2 ml tube. The PCR condition is as the following: $94^{\circ} \mathrm{C}$ for $2 \min , 94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 53^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 10 \min (the last three steps were run for 24 cycles), and $68^{\circ} \mathrm{C}$ for 10 min to finish the unfinished reaction.

The m 2 and m 3 plasmids were constructed by the following methods. The original CEA-SARS sequence was run twice to create two segments in which mutation sequence was designed in the primers. Then, these two segments served as the template for a second run of PCR, in which the very beginning and the end of the original CEA-SARS primers were added. After the construct of $\mathrm{m} 2, \mathrm{~m} 3$ was created by the m 2 template by the same process.

SARS 3^{\prime}

CEA 5,

Figure 2. The scheme of m2, m3 plasmid construction.

The m 1 plasmid serves as the template for m 2 PCR. $5 \mu \mathrm{l}$ template $(\sim 4.0 \mu \mathrm{~g} / \mathrm{ml}), 5 \mu \mathrm{l}$ 10X buffer, $4 \mu \mathrm{l} 10 \mathrm{mM}$ dNTP, $0.5 \mu \mathrm{l}$ Pfu were added into a 0.2 ml tube. $1 \mu \mathrm{l}$ CEA P1 and SARS m2 3' primers were added for the CEA+front SARS PCR while 1μ SARS P8 and SARS m2 5' primers were added for the rear SARS PCR. To make the total volume be 50μ, an appropriate amount of $\mathrm{dd}_{\mathrm{H}_{2} \mathrm{O}}$ was added. The PCR condition for the CEA+front SARS sequence is as the following: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 30 sec (the last three steps were run for 34 cycles), $72^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 5 min . The PCR condition for the rear SARS sequence is: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 53^{\circ} \mathrm{C}$ for 30 sec (the last three steps were run for 34 cycles), $72^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 5 min .

To combine the CEA+front SARS and the rear SARS sequences, 1μ each PCR product was added, along with $5 \mu \mathrm{l} 10 \mathrm{X}$ buffer, $4 \mu \mathrm{dNTP}, 0.5 \mu \mathrm{l}$ Pu, and $1 \mu \mathrm{l}$ CEA P1 and SARS P8. The PCR condition is: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 57^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min . This step was run for 3 cycles. The annealing temperature was set at $57^{\circ} \mathrm{C}$ for the annealing of the PCR products. Then, the next round of PCR condition is: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 50^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min . This step was run for 34 cycles. The annealing temperature was set at $50^{\circ} \mathrm{C}$ for the annealing of the primers onto the templates.

The m 2 plasmid serves as the template for m 3 PCR. $3 \mu \mathrm{l}$ template $(\sim 4.5 \mu \mathrm{~g} / \mathrm{ml}), 5 \mu \mathrm{l} 10 \mathrm{X}$ buffer, $4 \mu \mathrm{l} 10 \mathrm{mM} \mathrm{dNTP}, 0.5 \mu \mathrm{l}$ Pfu were added into a 0.2 ml tube. $1 \mu \mathrm{l}$ CEA P1 and SARS m3 3' primers were added for the CEA+front SARS PCR while 1μ I SARS P8 and SARS m3 5' primers were added for the rear SARS PCR. To make the total volume be $50 \mu \mathrm{l}$, an appropriate amount of dd $\mathrm{H}_{2} \mathrm{O}$ was added. The PCR condition for the CEA+front SARS sequence is as the following: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 52^{\circ} \mathrm{C}$ for 30 sec (the last three steps were run for 34 cycles), $72^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 5 min . The PCR condition for the rear SARS sequence is: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 48^{\circ} \mathrm{C}$ for 30 sec (the last three steps were run for 34 cycles), $72^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 5 min .

To combine the CEA+front SARS and the rear SARS sequences, 1μ each PCR product
was added, along with $5 \mu \mathrm{l} 10 \mathrm{X}$ buffer, $4 \mu \mathrm{lNTP}, 0.5 \mu \mathrm{l}$ Pu, and $1 \mu \mathrm{l}$ CEA P1 and SARS P8. The PCR condition is: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 58^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min . This step was run for 3 cycles. The annealing temperature was set at $58^{\circ} \mathrm{C}$ for the annealing of the PCR products. Then, the next round of PCR condition is: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 50^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min . This step was run for 34 cycles. The annealing temperature was set at $50^{\circ} \mathrm{C}$ for the annealing of the primers onto the templates.

2.2.3 Plasmid construction

2.2.3.1 Restriction enzyme digestion

$0.5 \mu \mathrm{~g} \sim 1 \mu \mathrm{~g}$ DNA was dissolved in an appropriate volume of water and was digested with restriction enzymes (following the commercial protocol). Generally, $1 \mu \mathrm{~g}$ DNA was digested with 5 unit of restriction enzyme in a $10 \mu 1$ reaction at $37^{\circ} \mathrm{C}$ overnight.

2.2.3.2 DNA extraction

 1896The DNA digested by restriction enzyme was cleaned up by Gene-Spin ${ }^{\text {TM }}$ 1-4-3 DNA extraction kit (Protech), following the commercial protocol.

The DNA solution was spun at $13,000 \mathrm{rpm}$ for 30 sec in the spin column. The filtrate in the collection tube was discarded. $700 \mu \mathrm{l}$ Washing solution (Protech Co., Taipei, Taiwan) was added and the solution was spun for 1 min at $13,000 \mathrm{rpm}$. This step was repeated twice. Then, the filtrate was discarded by centrifugation at $13,000 \mathrm{rpm}$ for 3 min to remove residual trace of ethanol. The column was additionally incubated at $65^{\circ} \mathrm{C}$ for 5 min to evaporate ethanol. DNA was eluted by $30-50 \mu \mathrm{ld} \mathrm{H}_{2} \mathrm{O}$ in a new tube.

2.2.3.3 Ligation

Generally, the concentration ratio of the vector and the insert was 1:3. The concentration of the insert and the vector was measured by a photometer. $1 \mu \mathrm{l} 10 \mathrm{mM} \mathrm{ATP}, 1 \mu \mathrm{l} 4$ ligase,
$1 \mu \mathrm{l} 10 \mathrm{X}$ ligation buffer, and an appropriate volume of dd $\mathrm{H}_{2} \mathrm{O}$ were added into a $500 \mu \mathrm{l}$ tube to 10μ l. The mixture was incubated at $16^{\circ} \mathrm{C}$ overnight.

2.2.4 Transformation of E. coli

2.2.4.1 Preparation of competent cells

One pick of E. coli was inoculated in 3 ml of LB broth and grew for 12 hr at $37^{\circ} \mathrm{C}$ with vigorous shaking ($\sim 225 \mathrm{rpm}$). One ml of the overnight culture was transferred into 100 ml LB broth and was then incubated at $37^{\circ} \mathrm{C}$ with shaking ($\sim 225 \mathrm{rpm}$) until the OD_{600} was between $0.35 \sim 0.45$. The culture was set on ice for 10 min . The cells were recovered by centrifugation at $4,100 \mathrm{rpm}$ for 10 min and then resuspended in 30 ml ice-cold $0.1 \mathrm{M} \mathrm{CaCl}{ }_{2}$. The cells were pelleted by centrifugation at $4,100 \mathrm{rpm}$ for 10 min at $4^{\circ} \mathrm{C}$. The pellet was resuspended in 2 ml $0.1 \mathrm{M} \mathrm{CaCl}_{2}$ (containing 10% glycerol). The cells were dispensed at $100 \mu \mathrm{l}$ per eppendorf tube and then were stored at $-80^{\circ} \mathrm{C}$.

Stored competent cells were thawed on ice. $1 \mu 1 \sim 2 \mu 1$ of plasmid DNA was mixed with $100 \mu \mathrm{l}$ competent cells and was then stored on ice for 30 min . The mixture was incubated in a preheated $42^{\circ} \mathrm{C}$ heating block for 90 sec and quickly thawed on ice for 2 min . Then $250 \mu \mathrm{l}$ of LB broth was added to the cells. The culture was incubated at $37^{\circ} \mathrm{C}$ with shaking ($\sim 225 \mathrm{rpm}$) for $50 \mathrm{~min} .100 \mu \mathrm{l}$ of the culture was plated on the LB agar plate with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin. The plate was inverted and then incubated at $37^{\circ} \mathrm{C}$ for $12 \sim 18 \mathrm{hr}$.

2.2.5 Plasmid DNA extraction

2.2.5.1 Minipreparation

Plasmid DNA in E. coli was extracted with Gene-Spin ${ }^{\mathrm{TM}}$ Miniprep Purification Kit (Protech). The procedure is as the following:

A single colony of E. coli was inoculated in 3 ml of LB broth (with antibiotics) and grew overnight at $37^{\circ} \mathrm{C}$ with vigorous shaking ($\sim 225 \mathrm{rpm}$). One to two ml of the cells were recovered by centrifugation at $13,000 \mathrm{rpm}$ for 1 min and then resuspended in 200μ l Solution I buffer (Protech Co., Taipei, Taiwan) in a new tube. $200 \mu \mathrm{l}$ Solution II buffer (Protech Co., Taipei, Taiwan) was added and mixed gently. 200μ l Solution III buffer (Protech Co., Taipei, Taiwan) was added to the mixture and mixed gently again. Cells were spun at $13,000 \mathrm{rpm}$ for 5 min at $4^{\circ} \mathrm{C}$. The lysate was transferred to the Mini spin column. The solution was centrifuged at $13,000 \mathrm{rpm}$ for 30 sec . The filtrate in the collection tube was discarded. $700 \mu \mathrm{l}$ of Washing Solution (Protech Co., Taipei, Taiwan) was added in. The solution was spun at $13,000 \mathrm{rpm}$ for 1 min . This step was repeated once again. After the filtrate was discarded, the column was centrifuged at $13,000 \mathrm{rpm}$ for 3 min and incubated at $65^{\circ} \mathrm{C}$ for 5 min to remove residual trace of ethanol. DNA was eluted by $30-50, \mu \mathrm{ldd} \mathrm{H}_{2} \mathrm{O}$ and centrifuged at $13,000 \mathrm{rpm}$ for 1 min . Plasmid DNA was stored at $-20^{\circ} \mathrm{C}$.

1896

2.2.5.2 Midipreparation

One ml of precultured E. coli was added into 100 ml LB broth (with antibiotics) and incubated at $37^{\circ} \mathrm{C}$ with shaking ($\sim 225 \mathrm{rpm}$) for $12-16 \mathrm{hr}$. The broth was centrifuged at 8,000 rpm at $4^{\circ} \mathrm{C}$ for 15 min . After supernatant was discarded, 4 ml Buffer S1 (Macherey-Nagel, Inc., Duren, Germany) was added and the solution was vortexed to dispense the pellet. Then 4 ml of Buffer S2 (Macherey-Nagel, Inc., Duren, Germany) was added. The lysate was mixed gently by inverting the tube $6 \sim 8$ times and incubated at room temperature for $2 \sim 3 \mathrm{~min}$. The solution was mixed with the 4 ml pre-cooled Buffer S3 (Macherey-Nagel, Inc., Duren, Germany) and inverted gently $6 \sim 8$ times until a homogeneous suspension containing an off-white flocculate was formed. The suspension was incubated on ice for 5 min . A NucleoBond AX 100 column was equilibrated with 2.5 ml Buffer N2 (Macherey-Nagel, Inc., Duren, Germany). The flow-through was emptied by gravity flow and discarded. The
bacterial lysate was cleared by centrifugation at $12,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$. The lysate was then loaded onto the NuceloBond column, which was emptied by gravity flow. Ten ml of Buffer S3 (Macherey-Nagel, Inc., Duren, Germany) was added to wash the column. This step was repeated once again. Plasmid DNA was eluted with 5 ml of Buffer N5 (Macherey-Nagel, Inc., Duren, Germany). Then 3.5 ml isopropanol was added to precipitate the eluted plasmid DNA. The mixture was incubated on ice for 10 min and centrifuged at $13,000 \mathrm{rpm}$ for 30 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded. One $\mathrm{ml} \mathrm{70} \mathrm{\%}$ ethanol was added to the pellet and stored at $-20^{\circ} \mathrm{C}$ or the solution was centrifuged at $13,000 \mathrm{rpm}$ for 5 min for further application. Last, the pellet was redissolved in $20 \mu \mathrm{ld} \mathrm{H}_{2} \mathrm{O}$.

2.2.6 Cell culture

2.2.6.1 Balb/3T3

Balb/3T3 was cultured in DMEM (Sigma-Aldrieh, St. Louis, USA) supplemented with $10 \% \mathrm{FBS}$ and 1% PSA. Cells were incubated in tissue culture incubator with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

2.2.6.2 PT67

PT67 was cultured in DMEM (Sigma-Aldrich, St. Louis, USA) supplemented with 10\% FBS and 1% PSA. Cells were incubated in tissue culture incubator with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

2.2.6.3 CT26

CT26 was cultured in RPMI 1640 (Invitrogen Co., USA) supplemented with 10\% FBS, $0.2 \% \mathrm{NaHCO}_{3}$ and 1% PSA. Cells were incubated in tissue culture incubator with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.
2.2.6.4 P338D1

P338D1 was cultured in RPMI 1640 (Invitrogen Co., USA) supplemented with 10% FBS,
$0.2 \% \mathrm{NaHCO}_{3}$ and 1% PSA. Cells were incubated in tissue culture incubator with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

2.2.7 Transfection of mammalian cells

2.2.7.1 Seeding cells

The medium in the 75 T flask (Corning, NY, USA) was discarded. Three ml of EDTA-trypsin was added and the flask was incubated at room temperature for 5 min or until cells were detached. 5 ml of medium was added to dilute EDTA-trypsin. The solution was centrifuged at $1,500 \mathrm{rpm}$ for 5 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded. Cells were resuspended in 2 ml medium. Certain amount of cells was stained by Trypan blue and calculated by a bright-line chamber (Marienfeld, Germany). 2.5×10^{5} cells were seeded in each well of a 6 -well plate (Corning, NY, USA). Three ml of medium was added and the cells were maintained in the incubator with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$ for 24 hr for further transfection.

1896

2.2.7.2 Lipofectamine $^{\mathrm{TM}} 2000$ transfection

Cells were transfected with different plasmid DNA by Lipofectamine ${ }^{\text {TM }} 2000$ (Invitrogen, USA). The transfection procedure was as following.

DNA was diluted in 250μ l Opti-MEM I Medium (GIBCO, USA) and mixed gently. 10 $\mu 1$ of Lipofectamine ${ }^{\mathrm{TM}} 2000$ was gently mixed with 250μ l Opti-MEM I medium and incubated for 5 min at room temperature. The diluted DNA was combined with the diluted Lipofectamine ${ }^{\mathrm{TM}} 2000$ for 20 min at room temperature. The medium in the cells were discarded and cells were gently washed with Opti-MEM I medium twice. The 500μ DNALipofectamine ${ }^{\mathrm{TM}} 2000$ mixture was added to $80-90 \%$ confluent cells. 500μ of Opti-MEM I medium was added into each well gently and the cells were incubated at $37^{\circ} \mathrm{C}$ in a CO_{2} incubator for 12 hr . Two ml of growth medium (DMEM or RPMI) was added into each well and cells were incubated at $37^{\circ} \mathrm{C}$ in a CO_{2} incubator for 24-48 hr prior to the following assay.

2.2.8 Infection of mammalian cells

CT26 was plated 12-18 hr before infection in a 6 -well plate at the cell density of 1×10^{5} per well. DMEM from packaging cells, PT67, was collected. Equal amount of RPMI 1640 medium was added and the mixture was filtered through a $0.45-\mu \mathrm{m}$ cellulose acetate or polysulfonic (low protein binding) filter. Three ml of the mixed medium was added into CT26, which was then incubated in a CO_{2} incubator for 24 hr . New DMEM was added into PT67 and collected 24 hr later by the same procedure. Then it was added into CT26 to replace the mixed medium. Infection was carried out four times within 4 days.

2.2.9 Dot-blotting

2.2.9.1 Preparation of the CEA antibody

The pAAV-CEA-B7.1-IVH3H plasmid was constructed beforehand. It was transfected into $\mathrm{Balb} / 3 \mathrm{~T} 3$ by the transfection protocol described above. 48 hr later, cells were harvested and centrifuged at $1,500 \mathrm{rpm}$ for 5 min . The supernatant was discarded and $600 \mu 1 \mathrm{x}$ PBS was added to resuspend the cells. $600 \mu \mathrm{l}$ of incomplete Freund's adjuvant (SIGMA, USA) was added to emulsify the mixture. Each mouse received $200 \mu \mathrm{l}$ of the emulsified mixture. Blood was collected one week later and sera was collected by centrifugation at $4,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 30 min. The inoculation of plasmid was carried out once a week for a month. Every transfectant had been examined by cytometer for the existence of the construct.

2.2.9.2 Confirmation of the CEA antibody

To test whether the sera contained the CEA antibody, Balb/3T3 cells were first transfected with pAAV-CEA-B7.1-IVH3H by the transfection protocol described above. 48 hr later, medium was discarded. 1 ml of versene was added and cells were incubated at $37^{\circ} \mathrm{C}$ for 5 min .1 ml DMEM was added to harvest the transfectants. The cells was recovered by
centrifugation at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min . The supernatant was discarded. 5 ml of staining buffer was added to gently suspend the cells. Sera were added as the $1^{\text {st }}$ antibody and the mixture was incubated on ice for 1 hr . The pellet was collected by centrifugation at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min . The supernatant was discarded and washed with 1 ml staining buffer twice. Then, $2^{\text {nd }}$ antibody was added into the cell solution and the cells were incubated in dark on ice for 30 min . The mixture was washed with 1 ml staining buffer and centrifuged at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min . This step was repeated once. Finally, the cells were resuspended in 1 ml staining buffer and filtered by a mesh before further analysis by cytometer.

2.2.9.3 Dot-blotting

The supernatant of the infected CT26 was collected in a 1 ml tube. Cells were recovered by centrifugation at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min and resuspended in 100 ml PBS . Cells were then lysed by repeated freeze-thaw cycles. Both kinds of samples (the supernatant and the lysed cells) were applied onto the nitrocellulose (NC) paper, which was prewetted with 1 x PBS buffer on a dot-blot machine (Bio-East, Taiwan). Samples were vacuumed gently for 30 min. The NC paper was blocked by 2% blocking buffer for 30 min and washed with PBST three times ($5 \mathrm{~min}, 10 \mathrm{~min}$, and 10 min) at room temperature. The sera containing the CEA antibody were diluted 1000 X in staining buffer and applied onto the NC paper gently at room temperature for 1 hr with shaking. The mixture was then discarded. The NC paper was washed with PBST three times ($5 \mathrm{~min}, 10 \mathrm{~min}$, and 10 min) at room temperature. The $2^{\text {nd }}$ antibody conjugated with HRP was diluted 1000 X in staining buffer and applied on the NC paper for 30 min in dark with shaking. Then, the mixture was discarded. The NC paper was washed with PBST three times ($5 \mathrm{~min}, 10 \mathrm{~min}$, and 10 min) at room temperature. The substrate was applied onto the NC paper for 5 min in dark. The NC paper was covered in the lead blocker (Okamoto, Japan) with the film for 25 min . Then, the film was developed in the developer for 1 min . The film was washed in water before it was stained in the fixer for 1
min.

2.2.10 Transformation of Salmonella typhimurium

2.2.10.1 Preparation of competent cells

A colony of Salmonella typhimurium was inoculated in 25 ml of LB and grew for 20 hr at $37^{\circ} \mathrm{C}$ with vigorous shaking ($\sim 225 \mathrm{rpm}$). The overnight culture was transferred into 500 ml SOB containing $2 \mathrm{M} \mathrm{MgCl}_{2}$ and was then incubated at $37^{\circ} \mathrm{C}$ with shaking ($\sim 225 \mathrm{rpm}$) until the OD_{600} was between $0.35 \sim 0.4$. The cells were recovered by centrifugation at $2,500 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$ and the supernatant was discarded. An appropriate amount of $\mathrm{dd}_{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}$ was added to resuspend cells. This step was repeated twice. The pellet was resuspended in 1 ml dd $\mathrm{H}_{2} \mathrm{O}$ with 10% glycerol. The cells were dispensed at $20 \mu \mathrm{l}$ per eppendorf tube and then were stored at $-80^{\circ} \mathrm{C}$.

2.2.10.2 Transformation

Stored competent cells were thawed on ice. $1 \mu 1$ of plasmid DNA was mixed with $20 \mu \mathrm{l}$ competent cells and transferred into a pre-cooled cuvette. Cells was then electroporated at 2.5 $\mathrm{mF}, 2.5 \mathrm{kV}$, and 200Ω for $4 \sim 5 \mathrm{msec}$. The mixture was immediately recovered in 1 ml LB , transferred to a test tube, and incubated at $37^{\circ} \mathrm{C}$ with agitation ($\sim 225 \mathrm{rpm}$) for $1 \mathrm{hr} .100 \mu \mathrm{l}$ of the culture was plated on the LB agar plate with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin. The plate was inverted and then incubated at $37^{\circ} \mathrm{C}$ for $12 \sim 18 \mathrm{hr}$.

2.2.11 P338D1 incubation with transformed Salmonella typhimurium

2.5×10^{8} Salmonella typhimurium transformed with pAAV-hrGFP were incubated with 5 x 10^{6} P338D1 seeded in the $10-\mathrm{cm}$ dish for 2 hr in the 5 ml DMEM medium without PSA. Then, 5 ml of DMEM medium supplemented with $30 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin was added to kill the remaining bacteria in the medium. The mixture was incubated at $37^{\circ} \mathrm{C}$ in a CO_{2} incubator for

48 hr . It was then analyzed by cytometry.

2.2.12 Killing assay

2.2.12.1 Animal immunization

Six- to eight-week old female Balb/c mice were purchased from the National Laboratory Center and housed in a temperature- and light-controlled room (12L:12D) at the Animal Maintenance Facility of National Chiao Tung University. Mice were immunized with 1×10^{8} attenuated Salmonella typhimurium (in $20 \mu \mathrm{PBS}$), which had been transformed into different vectors (pAAV-CEA, pAAV-CEA-SARS, pAAV-m1, pAAV-m2, pAAV-m3) three times in two weeks. The negative group was fed with $20 \mu \mathrm{l}$ PBS alone.

2.2.12.2 Splenocyte isolation

Mice were sacrificed by dislocation and their spleens were quickly harvested in a laminar flow hood. Spleens were placed in a $280 \mu \mathrm{~m}$-pored mesh and chopped by scissors. 10 ml of DMEM was slowly added onto the mesh while spleens were being ground until the spleen tissue became white. Single cell suspension was collected in a Petri dish and recovered by centrifugation at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min . Supernatant was discarded and 5 ml 1 X ACK lysis buffer was added for 5 min at room temperature. 1 X ACK buffer can lyse the red blood cells while leaving the rest of the lymphocytes and leucocytes. The mixture was then diluted by 10 ml of DMEM and cells were recovered by centrifugation at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 10 min . After the supernatant was discarded, the cells were rinsed by 10 ml DMEM once more. Finally, cells were resuspended in DMEM and underwent cell calculation by trypan blue exclusion. For the $100: 1$ killing ratio, cells were plated in a 24 -well plate at 5×10^{6} per well. For the $50: 1$ killing ratio, cells were plated in a 24 -well plate at 2.5×10^{6} per well. For the 25:1 killing ratio, cells were plated in a 24 -well plate at 1.25×10^{6} per well.

2.2.12.3 Target cell staining

Target cells, including CT26/CEA, CT26, and YAC-1, were passaged by EDTA-trypsin and the cell number was determined by trypan blue exclusion. 3×10^{6} cells were suspended in RPMI 1640 and $30 \mu \mathrm{l}$ 3,3'-dioctadecyloxacarbocyanine (DIOC18) (Sigma, MO,USA) was added for YAC-1, and $15 \mu \mathrm{l}$ DIOC18 for CT26/CEA and CT26, respectively. Cells were then incubated at $37^{\circ} \mathrm{C}$ in a CO_{2} incubator for 16 hr . Before the killing assay, target cells were rinsed twice at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min . Then, the cell number was determined by trypan blue exclusion and seeded at 5×10^{5} per well in a 24 -well plate.

2.2.12.4 The killing assay

Splenocytes and target cells were mixed at different ratios (Effector/Target ratio, E/T ratio $=100 / 1,50 / 1,25 / 1,12.5 / 1$) in a 24 -well plate. Then, cells were centrifuged at $1,500 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 5 min and were incubated at $37^{\circ} \mathrm{C}^{\circ}$ in a CO_{2} incubator for $4 \mathrm{hr} .500 \mu \mathrm{~g} / \mathrm{ml}$ propium iodide (Sigma, MO, USA) was added at 1110 of the total volume. The cells were processed by FACScan flow cytometer (BD, NJ, USA) and analyzed by CellQuest softeware.

2.2.13 The cytokine profile assay

2.2.13.1 The in vitro cytokine assay

The sera were analysed by ELISA kits, detecting IL-2, IL-12, IL-4, IL-10, IFN- γ, and TNF- α, by the commercial protocol as provided below:

The Capture Antibody (R\&D, MN, USA) was diluted to the working concentration in PBS without carrier protein and coated immediately on a 96 -well microplate (Disposable non-sterile assay plate. Corning, NY, USA) at $100 \mu \mathrm{l}$ per well. The plate was sealed and incubated overnight at room temperature. Each well was aspirated and washed with $400 \mu \mathrm{l}$ Wash Buffer (R\&D, MN, USA) by a squirt bottle, manifold dispenser or autowasher. This step was repeated twice for a total of three washes. Plates were blocked by adding $300 \mu \mathrm{l}$ of

Reagent Diluent (R\&D, MN, USA) to each well and they were incubated at room temperature for 1 hr . The aspiration/wash step was repeated before sample addition. $100 \mu \mathrm{l}$ samples or standard in Reagent Diluent were added. The plate was incubated at room temperature for 2 hr . The aspiration/wash step was repeated. $100 \mu \mathrm{l}$ of the Detection Antibody (R\&D, MN, USA) diluted in Reagent Diluent was added to each well. The plate was incubated at room temperature for 2 hr . The aspiration/wash step was repeated. $100 \mu \mathrm{l}$ of the working dilution of Streptavidin-HRP was added to each well. The plate was incubated for 20 min at room temperature. The aspiration/wash step was repeated. $100 \mu \mathrm{l}$ of Substrate Solution (R\&D, MN, USA) was added to each well, and the plate was incubated for 20 min at room temperature. 50 $\mu \mathrm{l}$ of stop solution was added to each well and the plate was gently tapped to ensure thorough mixing. The optical density was determined by a microplate reader (Tecan) set to 450 nm and the data were analysed by Magellan5 software.

2.2.13.2 The in vivo cytokine assay 1896

Mouse Th1/Th2 cytokine standards were reconstituted in Assay Diluent (BD, NJ, USA) for 15 min . Standards were serially diluted using the Assay Diluent. $10 \mu \mathrm{l}$ of each mouse cytokine Capture Bead Suspension (BD, NJ, USA), including IL-2, IL-4, IL-5, IFN- γ, TNF- α, was mixed for one test. $50 \mu 1$ of mixed beads was transferred to each assay tube. $50 \mu 1 /$ tube Standard Dilutions (BD, NJ, USA) and $25 \mu \mathrm{l} /$ tube samples were added into the appropriate tubes. $50 \mu 1 /$ test PE Detection Reagent was added and the tubes were incubated in dark for 2 hr at room temperature. Samples were then washed with 1 ml Wash Buffer (BD, NJ, USA) and recovered by centrifugation at 200 g for 5 min . Tubes were carefully aspirated and the supernatant was discarded. $300 \mu 1$ of Wash Buffer was added to each assay tube to resuspend the bead pellet. Standards and samples were transferred to a 96 -well plate and analyzed by FACSarray cytometer (BD, NJ, USA) and $\mathrm{BD}^{\mathrm{TM}} \mathrm{CBA}$ Software.

2.2.14 Tumor inoculation

2.2.14.1 The protection assay

Six- to eight-week old Balb/c mice ($\mathrm{N}=5$) were immunized by the protocol in 2.2.11.1. One week after the last boost, mice were inoculated with 5×10^{5} CT26/CEA, which was passaged by versene.

2.2.14.2 Therapy assay

Balb/c mice ($\mathrm{N}=3$) were inoculated with $1 \times 10^{5} \mathrm{CT} 26 / \mathrm{CEA}$ (in $200 \mu \mathrm{PBS} /$ each mouse) and were orally immunized with 1×10^{8} Salmonella typhimurium (in $20 \mu \mathrm{PBS} /$ each mouse) four days later. They were re-immunized once a week after the first immunization.

2.2.15 Data analysis

Results are expressed as mean \pm SE. Student's t test was applied to compare treatment effects in different groups. A value of $\mathrm{p}<0.05$ was considered significant.

Chapter 3 Results

3.1 Epitope prediction (CEA-SARS) by Internet software

3.1.1 The epitope score of the CEA-SARS sequence

The CEA-SARS sequence was calculated by the Internet software, SYFPEITHI. The score of the whole sequence is listed in Table 1. The results showed that the epitopes in the CEA sequence got low scores. The highest score within the CEA sequence is 16 . The sequence with the highest score (scored 21) was chosen to be our epitope target, which was within the SARS sequence and would be mutated later (WYVWLGFIA). The SARS sequence, therefore, would be a better immunogen than the CEA sequence. In addition, the fusion of CEA and SARS sequences did not create a new epitope with a higher score.

3.1.2 Affinity of H2-Kd compared with other epitopes

To determine the immunogenicity of the CEA sequence, the binding affinity between the $\mathrm{H} 2-\mathrm{Kd}$ and the CEA sequence was calculated first by the Internet software as a rough estimation. According to the description in the software, the maximal scores vary between different MHC alleles (Hans-Georg Rammensee 1999). It is clear that the CEA sequence is less immunogenous by the affinity calculation because its top 5 highest epitopes score far lower than the well-known epitopes (LLO_{91-99}, $\mathrm{p}^{2} 0_{217-225}, \mathrm{EGFP}_{200-208}$) (Table 2). Secondly, the epitope within the CEA-SARS sequence was also compared with these known epitopes in Listeria monocytogenes $\left(\mathrm{LLO}_{91-99}, \mathrm{p}_{60} 0_{217-225}\right.$) and $\mathrm{EGFP}_{200-208}$ (Table 2). The score of the CEA-SARS epitope is not as high as those of the well-known epitopes. As a result, we mutated this epitope in hope that mutation would enhance the immunogenicity of our DNA vaccine.

3.2 Point mutation prediction (CEA-SARS) by Internet software

The epitope within the SARS sequence, WYVWLGFIA, served as a template and was mutated by the Internet software, SYFPEITHI. Every amino acid within this epitope was substituted so as to yield an epitope with the highest score. The flow chart of the mutation process is presented in Table 3. The original SARS epitope, WYVWLGFIA, scores 21 whereas after amino acid substitution, the highest score is 25 (Table 4). There are two such epitopes, WYVWLGFIL and WYVWLGFII (Table 4), the last of which was selected to be the first mutated sequence (named m1).

This m1 epitope further served as the template for the next round of mutation. Every amino acid within this epitope was also substituted so as to yield an epitope with the highest score among all the substitutions, WYYWLGTII, which scores 29 (Table 5). It was named m 2 , which has accumulated two mutations within the original SARS eptiope. The same procedure was applied to yield m 3 , WYVPLGTII, which scores 32 and contains three cumulative mutations within (Table 5). 1896

3.3 Construction of pAAV-CEA, pAAV-CEA-SARS,

pAAV-CEA-m1, pAAV-CEA-m2, pAAV-CEA-m3 expression

plasmids

The CEA sequence was obtained by polymerase chain reaction (PCR) amplification with primers CEA P1~P6 (with the stop codon) or with primers CEA P1~P5, P7 (without the stop codon). The PCR mixture and the PCR condition are described in 2.2.2.1. Both PCR products were digested with restriction enzyme EcoRI at the 5^{\prime} end and XbaI at the 3 ' end. The restricted fragment was then ligated with the large EcoRI-XbaI fragment of pAAV-MCS. Both constructs were transformed into E. coli and cells were cultured for 12-16 hr. The PCR
with β-globin intron and hGH poly(A) primers proves that the CEA sequence with a stop codon was constructed into the plasmids (Figure 3). The CEA sequence without a stop codon was confirmed by the restriction enzyme EcoRI at the 5 ' end and XbaI at the 3 ' end into a 135 bp fragment after mini-prep DNA extraction (Figure 4).

To construct pAAV-CEA-SARS, the SARS sequence was first obtained by PCR amplification with primers SARS P1~P8. The PCR mixture and the PCR condition are described in 2.2.2.2. The SARS PCR product was digested with restriction enzyme XbaI at the 5^{\prime} end and HindIII at the 3 ' end. The restricted fragment was then ligated with the large XbaI-HindIII fragment of pAAV-CEA (without the stop codon). The construct was transformed into E. coli and cells were cultured for 12-16 hr. Then, plasmid DNA was extracted by minipreparation (described in 2.2.5.1) and digested by XbaI and HindIII into 174 bp fragment to confirm the existence of the insert (Figure 5). The plasmid was named pAAV-CEA-SARS.

To construct pAAV-CEA-m1, the ml sequence was obtained by PCR amplification with primers SARS m1 5' and SARS $\mathrm{m} 133^{\prime}$ by Gene Tailor ${ }^{\mathrm{TM}}$ Site-Direted Mutagenesis System (Invitrogen, USA), described in 2.2.2.3. The m1 plasmid was transformed into DH5 $\alpha^{\mathrm{TM}}-\mathrm{T} 1$ and cells were cultured for 12-16 hr. After plasmid DNA extraction by minipreparation (in 2.2.5.1), the plasmid was digested by XbaI and HindIII into a 174 bp fragment to confirm the existence of the insert (Figure 6). The plasmid was named pAAV-CEA-m1.

To construct pAAV-CEA-m2, the m 2 sequence was obtained by PCR amplification with primers CEA P1, SARS m2 5', SARS m2 3', and SARS P8, which is described in 2.2.2.3. The PCR product was digested with restriction enzyme EcoRI at the 5 ' end and HindIII at the 3 ' end. The restricted fragment was then ligated with the large EcoRI-HindIII fragment of pAAV-MCS. The construct was transformed into E. coli and cells were cultured for 12-16 hr. After mini-preparation, the plasmid was digested by EcoRI and XhoIII into a 309 bp fragment to confirm the existence of the insert (Figure 7). The plasmid was named
pAAV-CEA-m2.
To construct pAAV-m3, the m3 sequence was obtained by PCR amplification with primers CEA P1, SARS m3 5', SARS m3 3', and SARS P8, which is described in 2.2.2.3. The PCR product was digested with restriction enzyme EcoRI at the 5 ' end and HindIII at the 3' end. The restricted fragment was then ligated with the large EcoRI-HindIII fragment of pAAV-MCS. The construct was transformed into E. coli and cells were cultured for 12-16 hr. After mini-preparation, the plasmid was digested by EcoRI and XhoIII into a 309 bp fragment to confirm the existence of the insert (Figure 8). The plasmid was named pAAV-CEA-m3.

The diagrams of these five constructs are shown in Figure 9.

3.4 Construction of pAAV-CEA-B7.1-IVH3H expression plasmid

The CEA sequence (without its leader sequence) was obtained by primer annealing at $95^{\circ} \mathrm{C}$ (Figure 10). The annealing product was cooled down to room temperature before it was ligated with the large XbaI-Sall fragment of pAAV-B7.1 (kindly provided by Hsieh, Yuan-Ting). The construct was transformed into E. coli and cells were cultured for 12-16 hr. The PCR with β-globin intron and hGH poly(A) primers shows that a fragment of the predicted size (830 bp) was obtained (Figure 11). After seuquenced, the CEA sequence without the leader sequence was proved to have been constructed into the plasmids. It was named pAAV-CEA-B7.1. Then, the plasmid DNA was extracted by Midipreparation (described in 2.2.5.2) for the IVH3H insert.

The IVH3H $\left({ }^{305} \mathrm{CPKYVKQNTLKIATGMRNVPEKQT}{ }^{328}\right)$ represents the carboxyl-terminal 24 residues of the influenza virus H3 subtype hemagglutinin (HA) heavy chain $\left(\mathrm{HA}_{1}\right)$ and has been proved to be able to enhance Th2 pathway (Fahrer, Geysen et al. 1995). Thus, IVH3H was constructed into the plasmid to induce antibody secretion. The construct was also obtained by primer annealing at $95^{\circ} \mathrm{C}$. The 5^{\prime} protruding end had been
designed as the digested HindIII site, and the 3 ' protruding end as the digested XhoI site. The insert was ligated with the large HindI-XhoI fragment of pAAV-CEA-B7.1. The construct was transformed into E. coli and cells were cultured for 12-16 hr. The PCR with primers β-globin intron and IVH3H 3' shows that a fragment of the predicted size (870 bp) was obtained (Figure 12). After sequenced, the CEA-B7.1-IVH3H sequence was proved to have been constructed into the plasmids.

The diagram of CEA-B7.1-IVH3H is shown in Figure 13.

3.5 Construction of pMSCVneo-CEA expression plasmid

The insert was obtained from pAAV-CEA (with a stop codon) by restriction enzyme digestion at EcoRI and XhoI sites at the 5^{\prime} ' end and the 3^{\prime} end, respectively. To exclude the ligation between the large EcoRI-XhoI fragment from pMSCVneo and the large EcoRI-XhoI fragment from pAAV-CEA, the latter was further digested by BgIII at the 5' end and ClaI at the 3' end. After ligation (Vector/Insert=1/10), the plasmid was transformed into E. coli and bacteria were cultured for 12-16 hr . The restriction digestion by EcoRI and XhoI produced a 135 bp fragment in clone \#1 and \#2, which reveals the existence of the insert (Figure 14).

The diagram of pMSCVneo-CEA is shown in Figure 15.

3.6 Verification of plasmid expression by cytometry

To confirm that plasmids (pAAV-CEA, pAA-CEA-SARS, pAAV-CEA-m1, pAAV-CEA-m2, pAAV-CEA, m3) could be expressed by macrophages, pAAV-hrGFP (kindly provided by Chuang, Huai-Yao) was transformed into Salmonella typhimurium first by the protocol described in 2.2 .10 .2 . hrGFP was inserted into the multiple cloning site (MCS), which was easy to be detected by fluorescence and substituted for other constructs. The overnight culture was refreshed with 7 ml LB (with ampicillin). 2.5×10^{8} Salmonella were cultured with 5×10^{6} P338D1, a macrophage-like cell line, as described in 2.2.11. The
expression of hrGFP was detected by cytometer (Figure 16). When compared with its negative counterpart, P338D1 uptaking pAAV-hrGFP expressed more fluorescence in FL1 (Figure 16).

3.7 CT26 infection by retrovirus: small fragment of CEA is secreted from CT26

3.7.1 Transfection of PT67 cell lines with pMSCVneo-CEA expression plasmid

For the CEA peptide to work as a less immunogenous TAA in the tumor model, it was constructed into CT26 by retroviral infection. The retroviral gene transfer technology is based on the coordinated design of packaging cell lines and retroviral expression vectors. pMSCVneo-CEA contains a packaging signal (Ψ) so that once in the packaging cell line (PT67), RNA from the vector is packaged into infectious, replication-incompetent retroviral particles.

1896
Prior to infection, PT67 was transfected with pMSCVneo-CEA. Because the plasmid also contains neomycin resistant gene, G418, the analog of neomycin, was used for drug-resistance selection in the eukaryotic cells. According to the datasheet, PT67 underwent selection at $500 \mu \mathrm{~g} / \mathrm{ml} \mathrm{G418}$. On day 9 , transfected PT67 was still confluent in the 75T flask (Corning, NY, USA) while the untransfected PT67 diminished quickly and only a little had remained (Figure 17).

3.7.2 Infection of CT26 with supernatant of PT67 transfection

24 hr after PT67 transfection, PT67 supernatant was collected. The infection procedure is described in 2.2.8. After four times of infection, CT26 was transferred into a 24 -well plate for G418 selection. Prior to the selection, the drug-resistance test of CT26 had been carried out. 1.5×10^{5} CT26 were seeded in a 6 -well plate and were cultured for 24 hr . Different
concentrations of G418 were added into each well. On day 7, the cell condition in each well was distinguishable. CT26 all died at $300 \mu \mathrm{~g} / \mathrm{ml} \mathrm{G} 418$ and above (Figure 18d, e, f). Therefore, $400 \mu \mathrm{~g} / \mathrm{ml} \mathrm{G} 418$ was chosen as the CT26 selection concentration (Figure 18). The infected CT26 became gradually confluent in the well seven days after G418 selection (Figure 19).

3.7.3 The CEA expression by dot blot

To confirm that the CEA antigen is expressed by the eukaryotic cell line in our model, the supernatant of CT26 and lysed CT26 were both tested by dot blot. The procedure has been depicted in 2.2.9.3. The CEA antibody was first verified by transfecting Balb/3T3 with pAAV-CEA-B7.1-IVH3H and pAAV-B7.1. The pAAV-CEA-B7.1-IVH3H transfected Balb/3T3 had a higher expression of fluorescence than its negative control and pAAV-B7.1 transfected counterpart after surface marker staining by sera, indicating the sera contained the CEA antibody (Figure 20). Next, CT26 were transfected with pAAV-CEA-B7.1-IVH3H and were incubated in a CO_{2} incubator at $37^{\circ} \mathrm{C}$ for 48 hr . The supernatant and lysed CT26 cells were then collected. Dot blot reveals that CEA was expressed into the supernatant but not in the cell lysis (Figure 21).

3.8 In vitro killing assay of Balb/c splenocytes

3.8.1 The effect of DIOC18 staining on target cells

The effect of DIOC18 staining on target cells were tested before the killing assay because staining may affect the cell survival rate. The staining process was depicted in 2.2.11.3. The overnight staining on CT26/CEA, CT26, and YAC-1 revealed that DIOC18 not only stably expressed on the cell membrane after 24 hr but also contributed little to the cell mortality (Figure 22, Figure 23, Figure 24). When compared with their unstained counterparts, staining contributed 3.98% mortality to CT26/CEA, 1.17% to CT26, and 1.57%
to YAC-1 (Figure 22, Figure 23, Figure 24)

3.8.2 The killing assay

To analyze the killing efficiency of our constructs quantitatively, splenocytes in each immunized group ($\mathrm{N}=3$) of mice were collected and were mixed with target cells, CT26/CEA, CT26, YAC-1, at different ratios (E / T ratio $=100 / 1,50 / 1,25 / 1$). The procedure was described in 2.2.11.4. Each group immunized with different plasmids (in Salmonella typhimurium) was later labeled as CEA (pAAV-CEA immunization), SARS (pAAV-CEA-SARS immunization), m 1 (pAAV-CEA-m1 immunization), m2 (pAAV-CEA-m2 immunization), and m3 (pAAV-CEA-m3) groups.

At an E/T ratio of 100/1, CEA alone could not sufficiently enhance the immunity when compared with its negative control (Negative: $15.00 \pm 1.96 \%$; CEA: $13.75 \pm 1.45 \%$). However, immunization both with CEA and SARS fragments, no matter mutated or not, could slightly enhance the killing efficiency (Figure 25a). Mutations in the m 2 and m 3 groups resulted in a significant difference when compared with the negative control and the CEA group (Figure 25a). The killing efficiency with mutated sequences were conspicuously improved at an E/T ratio of $50 / 1(\mathrm{~m} 1: 20.20 \pm 3.55 \% ; \mathrm{m} 2: 18.04 \pm 2.60 \% ; \mathrm{m} 3: 22.08 \pm 3.69 \%)$, as shown in Figure 25b. The $m 3$ mutations resulted in a significant difference when compared with the CEA group. Such a phenomenon was also observed at the E/T ratio at $25 / 1$, where the mutated groups, especially the m3 mutation, enhanced the killing of CT26/CEA (Figure 25c), indicating that mutations ensure the killing specificity to the CEA molecule. Beside the m3 mutation, there was also a significant difference between the m 2 group and the negative control (12.81 $\pm 1.42 \% ; \mathrm{m} 2: 21.15 \pm 3.77 \%)$.

The CT26 killing did not vary significantly among each group at an E/T ratio of $50 / 1$, or 25/1 (Figure 26b, c). However, the m3 group had a significant difference when compared with the negative group at the E/T ratio of 100/1 (Figure 26a).

The killing percentage between CT26/CEA and CT26 was compared to analyze the specific killing to CT26/CEA. At an E/T ratio of 25/1, the specific killing to CT26/CEA in the CEA group did not enhance at all. On the contrary, it was aggravated when compared to the negative group (Figure 27). The situation was relieved in the SARS group and the specific killing to CT26/CEA was improved in the mutated groups. The specific killing is proportional to the number of mutations. In other words, the m 3 group had the highest specific killing (8.93%), the m 2 group ranked the second (3.74\%), and the m 1 last (0.82%), as shown in Figure 27.

To understand whether such an immunization could induce innate immunity, YAC-1, a MHC-less cell line, was targeted for NK cells. The CEA group could not induce innate immunity and showed no significance compared to the negative control at E / T ratios of $100 / 1$, $50 / 1$, and $25 / 1$ (Figure 28). The SARS, m1, m2, and m3 groups, however, could slightly enhance the innate immunity at these ratios (Figure 28). There was a significant difference between the SARS group and the negative group, and between the m 2 group and the negative group at an E/T ratio of 100/1 (Figure 28a). The m1 group had a significant difference when compared with the negative and the CEA group at the E / T ratio of $50 / 1$ while the m 3 group had a significant difference compared with the negative group (Figure 28b). At an E/T ratio of $25 / 1$, the $m 2$ group had a significant difference when compared with the negative and the CEA groups (Figure 28c).

3.9 Cytokine profile assay

3.9.1 The in vitro cytokine assay

In order to understand the cytokine profile among differently immunized groups quantitatively, $2 \times 10^{6} /$ well splenocytes in each group were stimulated by either CT26/CEA soup (specific stimulation) or CT26 (non-specific stimulation) soup for 24 hr . The cytokine
profile, including Th1 cytokines (TNF- α, IFN- γ, IL-2, IL-12) and Th2 cytokines (IL-4, IL-10), was detected by ELISA described in 2.2.13.

When compared with the negative group, the CEA group did not show any significant increase in TNF- α secretion when stimulated by CT26/CEA soup, but there was a significant decrease when stimulated by CT26 soup (Figure 29). The SARS, m1, m2, and m3 groups all showed a significant increase in TNF- α secretion under CT26/CEA soup stimulation (Figure 29a). The mutation groups, namely $\mathrm{m} 1, \mathrm{~m} 2$, and m 3 , had a significant increase of TNF- α when compared with the CEA group (Figure 29a). Under CT26 soup stimulation, the SARS and m 2 resulted in a significant increase of TNF- α compared with the negative group, but the m 3 group resulted in a significant decrease of TNF- α (Figure 29b). When compared with the CEA group, the modification in the SARS, m1, and m 2 increased significantly (Figure 29b).

IL-10 secretion was repressed significantly in the CEA group under CT26 soup stimulation (Neg: $22.12 \pm 1.38 \mathrm{pg} / \mathrm{ml}$; CEA: $13.21 \pm 3.73 \mathrm{pg} / \mathrm{ml}$). However, specific stimulation, the CT26/CEA soup, could slightly enhance its secretion in the CEA group (Neg: $14.44 \pm 4.09 \mathrm{pg} / \mathrm{ml}$; CEA: $23.20 \pm 1.34 \mathrm{pg} / \mathrm{ml}$), as shown in Figure 30. The SARS fragment, no matter mutated or not, could all strongly enhance IL-10 under both stimulations when compared with the negative and the CEA groups (Figure 30).

The CEA group secreted more IL-4 when compared with the negative control under both CT26/CEA soup (Neg: $3.33 \pm 0.29 \%$; CEA: $6.36 \pm 3.40 \%$) and CT26 soup stimulations (Neg: $2.60 \pm 1.74 \%$; CEA: $5.35 \pm 2.56 \%$). Yet IL-4 secretion was down-regulated in the SARS, m1, m2, and m3 groups (Figure 31). There was a significant decrease in the SARS and the m 3 groups under the CT26/CEA soup stimulation (Figure 31a).

Compared with the negative control, the IL-12 secretion was slightly enhanced in the CEA group under CT26/CEA soup stimulation (Neg: $5.83 \pm 0.64 \mathrm{pg} / \mathrm{ml}$; CEA: 8.05 ± 0.60 $\mathrm{pg} / \mathrm{ml}$), but it was not significantly different under CT26 soup stimulation (Figure 32). The IL-12 secretion was suppressed in the SARS group under both conditions, but the
phenomenon was significant under CT26/CEA soup stimulation (Figure 32a). When compared with the CEA group, it also reveals a significant decrease (CEA: $8.05 \pm 0.60 \%$; SARS: $3.19 \pm 0.60 \%$). However, the IL-12 secretions were non-detectable under CT26/CEA soup stimulation in the m 1 and m 3 groups (Figure 32a). Though there was no significant decrease in IL-12 secretion in the SARS group when compared with the negative and the CEA groups under CT26 stimulation, the m 1 and m 2 groups were significantly down-regulated when compared with the negative group (Figure 32b). Moreover, groups with a mutation modification ($\mathrm{m} 1, \mathrm{~m} 2$, and m 3) resulted in a significant decrease in IL-12 when compared with the CEA group (Figure 32b).

The IFN- γ secretion was significantly elevated in the CEA group under CT26/CEA soup stimulation when compared with the negative group whereas there were no differences among other groups (Figure 33a). The CEA group was down-regulated under CT26 stimulations, while the m3 group had a significant eleyation in IFN- γ secretion (Figure 33b) when compared with the negative and the CEA groups. IL-2 was all undetectable in our model (data not shown).

3.9.2 The in vivo cytokine assay

To understand the cytokine profile within the animal model, the in vivo cytokine assay was performed with Mouse Th1/Th2 Cytokine CBA (BD, NJ, USA). The procedure was described in 2.2.13.2. The result reveals that both Th1 cytokines, including IL-2, IFN- γ, TNF- α, and Th 2 cytokines, including IL- 4 and IL-5, were not enhanced in vivo in the CEA group when compared with the negative control. However, the SARS, m1, m2, and m3 groups could generally enhanced the Th1 and Th2 cytokine expression in vivo, suggesting that the SARS fragment, no matter mutated or not, could induce immune cells to secrete more cytokine against tumor (Figure 34).

3.10 Tumor growth

3.10.1 The protection assay

Mice were orally immunized by 1×10^{8} Salmonella typhimurium. Then, 5×10^{5} CT26/CEA cells per mouse were inoculated by the protocol in 2.2.14.1. The tumor volume was measured once every 2 or 3 days. Tumor volume was calculated with the formula: volume $=$ length x width x height.

The tumor-free rate was highest in the m 1 group (75%). Mice in the m 3 group had a 60\% tumor-free rate (Figure 35). Tumor volume was smaller in the SARS-modified groups and significantly decreased in the SARS and the m 3 groups on day 26 , indicating the SARS fragment could provide sufficient protection against the development of tumor, CT26/CEA, and the modifications on the SARS fragment ensures such a protective effect (Figure 36). After one month of tumor inoculation, ml and m 3 groups still had the highest survival rate (100\%) while the negative group had 50% survival rate. The m 2 group had the lowest survival rate (20\%) on day 32 (Figure 37). 1896

3.10.2 The therapy assay

Mice were inoculated with 1×10^{5} CT26/CEA and four days later they were orally immunized with 1×10^{8} Salmonella typhimurium transformed with pAAV-CEA and pAAV-SARS in $20 \mu \mathrm{l}$ PBS, respectively. The negative group was fed with $20 \mu \mathrm{l}$ PBS. Every week mice were re-immunized and tumor volume was measured once every two or three days. Mice in the SARS group had the smallest tumor volume, indicating the SARS fragment provided enough protection against CT26/CEA (Figure 38). The tumor volume was significantly different between the SARS group and the CEA group on day 44 (Figure 38).

H2-Kd nonamers		go to top
Position	123456789	score
78 (within SARS)	W Y V W L G F I A	21
59 (within SARS)	R L Q S L Q T Y V	19
89 (within SARS)	I A I V M V T I L	18
83 (within SARS)	G F I A G L I A I	17
5 (within CEA)	S A P P H R W C I	16
36 (within CEA)	W G L L G R T G L	16
42 (within SARS)	T G L K V E A E V	16
65 (within SARS)	T Y V T Q Q L I R	16

Table 1. The epitope scores of the CEA-SARS sequence calculated by the Internet software, SYFPEITHI. Epitopes that score 16 and above are listed. Epitope starting at the $78^{\text {th }}$ amino acid in the CEA-SARS sequence has the highest score at 21 , which serves as the template for affinity mutation.

H2-Kd nonamers		$\begin{array}{r} \text { go to } \\ \text { top } \\ \hline \end{array}$	References	Affinity Strength
Position	123456789	score		
78	W Y V W L GFiA	21	CEA-SARS	Medium
5	SAPPHRWCI	16	CEA	Weak
36	W GLL GRTGL	16	CEA	Weak
11	W CIP W Q R L L	15	CEA	Weak
31	V G G G S W G L L	15	CEA	Weak
Listeria LLO_{91} 99	GYK D G N E Y I	24	Nakamura, Y., et al. Infection and Immunity. 2003. 71(4), 1748-1754	Good
Listeria p60 0_{217-2} 25	K Y G V S V Q D I	27	H. G. Archie Bouwer et al. Infection and Immunity. 1996. 64(7), 2515-2522	Good
$\mathrm{EGFP}_{200-208}$	H Y L S T Q S A L	27	Gambotto A, et al. Gene Therapy. 2001. 8(23). 1814-15.	Good

Table 2. The CEA and CEA-SARS epitopes compared with other known epitopes that have been proved to elicit immunity in Balb/c mice. The score of the CEA and CEA-SARS sequences are calculated by the Internet software, SYFPEITHI. The score of CEA is lower than the well-known epitopes of Listeria $\left(\mathrm{LLO}_{91-99}\right.$ and $\left.\mathrm{p} 60_{217-225}\right)$ and $\mathrm{EGFP}_{200-208}$. The epitope score of CEA-SARS is closer to these well-known epitopes and therefore, may be expected to elicit the immune response.

KVEAEVOIDRLITGRLOSLOTYVTOOLIRIKWPWYVWLGFIAGLIAIVMVTILLCCMT

Table 3. The flow chart of mutagenesis. First, the epitope sequence is predicted. Then, every amino acid within the predicted epitope is substituted to gain higher affinity between the MHC molecule ($\mathrm{H} 2-\mathrm{Kd}$) and the epitope. Among all, the epitope that has the highest score was chosen to be our first mutation construct and served as the template for the next round of mutation. It was named ml . The same approach was applied to obtain the two accumulative mutations in the m 2 construct and three accumulative mutations in the m 3 construct.

H2-Kd nonamers		go to top
Pos		
(Template)	34	W Y V W L G F I A
	1	W Y V W L G F E A
1	W Y V W L G F I V	score
1	W Y V W L G F I L	21
$(\mathrm{~m} 1)$	W Y V W L G F I I	22

Table 4. The candidate sequence of the $\mathbf{m 1}$ construct. The epitope (WYVWLGFIA) in the CEA-SARS sequence was substituted by the approach described in the text. After substitution, two epitopes scored highest (at 25) were randomly chosen to be the first mutation construct (m1) and served as the template for the next round of mutation.

m2	1	WYVWLGTI	29
m3	1.	WYVPLGTIT	32

Table 5. The generation of $\mathbf{m} \mathbf{2}$ and $\mathbf{m 3}$. The construct of m 2 (WYVWLGTII) was mutated from the ml and the m 3 (WYVPLGTII) construct was mutated from m 2 .

Figure 3. The construct of pAAV-CEA (with a stop codon). The CEA sequence with a stop codon was cloned into pAAV-MCS. The PCR with β-globin intron and hGH poly(A) primers proves that the CEA sequence with a stop codon was constructed into the plasmids (336 bp). Clone \#1, \#3, \#4, and \#5 were picked and sequenced. Clone \#1 was chosen for plasmid DNA extraction. M: 100 bp ladder marker. \#1~\#17: clones.

Figure 4. Restriction enzyme digestion of the pAAV-CEA construct without a stop codon. The plasmid was digested by EcoRI and XbaI into a 135 bp fragment. Clones \#1, \#2, and \#3 were picked and sequenced. Clone \#1 was chosen for plasmid DNA extraction. M: 100 bp ladder marker; \#1~\#6: clones.

Figure 5. Restriction enzyme digestion of the pAAV-CEA-SARS construct. The plasmid DNA was digested by XbaI and HindIII into a 174 bp fragment. Clone \#1, \#2, and \#3 were picked and sequenced. \#2 was picked. M: 100 bp ladder marker; \#1~\#10: clones.

Figure 6. Restriction enzyme digestion of the pAAV-CEA-m1 construct. The plasmid was digested by XbaI and HindIII into a 174 bp fragment. Clone \#1 and \#2 were picked and sequenced. \#2 was picked. M: 100 bp ladder marker; \#1~\#2: clones.

Figure 7. Restriction enzyme digestion of the pAAV-CEA-m2 construct. The plasmid was digested by EcoRI and XhoIII into a 309 bp fragment. Clone \#2 picked and sequenced. M: 100 bp ladder marker; \#1~\#5: clones.

Figure 8. Restriction enzyme digestion of the pAAV-CEA-m3 construct. The plasmid was digested by EcoRI and XhoIII into a 309 bp fragment. Clone \#9 and \#10 were picked and sequenced. M: 100 bp ladder marker; \#1~\#10: clones.

Figure 9. The diagram of pAAV-CEA, pAAV-CEA-SARS, pAAV-CEA-m1, pAAV-CEA-m2, and pAAV-CEA-m3 for immunization.

Figure 10. Primer annealing of the CEA sequence without its leader sequence. The primers were annealed at $95^{\circ} \mathrm{C}$ and was cooled down to room temperature. The 5^{\prime} and 3^{\prime} ' end of primers have been designed as the stick end of XbaI (CTAGT) and SalI (TCGAC) restriction sites. Therefore, the annealing product did not undergo PCR before ligation.

1896

Figure 11. The construct of pAAV-CEA-B7.1. The CEA sequence without its leader sequence was cloned into pAAV-B7.1 The PCR with β-globin intron and hGH poly(A) primers shows that a fragment with the predicted size (830 bp) was obtained. \#1 and \#2 were picked and sequenced to prove the existence of the CEA sequence without its leader sequence. M: 100 bp ladder marker; \#1~\#5: clones.

Figure 12. The construct of pAAV-CEA-B7.1-IVH3H. IVH3H was obtained from primer annealing and was cloned into pAAV-CEA-B7.1. The PCR with primers β-globin intron and IVH3H 3' shows that t that a fragment with the predicted size (870 bp) was obtained. Clone \#3 was picked and sequenced to prove the existence of the CEA-B7.1-IVH3H sequence.

Figure 13. The diagram of pAAV-CEA-B7.1-IVH3H for CEA antibody production.

Figure 14. Restriction enzyme digestion of pMSCVneo-CEA. The restriction digestion by EcoRI and XhoI produced a 135 bp fragment in clone \#1 and \#2, the latter of which was picked and sequenced. M: 100 bp ladder marker; \#1~\#3: clones.

Figure 15. The diagram of pMSCVneo-CEA for CT26 infection.

Figure 16. The fluorescence expression of hrGFP in P338D1. pAAV-hrGFP was transformed in Salmonella typhimurium and bacteria were incubated with P338D1 overnight. The expression of hrGFP was detected by cytometry (FL1). The pAAV-hrGFP transfected bacteria (dark line) had a higher fluorescence expression than its negative counterpart (dotted line). Dotted line: negative control (P338D1 + Salmonella w/o any plasmid); Dark line: P338D1 + Salmonella w/ plasmid.

Figure 17. Selection of PT67 transfected with pMSCVneo-CEA. PT67 was selected at 500 $\mu \mathrm{g} / \mathrm{ml}$ G418 on Day 9. a) Neg, PT67 without pMSCVneo-CEA transfection. Most of the PT67 cells had been killed. b) PT67 with pMSCVneo-CEA transfection. The transfected PT67 cells became confluent even under drug-resistance selection.

Figure 18. The G418 resistance test of CT26. Before infection, the G418 resistance test was performed at different concentrations. $400 \mu \mathrm{~g} / \mathrm{ml} \mathrm{G} 418$ was chosen for infection. On day 7, the cell condition at each concentration is shown. a) $0 \mu \mathrm{~g} / \mathrm{ml}$, confluent b) $100 \mu \mathrm{~g} / \mathrm{ml}$, partially dead c) $200 \mu \mathrm{~g} / \mathrm{ml}$, mostly dead d) $300 \mu \mathrm{~g} / \mathrm{ml}$, all dead e) $400 \mu \mathrm{~g} / \mathrm{ml}$, all dead f) $500 \mu \mathrm{~g} / \mathrm{ml}$, all dead.

Figure 19. Infection of CT26 at $400 \mu \mathrm{~g} / \mathbf{m l}$ G418 on Day 7. a) Neg, CT26 without infection b) CT26 with infection, which became confluent in the 24 -well plate.

Figure 20. The CEA antibody in the sera of Balb/c mice. Balb/3T3 was transfected with pAAV-CEA-B7.1 and pAAV-B7.1-IVH3H. The pAAV-CEA-B7.1-IVH3H transfected Balb/3T3 had a higher expression of fluorescence than its negative control and pAAV-B7.1 transfected counterpart by cytometry. The percentage in the M1 region is: a) 1.10% b) 51.17% c) 72.92%, respectively.

Figure 21. The secretion of CEA from CT26. CEA is secreted by CT26 by dot blotting. N: negative control (PBS alone); S1: cell lysis; S2: cell soup collected after 48 hr incubation at $37^{\circ} \mathrm{C}$.

Figure 22. The mortality rate and surface fluorescence of CT26 after overnight DIOC18 staining. Before the killing assay, the effect DIOC18 on CT26 condition was tested. DIOC18 did not affect CT26 after overnight staining as revealed by $50 \mu \mathrm{~g} / \mathrm{ml}$ propidium iodide (PI). a) Neg, w/o DIOC18 staining b) DIOC18 staining c) DIOC18 staining $+7 \%$ formaldehyde. The mortality rate $=$ (the number of cells of PI staining and DIOC18 staining) $/$ (the number of cells of DIOC18 staining).

Figure 23. The mortality rate and surface fluorescence of CT26/CEA after overnight DIOC18 staining. Before the killing assay, the effect DIOC18 on CT26/CEA condition was tested. DIOC18 did not affect CT26/CEA after overnight staining as revealed by $50 \mu \mathrm{~g} / \mathrm{ml}$ propidium iodide (PI). a) Neg, w/o DIOC18 staining b) DIOC18 staining c) DIOC18 staining $+7 \%$ formaldehyde. The mortality rate $=$ (the number of cells of PI staining and DIOC18 staining) / (the number of cells of DIOC18 staining).

Figure 24. The mortality rate and surface fluorescence of YAC-1 after overnight DIOC18 staining. DIOC18 did not affect YAC-1 after overnight staining as revealed by 50 $\mu \mathrm{g} / \mathrm{ml}$ propidium iodide (PI). a) Neg, w/o DIOC18 staining b) DIOC18 staining c) DIOC18 staining $+7 \%$ formaldehyde. The mortality rate $=$ (the number of cells of PI staining and DIOC18 staining) / (the number of cells of DIOC18 staining).

Figure 25. The CT26/CEA killing assay. CT26/CEA was incubated with splenocytes for 4 hr at $37^{\circ} \mathrm{C}$. E/T ratios at a) $100 / 1$, b) $50 / 1$, and c) $25 / 1$ are shown. Specific lysis (\%) $=$ (the number of cells of PI staining and DIOC18 staining) / (the number of cells of DIOC18 staining). ${ }^{*} \mathrm{p}<0.05$, when compared with the negative group; $\# \mathrm{p}<0.05$, when compared with the CEA group.

CT26 100:1

a)

CT26 50:1

b) 1896

CT26 25:1

c)

Figure 26. The CT26 killing assay. CT26 was incubated with splenocytes for 4 hr at $37^{\circ} \mathrm{C}$. E / T ratios at a) $100 / 1$, b) $50 / 1$, and c) $25 / 1$ are shown. Specific lysis $(\%)=$ (the number of cells of PI staining and DIOC18 staining) / (the number of cells of DIOC18 staining). *p < 0.05 , when compared with the negative group.

Figure 27. CT26/CEA specific killing at an \mathbf{E} / \mathbf{T} ratio $=\mathbf{2 5} / \mathbf{1}$. Specific killing was calculated by the formula below: CT26/CEA specific killing $=(\%$ of CT26/CEA killing in Figure 25c) - (\% of CT26 killing in Figure 26c).

Yac-1 100:1

a)

cea
sars
ml
"
Yac-1 25:1

c)

Figure 28. The YAC-1 killing assay. CT26 was incubated with splenocytes for 4 hr at $37^{\circ} \mathrm{C}$. E / T ratios at a) $100 / 1$, b) $50 / 1$, and c) $25 / 1$ are shown. Specific lysis $(\%)=$ (the number of cells of PI staining and DIOC18 staining) / (the number of cells of DIOC18 staining). *p $<$ 0.05 , when compared with the negative group; $\# \mathrm{p}<0.05$, when compared with the CEA group.

Figure 29. In vitro TNF- α expression after CT26/CEA soup or CT26 soup stimulations. Splenocytes were stimulated by either a) CT26/CEA soup or b) CT26 soup for 24 hr . Groups are shown in the order: negative, CEA, SARS, m1, m2, and m3. ${ }^{*} \mathrm{p}<0.05$, when compared with the negative group; $\# \mathrm{p}<0.05$, when compared with the CEA group.

Figure 30. In vitro IL-10 expression after CT26/CEA soup or CT26 soup stimulations. Splenocytes were stimulated by either a) CT26/CEA soup or b) CT26 soup for 24 hr . Groups are shown in the order: negative, CEA, SARS, m1, m2, and m3. *p <0.05, when compared with the negative group; $\# \mathrm{p}<0.05$, when compared with the CEA group.

Figure 31. In vitro IL-4 expression after CT26/CEA soup or CT26 soup stimulations. Splenocytes were stimulated by either a) CT26/CEA soup or b) CT26 soup for 24 hr . Groups are shown in the order: negative, CEA, SARS, m1, m2, and m3. *p <0.05, when compared with the negative group; N.D.: non-detectable.

Figure 32. In vitro IL-12 expression after CT26/CEA soup or CT26 soup stimulations. Splenocytes were stimulated by either a) CT26/CEA soup or b) CT26 soup for 24 hr . Groups are shown in the order: negative, CEA, SARS, m1, m2, and m3. *p <0.05, when compared with the negative group; $\# \mathrm{p}<0.05$, when compared with the CEA group. ND: non-detectable.

Figure 33. In vitro IFN- γ expression after CT26/CEA soup or CT26 soup stimulations. Splenocytes were stimulated by either a) CT26/CEA soup or b) CT26 soup for 24 hr . Groups are shown in the order: negative, CEA, SARS, m1, m2, and m3. *p <0.05, when compared with the negative group; $\# \mathrm{p}<0.05$, when compared with the CEA group. ND: non-detectable.

Figure 34. In vivo cytokine expression. Sera were collected for the in vivo cytokine detection, including a) IL-2, b) TNF- α, c) IFN $-\gamma$, d) IL-4, and e) IL-5. Groups are shown in the order: negative, CEA, SARS, m1, m2, and m3.

Tumor-free rate

Figure 35. The tumor-free rate of Balb/c mice in the protection assay. Mice were immunized with Salmonella typhimurium, which had been transformed into each plasmid construct three times in two weeks and were inoculated with 5×10^{5} CT26/CEA.

1896

Figure 36. The tumor volume of Balb/c mice in the protection assay. Mice were immunized with Salmonella typhimurium, which had been transformed into each plasmid construct three times in two weeks and were inoculated with 5×10^{5} CT26/CEA. Tumor volume $=$ length x width x height. $* \mathrm{p}<0.05$, when compared with the negative group.

Survival

Figure 37. The survival rate of Balb/c mice in the protection assay. Mice were immunized with Salmonella typhimurium, which had been transformed into each plasmid construct three times in two weeks and were inoculated with 5×10^{5} CT26/CEA.

Figure 38. The tumor volume of Balb/cemice in the therapy assay. Mice were inoculated with 1×10^{5} CT26/CEA and were immunized 4 days later with Salmonella typhimurium, which had been transformed into each plasmid construct. Mice were re-boosted once every week and the tumor volume was measured every two to three days. ${ }^{*}$ p <0.05, when compared with the negative group.

Chapter 4 Discussion

This study tested whether the exogenous antigen, the SARS fragment, could induce and enhance the vaccine efficacy of a low immunogenous TAA construct, the CEA fragment, in our animal model. The immunotherapy was realized by orally immunizing Balb/c mice with transformed Salmonella typhimurium. Cytokine profile and tumor volume were monitored to understand the effect of the DNA vaccine. Moreover, mutations were introduced on the SARS fragment to enhance the affinity between the MHC molecule and the epitope. Serial accumulation of mutations was designed to compare the protective effect of each construct ($\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$) with the original fragment (SARS). Mutation affinity was calculated by the Internet software, SYFPEITHI. Unlike other immunotherapies which put an emphasis on TAAs alone, we have set up a platform where a universal antigen is expressed to enhance the immunogenicity of the TAA construct. The concept of utilizing mutations on TAAs for better immunogenicity is applied to the universal antigen. By doing so, we intended to power the strength of the SARS fragment without mutating individual TAA.

The Internet software, SYFPEITHI, has been widely utilized as an epitope prediction algorithm. Pavlenko (Pavlenko, Leder et al. 2005) has proved that epitope specificity of the CTLs was determined by their reactivity against a panel of C-terminus truncated or mutated PSA proteins and use of bioinformatical prediction with the SYFPEITHI algorithm. In the study of Neumann et al. (Neumann, Wagner et al. 2005), the SYFPEITHI algorithm was used to select peptides with a high binding affinity to major histocompatibility complex class 2 (MHC 2) molecules. The pentadecamer epitope p635-649 induced specific CD4+ T-cell responses that were shown to be restricted by HLA-DRB1*1401. The responses could be blocked by preincubation of T cells with anti-CD4 and antigen-presenting cells with anti-HLA-DR, respectively, proving the HLA-DR-restricted presentation of p635-649 and a

CD4+ T-cell-mediated effector response.
The credibility of SYFPEITHI can be justified by the comparison with other software. For example, the transmembrane protein, HM1.24, expressed on the terminal differentiated B cells was scanned for immunogenic peptides using the HLAbinding prediction software SYFPEITHI and BIMAS. Of eight nona-peptides with the highest probability of binding to HLA-A2, the HM1.24 aa22-30 peptide (LLLGIGILV) showed the most frequent activation of CD8+ T cells in healthy volunteers. Moreover, antigen recognition by the HM1.24 aa22-30-specific CD8+ T cells was HLA-A22restricted (Hundemer, Schmidt et al. 2006). Other researches have also utilized the software, SYFPEITHI, BIMAS, or Rankpep, to predict the possible epitopes that can elicit the immune responses (Gomez-Nunez, Pinilla-Ibarz et al. 2006; Molinier-Frenkel, Popa et al. 2006).

We have compared the predicted result with a docking software released by BioXJEM (Yang 2004; Yang 2005). Docking reveals that the sequence of WYVW within the SARS epitope (WYVWLGFIA) predicted by SYFPEITHI makes a large steric hindrance for binding. However, the modifications of the tail part, LGFIA to LGTII (in m2 and m3), can form a better interaction with the MHC molecule at docking, which may partially explain why the CT26/CEA killing is more conspicuous in the m 2 and the m 3 groups.

To understand the different effect of the DNA vaccine quantitatively, $2 \times 10^{6} /$ well splenocytes in each group were stimulated by either CT26/CEA soup (specific stimulation) or CT26 (non-specific stimulation) soup for 24 hr . TNF- α expression was not up-regulated in the CEA group compared with the negative group after CT26/CEA or CT26 soup stimulation. However, the SARS-containing groups had a striking increase in TNF- α expression when compared with the negative and the CEA groups. TNF- α is a proinflammatory and Th1 cytokine. As indicated by Austin et al., TNF- α, IFN- γ, and IL-2 can define cytotoxic T lymphocytes and Th1 effector populations (Austin, Ozawa et al. 1999). Yet, IFN- γ was not significantly increased and IL-2 was undetectable in our experiment.

IL-4, a typical Th2 cytokine, was enhanced in the CEA group compared to the negative group. Yet, it was decreased in the groups with an additional SARS fragment, whether mutated or not. IL-10, however, was raised in the SARS, m1, m2, and m3 groups but not in the CEA group. Though most often it is known as a Th2 cytokine, IL-10 is actually a pleiotropic cytokine with anti-inflammatory, immunosuppressive, immunostimulatory properties (Moore, de Waal Malefyt et al. 2001). It exerts immunostimulatory effects on B cells, cytotoxic T cell development and thymocytes (Conti, Kempuraj et al. 2003). As indicated by Wogensen et al., expression of an IL-10 transgene by insulin-producing pancreatic cells led to an accelerated onset of diabetes in NOD mice (Wogensen, Huang et al. 1993; Wogensen, Lee et al. 1994), with no inhibition of immune-mediated destruction of islets (Lee, Wogensen et al. 1994). In the study of Moritani et al., NOD mice expressing an IL-10 transgene in glucagon-producing pancreatic cells also developed accelerated diabetes (Moritani, Yoshimoto et al. 1994). Consequently, the expression of IL-10 in the model may exert not only a Th2 effect but a Th1 effect as well.

IL-12, though a Th1 cytokine, was slightly up-regulated in the CEA group but not in the SARS group when compared with the negative control after CT26/CEA soup stimulation. It was even more down-regulated in the mutation groups. IL-12 is mostly secreted by macrophages and DCs. The possible mechanism may lie in the fact that the increase in IL-10 in the SARS, $\mathrm{m} 1, \mathrm{~m} 2$, and m 3 groups exerts an inhibitory effect on macrophages so as to inhibit Th1 activation by blocking macrophage IL-12 synthesis. In the study of Lang et al., an overproduction of inflammatory cytokines and development of chronic inflammatory diseases have been shown in IL-10 gene-deficient mice (Lang, Rutschman et al. 2002).

In general, the CEA antigen only induces a Th 2 response whereas the addition of a SARS fragment helps induce and enhance both Th1 and Th2 responses. Th1 is more famous for its antitumor effect. For instance, IL-27 has been proved to possess antiangiogenic and antitumor activities in the B16F10 model. The poorly immunogenic murine melanoma

B16F10 tumors were engineered to overexpress single-chain IL-27 (B16F10 + IL-27). B16F10 + IL-27 cells exerted antitumor activity against not only s.c. tumor but also experimental pulmonary metastasis (Shimizu, Shimamura et al. 2006). On the other hand, the Th2 response has been reported in autologous tumor, where T cells from patients with indolent non-Hodgkin lymphomas frequently showed an activated but apoptosis-prone phenotype (Anichini, Mortarini et al. 2006). It may seem that the Th2 response may down regulate the effect of a Th1 response or contribute less to the antitumor activity, but it has also been observed in some models where a Th2-dominated antitumor immunity has occurred. As reported by Chu Y et al. (Chu, Xia et al. 2006), their DNA vaccine which comprised a modified core peptide of mucin1 (PDTRP) and GM-CSF coding sequence at the C-terminus induced better protection against tumor challenge. The protection is correlated with the type 2 immune responses manifested by an increased $\operatorname{IgG} 1$ to $\operatorname{IgG} 2 \mathrm{a}$ antibody ratio and a greater induction of GATA-3 and IL-4 mRNA than that of T-bet and IFN-gamma mRNA in spleen cells from vaccinated mice.

Synergistic antitumor effect of both Th1 and Th2 cytokines has also been detected. As indicated by Lopez et al. (Lopez, Adris et al. 2005), the combination of autologous inactivated tumor cells expressing IL-12 and IL-10 induced tumor remission in $50-70 \%$ of mice harboring large established colon or mammary tumors and spontaneous lung metastases, with the consequent establishment of an antitumor immune memory. The production of IFN-gamma and IL-4 by spleen cells and the development of tumor-specific IgG1 and IgG2a Abs indicate that each cytokine stimulated its own Th pathway and that both arms were actively engaged in the antitumor effect. The study of IL-21 and IL-15 by Nakano et al. (Nakano, Kishida et al. 2006) provides further evidence for the cellular and humoral responses to tumor cells. IL-21 induced significant elevation of head and neck squamous cell carcinoma-specific CTL activity, while IL-21 and IL-15 augmented NK activity in an additive manner. IL-21 gene transfer also promoted the production of tumor-specific IgG..

Not only does the in vitro cytokine assay reveal an enhanced Th1 and Th2 responses in the SARS-containing groups, but also the in vivo cytokine assay shows the activation of Th1 and Th 2 cytokines. On the contrary, CEA alone could not stimulate immune cells to secrete cytokines in vivo. The in vivo assay reveals the total amount of cytokines within an animal, which is the outcome of immunization, suggesting the mechanism of the protection of our DNA vaccine.

The enhancement of Th1 and Th2 in the SARS-containing groups indeed displayed a better protective effect on the animal models. Tumor volume was monitored for 26 days. When compared with the negative group, mice immunized with CEA alone did not show any significant difference in the protection assay and in the therapy assay. However, the SARS and m 3 groups had the smallest tumor volume in the protection assay. The m 1 construct also provided enough protection for mice, but the m 2 construct did not seem to be able to sufficiently suppress tumor growth.

It was expected that the $m 2$ construct should have a higher antitumor activity than the ml construct. However, the protection assay reveals that it did not. Some reasons are given to explain the phenomenon. First of all, as introduced in 1.3.3, beside the binding affinity between the epitope and the MHC molecule, there exists another binding affinity between the epitope-MHC complex and the TCR. Some researches have demonstrated that such an affinity may influence the activation of cytotoxic T cells as well (Slansky, Rattis et al. 2000). Second, only nonamers were chosen as the epitopes in the software calculation. But other sequence length may also be generated in the animal. It is not known if such a nonamer calculation is the best outcome in vivo. Furthermore, there are other MHC alleles to accommodate a variety of epitopes in a mouse. For example, besides the H2-K form, H2-D and H2-L belong to the MHC class I molecules as well. Therefore, it is beyond our control to generate an epitope mutation that induces the best immunity in vivo. Some other unknown mechanisms may undermine the protective effect of such an immune strategy since immunity itself is interlaced
to reach homeostasis.
The truncated CEA antigen successfully simulates a low immunogenous TAA, which is often the case in most tumor cells. It did not induce any favorable cytokines in vitro and in vivo to enhance either Th1 or Th2 responses. Its killing assay reveals that CEA alone could not specifically kill CT26/CEA and its innate immunity (YAC-1 killing) did not show any significant difference when compared with the negative control. However, SARS fusion not only induces but also enhances anti-CEA activity, as shown in the CT26/CEA specific killing. Moreover, specific killing is proportional to the number of mutations, indicating that our mutations did work well in vitro. The antitumor activity of the m 2 construct is limited in vivo due to the reasons provided above. But all in all, the foreign parental or mutated SARS fragments could enhance the anti-tumor efficacy of the tumor vaccine against endogenous tumor antigens. As a result, we provide a platform to enhance the adjuvant effect of the foreign peptide by computer prediction.

References

Anichini, A., R. Mortarini, et al. (2006). "Skewed T-cell differentiation in patients with indolent non-Hodgkin lymphoma reversed by ex vivo T-cell culture with gammac cytokines." Blood 107(2): 602-9.
Austin, L. M., M. Ozawa, et al. (1999). "The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients." J Invest Dermatol 113(5): 752-9.
Bakker, A. B., S. H. van der Burg, et al. (1997). "Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope." Int J Cancer 70(3): 302-9.
Banchereau, J. and R. M. Steinman (1998). "Dendritic cells and the control of immunity." Nature 392(6673): 245-52.
Ben-Neriah, Y., G. Q. Daley, et al. (1986)."The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene." Science 233(4760): 212-4.
Boczkowski, D., S. K. Nair, et al. (1996). "Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo." JExp Med 184(2): 465-72.
Boon, T., J. C. Cerottini, et al. (1994). "Tumor-antigens recognized by T lymphocytes." Annu Rev Immunol 12: 337-65.
Bueler, H. and R. C. Mulligan (1996). "Induction of antigen-specific tumor immunity by genetic and cellular vaccines against MAGE: enhanced tumor protection by coexpression of granulocyte-macrophage colony-stimulating factor and B7-1." Mol Med 2(5): 545-55.
Chen, C. H. and T. C. Wu (1998). "Experimental vaccine strategies for cancer immunotherapy." J Biomed Sci 5(4): 231-52.
Chen, Y., D. Hu, et al. (1998). "DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors." Cancer Res 58(9): 1965-71.

Chu, Y., M. Xia, et al. (2006). "Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF." Cancer Gene Ther 13(5): 510-9.
Clairmont, C., K. C. Lee, et al. (2000). "Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium." J Infect Dis 181(6): 1996-2002.
Condon, C., S. C. Watkins, et al. (1996). "DNA-based immunization by in vivo transfection of dendritic cells." Nat Med 2(10): 1122-8.

Conti, P., D. Kempuraj, et al. (2003). "IL-10, an inflammatory/inhibitory cytokine, but not always." Immunol Lett 86(2): 123-9.
Cox, A. L., J. Skipper, et al. (1994). "Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines." Science 264(5159): 716-9.
Dougan G., H. C., Maskell DJ. (1986). "Live oral Salmonella vaccines: potential use of attenuated strains carriers of heterologous antigen to the immune system." Parasite Immunol(9): 151-160.
Dyall, R., W. B. Bowne, et al. (1998). "Heteroclitic immunization induces tumor immunity." J Exp Med 188(9): 1553-61.
Fagan, P. K., S. P. Djordjevic, et al. (1997). "Oral immunization of mice with attenuated Salmonella typhimurium aroA expressing a recombinant Mycoplasma hyopneumoniae antigen (NrdF)." Infect Immun 65(6): 2502-7.
Fahrer, A. M., H. M. Geysen, et al. (1995). "Analysis of the requirements for class II-restricted T cell recognition of a single determinant reveals considerable diversity in the T cell response and degeneracy of peptide binding to I-Ed." $\underline{\text { Immunol }} \mathbf{1 5 5 (6)}$: 2849-57.

Gervois, N., Y. Guilloux, et al. (1996). "Suboptimal activation of melanoma infiltrating lymphocytes (TIL) due to low avidity of TCR/MHC-tumor peptide interactions." J Exp Med 183(5): 2403-7,
Gillespie, G. Y. and S. W. Russell (1978). "Development and persistence of cytolytic T lymphocytes in regressing or progressing Moloney sarcomas." Int J Cancer 21(1): 94-99.
Gomez-Nunez, M., J. Pinilla-Ibarz, et al. (2006). "Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules." Leuk Res.
Gong, J., L. Chen, et al. (1997). "Induction of antigen-specific antitumor immunity with adenovirus-transduced dendritic cells." Gene Ther 4(10): 1023-8.
Halaban, R., S. H. Pomerantz, et al. (1983). "Regulation of tyrosinase in human melanocytes grown in culture." J Cell Biol 97(2): 480-8.
Hans-Georg Rammensee, J. B., Niels Nikolaus Emmerich, Oskar Alexander Bachor, Stefan Stevanovic (1999). SYFPEITHI: database for MHC ligands and peptide motifs.
Hormaeche CE, K. C., Mastroeni P, Villarreal B, Dougan G, Roberts M, et al. (1995). Molecular and clinical aspects of bacterial vaccine development, John Wiley \& Sons Press.
Huang, K. J., I. J. Su, et al. (2005). "An interferon-gamma-related cytokine storm in SARS patients." J Med Virol 75(2): 185-94.
Hundemer, M., S. Schmidt, et al. (2006). "Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma." Exp Hematol 34(4): 486-96.

Jain, A., J. E. Slansky, et al. (2003). "Synergistic effect of a granulocyte-macrophage colony-stimulating factor-transduced tumor vaccine and systemic interleukin-2 in the treatment of murine colorectal cancer hepatic metastases." Ann Surg Oncol 10(7): 810-20.
Janeway, t., Walport, Shlomchik (2005). Immunobiology. New York, Garland Science Publishing.
King, R. J. B. (2000). Cancer Biology. Harlow, Pearson Education Limited.
King, R. J. B. (2000). Oncogenes. Cancer Biology. Harlow, Pearson Education Limited: 79-80.

King, R. J. B. (2000). Oncogenes, repressor genes and viruses. Cancer Biology. Harlow, Pearson Education Limited: 72.
King, R. J. B. (2000). Repressor genes. Cancer Biology. Harlow, Pearson Education Limited: 89.

Kops, S. K., et al. (1997). "Salmonella typhimurium as an anti-cancer vector: localization within solid tumors. ." Proc. Am. Assoc. Cancer Res. 38: 7.
Kounalakis, N. and J. S. Goydos (2005). "Tumor cell and circulating markers in melanoma: diagnosis, prognosis, and management." Curr Oncol Rep 7(5): 377-82.
Lang, R., R. L. Rutschman, et al. (2002). "Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing $\mathrm{LL}-10$ under control of the human CD68 promoter." J Immunol 168(7): 3402-11.
Lee, M. S., L. Wogensen, et al. (1994). "Pancreatic islet production of murine interleukin-10 does not inhibit immune-mediated tissue destruction." J Clin Invest 93(3): 1332-8.
Lee, P. P., C. Yee, et al. (1999). "Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients." Nat Med 5(6): 677-85.
Li, D., H. Li, et al. (2006). "Heat shock fusion protein induces both specific and nonspecific anti-tumor immunity." Eur J Immunol 36(5): 1324-36.
Li, Q., Y. Zhang, et al. (2006). "[Immunotherapeutic efficacy of both helper T lymphocytes and cytotoxic T lymphocytes epitopes augmented dendritic cells tumor vaccine on gastric cancer]." Zhonghua Wei Chang Wai Ke Za Zhi 9(2): 148-51.
Liu, D. L., M. Q. Yang, et al. (1996). "Repeated immunotherapy using intratumoural injection with recombinant interleukin-2 and tumour-infiltrating lymphocytes inhibits growth of breast cancer and induces apoptosis of tumour cells." Cancer Lett 103(2): 131-6.

Lopez, M. V., S. K. Adris, et al. (2005). "IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis." J Immunol 175(9): 5885-94.
Low K, I. M., Lin S, et al (1999). "VNP2009, a genetically modified Salmonella typhimurium for treatment of solid tumors." Proc Natl Acad Sci U S A 40: 87.
Low, K. B., M. Ittensohn, et al. (1999). "Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo." Nat Biotechnol 17(1): 37-41.

Luo X, I. M., Liu Y, et al. (1999). "Genetically modified Salmonella typhimurium inhibited growth of primary tumors and metastases." Proc Natl Acad Sci U S A 40: 87 (Abstr.).
Lurquin, C., A. Van Pel, et al. (1989). "Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells." Cell 58(2): 293-303.
Marshall, D. J., K. A. Rudnick, et al. (2006). "Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine." Vaccine 24(3): 244-53.
Matsumura, M., M. Ijichi, et al. (2001). "Simple quantitative assay of alpha-fetoprotein mRNA in liver tissue using the real-time detection polymerase chain reaction assay its application for clinical use." Hepatol Res 20(1): 84-96.
Mazurek, C. and J. F. Duplan (1959). "[Stimulation \& inhibition of the growth of Ehrlich's ascites carcinoma by irradiated tumor cells.]." Bull Assoc Fr Etud Cancer 46(1): 119-31.
McCoy, M. S., C. I. Bargmann, et al. (1984). "Human colon carcinoma Ki-ras2 oncogene and its corresponding proto-oncogene." Mol Cell Biol 4(8): 1577-82.
Molinier-Frenkel, V., N. Popa, et al. (2006). "Analysis of the intraclonal diversity of HLA-A0201-restricted T lymphocyte epitopes in follicular lymphoma idiotype." Br J Haematol 132(4): 459-68.
Moore, K. W., R. de Waal Malefyt, et al. (2001). "Interleukin-10 and the interleukin-10 receptor." Annu Rev Immunol 19: 683-765.
Morgan, D. J., H. T. Kreuwel, et al. (1998). "Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity." J Immunol 160(2): 643-51.
Moritani, M., K. Yoshimoto, et al. (1994). "Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabetes in non-obese diabetic mice." Int Immunol 6(12): 1927-36.
Muraro, S., A. Bondanza, et al. (2005). "Molecular modification of idiotypes from B-cell lymphomas for expression in mature dendritic cells as a strategy to induce tumor-reactive CD4+ and CD8+ T-cell responses." Blood 105(9): 3596-604.

Nakano, H., T. Kishida, et al. (2006). "Interleukin-21 triggers both cellular and humoral immune responses leading to therapeutic antitumor effects against head and neck squamous cell carcinoma." J Gene Med 8(1): 90-9.
Neumann, F., C. Wagner, et al. (2005). "Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1 and presented by dendritic cells to circulating CD4+ T cells." Blood 106(9): 3105-13.
Pardoll, D. M. (1994). "Tumour antigens. A new look for the 1990s." Nature 369(6479): 357.
Parkhurst, M. R., M. L. Salgaller, et al. (1996). "Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues." J Immunol 157(6): 2539-48.
Pavlenko, M., C. Leder, et al. (2005). "Identification of an immunodominant

H-2D(b)-restricted CTL epitope of human PSA." Prostate 64(1): 50-9.
Pawelek, J. M., K. B. Low, et al. (1997). "Tumor-targeted Salmonella as a novel anticancer vector." Cancer Res 57(20): 4537-44.
Ribas, A., L. H. Butterfield, et al. (1997). "Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells." Cancer Res 57(14): 2865-9.
Rosenberg, S. A. (1996). "The immunotherapy of solid cancers based on cloning the genes encoding tumor-rejection antigens." Annu Rev Med 47: 481-91.
Rosenberg, S. A., J. C. Yang, et al. (1998). "Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma." Nat Med 4(3): 321-7.
Salopek, T. G. and K. Jimbow (1996). "Induction of melanogenesis during the various melanoma growth phases and the role of tyrosinase, lysosome-associated membrane proteins, and p90 calnexin in the melanogenesis cascade." J Investig Dermatol Symp Proc 1(2): 195-202.
Scholl, S. M., J. M. Balloul, et al. (2000). "Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer." J Immunother 23(5): 570-80.
Schultz, J., J. Pavlovic, et al. (2000). "Immune modulation in cancer using DNA inoculation--antitumour effect of interleukin-12." Dev Biol (Basel) 104: 109-14.
Shibata, H. R., L. M. Jerry, et al. (1976). "Immunotherapy of human malignant melanoma with irradiated tumor cells, oral Bacillus Calmette-Guerin, and levamisole." Ann N Y Acad Sci 277(00): 355-66.
Shimizu, M., M. Shimamura, et al. (2006). "Antiangiogenic and antitumor activities of IL-27." J Immunol 176(12): 7317-24.
Slansky, J. E., F. M. Rattis, et al. (2000). "Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex." Immunity 13(4): 529-38.

Somerville, J. E., Jr., L. Cassiano, et al. (1999). "Escherichia coli msbB gene as a virulence factor and a therapeutic target." Infect Immun 67(12): 6583-90.
Song, E. S., V. Lee, et al. (1997). "Antigen presentation in retroviral vector-mediated gene transfer in vivo." Proc Natl Acad Sci U S A 94(5): 1943-8.

Song, W., H. L. Kong, et al. (1997). "Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity." J Exp Med 186(8): 1247-56.
Specht, J. M., G. Wang, et al. (1997). "Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases." $\underline{\mathrm{J}}$ Exp Med 186(8): 1213-21.
Steinman, R. M. (1991). "The dendritic cell system and its role in immunogenicity." Annu

Rev Immunol 9: 271-96.
Sznol, M., S. L. Lin, et al. (2000). "Use of preferentially replicating bacteria for the treatment of cancer." J Clin Invest 105(8): 1027-30.
Takahashi, T., M. M. Nau, et al. (1989). "p53: a frequent target for genetic abnormalities in lung cancer." Science 246(4929): 491-4.
Thompson, J. A., F. Grunert, et al. (1991). "Carcinoembryonic antigen gene family: molecular biology and clinical perspectives." J Clin Lab Anal 5(5): 344-66.
Timmerman, J. M. and R. Levy (1999). "Dendritic cell vaccines for cancer immunotherapy." Annu Rev Med 50: 507-29.
Waeckerle-Men, Y., E. Uetz-von Allmen, et al. (2006). "Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma." Cancer Immunol Immunother.
Wang, R. F. and S. A. Rosenberg (1996). "Human tumor antigens recognized by T lymphocytes: implications for cancer therapy." J Leukoc Biol 60(3): 296-309.
Wogensen, L., X. Huang, et al. (1993). "Leukocyte extravasation into the pancreatic tissue in transgenic mice expressing interleukin 10 in the islets of Langerhans." J Exp Med 178(1): 175-85.
Wogensen, L., M. S. Lee, et al. (1994). "Production of interleukin 10 by islet cells accelerates immune-mediated destruction of beta cells in nonobese diabetic mice." J Exp Med 179(4): 1379-84.
Wong, C. K., C. W. Lam, et al. (2004) "Plasmainflammatory cytokines and chemokines in severe acute respiratory syndrome." Clin Exp Immunol 136(1): 95-103.
Xu, F., Y. J. Ye, et al. (2004). "In vitro antitumor immune response induced by fusion of dendritic cells and colon cancer cells." World J Gastroenterol 10(8): 1162-6.
Yang, J.-M. (2004). "Development and evaluation of a generic evolutionary method for protein-ligand docking." Journal of Computational Chemistry 25: 843-857.
Yang, J.-M. S., T.-W. (2005). "A pharmacohphore-based evoluntionary approach for screening selective estrogen receptor modulators." Proteins: Structure, Function, and Bioinformatics 59: 205-220.
Zhang, Y., J. Li, et al. (2004). "Analysis of serum cytokines in patients with severe acute respiratory syndrome." Infect Immun 72(8): 4410-5.

Appendix

CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG CCCGGGCGTC GGGCGACCTT GGACGTCCGT CGACGCGCGA GCGAGCGAGT GACTCCGGCG GGCCCGTTTC GGGCCCGCAG CCCGCTGGAA TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC ACCAGCGGGC CGGAGTCACT CGCTCGCTCG CGCGTCTCTC CCTCACCGGT TGAGGTAGTG ATCCCCAAGG TGCGGCCGCA CGCGTGGAGC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA ACGCCGGCGT GCGCACCTCG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA TCGGGTATAT TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT ACCTCAAGGC GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGgTTGCTGG GGGCGGGTAA GACGTCAATA ATGACGTATG TTCCCATAGT AACGTCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCAGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG ATAAATGCCA TTTGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCATGCGGG GGATAACTGC TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTCAT GTACTGGAAT ACCCTGAAAG GATGAACCGT GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA CATGTAGATG CATAATCAGT AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGCACCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC AAAACGTGGT AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA TTTAGTTGCC CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT CGGTGGGAGg TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GCCACCCTCC AGATATATTC GTCTCGAGCA AATCACTTGG CAGTCTAGCG GACCTCTGCG GTAGGTGCGA GTTTTGACCT CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGATTC GAATCCCGGC CGGGAACGGT CAAAACTGGA GGTATCTTCT GTGGCCCTGG CTAGGTCGGA GGCGCCTAAG CTTAGGGCCG GCCCTTGCCA GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG TACCGCCTAT AGAGTCTATA GGCCCACAAA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC ATGGCGGATA TCTCAGATAT CCGGGTGTTT AAATGCTTTC TTCTTTTAAT ATACTTTTTT GTTTATCTTA TTTCTAATAC TTTCCCTAAT CTCTTTCTTT TTTACGAAAG AAGAAAATTA TATGAAAAAA CAAATAGAAT AAAGATTATG AAAGGGATTA GAGAAAGAAA CAGGGCAATA ATGATACAAT GTATCATGCC TCTTTGCACC ATTCTAAAGA ATAACAGTGA TAATTTCTGG GTCCCGTTAT TACTATGTTA CATAGTACGG AGAAACGTGG TAAGATTTCT TATTGTCACT ATTAAAGACC GTTAAGGCAA TAGCAATATT TCTGCATATA AATATTTCTG CATATAAATT GTAACTGATG TAAGAGGTTT CAATTCCGTT ATCGTTATAA AGACGTATAT TTATAAAGAC GTATATTTAA CATTGACTAC ATTCTCCAAA CATATTGCTA ATAGCAGCTA CAATCCAGCT ACCATTCTGC TTTTATTTTA TGGTTGGGAT AAGGCTGGAT GTATAACGAT TATCGTCGAT GTTAGGTCGA TGGTAAGACG AAAATAAAAT ACCAACCCTA TTCCGACCTA TATTCTGAGT CCAAGCTAGG CCCTTTTGCT AATCATGTTC ATACCTCTTA TCTTCCTCCC ACAGCTCCTG ATAAGACTCA GGTTCGATCC GGGAAAACGA TTAGTACAAG TATGGAGAAT AGAAGGAGGg TGTCGAGGAC GGCAACGTGC TGGTCTGTGT GCTGGCCCAT CACTTTGGCA AAGAATTGGG ATTCGAACAT CGATTGAATT CCGTTGCACG ACCAGACACA CGACCGGGTA GTGAAACCGT TTCTTAACCC TAAGCTTGTA GCTAACTTAA CATGGAGTCT CCCTCGGCCC CTCCCCACAG ATGGTGCATC CCCTGGCAGA GGCTCCTGCT CACAGGTGAA

GTACCTCAGA GGGAGCCGGG GAGGGGTGTC TACCACGTAG GGGACCGTCT CCGAGGACGA GTGTCCACTT GGGAGGACAA CCTGGGAGAG GGTGGGAGGA GGGAGCTGGG GTCTCCTGGG TAGGACAGGG CTGTGATCTA CCCTCCTGTT GGACCCTCTC CCACCCTCCT CCCTCGACCC CAGAGGACCC ATCCTGTCCC GACACTAGAT GAGTCGACCT GCAGAAGCTT GCCTCGAGCA GCGCTGCTCG AGAGATCTAC GGGTGGCATC CCTGTGACCC CTCAGCTGGA CGTCTTCGAA CGGAGCTCGT CGCGACGAGC TCTCTAGATG CCCACCGTAG GGACACTGGG CTCCCCAGTG CCTCTCCTGG CCCTGGAAGT TGCCACTCCA GTGCCCACCA GCCTTGTCCT AATAAAATTA GAGGGGTCAC GGAGAGGACC GGGACCTTCA ACGGTGAGGT CACGGGTGGT CGGAACAGGA TTATTTTAAT AGTTGCATCA TTTTGTCTGA CTAGGTGTCC TTCTATAATA TTATGGGGTG GAGGGGGGTG GTATGGAGCA TCAACGTAGT AAAACAGACT GATCCACAGG AAGATATTAT AATACCCCAC CTCCCCCCAC CATACCTCGT AgGgGcaigr tggaiagaca AcctgTAggg CCTGCGgggt CTATTGGGAA CCAAGCTGGA GTGCAGTGGC TCCCCGTTCA ACCCTTCTGT TGGACATCCC GGACGCCCCA GATAACCCTT GGTTCGACCT CACGTCACCG ACAATCTTGG CTCACTGCAA TCTCCGCCTC CTGGGTTCAA GCGATTCTCC TGCCTCAGCC TCCCGAGTTG TGTTAGAACC GAGTGACGTT AGAGGCGGAG GACCCAAGTT CGCTAAGAGG ACGGAGTCGG AGGGCTCAAC TTGGGATTCC AGGCATGCAT GACCAGGCTC AGCTAATTTT TGTTTTTTTG GTAGAGACGG GGTTTCACCA AACCCTAAGG TCCGTACGTA CTGGTCCGAG TCGATTAAAA ACAAAAAAAC CATCTCTGCC CCAAAGTGGT TATTGGCCAG GCTGGTCTCC AACTCCTAAT CTCAGGTGAT CTACCCACCT TGGCCTCCCA AATTGCTGGG ATAACCGGTC CGACCAGAGG TTGAGGATTA GAGTCCACTA GATGGGTGGA ACCGGAGGGT TTAACGACCC ATTACAGGCG TGAACCACTG CTCCCTTCCC TGTCCTTCTG ATTTTGTAGG TAACCACGTG CGGACCGAGC TAATGTCCGC ACTTGGTGAC GAGGGAAGGG ACAGGAAGAC TAAAACATCC ATTGGTGCAC GCCTGGCTCG GGCCGCAGGA ACCCCTAGTG ATGGAGTTGG CCACTCCCTC TCTGCGCGCT CGCTCGCTCA CTGAGGCCGG CCGGCGTCCT TGGGGATCAC TACCTCAACC GGTGAGGGAG AGACGCGCGA GCGAGCGAGT GACTCCGGCC GCGACCAAAG GTCGCCCGAC GCCCGGGCTT TGCCCGGGCG GCCTCAGTGA GCGAGCGAGC GCGCAGCTGC CGCTGGTTTC CAGCGGGCTG CGGGCCCGAA ACGGGCCCGC CGGAGTCACT CGCTCGCTCG CGCGTCGACG CTGCAGGGGC GCCTGATGCG GTATTTTCTC CTTACGCATC TGTGCGGTAT TTCACACCGC ATACGTCAAA GACGTCCCCG CGGACTACGC CATAAAAGAG GAATGCGTAG ACACGCCATA AAGTGTGGCG TATGCAGTTT GCAACCATAG TACGCGCCCT GTAGCGGCGC ATTAAGCGCG GCGGGTGTGG TGGTTACGCG CAGCGTGACC CGTTGGTATC ATGCGCGGGA CATCGCCGCG TAATTCGCGC CGCCCACACC ACCAATGCGC GTCGCACTGG GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC ACGTTCGCCG CGATGTGAAC GGTCGCGGGA TCGCGGGCGA GGAAAGCGAA AGAAGGGAAG GAAAGAGCGG TGCAAGCGGC GCTTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTTAGG GTTCCGATTT AGTGCTTTAC GGCACCTCGA CGAAAGGGGC AGTTCGAGAT TTAGCCCCCG AGGGAAATCC CAAGGCTAAA TCACGAAATG CCGTGGAGCT CCCCAAAAAA CTTGATTTGG GTGATGGTTC ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT GGGGTTTTTT GAACTAAACC CACTACCAAG TGCATCACCC GGTAGCGGGA CTATCTGCCA AAAAGCGGGA TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAACACTC AACCCTATCT AACTGCAACC TCAGGTGCAA GAAATTATCA CCTGAGAACA AGGTTTGACC TTGTTGTGAG TTGGGATAGA CGGGCTATTC TTTTGATTTA TAAGGGATTT TGCCGATTTC GGCCTATTGG TTAAAAAATG AGCTGATTTA GCCCGATAAG AAAACTAAAT ATTCCCTAAA ACGGCTAAAG CCGGATAACC AATTTTTTAC TCGACTAAAT ACAAAAATTT AACGCGAATT TTAACAAAAT ATTAACGTTT ACAATTTTAT GGTGCACTCT CAGTACAATC TGTTTTTAAA TTGCGCTTAA AATTGTTTTA TAATTGCAAA TGTTAAAATA CCACGTGAGA GTCATGTTAG

2731	TGCTCTGATG	CCGCATAGTT	AAGCCAGCCC	CGACACCCGC	CAACACCCGC	TGACGCGCCC	TGACGGGCTT
	ACGAGACTAC	GGCGTATCAA	TTCGGTCGGG	GCTGTGGGCG	GTTGTGGGCG	ACTGCGCGGG	ACTGCCCGAA
2801	GTCTGCTCCC	GGCATCCGCT	TACAGACAAG	CTGTGACCGT	CTCCGGGAGC	TGCATGTGTC	AGAGGTTTTC
	CAGACGAGGG	CCGTAGGCGA	ATGTCTGTTC	GACACTGGCA	GAGGCCCTCG	ACGTACACAG	TCTCCAAAAG
2871	ACCGTCATCA	CCGAAACGCG	CGAGACGAAA	GGGCCTCGTG	ATACGCCTAT	TTTTATAGGT	TAATGTCATG
	TGGCAGTAGT	GGCTTTGCGC	GCTCTGCTTT	CCCGGAGCAC	TATGCGGATA	AAAATATCCA	ATTACAGTAC
2941	ATAATAATGG	TTTCTTAGAC	GTCAGGTGGC	ACTTTTCGGG	GAAATGTGCG	CGGAACCCCT	ATTTGTtTAT
	TATTATTACC	AAAGAATCTG	CAGTCCACCG	TGAAAAGCCC	CTTTACACGC	GCCTTGGGGA	TAAACAAATA
3011	TTTTCTAAAT	ACATTCAAAT	ATGTATCCGC	TCATGAGACA	ATAACCCTGA	TAAATGCTTC	AAtAATATTG
	AAAAGATTTA	TGTAAGTTTA	TACATAGGCG	AGTACTCTGT	TATTGGGACT	ATTTACGAAG	TTATTATAAC
3081	AAAAAGGAAG	AGTATGAGTA	TTCAACATTT	CCGTGTCGCC	CTTATTCCCT	TTTTTGCGGC	ATTTTGCCTT
	TTTTTCCTTC	TCATACTCAT	AAGTTGTAAA	GGCACAGCGG	GAATAAGGGA	AAAAACGCCG	TAAAACGGAA
3151	CCTGTtTTTG	CTCACCCAGA	AACGCTGGTG	AAAGTAAAAG	ATGCTGAAGA	TCAGTTGGGT	GCACGAGTGG
	GGACAAAAAC	GAGTGGGTCT	TTGCGACCAC	TTTCATTTTC	TACGACTTCT	AGTCAACCCA	CGTGCTCACC
3221	GTTACATCGA	ACTGGATCTC	CAGCGGTA	AGATCCTTGA	GAGTTTTCGC	CCCGAAGAAC	GTTTTCCAAT
	CAATGTAGCT	TGACCTAGAG	GTCGCCAT	TCTAGGAACT	CTCAAAAGCG	GGGCTTCTTG	CAAAAGGTTA
3291	GATGAGCACT	TTTAAAGTTC	GTATGTGG	GCGGTATTA	TCCCGTATTG	ACGCCGGGCA	AGAGCAACTC
	CTACTCGTGA	AAATTTCAAG	ATACACC	CCAT		TGCGGCCCGT	TCTCGTTGAG
3361	TCGCCGCA	TACACTATTC	CAGAATGAC	TTGGTTGAGT	ACTCACCAGT	CACAGAAAAG	CATCTTACGG
	CCAGCGGCGT	AtGTGATAAG	AGTCTTACTG	CCAACTCA	TGAGTGGTCA	GTGTCTTTTC	GTAGAATGCC
3431	ATGGCATGAC	AGTAAGAGAA	TTATGCAGTG	CTGCCATAAC	CATGAGTGAT	AACACTGCGG	CCAACTTACT
	TACCGTACTG	TCATTCTCTT	AATACGTCAC	GACGGTATTG	GTACTCACTA	TTGTGACGCC	GGTTGAATGA
3501	TCTGACAACG	ATCGGAGGAC	CGAAGGAGCT	AACCGCTTTT	TTGCACAACA	TGGGGGATCA	TGTAACTCGC
	AGACTGTTGC	TAGCCTCCTG	GCTTCCTCGA	TTGGCGAAAA	AACGTGTTGT	ACCCCCTAGT	ACATTGAGCG
3571	CTTGATCGTT	GGGAACCGGA	GCTGAATGAA	GCCATACCAA	ACGACGAGCG	TGACACCACG	ATGCCTGTAG
	GAACTAGCAA	CCCTTGGCCT	CGACTTACTT	CGGTATGGTT	TGCTGCTCGC	ACTGTGGTGC	TACGGACATC
3641	CAATGGCAAC	AACGTTGCGC	AAACTATTAA	CTGGCGAACT	ACTTACTCTA	GCTTCCCGGC	AACAATTAAT
	GTTACCGTTG	TTGCAACGCG	TTTGATAATT	GACCGCTTGA	TGAATGAGAT	CGAAGGGCCG	TTGTTAATTA
3711	AGACTGGATG	GAGGCGGATA	AAGTTGCAGG	ACCACTTCTG	CGCTCGGCCC	TTCCGGCTGG	CTGGTTTATT
	TCTGACCTAC	CTCCGCCTAT	TTCAACGTCC	TGGTGAAGAC	GCGAGCCGGG	AAGGCCGACC	GACCAAATAA
3781	GCTGATAAAT	CTGGAGCCGG	TGAGCGTGGG	TCTCGCGGTA	TCATTGCAGC	ACTGGGGCCA	GATGGTAAGC
	CGACTATTTA	GACCTCGGCC	ACTCGCACCC	AGAGCGCCAT	AGTAACGTCG	TGACCCCGGT	CTACCATTCG
3851	CCTCCCGTAT	CGTAGTTATC	TACACGACGG	GGAGTCAGGC	AACTATGGAT	GAACGAAATA	GACAGATCGC
	GGAGGGCATA	GCATCAATAG	ATGTGCTGCC	CCTCAGTCCG	TTGATACCTA	CTTGCTTTAT	CTGTCTAGCG
3921	TGAGATAGGT	GCCTCACTGA	TTAAGCATTG	GTAACTGTCA	GACCAAGTTT	ACTCATATAT	ACTTTAGATT
	ACTCTATCCA	CGGAGTGACT	AATTCGTAAC	CATTGACAGT	CTGGTTCAAA	TGAGTATATA	TGAAATCTAA
3991	GATTTAAAAC	TTCATTTTTA	ATTTAAAAGG	ATCTAGGTGA	AGATCCTTTT	TGATAATCTC	ATGACCAAAA
	CTAAATTTTG	AAGTAAAAAT	TAAATTTTCC	TAGATCCACT	TCTAGGAAAA	ACTATTAGAG	TACTGGTTTT
4061	TCCCTTAACG	TGAGTTTTCG	TTCCACTGAG	CGTCAGACCC	CGTAGAAAAG	ATCAAAGGAT	CTTCTTGAGA

	AGGGAATTGC	ACTCAAAAGC	AAGGTGACTC	GCAGTCTGGG	GCATCTTTTC	TAGTTTCCTA	GAAGAACTCT
4131	TCCTTTTTTT	CTGCGCGTAA	TCTGCTGCTT	GCAAACAAAA	AAACCACCGC	TACCAGCGGT	GGTTTGTTTG
	AGGAAAAAAA	GACGCGCATT	AGACGACGAA	CGTTTGTTTT	TTTGGTGGCG	ATGGTCGCCA	CCAAACAAAC
4201	CCGGATCAAG	AGCTACCAAC	TCTTTTTCCG	AAGGTAACTG	GCTTCAGCAG	AGCGCAGATA	CCAAATACTG
	GGCCTAGTTC	TCGATGGTTG	AGAAAAAGGC	TTCCATTGAC	CGAAGTCGTC	TCGCGTCTAT	GGTTTATGAC
4271	TCCTTCTAGT	GTAGCCGTAG	TTAGGCCACC	ACTTCAAGAA	CTCTGTAGCA	CCGCCTACAT	ACCTCGCTCT
	AGGAAGATCA	CATCGGCATC	AATCCGGTGG	TGAAGTTCTT	GAGACATCGT	GGCGGATGTA	TGGAGCGAGA
4341	GCTAATCCTG	TTACCAGTGG	CTGCTGCCAG	TGGCGATAAG	TCGTGTCTTA	CCGGGTTGGA	CTCAAGACGA
	CGATTAGGAC	AATGGTCACC	GACGACGGTC	ACCGCTATTC	AGCACAGAAT	GGCCCAACCT	GAGTTCTGCT
4411	TAGTTACCGG	ATAAGGCGCA	GCGGTCGGGC	TGAACGGGGG	GTTCGTGCAC	ACAGCCCAGC	TTGGAGCGAA
	ATCAATGGCC	TATTCCGCGT	CGCCAGCCCG	ACTTGCCCCC	CAAGCACGTG	TGTCGGGTCG	AACCTCGCTT
4481	CGACCTACAC	CGAACTGAGA	TACCTACAGC	GTGAGCTATG	AGAAAGCGCC	ACGCTTCCCG	AAGGGAGAAA
	GCTGGATGTG	GCTTGACTCT	ATGGATGTCG	CACTCGATAC	TCTTTCGCGG	TGCGAAGGGC	TTCCCTCTTT
4551	GGCGGACAGG	TATCCGGTAA	GCGGCAGGGT	CGGAACAGGA	GAGCGCACGA	GGGAGCTTCC	AGGGGGAAAC
	CCGCCTGTCC	ATAGGCCATT	CGCCGTCCCA	GCCTTGTCCT	CTCGCGTGCT	CCCTCGAAGG	TCCCCCTTTG
4621	GCCTGGTATC	TTTATAGTCC	TGTCGGGTTT	CGCCACCTCT	GACTTGAGCG	TCGATTTTTG	TGATGCTCGT
	CGGACCATAG	AAATATCAGG	ACAGCCCAAA	GCGGTGGAGA	CTGAACTCGC	AGCTAAAAAC	ACTACGAGCA
4691	CAGGGGGGCG	GAGCCTATGG	AAAAACGCCA	GCAACGCGGC	CTTTTTACGG	TTCCTGGCCT	TTTGCTGGCC
	GTCCCCCCGC	CTCGGATACC	TTTTTGCGGT	CGTTGCGCCG	GAAAAATGCC	AAGGACCGGA	AAACGACCGG
4761	TTTTGCTCAC	ATGT			5		
	AAAACGAGTG	TACA					

L-ITR

Feature	Nucleotide Position
Left AAV-2 inverted terminal repeat (ITR)	$1-141$
CMV promoter	$150-812$
β-globin intron	$820-1312$
CEA	$1332-1463$
SARS	$1469-1646$
Human growth hormone (hGH) polyA signal	$1681-2159$
Right AAV-2 inverted terminal repeat (ITR)	$2199-2339$
fl origin of ss-DNA replication	$2431-2737$
Ampicillin resistance (bla) ORF	$3256-4113$
pUC origin of replication	$4264-4931$

CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG CCCGGGCGTC GGGCGACCTT GGACGTCCGT CGACGCGCGA GCGAGCGAGT GACTCCGGCG GGCCCGTTTC GGGCCCGCAG CCCGCTGGAA TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC ACCAGCGGGC CGGAGTCACT CGCTCGCTCG CGCGTCTCTC CCTCACCGGT TGAGGTAGTG ATCCCCAAGG TGCGGCCGCA CGCGTGGAGC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA ACGCCGGCGT GCGCACCTCG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA TCGGGTATAT TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT ACCTCAAGGC GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGgTTGCTGG GGGCGGGTAA GACGTCAATA ATGACGTATG TTCCCATAGT AACGTCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCAGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG ATAAATGCCA TTTGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCATGCGGG GGATAACTGC TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTCAT GTACTGGAAT ACCCTGAAAG GATGAACCGT GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA CATGTAGATG CATAATCAGT AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGCACCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC AAAACGTGGT AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA TTTAGTTGCC CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT CGGTGGGAGg TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GCCACCCTCC AGATATATTC GTCTCGAGCA AATCACTTGG CAGTCTAGCG GACCTCTGCG GTAGGTGCGA GTTTTGACCT CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGATTC GAATCCCGGC CGGGAACGGT CAAAACTGGA GGTATCTTCT GTGGCCCTGG CTAGGTCGGA GGCGCCTAAG CTTAGGGCCG GCCCTTGCCA GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG TACCGCCTAT AGAGTCTATA GGCCCACAAA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC ATGGCGGATA TCTCAGATAT CCGGGTGTTT AAATGCTTTC TTCTTTTAAT ATACTTTTTT GTTTATCTTA TTTCTAATAC TTTCCCTAAT CTCTTTCTTT TTTACGAAAG AAGAAAATTA TATGAAAAAA CAAATAGAAT AAAGATTATG AAAGGGATTA GAGAAAGAAA CAGGGCAATA ATGATACAAT GTATCATGCC TCTTTGCACC ATTCTAAAGA ATAACAGTGA TAATTTCTGG GTCCCGTTAT TACTATGTTA CATAGTACGG AGAAACGTGG TAAGATTTCT TATTGTCACT ATTAAAGACC GTTAAGGCAA TAGCAATATT TCTGCATATA AATATTTCTG CATATAAATT GTAACTGATG TAAGAGGTTT CAATTCCGTT ATCGTTATAA AGACGTATAT TTATAAAGAC GTATATTTAA CATTGACTAC ATTCTCCAAA CATATTGCTA ATAGCAGCTA CAATCCAGCT ACCATTCTGC TTTTATTTTA TGGTTGGGAT AAGGCTGGAT GTATAACGAT TATCGTCGAT GTTAGGTCGA TGGTAAGACG AAAATAAAAT ACCAACCCTA TTCCGACCTA TATTCTGAGT CCAAGCTAGG CCCTTTTGCT AATCATGTTC ATACCTCTTA TCTTCCTCCC ACAGCTCCTG ATAAGACTCA GGTTCGATCC GGGAAAACGA TTAGTACAAG TATGGAGAAT AGAAGGAGGg TGTCGAGGAC GGCAACGTGC TGGTCTGTGT GCTGGCCCAT CACTTTGGCA AAGAATTGGG ATTCGAACAT CGATTGAATT CCGTTGCACG ACCAGACACA CGACCGGGTA GTGAAACCGT TTCTTAACCC TAAGCTTGTA GCTAACTTAA CATGGAGTCT CCCTCGGCCC CTCCCCACAG ATGGTGCATC CCCTGGCAGA GGCTCCTGCT CACAGGTGAA

GTACCTCAGA GGGAGCCGGG GAGGGGTGTC TACCACGTAG GGGACCGTCT CCGAGGACGA GTGTCCACTT GGGAGGACAA CCTGGGAGAG GGTGGGAGGA GGGAGCTGGG GTCTCCTGGG TAGGACAGGG CTGTCTAGAA CCCTCCTGTT GGACCCTCTC CCACCCTCCT CCCTCGACCC CAGAGGACCC ATCCTGTCCC GACAGATCTT AAGTCGAGGC GGAGGTACAA ATTGACAGGT TAATTACAGG CAGACTTCAA AGCCTTCAAA CCTATGTAAC TTCAGCTCCG CCTCCATGTT TAACTGTCCA ATTAATGTCC GTCTGAAGTT TCGGAAGTTT GGATACATTG ACAACAACTA ATCAGGATTA AATGGCCTTG GTATGTTTGG CTCGGCTTCA TTGCTGGACT AATTGCCATC TGTTGTTGAT TAGTCCTAAT TTACCGGAAC CATACAAACC GAGCCGAAGT AACGACCTGA TTAACGGTAG GTCATGGTTA CAATCTTGCT TTGTTGCATG ACTTAAAAGC TTGCCTCGAG CAGCGCTGCT CGAGAGATCT CAGTACCAAT GTTAGAACGA AACAACGTAC TGAATTTTCG AACGGAGCTC GTCGCGACGA GCTCTCTAGA ACGGGTGGCA TCCCTGTGAC CCCTCCCCAG TGCCTCTCCT GGCCCTGGAA GTTGCCACTC CAGTGCCCAC TGCCCACCGT AGGGACACTG GGGAGGGGTC ACGGAGAGGA CCGGGACCTT CAACGGTGAG GTCACGGGTG CAGCCTTGTC CTAATAAAAT TAAGTTGCAT CATTTTGTCT GACTAGGTGT CCTTCTATAA TATTATGGGG GTCGGAACAG GATTATTTTA ATTCAACGTA GTAAAACAGA CTGATCCACA GGAAGATATT ATAATACCCC TGGAGGGGGG TGGTATGGAG CAAGGGGCAA GTTGGGAAGA CAACCTGTAG GGCCTGCGGG GTCTATTGGG ACCTCCCCCC ACCATACCTC GTTCCCCGTT CAACCCTTCT GTTGGACATC CCGGACGCCC CAGATAACCC AACCAAGCTG GAGTGCAGTG GCACAATCTT GGCTCACTGC AATCTCCGCC TCCTGGGTTC AAGCGATTCT TTGGTTCGAC CTCACGTCAC CGTGTTAGAA CCGAGTGACG TTAGAGGCGG AGGACCCAAG TTCGCTAAGA CCTGCCTCAG CCTCCCGAGT TGTTGGGATT CCAGGCATGC ATGACCAGGC TCAGCTAATT TTTGTTTTTT GGACGGAGTC GGAGGGCTCA ACAACCCTAA GGTCCGTACG TACTGGTCCG AGTCGATTAA AAACAAAAAA TGGTAGAGAC GGGGTTTCAC CATATTGGCC AGGCTGGTCT CCAACTCCTA ATCTCAGGTG ATCTACCCAC ACCATCTCTG CCCCAAAGTG GTATAACCGG TCCGACCAGA GGTTGAGGAT TAGAGTCCAC TAGATGGGTG CTTGGCCTCC CAAATTGCTG GGATTACAGG CGTGAACCAC TGCTCCCTTC CCTGTCCTTC TGATTTTGTA GAACCGGAGG GTTTAACGAC CCTAATGTCC GCACTTGGTG ACGAGGGAAG GGACAGGAAG ACTAAAACAT GGTAACCACG TGCGGACCGA GCGGCCGCAG GAACCCCTAG TGATGGAGTT GGCCACTCCC TCTCTGCGCG CCATTGGTGC ACGCCTGGCT CGCCGGCGTC CTTGGGGATC ACTACCTCAA CCGGTGAGGG AGAGACGCGC CTCGCTCGCT CACTGAGGCC GGGCGACCAA AGGTCGCCCG ACGCCCGGGC TTTGCCCGGG CGGCCTCAGT GAGCGAGCGA GTGACTCCGG CCCGCTGGTT TCCAGCGGGC TGCGGGCCCG AAACGGGCCC GCCGGAGTCA GAGCGAGCGA GCGCGCAGCT GCCTGCAGGG GCGCCTGATG CGGTATTTTC TCCTTACGCA TCTGTGCGGT CTCGCTCGCT CGCGCGTCGA CGGACGTCCC CGCGGACTAC GCCATAAAAG AGGAATGCGT AGACACGCCA ATTTCACACC GCATACGTCA AAGCAACCAT AGTACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT TAAAGTGTGG CGTATGCAGT TTCGTTGGTA TCATGCGCGG GACATCGCCG CGTAATTCGC GCCGCCCACA GGTGGTTACG CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC TTTCTTCCCT CCACCAATGC GCGTCGCACT GGCGATGTGA ACGGTCGCGG GATCGCGGGC GAGGAAAGCG AAAGAAGGGA TCCTTTCTCG CCACGTTCGC CGGCTTTCCC CGTCAAGCTC TAAATCGGGG GCTCCCTTTA GGGTTCCGAT AGGAAAGAGC GGTGCAAGCG GCCGAAAGGG GCAGTTCGAG ATTTAGCCCC CGAGGGAAAT CCCAAGGCTA TTAGTGCTTT ACGGCACCTC GACCCCAAAA AACTTGATTT GGGTGATGGT TCACGTAGTG GGCCATCGCC AATCACGAAA TGCCGTGGAG CTGGGGTTTT TTGAACTAAA CCCACTACCA AGTGCATCAC CCGGTAGCGG CTGATAGACG GTTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA GTGGACTCTT GTTCCAAACT GACTATCTGC CAAAAAGCGG GAAACTGCAA CCTCAGGTGC AAGAAATTAT CACCTGAGAA CAAGGTTTGA

2731	GGAACAACAC	TCAACCCTAT	CTCGGGCTAT	TCTTTTGATT	TATAAGGGAT	TTTGCCGATT	TCGGCCTATT
	CCTTGTTGTG	AGTTGGGATA	GAGCCCGATA	AGAAAACTAA	ATATTCCCTA	AAACGGCTAA	AGCCGGATAA
2801	GGTTAAAAAA	TGAGCTGATT	TAACAAAAAT	TTAACGCGAA	TTTTAACAAA	ATATTAACGT	TTACAATTTT
	CCAATTTTTT	ACTCGACTAA	ATTGTTTTTA	AATTGCGCTT	AAAATTGTTT	TATAATTGCA	AATGTTAAAA
2871	ATGGTGCACT	CTCAGTACAA	TCTGCTCTGA	TGCCGCATAG	TTAAGCCAGC	CCCGACACCC	GCCAACACCC
	TACCACGTGA	GAGTCATGTT	AGACGAGACT	ACGGCGTATC	AATTCGGTCG	GGGCTGTGGG	CGGTTGTGGG
2941	GCTGACGCGC	CCTGACGGGC	TTGTCTGCTC	CCGGCATCCG	CTTACAGACA	AGCTGTGACC	GTCTCCGGGA
	CGACTGCGCG	GGACTGCCCG	AACAGACGAG	GGCCGTAGGC	GAATGTCTGT	TCGACACTGG	CAGAGGCCCT
3011	GCTGCATGTG	TCAGAGGTTT	TCACCGTCAT	CACCGAAACG	CGCGAGACGA	AAGGGCCTCG	TGATACGCCT
	CGACGTACAC	AGTCTCCAAA	AGTGGCAGTA	GTGGCTTTGC	GCGCTCTGCT	TTCCCGGAGC	ACTATGCGGA
3081	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	GCACTTTTCG	GGGAAATGTG
	TAAAAATATC	CAATTACAGT	ACTATTATTA	CCAAAGAATC	TGCAGTCCAC	CGTGAAAAGC	CCCTTTACAC
3151	CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	AtATGTATCC	GCTCATGAGA	CAATAACCCT
	GCGCCTTGGG	GATAAACAAA	TAAAAAGATT	TATGTAAGTT	TATACATAGG	CGAGTACTCT	GTTATTGGGA
3221	GATAAATGCT	TCAATAATAT	TGAAAAAGGA	AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC
	CTATTTACGA	Agttattata	тTтTTCCT	TCTCATACTC	ATAAGTTGTA	AAGGCACAGC	GGGAATAAGG
3291	CTTTTTTGCG	GCATTTTGCC	CCTGTTTT	GCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA
	GAAAAAACGC	CGTAAAACGG	ACAAAA	GAGTC		TTTCATTT	TCTACGACTT
3361	GATCAGTTGG	GTGCACGAGT	GGGTTACATC		TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC
	CTAGTCAACC	CACGTGCTCA	CCCAATGTAG	TGACCTAG	AGTTGTCGCC	TTCTAGGAA	CTCTCAAAAG
3431	GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CITTIAAAGT	TCTGCTATGT	GGCGCGGTAT	TATCCCGTAT
	CGGGGCTTCT	TGCAAAAGGT	TACTACTCGT	GAAAATTTCA	AGACGATACA	CCGCGCCATA	ATAGGGCATA
3501	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA
	ACTGCGGCCC	GTTCTCGTTG	AGCCAGCGGC	GTATGTGATA	AGAGTCTTAC	TGAACCAACT	CATGAGTGGT
3571	GTCACAGAAA	AgCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG
	CAGTGTCTTT	TCGTAGAATG	CCTACCGTAC	TGTCATTCTC	TTAATACGTC	ACGACGGTAT	TGGTACTCAC
3641	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA
	TATTGTGACG	CCGGTTGAAT	GAAGACTGTT	GCTAGCCTCC	TGGCTTCCTC	GATTGGCGAA	AAAACGTGTT
3711	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG
	GTACCCCCTA	GTACATTGAG	CGGAACTAGC	AACCCTTGGC	CTCGACTTAC	TTCGGTATGG	TTTGCTGCTC
3781	CGTGACACCA	CGATGCCTGT	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC
	GCACTGTGGT	GCTACGGACA	TCGTTACCGT	TGTTGCAACG	CGTtTGATAA	TTGACCGCTT	GATGAATGAG
3851	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC
	ATCGAAGGGC	CGTtGTtAAT	TATCTGACCT	ACCTCCGCCT	ATTTCAACGT	CCTGGTGAAG	ACGCGAGCCG
3921	CCTTCCGGCT	GGCTGGTtTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA
	GGAAGGCCGA	CCGACCAAAT	AACGACTATT	TAGACCTCGG	CCACTCGCAC	CCAGAGCGCC	ATAGTAACGT
3991	GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG
	CGTGACCCCG	GTCTACCATT	CGGGAGGGCA	TAGCATCAAT	AGATGTGCTG	CCCCTCAGTC	CGTTGATACC
4061	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT

	TACTTGCTTT	ATCTGTCTAG	CGACTCTATC	CACGGAGTGA	CTAATTCGTA	ACCATTGACA	GTCTGGTTCA
4131	TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT
	AATGAGTATA	TATGAAATCT	AACTAAATTT	TGAAGTAAAA	ATTAAATTTT	CCTAGATCCA	CTTCTAGGAA
4201	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA
	AAACTATTAG	AGTACTGGTT	TTAGGGAATT	GCACTCAAAA	GCAAGGTGAC	TCGCAGTCTG	GGGCATCTTT
4271	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC
	TCTAGTTTCC	TAGAAGAACT	CTAGGAAAAA	AAGACGCGCA	TTAGACGACG	AACGTTTGTT	TTTTTGGTGG
4341	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC
	CGATGGTCGC	CACCAAACAA	ACGGCCTAGT	TCTCGATGGT	TGAGAAAAAG	GCTTCCATTG	ACCGAAGTCG
4411	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG
	TCTCGCGTCT	ATGGTTTATG	ACAGGAAGAT	CACATCGGCA	TCAATCCGGT	GGTGAAGTTC	TTGAGACATC
4481	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT
	GTGGCGGATG	TATGGAGCGA	GACGATTAGG	ACAATGGTCA	CCGACGACGG	TCACCGCTAT	TCAGCACAGA
4551	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC
	ATGGCCCAAC	CTGAGTTCTG	CTATCAATGG	CCTATTCCGC	GTCGCCAGCC	CGACTTGCCC	CCCAAGCACG
4621	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG
	TGTGTCGGGT	CGAACCTCGC	TTGCTGGATG	TGGCTTGACT	CTATGGATGT	CGCACTCGAT	ACTCTTTCGC
4691	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC
	GGTGCGAAGG	GCTTCCCTCT	TTCCGCCTGT	CCATAGGCCA	TTCGCCGTCC	CAGCCTTGTC	CTCTCGCGTG
4761	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG
	CTCCCTCGAA	GGTCCCCCTT	TGCGGACCAT	AGAAATATCA	GGACAGCCCA	AAGCGGTGGA	GACTGAACTC
4831	CGTCGATTTT	TGTGATGCTC	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC
	GCAGCTAAAA	ACACTACGAG	CAGTCCCCCC	GCCTCGGATA	CCTTTTTGCG	GTCGTTGCGC	CGGAAAAATG
4901	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGT			
	CCAAGGACCG	GAAAACGACC	GGAAAACGAG	TGTACA			

Feature	Nucleotide Position
Left AAV-2 inverted terminal repeat (ITR)	$1-141$
CMV promoter	$150-812$
β-globin intron	$820-1312$
CEA	$1332-1463$
SARS	$1469-1646$
Human growth hormone (hGH) polyA signal	$1681-2159$
Right AAV-2 inverted terminal repeat (ITR)	$2199-2339$
fl origin of ss-DNA replication	$2431-2737$
Ampicillin resistance (bla) ORF	$3256-4113$
pUC origin of replication	$4264-4931$

CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG CCCGGGCGTC GGGCGACCTT GGACGTCCGT CGACGCGCGA GCGAGCGAGT GACTCCGGCG GGCCCGTTTC GGGCCCGCAG CCCGCTGGAA TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC ACCAGCGGGC CGGAGTCACT CGCTCGCTCG CGCGTCTCTC CCTCACCGGT TGAGGTAGTG ATCCCCAAGG TGCGGCCGCA CGCGTGGAGC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA ACGCCGGCGT GCGCACCTCG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA TCGGGTATAT TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT ACCTCAAGGC GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGgTTGCTGG GGGCGGGTAA GACGTCAATA ATGACGTATG TTCCCATAGT AACGTCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCAGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG ATAAATGCCA TTTGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCATGCGGG GGATAACTGC TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTCAT GTACTGGAAT ACCCTGAAAG GATGAACCGT GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA CATGTAGATG CATAATCAGT AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGCACCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC AAAACGTGGT AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA TTTAGTTGCC CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT CGGTGGGAGg TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GCCACCCTCC AGATATATTC GTCTCGAGCA AATCACTTGG CAGTCTAGCG GACCTCTGCG GTAGGTGCGA GTTTTGACCT CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGATTC GAATCCCGGC CGGGAACGGT CAAAACTGGA GGTATCTTCT GTGGCCCTGG CTAGGTCGGA GGCGCCTAAG CTTAGGGCCG GCCCTTGCCA GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG TACCGCCTAT AGAGTCTATA GGCCCACAAA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC ATGGCGGATA TCTCAGATAT CCGGGTGTTT AAATGCTTTC TTCTTTTAAT ATACTTTTTT GTTTATCTTA TTTCTAATAC TTTCCCTAAT CTCTTTCTTT TTTACGAAAG AAGAAAATTA TATGAAAAAA CAAATAGAAT AAAGATTATG AAAGGGATTA GAGAAAGAAA CAGGGCAATA ATGATACAAT GTATCATGCC TCTTTGCACC ATTCTAAAGA ATAACAGTGA TAATTTCTGG GTCCCGTTAT TACTATGTTA CATAGTACGG AGAAACGTGG TAAGATTTCT TATTGTCACT ATTAAAGACC GTTAAGGCAA TAGCAATATT TCTGCATATA AATATTTCTG CATATAAATT GTAACTGATG TAAGAGGTTT CAATTCCGTT ATCGTTATAA AGACGTATAT TTATAAAGAC GTATATTTAA CATTGACTAC ATTCTCCAAA CATATTGCTA ATAGCAGCTA CAATCCAGCT ACCATTCTGC TTTTATTTTA TGGTTGGGAT AAGGCTGGAT GTATAACGAT TATCGTCGAT GTTAGGTCGA TGGTAAGACG AAAATAAAAT ACCAACCCTA TTCCGACCTA TATTCTGAGT CCAAGCTAGG CCCTTTTGCT AATCATGTTC ATACCTCTTA TCTTCCTCCC ACAGCTCCTG ATAAGACTCA GGTTCGATCC GGGAAAACGA TTAGTACAAG TATGGAGAAT AGAAGGAGGg TGTCGAGGAC GGCAACGTGC TGGTCTGTGT GCTGGCCCAT CACTTTGGCA AAGAATTGGG ATTCGAACAT CGATTGAATT CCGTTGCACG ACCAGACACA CGACCGGGTA GTGAAACCGT TTCTTAACCC TAAGCTTGTA GCTAACTTAA CATGGAGTCT CCCTCGGCCC CTCCCCACAG ATGGTGCATC CCCTGGCAGA GGCTCCTGCT CACAGGTGAA

GTACCTCAGA GGGAGCCGGG GAGGGGTGTC TACCACGTAG GGGACCGTCT CCGAGGACGA GTGTCCACTT GGGAGGACAA CCTGGGAGAG GGTGGGAGGA GGGAGCTGGG GTCTCCTGGG TAGGACAGGG CTGTCTAGAA CCCTCCTGTT GGACCCTCTC CCACCCTCCT CCCTCGACCC CAGAGGACCC ATCCTGTCCC GACAGATCTT AAGTCGAGGC GGAGGTACAA ATTGACAGGT TAATTACAGG CAGACTTCAA AGCCTTCAAA CCTATGTAAC TTCAGCTCCG CCTCCATGTT TAACTGTCCA ATTAATGTCC GTCTGAAGTT TCGGAAGTTT GGATACATTG ACAACAACTA ATCAGGATTA AATGGCCTTG GTATGTTTGG CTCGGCTTCA TTATTGGACT AATTGCCATC TGTTGTTGAT TAGTCCTAAT TTACCGGAAC CATACAAACC GAGCCGAAGT AATAACCTGA TTAACGGTAG GTCATGGTTA CAATCTTGCT TTGTTGCATG ACTTAAAAGC TTGCCTCGAG CAGCGCTGCT CGAGAGATCT CAGTACCAAT GTTAGAACGA AACAACGTAC TGAATTTTCG AACGGAGCTC GTCGCGACGA GCTCTCTAGA ACGGGTGGCA TCCCTGTGAC CCCTCCCCAG TGCCTCTCCT GGCCCTGGAA GTTGCCACTC CAGTGCCCAC TGCCCACCGT AGGGACACTG GGGAGGGGTC ACGGAGAGGA CCGGGACCTT CAACGGTGAG GTCACGGGTG CAGCCTTGTC CTAATAAAAT TAAGTTGCAT CATTTTGTCT GACTAGGTGT CCTTCTATAA TATTATGGGG GTCGGAACAG GATTATTTTA ATTCAACGTA GTAAAACAGA CTGATCCACA GGAAGATATT ATAATACCCC TGGAGGGGGG TGGTATGGAG CAAGGGGCAA GTTGGGAAGA CAACCTGTAG GGCCTGCGGG GTCTATTGGG ACCTCCCCCC ACCATACCTC GTTCCCCGTT CAACCCTTCT GTTGGACATC CCGGACGCCC CAGATAACCC AACCAAGCTG GAGTGCAGTG GCACAATCTT GGCTCACTGC AATCTCCGCC TCCTGGGTTC AAGCGATTCT TTGGTTCGAC CTCACGTCAC CGTGTTAGAA CCGAGTGACG TTAGAGGCGG AGGACCCAAG TTCGCTAAGA CCTGCCTCAG CCTCCCGAGT TGTTGGGATT CCAGGCATGC ATGACCAGGC TCAGCTAATT TTTGTTTTTT GGACGGAGTC GGAGGGCTCA ACAACCCTAA GGTCCGTACG TACTGGTCCG AGTCGATTAA AAACAAAAAA TGGTAGAGAC GGGGTTTCAC CATATTGGCC AGGCTGGTCT CCAACTCCTA ATCTCAGGTG ATCTACCCAC ACCATCTCTG CCCCAAAGTG GTATAACCGG TCCGACCAGA GGTTGAGGAT TAGAGTCCAC TAGATGGGTG CTTGGCCTCC CAAATTGCTG GGATTACAGG CGTGAACCAC TGCTCCCTTC CCTGTCCTTC TGATTTTGTA GAACCGGAGG GTTTAACGAC CCTAATGTCC GCACTTGGTG ACGAGGGAAG GGACAGGAAG ACTAAAACAT GGTAACCACG TGCGGACCGA GCGGCCGCAG GAACCCCTAG TGATGGAGTT GGCCACTCCC TCTCTGCGCG CCATTGGTGC ACGCCTGGCT CGCCGGCGTC CTTGGGGATC ACTACCTCAA CCGGTGAGGG AGAGACGCGC CTCGCTCGCT CACTGAGGCC GGGCGACCAA AGGTCGCCCG ACGCCCGGGC TTTGCCCGGG CGGCCTCAGT GAGCGAGCGA GTGACTCCGG CCCGCTGGTT TCCAGCGGGC TGCGGGCCCG AAACGGGCCC GCCGGAGTCA GAGCGAGCGA GCGCGCAGCT GCCTGCAGGG GCGCCTGATG CGGTATTTTC TCCTTACGCA TCTGTGCGGT CTCGCTCGCT CGCGCGTCGA CGGACGTCCC CGCGGACTAC GCCATAAAAG AGGAATGCGT AGACACGCCA ATTTCACACC GCATACGTCA AAGCAACCAT AGTACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT TAAAGTGTGG CGTATGCAGT TTCGTTGGTA TCATGCGCGG GACATCGCCG CGTAATTCGC GCCGCCCACA GGTGGTTACG CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC TTTCTTCCCT CCACCAATGC GCGTCGCACT GGCGATGTGA ACGGTCGCGG GATCGCGGGC GAGGAAAGCG AAAGAAGGGA TCCTTTCTCG CCACGTTCGC CGGCTTTCCC CGTCAAGCTC TAAATCGGGG GCTCCCTTTA GGGTTCCGAT AGGAAAGAGC GGTGCAAGCG GCCGAAAGGG GCAGTTCGAG ATTTAGCCCC CGAGGGAAAT CCCAAGGCTA TTAGTGCTTT ACGGCACCTC GACCCCAAAA AACTTGATTT GGGTGATGGT TCACGTAGTG GGCCATCGCC AATCACGAAA TGCCGTGGAG CTGGGGTTTT TTGAACTAAA CCCACTACCA AGTGCATCAC CCGGTAGCGG CTGATAGACG GTTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA GTGGACTCTT GTTCCAAACT GACTATCTGC CAAAAAGCGG GAAACTGCAA CCTCAGGTGC AAGAAATTAT CACCTGAGAA CAAGGTTTGA

2731	GGAACAACAC	TCAACCCTAT	CTCGGGCTAT	TCTTTTGATT	TATAAGGGAT	TTTGCCGATT	TCGGCCTATT
	CCTTGTTGTG	AGTTGGGATA	GAGCCCGATA	AGAAAACTAA	ATATTCCCTA	AAACGGCTAA	AGCCGGATAA
2801	GGTTAAAAAA	TGAGCTGATT	TAACAAAAAT	TTAACGCGAA	TTTTAACAAA	ATATTAACGT	TTACAATTTT
	CCAATTTTTT	ACTCGACTAA	ATTGTTTTTA	AATTGCGCTT	AAAATTGTTT	TATAATTGCA	AATGTTAAAA
2871	ATGGTGCACT	CTCAGTACAA	TCTGCTCTGA	TGCCGCATAG	TTAAGCCAGC	CCCGACACCC	GCCAACACCC
	TACCACGTGA	GAGTCATGTT	AGACGAGACT	ACGGCGTATC	AATTCGGTCG	GGGCTGTGGG	CGGTTGTGGG
2941	GCTGACGCGC	CCTGACGGGC	TTGTCTGCTC	CCGGCATCCG	CTTACAGACA	AGCTGTGACC	GTCTCCGGGA
	CGACTGCGCG	GGACTGCCCG	AACAGACGAG	GGCCGTAGGC	GAATGTCTGT	TCGACACTGG	CAGAGGCCCT
3011	GCTGCATGTG	TCAGAGGTTT	TCACCGTCAT	CACCGAAACG	CGCGAGACGA	AAGGGCCTCG	TGATACGCCT
	CGACGTACAC	AGTCTCCAAA	AGTGGCAGTA	GTGGCTTTGC	GCGCTCTGCT	TTCCCGGAGC	ACTATGCGGA
3081	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	GCACTTTTCG	GGGAAATGTG
	TAAAAATATC	CAATTACAGT	ACTATTATTA	CCAAAGAATC	TGCAGTCCAC	CGTGAAAAGC	CCCTTTACAC
3151	CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	AtATGTATCC	GCTCATGAGA	CAATAACCCT
	GCGCCTTGGG	GATAAACAAA	TAAAAAGATT	TATGTAAGTT	TATACATAGG	CGAGTACTCT	GTTATTGGGA
3221	GATAAATGCT	TCAATAATAT	TGAAAAAGGA	AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC
	CTATTTACGA	Agttattata	тTтTTCCT	TCTCATACTC	ATAAGTTGTA	AAGGCACAGC	GGGAATAAGG
3291	CTTTTTTGCG	GCATTTTGCC	CCTGTTTT	GCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA
	GAAAAAACGC	CGTAAAACGG	ACAAAA	GAGTC		TTTCATTT	TCTACGACTT
3361	GATCAGTTGG	GTGCACGAGT	GGGTTACATC		TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC
	CTAGTCAACC	CACGTGCTCA	CCCAATGTAG	TGACCTAG	AGTTGTCGCC	TTCTAGGAA	CTCTCAAAAG
3431	GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CITTIAAAGT	TCTGCTATGT	GGCGCGGTAT	TATCCCGTAT
	CGGGGCTTCT	TGCAAAAGGT	TACTACTCGT	GAAAATTTCA	AGACGATACA	CCGCGCCATA	ATAGGGCATA
3501	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA
	ACTGCGGCCC	GTTCTCGTTG	AGCCAGCGGC	GTATGTGATA	AGAGTCTTAC	TGAACCAACT	CATGAGTGGT
3571	GTCACAGAAA	AgCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG
	CAGTGTCTTT	TCGTAGAATG	CCTACCGTAC	TGTCATTCTC	TTAATACGTC	ACGACGGTAT	TGGTACTCAC
3641	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA
	TATTGTGACG	CCGGTTGAAT	GAAGACTGTT	GCTAGCCTCC	TGGCTTCCTC	GATTGGCGAA	AAAACGTGTT
3711	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG
	GTACCCCCTA	GTACATTGAG	CGGAACTAGC	AACCCTTGGC	CTCGACTTAC	TTCGGTATGG	TTTGCTGCTC
3781	CGTGACACCA	CGATGCCTGT	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC
	GCACTGTGGT	GCTACGGACA	TCGTTACCGT	TGTTGCAACG	CGTtTGATAA	TTGACCGCTT	GATGAATGAG
3851	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC
	ATCGAAGGGC	CGTtGTtAAT	TATCTGACCT	ACCTCCGCCT	ATTTCAACGT	CCTGGTGAAG	ACGCGAGCCG
3921	CCTTCCGGCT	GGCTGGTtTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA
	GGAAGGCCGA	CCGACCAAAT	AACGACTATT	TAGACCTCGG	CCACTCGCAC	CCAGAGCGCC	ATAGTAACGT
3991	GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG
	CGTGACCCCG	GTCTACCATT	CGGGAGGGCA	TAGCATCAAT	AGATGTGCTG	CCCCTCAGTC	CGTTGATACC
4061	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT

	TACTTGCTTT	ATCTGTCTAG	CGACTCTATC	CACGGAGTGA	CTAATTCGTA	ACCATTGACA	GTCTGGTTCA
4131	TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT
	AATGAGTATA	TATGAAATCT	AACTAAATTT	TGAAGTAAAA	ATTAAATTTT	CCTAGATCCA	CTTCTAGGAA
4201	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA
	AAACTATTAG	AGTACTGGTT	TTAGGGAATT	GCACTCAAAA	GCAAGGTGAC	TCGCAGTCTG	GGGCATCTTT
4271	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC
	TCTAGTTTCC	TAGAAGAACT	CTAGGAAAAA	AAGACGCGCA	TTAGACGACG	AACGTTTGTT	TTTTTGGTGG
4341	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC
	CGATGGTCGC	CACCAAACAA	ACGGCCTAGT	TCTCGATGGT	TGAGAAAAAG	GCTTCCATTG	ACCGAAGTCG
4411	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG
	TCTCGCGTCT	ATGGTTTATG	ACAGGAAGAT	CACATCGGCA	TCAATCCGGT	GGTGAAGTTC	TTGAGACATC
4481	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT
	GTGGCGGATG	TATGGAGCGA	GACGATTAGG	ACAATGGTCA	CCGACGACGG	TCACCGCTAT	TCAGCACAGA
4551	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC
	ATGGCCCAAC	CTGAGTTCTG	CTATCAATGG	CCTATTCCGC	GTCGCCAGCC	CGACTTGCCC	CCCAAGCACG
4621	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG
	TGTGTCGGGT	CGAACCTCGC	TTGCTGGATG	TGGCTTGACT	CTATGGATGT	CGCACTCGAT	ACTCTTTCGC
4691	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC
	GGTGCGAAGG	GCTTCCCTCT	TTCCGCCTGT	CCATAGGCCA	TTCGCCGTCC	CAGCCTTGTC	CTCTCGCGTG
4761	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG
	CTCCCTCGAA	GGTCCCCCTT	TGCGGACCAT	AGAAATATCA	GGACAGCCCA	AAGCGGTGGA	GACTGAACTC
4831	CGTCGATTTT	TGTGATGCTC	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC
	GCAGCTAAAA	ACACTACGAG	CAGTCCCCCC	GCCTCGGATA	CCTTTTTGCG	GTCGTTGCGC	CGGAAAAATG
4901	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGT			
	CCAAGGACCG	GAAAACGACC	GGAAAACGAG	TGTACA			

Feature	Nucleotide Position
Left AAV-2 inverted terminal repeat (ITR)	$1-141$
CMV promoter	$150-812$
β-globin intron	$820-1312$
CEA	$1332-1463$
SARS	$1469-1646$
Human growth hormone (hGH) polyA signal	$1681-2159$
Right AAV-2 inverted terminal repeat (ITR)	$2199-2339$
fl origin of ss-DNA replication	$2431-2737$
Ampicillin resistance (bla) ORF	$3256-4113$
pUC origin of replication	$4264-4931$

CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG CCCGGGCGTC GGGCGACCTT GGACGTCCGT CGACGCGCGA GCGAGCGAGT GACTCCGGCG GGCCCGTTTC GGGCCCGCAG CCCGCTGGAA TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC ACCAGCGGGC CGGAGTCACT CGCTCGCTCG CGCGTCTCTC CCTCACCGGT TGAGGTAGTG ATCCCCAAGG TGCGGCCGCA CGCGTGGAGC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA ACGCCGGCGT GCGCACCTCG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA TCGGGTATAT TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT ACCTCAAGGC GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGgTTGCTGG GGGCGGGTAA GACGTCAATA ATGACGTATG TTCCCATAGT AACGTCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCAGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG ATAAATGCCA TTTGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCATGCGGG GGATAACTGC TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTCAT GTACTGGAAT ACCCTGAAAG GATGAACCGT GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA CATGTAGATG CATAATCAGT AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGCACCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC AAAACGTGGT AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA TTTAGTTGCC CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT CGGTGGGAGg TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GCCACCCTCC AGATATATTC GTCTCGAGCA AATCACTTGG CAGTCTAGCG GACCTCTGCG GTAGGTGCGA GTTTTGACCT CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGATTC GAATCCCGGC CGGGAACGGT CAAAACTGGA GGTATCTTCT GTGGCCCTGG CTAGGTCGGA GGCGCCTAAG CTTAGGGCCG GCCCTTGCCA GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG TACCGCCTAT AGAGTCTATA GGCCCACAAA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC ATGGCGGATA TCTCAGATAT CCGGGTGTTT AAATGCTTTC TTCTTTTAAT ATACTTTTTT GTTTATCTTA TTTCTAATAC TTTCCCTAAT CTCTTTCTTT TTTACGAAAG AAGAAAATTA TATGAAAAAA CAAATAGAAT AAAGATTATG AAAGGGATTA GAGAAAGAAA CAGGGCAATA ATGATACAAT GTATCATGCC TCTTTGCACC ATTCTAAAGA ATAACAGTGA TAATTTCTGG GTCCCGTTAT TACTATGTTA CATAGTACGG AGAAACGTGG TAAGATTTCT TATTGTCACT ATTAAAGACC GTTAAGGCAA TAGCAATATT TCTGCATATA AATATTTCTG CATATAAATT GTAACTGATG TAAGAGGTTT CAATTCCGTT ATCGTTATAA AGACGTATAT TTATAAAGAC GTATATTTAA CATTGACTAC ATTCTCCAAA CATATTGCTA ATAGCAGCTA CAATCCAGCT ACCATTCTGC TTTTATTTTA TGGTTGGGAT AAGGCTGGAT GTATAACGAT TATCGTCGAT GTTAGGTCGA TGGTAAGACG AAAATAAAAT ACCAACCCTA TTCCGACCTA TATTCTGAGT CCAAGCTAGG CCCTTTTGCT AATCATGTTC ATACCTCTTA TCTTCCTCCC ACAGCTCCTG ATAAGACTCA GGTTCGATCC GGGAAAACGA TTAGTACAAG TATGGAGAAT AGAAGGAGGg TGTCGAGGAC GGCAACGTGC TGGTCTGTGT GCTGGCCCAT CACTTTGGCA AAGAATTGGG ATTCGAACAT CGATTGAATT CCGTTGCACG ACCAGACACA CGACCGGGTA GTGAAACCGT TTCTTAACCC TAAGCTTGTA GCTAACTTAA CATGGAGTCT CCCTCGGCCC CTCCCCACAG ATGGTGCATC CCCTGGCAGA GGCTCCTGCT CACAGGTGAA

GTACCTCAGA GGGAGCCGGG GAGGGGTGTC TACCACGTAG GGGACCGTCT CCGAGGACGA GTGTCCACTT GGGAGGACAA CCTGGGAGAG GGTGGGAGGA GGGAGCTGGG GTCTCCTGGG TAGGACAGGG CTGTCTAGAA CCCTCCTGTT GGACCCTCTC CCACCCTCCT CCCTCGACCC CAGAGGACCC ATCCTGTCCC GACAGATCTT AAGTCGAGGC GGAGGTACAA ATTGACAGGT TAATTACAGG CAGACTTCAA AGCCTTCAAA CCTATGTAAC TTCAGCTCCG CCTCCATGTT TAACTGTCCA ATTAATGTCC GTCTGAAGTT TCGGAAGTTT GGATACATTG ACAACAACTA ATCAGGATTA AATGGCCTTG GTATGTTTGG CTCGGCACCA TTATTGGACT AATTGCCATC TGTTGTTGAT TAGTCCTAAT TTACCGGAAC CATACAAACC GAGCCGTGGT AATAACCTGA TTAACGGTAG GTCATGGTTA CAATCTTGCT TTGTTGCATG ACTTAAAAGC TTGCCTCGAG CAGCGCTGCT CGAGAGATCT CAGTACCAAT GTTAGAACGA AACAACGTAC TGAATTTTCG AACGGAGCTC GTCGCGACGA GCTCTCTAGA ACGGGTGGCA TCCCTGTGAC CCCTCCCCAG TGCCTCTCCT GGCCCTGGAA GTTGCCACTC CAGTGCCCAC TGCCCACCGT AGGGACACTG GGGAGGGGTC ACGGAGAGGA CCGGGACCTT CAACGGTGAG GTCACGGGTG CAGCCTTGTC CTAATAAAAT TAAGTTGCAT CATTTTGTCT GACTAGGTGT CCTTCTATAA TATTATGGGG GTCGGAACAG GATTATTTTA ATTCAACGTA GTAAAACAGA CTGATCCACA GGAAGATATT ATAATACCCC TGGAGGGGGG TGGTATGGAG CAAGGGGCAA GTTGGGAAGA CAACCTGTAG GGCCTGCGGG GTCTATTGGG ACCTCCCCCC ACCATACCTC GTTCCCCGTT CAACCCTTCT GTTGGACATC CCGGACGCCC CAGATAACCC AACCAAGCTG GAGTGCAGTG GCACAATCTT GGCTCACTGC AATCTCCGCC TCCTGGGTTC AAGCGATTCT TTGGTTCGAC CTCACGTCAC CGTGTTAGAA CCGAGTGACG TTAGAGGCGG AGGACCCAAG TTCGCTAAGA CCTGCCTCAG CCTCCCGAGT TGTTGGGATT CCAGGCATGC ATGACCAGGC TCAGCTAATT TTTGTTTTTT GGACGGAGTC GGAGGGCTCA ACAACCCTAA GGTCCGTACG TACTGGTCCG AGTCGATTAA AAACAAAAAA TGGTAGAGAC GGGGTTTCAC CATATTGGCC AGGCTGGTCT CCAACTCCTA ATCTCAGGTG ATCTACCCAC ACCATCTCTG CCCCAAAGTG GTATAACCGG TCCGACCAGA GGTTGAGGAT TAGAGTCCAC TAGATGGGTG CTTGGCCTCC CAAATTGCTG GGATTACAGG CGTGAACCAC TGCTCCCTTC CCTGTCCTTC TGATTTTGTA GAACCGGAGG GTTTAACGAC CCTAATGTCC GCACTTGGTG ACGAGGGAAG GGACAGGAAG ACTAAAACAT GGTAACCACG TGCGGACCGA GCGGCCGCAG GAACCCCTAG TGATGGAGTT GGCCACTCCC TCTCTGCGCG CCATTGGTGC ACGCCTGGCT CGCCGGCGTC CTTGGGGATC ACTACCTCAA CCGGTGAGGG AGAGACGCGC CTCGCTCGCT CACTGAGGCC GGGCGACCAA AGGTCGCCCG ACGCCCGGGC TTTGCCCGGG CGGCCTCAGT GAGCGAGCGA GTGACTCCGG CCCGCTGGTT TCCAGCGGGC TGCGGGCCCG AAACGGGCCC GCCGGAGTCA GAGCGAGCGA GCGCGCAGCT GCCTGCAGGG GCGCCTGATG CGGTATTTTC TCCTTACGCA TCTGTGCGGT CTCGCTCGCT CGCGCGTCGA CGGACGTCCC CGCGGACTAC GCCATAAAAG AGGAATGCGT AGACACGCCA ATTTCACACC GCATACGTCA AAGCAACCAT AGTACGCGCC CTGTAGCGGC GCATTAAGCG CGGCGGGTGT TAAAGTGTGG CGTATGCAGT TTCGTTGGTA TCATGCGCGG GACATCGCCG CGTAATTCGC GCCGCCCACA GGTGGTTACG CGCAGCGTGA CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCTTTCGC TTTCTTCCCT CCACCAATGC GCGTCGCACT GGCGATGTGA ACGGTCGCGG GATCGCGGGC GAGGAAAGCG AAAGAAGGGA TCCTTTCTCG CCACGTTCGC CGGCTTTCCC CGTCAAGCTC TAAATCGGGG GCTCCCTTTA GGGTTCCGAT AGGAAAGAGC GGTGCAAGCG GCCGAAAGGG GCAGTTCGAG ATTTAGCCCC CGAGGGAAAT CCCAAGGCTA TTAGTGCTTT ACGGCACCTC GACCCCAAAA AACTTGATTT GGGTGATGGT TCACGTAGTG GGCCATCGCC AATCACGAAA TGCCGTGGAG CTGGGGTTTT TTGAACTAAA CCCACTACCA AGTGCATCAC CCGGTAGCGG CTGATAGACG GTTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA GTGGACTCTT GTTCCAAACT GACTATCTGC CAAAAAGCGG GAAACTGCAA CCTCAGGTGC AAGAAATTAT CACCTGAGAA CAAGGTTTGA

2731	GGAACAACAC	TCAACCCTAT	CTCGGGCTAT	TCTTTTGATT	TATAAGGGAT	TTTGCCGATT	TCGGCCTATT
	CCTTGTTGTG	AGTTGGGATA	GAGCCCGATA	AGAAAACTAA	ATATTCCCTA	AAACGGCTAA	AGCCGGATAA
2801	GGTTAAAAAA	TGAGCTGATT	TAACAAAAAT	TTAACGCGAA	TTTTAACAAA	ATATTAACGT	TTACAATTTT
	CCAATTTTTT	ACTCGACTAA	ATTGTTTTTA	AATTGCGCTT	AAAATTGTTT	TATAATTGCA	AATGTTAAAA
2871	ATGGTGCACT	CTCAGTACAA	TCTGCTCTGA	TGCCGCATAG	TTAAGCCAGC	CCCGACACCC	GCCAACACCC
	TACCACGTGA	GAGTCATGTT	AGACGAGACT	ACGGCGTATC	AATTCGGTCG	GGGCTGTGGG	CGGTTGTGGG
2941	GCTGACGCGC	CCTGACGGGC	TTGTCTGCTC	CCGGCATCCG	CTTACAGACA	AGCTGTGACC	GTCTCCGGGA
	CGACTGCGCG	GGACTGCCCG	AACAGACGAG	GGCCGTAGGC	GAATGTCTGT	TCGACACTGG	CAGAGGCCCT
3011	GCTGCATGTG	TCAGAGGTTT	TCACCGTCAT	CACCGAAACG	CGCGAGACGA	AAGGGCCTCG	TGATACGCCT
	CGACGTACAC	AGTCTCCAAA	AGTGGCAGTA	GTGGCTTTGC	GCGCTCTGCT	TTCCCGGAGC	ACTATGCGGA
3081	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	GCACTTTTCG	GGGAAATGTG
	TAAAAATATC	CAATTACAGT	ACTATTATTA	CCAAAGAATC	TGCAGTCCAC	CGTGAAAAGC	CCCTTTACAC
3151	CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	AtATGTATCC	GCTCATGAGA	CAATAACCCT
	GCGCCTTGGG	GATAAACAAA	TAAAAAGATT	TATGTAAGTT	TATACATAGG	CGAGTACTCT	GTTATTGGGA
3221	GATAAATGCT	TCAATAATAT	TGAAAAAGGA	AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC
	CTATTTACGA	Agttattata	тTтTTCCT	TCTCATACTC	ATAAGTTGTA	AAGGCACAGC	GGGAATAAGG
3291	CTTTTTTGCG	GCATTTTGCC	CCTGTTTT	GCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA
	GAAAAAACGC	CGTAAAACGG	ACAAAA	GAGTC		TTTCATTT	TCTACGACTT
3361	GATCAGTTGG	GTGCACGAGT	GGGTTACATC		TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC
	CTAGTCAACC	CACGTGCTCA	CCCAATGTAG	TGACCTAG	AGTTGTCGCC	TTCTAGGAA	CTCTCAAAAG
3431	GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CITTIAAAGT	TCTGCTATGT	GGCGCGGTAT	TATCCCGTAT
	CGGGGCTTCT	TGCAAAAGGT	TACTACTCGT	GAAAATTTCA	AGACGATACA	CCGCGCCATA	ATAGGGCATA
3501	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA
	ACTGCGGCCC	GTTCTCGTTG	AGCCAGCGGC	GTATGTGATA	AGAGTCTTAC	TGAACCAACT	CATGAGTGGT
3571	GTCACAGAAA	AgCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG
	CAGTGTCTTT	TCGTAGAATG	CCTACCGTAC	TGTCATTCTC	TTAATACGTC	ACGACGGTAT	TGGTACTCAC
3641	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA
	TATTGTGACG	CCGGTTGAAT	GAAGACTGTT	GCTAGCCTCC	TGGCTTCCTC	GATTGGCGAA	AAAACGTGTT
3711	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG
	GTACCCCCTA	GTACATTGAG	CGGAACTAGC	AACCCTTGGC	CTCGACTTAC	TTCGGTATGG	TTTGCTGCTC
3781	CGTGACACCA	CGATGCCTGT	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC
	GCACTGTGGT	GCTACGGACA	TCGTTACCGT	TGTTGCAACG	CGTtTGATAA	TTGACCGCTT	GATGAATGAG
3851	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC
	ATCGAAGGGC	CGTtGTtAAT	TATCTGACCT	ACCTCCGCCT	ATTTCAACGT	CCTGGTGAAG	ACGCGAGCCG
3921	CCTTCCGGCT	GGCTGGTtTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA
	GGAAGGCCGA	CCGACCAAAT	AACGACTATT	TAGACCTCGG	CCACTCGCAC	CCAGAGCGCC	ATAGTAACGT
3991	GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG
	CGTGACCCCG	GTCTACCATT	CGGGAGGGCA	TAGCATCAAT	AGATGTGCTG	CCCCTCAGTC	CGTTGATACC
4061	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT

	TACTTGCTTT	ATCTGTCTAG	CGACTCTATC	CACGGAGTGA	CTAATTCGTA	ACCATTGACA	GTCTGGTTCA
4131	TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT
	AATGAGTATA	TATGAAATCT	AACTAAATTT	TGAAGTAAAA	ATTAAATTTT	CCTAGATCCA	CTTCTAGGAA
4201	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA
	AAACTATTAG	AGTACTGGTT	TTAGGGAATT	GCACTCAAAA	GCAAGGTGAC	TCGCAGTCTG	GGGCATCTTT
4271	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC
	TCTAGTTTCC	TAGAAGAACT	CTAGGAAAAA	AAGACGCGCA	TTAGACGACG	AACGTTTGTT	TTTTTGGTGG
4341	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC
	CGATGGTCGC	CACCAAACAA	ACGGCCTAGT	TCTCGATGGT	TGAGAAAAAG	GCTTCCATTG	ACCGAAGTCG
4411	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG
	TCTCGCGTCT	ATGGTTTATG	ACAGGAAGAT	CACATCGGCA	TCAATCCGGT	GGTGAAGTTC	TTGAGACATC
4481	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT
	GTGGCGGATG	TATGGAGCGA	GACGATTAGG	ACAATGGTCA	CCGACGACGG	TCACCGCTAT	TCAGCACAGA
4551	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC
	ATGGCCCAAC	CTGAGTTCTG	CTATCAATGG	CCTATTCCGC	GTCGCCAGCC	CGACTTGCCC	CCCAAGCACG
4621	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG
	TGTGTCGGGT	CGAACCTCGC	TTGCTGGATG	TGGCTTGACT	CTATGGATGT	CGCACTCGAT	ACTCTTTCGC
4691	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	GGTATCCGG	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC
	GGTGCGAAGG	GCTTCCCTCT	TTCCGCCTGT	CCATAGGCCA	TTCGCCGTCC	CAGCCTTGTC	CTCTCGCGTG
4761	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG
	CTCCCTCGAA	GGTCCCCCTT	TGCGGACCAT	AGAAATATCA	GGACAGCCCA	AAGCGGTGGA	GACTGAACTC
4831	CGTCGATTTT	TGTGATGCTC	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC
	GCAGCTAAAA	ACACTACGAG	CAGTCCCCCC	GCCTCGGATA	CCTTTTTGCG	GTCGTTGCGC	CGGAAAAATG
4901	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGT			
	CCAAGGACCG	GAAAACGACC	GGAAAACGAG	TGTACA			

CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG CCCGGGCGTC GGGCGACCTT GGACGTCCGT CGACGCGCGA GCGAGCGAGT GACTCCGGCG GGCCCGTTTC GGGCCCGCAG CCCGCTGGAA TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC ACCAGCGGGC CGGAGTCACT CGCTCGCTCG CGCGTCTCTC CCTCACCGGT TGAGGTAGTG ATCCCCAAGG TGCGGCCGCA CGCGTGGAGC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA ACGCCGGCGT GCGCACCTCG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA TCGGGTATAT TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT ACCTCAAGGC GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGgTTGCTGG GGGCGGGTAA GACGTCAATA ATGACGTATG TTCCCATAGT AACGTCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCAGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG ATAAATGCCA TTTGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCATGCGGG GGATAACTGC TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTCAT GTACTGGAAT ACCCTGAAAG GATGAACCGT GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA CATGTAGATG CATAATCAGT AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGCACCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC AAAACGTGGT AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA TTTAGTTGCC CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT CGGTGGGAGg TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GCCACCCTCC AGATATATTC GTCTCGAGCA AATCACTTGG CAGTCTAGCG GACCTCTGCG GTAGGTGCGA GTTTTGACCT CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGATTC GAATCCCGGC CGGGAACGGT CAAAACTGGA GGTATCTTCT GTGGCCCTGG CTAGGTCGGA GGCGCCTAAG CTTAGGGCCG GCCCTTGCCA GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG TACCGCCTAT AGAGTCTATA GGCCCACAAA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC ATGGCGGATA TCTCAGATAT CCGGGTGTTT AAATGCTTTC TTCTTTTAAT ATACTTTTTT GTTTATCTTA TTTCTAATAC TTTCCCTAAT CTCTTTCTTT TTTACGAAAG AAGAAAATTA TATGAAAAAA CAAATAGAAT AAAGATTATG AAAGGGATTA GAGAAAGAAA CAGGGCAATA ATGATACAAT GTATCATGCC TCTTTGCACC ATTCTAAAGA ATAACAGTGA TAATTTCTGG GTCCCGTTAT TACTATGTTA CATAGTACGG AGAAACGTGG TAAGATTTCT TATTGTCACT ATTAAAGACC GTTAAGGCAA TAGCAATATT TCTGCATATA AATATTTCTG CATATAAATT GTAACTGATG TAAGAGGTTT CAATTCCGTT ATCGTTATAA AGACGTATAT TTATAAAGAC GTATATTTAA CATTGACTAC ATTCTCCAAA CATATTGCTA ATAGCAGCTA CAATCCAGCT ACCATTCTGC TTTTATTTTA TGGTTGGGAT AAGGCTGGAT GTATAACGAT TATCGTCGAT GTTAGGTCGA TGGTAAGACG AAAATAAAAT ACCAACCCTA TTCCGACCTA TATTCTGAGT CCAAGCTAGG CCCTTTTGCT AATCATGTTC ATACCTCTTA TCTTCCTCCC ACAGCTCCTG ATAAGACTCA GGTTCGATCC GGGAAAACGA TTAGTACAAG TATGGAGAAT AGAAGGAGGg TGTCGAGGAC GGCAACGTGC TGGTCTGTGT GCTGGCCCAT CACTTTGGCA AAGAATTGGG ATTCGAACAT CGATTGAATT CCGTTGCACG ACCAGACACA CGACCGGGTA GTGAAACCGT TTCTTAACCC TAAGCTTGTA GCTAACTTAA CATGGAGTCT CCCTCGGCCC CTCCCCACAG ATGGTGCATC CCCTGGCAGA GGCTCCTGCT CACAGGTGAA

GTACCTCAGA GGGAGCCGGG GAGGGGTGTC TACCACGTAG GGGACCGTCT CCGAGGACGA GTGTCCACTT GGGAGGACAA CCTGGGAGAG GGTGGGAGGA GGGAGCTGGG GTCTCCTGGG TAGGACAGGG CTGTCTAGAA CCCTCCTGTT GGACCCTCTC CCACCCTCCT CCCTCGACCC CAGAGGACCC ATCCTGTCCC GACAGATCTT AAGTCGAGGC GGAGGTACAA ATTGACAGGT TAATTACAGG CAGACTTCAA AGCCTTCAAA CCTATGTAAC TTCAGCTCCG CCTCCATGTT TAACTGTCCA ATTAATGTCC GTCTGAAGTT TCGGAAGTTT GGATACATTG ACAACAACTA ATCAGGATTA AATGGCCTTG GTATGTTCCA CTCGGCACCA TTATTGGACT AATTGCCATC TGTTGTTGAT TAGTCCTAAT TTACCGGAAC CATACAAGGT GAGCCGTGGT AATAACCTGA TTAACGGTAG GTCATGGTTA CAATCTTGCT TTGTTGCATG ACTAAGCTTG CCTCGAGCAG CGCTGCTCGA GAGATCTACG CAGTACCAAT GTTAGAACGA AACAACGTAC TGATTCGAAC GGAGCTCGTC GCGACGAGCT CTCTAGATGC GGTGGCATCC CTGTGACCCC TCCCCAGTGC CTCTCCTGGC CCTGGAAGTT GCCACTCCAG TGCCCACCAG CCACCGTAGG GACACTGGGG AGGGGTCACG GAGAGGACCG GGACCTTCAA CGGTGAGGTC ACGGGTGGTC CCTTGTCCTA ATAAAATTAA GTTGCATCAT TTTGTCTGAC TAGGTGTCCT TCTATAATAT TATGGGGTGG GGAACAGGAT TATTTTAATT CAACGTAGTA AAACAGACTG ATCCACAGGA AGATATTATA ATACCCCACC AGgGGgGTGG TATGGAGCAA GGGGCAAGTT GGGAAGACAA CCTGTAGGGC CTGCGGGGTC TATTGGGAAC TCCCCCCACC ATACCTCGTT CCCCGTTCAA CCCTTCTGTT GGACATCCCG GACGCCCCAG ATAACCCTTG CAAGCTGGAG TGCAGTGGCA CAATCTTGGC TCACTGCAAT CTCCGCCTCC TGGGTTCAAG CGATTCTCCT GTTCGACCTC ACGTCACCGT GTTAGAACCG AGTGACGTTA GAGGCGGAGG ACCCAAGTTC GCTAAGAGGA GCCTCAGCCT CCCGAGTTGT TGGGATTCCA GGCATGCATG ACCAGGCTCA GCTAATTTTT GTTTTTTTGG CGGAGTCGGA GGGCTCAACA ACCCTAAGGT CCGTACGTAC TGGTCCGAGT CGATTAAAAA CAAAAAAACC TAGAGACGGG GTTTCACCAT ATTGGCCAGG CTGGTCTCCA ACTCCTAATC TCAGGTGATC TACCCACCTT ATCTCTGCCC CAAAGTGGTA TAACCGGTCC GACCAGAGGT TGAGGATTAG AGTCCACTAG ATGGGTGGAA GGCCTCCCAA ATTGCTGGGA TTACAGGCGT GAACCACTGC TCCCTTCCCT GTCCTTCTGA TTTTGTAGGT CCGGAGGGTT TAACGACCCT AATGTCCGCA CTTGGTGACG AGGGAAGGGA CAGGAAGACT AAAACATCCA AACCACGTGC GGACCGAGCG GCCGCAGGAA CCCCTAGTGA TGGAGTTGGC CACTCCCTCT CTGCGCGCTC TTGGTGCACG CCTGGCTCGC CGGCGTCCTT GGGGATCACT ACCTCAACCG GTGAGGGAGA GACGCGCGAG GCTCGCTCAC TGAGGCCGGG CGACCAAAGG TCGCCCGACG CCCGGGCTTT GCCCGGGCGG CCTCAGTGAG CGAGCGAGTG ACTCCGGCCC GCTGGTTTCC AGCGGGCTGC GGGCCCGAAA CGGGCCCGCC GGAGTCACTC CGAGCGAGCG CGCAGCTGCC TGCAGGGGCG CCTGATGCGG TATTTTCTCC TTACGCATCT GTGCGGTATT GCTCGCTCGC GCGTCGACGG ACGTCCCCGC GGACTACGCC ATAAAAGAGG AATGCGTAGA CACGCCATAA TCACACCGCA TACGTCAAAG CAACCATAGT ACGCGCCCTG TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT AgTGTGGCGT ATGCAGTTTC GTTGGTATCA TGCGCGGGAC ATCGCCGCGT AATTCGCGCC GCCCACACCA GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC CTTTCGCTTT CTTCCCTTCC CCAATGCGCG TCGCACTGGC GATGTGAACG GTCGCGGGAT CGCGGGCGAG GAAAGCGAAA GAAGGGAAGG TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGGCT CCCTTTAGGG TTCCGATTTA AAAGAGCGGT GCAAGCGGCC GAAAGGGGCA GTTCGAGATT TAGCCCCCGA GGGAAATCCC AAGGCTAAAT GTGCTTTACG GCACCTCGAC CCCAAAAAAC TTGATTTGGG TGATGGTTCA CGTAGTGGGC CATCGCCCTG CACGAAATGC CGTGGAGCTG GGGTTTTTTG AACTAAACCC ACTACCAAGT GCATCACCCG GTAGCGGGAC ATAGACGGTT TTTCGCCCTT TGACGTTGGA GTCCACGTTC TTTAATAGTG GACTCTTGTT CCAAACTGGA TATCTGCCAA AAAGCGGGAA ACTGCAACCT CAGGTGCAAG AAATTATCAC CTGAGAACAA GGTTTGACCT

2731	AСAACACTCA	AСССТАТСТС	GGGCTATTCT	TTTGATTTAT	AAGGGATTTT	GCCGATTTCG	GCCTATTGGT
	TGTTGTGAGT	TGGGATAGAG	CCCGATAAGA	AAACTAAATA	TTCCCTAAAA	CGGCTAAAGC	CGGATAACCA
2801	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA	ACGCGAATTT	TAACAAAATA	TTAACGTTTA	CAATtTtatg
	ATTTTTTACT	CGACTAAATT	Gtttttanat	TGCGCTTAAA	ATTGTTTTAT	AATTGCAAAT	GTTAAAATAC
2871	GTGCACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAGCCCC	GACACCCGCC	AACACCCGCT
	CACGTGAGAG	TCATGTTAGA	CGAGACTACG	GCGTATCAAT	TCGGTCGGGG	CTGTGGGCGG	TTGTGGGCGA
2941	GACGCGCCCT	GACGGGCTTG	TCTGCTCCCG	GCATCCGCTT	ACAGACAAGC	TGTGACCGTC	TCCGGGAGCT
	CTGCGCGGGA	CTGCCCGAAC	AGACGAGGGC	CGTAGGCGAA	TGTCTGTtCG	ACACTGGCAG	AGGCCCTCGA
3011	GCATGTGTCA	GAGGTTTTCA	CCGTCATCAC	CGAAACGCGC	GAGACGAAAG	GGCCTCGTGA	TACGCCTATT
	CGTACACAGT	CTCCAAAAGT	GGCAGTAGTG	GCTTTGCGCG	CTCTGCTTTC	CCGGAGCACT	Atgcgatat
3081	TTTATAGGTT	AATGTCATGA	TAATAATGGT	TTCTTAGACG	TCAGGTGGCA	CTTTTCGGGG	AAATGTGCGC
	AAATATCCAA	TTACAGTACT	ATTATTACCA	AAGAATCTGC	AGTCCACCGT	GAAAAGCCCC	TTTACACGCG
3151	GGAACCCCTA	TTTGTTTATT	TTTCTAAATA	CATTCAAATA	TGTATCCGCT	CATGAGACAA	TAACCCTGAT
	CCTTGGGGAT	AAACAAATAA	AAAGATTTAT	GTAAGTTTAT	ACATAGGCGA	GTACTCTGTT	ATTGGGACTA
3221	AAATGCTTCA	ATAATATTGA	AAAAGGAAGA	GTATGAGTAT	TCAACATTTC	CGTGTCGCCC	TTATTCCCTT
	TTTACGAAGT	TATTATAACT	TTTTCCTTCT	CATACTCATA	AGTTGTAAAG	GCACAGCGGG	AATAAGGGAA
3291	TTTTGCGGCA	TTTTGCCTTC	CTGTTTTTGC	CACCCAGAA	ACGCTGGTGA	AAGTAAAAGA	TGCTGAAGAT
	AAAACGCCGT	AAAACGGAAG	AACG	[GGG		TTCATTTTCT	ACGACTTCTA
3361	CAGTTGGGTG	CACGAGTGGG	ACATCGAA	CTGGATCTCA	ACAGCGGTAA	GATCCTTGAG	AGTTTTCGCC
	GTCAACCCAC	GCTCACCC		CCTAGAGT	TGTCGCCATT	CTAGGAACTC	TCAAAAGCGG
3431	CCGAAGAACG	TTTTCCAATG	ATGAGCACTT	ITAAAGTTCT	GCTATGTGGC	GCGGTATTAT	CCCGTATTGA
	GGCTTCTTGC	AAAAGGTTAC	TACTCGTGAA	AATTTCAAGA	CGATACACCG	CGCCATAATA	GGGCATAACT
3501	CGCCGGGCAA	GAGCAACTCG	GTCGCCGCAT	ACACTATTCT	CAGAATGACT	TGGTTGAGTA	CTCACCAGTC
	GCGGCCCGTT	CTCGTTGAGC	CAGCGGCGTA	TGTGATAAGA	GTCTTACTGA	ACCAACTCAT	GAGTGGTCAG
3571	ACAGAAAAGC	ATCTTACGGA	TGGCATGACA	GTAAGAGAAT	TATGCAGTGC	TGCCATAACC	ATGAGTGATA
	TGTCTTTTCG	TAGAATGCCT	ACCGTACTGT	САтTСТСТTA	ATACGTCACG	ACGGTATTGG	TACTCACTAT
3641	ACACTGCGGC	CAACTTACTT	CTGACAACGA	TCGGAGGACC	GAAGGAGCTA	ACCGCTTTTT	TGCACAACAT
	TGTGACGCCG	GTTGAATGAA	GACTGTTGCT	AGCCTCCTGG	CTTCCTCGAT	TGGCGAAAAA	ACGTGTTGTA
3711	GGGGGATCAT	GTAACTCGCC	TTGATCGTTG	GGAACCGGAG	CTGAATGAAG	CCATACCAAA	CGACGAGCGT
	CCCCCTAGTA	CATTGAGCGG	AACTAGCAAC	CCTTGGCCTC	GACTTACTTC	GGTATGGTTT	GCTGCTCGCA
3781	GACACCACGA	TGCCTGTAGC	AATGGCAACA	ACGTTGCGCA	AACTATTAAC	TGGCGAACTA	CTTACTCTAG
	CTGTGGTGCT	ACGGACATCG	TTACCGTTGT	TGCAACGCGT	TTGATAATTG	ACCGCTTGAT	GAATGAGATC
3851	CTTCCCGGCA	ACAATTAATA	GACTGGATGG	AGGCGGAtAA	AGTTGCAGGA	CCACTTCTGC	GCTCGGCCCT
	GAAGGGCCGT	tgttanttat	CTGACCTACC	TCCGCCTATT	TCAACGTCCT	GGTGAAGACG	CGAGCCGGGA
3921	TCCGGCTGGC	TGGTTTATTG	CTGATAAATC	TGGAGCCGGT	GAGCGTGGGT	CTCGCGGTAT	CATTGCAGCA
	AGGCCGACCG	ACCAAATAAC	GACTATTTAG	ACCTCGGCCA	CTCGCACCCA	GAGCGCCATA	GTAACGTCGT
3991	CTGGGGCCAG	Atggtalgcc	CTCCCGTATC	GTAGTTATCT	ACACGACGGG	GAGTCAGGCA	ACTATGGATG
	GACCCCGGTC	TACCATTCGG	GAGGGCATAG	CATCAATAGA	TGTGCTGCCC	CTCAGTCCGT	TGATACCTAC
4061	AACGAAATAG	ACAGATCGCT	GAGATAGGTG	CCTCACTGAT	TAAGCATTGG	TAACTGTCAG	ACCAAGTTTA

	TTGCTTTATC	TGTCTAGCGA	CTCTATCCAC	GGAGTGACTA	ATTCGTAACC	ATTGACAGTC	TGGTTCAAAT
4131	CTCATATATA	CTTTAGATTG	ATTTAAAACT	TCATTTTTAA	TTTAAAAGGA	TCTAGGTGAA	GATCCTTTTT
	GAGTATATAT	GAAATCTAAC	TAAATTTTGA	AGTAAAAATT	AAATTTTCCT	AGATCCACTT	CTAGGAAAAA
4201	GATAATCTCA	TGACCAAAAT	CCCTTAACGT	GAGTTTTCGT	TCCACTGAGC	GTCAGACCCC	GTAGAAAAGA
	CTATTAGAGT	ACTGGTTTTA	GGGAATTGCA	CTCAAAAGCA	AGGTGACTCG	CAGTCTGGGG	CATCTTTTCT
4271	TCAAAGGATC	TTCTTGAGAT	CCTTTTTTTC	TGCGCGTAAT	CTGCTGCTTG	CAAACAAAAA	AACCACCGCT
	AGTTTCCTAG	AAGAACTCTA	GGAAAAAAAG	ACGCGCATTA	GACGACGAAC	GTTTGTTTTT	TTGGTGGCGA
4341	ACCAGCGGTG	GTTTGTTTGC	CGGATCAAGA	GCTACCAACT	CTTTTTCCGA	AGGTAACTGG	CTTCAGCAGA
	TGGTCGCCAC	CAAACAAACG	GCCTAGTTCT	CGATGGTTGA	GAAAAAGGCT	TCCATTGACC	GAAGTCGTCT
4411	GCGCAGATAC	CAAATACTGT	CCTTCTAGTG	TAGCCGTAGT	TAGGCCACCA	CTTCAAGAAC	TCTGTAGCAC
	CGCGTCTATG	GTTTATGACA	GGAAGATCAC	ATCGGCATCA	ATCCGGTGGT	GAAGTTCTTG	AGACATCGTG
4481	CGCCTACATA	CCTCGCTCTG	CTAATCCTGT	TACCAGTGGC	TGCTGCCAGT	GGCGATAAGT	CGTGTCTTAC
	GCGGATGTAT	GGAGCGAGAC	GATTAGGACA	ATGGTCACCG	ACGACGGTCA	CCGCTATTCA	GCACAGAATG
4551	CGGGTTGGAC	TCAAGACGAT	AGTTACCGGA	TAAGGCGCAG	CGGTCGGGCT	GAACGGGGGG	TTCGTGCACA
	GCCCAACCTG	AGTTCTGCTA	TCAATGGCCT	ATTCCGCGTC	GCCAGCCCGA	CTTGCCCCCC	AAGCACGTGT
4621	CAGCCCAGCT	TGGAGCGAAC	GACCTACACC	GAACTGAGAT	ACCTACAGCG	TGAGCTATGA	GAAAGCGCCA
	GTCGGGTCGA	ACCTCGCTTG	CTGGATGTGG	CTTGACTCTA	TGGATGTCGC	ACTCGATACT	CTTTCGCGGT
4691	CGCTTCCCGA	AGGGAGAAAG	GCGGACAGGT	ATCCGGTAAG	CGGCAGGGTC	GGAACAGGAG	AGCGCACGAG
	GCGAAGGGCT	TCCCTCTTTC	CGCCTGTCCA	TAGGCCATTC	GCCGTCCCAG	CCTTGTCCTC	TCGCGTGCTC
4761	GGAGCTTCCA	GGGGGAAACG	CCTGGTATCT	TTATAGTCCT	GTCGGGTTTC	GCCACCTCTG	ACTTGAGCGT
	CCTCGAAGGT	CCCCCTTTGC	GGACCATAGA	AATATCAGGA	CAGCCCAAAG	CGGTGGAGAC	TGAACTCGCA
4831	CGATTTTTGT	GATGCTCGTC	AGGGGGGCGG	AGCCTATGGA	AAAACGCCAG	CAACGCGGCC	TTTTTACGGT
	GCTAAAAACA	CTACGAGCAG	TCCCCCCGCC	TCGGATACCT	TTTTGCGGTC	GTTGCGCCGG	AAAAATGCCA
4901	TCCTGGCCTT	TTGCTGGCCT	TTTGCTCACA	TGT			
	AGGACCGGAA	AACGACCGGA	AAACGAGTGT	ACA			

Amp resistance ORF	

CCTGCAGGCA GCTGCGCGCT CGCTCGCTCA CTGAGGCCGC CCGGGCAAAG CCCGGGCGTC GGGCGACCTT GGACGTCCGT CGACGCGCGA GCGAGCGAGT GACTCCGGCG GGCCCGTTTC GGGCCCGCAG CCCGCTGGAA TGGTCGCCCG GCCTCAGTGA GCGAGCGAGC GCGCAGAGAG GGAGTGGCCA ACTCCATCAC TAGGGGTTCC ACCAGCGGGC CGGAGTCACT CGCTCGCTCG CGCGTCTCTC CCTCACCGGT TGAGGTAGTG ATCCCCAAGG TGCGGCCGCA CGCGTGGAGC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA ACGCCGGCGT GCGCACCTCG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA TCGGGTATAT TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC CCCGCCCATT ACCTCAAGGC GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGgTTGCTGG GGGCGGGTAA GACGTCAATA ATGACGTATG TTCCCATAGT AACGTCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCAGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC CCTATTGACG ATAAATGCCA TTTGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCATGCGGG GGATAACTGC TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTCAT GTACTGGAAT ACCCTGAAAG GATGAACCGT GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA CATGTAGATG CATAATCAGT AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGCACCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC AAAACGTGGT AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA TTTAGTTGCC CTGAAAGGTT TTACAGCATT GTTGAGGCGG GGTAACTGCG TTTACCCGCC ATCCGCACAT CGGTGGGAGg TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GCCACCCTCC AGATATATTC GTCTCGAGCA AATCACTTGG CAGTCTAGCG GACCTCTGCG GTAGGTGCGA GTTTTGACCT CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGATTC GAATCCCGGC CGGGAACGGT CAAAACTGGA GGTATCTTCT GTGGCCCTGG CTAGGTCGGA GGCGCCTAAG CTTAGGGCCG GCCCTTGCCA GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG TACCGCCTAT AGAGTCTATA GGCCCACAAA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC ATGGCGGATA TCTCAGATAT CCGGGTGTTT AAATGCTTTC TTCTTTTAAT ATACTTTTTT GTTTATCTTA TTTCTAATAC TTTCCCTAAT СТСТTTCTTT TTTACGAAAG AAGAAAATTA TATGAAAAAA CAAATAGAAT AAAGATTATG AAAGGGATTA GAGAAAGAAA CAGGGCAATA ATGATACAAT GTATCATGCC TCTTTGCACC ATTCTAAAGA ATAACAGTGA TAATTTCTGG GTCCCGTTAT TACTATGTTA CATAGTACGG AGAAACGTGG TAAGATTTCT TATTGTCACT ATTAAAGACC GTTAAGGCAA TAGCAATATT TCTGCATATA AATATTTCTG CATATAAATT GTAACTGATG TAAGAGGTTT CAATTCCGTT ATCGTTATAA AGACGTATAT TTATAAAGAC GTATATTTAA CATTGACTAC ATTCTCCAAA CATATTGCTA ATAGCAGCTA CAATCCAGCT ACCATTCTGC TTTTATTTTA TGGTTGGGAT AAGGCTGGAT GTATAACGAT TATCGTCGAT GTTAGGTCGA TGGTAAGACG AAAATAAAAT ACCAACCCTA TTCCGACCTA TATTCTGAGT CCAAGCTAGG CCCTTTTGCT AATCATGTTC ATACCTCTTA TCTTCCTCCC ACAGCTCCTG ATAAGACTCA GGTTCGATCC GGGAAAACGA TTAGTACAAG TATGGAGAAT AGAAGGAGGg TGTCGAGGAC GGCAACGTGC TGGTCTGTGT GCTGGCCCAT CACTTTGGCA AAGAATTGGG ATTCGAACAT CGATTGAATT CCGTTGCACG ACCAGACACA CGACCGGGTA GTGAAACCGT TTCTTAACCC TAAGCTTGTA GCTAACTTAA CATGGCTTGC AATTGTCAGT TGATGCAGGA TACACCACTC CTCAAGTTTC CATGTCCAAG GCTCATTCTT

GTACCGAACG TTAACAGTCA ACTACGTCCT ATGTGGTGAG GAGTTCAAAG GTACAGGTTC CGAGTAAGAA CTCTTTGTGC TGCTGATTCG TCTTTCACAA GTGTCTTCAG ATTCTAGAGG TGAAGGGAGg ACAACCTGGG GAGAAACACG ACGACTAAGC AGAAAGTGTT CACAGAAGTC TAAGATCTCC ACTTCCCTCC TGTTGGACCC AGAGGGTGGG AGGAGGGAGC TGGGGTCTCC TGGGTAGGAC AGGGCTGGTC GACAACGGAT CTTGCAATGG TCTCCCACCC TCCTCCCTCG ACCCCAGAGG ACCCATCCTG TCCCGACCAG CTGTTGCCTA GAACGTTACC CAGCTGTTGC AATGGCAGCT GTTGCAACGG ATCTTGTAAG CTTTGCCCAA AGTACGTGAA GCAAAACACA GTCGACAACG TTACCGTCGA CAACGTTGCC TAGAACATTC GAAACGGGTT TCATGCACTT CGTTTTGTGT CTTAAACTGG CTACCGGAAT GAGAAACGTG CCAGAAAAGC AAACATAACT CGAGCAGCGC TGCTCGAGAG GAATTTGACC GATGGCCTTA CTCTTTGCAC GGTCTTTTCG TTTGTATTGA GCTCGTCGCG ACGAGCTCTC ATCTACGGGT GGCATCCCTG TGACCCCTCC CCAGTGCCTC TCCTGGCCCT GGAAGTTGCC ACTCCAGTGC TAGATGCCCA CCGTAGGGAC ACTGGGGAGg GgTCACGGAG AGGACCGGGA CCTTCAACGG TGAGGTCACG CCACCAGCCT TGTCCTAATA AAATTAAGTT GCATCATTTT GTCTGACTAG GTGTCCTTCT ATAATATTAT GGTGGTCGGA ACAGGATTAT TTTAATTCAA CGTAGTAAAA CAGACTGATC CACAGGAAGA TATTATAATA GGGGTGGAGg GGgGTGGTAT GGAGCAAGGg GCAAGTTGGG AAGACAACCT GTAGGGCCTG CGGGGTCTAT CCCCACCTCC CCCCACCATA CCTCGTTCCC CGTTCAACCC TTCTGTTGGA CATCCCGGAC GCCCCAGATA TGGGAACCAA GCTGGAGTGC AGTGGCACAA TCTTGGCTCA CTGCAATCTC CGCCTCCTGG GTTCAAGCGA ACCCTTGGTT CGACCTCACG TCACCGTGTT AGAACCGAGT GACGTTAGAG GCGGAGGACC CAAGTTCGCT TTCTCCTGCC TCAGCCTCCC GAGTTGTTGG GATTCCAGGC ATGCATGACC AGGCTCAGCT AATTTTTGTT AAGAGGACGG AGTCGGAGGG CTCAACAACC CTAAGGTCCG TACGTACTGG TCCGAGTCGA TTAAAAACAA TTTTTGGTAG AGACGGGGTT TCACCATATT GGCCAGGCTG GTCTCCAACT CCTAATCTCA GGTGATCTAC AAAAACCATC TCTGCCCCAA AGTGGTATAA CCGGTCCGAC CAGAGGTTGA GGATTAGAGT CCACTAGATG CCACCTTGGC CTCCCAAATT GCTGGGATTA CAGGCGTGAA CCACTGCTCC CTTCCCTGTC CTTCTGATTT GGTGGAACCG GAGGGTTTAA CGACCCTAAT GTCCGCACTT GGTGACGAGG GAAGGGACAG GAAGACTAAA TGTAGGTAAC CACGTGCGGA CCGAGCGGCC GCAGGAACCC CTAGTGATGG AGTTGGCCAC TCCCTCTCTG ACATCCATTG GTGCACGCCT GGCTCGCCGG CGTCCTTGGG GATCACTACC TCAACCGGTG AGGGAGAGAC CGCGCTCGCT CGCTCACTGA GGCCGGGCGA CCAAAGGTCG CCCGACGCCC GGGCTTTGCC CGGGCGGCCT GCGCGAGCGA GCGAGTGACT CCGGCCCGCT GGTTTCCAGC GGGCTGCGGG CCCGAAACGG GCCCGCCGGA CAGTGAGCGA GCGAGCGCGC AGCTGCCTGC AGGGGCGCCT GATGCGGTAT TTTCTCCTTA CGCATCTGTG GTCACTCGCT CGCTCGCGCG TCGACGGACG TCCCCGCGGA CTACGCCATA AAAGAGGAAT GCGTAGACAC CGGTATTTCA CACCGCATAC GTCAAAGCAA CCATAGTACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GCCATAAAGT GTGGCGTATG CAGTTTCGTT GGTATCATGC GCGGGACATC GCCGCGTAAT TCGCGCCGCC GTGTGGTGGT TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CACACCACCA ATGCGCGTCG CACTGGCGAT GTGAACGGTC GCGGGATCGC GGGCGAGGAA AGCGAAAGAA CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC GGGAAGGAAA GAGCGGTGCA AGCGGCCGAA AGGGGCAGTT CGAGATTTAG CCCCCGAGGG AAATCCCAAG CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTTGGGTGA TGGTTCACGT AGTGGGCCAT GCTAAATCAC GAAATGCCGT GGAGCTGGGG TTTTTTGAAC TAAACCCACT ACCAAGTGCA TCACCCGGTA CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTTCCA GCGGGACTAT CTGCCAAAAA GCGGGAAACT GCAACCTCAG GTGCAAGAAA TTATCACCTG AGAACAAGGT

2731	AACTGGAACA	ACACTCAACC	CTATCTCGGG	CTATTCTTTT	GATTTATAAG	GGATTTTGCC	GATTTCGGCC
	TTGACCTTGT	TGTGAGTTGG	GATAGAGCCC	GATAAGAAAA	CTAAATATTC	CCTAAAACGG	CTAAAGCCGG
2801	TATTGGTTAA	AAAATGAGCT	GATTTAACAA	AAATTTAACG	CGAATTTTAA	CAAAATATTA	ACGTTTACAA
	ATAACCAATT	TTTTACTCGA	CTAAATTGTT	TTTAAATTGC	GCTTAAAATT	GTTTTATAAT	TGCAAATGTT
2871	TTTTATGGTG	CACTCTCAGT	ACAATCTGCT	CTGATGCCGC	ATAGTTAAGC	CAGCCCCGAC	ACCCGCCAAC
	AAAATACCAC	GTGAGAGTCA	TGTTAGACGA	GACTACGGCG	TATCAATTCG	GTCGGGGCTG	TGGGCGGTTG
2941	ACCCGCTGAC	GCGCCCTGAC	GGGCTTGTCT	GCTCCCGGCA	TCCGCTTACA	GACAAGCTGT	GACCGTCTCC
	TGGGCGACTG	CGCGGGACTG	CCCGAACAGA	CGAGGGCCGT	AGGCGAATGT	CTGTTCGACA	CTGGCAGAGG
3011	GGGAGCTGCA	TGTGTCAGAG	GTTTTCACCG	TCATCACCGA	AACGCGCGAG	ACGAAAGGGC	CTCGTGATAC
	CCCTCGACGT	ACACAGTCTC	CAAAAGTGGC	AGTAGTGGCT	TTGCGCGCTC	TGCTTTCCCG	GAGCACTATG
3081	GCCTATTTTT	ATAGGTTAAT	GTCATGATAA	TAATGGTTTC	TTAGACGTCA	GGTGGCACTT	TTCGGGGAAA
	CGGATAAAAA	TATCCAATTA	CAGTACTATT	ATTACCAAAG	AATCTGCAGT	CCACCGTGAA	AAGCCCCTTT
3151	TGTGCGCGGA	ACCCCTATTT	GTTTATTTTT	CTAAATACAT	TCAAATATGT	ATCCGCTCAT	GAGACAATAA
	ACACGCGCCT	TGGGGATAAA	CAAATAAAAA	GATTTATGTA	Agtttataca	TAGGCGAGTA	CTCTGTtATT
3221	CCCTGATAAA	TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA	TGAGTATTCA	ACATTTCCGT	GTCGCCCTTA
	GGGACTATTT	ACGAAGTTAT	TATAACTTTT	TССТТСТСАт	ACTCATAAGT	TGTAAAGGCA	CAGCGGGAAT
3291	TTCCCTTTTT	TGCGGCATTT	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	CTGGTGAAAG	TAAAAGATGC
	AAGGGAAAAA	ACGCCGTAAA	CGGAAGGAC	AAAAACGAGT		GACCACTTTC	ATTTTCTACG
3361	TGAAGATCAG	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	GATCTCAACA	GCGGTAAGAT	CCTTGAGAGT
	ACTTCTAGTC	AACCCACGTG	CTCACCCAAT	GTAGCTTGAC	CTAGAGTTGT	CGCCATTCTA	GGAACTCTCA
3431	TTTCGCCCCG	AAGAACGTTT	TCCAATGATG	AGCACTTTTA	AAGTTCTGCT	ATGTGGCGCG	GTATTATCCC
	AAAGCGGGGC	TTCTTGCAAA	AGGTTACTAC	TCGTGAAAAT	TTCAAGACGA	TACACCGCGC	CATAATAGGG
3501	GTATTGACGC	CGGGCAAGAG	CAACTCGGTC	GCCGCATACA	CTATTCTCAG	AATGACTTGG	TTGAGTACTC
	CATAACTGCG	GCCCGTTCTC	GTTGAGCCAG	CGGCGTATGT	GATAAGAGTC	TTACTGAACC	AACTCATGAG
3571	ACCAGTCACA	GAAAAGCATC	TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG
	TGGTCAGTGT	CTTTTCGTAG	AATGCCTACC	GTACTGTCAT	TCTCTTAATA	CGTCACGACG	GTATTGGTAC
3641	AGTGATAACA	CTGCGGCCAA	CTTACTTCTG	ACAACGATCG	GAGGACCGAA	GGAGCTAACC	GCTTTTTTGC
	TCACTATTGT	GACGCCGGTT	GAATGAAGAC	TGTTGCTAGC	CTCCTGGCTT	CCTCGATTGG	CGAAAAAACG
3711	ACAACATGGG	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	AATGAAGCCA	TACCAAACGA
	TGTTGTACCC	CCTAGTACAT	TGAGCGGAAC	TAGCAACCCT	TGGCCTCGAC	TTACTTCGGT	ATGGTTTGCT
3781	CGAGCGTGAC	ACCACGATGC	CTGTAGCAAT	GGCAACAACG	TTGCGCAAAC	TATTAACTGG	CGAACTACTT
	GCTCGCACTG	TGGTGCTACG	GACATCGTTA	CCGTTGTTGC	AACGCGTTTG	ATAATTGACC	GCTTGATGAA
3851	ACTCTAGCTT	CCCGGCAACA	ATTAATAGAC	TGGATGGAGG	CGGATAAAGT	TGCAGGACCA	CTTCTGCGCT
	TGAGATCGAA	GGGCCGTTGT	TAATTATCTG	ACCTACCTCC	GCCTATTTCA	ACGTCCTGGT	GAAGACGCGA
3921	CGGCCCTTCC	GGCTGGCTGG	TTTATTGCTG	ATAAATCTGG	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT
	GCCGGGAAGG	CCGACCGACC	AAATAACGAC	TATTTAGACC	TCGGCCACTC	GCACCCAGAG	CGCCATAGTA
3991	TGCAGCACTG	GGGCCAGATG	GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAg	TCAGGCAACT
	ACGTCGTGAC	CCCGGTCTAC	CATTCGGGAG	GGCATAGCAT	CAATAGATGT	GCTGCCCCTC	AGTCCGTTGA
4061	ATGGATGAAC	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	GCATTGGTAA	CTGTCAGACC

	TACCTACTTG	CTTTATCTGT	CTAGCGACTC	TATCCACGGA	GTGACTAATT	CGTAACCATT	GACAGTCTGG
4131	AAGTTTACTC	ATATATACTT	TAGATTGATT	TAAAACTTCA	TTTTTAATTT	AAAAGGATCT	AGGTGAAGAT
	TTCAAATGAG	TATATATGAA	ATCTAACTAA	ATTTTGAAGT	AAAAATTAAA	TTTTCCTAGA	TCCACTTCTA
4201	CCTTTTTGAT	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	TTTTCGTTCC	ACTGAGCGTC	AGACCCCGTA
	GGAAAAACTA	TTAGAGTACT	GGTTTTAGGG	AATTGCACTC	AAAAGCAAGG	TGACTCGCAG	TCTGGGGCAT
4271	GAAAAGATCA	AAGGATCTTC	TTGAGATCCT	TTTTTTCTGC	GCGTAATCTG	CTGCTTGCAA	ACAAAAAAAC
	CTTTTCTAGT	TTCCTAGAAG	AACTCTAGGA	AAAAAAGACG	CGCATTAGAC	GACGAACGTT	TGTTTTTTTG
4341	CACCGCTACC	AGCGGTGGTT	TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT
	GTGGCGATGG	TCGCCACCAA	ACAAACGGCC	TAGTTCTCGA	TGGTTGAGAA	AAAGGCTTCC	ATTGACCGAA
4411	CAGCAGAGCG	CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT
	GTCGTCTCGC	GTCTATGGTT	TATGACAGGA	AGATCACATC	GGCATCAATC	CGGTGGTGAA	GTTCTTGAGA
4481	GTAGCACCGC	CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	GATAAGTCGT
	CATCGTGGCG	GATGTATGGA	GCGAGACGAT	TAGGACAATG	GTCACCGACG	ACGGTCACCG	CTATTCAGCA
4551	GTCTTACCGG	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	TCGGGCTGAA	CGGGGGGTTC
	CAGAATGGCC	CAACCTGAGT	TCTGCTATCA	ATGGCCTATT	CCGCGTCGCC	AGCCCGACTT	GCCCCCCAAG
4621	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	CTGAGATACC	TACAGCGTGA	GCTATGAGAA
	CACGTGTGTC	GGGTCGAACC	TCGCTTGCTG	GATGTGGCTT	GACTCTATGG	ATGTCGCACT	CGATACTCTT
4691	AGCGCCACGC	TTCCCGAAGG	GAGAAAGGCG	GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC
	TCGCGGTGCG	AAGGGCTTCC	CTCTTTCCGC	CTGTCCATAG	GCCATTCGCC	GTCCCAGCCT	TGTCCTCTCG
4761	GCACGAGGGA	GCTTCCAGGG	GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT
	CGTGCTCCCT	CGAAGGTCCC	CCTTTGCGGA	CCATAGAAAT	ATCAGGACAG	CCCAAAGCGG	TGGAGACTGA
4831	TGAGCGTCGA	TTTTTGTGAT	GCTCGTCAGG	GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCGGCCTTT
	ACTCGCAGCT	AAAAACACTA	CGAGCAGTCC	CCCCGCCTCG	GATACCTTTT	TGCGGTCGTT	GCGCCGGAAA
4901	TTACGGTTCC	TGGCCTTTTG	CTGGCCTTTT	GCTCACATGT			
	AATGCCAAGG	ACCGGAAAAC	GACCGGAAAA	CGAGTGTACA			

5' PCMV LTR

Feature	Nucleotide Position
5^{\prime} CMV promoter LTR	$1-515$
Extended packaging signal ($\Psi)$	$516-1405$
CEA	$1411-1545$
PKG promoter	$1558-2066$
3^{\prime} CMV promoter LTR	$2988-3471$
Ampicillin resistance (bla) ORF	$5662-4805$

TGAAAGACCC CACCTGTAGG TTTGGCAAGC TAGCTTAAGT AACGCCATTT TGCAAGGCAT GGAAAATACA ACTTTCTGGG GTGGACATCC AAACCGTTCG ATCGAATTCA TTGCGGTAAA ACGTTCCGTA CCTTTTATGT TAACTGAGAA TAGAGAAGTT CAGATCAAGG TTAGGAACAG AGAGACAGCA GAATATGGGC CAAACAGGAT ATTGACTCTT ATCTCTTCAA GTCTAGTTCC AATCCTTGTC TCTCTGTCGT CTTATACCCG GTTTGTCCTA ATCTGTGGTA AGCAGTTCCT GCCCCGGCTC AGGGCCAAGA ACAGATGGTC CCCAGATGCG GTCCCGCCCT TAGACACCAT TCGTCAAGGA CGGGGCCGAG TCCCGGTTCT TGTCTACCAG GGGTCTACGC CAGGGCGGGA CAGCAGTTTC TAGAGAACCA TCAGATGTTT CCAGGGTGCC CCAAGGACCT GAAATGACCC TGTGCCTTAT GTCGTCAAAG ATCTCTTGGT AGTCTACAAA GGTCCCACGG GGTTCCTGGA CTTTACTGGG ACACGGAATA TTGAACTAAC CAATCAGTTC GCTTCTCGCT TCTGTTCGCG CGCTTCTGCT CCCCGAGCTC AATAAAAGAG AACTTGATTG GTTAGTCAAG CGAAGAGCGA AGACAAGCGC GCGAAGACGA GGGGCTCGAG TTATTTTCTC CCCACAACCC CTCACTCGGC GCGCCAGTCC TCCGATAGAC TGCGTCGCCC GGGTACCCGT ATTCCCAATA GGGTGTTGGG GAGTGAGCCG CGCGGTCAGG AGGCTATCTG ACGCAGCGGG CCCATGGGCA TAAGGGTTAT AAGCCTCTTG CTGTTTGCAT CCGAATCGTG GACTCGCTGA TCCTTGGGAG GGTCTCCTCA GATTGATTGA TTCGGAGAAC GACAAACGTA GGCTTAGCAC CTGAGCGACT AGGAACCCTC CCAGAGGAGT CTAACTAACT CTGCCCACCT CGGGGGTCTT TCATTTGGAG GTTCCACCGA GATTTGGAGA CCCCTGCCCA GGGACCACCG GACGGGTGGA GCCCCCAGAA AGTAAACCTC CAAGGTGGCT CTAAACCTCT GGGGACGGGT CCCTGGTGGC ACCCCCCCGC CGGGAGGTAA GCTGGCCAGC GGTCGTTTCG TGTCTGTCTC TGTCTTTGTG CGTGTTTGTG TGGGGGGGCG GCCCTCCATT CGACCGGTCG CCAGCAAAGC ACAGACAGAG ACAGAAACAC GCACAAACAC CCGGCATCTA ATGTTTGCGC CTGCGTCTGT ACTAGTTAGC TAACTAGCTC TGTATCTGGC GGACCCGTGG GGCCGTAGAT TACAAACGCG GACGCAGACA TGATCAATCG ATTGATCGAG ACATAGACCG CCTGGGCACC TGGAACTGAC GAGTTCTGAA CACCCGGCCG CAACCCTGGG AGACGTCCCA GGGACTTTGG GGGCCGTTTT ACCTTGACTG CTCAAGACTT GTGGGCCGGC GTTGGGACCC TCTGCAGGGT CCCTGAAACC CCCGGCAAAA TGTGGCCCGA CCTGAGGAAG GGAGTCGATG TGGAATCCGA CCCCGTCAGG ATATGTGGTT CTGGTAGGAG ACACCGGGCT GGACTCCTTC CCTCAGCTAC ACCTTAGGCT GGGGCAGTCC TATACACCAA GACCATCCTC ACGAGAACCT AAAACAGTTC CCGCCTCCGT CTGAATTTTT GCTTTCGGTT TGGAACCGAA GCCGCGCGTC TGCTCTTGGA TTTTGTCAAG GGCGGAGGCA GACTTAAAAA CGAAAGCCAA ACCTTGGCTT CGGCGCGCAG TTGTCTGCTG CAGCGCTGCA GCATCGTTCT GTGTTGTCTC TGTCTGACTG TGTTTCTGTA TTTGTCTGAA AACAGACGAC GTCGCGACGT CGTAGCAAGA CACAACAGAG ACAGACTGAC ACAAAGACAT AAACAGACTT AATTAGGGCC AGACTGTTAC CACTCCCTTA AGTTTGACCT TAGGTCACTG GAAAGATGTC GAGCGGATCG TTAATCCCGG TCTGACAATG GTGAGGGAAT TCAAACTGGA ATCCAGTGAC CTTTCTACAG CTCGCCTAGC CTCACAACCA GTCGGTAGAT GTCAAGAAGA GACGTTGGGT TACCTTCTGC TCTGCAGAAT GGCCAACCTT GAGTGTTGGT CAGCCATCTA CAGTTCTTCT CTGCAACCCA ATGGAAGACG AGACGTCTTA CCGGTTGGAA TAACGTCGGA TGGCCGCGAG ACGGCACCTT TAACCGAGAC CTCATCACCC AGGTTAAGAT CAAGGTCTTT ATTGCAGCCT ACCGGCGCTC TGCCGTGGAA ATTGGCTCTG GAGTAGTGGG TCCAATTCTA GTTCCAGAAA TCACCTGGCC CGCATGGACA CCCAGACCAG GTCCCCTACA TCGTGACCTG GGAAGCCTTG GCTTTTGACC AGTGGACCGG GCGTACCTGT GGGTCTGGTC CAGGGGATGT AGCACTGGAC CCTTCGGAAC CGAAAACTGG CCCCTCCCTG GGTCAAGCCC TTTGTACACC CTAAGCCTCC GCCTCCTCTT CCTCCATCCG CCCCGTCTCT GGGGAGGGAC CCAGTTCGGG AAACATGTGG GATTCGGAGG CGGAGGAGAA GGAGGTAGGC GGGGCAGAGA CCCCCTTGAA CCTCCTCGTT CGACCCCGCC TCGATCCTCC CTTTATCCAG CCCTCACTCC TTCTCTAGGC

	GGGGGAACTT	GGAGGAGCAA	GCTGGGGCGG	AGCTAGGAGG	GAAATAGGTC	GGGAGTGAGG	AAGAGATCCG
1401	GCCGGAATTC	ATGGAGTCTC	CCTCGGCCCC	TCCCCACAGA	TGGTGCATCC	CCTGGCAGAG	GCTCCTGCTC
	CGGCCTTAAG	TACCTCAGAG	GGAGCCGGGG	AGGGGTGTCT	ACCACGTAGG	GGACCGTCTC	CGAGGACGAG
1471	ACAGGTGAAG	GGAGGACAAC	CTGGGAGAGG	GTGGGAGGAG	GGAGCTGGGG	TCTCCTGGGT	AGGACAGGGC
	TGTCCACTTC	CCTCCTGTTG	GACCCTCTCC	САСССтССтС	CCTCGACCCC	AGAGGACCCA	TCCTGTCCCG
1541	TGTAACTCGA	GAGATCTAAT	TCTACCGGGT	AGGGGAGGCG	CTTTTCCCAA	GGCAGTCTGG	AGCATGCGCT
	ACATTGAGCT	CTCTAGATTA	AGATGGCCCA	TCCCCTCCGC	GAAAAGGGTT	CCGTCAGACC	TCGTACGCGA
1611	TTAGCAGCCC	CGCTGGGCAC	TTGGCGCTAC	ACAAGTGGCC	TCTGGCCTCG	CACACATTCC	ACATCCACCG
	AATCGTCGGG	GCGACCCGTG	AACCGCGATG	TGTTCACCGG	AGACCGGAGC	GTGTGTAAGG	TGTAGGTGGC
1681	GTAGGCGCCA	ACCGGCTCCG	TTCTTTGGTG	GCCCCTTCGC	GCCACCTTCT	АСТССТСССС	TAGTCAGGAA
	CATCCGCGGT	TGGCCGAGGC	AAGAAACCAC	CGGGGAAGCG	CGGTGGAAGA	TGAGGAGGGG	ATCAGTCCTT
1751	GTTCCCCCCC	GCCCCGCAGC	TCGCGTCGTG	CAGGACGTGA	CAAATGGAAG	TAGCACGTCT	CACTAGTCTC
	CAAGGGGGGG	CGGGGCGTCG	AGCGCAGCAC	GTCCTGCACT	GTTTACCTTC	ATCGTGCAGA	GTGATCAGAG
1821	GTGCAGATGG	ACAGCACCGC	TGAGCAATGG	AAGCGGGTAG	GCCTTTGGGG	CAGCGGCCAA	TAGCAGCTTT
	CACGTCTACC	TGTCGTGGCG	ACTCGTTACC	TTCGCCCATC	CGGAAACCCC	GTCGCCGGTT	ATCGTCGAAA
1891	GCTCCTTCGC	TTTCTGGGCT	CAGAGGCTGG	GAAGGGGTGG	GTCCGGGGGC	GGGCTCAGGG	GCGGGCTCAG
	CGAGGAAGCG	AAAGACCCGA	GTCTCCGACC	TTCCCCACC	CAGGCCCCCG	CCCGAGTCCC	CGCCCGAGTC
1961	GGGCGGGGCG	GGCGCCCGAA	GGTCCTCCGG	AGGCCCGGCA	TTCTGCACGC	TTCAAAAGCG	CACGTCTGCC
	CCCGCCCCGC	CCGCGGGCTT			AAGACGTGCG	AAGTTTTCGC	GTGCAGACGG
2031	GCGCTGTTCT	ССтСттсСтС	ATCTCCGGGC	CTTTCGACCT	GCAGCCAATA	TGGGATCGGC	CATTGAACAA
	CGCGACAAGA	GGAGAAGGAG	TAGAGGCCCG	GAAAGCTGGA	CGTCGGTTAT	ACCCTAGCCG	GTAACTTGTT
2101	GATGGATTGC	ACGCAGGTTC	TCCGGCCGCT	TGGGTGGAGA	GGCTATTCGG	CTATGACTGG	GCACAACAGA
	CTACCTAACG	TGCGTCCAAG	AGGCCGGCGA	ACCCACCTCT	CCGATAAGCC	GATACTGACC	CGTGTTGTCT
2171	CAATCGGCTG	CTCTGATGCC	GCCGTGTTCC	GGCTGTCAGC	GCAGGGGCGC	CCGGTTCTTT	TTGTCAAGAC
	GTTAGCCGAC	GAGACTACGG	CGGCACAAGG	CCGACAGTCG	CGTCCCCGCG	GGCCAAGAAA	AACAGTTCTG
2241	CGACCTGTCC	GGTGCCCTGA	ATGAACTGCA	GGACGAGGCA	GCGCGGCTAT	CGTGGCTGGC	CACGACGGGC
	GCTGGACAGG	CCACGGGACT	TACTTGACGT	CCTGCTCCGT	CGCGCCGATA	GCACCGACCG	GTGCTGCCCG
2311	GTTCCTTGCG	CAGCTGTGCT	CGACGTTGTC	ACTGAAGCGG	GAAGGGACTG	GCTGCTATTG	GGCGAAGTGC
	CAAGGAACGC	GTCGACACGA	GCTGCAACAG	TGACTTCGCC	CTTCCCTGAC	CGACGATAAC	CCGCTTCACG
2381	CGGGGCAGGA	TCTCCTGTCA	TCTCACCTTG	CTCCTGCCGA	GAAAGTATCC	ATCATGGCTG	ATGCAATGCG
	GCCCCGTCCT	AGAGGACAGT	AGAGTGGAAC	GAGGACGGCT	CTTTCATAGG	TAGTACCGAC	TACGTTACGC
2451	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	CCCATTCGAC	CACCAAGCGA	AACATCGCAT	CGAGCGAGCA
	CGCCGACGTA	TGCGAACTAG	GCCGATGGAC	GGGTAAGCTG	GTGGTTCGCT	TTGTAGCGTA	GCTCGCTCGT
2521	CGTACTCGGA	TGGAAGCCGG	TCTTGTCGAT	CAGGATGATC	TGGACGAAGA	GCATCAGGGG	CTCGCGCCAG
	GCATGAGCCT	ACCTTCGGCC	AGAACAGCTA	GTCCTACTAG	ACCTGCTTCT	CGTAGTCCCC	GAGCGCGGTC
2591	CCGAACTGTT	CGCCAGGCTC	AAGGCGCGCA	TGCCCGACGG	CGAGGATCTC	GTCGTGACCC	ATGGCGATGC
	GGCTTGACAA	GCGGTCCGAG	TTCCGCGCGT	ACGGGCTGCC	GCTCCTAGAG	CAGCACTGGG	TACCGCTACG
2661	CTGCTTGCCG	AATATCATGG	TGGAAAATGG	CCGCTTTTCT	GGATTCATCG	ACTGTGGCCG	GCTGGGTGTG
	GACGAACGGC	TTATAGTACC	ACCTTTTACC	GGCGAAAAGA	CCTAAGTAG	GACACC	GACCCACAC

2731	GCGGACCGCT	ATCAGGACAT	AGCGTTGGCT	ACCCGTGATA	TTGCTGAAGA	GCTTGGCGGC	GAATGG
	CGCCTGGCGA	TAGTCCTGTA	TCGCAACCGA	TGGGCACTAT	AACGACTTCT	CGAACCGCCG	CTTACCCGAC
2801	ACCGCTTCCT	CGTGCTTTAC	GGTATCGCCG	CTCCCGATTC	GCAGCGCATC	GCCTTCTATC	GCCTTCTTGA
	TGGCGAAGGA	GCACGAAATG	CCATAGCGGC	GAGGGCTAAG	CGTCGCGTAG	CGGAAGATAG	CGGAAGAACT
2871	CGAGTTCTTC	TGAGGGGATC	CGTCGACCTG	CAGCCAAGCT	TATCGATAAA	ATAAAAGATT	TTATTTAGTC
	GCTCAAGAAG	ACTCCCCTAG	GCAGCTGGAC	GTCGGTTCGA	ATAGCTATTT	TATTTTCTAA	AATAAATCAG
2941	TCCAGAAAAA	GGGGGGAATG	AAAGACCCCA	CCTGTAGGTT	TGGCAAGCTA	GCTTAAGTAA	CGCCATtTTG
	AGGTCTTTTT	CCCCCCTTAC	TTTCTGGGGT	GGACATCCAA	ACCGTTCGAT	CGAATTCATT	GCGGTAAAAC
3011	CAAGGCATGG	AAAATACATA	ACTGAGAATA	GAGAAGTTCA	GATCAAGGTT	AGGAACAGAG	AGACAGCAGA
	GTTCCGTACC	TTTTATGTAT	TGACTCTTAT	CTCTTCAAGT	CTAGTTCCAA	TCCTTGTCTC	TCTGTCGTCT
3081	ATATGGGCCA	AACAGGATAT	CTGTGGTAAG	CAGTTCCTGC	CCCGGCTCAG	GGCCAAGAAC	AGATGGTCCC
	TATACCCGGT	TTGTCCTATA	GACACCATTC	GTCAAGGACG	GGGCCGAGTC	CCGGTTCTTG	TCTACCAGGG
3151	CAGATGCGGT	CCCGCCCTCA	GCAGTTTCTA	GAGAACCATC	AGATGTTTCC	GGGTGCCCC	AAGGACCTGA
	GTCTACGCCA	GGGCGGGAGT	CGTCAAAGAT	CTCTTGGTAG	TCTACAAAGG	TCCCACGGGG	TTCCTGGACT
3221	AATGACCCTG	TGCCTTATTT	GAACTAACCA	ATCAGTTCGC	TTCTCGCTTC	TGTTCGCGCG	CTTCTGCTCC
	TTACTGGGAC	ACGGAATAAA	CTTGATTGGT	TAGTCAAGCG	AAGAGCGAAG	ACAAGCGCGC	GAAGACGAGG
3291	CCGAGCTCAA	TAAAAGAGCC	CACAACCCCT	ACTCGGCGC	GCCAGTCCTC	CGATAGACTG	CGTCGCCCGG
	GGCTCGAGTT	ATTTTCTCGG	GTGTTGGGGA	GTGAGCCGCG		GCTATCTGAC	GCAGCGGGCC
3361	GTACCCGTGT	ATCCAATAAA			ACTTGTGGTC	CTGTTCC	TGGGAGGGT
	CATGGGCACA	TAGGTTATTT	GGGAGAACGT	CAACGTAGGC	TGAACACCAG	AGCGACAAGG	AACCCTCCCA
3431	CTCCTCTGAG	TGATTGACTA	CCCGTCAGCG	GGGGTCTTTC	ATGGGTAACA	GTTTCTTGAA	GTTGGAGAAC
	GAGGAGACTC	ACTAACTGAT	GGGCAGTCGC	CCCCAGAAAG	TACCCATTGT	AAAGAACTT	CAACCTCTTG
3501	AACATTCTGA	GGGTAGGAGT	CGAATATTAA	GTAATCCTGA	CTCAATTAGC	CACTGTTTTG	AATCCACATA
	TTGTAAGACT	CCCATCCTCA	GCTTATAATT	CATTAGGACT	GAGTTAATCG	GTGACAAAAC	TTAGGTGTAT
3571	CTCCAATACT	CCTGAAATAG	TTCATTATGG	ACAGCGCAGA	AGAGCTGGGG	AGAATTAATT	CGTAATCATG
	GAGGTTATGA	GGACTTTATC	AAGTAATACC	TGTCGCGTCT	TCTCGACCCC	TCTTAATTAA	GCATTAGTAC
3641	GTCATAGCTG	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA	ATTCCACACA	ACATACGAGC	CGGAAGCATA
	CAGTATCGAC	AAAGGACACA	CTTTAACAAT	AGGCGAGTGT	TAAGGTGTGT	TGTATGCTCG	GCCTTCGTAT
3711	AAGTGTAAAG	CCTGGGGTGC	CTAATGAGTG	AGCTAACTCA	CATTAATTGC	GTTGCGCTCA	CTGCCCGCTT
	TTCACATTTC	GGACCCCACG	GATTACTCAC	TCGATTGAGT	GTAATTAACG	CAACGCGAGT	GACGGGCGAA
3781	TCCAGTCGGG	AAACCTGTCG	TGCCAGCTGC	ATTAATGAAT	CGGCCAACGC	GCGGGGAGAG	GCGGTTTGCG
	AGGTCAGCCC	TTTGGACAGC	ACGGTCGACG	TAATTACTTA	GCCGGTTGCG	CGCCCCTCTC	CGCCAAACGC
3851	TATTGGGCGC	TCTTCCGCTT	CCTCGCTCAC	TGACTCGCTG	CGCTCGGTCG	TTCGGCTGCG	GCGAGCGGTA
	ATAACCCGCG	AGAAGGCGAA	GGAGCGAGTG	ACTGAGCGAC	GCGAGCCAGC	AAGCCGACGC	CGCTCGCCAT
3921	TCAGCTCACT	CAAAGGCGGT	AATACGGTTA	TCCACAGAAT	CAGGGGATAA	CGCAGGAAAG	AACATGTGAG
	AGTCGAGTGA	GTTTCCGCCA	TTATGCCAAT	AGGTGTCTTA	GTCCCCTATT	GCGTCCTTTC	TTGTACACTC
3991	CAAAAGGCCA	GCAAAAGGCC	AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC
	GTTTTCCGGT	CGTTTTCCGG	TCCTTGGCAT	TTTTCCGGCG	CAACGACCGC	AAAAAGGTAT	CCGAGGCGGG
4061	CCCTGACGAG	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	ATAAAGATAC

Abstract

GGGACTGCTC GTAGTGTTTT TAGCTGCGAG TTCAGTCTCC ACCGCTTTGG GCTGTCCTGA TATTTCTATG CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCT GCCGCTTACC GGATACCTGT GTCCGCAAAG GGgGACCTTC GAGGGAGCAC GCGAGAGGAC AAGGCTGGGA CGGCGAATGG CCTATGGACA CCGCCTTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCATAG CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGCGgAAAgA Gggangccct tcgcaccgcg AaAgagtatc gagtgcgaca tccatagagt canaccacat GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT CCAGCAAGCG AGgTTCGACC CGACACACGT GCTTGGGGGG CAAGTCGGGC TGGCGACGCG GAATAGGCCA AACTATCGTC TTGAGTCCAA CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTGATAGCAG AACTCAGGTT GGGCCATTCT GTGCTGAATA GCGGTGACCG TCGTCGGTGA CCATTGTCCT TTAGCAGAGC GAgGtatgia ggcggtgcta cagagttcti gaigtggtgg cctanctacg gctacactag AATCGTCTCG CTCCATACAT CCGCCACGAT GTCTCAAGAA CTTCACCACC GGATTGATGC CGATGTGATC AAGGACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA TTCCTGTCAT AAACCATAGA CGCGAGACGA CTTCGGTCAA TGGAAGCCTT TTTCTCAACC ATCGAGAACT TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA GCAGATTACG CGCAGAAAAA AgGCCGTTTG TTTGGTGGCG ACCATCGCCA CCAAAAAAAC AAACGTTCGT CGTCTAATGC GCGTCTTTTT AAGGATCTCA AGAAGATCCT TTGATCTTTT CTACGGGGTC TGACGCTCAG TGGAACGAAA ACTCACGTTA TTCCTAGAGT TCTTCTAGGA AACTAGAAAA GATGCCCCAG ACTGCGAGTC ACCTTGCTTT TGAGTGCAAT AGGGATTTTG GTCATGAGAT TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT TCCCTAAAAC CAGTACTCTA ATAGTTTITC CTAGAAGTGG ATCTAGGAAA ATTTAATTTT TACTTCAAAA AAATCAATCT AAAGTATATA TGAGTAAACT TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA TTTAGTTAGA TTTCATATAT ACTCATTTGA ACCAGACTGT CAATGGTTAC GAATTAGTCA CTCCGTGGAT TCTCAGCGAT CTGTCTATTT CGTTÇATCCA TAGTTGCcTG ACTCCCCGTC GTGTAGATAA CTACGATACG AgAGTCGCTA GACAGATAAA GCAAGTAGGT ATCAACGGAC TGAGGGgCAG CACATCTATT GATGCTATGC GGAGGGCTTA CCATCTGGCC CCAGTGCTGC AATGATACCG CGAGACCCAC GCTCACCGGC TCCAGATTTA CCTCCCGAAT GGTAGACCGG GGTCACGACG TTACTATGGC GCTCTGGGTG CGAGTGGCCG AGGTCTAAAT TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGTCCTGC AACTTTATCC GCCTCCATCC AgTCGTTATT TGGTCGGTCG GCCTTCCCGG CTCGCGTCTT CACCAGGACG TTGAAATAGG CGGAGGTAGG 5041 AGTCTATTAA TTGTTGCCGG GAAGCTAGAG TAAGTAGTTC GCCAGTTAAT AGTTTGCGCA ACGTTGTTGC TCAGATAATT AACAACGGCC CTTCGATCTC ATTCATCAAG CGGTCAATTA TCAAACGCGT TGCAACAACG CATTGCTACA GGCATCGTGG TGTCACGCTC GTCGTTTGGT ATGGCTTCAT TCAGCTCCGG TTCCCAACGA GTAACGATGT CCGTAGCACC ACAGTGCGAG CAGCAAACCA TACCGAAGTA AGTCGAGGCC AAGGGTTGCT TCAAGGCGAG TTACATGATC CCCCATGTTG TGCAAAAAAG CGGTTAGCTC CTTCGGTCCT CCGATCGTTG AgTTCCGCTC AATGTACTAG GgGgTACAAC ACGTTTTTTC GCCAATCGAG GAAGCCAGGA GgCTAGCAAC TCAGAAGTAA GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC TTACTGTCAT AgTCTTCATT CAACCGGCGT CACAATAGTG AGTACCAATA CCGTCGTGAC GTATTAAGAG AATGACAGTA GCCATCCGTA AGATGCTTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA GTGTATGCGG CGGTAGGCAT TCTACGAAAA GACACTGACC ACTCATGAGT TGGTTCAGTA AGACTCTTAT CACATACGCC CGACCGAGTT GCTCTTGCCC GGCGTCAATA CGGGATAATA CCGCGCCACA TAGCAGAACT TTAAAAGTGC GCTGGCTCAA CGAGAACGGG CCGCAGTTAT GCCCTATTAT GGCGCGGTGT ATCGTCTTGA AATTTTCACG

5461	TCATCATTGG	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	CTGTTGAGAT	CCAGTTCGAT
	AGTAGTAACC	TTTTGCAAGA	AGCCCCGCTT	TTGAGAGTTC	CTAGAATGGC	GACAACTCTA	GGTCAAGCTA
5531	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA
	CATTGGGTGA	GCACGTGGGT	TGACTAGAAG	TCGTAGAAAA	TGAAAGTGGT	CGCAAAGACC	CACTCGTTTT
5601	ACAGGAAGGC	AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	ATACTCTTCC
	TGTCCTTCCG	TTTTACGGCG	TTTTTTCCCT	TATTCCCGCT	GTGCCTTTAC	AACTTATGAG	TATGAGAAGG
5671	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	CATGAGCGGA	TACATATTTG	AATGTATTTA
	AAAAAGTTAT	AATAACTTCG	TAAATAGTCC	CAATAACAGA	GTACTCGCCT	ATGTATAAAC	TTACATAAAT
5741	GAAAAATAAA	CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT
	CTTTTTATTT	GTTTATCCCC	AAGGCGCGTG	TAAAGGGGCT	TTTCACGGTG	GACTGCAGAT	TCTTTGGTAA
5811	ATTATCATGA	CATTAACCTA	TAAAAATAGG	CGTATCACGA	GGCCCTTTCG	TCTCGCGCGT	TTCGGTGATG
	TAATAGTACT	GTAATTGGAT	ATTTTTATCC	GCATAGTGCT	CCGGGAAAGC	AGAGCGCGCA	AAGCCACTAC
5881	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG
	TGCCACTTTT	GGAGACTGTG	TACGTCGAGG	GCCTCTGCCA	GTGTCGAACA	GACATTCGCC	TACGGCCCTC
5951	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCT	GGCTTAACTA	TGCGGCATCA
	GTCTGTTCGG	GCAGTCCCGC	GCAGTCGCCC	ACAACCGCCC	ACAGCCCCGA	CCGAATTGAT	ACGCCGTAGT
6021	GAGCAGATTG	TACTGAGAGT	GCACCATATG	CGGTGTGAAA	TACCGCACAG	ATGCGTAAGG	AGAAAATACC
	CTCGTCTAAC	ATGACTCTCA	CGTGGTATAC	GCCACACTTT	ATGGCGTGTC	TACGCATTCC	TCTTTTATGG
6091	GCATCAGGCG	CCATTCGCCA	TTCAGGCTGC	GCAACTGTTG	GGAAGGGCGA	TCGGTGCGGG	CCTCTTCGCT
	CGTAGTCCGC	GGTAAGCGGT	AAGTCCGACG	CGTTGACAAC	CCTTCCCGCT	AGCCACGCCC	GGAGAAGCGA
6161	ATTACGCCAG	CTGGCGAAAG	GGGGATGTGC	TGCAAGGCGA	TTAAGTTGGG	TAACGCCAGG	GTTTTCCCAG
	TAATGCGGTC	GACCGCTTTC	CCCCTACACG	ACGTTCCGCT	AATTCAACCC	ATTGCGGTCC	CAAAAGGGTC
6231	TCACGACGTT	GTAAAACGAC	GGCGCAAGGA	ATGGTGCATG	CAAGGAGATG	GCGCCCAACA	GTCCCCCGGC
	AGTGCTGCAA	CATTTTGCTG	CCGCGTTCCT	TACCACGTAC	GTTCCTCTAC	CGCGGGTTGT	CAGGGGGCCG
6301	CACGGGGCCT	GCCACCATAC	CCACGCCGAA	ACAAGCGCTC	ATGAGCCCGA	AGTGGCGAGC	CCGATCTTCC
	GTGCCCCGGA	CGGTGGTATG	GGTGCGGCTT	TGTTCGCGAG	TACTCGGGCT	TCACCGCTCG	GGCTAGAAGG
6371	CCATCGGTGA	TGTCGGCGAT	ATAGGCGCCA	GCAACCGCAC	CTGTGGCGCC	GGTGATGCCG	GCCACGATGC
	GGTAGCCACT	ACAGCCGCTA	TATCCGCGGT	CGTTGGCGTG	GACACCGCGG	CCACTACGGC	CGGTGCTACG
6441	GTCCGGCGTA	GAGGCGATTA	GTCCAATTTG	TTAAAGACAG	GATATCAGTG	GTCCAGGCTC	TAGTTTTGAC
	CAGGCCGCAT	CTCCGCTAAT	CAGGTTAAAC	AATTTCTGTC	CTATAGTCAC	CAGGTCCGAG	ATCAAAACTG
6511	TCAACAATAT	CACCAGCTGA	AGCCTATAGA	GTACGAGCCA	TAGATAAAAT	AAAAGATTTT	ATTTAGTCTC
	AGTTGTTATA	GTGGTCGACT	TCGGATATCT	CATGCTCGGT	ATCTATTTTA	TTTTCTAAAA	TAAATCAGAG
6581	CAGAAAAAGG	GGGGAA					

